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ABSTRACT OF THE THESIS

Sequential coupling of phase-field and vertex dynamics models for grain growth simulations

by

Sai Deepak Kumar Ayyalasomayajula

Master of Science in Materials Science and Engineering

University of California, Los Angeles, 2024

Professor Jaime Marian, Chair

Grain growth plays a pivotal role in determining the macroscopic properties of several poly-

crystalline materials. It is predominantly controlled by grain boundary and triple junction

mobility, and several atomistic and mesoscale models have been developed to study this phe-

nomenon. In particular, multi-order parameter phase-field and vertex dynamics models have

been extensively used to understand the grain evolution dynamics and the effect of triple

junction drag on the growth kinetics. In the current work, we present a novel sequentially-

coupled phase-field and vertex dynamics model for both isotropic and anisotropic grain

growth simulations. The proposed approach, which uses a backpropagation neural network,

image processing and mathematical techniques for accurate grain boundary curvature detec-

tion, takes the advantages of both the models and provides an efficient way to switch from

phase-field to vertex dynamics model depending on the growth controlling mechanism. Our

results suggest that phase-field generated microstructures can replace Voronoi tessellation as

the input to vertex dynamics, with a reduction in computational expenses and the ability to

simulate more realistic and complex microstructures.
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CHAPTER 1

Introduction

Grain growth in polycrystalline materials is one of the most important phenomena that in-

creases their grain size and has a profound impact on their thermal [1], electrical [2] and

mechanical properties [3, 4, 5]. It is commonly observed in materials that undergo heat treat-

ment, and understanding the thermodynamics and kinetics of the grain evolution process is

paramount to designing materials for several structural and automotive applications. The

fundamental mechanisms of grain growth have been well-researched. Burke and Turnbull [6]

proposed that the driving force was the reduction in surface energy of grains, which was

responsible for relaxation of grain boundaries towards their respective centers of curvature.

Cole et al. [7] was the first to develop the square law D2 − D0
2 = Kte

−H
kT for isothermal

grain growth in steels, where “K” is a constant proportional to specific surface energy and

atomic volume. However, the effect of grain size and shape distribution was not statistically

considered in their approach. Feltham [8] developed a more comprehensive theory for grain

growth in metals taking into account surface-tension affected curvature of grain boundaries,

and proposed that grain size follows a log-normal distribution in addition to satisfying the

square lawD2−D0
2 = (λV aσ

b
)te

−H
kT , λ being a constant of order 1 andD,D0 are instantaneous

and initial mean grain sizes.

Hillert [9] provided an exhaustive analysis of grain growth analogous to the precipitate

coarsening theory by Lifshitz et al., [10]. He postulated that the driving force for grain

growth is based on the capillary action, and that growth rate is only contingent upon the

grain size of the material, although experiments carried out later [11] were in disagreement

with this theory. Louat [12] implemented a stochastic method by considering the movement

of grain boundaries and assumed no direct relationship between growth rate and grain size, in
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that, grain size is only a function of boundary length. The combinations of the two theories,

despite their individual limitations, have been developed and regarded as benchmark mean

field theories to study grain growth today.

Despite varied assumptions, all the aforementioned theories result in the same conclusion

i.e., R
2 ∝ t, where R is the mean grain size, but do not take into account the topological

requirements during the grain growth process [13]. C.S. Smith [14] emphasized that topology

is a marriage between space-filling and the geometrical need to achieve tension equilibrium

at the surface. He developed a cellular model of the grain structure, in which vertices (V)

are connected by edges (E), surrounded by faces (F) and satisfy the equation F −E+V = 1

in 2D. This representation led to the criterion that grains with less than 6 sides shrink and

more than 6 sides grow, while adjusting their curvature to maintain a 120◦ angle at the

vertices. Von Neumann [15] argued that it was surface tension and not geometrical necessity

that acts as an impetus for grain growth. Mullins [16] arrived at the same conclusion,

considering the area of a single grain, A, and formulated the expression, famously known as

von Neumann-Mullins topological law:

Ȧ =
kπ

3
(s− 6). (1.1)

where s is the number of sides of grain and Ȧ is the rate of area change.

However, Rivier [17] asserted that surface tension does not affect the rate of change of

grain area. He proved that the process is purely driven by the tendency for space-filling

and that the size distribution statistics remain invariant despite topological transformations

affecting the shape of grain during evolution. Kurtz and Carpay [18, 19], further extended

the initial works of Feltham [8] by categorizing each grain into a topological class and eluci-

dated that log-normal distribution is one of the essential characteristics of grain growth in a

material.

Grain growth can be broadly divided into two types: (1) Normal (NGG) and (2) Ab-

normal grain growth (AGG). The principles of Hillert [9] and von Neumann-Mullins [15]

are applicable to NGG and can be extended to abnormal condition. While NGG assumes
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that grain boundaries migrate at a constant rate i.e., the grain boundary mobility is con-

stant and the driving force is reduction in grain boundary energy , AGG is affected by

local variations or anisotropy in energy and mobility due to the presence of defects and

secondary phase [20, 21, 22]. Moreover, the distribution of grain size is remarkably differ-

ent, with NGG displaying an invariant and more uniform nature as compared to abnormal

growth [23, 24, 25]. Although there are many theories on both NGG and AGG, a general

theory has been developed by Hu et al. [26] by implementing a coupling factor into their

model. They predicted that grain growth is predominantly controlled by the combination of

grain size, grain boundary free energy and local size distribution. But another pivotal aspect

that decides growth rate is triple junctions (TJ) at the grain boundary. These are regions

where three grain boundaries from different grains intersect each other. Czubayko et al., [27]

experimentally studied the TJ effect and observed that a low TJ mobility induced drag on

the grain boundaries, thereby resulting in sluggish growth kinetics. However, when the TJ

mobility is high, the growth was primarily defined by grain boundary motion. Atomistically,

grain growth can be manifested as (1) the diffusion of atoms from the shrinking to growing

grain and (2) the subsequent incorporation of these atoms into the larger grain [28] and the

slowest step would determine the rate of grain growth.

The current comprehension of various mechanisms in grain growth can be attributed

to the tailored experiments and the rise of computational models in the past few years.

