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ABSTRACT OF THE DISSERTATION

Architectural-Aware Performance Optimization: From the Foundational Math Library to
Cutting-Edge Applications

by

Yujia Zhai

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2023

Dr. Zizhong Chen, Chairperson

Efficient performance is essential for deploying a system in the real world. This

thesis presents techniques for optimizing performance with an awareness of architecture

for applications ranging from foundational math libraries, such as Basic Linear Algebra

Subprograms (BLAS), to cutting-edge applications like homomorphic encryption (HE) and

deep learning (DL) inference for the transformer model.

First, we introduce FT-BLAS, a new implementation of BLAS that offers high re-

liability and superior performance compared to other libraries, including Intel MKL, Open-

BLAS, and BLIS. FT-BLAS is capable of tolerating soft errors on-the-fly, making it more

robust than other libraries. The experimental results of FT-BLAS on Intel Skylake, Intel

Cascade Lake, and AMD Zen2 processors demonstrate its high performance, being up to

3.50%, 22.14%, and 21.70% faster than Intel MKL, OpenBLAS, and BLIS, respectively.

We then present XeHE, a HE library accelerated for Intel GPUs. Our staged

optimizations, including low-level optimizations and kernel fusion, accelerate the Number

Theoretic Transform (NTT), a fundamental algorithm for HE, by up to 9.93X compared to

viii



the naive GPU baseline. Our optimized NTT reaches 79.8% and 85.7% of the peak perfor-

mance on two GPU devices, and our systematic optimizations improve the performance of

encrypted element-wise polynomial matrix multiplication applications by up to 3.11X.

Finally, we present ByteTransformer, an industrial transformer framework opti-

mized for variable-length inputs. ByteTransformer has been deployed to serve TikTok and

Douyin applications of ByteDance, and part of our proposed optimizations has been inte-

grated into the production code base of NVIDIA. Experimental results on an NVIDIA

A100 GPU with variable-length sequence inputs validate that our fused MHA outper-

forms the standard PyTorch MHA by 6.13x. ByteTransformer’s end-to-end performance

for a standard BERT Transformer model surpasses state-of-the-art transformer frameworks,

such as PyTorch JIT, TensorFlow XLA, Tencent TurboTransformer, Microsoft DeepSpeed-

Inference, and NVIDIA FasterTransformer, by 87%, 131%, 138%, 74%, and 55%, respec-

tively. We also demonstrate the general applicability of our optimization methods to other

BERT-like models, including ALBERT, DistilBERT, and DeBERTa.

ix



Contents

List of Figures xii

List of Tables xiv

1 Introduction 1

2 FT-BLAS: A Fault-Tolerant High-Performance BLAS Implementation on
x86 CPUs 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Related Work and Background . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Algorithm-Based Fault Tolerance . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Duplication-Based Fault Tolerance . . . . . . . . . . . . . . . . . . . 14

2.3 Optimizing Level-1, Level-2, and Level-3 BLAS Routines . . . . . . . . . . . 15
2.3.1 Optimizing Level-1 BLAS . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Optimizing Level-2 BLAS . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Optimizing Level-3 BLAS . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Optimizing Fault Tolerant Level-1 and Level-2 BLAS . . . . . . . . . . . . . 22
2.4.1 Assembly Syntax and Duplication Scheme . . . . . . . . . . . . . . . 23
2.4.2 Scalar DMR Versus Vectorized DMR . . . . . . . . . . . . . . . . . . 23
2.4.3 Adding More Standard Optimizations . . . . . . . . . . . . . . . . . 25
2.4.4 Optimizations Underrepresented in Main Libraries . . . . . . . . . . 27
2.4.5 Enabling Parallel Support Using OpenMP . . . . . . . . . . . . . . . 31
2.4.6 Extending to AVX2-Enabled CPUs . . . . . . . . . . . . . . . . . . . 31

2.5 Optimizing Fault Tolerant Level-3 BLAS . . . . . . . . . . . . . . . . . . . . 33
2.5.1 First Trial: Building Online ABFT on a Third-Party Library . . . . 33
2.5.2 Reducing the Memory Footprint: Fusing ABFT Into DGEMM . . . 35
2.5.3 Enabling Parallel Support for ABFT Using OpenMP . . . . . . . . . 36

2.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.1 Performance of FT-BLAS Without FT Capability . . . . . . . . . . 38
2.6.2 Performance of FT-BLAS With Fault Tolerance Capability . . . . . 39
2.6.3 Error Injection Experiments . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



3 XeHE: A GPU-Accelerated Homomorphic Encryption Library 58
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Basics of CKKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 Number Theoretic Transform and Residue Number System . . . . . 63
3.2.3 NTT optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.4 An Overview of Intel GPUs . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Designs and Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Instruction-Level Optimizations . . . . . . . . . . . . . . . . . . . . . 68
3.3.2 Algorithmic Level Optimizations (NTT) . . . . . . . . . . . . . . . . 71
3.3.3 Application-Level Optimizations . . . . . . . . . . . . . . . . . . . . 80

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4.1 Optimizing NTT on Intel GPUs . . . . . . . . . . . . . . . . . . . . 82
3.4.2 Roofline Analysis for NTT . . . . . . . . . . . . . . . . . . . . . . . 86
3.4.3 Benchmarking for CKKS HE Evaluation Routines . . . . . . . . . . 89
3.4.4 Benchmarking on Device2 . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.5 Benchmarks for Polynomial Matrix Multiplication . . . . . . . . . . 92

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 ByteTransformer: A High-Performance Transformer Boosted for Variable-
Length Inputs 96
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 The Transformer Architecture . . . . . . . . . . . . . . . . . . . . . . 100
4.2.2 Related Works on DL Acceleration . . . . . . . . . . . . . . . . . . . 102

4.3 Designs and Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.1 Math Expression of BERT Transformer Encoder . . . . . . . . . . . 105
4.3.2 Profiling for Single-Layer Standard BERT Transformer . . . . . . . . 105
4.3.3 Fusing Memory-Bound Operations of BERT Transformer . . . . . . 107
4.3.4 The Zero Padding Algorithm for Variable-Length Inputs . . . . . . . 110
4.3.5 Optimizing Multi-Head Attention . . . . . . . . . . . . . . . . . . . . 112

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4.1 Kernel Fusion for Layernorm and Add-Bias Operations . . . . . . . 122
4.4.2 Kernel Fusion for GEMM and Add-Bias & Activation . . . . . . . . 124
4.4.3 Optimizing Multi-Head Attention . . . . . . . . . . . . . . . . . . . . 125
4.4.4 Benchmarking Single-Layer BERT Transformer With Step-Wise Op-

timizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.5 Benchmarking End-to-End Performance of BERT . . . . . . . . . . . 131
4.4.6 Extending to Other BERT-Like Transformers . . . . . . . . . . . . . 132

