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Physical Fidelity in Particle-In-Cell Modeling of
Small Debye-Length Plasmas

B. A. Shadwick∗ and C. B. Schroeder†

∗Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588-0111
†Lawrence Berkeley National Laboratory, Berkeley, California 94720

Abstract. The connection between macro-particle shape functions andnon-physical phase-space
“heating” in the particle-in-cell (PIC) algorithm is examined. The development of fine-scale phase-
space structures starting from a cold initial condition is shown to be related to spatial correlations
in the interpolated fields used in the Lorentz force. It is shown that the plasma evolution via the PIC
algorithm from a cold initial condition leads to a state thatis not consistent with that of a thermal
plasma.

PACS: 52.38.-r, 52.65.Rr

INTRODUCTION

Particle-in-cell (PIC) codes are commonly used tools to study kinetic effects in plasmas,
that is, behavior beyond that described by a moment-based description of the phase-
space distribution. The PIC [1] method, originally developed for hydrodynamics by
Harlow [2] was introduced to plasma physics in the early daysof the controlled fusion
program and has been widely applied to the study of fusion plasmas, astrophysical
plasma, plasma processing, and beam devices [3, 4]. In broadterms, fusion plasmas are
hot (ion temperatures in the multi- kV range) and the plasma flow is typically turbulent.
As the accelerator applications of short-pulse laser-plasma interactions developed, it was
natural to apply this well-known tool to these novel systems. In short-pulse laser-plasma
interactions, the plasma is collisionless on the time-scales of interest (e.g., the laser
duration), and the plasmas are typically photo-ionized, with initial temperatures on the
order of the ionization potential, i.e., tens of eV. Unlike tokamak plasmas, the plasma
response to a short laser pulse can be quite laminar [5, 6], and there is no heating.

When studying short-pulse laser-plasma interactions, PICsimulations are commonly
initialized cold. With a cold initial condition, as we will see below, the “heating” in
PIC is the result of algorithmic artifacts; a proper thermalstate is not generated and the
plasma response is not correct. Under these circumstances,the trapping of particles is
not due to the capture of the tails of a thermal distribution (as in a real plasma) [7, 8],
but to the capture of particles from the bulk of the distributions that are on incorrect
phase-space orbits. In one-dimension (1-D) it has been shown that the PIC model can
reproduce the response of a thermal plasma to a short laser pulse [6].



NUMERICAL HEATING MECHANISMS

Unavoidable discretization of the physical model and the necessarily small number of
macro-particles relative to the number of physical electrons both give rise to unphysi-
cal heating [1, 9]. Figure 1 shows the evolution in RMS momentum spread of a thermal
plasma without any drive versus time and illustrates two numerical heating mechanisms:
scattering and grid heating. While both mechanisms illustrated in Fig. 1 are unphysical,
they have distinct origins. Scattering is a “discrete particle effect” related to approx-
imating the continuous phase-space density by individual macro-particles. As macro-
particles drift from one cell to another in simulation of an unforced thermal plasma,
there will be fluctuations in the number of macro-particles per cell. Since the average
number of macro particles per cell is rather small, even fluctuations of±1 macro-particle
can lead to a large potential. These large, approximately random, fluctuations in poten-
tial lead to a localized electric field which acts on the macro-particles. In effect, the
macro-particles scatter off fluctuations in the potential.Grid heating is a kinetic instabil-
ity resulting from the grid aliasing high-frequency modes (not resolved by the grid) to
low frequencies [1, 10]. The modification of the usual warm-plasma dispersion relation
by aliasing effects results in roots with positive imaginary parts. Since this numerical
instability arises from the same basic physical processes (but triggered by grid-aliasing)
as true plasma modes, it can both mimic real plasma phenomenaand act to drive other,
physical plasma responses. The growth rate of this instability is significantly reduced
once the plasma temperature reaches a level given byλD kg ≈ 1, wherekg = π/∆x is the
smallest wavenumber of the supported by the grid andλD is the plasma Debye length.
Common to both mechanism is the creation of particle energy;likewise both mecha-
nisms results in dynamical evolution of a state that physically is an equilibrium, but,
evidently, not a fixed-point of the PIC algorithm. Furthermore, both mechanisms repre-
sentlinear instabilities (in the von Neumann sense [11]) of the numerical method.
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FIGURE 1. An illustration of numerical heating mechanisms in PIC simulations. An initially thermal
plasma is allowed to evolve without excitation. The total kinetic energy of the system exhibits a sec-
ular growth in time. As indicated, the regions of differing heating rates correspond to distinct heating
mechanisms.