Especially computer simulations have played a major role in supporting the mathematical

theories, and validating the experimental results [29, 30, 31, 32, 33, 34, 35], expanding our

perspective. There are many grain growth models, but they can be broadly classified as: (1)

Stochastic and (2) Deterministic. Stochastic techniques are based on the understanding of

electron spins in statistical physics and are known for their simplicity and ease of computation

in both 2D and 3D. Some examples include Potts model [36, 37, 38] and kinetic Monte Carlo

(kMC) model [39, 40]. Deterministic models, on the other hand, require that the motion

of grain boundaries be defined and assume driving forces to be directly proportional to the

boundary velocity. Phase-field (PFM) [41, 42, 43] and vertex models [44, 45] fall under this
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category. Unlike stochastic methods, these models can explain the kinetics of all the grain

boundaries in a material, making the study of misorientation and anisotropic properties

much simpler.

Several attempts were made to couple the deterministic - stochastic and stochastic -

stochastic approaches, and leverage their individual advantages for a deeper understanding

of the grain evolution dynamics [46, 47, 48, 49]. Tran eta al., [50] integrated Potts, kMC and

PFM and deduced that 2D grain growth could be akin to geometric Brownian motion. Such

important analogies, along with various perspectives, could be developed by hybrid models.

However, this idea has been largely unexplored between two deterministic models.

In the present work, we combine phase-field and vertex dynamics (VD) [51] methods

through back-propagation neural network, image processing and mathematical techniques.

The misorientation, grain boundary curvature, grain boundary energy and mobility are di-

rectly transferred from PFM to VD, without the need for a Voronoi tessellation in the latter.

Although the two models largely vary in their formulation and tackle different features of

a microstructure, their effective combination could significantly reduce the computational

times required for grain growth simulations, since VD is two orders of magnitude faster

than PFM [52]. These models, along with the switching from grain boundary migration

controlled kinetics in PFM to TJ controlled in VD during coupling are explained in detail

in Chapter 2.
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CHAPTER 2

Theory of phase-field and vertex dynamics models

2.1 Phase-field model

Grain growth, or any microstructural evolution, entails a reduction in free energy of the

material system. This free energy can be of any form; bulk, interfacial, magnetic and elas-

tic strain to name a few. Several numerical techniques have been developed to model such

complex transformations, with an assumption that the boundaries between different com-

positional domains in the microstructure could be simplified as sharp interfaces [53, 54, 55].

Conventional statistical models track grain boundary interfaces explicitly to calculate the

velocity with respect to boundary mobility, which becomes exceedingly difficult as one goes

to three dimensions. This problem can be addressed by phase-field methods.

Phase-field models offer a continuum approach with finite interface thickness (diffuse

interface) and a sharp interface limit [56]. Two major equations describe the microstructural

evolution: (1) Cahn-Hilliard (C-H) [57] and (2) Allen-Cahn (A-C) [58]. These models

implicitly track the interfaces with the help of phase-field and are a go-to choice for the

simulation of solidification of molten metal or alloy pools. Another section of applications

of these models involves assigning order parameters to various microscopic properties of

interest, such as misorientation, composition etc., and performing temporal evolution of

these parameters with C-H or A-C equations.

The order parameters are further subdivided into two types based on the local property

conservation as conserved (eg., composition) and non-conserved (eg., grain orientation). A

general formulation used in PFM with these parameters is given below.
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2.1.1 Total Free Energy

The total free energy described by conserved (c1, c2, ....) and non-conserved (η1, η2, ....) order

parameters is a Ginzburg-Landau free energy functional ‘F’, given by

F =

∫
[f(c1, c2, . . . , cn, η1, η2, . . . , ηp) +

n∑
i=1

αi(∇ci)2

+
3∑

i=1

3∑
j=1

p∑
k=1

βij∇ηik∇ηjk]d3r +
∫∫

G(r− r′)d3rd3r′. (2.1)

where ‘f’ is the local free energy density, αi and βij are gradient energy coefficients. The

first integral is the local free energy arising from short-range chemical interactions while the

second is from long-range.

2.1.2 Local Free Energy

Several phase-field models use a double-well function for local free energy. This is because

these functions are consistent with the Landau theory for phase transitions, have two minima,

and represent two bulk phases in the system, solid-liquid or solid-solid. Between the two

minima, the order parameter varies, indicating a diffuse interface. Moreover, the double-well

function has a relatively simple form that reduces the computational expenses. An example

of such a function used in the phase-field grain growth simulations with infinite number of

minima is given in equation 2.2 and shown in Fig. 2.1.

f(ϕ1, ϕ2, ...) = 4∆f

(
−1

2

∑
i

ϕ2
i +

1

4

∑
i

ϕ4
i

)
+ α

∑
i

∑
j>i

ϕ2
iϕ

2
j . (2.2)

α is a positive constant and ∆f is energy barrier between the minima. All the infinite

minima are located at (1,0,0,...), (-1,0,0,...), (0,1,0,...), which are essentially order parameters

(ϕ) assigned to different grain orientations.

6



Fig. 2.1: Double-well local free energy function.

2.1.3 Gradient Energy

The excess free energy due to inhomogeneties corresponds to the interfacial energy. The

total free energy can be simplified in terms of bulk and interfacial free energies as

F = Fbulk + Fint =

∫
V

[
f(ϕ) +

1

2
κ(∇ϕ)2

]
dV. (2.3)

κ is the gradient energy coefficient. If ϕ is a long-range order parameter, then interfacial

energy per unit area (γ) can be expressed as

γ =
4
√
2

3

√
κ∆f. (2.4)

2.1.4 Temporal evolution of order parameters

Cahn-Hilliard (equation 2.5) and Allen-Cahn (equation 2.6) equations are widely used for the

evolution of conserved (c1, c2, ...) and non-conserved (η1, η2, ...) order parameters respectively.

Then, finite difference or spectral methods are implemented with boundary conditions in a

spacial grid to obtain the solutions, and thus, the kinetics of the process.
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∂ci(r, t)

∂t
= ∇Mij∇

δF

δcj(r, t)
, (2.5)

∂ηp(r, t)

∂t
= −Lpq

δF

δηq(r, t)
. (2.6)

Mij, Lpq are order parameter mobilities that can be correlated to interfacial mobility. All

the equations are adopted form [59].

In the present work, we place emphasis on the grain growth kinetics with A-C equation,

which is briefly elucidated in the methodology section.