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Conclusions 135

Bibliography 138

xi



List of Figures

2.1 Optimization schemes of DGEMV and DTRSV. . . . . . . . . . . . . . . . . 18
2.2 DTRSM optimization layout. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Software pipelining design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Outer-product online ABFT DGEMM optimization layout. . . . . . . . . . 35
2.5 Parallel ABFT-GEMM with kernel fusion. . . . . . . . . . . . . . . . . . . . 48
2.6 Comparisons of selected Level-1/2 BLAS routines. . . . . . . . . . . . . . . 49
2.7 Comparisons of selected Level-3 BLAS routines. . . . . . . . . . . . . . . . . 49
2.8 Optimizing DSCAL with/without FT. . . . . . . . . . . . . . . . . . . . . . 50
2.9 Optimizing DGEMM with FT. . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.10 Comparisons of selected BLAS routines with FT on Skylake. . . . . . . . . 51
2.11 Comparisons of BLAS routines with FT on Cascade Lake. . . . . . . . . . . 52
2.12 Comparisons of parallel BLAS routines with FT on Cascade Lake. . . . . . 53
2.13 Comparisons of BLAS routines with FT on AMD Zen2. . . . . . . . . . . . 54
2.14 Performance under error injection on Skylake. . . . . . . . . . . . . . . . . . 55
2.15 Performance under error injection on Cascade Lake. . . . . . . . . . . . . . 56
2.16 Parallel performance under error injection on Cascade Lake. . . . . . . . . . 57
2.17 Performance under error injection on AMD Zen2. . . . . . . . . . . . . . . . 57

3.1 Client (CPU)/Server (GPU) control/data flow. . . . . . . . . . . . . . . . . 67
3.2 Asynchronous execution scheme . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Pseudo int64 addmod assembly . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Pseudo mul64 assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Profiling for HE routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6 Naive implementation of 16K-point NTT . . . . . . . . . . . . . . . . . . . 73
3.7 SIMD shuffling for data exchanging in NTT. . . . . . . . . . . . . . . . . . . 76
3.8 Staged implementation of 16K-point NTT . . . . . . . . . . . . . . . . . . . 77
3.9 Multi-slot SIMD shuffling in NTT . . . . . . . . . . . . . . . . . . . . . . . 78
3.10 The parallelism of NTT for HE . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.11 Memory cache design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.12 Radix-2 NTT with SLM and SIMD on Device1 . . . . . . . . . . . . . . . . 83
3.13 High-radix NTT with SLM on Device1 . . . . . . . . . . . . . . . . . . . . . 85
3.14 NTT with inline-asm and multi-tile on Device1 . . . . . . . . . . . . . . . . 86

xii



3.15 Roofline Analysis on Device1 . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.16 Benchmarking HE evaluation routines on Device1. . . . . . . . . . . . . . . 90
3.17 Benchmark for NTT on Device2. . . . . . . . . . . . . . . . . . . . . . . . . 92
3.18 Benchmarking HE evaluation routines on Device2. . . . . . . . . . . . . . . 93
3.19 Element-wise polynomial multiplication. . . . . . . . . . . . . . . . . . . . . 94

4.1 The transformer architecture [182] . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 BERT transformer architecture and optimizations . . . . . . . . . . . . . . 106
4.3 Performance breakdown of BERT transformer . . . . . . . . . . . . . . . . . 106
4.4 The zero padding algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.5 Grouped GEMM demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.6 Grouped GEMM based FMHA. Source codes are available at [130]. . . . . . 116
4.7 Warp prefetching for grouped GEMM . . . . . . . . . . . . . . . . . . . . . 117
4.8 Fused softmax reduction in grouped GEMM epilogue . . . . . . . . . . . . . 118
4.9 Kernel fusion for add-bias and layernorm under the standard BERT. . . . . 123
4.10 Kernel fusion for GEMM, add-bias, and GELU. . . . . . . . . . . . . . . . . 124
4.11 Fused MHA for short sequences. . . . . . . . . . . . . . . . . . . . . . . . . 125
4.12 Fused MHA for long sequences . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.13 Comparisons of our FMHA with FlashAttention. . . . . . . . . . . . . . . . 127
4.14 Single-layer BERT transformer with step-wise optimizations. . . . . . . . . 128
4.15 End-to-end benchmark for standard BERT transformer. . . . . . . . . . . . 130
4.16 End-to-end benchmark for other BERT-like models. . . . . . . . . . . . . . 134

xiii



List of Tables

2.1 Survey of Selected OpenBLAS Level-1 Routines . . . . . . . . . . . . . . . . 17
2.2 DSCAL assembly kernel: scalar and vectorized fault tolerance schemes. . . 24
2.3 Code snippet of the AVX2 fault-tolerant code. . . . . . . . . . . . . . . . . 32

3.1 Number of 64-bit integer ALU operations of each work-item per round for
NTT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Summarizing state-of-the-art transformers. . . . . . . . . . . . . . . . . . . . 104
4.2 The computation number needed for variable-length inputs. . . . . . . . . . 112
4.3 Single-layer BERT versus E.T. on A100. . . . . . . . . . . . . . . . . . . . . 129
4.4 Configurations of other BERT-like transformers. . . . . . . . . . . . . . . . 132

xiv



Chapter 1

Introduction

This thesis presents a series of practices in performance optimizations for software

systems on modern computing platforms, such as Intel and AMD x86 CPUs, and Intel

and NVIDIA GPUs. The target applications span from a foundational math library, Basic

Linear Algebra Subprograms (BLAS), to cutting-edge applications including homomorphic

encryption (HE) and machine learning systems.

As Moore’s law comes to an end and hardware technology is approaching its limits,

software-level performance optimizations become increasingly important. With hardware

improvements slowing down, software-level optimizations can help to achieve better per-

formance, energy efficiency, and cost savings. In addition, modern software systems are

often complex and require significant computing power, which makes efficient utilization of

hardware resources even more critical. The power wall is another issue that motivates

software-level optimizations as energy consumption becomes a significant bottleneck in

system performance. By optimizing software at the code level, developers can improve
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application performance, reduce energy consumption, and extend the lifespan of existing

hardware, providing a sustainable solution for computing systems. Overall, with the limita-

tions of hardware technology, software-level optimizations have become an essential means

to achieve better performance and efficiency.

Ever since first defined in the 1990s, the BLAS library serves as a core linear algebra

library fundamental to a broad range of applications, including weather forecasting [164],

deep learning [2, 144], and molecular dynamics simulation [147]. Because of this pervasive

usage, academic institutions and hardware vendors provide a variety of BLAS libraries such

as Intel MKL [1], AMD ACML, IBM ESSL, ATLAS [190], BLIS [181], and OpenBLAS [185]

to pursue extreme performance on a variety of hardware platforms. A minor improvement

in a BLAS routine can significantly impact its dependent upper-level applications.

Another application that attests to our attention is homomorphic encryption, an

emerging cryptographic encryption scheme that allows computations to be performed di-

rectly on encrypted messages without the need for decryption. This encryption scheme,

thus, protects private data from both internal malicious actors and external intruders, while

assuming honest computations. This attractive feature, however, adds significant compu-

tations to ordinary encryption schemes. To address the memory and runtime overhead of

HE — a major obstacle to immediate real-world deployments, HE libraries support efficient

implementations of multiple HE schemes, including Microsoft SEAL [108] (BFV/CKKS),

HElib [80] (BFV/BGV/CKKS), and PALISADE [148] (BGV/BFV/CKKS/TFHE). In [18],

Intel published HEXL, accelerating HE integer arithmetic on finite fields by featuring Intel

Advanced Vector Extensions 512® (Intel AVX512) instructions. Since GPUs deliver higher

2



memory bandwidth and computing throughput with lower normalized power consumption,

researchers presented libraries such as cuHE [53], TFHE [47] and NuFHE [129] to accelerate

HE using CUDA-enabled GPUs.