FIGURE 2. Macro-particle phase space of a laser-driven plasma wave in1-D for a plasma initially at
rest. The longitudinal grid spacing in the simulation wasλ0/36 with 400 macro-particles per cell. The
boxes A, B, and C show detailed of phase space at the first, third, and fifth bucket after the laser pulse.
For these initial conditions, no physical trapping should occur and the plasma response should be purely
hydrodynamic. See Fig. 5 of Ref. [12].

These numerical heating mechanisms will alter phase space and can mimic physical
processes leading to incorrect interpretation of computational results [12]. This will be of
particular importance when attempting to model detailed kinetic effects, such as trapping
of the plasma electrons and generation of dark current in a plasma accelerator [7, 8]. In
addition, since the macro-particle positions are not restricted to mesh points, some form
of interpolation is necessary to evaluate the force, resulting in trajectory errors.

Figure 2 shows the longitudinal phase space of macro-particles in a 1-D PIC simula-
tion of a laser-plasma interaction withω0/ωp = 10,a0 = 2, andkpL = 2. The simulation
used a longitudinal grid spacing ofλ0/36 and 400 macro-particles per cell. What be-
gins as high-frequency oscillations [Fig. 2(A)] in the plasma momentum develop into a
structure on phase space that corresponds to a multi-peak distribution function resem-
bling Dawson’s cold beams [13]. The momentum spread that develops has been shown
to be inconsistent [12] with the known thermal response of a Vlasov plasma to an in-
tense, short laser pulse [5]. Thus this plasma state, which is the product of artifacts of
the PIC algorithm, cannot be considered a “thermal plasma”;in fact, to refer to the pro-
cesses leading to this phase space, starting from a cold initial condition, as heating is
technically incorrect. In particular, there is no thermal initial condition (i.e., no isotropic
plasma equilibrium) that will lead to the observed evolution.

Additionally, this evolution violates Gardner’s restacking theorem [14], providing
further evidence that the observed dynamics are inconsistent with the Vlasov–Maxwell
equations. The dynamics illustrated in Fig. 2 will not, in general, lead to constant
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FIGURE 3. Particle shapes functions for various interpolation schemes. The higher order shape func-
tions can be systematically obtained from the uniform shape(so called “nearest-grid-point” weighting)
[9]. The horizontal axis is scaled relative to the grid spacing; smoother particle shapes result in larger
macro-particles.
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FIGURE 4. (a) Interpolation of cos(π x/5∆) using the particle shapes shown in Fig. 3. The smoothing
effect of higher-order methods is clearly visible as is the fact the peak amplitude for these methods de-
creases with order. (b) Errors for the interpolation shown in (a). The higher-order methods systematically
result in a great error at the maxima and minima of the interpolated function. The higher-order methods
also lack the high frequency error components present in thelinearly interpolated field.

values for the Casimirs of the Vlasov–Maxwell equations. Ofthese Casimirs, next to
total particle number (which is conserved here), entropy has the most concrete physical
interpretation. These dynamics, by allowing the distribution function to develop multiple
peaks in momentum at a given spatial point, leads to large changes in the total entropy
of the system. (The entropy in a collisionless plasma in constant.) Thus, we are lead to
the conclusion that there is no initial condition (thermal or otherwise) that will lead to
the observed dynamics.

To understand the origin of the structures in Fig. 2, it is instructive to examine the force
interpolation mechanism in the PIC algorithm. Since the macro-particles are allowed to



free move in phase space while the fields are only known on a spatial grid, it is necessary
to provide field values at locations other than grid points and to determine the current at
the grid points. The most elementary approach is the so-called nearest-grid-point (NGP)
method where the fields at the nearest grid point to the macro-particle are used in the
Lorentz force (and, likewise, the entire current associated with a given macro-particle
is assigned to the nearest grid point). The large noise inherent in the NGP method lead
to the development of “high-order” interpolation and current deposition [9, 15, 16]. The
current is assigned to the spatial grid by the requirement ofzero self-force. The result
is that the interpolated fields are not, in general, consistent with the intra-cell current
density. This zero self-force requirement appears to eliminate the use of derivative
information to improve the accuracy of the interpolated fields (which would bring them
closer to consistency with the intra-cell current density), as it is unclear whether it is
possible to construct the required particle shape needed toaccumulate the current.

Figure 3 shows the standard particle shape functions through quartic order. Fig-
ures 4(a) and 4(b), respectively, show the interpolation ofa sinusoidal field field using
these particle shapes and the resulting errors. The higher-order shape functions lead to
smoother interpolation but not to higher accuracy; except for NGP, all the higher-order
shapes lead to interpolations that are second-order accurate in the grid size. As can be
seen in Fig. 4(b), as the order of the shape function grows, the errors become systemati-
cally larger (the coefficient in the error terms grows but theerror remains second-order).
One consequence is that the laser ponderomotive force is be systematically underesti-
mated. Moreover, only linear interpolation results in zeroerror on the grid-points and as
such, the error in the linear case contains frequencies larger thankg.