2.2 Vertex Dynamics model

2.2.1 VD Formulation

In contrast to PFM, VD model treats the grain boundary motion explicitly with well-defined

equations. It was first proposed by Weygand [45] as a modified form of vertex model devel-

oped by Kawasaki et al., [60, 61]. The grain boundaries are, in general, defined by simple

line segments connected at triple junctions, which are termed as “real vertices.” Voronoi

tessellation is the most commonly used initial microstructure due to its simplicity and the

nature of the VD model. Discretization points or ”virtual vertices” are introduced between

two real vertices to take into account the curvature effect. The microstructure is represented

by positions (r) of these vertices and the corresponding velocities (v). An energy or potential

term V (r), usually interfacial or surface energy, describes the system along with a drag term,

R(r, v), which opposes the motion of the grain boundaries during evolution. The equations

involved in the 2D VD method are:

V {r⃗} =
∫
GBs

γ(a) da, (2.7)

R{{r⃗}, {v⃗}} = 1

2

∫
GBs

v(a)2

mGB(a)
da. (2.8)

8



Here, ‘a’ is a curvilinear position (coordinate) along the grain boundary GB, ‘γ’ is the

surface energy at position ‘a’, and ‘mGB’ is the GB mobility at position ‘a’. For a given line

segment ij between positions ri, rj, the velocity vij and normal to rij are:

v⃗ij = ξv⃗i + (1− ξ)v⃗j, (2.9)

n⃗ij =
1

∥r⃗ij∥

−yij
xij

 . (2.10)

V (r) and R(r, v) then become:

V ({r⃗n}) =
1

2

N∑
i=1

i∑
j

γij∥r⃗ij∥, (2.11)

R({r⃗n}, {v⃗n}) =
1

6

N∑
i=1

i∑
j

∥r⃗ij∥
mij

[
(v⃗i · n⃗ij)

2 + (v⃗j · n⃗ji)
2 + (v⃗i · n⃗ij)(v⃗j · n⃗ji)

]
. (2.12)

In equations 2.11 and 2.12 each vertex is associated only with its neighbors, which gives

us a localized understanding of the microstructure around individual vertices. Lagrange

equation is implemented to calculate the discrete sum of these equations over each line

segment to obtain a relationship between local driving force and velocity.

∂V ({r⃗n})
∂r⃗i

+
∂R({r⃗n}, {v⃗n})

∂v⃗i
= 0, i, n = 1, . . . , N. (2.13)

The velocity of each vertex is calculated by coupling the equations 2.11 - 2.13:

Div⃗i = f⃗i −
1

2

i∑
j

Dij v⃗j, i = 1, . . . , N. (2.14)

where

Dij =
1

3mij∥r⃗ij∥

 y2ij −xijyij

−xijyij x2
ij

 , (2.15)

Di =
i∑
j

Dij, (2.16)
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f⃗i = −
∂V

∂r⃗i
= −

i∑
j

γij
r⃗ij
∥r⃗ij∥

. (2.17)

The motion of both real and virtual vertices is described by equation 2.14. A virtual

vertex moves only when the two segments passing through it form an angle greater than 1◦.

The time step is incorporated into the equation as:

Di({r⃗ij(t)})v⃗i(t) = f⃗i({r⃗ij(t)})−
1

2

i∑
j

Dij({r⃗ij(t)})v⃗j(t− dt), (2.18)

r⃗n(t+ dt) = r⃗n(t) + v⃗n(t) dt. (2.19)

All the equations are adopted from [51, 62].

2.2.2 Topological Transformations

Topological changes occur during grain growth due to grain boundary migration, which

causes the boundary to move towards its center of curvature. TJ motion is also a contributing

factor for the annihilation of smaller grains and the restructuring of larger grains. The

conventional von Neumann-Mullins law does not consider the effect of TJs. A modified

version of the law [63], with TJ effect represented by an angle θ is given by:

Ṡ = − Ab

1 + 1
Λ

[2π − n(π − 2θ)] , (2.20)

Ab = mbγb, (2.21)

Λ =
2θ

2 cos θ − 1
, n < 6, (2.22)

Λ = − ln sin θ

1− 2 cos θ
, n > 6. (2.23)

Ab is the reduced mobility, mb is the GB mobility, γb is the surface energy at the GB,

θ is the angle at TJ, n is the number of sides of grain and Λ is the dimensionless criterion.

According to this equation, the rate of shrinkage of smaller grains is reduced due to the finite

mobility of TJs and grains with n > 6 are subjected to drag, decreasing their growth rate.
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There are three topological changes that occur during VD; T1, T2 and T3. T1 involves

connecting two TJs close to each other (< lthreshold) to form a quadruple junction (QJ) [64],

which then dissociates due to its unstability into configuration E1 if its energy is less than the

original configuration. T2 removes grains with less than 4 sides below an area threshold (<

Athreshold). Small grains with two TJs are annihilated in T3. These processes are illustrated

in Fig. 2.2.

(a) T1

(b) T2 (c) T3

Fig. 2.2: Topological transformations.

2.3 Advantages of coupling Phase-Field and Vertex Dynamics

In the early stages, grain growth is driven by grain boundary energy reduction. Grain

boundaries with higher curvature have a higher driving force for migration since the pres-

sure exerted on grain boundary is proportional to its curvature according to Young-Laplace

equation, and they gradually flatten out . Larger grains grow at the expense of smaller

grains in a self-similar manner, with uniform grain size distribution. However, as growth

progresses, TJ mobility starts dominating [65], and equilibrium is attained when the forces

at each junction by the connected grain boundaries are balanced (Herring condition).
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PFM efficiently captures the curvature effects but VD facilitates a better handling of

triple and quadruple junctions overall. Despite previous attempts to study topological trans-

formations in PFM [66, 67, 68] , coupling phase-field and vertex dynamics would prove to

be effective in cases where one of the controlling mechanisms is negligible as grain evolution

occurs, and helps reduce the computational time. Furthermore, Voronoi tessellation can

be superseded with complex and more realistic microstructures imported from PFM as the

input to VD.

