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TLawrence Berkeley National Laboratory, Berkeley, California 94720

Abstract. The connection between macro-particle shape functionshanephysical phase-space
“heating” in the particle-in-cell (PIC) algorithm is exanegid. The development of fine-scale phase-
space structures starting from a cold initial conditionhiswsn to be related to spatial correlations
in the interpolated fields used in the Lorentz force. It isvghithat the plasma evolution via the PIC
algorithm from a cold initial condition leads to a state tlsahot consistent with that of a thermal
plasma.

PACS: 52.38.-r,52.65.Rr

INTRODUCTION

Particle-in-cell (PIC) codes are commonly used tools tdykinetic effects in plasmas,
that is, behavior beyond that described by a moment-bassctigion of the phase-
space distribution. The PIC [1] method, originally deveddpfor hydrodynamics by
Harlow [2] was introduced to plasma physics in the early dafythe controlled fusion
program and has been widely applied to the study of fusiosnpées, astrophysical
plasma, plasma processing, and beam devices [3, 4]. In beoad, fusion plasmas are
hot (ion temperatures in the multi- KV range) and the plasoa i typically turbulent.
As the accelerator applications of short-pulse lasermpéasiteractions developed, it was
natural to apply this well-known tool to these novel systeimshort-pulse laser-plasma
interactions, the plasma is collisionless on the timeescalf interest (e.g., the laser
duration), and the plasmas are typically photo-ionizedh wiitial temperatures on the
order of the ionization potential, i.e., tens of eV. Unlikkkamak plasmas, the plasma
response to a short laser pulse can be quite laminar [5, é}theeme is no heating.

When studying short-pulse laser-plasma interactions, dit@ilations are commonly
initialized cold. With a cold initial condition, as we willeg below, the “heating” in
PIC is the result of algorithmic artifacts; a proper therstate is not generated and the
plasma response is not correct. Under these circumstaiheesapping of particles is
not due to the capture of the tails of a thermal distributias if a real plasma) [7, 8],
but to the capture of particles from the bulk of the distnbns that are on incorrect
phase-space orbits. In one-dimension (1-D) it has beenrshiost the PIC model can
reproduce the response of a thermal plasma to a short lalser [l



NUMERICAL HEATING MECHANISM S

Unavoidable discretization of the physical model and theessarily small number of
macro-particles relative to the number of physical elewrboth give rise to unphysi-
cal heating [1, 9]. Figure 1 shows the evolution in RMS moraenspread of a thermal
plasma without any drive versus time and illustrates two enical heating mechanisms:
scattering and grid heating. While both mechanisms iléistt in Fig. 1 are unphysical,
they have distinct origins. Scattering is a “discrete p&teffect” related to approx-
imating the continuous phase-space density by individusdroyparticles. As macro-
particles drift from one cell to another in simulation of anfarced thermal plasma,
there will be fluctuations in the number of macro-particles gell. Since the average
number of macro particles per cell is rather small, evendlatmbns of+1 macro-particle
can lead to a large potential. These large, approximatelyaia, fluctuations in poten-
tial lead to a localized electric field which acts on the mauacticles. In effect, the
macro-particles scatter off fluctuations in the poten@ald heating is a kinetic instabil-
ity resulting from the grid aliasing high-frequency modast(resolved by the grid) to
low frequencies [1, 10]. The modification of the usual warlasma dispersion relation
by aliasing effects results in roots with positive imagingarts. Since this numerical
instability arises from the same basic physical processggriggered by grid-aliasing)
as true plasma modes, it can both mimic real plasma phenoamghact to drive other,
physical plasma responses. The growth rate of this in#taisl significantly reduced
once the plasma temperature reaches a level givéip By ~ 1, whereky = 11/AX s the
smallest wavenumber of the supported by the grid &xds the plasma Debye length.
Common to both mechanism is the creation of particle endikgwise both mecha-
nisms results in dynamical evolution of a state that phyigiéa an equilibrium, but,
evidently, not a fixed-point of the PIC algorithm. Furtheneydoth mechanisms repre-
sentlinear instabilities (in the von Neumann sense [11]) of the nunamncethod.
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FIGURE 1. Anillustration of numerical heating mechanisms in PIC dations. An initially thermal
plasma is allowed to evolve without excitation. The totaletic energy of the system exhibits a sec-
ular growth in time. As indicated, the regions of differingdting rates correspond to distinct heating
mechanisms.
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FIGURE 2. Macro-particle phase space of a laser-driven plasma watelrfor a plasma initially at
rest. The longitudinal grid spacing in the simulation Wag36 with 400 macro-particles per cell. The
boxes A, B, and C show detailed of phase space at the firad, #id fifth bucket after the laser pulse.
For these initial conditions, no physical trapping shoutdwr and the plasma response should be purely
hydrodynamic. See Fig. 5 of Ref. [12].