We also focus on accelerating machine learning systems. The last decade has

witnessed rapid developments in natural language processing (NLP) pre-training models

based on the transformer model, such as Seq2seq [182], GPT-2 [150], XLNET [201] and

ChatGPT [141]. BERT-like models consume increasingly larger parameter space and cor-

respondingly more computational resources. When BERT was discovered, a large model

required 340 million parameters [205], but currently, a full GPT-3 model requires 170 billion

parameters [22]. The base BERT model requires 6.9 billion floating-point operations to in-

fer a 40-word sentence, and this number increases to 20 billion when translating a 20-word

sentence using a base Seq2Seq model [63]. The size of the parameter space and the com-

putational demands increase the cost of the training and inference for BERT-like models,

which requires the attention of the DL community in order to accelerate these models.

In this thesis, we leverage architectural-aware performance optimizations to accel-

erate software systems in the three aspects above. To be more specific, our contributions

include:

• We present FT-BLAS, a new implementation of BLAS routines that not only tolerates

soft errors on the fly but also provides comparable performance to modern state-of-

the-art BLAS libraries on widely-used processors such as Intel Skylake and Cascade

Lake. To accommodate the features of BLAS, which contains both memory-bound and

computing-bound routines, we propose a hybrid strategy to incorporate fault tolerance

3



into our brand-new BLAS implementation: duplicating computing instructions for

memory-bound Level-1 and Level-2 BLAS routines and incorporating an Algorithm-

Based Fault Tolerance mechanism for computing-bound Level-3 BLAS routines. Our

high performance and low overhead are obtained from delicate assembly-level opti-

mization and a kernel-fusion approach to the computing kernels. Experimental results

demonstrate that FT-BLAS offers high reliability and high performance – faster than

Intel MKL, OpenBLAS, and BLIS by up to 3.50%, 22.14%, and 21.70%, respectively,

for routines spanning all three levels of BLAS we benchmarked, even under hundreds

of errors injected per minute.

• We present XeHE, a software framework that accelerates privacy-preserved compu-

tations on Intel GPUs. XeHE provides the first-ever GPU backend for the Microsoft

SEAL library. We perform optimizations from the instruction level, algorithmic level,

and application level to accelerate our HE library based on the Cheon, Kim, Kim and

Song (CKKS) scheme on Intel GPUs. The performance is validated on two latest Intel

GPUs. Experimental results show that our staged optimizations, including low-level

optimizations and kernel fusion, accelerate the Number Theoretic Transform (NTT),

a key algorithm for HE, by up to 9.93X compared with the naive GPU baseline. The

roofline analysis confirms that our optimized NTT reaches 79.8% and 85.7% of the

peak performance on two GPU devices. Through the highly optimized NTT and

the assembly-level optimization, we obtain 2.32X - 3.05X acceleration for HE eval-

uation routines. In addition, our all-together systematic optimizations improve the

performance of encrypted element-wise polynomial matrix.
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• We present ByteTransformer, a high-performance transformer boosted for variable-

length inputs. We propose a padding-free algorithm that liberates the entire trans-

former from redundant computations on zero-padded tokens. In addition to algorithmic-

level optimization, we provide architecture-aware optimizations for transformer func-

tional modules, especially the performance-critical algorithm Multi-Head Attention

(MHA). Experimental results on an NVIDIA A100 GPU with variable-length sequence

inputs validate that our fused MHA outperforms PyTorch by 6.13x. The end-to-end

performance of ByteTransformer for a forward BERT transformer surpasses state-

of-the-art transformer frameworks, such as PyTorch JIT, TensorFlow XLA, Tencent

TurboTransformer, Microsoft DeepSpeed-Inference, and NVIDIA FasterTransformer,

by 87%, 131%, 138%, 74%, and 55%, respectively. We also demonstrate the gen-

eral applicability of our optimization methods to other BERT-like models, including

ALBERT, DistilBERT, and DeBERTa.
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Chapter 2

FT-BLAS: A Fault-Tolerant

High-Performance BLAS

Implementation on x86 CPUs

2.1 Introduction

Due to common performance-enhancing technologies such as shrinking transistor

width, higher circuit density, and lower near-threshold voltage operations, processor chips

are more susceptible to transient faults than ever before [110,122,127]. Transient faults can

alter a signal transfer or corrupt the bits within stored values instead of causing permanent

physical damage [71, 112]. As a consequence, reliability has been identified by the U.S.

Department of Energy as one of the major challenges for exascale computing [120].
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The academic and industry communities have observed a significant effects of

transient faults, since the first transient error and resulting soft data corruption was observed

by Intel Corporation in 1978 [124]. Sun Microsystems reported in 2000 that server crashes

caused by cosmic ray strikes on unprotected caches were responsible for the outages of

random customer sites including America Online, eBay, and others [14]. In 2003, Virginia

Tech demolished the newly-built Big Mac cluster of 1100 Apple Power Mac G5 computers

into individual components and sold them online because the cluster was not protected by

error correcting code (ECC) and fell prey to cosmic ray-induced partial strikes, causing

repeated crashes and rendering it unusable [65]. Transient faults can still threaten system

reliability even if a cluster is protected by ECC: Oliveira et al. simulated an exascale

machine with 190,000 cutting-edge Xeon Phi processors, which could still experience daily

transient errors under ECC protection [140].

Transient faults can be grouped into two categories according to the outcome. If

an affected application crashes when a transient fault occurs, it is a fail-stop error. If the

affected application continues but produces incorrect results, it is called a fail-continue error.

Fail-stop errors can often be protected by checkpoint/restart mechanisms (C/R) [2,144,147,

177] and algorithmic approaches [36, 39, 79]. Fail-continue errors are often more dangerous

because they can corrupt application states without any warning from the system and lead

to incorrect computing results [24,45,58,125,170], which can be catastrophic under safety-

critical scenarios [113]. In this chapter, we restrict our scope to fail-continue errors (soft

errors) from computing logic units (e.g., 1+1=3), assuming fail-stop errors are protected

by checkpoint/restart and memory errors are protected by ECC.
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Dual modular redundancy (DMR) is an approach to handle soft errors. Typically

assisted by compilers, DMR duplicates computing instructions and inserts check instructions

into the original programs [35,137,138,156,203]. DMR is very general and can be applied to

any application, but it introduces a high overhead especially for computing-bound applica-

tions because it duplicates all computations. To reduce fault tolerance overhead, algorithm-

based fault tolerance (ABFT) schemes have been developed for many applications in recent

years. Huang and Abraham proposed the first ABFT scheme for matrix-matrix multipli-

cation [90]. Sloan et al. proposed an algorithmic scheme to protect conjugate gradient

algorithms for sparse linear systems [165]. Sao and Vuduc explored a self-stabilizing FT

scheme for iterative methods [161]. Di and Cappello proposed an adaptive impact-driven

FT approach to correct errors for a series of real-world HPC applications [56]. Chien at

al. proposed the Global View Resilience system, a library that enables applications to

add resilience efficiently [46]. Many other FT schemes have been developed for widely-

used algorithms such as sorting [114], fast Fourier transforms (FFT) [10,115,179], iterative

solvers [32,37,178], and convolutional neural networks [210]. Recently, the interplay among

resilience, power, and performance has been studied [174, 175, 204], revealing the strong

correlation among these key factors in HPC.