12



CHAPTER 3

Methodology

3.1 PFM for isotropic and anisotropic grain growth

All the phase-field codes were developed using MATLAB and simulated in a multi-threading

environment over 8 cores. A multi-order parameter phase-field model was partially adopted

from Moleans et al., [69]. We define a single phase material with 15 different non-conserved

order parameters (η1(r, t), η2(r, t), ...η15(r, t)) = [(1, 0, 0...0), (0, 1, 0, ...0)..., (0, 0, 0, ...1)] rep-

resenting random grain orientations on a mesh grid. Each order parameter represents mul-

tiple grains with same orientation. Anisotropy was introduced by making gradient energy

coefficient (κ) a function of misorientation (θ). The order parameter mobility (L) was con-

sidered to be constant. Here, we discuss the formulation for anisotropic grain growth, which

is valid for isotropic case as well when ‘κ’ is made constant. The temporal evolution of order

parameters is given by the time-dependent Ginzburg-Landau equation as:

∂ηi
∂t

= −LδF

δηi
. (3.1)

where

F =

∫
V

[
f(η1, η2, . . .) +

N∑
i=1

κi(θ)

2
|∇ηi|2

]
dV, θ ∈ (0, 30) (3.2)

f(η1, η2, . . .) =
N∑
i=1

(
−A

2
η2i +

B

4
η4i

)
+

N∑
i=1

N∑
j>i

Ci,j(θ)η
2
i η

2
j +

1

4
. (3.3)

A and B are constants. C is a phenomenological parameter and is a function of misori-

entation. For two grains 1, 2 with orientations θ1, θ2 (see Fig. 3.1), misorientation is

θ1,2 = |θ1 − θ2| (3.4)
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Fig. 3.1: Grains with orientation θ1, θ2.

However, in our simulation, misorientation was first calculated between each order pa-

rameter with unique orientation. Then, the grain boundary energy was calculated by using

the Read-Shockley expression,

γGB(θ1,2) =


γm

θ1,2
θm

(
1− ln

(
θ1,2
θm

))
if θ1,2 < θmax,

γm if θ1,2 ≥ θmax.

(3.5)

All the grain boundaries with misorientation less than θmax are low-angle grain boundaries

(LAGBs). For the high-angle grain boundaries (HAGBs), the energy was assumed to be

constant (γm). For simplicity, the effect of GB inclination on the energy was not taken into

account. κ(θ) and C(θ)can be expressed as a function of γ(θ):

κ(θ1,2) = κm
γ(θ1,2)

γm
, (3.6)

C(θ1,2) =
1

2

(4κ(θ1,2)m+ 9γ(θ1,2))
2

(4κ(θ1,2)m− 9γ(θ1,2))
2 . (3.7)

The parameter ‘m’ is a normalization constant. We assume that the grain boundary width

is constant throughout. With this established, the evolution equation 3.1 was discretized

with first-order semi-implicit Fourier spectral scheme [70], since this method offers stability

with large time steps (n). The parameters used in simulation are tabulated in table 3.1.

∂ηi
∂t

= −L δf

δηi
+ Lκ∇2ηi, i = 1, 2, . . . , N. (3.8)

∂ηi
∂t

=
ηn+1
i − ηni
∆t

= −L

(
−Aηni +B(ηni )

3 + 2C(θ)ijη
n
i

N∑
i ̸=j

(ηnj )
2 − κ(θ)∇2ηn+1

i

)
, (3.9)
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In Fourier space, ηi and f are η̃i and f̃ related with a wave vector, k = (k1, k2).

∂η̃i
∂t

= −L

(
δf̃

δηi

)
− k2Lκ(θ)η̃i, (3.10)

η̃n+1
i − η̃ni
∆t

= −L

(
δf̃

δηi

)n

− k2Lκ(θ)η̃n+1
i , (3.11)

η̃n+1
i =

η̃ni −∆tL
(

δf̃
δηi

)n
1 + ∆tLκ(θ)k2

. (3.12)

Table 3.1: Parameters used in PFM simulation of isotropic and anisotropic grain growth.

Dimensionless Parameter Isotropic grain growth Anisotropic grain growth

System Size 512 x 512 512 x 512

dx, dy 1 1

dt 0.1 0.1

Total time, t 100 100

A 1 1

B 1 1

C 1 1

L 1 1

κm 1 1

Energy parameter, ϵ0 0.05 0.05

γm = 1
1+ϵ0

0.952 0.952

n (order parameters) 15 15

m - 2.5

θmax - 15◦

Equation 3.12 was solved for all the grid points on the mesh grid. Periodic boundary con-

ditions were implemented. From the final PFM microstructure, grains belonging to the same

orientation (ηi) were identified and labeled. The misorientation between order parameters

was assigned to their constituent grains using these labels.
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3.2 Transformation of PFM microstructure into vertex represen-

tation for VD

3.2.1 Conversion to binary image and detection of grain boundary edges with

Backpropagation Neural Network

In order to couple PFM output to the VD model, we first converted the PFM microstructure

into a binary image. This was done using image segmentation by Otsu’s threshold selection

method [71] with MATLAB image processing toolbox. It is a nonparametric and unsu-

pervised technique that takes an image with different gray levels and utilizes an optimum

threshold value to maximize the gray-class variance. However, detection of small morpho-

logical features was affected because of their relatively low intensity peaks and the method’s

inherent assumption of bimodal distribution of pixel intensities. Although local thresholding

was adopted to alleviate this problem, it was sensitive to parameters such as window and

filter size and produced inconsistent results for different microstructures.

Therefore, we employed edge-detection method using Levenberg-Marquardt Backpropa-

gation neural network (BP NN) proposed by Mehrara et al., [72], which takes the binary

input and removes the pseudo noise around the grain edges to accurately detect the pixels on

grains and grain boundaries. This could help in customized noise removal in less than a few

seconds by training the NN with the desired input and output patterns. First, the binary

image was taken and the pixels (black - 0, white -1) were divided into 2x2 windows, which

serve as input to NN. The network structure contains 4 input and 4 output neurons, with 16

hidden neurons as shown in Fig. 3.2 and table 3.2 (adopted from [72])). Sigmoid function

was used as an activation function to get only ‘1’s and ‘0’s as the final network output. The

NN was trained for 1000 epoch with 16 patterns as input, a backpropagation learning rate of

0.01 and momentum 0.9. This value of momentum is commonly used to prevent the process

from converging at a local minima. A brief algorithm for the NN is shown below.
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Fig. 3.2: Neural network showing 4 input, 16 hidden and 4 output neurons.

Table 3.2: The input and output for pre-trained patterns.©2009 IEEE.