These numerical heating mechanisms will alter phase spateam mimic physical
processes leading to incorrect interpretation of comprat results [12]. This will be of
particular importance when attempting to model detailee#c effects, such as trapping
of the plasma electrons and generation of dark current imasnph accelerator [7, 8]. In
addition, since the macro-particle positions are notiestt to mesh points, some form
of interpolation is necessary to evaluate the force, reguin trajectory errors.

Figure 2 shows the longitudinal phase space of macro-pestic a 1-D PIC simula-
tion of a laser-plasma interaction witth/ wp = 10,80 = 2, andkpL = 2. The simulation
used a longitudinal grid spacing af/36 and 400 macro-particles per cell. What be-
gins as high-frequency oscillations [Fig. 2(A)] in the ptesmomentum develop into a
structure on phase space that corresponds to a multi-pstkbdtion function resem-
bling Dawson’s cold beams [13]. The momentum spread thatldps has been shown
to be inconsistent [12] with the known thermal response oflas® plasma to an in-
tense, short laser pulse [5]. Thus this plasma state, whithei product of artifacts of
the PIC algorithm, cannot be considered a “thermal plasindgct, to refer to the pro-
cesses leading to this phase space, starting from a coldl ioaindition, as heating is
technically incorrect. In particular, there is no thernmafial condition (i.e., no isotropic
plasma equilibrium) that will lead to the observed evolatio

Additionally, this evolution violates Gardner’s restaunffitheorem [14], providing
further evidence that the observed dynamics are incomsigfiéh the Vlasov—Maxwell
equations. The dynamics illustrated in Fig. 2 will not, inngeal, lead to constant
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FIGURE 3. Particle shapes functions for various interpolation sa®rithe higher order shape func-
tions can be systematically obtained from the uniform shapecalled “nearest-grid-point” weighting)
[9]. The horizontal axis is scaled relative to the grid spgcismoother particle shapes result in larger
macro-particles.

1.0 Li —
(@) Quadratic
i Cubic —
Quartic ——
0.5 —
0.0 -
-0.5 —
-1.0 L \I/ — 1 T 1
-5 0 5 10
X/IA x/A

FIGURE 4. (a) Interpolation of cagrx/5A) using the particle shapes shown in Fig. 3. The smoothing
effect of higher-order methods is clearly visible as is thet the peak amplitude for these methods de-
creases with order. (b) Errors for the interpolation shawfa). The higher-order methods systematically
result in a great error at the maxima and minima of the intetpd function. The higher-order methods
also lack the high frequency error components present ifirtbarly interpolated field.

values for the Casimirs of the Vlasov—Maxwell equations.ti@@gfse Casimirs, next to
total particle number (which is conserved here), entrom/tha most concrete physical
interpretation. These dynamics, by allowing the distiitrufunction to develop multiple
peaks in momentum at a given spatial point, leads to largeggsain the total entropy
of the system. (The entropy in a collisionless plasma in @9 Thus, we are lead to
the conclusion that there is no initial condition (thermabtherwise) that will lead to
the observed dynamics.

To understand the origin of the structures in Fig. 2, it isrinstive to examine the force
interpolation mechanism in the PIC algorithm. Since the nmgarticles are allowed to



free move in phase space while the fields are only known onteabgsd, it is necessary

to provide field values at locations other than grid points tsndetermine the current at
the grid points. The most elementary approach is the segcakarest-grid-point (NGP)
method where the fields at the nearest grid point to the maarticle are used in the
Lorentz force (and, likewise, the entire current assodiatgh a given macro-particle
Is assigned to the nearest grid point). The large noise @mtén the NGP method lead
to the development of “high-order” interpolation and cuatrdeposition [9, 15, 16]. The
current is assigned to the spatial grid by the requiremeaeod self-force. The result
is that the interpolated fields are not, in general, consistéth the intra-cell current

density. This zero self-force requirement appears to abte the use of derivative
information to improve the accuracy of the interpolatedisglwhich would bring them

closer to consistency with the intra-cell current densiag it is unclear whether it is
possible to construct the required particle shape needacttamulate the current.

Figure 3 shows the standard particle shape functions thraugrtic order. Fig-
ures 4(a) and 4(b), respectively, show the interpolatioa sinusoidal field field using
these particle shapes and the resulting errors. The hayler-shape functions lead to
smoother interpolation but not to higher accuracy; excepNGP, all the higher-order
shapes lead to interpolations that are second-order dedarthe grid size. As can be
seen in Fig. 4(b), as the order of the shape function growesettors become systemati-
cally larger (the coefficient in the error terms grows buteh®r remains second-order).
One consequence is that the laser ponderomotive force igdbensatically underesti-
mated. Moreover, only linear interpolation results in zenwr on the grid-points and as
such, the error in the linear case contains frequenciesraingnk.