Although numerous efforts have been made to protect scientific applications from

soft errors, most routines in the Basic Linear Algebra Subprograms (BLAS) library remain

unprotected. The BLAS library is a core linear algebra library fundamental to a broad range

of applications, including weather forecasting [164], deep learning [2, 144], and molecular

dynamics simulations [147]. Because of this pervasive usage, academic institutions and
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hardware vendors provide a variety of BLAS libraries such as Intel MKL [1], AMD ACML,

IBM ESSL, ATLAS [190], BLIS [181], and OpenBLAS [185] to pursue extreme performance

on a variety of hardware platforms. BLAS routines are organized into three levels: Level-

1 (vector/vector), Level-2 (matrix/vector), and Level-3 (matrix/matrix). [191]. Except

for the general matrix-matrix multiplication (GEMM) routine, which has been extensively

studied [38,78,90,169,194], minimal research has concentrated on protecting the rest of the

BLAS routines.

For the general matrix-matrix multiplication routine, several fault tolerance schemes

have been proposed to tolerate soft errors with low overhead [78,90,169,194]. The schemes

in [90] and [78] are much more efficient than DMR. However, these two schemes are offline

schemes which cannot correct errors in the middle of the computation in a timely manner.

In [194], Wu et al. implemented a fault tolerant GEMM that corrects soft errors online.

However, built on third-party BLAS libraries, this ABFT scheme becomes less efficient

when using AVX-512-enabled processors because the current gap between computation and

memory transfer speed becomes so large that the added memory-bound ABFT checksum

computation is no longer negligible relative to the original computing-bound GEMM rou-

tine. In [169], Smith et al. proposed a fused ABFT scheme for BLIS GEMM at the assembly

level to reduce the overhead for checksum calculations. An in-memory checkpoint/rollback

scheme is used to correct multiple simultaneous errors online. Although this scheme pro-

vides wider error coverage, it presents a moderate overhead “in the range of 10%” [169].

When projecting a BLAS implementation to real-world deployment, enabling sup-

port for parallel multi-core systems, as well as for a variety of mainstream micro-architectures,
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such as AVX-512 and AVX2 extensions, can both be crucial. Compared with AVX-512-

enabled processors, an AVX2-enabled-only processor exposes halved vectorized registers to

a user, and, consequently, significantly higher register pressure when designing performance-

oriented fault-tolerant algorithms. In addition to providing delicate assembly-level optimiza-

tions on computing kernels, one should propose a cache-friendly design for parallel Level-3

BLAS routines [168].

In this chapter, we develop FT-BLAS—the first BLAS implementation that not

only corrects soft errors online, but also provides at least comparable performance to modern

state-of-the-art BLAS libraries such as Intel MKL, OpenBLAS, and BLIS. Our FT-BLAS

provides superior performance and maintains negligible overhead on both AVX-512 and

AVX-2-enabled x86 processors with multi-thread support. FT-BLAS not only protects

the general matrix-matrix multiplication routine GEMM, but also protects other Level-1,

Level-2, and Level-3 routines. BLAS routines are widely-used in many applications from

an extensive range of fields; therefore, improvements to the BLAS library will benefit not

only a large number of people but also a broad cross-section of research areas. The main

contributions of this chapter include:

• We develop a brand-new implementation of BLAS using AVX-512 assembly instructions

that achieves comparable or better performance than the latest versions of OpenBLAS,

BLIS, and MKL on AVX-512-enabled processors such as Intel Skylake and Cascade Lake.

• We benchmark our hand-tuned BLAS implementation on an Intel Skylake processor and

find that it is faster than the open-source libraries OpenBLAS and BLIS by 3.85%-22.19%

for DSCAL, DNRM2, DGEMV, DTRSV, and DTRSM, and comparable performance
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(±1.0%) for the remaining selected routines. Compared to the closed-source Intel MKL,

our implementation is faster by 3.33%-8.06% for DGEMM, DSYMM, DTRMM, DTRSM,

and DTRSV, with comparable performance in the remaining benchmarks.

• We build FT-BLAS, the first fault-tolerant BLAS library, on our brand-new BLAS im-

plementation by leveraging the hybrid features of BLAS: adopting a DMR strategy for

memory-bound Level-1 and Level-2 BLAS routines and ABFT for computing-bound

Level-3 BLAS routines. Our fault-tolerant mechanism is capable of not only detecting

but also correcting soft errors online, during computation. Through a series of low-level

optimizations, we manage to achieve a negligible (0.35%-3.10%) overhead.

• We provide multi-thread AVX-512-enabled implementations for BLAS routines (DDOT,

DNRM2, DGEMV, DGEMM) and benchmark their parallel performance on an Intel

Cascade Lake processor. Experimental results validate that our fault-tolerant designs

maintain a negligible overhead (0.16%-3.53%), and the performance with the FT capa-

bility remains comparable to or faster than reference libraries.

• We extend FT-BLAS with AVX2-instruction support. We benchmark four representative

routines (DNRM2, DGEMV, DTRSV, and DGEMM) on an AMD R7 3700X processor.

Experimental results validate that FT-BLAS maintains its high performance and low

overhead on this AVX2-enabled AMD processor.

• We evaluate the performance of FT-BLAS under error injection on Intel Skylake, Intel

Cascade Lake, and AMD Zen2 processors. Experimental results demonstrate FT-BLAS

maintains a negligible performance overhead under hundreds of errors injected per minute
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while outperforming state-of-the-art BLAS implementations OpenBLAS, BLIS, and Intel

MKL by up to 22.14%, 21.70%, and 3.50% respectively—all of which cannot tolerate any

errors.

The rest of the chapter is organized as follows: We introduce background and

related works in Section II and then detail how we achieve higher performance than the

state-of-the-art BLAS libraries in Section III. Section IV and Section V present the design

and optimization of our fault-tolerant schemes. Evaluation results are given in Section VI.

We present our conclusions and future work in Section VII.

2.2 Related Work and Background

Algorithmic research [40,199,200], as well as architectural research, are two promi-

nent integrals of computer science studies. In this chapter, we focus on the architectural

perspective with a focus on non-communicating algorithms, though communication opti-

mization plays a vital role in the community [88].