Pattern no. Input pattern Detected as Output pattern

1 0 0 0 0 None edge 1 1 1 1

2 0 0 0 1 Corner edge 0 0 0 1

3 0 0 1 0 Corner edge 0 0 1 0

4 0 0 1 1 Horizontal edge 0 0 1 1

5 0 1 0 0 Corner edge 0 1 0 0

6 0 1 0 1 Parallel edge 0 1 0 1

7 0 1 1 0 Diagonal edge 0 1 1 0

8 0 1 1 1 Pseudo noise 1 1 1 1

9 1 0 0 0 Corner edge 1 0 0 0

10 1 0 0 1 Diagonal edge 1 0 0 1

11 1 0 1 0 Parallel edge 1 0 1 0

12 1 0 1 1 Pseudo noise 1 1 1 1

13 1 1 0 0 Horizontal edge 1 1 0 0

14 1 1 0 1 Pseudo noise 1 1 1 1

15 1 1 1 0 Pseudo noise 1 1 1 1

16 1 1 1 1 None edge 1 1 1 1
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Algorithm 1 : BP NN for edge detection and noise removal in binary image.

1: Initialize: Input pattern s, Output pattern t, number of patterns Pattern, epochs Epoch,

input neurons N1, hidden neurons N2, output neurons N3, learning rate α, weights V,W ,

biases V0,W0, velocity terms velV , velW , velV0 , velW0 = 0

2: for iter = 1 to Epoch do

3: for p = 1 to Pattern do

4: Set X = s(p, :)

5: Forward Propagation:

6: for j = 1 to N2 do

7: Zinj = V0 +
∑N1

i=1Xi · Vij {Add bias to N2 layer output}

8: Zj = Sigmoid(Zinj) {Activation function}

9: end for

10: for k = 1 to N3 do

11: Y ink = W0 +
∑N2

j=1 Zj ·Wjk {Add bias to N3 layer output}

12: Set Yk = Y ink

13: end for

14: Backpropagation:

15: for k = 1 to N3 do

16: δk = (tpk − Yk) · Sigmoid′(Y ink) {Output layer error}

17: ∆Wjk = α · δk · Zj {Update weights}

18: ∆W0 = α · δk {Update biases}

19: Update velocity and weights using momentum for W and W0

20: end for

21: for j = 1 to N2 do

22: δj =
(∑N3

k=1 δk ·Wjk

)
· Sigmoid′(Zinj) {Hidden layer error}

23: ∆Vij = α · δj ·Xi {Update weights}

24: ∆V0 = α · δj {Update biases}

25: Update velocity and weights using momentum for V and V0

26: end for

27: end for

28: end for
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3.2.2 Pixel thinning of grain boundaries using Zhang-Suen thinning algorithm

To convert the grain boundaries with finite thickness in PFM microstructure to thin lines

consisting of single pixels across the boundary length, the resulting binary image from the

previous step was subjected to Zhang-Suen pixel-by-pixel thinning [73]. It is an iterative

procedure where in each iteration, the algorithm checks the 8 neighborhood of a pixel and

removes the it if the pixel contains exactly one transition from white (1) to black (0) pixel

and has at least 1 black pixel as its neighbor, but not more than 6. This is repeated for

two iterations with different sets of pixel neighbors to uniformly thin the grain boundaries.

Moreover, we modified the algorithm to scan in a 4-neighborhood at the edges to include

the pixels on the perimeter. The algorithm is provided in appendix A.

3.2.3 Establishing pixel connectivity and grain boundary shape construction

Individual grain and grain boundary (pixel positions) regions were identified from the pix-

elated image and the grain labels from PFM were precisely reassigned to the GB thinned

microstructure. Depending on the pixel neighborhood at the intersection points of grain

boundaries, the junctions were categorized into triple (3 grains in the neighborhood), quadru-

ple junctions (4 grains in the neighborhood)and higher order junctions (>4 grains in the

neighborhood). These junctions are the ‘real vertices’ in VD model. Once the grains at-

tached to each vertex were identified, the inter-junction (node) connectivity was established

by locating the junctions that belong to the same grain boundary. The pixels connecting any

two junctions could be seen as ‘virtual vertices’, discretizing the grain boundary. Appendix

B can be referred for a detailed algorithm on pixel connectivity.

The grain boundary curvature was constructed between each pair of junctions by fitting a

circle along the virtual vertices using the algorithm developed by Taubin [74]. The technique

calculates the average position of the virtual vertices first, adjusts the positions of all the

other vertices relative to this center and calculates their distance. The distances and positions

are then processed by a mathematical technique ‘Singular Value Decomposition (SVD)’,
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which factorizes the virtual vertices matrix into three other matrices: two orthogonal and

one diagonal matrix with singular values. Through these, geometric properties of the original

matrix are predicted. In our case, we accurately determined the radius and center of the

circular arc fitted along virtual vertices, and built a vertex representation of the original

PFM microstructure using this radius. The algorithm for the same is given below.

Algorithm 2 : Grain boundary curvature construction from virtual vertices.

1: Input: vertices of size [n,2]

2: Output: Circle parameters [a, b, R] with center [a,b], radius R

3: Compute the centroid c

c =

(
1

n

n∑
i=1

xi,
1

n

n∑
i=1

yi

)
4: Normalize coordinates: Xi = xi − cx, Yi = yi − cy

5: Compute distances from centroid: Zi = X ⊙X + Y ⊙ Y

6: Compute mean of distances: Zmean = 1
n

∑n
i=1 Zi

7: Normalize distances: Z0i =
Zi−Zmean

2
√
Zmean

8: Construct matrix for SVD: Zpoints =
[
Z0i Xi Yi

]
9: Perform SVD on Zpoints: U,S,VT = SVD(Zpoints)

10: Extract third column of V as vector A

11: Adjust A1: A1 =
A1

2
√
Zmean

12: Augment A: A =


A1

A2

A3

−Zmean ·A1


13: Calculate circle center: a

b

 = − 1

A1/2

A2

A3

+ c

14: Calculate radius:

R =

√
A2

2 +A2
3 − 4 ·A1 ·A4

|A1/2|
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3.3 Vertex Dynamics model with input from PFM

3.3.1 Equations of motion

VD was implemented on the vertex image obtained from the previous step. The constituent

equations for velocities (vTJ) and forces (FGB) acting on the junctions in our model are:

vTJ = MTJ

k∑
i=1

F i
GB (3.13)

F i
GB = γi

GB t⃗
i (3.14)

F i
GB =

k∑
i=1

γi
GB t⃗

i
u⃗ i

∥u⃗ i∥
(3.15)

where k is the number of grain boundaries attached to a junction i and t⃗ i is a tangent at

junction i of the grain boundary (see Fig. 3.4). u⃗i

∥u⃗i∥
is the unit vector joining the junction

to its adjacent boundary point and decides the direction of motion. It should be noted

that the Herring condition is not artificially imposed here, but it naturally arises from the

curvature induced forces that leads to the movement of vertices towards equilibrium shape.