The phase-space structures shown in Fig. 2 are not entirely the result of the heating
mechanisms illustrated in Fig. 1. The initial evolution of the structure is solely due to
spatial correlations in the interpolation error. Only oncethese orbit displacements grow
to the point that, after having been “coarse-grained” to thegrid, the resulting current dis-
tribution corresponds to a broadened phase-space distribution, does the collective insta-
bility responsible for grid heating grow. The fact that current smoothing is significantly
less effective at suppressing the growth of these phase-space structures [12] suggests that
this effect is due not to high-frequencies introduced in depositing current on the grid but
rather to interpolation of the fields onto the particle locations (which is not affected by
smoothing the current).

As shown in Fig. 5, these phase-space structures grow more slowly when higher-order
interpolation is used. This is not the result of increased accuracy but smaller variation
in the interpolation error across the cell. As the resolution is increased, for a given in-
terpolation method, the absolute magnitude of the variation in interpolation error across
the cell is reduced, leading to neighboring orbits having smaller relative displacements,
slowing the growth of the structures. The ultimate cause of this phenomena is the need
to approximate the fields between the grid points. By forcinggreater continuity (at the
cost of absolute accuracy), higher-order interpolation methods result in an intra-cell ap-
proximation for the fields that varies much less over the cellthan for the linear case.
Linear interpolation, which forces zero interpolation error at the grid points, leads to
large relative errors and results in nearby macro-particles experiencing significantly dif-
ferent fields. Since these errors are correlated to the position in the cell, subsequent time
steps tend to reinforce the error. Higher-order interpolation results in greater quantitative



FIGURE 5. Effect of interpolation method and filtering on the macro-particle phase space of a laser-
driven plasma wave in 1-D for an initially cold plasma. The longitudinal grid spacing used wasλ0/36
with 400 macro-particles per cell and various interpolation methods: (a) linear interpolation; (b) quadratic
interpolation; (c) cubic interpolation; and (d) linear interpolation with a (1,2,1) filter plus compensator
applied to the current. Insets show details of phase space atthe first (A) and fifth (B) buckets after the
laser pulse. See Fig. 8 of Ref. [12].

fidelity but not to more accurate (in the formal sense) solutions.

CONCLUSIONS

The cold fluid equations (assuming an initial delta-function momentum distribution),
coupled to Maxwell equations, are an exact representation of the Vlasov–Maxwell equa-
tions for a cold initial condition. Hence, for a cold initialcondition, the PIC algorithm
should reproduce the cold fluid solution, and there should beno heating or trapping,
provided no shocks have developed. This is true in any numberof dimensions. Heat-
ing or trapping would violate entropy conservation, which is an exact constant of the
Vlasov–Maxwell equations. The appearance of shocks would indicate that the collision-
less assumption is no longer valid, since collisions are required for energy transport
across shocks. Shock development indicates that the Vlasovmodel (the basis of the col-
lisionless PIC algorithm) is no longer valid, and a collisional Boltzmann model of the
plasma is required.

Based on the observed numerical heating in PIC for a cold initial condition, it seems
plausible that the evolution of the plasma generated by the PIC algorithm depends crit-
ically on the initial condition. It has been shown that for thermal initial conditions, the
PIC algorithm can converge to the correct plasma response [6]. For the cold initial condi-



tion, we see evolution that is inconsistent with known properties of the Vlasov–Maxwell
equations. This naturally leads to the suggestion that the solution spaces generated by
the PIC algorithm for cold and warm initial conditions are disjoint, with only warm ini-
tial conditions leading to physically correct behavior. This conclusion is bolstered by
the Lax Equivalence Theorem [11]: consistency and stability are both required to guar-
antee convergence. While the PIC algorithm appears to be formally consistent with the
Vlasov–Maxwell equations, the phase-space structures that develop lead to trapping by
triggering the linear grid heating instability. This numerical instability formally violates
the conditions of the Lax theorem, leading one to believe that for cold initial conditions
there is no justification in expecting the PIC algorithm to converge to a solution of the
Vlasov–Maxwell equations. This is not a rigorous result, assuch would require an exis-
tence proof for solutions of the relativistic Vlasov–Maxwell equations, nonetheless, it is
troubling as it seem highly unlikely that the Lax theorem in some form would not apply.
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