2.2.1 Algorithm-Based Fault Tolerance

Algorithmic approaches to soft error protection for computing-intensive or iterative

applications have achieved great success [31, 37, 38, 115, 169, 193, 195, 196], ever since the

first algorithmic fault tolerance scheme for matrix/matrix multiplication in 1984 [90]. The

basic idea is that for a matrix-matrix multiplication C = A · B, we first encode matrices

into checksum forms. Denoting e=[1, 1, . . . , 1]T , we have A
encode−−−−→ Ac :=

 A

eTA

 and
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B
encode−−−−→ Br :=

[
B Be

]
. With Ac and Br encoded, we automatically have:

Cf = Ac ·Br =

 C Ce

eTC

 =

C Cr

Cc


The correctness of the multiplication can be verified by checking the matrix C against

Cr and Cc. Any disagreements, that is, if the difference exceeds the round-off threshold,

indicate errors occurred during the computation. The cost of checksum encoding and veri-

fication is O(n2), negligible compared to the O(n3) of matrix multiplication algorithms and

thus ensures lightweight soft error detection for matrix multiplication. For any arbitrary

matrix multiplication algorithm, correctness can be verified at the end of the computation

(offline) via the checksum relationship.

The previous ABFT scheme can be extended to outer-product matrix-matrix mul-

tiplication and the checksum relationship can be maintained during the middle of the com-

putation:

Cf =
∑
s

Ac(:, s) ·Br(s, :) =
∑
s

 Cs Cse

eTCs


where s is the step size of the outer-product update on matrix C, and Cs represents the result

of each step of the outer-product multiplication Ac(:, s) ·Br(s, :). Noting this outer-product

extension, Chen et al. proposed correcting errors for GEMM online with a double-checksum

scheme [38]. The offline version of the double-checksum scheme can only correct a single

error in a full execution, while the online version, which corrects a single error for each

step of the outer-product update, is able to handle multiple errors for the whole program.

A checkpoint-rollback technique can also be added to overcome a many-error scenario.

In [169], once errors, regardless how many, are detected via the checksum relationship, the
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program restores from a recent checkpoint to correct the error. In this chapter, we target

a more light-weight error model and correct one error in each verification interval using

online ABFT without checkpoint/rollback for the sake of performance. This kernel fusion

optimization has been widely adopted to accelerate a series of applications, such as deep

learning [102], scientific computing [29], and the fault-tolerant feature [194,197].

2.2.2 Duplication-Based Fault Tolerance

Known as dual modular redundancy (DMR), duplication-based fault tolerance is

rooted in compiler-assisted approaches and has been widely studied [35, 137, 138, 156, 203].

Classified by the Sphere of Replication (SoR), that is, the logical domain of redundant

execution [155], previous duplication-based fault-tolerant work can be grouped into one of

three cases:

• Thread Level Duplication (TLD). This approach duplicates the entire processor and

memory system: Everything is loaded twice, computed twice, and two copies are stored

[137,138].

• TLD with ECC assumption (TLD+ECC). In this approach, operands are loaded twice,

but from the same memory address. All other instructions are still duplicated. [156].

• DMR only for computing errors. Only the computing instructions are duplicated and

verified to prevent a faulty result from being written back to memory [35,203].

Different SoRs target different protection purposes and error models. TLD and TLD+ECC

lead to the worst performance and memory overheads, but provide the best fault coverage
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without requiring any other fault-tolerance support such as checkpoint/restarting. Dupli-

cating only the computing instructions shrinks the SoR to soft errors but almost halves the

performance loss compared with TLD. We adopt the third SoR, duplication and verification

of computing instructions only, in this work.

Since compiler front ends never intrude into the assembly kernels of performance-

oriented BLAS libraries, in the few cases that can be found in the compiler literature relating

to soft error resilience in BLAS routines [35], the performance is never compared against

OpenBLAS or Intel MKL, but only to LAPACK [8], a reference implementation of BLAS

with much slower performance on modern processors. In this work, we manually insert

FT instructions into self-implemented assembly computing kernels for Level-1 and Level-2

BLAS, and then hand-tune them for highest performance.

2.3 Optimizing Level-1, Level-2, and Level-3 BLAS Routines

Before adding FT capabilities to BLAS, we first create a brand new library that

provides comparable or better performance to modern state-of-the-art BLAS libraries. We

introduce the target instruction set of our work, as well as a sketch of the overall software

organization. We then dive into our detailed optimization strategies for the assembly kernel

to illustrate how we push our performance from the current state-of-the-art closer to the

limits of hardware.

2.3.1 Optimizing Level-1 BLAS

Level-1 BLAS contains a collection of memory-bound vector/vector dense linear

algebra operations, such as vector dot products and vector scaling.
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Opportunities to Optimize Level-1 BLAS

Software strategies to optimize serial Level-1 BLAS vector routines are typically

no more than exploiting data-level parallelism using vectorized instructions: processing

multiple packed data via a single instruction, loop unrolling to benefit pipelining and ex-

ploit instruction-level parallelism, and inserting prefetching instructions. In contrast to

computing-bound Level-3 BLAS routines, where performance can reach about 90% of the

theoretical limit, sequential memory-bound routines usually reach 60%-80% saturation be-

cause throughput is not high enough to hide memory latency. This fluctuating saturation

range makes experimental determination of underperforming routines difficult. We there-

fore survey open-source BLAS library Level-1 routines source code with regard to three key

optimization aspects: single-instruction multiple-data (SIMD) instruction set support, loop

unrolling, and software prefetching. We include double-precision routines in Table 2.1 for

analytical reference.

As seen in Table 2.1, all Level-1 OpenBLAS routines have been implemented with

support for loop unrolling. We also observe the interesting fact that software prefetching,

an optimization strategy as powerful as increasing SIMD width for Level-1 routines, is only

adopted in legacy implementations of x86 kernels in OpenBLAS. Based on the results of

this optimization survey, we optimize two representative routines: we upgrade DNRM2 with

AVX-512 support and enable prefetching for DSCAL. In the evaluation section, we show

that the performance of our AVX-512-enabled DNRM2 with software prefetching surpasses

OpenBLAS DNRM2 (SSE+prefetching) by 17.89%, while our DSCAL with data prefetch

obtains a 3.85% performance improvement over OpenBLAS DSCAL with no prefetch.
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Table 2.1. Survey of Selected OpenBLAS Level-1 Routines

AVX-512/AVX2 DDOT, DSCAL, DAXPY, DROT

AVX or earlier DNRM2, DCOPY, DROTM, IDAMAX, DSWAP

Loop Unrolling all routines

Prefetching DNRM2, DCOPY, DROTM, IDAMAX, DSWAP

2.3.2 Optimizing Level-2 BLAS

Level-2 BLAS performs various types of memory-bound matrix/vector operations.

In contrast to Level-1 BLAS, which never re-uses data, register-level data re-use emerges in

Level-2 BLAS. We choose the two most typical routines, DGEMV and DTRSV, as examples

to explain the theoretical underpinnings of our Level-2 BLAS optimization strategies.

Optimizing DGEMV

DGEMV, double-precision matrix/vector multiplication, computes y = αop(A)x+

βy, where A is an m×n matrix and op(A) can be A, AH or AT . The cost of vector scaling

βy and α · (Ax) is negligible compared with A · x, therefore it suffices for us to consider

β = 1, and α = 1, and restrict our discussion to the case y = Ax + y, where A is an

n× n square matrix. The naive implementation can be summarized as yi =
∑n

j Aijxj + yi.