The dimensionless parameter, Λ = D̄MTJ

MGB
was taken to be <1 with average grain size, D̄,

normalized to unity [75], so that the vertex motion is TJ controlled. Because of low MTJ , the

kinetics deviate significantly from that predicted by von Neumann-Mullins relationship [76].

MGB was considered to be the same as the order parameter mobility, L from PFM.

Fig. 3.3: Discretized grain boundary showing tangent, t⃗ i, to the grain boundary and unit

normal, u⃗i

∥u⃗i∥
, at the junction.

21



3.3.2 Grain Boundary energy

Grain boundary energy was calculated in a similar manner as in PFM using equation 3.5. For

the initial microstructure of VD, the misorientation and grain boundary energy were directly

imported from the final microstructure of the phase-field model based on the grain labels.

This misorientation does not change with time since the deformation effects are ignored in

our current model and hence, the grain boundary energy for a specific misorientation remains

constant throughout the simulation (same as in PFM).

3.3.3 Read-Shockley and curvature force calculation

Read-Shockley energy for each GB was projected along u⃗i

∥u⃗i∥
to obtain the Read-Shockley

force acting on the GB’s associated junctions. This force was substituted in equation 3.13

to obtain the junction velocity. Curvature force was calculated using the method described

in [75] and is discussed here for completeness. If S1 is a spherical surface having a surface

tension γ defined by normal n and has lengths b, h and r, as shown in Fig. 3.4, and S2 is an

equivalent flat surface, then,

Fig. 3.4: Geometric model for curvature force calculation from a curved grain boundary.

AS1 = π(b2 + h2) (3.16)

AS2 = πb2 (3.17)

The change in energy when curved surface transforms to a flat line segment is

∆E = γ(A1 − A2) = γπh2

Fγ = −d∆E

dh
= −2γπh
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From the geometry, r2 = b2 + (r − h)2. Assuming h≪ r:

h ≈ b2

2r

which gives:

Fγ = −γπb2

r

Fγ is normalized by the grain boundary area A2 to find the changes in force solely due

to curvature. This results in:

fγ =
Fγ

A2

= −γ

r

The radius r to calculate the curvature force was determined by the grain boundary con-

struction method in the initial VD microstructure. With this as the starting point, Forward

Euler was implemented for the temporal evolution of junction positions. VD parameters,

including the minimum inter-junction distance for T1 transformation and minimum grain

area for T2 are listed in table 3.3.

Table 3.3: VD model parameters.

Dimensionless Parameter Value

System Size 512 x 512 (From PFM)

dt 1

Total time, t 3000

γm 0.952 (From PFM)

Minimum node distance 3

Minimum Grain Area 30

Order parameter mobility, L 1 (From PFM)

TJ mobility 0.05 × L

θmax 15◦

All the VD codes are developed using MATLAB. In the next chapter, the results of all

the above models and simulations are discussed in detail.
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CHAPTER 4

Results

4.1 Initial PFM microstructure

All the parameters in our PFM and VD simulations are dimensionless (termed as “simulation

units” from now). Fig. 4.1 shows the 512 × 512 mesh grid of the initial microstructures in

isotropic and anisotropic grain growth phase-field models. The starting point is essentially

the same in both the cases and represents a liquid. The colorbar represents order parameters

ranging from [0, 1] and each order parameter has orientation θ between 0◦ and 30◦. The

boundary function used to visualize the microstructures was
∑n

i=1 η
2
i , where n is the number

of order parameters.

(a) (b)

Fig. 4.1: Initial microstructures in (a) isotropic and (b) anisotropic grain growth

phase-field models.
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4.2 Microstructure at t = 100

The evolved grain structures are illustrated in Fig. 4.2.

(a)

(b)

Fig. 4.2: Microstructures at t = 100 in (a) isotropic and (b) anisotropic grain growth.

A significant difference can be seen between Fig. 4.2(a) and 4.2(b) due to the anisotropic

grain boundary energy. In the isotropic case, all the grain boundaries have the same energy.

Also, for an astute observer, the grains appear to be larger and their distribution more
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uniform when compared to anisotropic grain growth. On the other hand, in Fig. 4.2(b), the

lighter (almost transparent) boundaries manifest very low-angle grain boundaries, and the

gradual increase in darkness indicates a shift towards the high-angle grain boundary regime.

Fig. 4.3 shows the misorientation distribution and the corresponding grain boundary energy

dependence.

(a)

(b)

Fig. 4.3: (a) Misorientation distribution and (b) Variation of grain boundary energy with

misorientation.
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4.3 Identifying different grains from PFM and labeling them

An example of labeling the grains from PFM image is presented in Fig. 4.4 for the anisotropic

microstructure. Each color represents a set of grains that belong to a same order parameter

with a particular orientation. The conversion from 4.4(a) to 4.4(b) is essential to accurately

distinguish the grain pixels from grain boundary pixels during the subsequent binary image

conversion.

(a) (b)

Fig. 4.4: Anisotropic microstructure with (a) labeled grains (b) clear pixel distinction

between grains and grain boundaries.

4.4 Implementation of Backpropagation Neural Network

Fig. 4.5 shows the final binary representation of the PFM microstructures given by NN. This

process is developed such that the conversion is independent of the grain boundary thickness.

To compare the features of the binary image obtained by the process we employed, with

MATLAB’s inherent Otsu’s algorithm, the subtle differences in the identification of smaller
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grains by the two methods are depicted in Fig. 4.6. In Fig. 4.6(a) and 4.6(c), there is some

noise from the grain boundary pixels that interferes with accurate shape detection of the

grain, while Fig. 4.6(b) and 4.6(d) capture a better overall shape.