The phase-space structures shown in Fig. 2 are not entirelyesult of the heating
mechanisms illustrated in Fig. 1. The initial evolution bétstructure is solely due to
spatial correlations in the interpolation error. Only otieese orbit displacements grow
to the point that, after having been “coarse-grained” tagtid, the resulting current dis-
tribution corresponds to a broadened phase-space distribdoes the collective insta-
bility responsible for grid heating grow. The fact that @nt smoothing is significantly
less effective at suppressing the growth of these phasm spauctures [12] suggests that
this effect is due not to high-frequencies introduced inad#ng current on the grid but
rather to interpolation of the fields onto the particle lomas$ (which is not affected by
smoothing the current).

As shown in Fig. 5, these phase-space structures grow nmwéy/skhen higher-order
interpolation is used. This is not the result of increasedieaxy but smaller variation
in the interpolation error across the cell. As the resolut®increased, for a given in-
terpolation method, the absolute magnitude of the vanationterpolation error across
the cell is reduced, leading to neighboring orbits havingléenrelative displacements,
slowing the growth of the structures. The ultimate causéisfphenomena is the need
to approximate the fields between the grid points. By forgreater continuity (at the
cost of absolute accuracy), higher-order interpolatioth@m@s result in an intra-cell ap-
proximation for the fields that varies much less over the ttelh for the linear case.
Linear interpolation, which forces zero interpolationcgrat the grid points, leads to
large relative errors and results in nearby macro-pagielg@eriencing significantly dif-
ferent fields. Since these errors are correlated to theiposit the cell, subsequent time
steps tend to reinforce the error. Higher-order interpatatesults in greater quantitative
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FIGURE 5. Effect of interpolation method and filtering on the macratijocée phase space of a laser-
driven plasma wave in 1-D for an initially cold plasma. Thedd@udinal grid spacing used wag/36
with 400 macro-particles per cell and various interpolatisethods: (a) linear interpolation; (b) quadratic
interpolation; (c) cubic interpolation; and (d) linearenpolation with a (1,2,1) filter plus compensator
applied to the current. Insets show details of phase spaitee dirst (A) and fifth (B) buckets after the
laser pulse. See Fig. 8 of Ref. [12].

fidelity but not to more accurate (in the formal sense) sohsi

CONCLUSIONS

The cold fluid equations (assuming an initial delta-funectmomentum distribution),

coupled to Maxwell equations, are an exact representatithred/lasov—Maxwell equa-

tions for a cold initial condition. Hence, for a cold initi@bndition, the PIC algorithm

should reproduce the cold fluid solution, and there shoulddo@eating or trapping,

provided no shocks have developed. This is true in any numbdimensions. Heat-

ing or trapping would violate entropy conservation, whishah exact constant of the
Vlasov—Maxwell equations. The appearance of shocks waodlidate that the collision-

less assumption is no longer valid, since collisions arelired for energy transport
across shocks. Shock development indicates that the Viasdel (the basis of the col-
lisionless PIC algorithm) is no longer valid, and a collisa Boltzmann model of the
plasma is required.

Based on the observed numerical heating in PIC for a coldimibndition, it seems
plausible that the evolution of the plasma generated by lBeaRjorithm depends crit-
ically on the initial condition. It has been shown that foerimal initial conditions, the
PIC algorithm can converge to the correct plasma respomndedb6the cold initial condi-



tion, we see evolution that is inconsistent with known prtips of the Vlasov—Maxwell
equations. This naturally leads to the suggestion thatahgisn spaces generated by
the PIC algorithm for cold and warm initial conditions arsjdint, with only warm ini-
tial conditions leading to physically correct behavior.is'honclusion is bolstered by
the Lax Equivalence Theorem [11]: consistency and stglaliée both required to guar-
antee convergence. While the PIC algorithm appears to lbeslbr consistent with the
Vlasov—Maxwell equations, the phase-space structuréslévalop lead to trapping by
triggering the linear grid heating instability. This nunoat instability formally violates
the conditions of the Lax theorem, leading one to believeftiracold initial conditions
there is no justification in expecting the PIC algorithm toneerge to a solution of the
Vlasov—Maxwell equations. This is not a rigorous resultsash would require an exis-
tence proof for solutions of the relativistic Vlasov—Maxieguations, nonetheless, it is
troubling as it seem highly unlikely that the Lax theoremam& form would not apply.
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