Since DGEMV is a memory-bound application, the most efficient optimization strategy is

to reduce unnecessary memory transfers. It is clear that the previous naive implementation

requires n2 loads for A and x and n2 loads + stores for y. No memory transfer operations

can be eliminated on matrix A because each element must be accessed at least one time.
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We must focus on register-level re-use for vectors x and y to optimize DGEMV. We notice

that index variable i in A(i, j) is partially independent of the index j of the j-loop, and

we can unroll the i-loop Ri times to exploit loading xj into registers for re-use. Now each

load of xj is reused Ri times within a single register, so the total load operations for x

improves from n2 to n2/Ri. In practice, Ri is typically between 2-6, because accessing

too many discontinuous memory addresses increases the likelihood of translation lookaside

buffer (TLB) and row buffer thrashing. We adopt Ri=4 because the longest SIMD ALU

instruction (VFMA) latency in this loop is 4 cycles [4].

DGEMV

For 𝑖𝑖 = 0; 𝑖𝑖 < 𝑛𝑛; 𝑖𝑖 += 4
// set 𝑣𝑣𝑣𝑣0,𝑣𝑣𝑣𝑣1, 𝑣𝑣𝑣𝑣2, 𝑣𝑣𝑣𝑣3 as all-0s
For 𝑗𝑗 = 0; 𝑗𝑗 < 𝑛𝑛; 𝑗𝑗 += 8

𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗 ← {𝑟𝑟𝑗𝑗… 𝑟𝑟𝑗𝑗+7}

𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖0 ← {𝐴𝐴𝑖𝑖,𝑗𝑗…𝐴𝐴𝑖𝑖,𝑗𝑗+7}

𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖1 ← {𝐴𝐴𝑖𝑖+1,𝑗𝑗…𝐴𝐴𝑖𝑖+1,𝑗𝑗+7}

𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖2 ← {𝐴𝐴𝑖𝑖+2,𝑗𝑗…𝐴𝐴𝑖𝑖+2,𝑗𝑗+7}

𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖3 ← {𝐴𝐴𝑖𝑖+3,𝑗𝑗…𝐴𝐴𝑖𝑖+3,𝑗𝑗+7}

vr0 ← 𝑣𝑣𝑣𝑣0 + 𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖0 ∗ 𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗
vr1 ← 𝑣𝑣𝑣𝑣1 + 𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖1 ∗ 𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗
vr2 ← 𝑣𝑣𝑣𝑣2 + 𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖2 ∗ 𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗
vr3 ← 𝑣𝑣𝑣𝑣3 + 𝑣𝑣𝑣𝑣𝐴𝐴𝑖𝑖3 ∗ 𝑣𝑣𝑣𝑣𝑟𝑟𝑗𝑗

End For
// horizontally reduce 𝑣𝑣𝑣𝑣{0,1,2,3}
// to scalars 𝑣𝑣{0,1,2,3}
yi ← 𝑦𝑦𝑖𝑖 + 𝑣𝑣0, yi+1← 𝑦𝑦𝑖𝑖+1 + 𝑣𝑣1
yi+2 ← 𝑦𝑦𝑖𝑖+2 + 𝑣𝑣2
yi+3 ← 𝑦𝑦𝑖𝑖+3 + 𝑣𝑣3

End For

SIMD 
assembly 
computing 
kernel

For 𝑖𝑖 = 0; 𝑖𝑖 < 𝑛𝑛; 𝑖𝑖 += 𝐵𝐵
𝑖𝑖𝑖𝑖 = 𝑖𝑖+𝐵𝐵−1;
// call DGEMV (Level-2 BLAS)
𝑟𝑟(𝑖𝑖: 𝑖𝑖𝑖𝑖)−= 𝐴𝐴 𝑖𝑖: 𝑖𝑖𝑖𝑖, 1:𝑖𝑖−1 ∗ 𝑟𝑟(1: 𝑖𝑖−1)
For 𝑖𝑖𝑖𝑖 = 𝑖𝑖; 𝑖𝑖 < 𝑖𝑖𝑖𝑖−1; 𝑖𝑖𝑖𝑖++

// move 𝑝𝑝𝑝𝑝𝑣𝑣_𝐴𝐴 to 𝐴𝐴’s 𝑖𝑖𝑖𝑖𝑡𝑡𝑡 row
𝑝𝑝𝑝𝑝𝑣𝑣_𝐴𝐴 = &𝐴𝐴 𝑖𝑖𝑖𝑖, 0 ;
// call DDOT (Level-1 BLAS)

𝑝𝑝𝑡𝑡𝑝𝑝 = ∑𝑡𝑡=𝑖𝑖
𝑡𝑡≤𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑣𝑣_𝐴𝐴 𝑝𝑝 ∗ 𝑟𝑟(𝑝𝑝);

// set the diagonal index 𝑖𝑖𝑑𝑑
𝑖𝑖𝑑𝑑 = 𝑖𝑖𝑖𝑖 + 1;
𝑟𝑟 𝑖𝑖𝑑𝑑 −= 𝑝𝑝𝑡𝑡𝑝𝑝;
𝑟𝑟 𝑖𝑖𝑑𝑑 = 𝑟𝑟 𝑖𝑖𝑑𝑑 / 𝐴𝐴 𝑖𝑖𝑑𝑑, 𝑖𝑖𝑑𝑑 ;

End For
End For

DTRSV

Compute the
diagonal BxB
block via Level-1 
BLAS

Cast the majority
of computation 
to Level-2 BLAS

Figure 2.1: Optimization schemes of DGEMV and DTRSV.
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Unrolling the inner loop (j-loop) improves nothing in terms of load/store numbers,

but will benefit a SIMD implementation (vectorization). Because both an AVX-512 SIMD

register and a cache line of the Skylake microarchitecture accommodate 8 doubles, we

unroll the j-loop 8 times. Before entering the j-loop, four SIMD registers vr{0,1,2,3} are

initialized to zero. Within the innermost loop body, each x element is still reused Ri

times (shown as 4 in Figure 2.1). We load 8 consecutive x elements into a single SIMD

AVX-512 register vrxj , load the corresponding A elements into SIMD registers vrAi∗, and

conduct vectorized fused multiplication/addition operations to update vr∗. After exiting

the j-loop, vectorized registers vr∗ holding temporary results are reduced horizontally to

scalar registers, added onto the corresponding yi, and stored back to memory. Some previous

literature [185,191] suggests blocking for cache level re-use of vector elements. However, this

may break the continuous access of the matrix elements, which is the main workload of the

DGEMV computation. Hence, we do not adopt a cache blocking strategy in our DGEMV

implementation: experimental results validating our DGEMV obtain a 7.13% performance

improvement over OpenBLAS.