(a) (b)

(c) (d)

Fig. 4.5: Binary conversion of (a) isotropic and (b) anisotropic microstructure using

Backpropagation neural network.
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(a) (b)

(c) (d)

Fig. 4.6: A small grain detected by Otsu’s method and denoised by Neural Network in (a),

(b) isotropic and (c), (d) anisotropic microstructures.

4.5 Thinning of binary image

GBs with finite thickness from the binary microstructure are transformed by Zhang-Suen

thinning algorithm into thin segments made up of single pixels. The results are displayed in

Fig. 4.7.
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(a) (b)

Fig. 4.7: Thinned grain boundaries of (a) isotropic and (b) anisotropic microstructures

with modified Zhang-Suen thinning algorithm.

4.6 Reassigning labels and finding grain, junction connectivity

(a) (b)

Fig. 4.8: Relabeling of grains after thinning in (a) isotropic and (b) anisotropic

microstructures.
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The grain labels from PFM play an important role in our study. Based on the labels

associated with individual grid points from Fig. 4.4 and pixel neighborhood from Fig. 4.7,

the grains were identified with respect to pixel coordinates and relabeled. The results are

shown in Fig. 4.8. The colors here do not represent different orientations, but are random.

Further, the grains along the edges do not have identical labels although they are parts of

the same grain due to periodicity. This, however, does not affect the evolution during VD.

(a) (b)

(c)

Fig. 4.9: (a) Isotropic and (b) Anisotropic microstructures represented by pixel

coordinates. The red pixels indicate TJs and edge nodes. The green pixels represent QJs.

(c) Magnified section of (b) displaying multiple TJs and QJs.
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The microstructure in Fig. 4.9 is characterized by TJs, QJs and virtual vertices (blue),

and is produced from scattering the pixel coordinates of all the grains from Fig. 4.8. This is

a key step in our method, as it helps form the inter-grain, inter-junction, and grain-junction

connections.

4.7 Vertex representation and comparison with PFM output

(a) (b)

(c) (d)

Fig. 4.10: Comparison of PFM output with VD input in (a), (b) isotropic and (c), (d)

anisotropic microstructures. The red color in (d) represents LAGBs and blue, HAGBs.
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Fitting circles along the virtual vertices between junctions and finding their radius leads

to a vertex representation such as in Fig. 4.10 with finite GB curvatures, which is utilized as

the initial condition for VD. One notable difference between the PFM and vertex structures

is that smaller grains containing exactly “two” triple junctions are disappeared in the latter.

This is analogous to T3 transformation in VD and does not significantly alter our outcome.

4.8 Microstructural evolution with VD

(a) (b)

(c) (d)

Fig. 4.11: Isotropic grain growth in VD with input from PFM. Snapshots of microstructure

at (a) t = 0, (b) t = 500, (c) t = 1500 and (d) t = 3000.
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(a) (b)

(c) (d)

Fig. 4.12: Anisotropic grain growth in VD with input from PFM. Snapshots of

microstructure at (a) t = 0, (b) t = 500, (c) t = 1500 and (d) t = 3000.

Fig. 4.11 and 4.12 show the grain evolution during VD. As indicated by the figures, the

growth process is predominantly controlled by the low TJ mobility and the grains tend to

achieve equilibrium dihedral angles, along with flattening of the GB curvatures. Further, in

Fig. 4.12(d) the volume of high angle grain boundaries is greatly reduced, as expected from

an anisotropic grain evolution.

Fig. 4.13(a) and 4.13(b) show the average grain size distribution in isotropic and anisotropic

evolution. The self-similar nature can be observed in both the cases and the figures imply
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that isotropic grain growth has a narrower distribution when compared to the anisotropic

case. Also, the drastic decrease in number of grains in the anisotropic case can be attributed

to the presence of unstable HAGBs.

(a) (b)

Fig. 4.13: Grain Size Distribution before and after VD in (a) isotropic and (b) anisotropic

grain growth.

(a) (b)

Fig. 4.14: Variation of number of grains and average grain area with time in (a) isotropic

and (b) anisotropic grain growth during VD simulation.

We also studied the variation in average grain area, < A >, and grain number with

35



time (refer to Fig. 4.14). The statistics are mostly consistent with the growth law kinetics.

To further validate the model, we computed the dihedral angles at each junction. Fig. 4.15

displays the trend in dihedral angles from the final stage of PFM to the end of VD simulation.

As growth progresses in isotropic microstructure, the angles approach the Herring equilibrium

values of 120◦ and form a Gaussian-like distribution with a sharp peak. On the contrary,

when GB energy anisotropy is present, the distribution gets broader due to a non-uniform

propensity for migration in different GBs, although the system tries to lower its energy with

a reasonable frequency of angles tending towards 120◦. This is evident from Fig. 4.15(d).

(a) (b)

(c) (d)

Fig. 4.15: Dihedral angle distribution in isotropic grain growth at (a) t = 0, (b) t = 3000,

and in anisotropic grain growth at (c) t = 0, (d) t = 3000 during VD simulation.
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CHAPTER 5

Discussion

Our results show that the microstructure from PFM can be efficiently transferred to the

VD process. This has important implications with respect to the computational time and

the accuracy of the VD model, in general. (1) Since various stages of grain growth have

different dominant controlling mechanisms [77], incorporating every effect into a singular

model may result in the increase of computational expenses, especially in cases where one of

the mechanisms does not significantly impact the phenomenon. While the TJ effect has been

incorporated into phase-field models previously [78, 79], our model offers greater flexibility

and ease of handling the TJ motion due to VD. (2) The complexity in constructing the

Voronoi tessellation is dramatically reduced, accompanied by a more realistic microstructural

representation from PFM as the input to VD. The conversion of PFM output to a non-

zero GB curvature vertex model takes only a few seconds with our method for any given

microstructure generated by multi-order parameter phase-field model.

In addition, by knowing the relationship between order parameter mobility (and hence,

GB mobility) and TJ mobility via the dimensionless parameter Λ, the transition from GB

to TJ migration dominant regime during grain growth can now be efficiently modeled. This

finite TJ mobility, often causing drag, is in turn contingent upon the distribution of disloca-

tions or disconnections at the GBs, second phase particles and the back-stresses exerted by

such morphological features. Finally, our model satisfies the well-established grain growth

statistics, and has the potential to overcome the limitations of VD-like front tracking models

mentioned in [80].
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CHAPTER 6

Model Assumptions and considerations

The following assumptions and considerations are made in the development of our model.