Optimizing DTRSV

Double-precision triangular matrix/vector solver (DTRSV) solves x = op(A)−1x,

where A is an n × n matrix, op(A) can be A, AH or AT , and either the lower or upper

triangular part of the matrix is used for computation due to symmetry. We restrict our

discussion to x = A−1x using the lower triangular part of A. Since Level-2 BLAS routines

are more computationally intensive than Level-1 BLAS routines, we introduce a paneling

strategy for DTRSV to cast the majority of the computations — (n2 − nB)/2 elements —
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to the more computationally-intensive Level-2 BLAS routine DGEMV. The minor B × B

diagonal section is handled with the less computationally-intensive Level-1 BLAS routine

DDOT. Given that DGEMV is more efficient, adopting a smaller block size B is preferable

since it allows more computations to be handled by DGEMV. Considering the practical

implementation of DGEMV, where we unroll the j-loop 4 times for register re-use (shown

in Figure 2.1), the minimal, and also the optimal, block size B should then be 4. In

fact, OpenBLAS adopts block size B=64 for DTRSV [142], resulting in more computations

handled by the less efficient diagonal routine; this is the major reason our performance

exceeds that of OpenBLAS by 11.17%.

2.3.3 Optimizing Level-3 BLAS

Overview of Level-3 BLAS

Level-3 BLAS routines are matrix/matrix operations, such as dense matrix/matrix

multiplication and triangular matrix solvers, where extreme cache and register level data

re-use can be exploited to push the performance to the peak computation capability. We

choose two representative routines, DGEMM and DTRSM to illustrate our implementation

and optimization strategies for Level-3 BLAS.

Implementation of DGEMM

We adopt packing and cache blocking frames similar to OpenBLAS and BLIS. The

outermost three layers of the for loop are partitioned to allow submatrices of A and B to

reside in specific cache layers. The step sizes of these three for loops, MC , NC , and KC ,

define the size and shape of the macro kernel, which are determined by the size of each
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layer of the cache. A macro kernel updates an MC ×NC submatrix of C by iterating over A

(MR ×KC) multiplying B (KC ×NR) in micro kernels. Since our implementation contains

no major update on the latest version of OpenBLAS other than selecting different micro

kernel parameters MR and NR, nor on the performance (< ±0.5%), we do not present a

detailed discussion of the DGEMM implementation here but instead refer readers to [181]

for more details.

Optimizing DTRSM

DTRSM, a double-precision triangular matrix/matrix solver, solvesB = α·op(A)−1B

or B = αB · op(A)−1, where α is a double-precision scalar, A is an n × n matrix, op(A)

can be A, AH , or AT , and either the lower or upper triangular part of the matrix is used

for computation due to symmetry. We restrict our discussion to B = A−1B in the pre-

sentation of our optimization strategy. We adopt the same cache blocking and packing

scheme as DGEMM, but with the packing routine for A and the macro kernel slightly

modified. For DTRSM, the packing routine for matrix A not only packs the matrix pan-

els into continuous memory buffers to reduce TLB misses, but also stores the reciprocal

of the diagonal elements during the packing to avoid expensive division operations in the

performance-sensitive computing kernels. When the Ablock to feed into the macro kernel is

on the diagonal, macro_kernel_trsm is called to solve Bblock := Ã−1 ·B̃, where Ã and B̃ are

packed matrices. Otherwise, the corresponding Bblock is updated by calculating Bblock -=

Ã · B̃, using the highly-optimized GEMM macro kernel. We see that the performance of the

overall routine is affected by both macro kernels, and to ensure overall high performance,

we must ensure the TRSM kernel is near-optimal as well.
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Inside macro_kernel_trsm, the Bblock is calculated by updating a small MR×NR

Bsub block each time. The Bsub block is calculated by Bsub -= ˜Acurr · ˜Bblock until Acurr

reaches the diagonal block. Temporary computing results are held in registers instead of

being saved to memory during computation. When Acurr is on the diagonal, we solve Bsub

:= ˜Acurr
−1 · ˜Bblock using an AVX-512-enabled assembly kernel. It should be noted that

the packed buffer B̃ needs to be updated during the solve because DTRSM is an in-place

update and the corresponding elements of the buffer should be updated during computation.

Our highly-optimized TRSM macro kernel grants us a 22.19% overall performance gain on

DTRSM over OpenBLAS, where the TRSM macro kernel is an under-optimized prototype.

for 𝑗𝑗 = 0; 𝑗𝑗 < 𝑁𝑁; 𝑗𝑗 += 𝑁𝑁𝐶𝐶
𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑁𝑁-𝑗𝑗>𝑁𝑁𝐶𝐶)?𝑁𝑁𝐶𝐶 :𝑁𝑁- 𝑗𝑗;
for 𝑝𝑝 = 0; 𝑝𝑝 < 𝐾𝐾; 𝑝𝑝 += 𝐾𝐾𝐶𝐶
𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐾𝐾-𝑝𝑝>𝐾𝐾𝐶𝐶)?𝐾𝐾𝐶𝐶:𝐾𝐾-𝑝𝑝;
pack 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) → �𝐵𝐵
for 𝑖𝑖 = 0; 𝑖𝑖 < 𝑀𝑀; 𝑖𝑖 += 𝑀𝑀𝐶𝐶

𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑀𝑀-𝑖𝑖>𝑀𝑀𝐶𝐶)?𝑀𝑀𝐶𝐶:𝑀𝑀- 𝑖𝑖;
pack* 𝐴𝐴(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1) → �̃�𝐴
// 𝐵𝐵_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏=𝐵𝐵(𝑝𝑝:𝑝𝑝+p_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) 
if (A_block is diagonal block) call macro_kernel_trsm
else call macro_kernel_gemm //𝐵𝐵_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏-= �̃�𝐴 * �𝐵𝐵

macro_kernel_trsmLayout of TRSM routine

// to solve 𝐵𝐵_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏 := inv(�̃�𝐴 ) * �𝐵𝐵;
for 𝑗𝑗𝑗𝑗 = 𝑗𝑗; 𝑗𝑗𝑗𝑗 < 𝑗𝑗 + 𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖; 𝑗𝑗𝑗𝑗 += 𝑁𝑁𝑅𝑅

for 𝑖𝑖𝑖𝑖 = 𝑖𝑖; 𝑖𝑖𝑖𝑖 < 𝑖𝑖 + 𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖; 𝑖𝑖𝑖𝑖 += 𝑀𝑀𝑅𝑅
�𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =�̃�𝐴(𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑀𝑀𝑐𝑐-1, 0:𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖-1)
clear registers 𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏 to 0.
𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏 -= �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 * �𝐵𝐵(0:𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖-1, 𝑗𝑗𝑗𝑗:𝑗𝑗𝑗𝑗+𝑁𝑁𝑅𝑅-1)
�𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=�̃�𝐴(𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑀𝑀𝑐𝑐-1, 𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖)

solve 𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏= �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−1

* �𝐵𝐵(𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗:𝑗𝑗𝑗𝑗+𝑁𝑁𝑅𝑅-1)
update �𝐵𝐵(𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑀𝑀𝑐𝑐-1,𝑗𝑗𝑗𝑗:𝑗𝑗𝑗𝑗+𝑁𝑁𝑅𝑅-1) ← 𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏;
store 𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏 → 𝐵𝐵(𝑖𝑖𝑖𝑖:𝑖𝑖𝑖𝑖+𝑀𝑀𝑅𝑅-1, 𝑗𝑗𝑗𝑗:𝑗𝑗𝑗𝑗+𝑁𝑁𝑅𝑅-1); 
𝑏𝑏_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 += 𝑀𝑀𝑅𝑅;

macro_kernel_trsmmacro_kernel_trsm

Figure 2.2: DTRSM optimization layout.