1. The microstructure is described by a simple time-dependent Ginzburg-Landau free

energy equation. The GB thickness is assumed to be constant.

2. Dimensionless parameters are used in all the simulations.

3. Misorientation between any two grains remains unaltered with time.

4. The effects of GB inclination, mobility anisotropy, dislocation motion and strain on

grain growth are not taken into account. Although drag is introduced in the form of

reduced TJ mobility (Λ), the reason for the same is not explicitly incorporated into our

model. But it is possible to directly import these parameters from PFM simulation to

VD using the same procedure employed in this study.

5. The GB and TJ mobilities are assumed to be temperature independent.

6. GB energy is calculated by a simplified Read-Shockley equation instead of the modified

version or the energies determined by the experimental data of a material.
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CHAPTER 7

Conclusion and future scope

The most important conclusions from our study are summarized below:

• We have developed a first-of-its-kind sequentially coupled phase-field and vertex dy-

namics model for grain growth in isotropic and anisotropic microstructures. One can

switch from multi-order parameter phase-field to vertex dynamics model at any time

depending on the material system and the prevalent mechanism during grain evolution.

• Every microstructure and parameter can be effectively transferred from PFM to VD

model. Moreover, the grain boundary curvature is identified accurately using back-

propagation neural network, image processing and local curvature calculations. This

process is independent of the interface thickness in PFM.

• The VD model can now evolve complex microstructures from PFM, which is not pos-

sible with the conventionally used Voronoi tessellation, providing a more realistic ap-

proach to simulating grain growth with VD. The grain growth kinetics are also found

to be in well agreement with the classical theories.

• The model, at its current state, is only a groundwork and a generalized model and

its parameters can be modified based on material-specific needs. It leverages the ad-

vantages of both PFM and VD, and offers a new avenue for efficient isotropic and

anisotropic grain growth simulations.

The future scope is to further extend the model to include mobility anisotropy, grain

boundary inclination, defects and second phases, and possibly integrate it with the crystal

plasticity-PFM based models to reduce the computational expenses.
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APPENDIX A

Algorithm 3 : Zhang-Suen Thinning Algorithm.

1: Input: Binary image binaryImg

2: Output: Thinned binary image thinnedImg

3: change ← true

4: while change do

5: change ← false

6: toRemove1 ← False matrix of size binaryImg

7: toRemove2 ← False matrix of size binaryImg

8: for x, y ∈ {2, . . . , rows− 1} × {2, . . . , cols− 1} do

9: if binaryImg[x, y] > 0 then

10: P ← binaryImg neighbor pixels at (x, y)

11: if 2 ≤
∑

(P > 0) ≤ 6 and transitions(P > 0) = 1 then

12: if P [1] · P [3] · P [5] = 0 and P [3] · P [5] · P [7] = 0 then

13: toRemove1[x, y] ← true

14: change ← true

15: end if

16: end if

17: end if

18: end for

19: binaryImg[toRemove1] ← 0

20: Repeat the loop with P [1] · P [3] · P [7] = 0 and P [1] · P [5] · P [7] = 0

21: binaryImg[toRemove2] ← 0

22: end while

23: thinnedImg = binaryImg

24: function transitions(neighbors)

25:
∑8

i=1(neighbors[i] = 0 - neighbors[(i%8) + 1] = 1)

26: end function
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APPENDIX B

Algorithm 4 : Algorithm for establishing inter-junction, junction-grain and inter-grain

connectivity based on pixel positions.

1: Input: Labeled 512× 512 grid, number of grains numGrains

2: Output: junctionPosition, junctionGrains, junctionConnect, Grain boundary radius GBRadius,

junctionVelocity

3: gridLength ← length(grid)

4: Extract grain and grain boundary (GB) pixel coordinates:

5: (GBCoords, grainCoords) ← Extract Coordsgrid, numGrains

6: Identify junctions and the grains they belong to:

7: (junctionPosition) ← Identify Junctionsgrid, GBCoords, grainCoords

8: (junctionGrains) ← junction GrainsjunctionPosition, grainCoords, gridLength

9: Determine junction connections:

10: (junctionConnect) ← Connected JunctionsjunctionPosition, junctionGrains

11: Initialize: junctionVelocity = 0, GBRadius = 0

41



Bibliography

[1] S.L. Semiatin, J.C. Soper, and I.M. Sukonnik. Short-time beta grain growth kinetics
for a conventional titanium alloy. Acta Materialia, 44(5):1979–1986, 1996.

[2] Rohit Malik, Hyun-Min Kim, Young-Wook Kim, and Kwang Joo Kim. Grain-growth-
induced high electrical conductivity in sic–bn composites. Ceramics International,
44(14):16394–16399, 2018.

[3] G.J. Fan, H. Choo, P.K. Liaw, and E.J. Lavernia. Plastic deformation and fracture of
ultrafine-grained al–mg alloys with a bimodal grain size distribution. Acta Materialia,
54(7):1759–1766, 2006.

[4] A.V Sergueeva, V.V Stolyarov, R.Z Valiev, and A.K Mukherjee. Advanced mechan-
ical properties of pure titanium with ultrafine grained structure. Scripta Materialia,
45(7):747–752, 2001.

[5] Jijun Ma, Xuyue Yang, Qinghuan Huo, Huan Sun, Jia Qin, and Jun Wang. Mechanical
properties and grain growth kinetics in magnesium alloy after accumulative compression
bonding. Materials Design, 47:505–509, 2013.

[6] J.E. Burke and D. Turnbull. Recrystallization and grain growth. Progress in Metal
Physics, 3:220–292, 1952.

[7] D G Cole, P Feltham, and E Gillam. On the mechanism of grain growth in metals, with
special reference to steel. Proceedings of the Physical Society. Section B, 67(2):131, feb
1954.

[8] P. Feltham. Grain growth in metals. Acta Metallurgica, 5(2):97–105, 1957.

[9] M Hillert. On the theory of normal and abnormal grain growth. Acta Metallurgica,
13(3):227–238, 1965.

[10] I.M. Lifshitz and V.V. Slyozov. The kinetics of precipitation from supersaturated solid
solutions. Journal of Physics and Chemistry of Solids, 19(1):35–50, 1961.
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