2.4 Optimizing Fault Tolerant Level-1 and Level-2 BLAS

We first outline our assembly code syntax and duplication scheme. We then show

our step-wise assembly optimization of DMR decreases fault tolerance overhead from 50.8%

in the scalar version to our 0.35% overhead. After the optimization, the performance of both

our FT and non-FT versions surpasses both current state-of-the-art BLAS implementations.
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2.4.1 Assembly Syntax and Duplication Scheme

In this chapter, all assembly examples follow AT&T syntax; that is, the destination

register is in the right-most position. We adopt the most common duplication scheme,

DMR [138, 156, 203]. Our chosen sphere of reduction dictates that we duplicate and verify

computing instructions instead of memory instructions. More specifically, in our case, most

ALU operations are floating point operations. Integer addition/subtraction are used to

check whether the loop terminates. We only use two integer registers (%0, %1) throughout

our assembly kernels.

2.4.2 Scalar DMR Versus Vectorized DMR

We use DSCAL, one of the most important routines in Level-1 BLAS, to show

how even though DMR is labeled slow, it can actually be fast. DSCAL computes x := α ·x,

where x is a vector containing n DPs. DP represents a double-precision data type, so α is

also a DP.

Scalar Scheme

The scalar implementation of DSCAL performs a load (movsd), multiplication

(mulsd), and then a store (movsd) operation on scalar elements. The scalar α is invariant

within the loop body, so we load it before entering the loop. The array index (stored in

register %0) to access array elements is incremented by $1 before starting the next iteration.

Meanwhile, register %1 (initialized by the array length n) is decremented by one to test

whether the loop terminates. Once register %1 reaches zero, the EFLAG ZF is set to 1,
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Table 2.2. DSCAL assembly kernel: scalar and vectorized fault tolerance schemes.

Original Scalar Instructions Scalar FT Instructions Original Vectorized Instructions Vectorized FT Instructions

movsd (%2), xmm0 movsd (%2), xmm0 vbroadcastsd (%2), zmm0 vbroadcastsd (%2), zmm0

Loop: Loop: kxnorw, k1, k1, k1

movsd (%3, %0, 8), xmm1 Loop: Loop:

movsd xmm1, xmm2 vmovupd (%3, %0, 8), zmm1 vmovupd (%3, %0, 8), zmm1

mulsd xmm0, xmm1 mulsd xmm0, xmm1 vmulpd zmm0, zmm1, zmm2 vmulpd zmm0, zmm1, zmm2

mulsd xmm0, xmm2 vmulpd zmm0, zmm1, zmm3

ucomisd xmm1, xmm2 vpcmpeqd zmm2, zmm3, k0

jne ERROR HANDLER kortestw k0, k1

movsd xmm1, (%3, %0, 8) movsd xmm1, (%3, %0, 8) jnc ERROR HANDLER

add $1, %0; sub $1, %1 add $1, %0; sub $1, %1 vmovupd zmm2, (%3, %0, 8) vmovupd zmm2, (%3, %0, 8)

jnz Loop jnz Loop add $8, %0; sub $8, %1 add $8, %0; sub $8, %1

jnz Loop jnz Loop

branch instruction jnz will not be taken, and the loop terminates. Because scalar multipli-

cation mulsd only supports a two-operand syntax—that is, mulsd, src, dest multiplies

values from two operands and stores the result in the dest register—the value in the dest

register will be overwritten when the computation finishes. Therefore, we should back up a

copy of the loaded value of x[i] into an unused register for use in our duplication to avoid

an extra load from memory. After both the original and duplicated computations finish,

we check for correctness and set the EFLAGs via ucomsid. If two computing results (xmm1

and xmm2) are different, the EFLAG is set as ZF=1 and the branch jne ERROR_HANDLER

will redirect the control flow to activate a resolving procedure, a self-implemented error

handling assembly code. When the correctness of computing is confirmed or an erroneous

result is recovered by the error handler, the result α · x[i] is stored into memory.

AVX-512 Vectorized Scheme

Our AVX-512 vectorized duplication scheme differs from the scalar version in two

ways. First, vectorized multiplication supports a three operand syntax, so source operand
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registers are still live after computing and an in-register backup is no longer needed. Sec-

ond, comparison between SIMD registers cannot set EFLAGs directly. Therefore, we set

EFLAGs indirectly: The comparison result is first stored in an opmask register k0, and

then k0 is tested against another pre-initialized opmask register k1 to set EFLAGs. If

two 512-bit SIMD registers with 8 packed DPs are confirmed equal, opmask register k0,

updated by vpcmpegd, will be eight consecutive ‘1’s corresponding to the eight DPs in the

comparison. If one (or more) DP(s) from two source operands in comparison are different,

the corresponding bit(s) of the opmask register is set to 0, indicating the erroneous posi-

tion. We test the comparison result opmask, k0, with another opmask, k1, pre-initialized

to 00000000 via kortestw. EFLAG is set to CF=0 first, and updated to CF=1 only if the

results of OR-ing both source registers (k0, k1) are all ‘1’s. Any detected errors will leave

CF=0, and the control flow is branched to the error handler by jnc.

Performance Gain Through Vectorization

Our vectorized FT enlarges the verification interval compared to the scalar imple-

mentation: The scalar scheme gives a computing/comparison+branch ratio of 1:1, while the

vectorized scheme expands this ratio to 8:1, which significantly ameliorates the data hazards

introduced by duplication and verification. Experimental results confirm that vectorization

improves the overhead from 50.8% in the scalar scheme to 5.2% in the vectorized version.

2.4.3 Adding More Standard Optimizations

The peak single-core performance of an Intel processor that supports AVX-512

instructions is 30-120 GFLOPS, while the performance of DSCAL is less than 2 GFLOPS.
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Since CPU utilization is severely bounded by memory throughput, the inserted FT in-

structions, which do not introduce extra memory queries, should ideally bring a near-zero

overhead if computations and memory transfers are perfectly overlapped. This underutiliza-

tion of CPU performance motivated us to explore optimization strategies to further bring

the current 5% overhead to a negligible level.

Step 1: Loop Unrolling

Loop unrolling is a basic optimization strategy for loop-based programs. How-

ever, it can only reduce a few branch and add/sub integer instructions in practice because

CPUs automatically predict branches and unroll loops via speculative execution. Possible

data hazards caused by speculative execution can be ameliorated by out-of-order execution

mechanisms in hardware. Experiments show that the performance of both our FT and non-

FT versions only slightly improves after unrolling the loop 4 times: The overhead decreases

from 5.2% to 4.9%.

Step 2: Adding Comparison Reduction

Inspired by the previous ten-fold improvement on overhead due to the enlargement

of the verification interval, this optimization is naturally focused on the reduction of branch

instructions for comparison and diverging to the error handler by leveraging features of the

AVX-512 instruction set. Intermediate comparison results are stored in opmask registers and

a correct comparison result is stored as “11111111” in an opmask register. Therefore, we can

propagate the comparison results via kandw k1, k2, k3, AND-ing the two intermediate

comparison results (k1,k2), and storing into the third opmask register k3. The AND
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operation ensures that any detected incorrectness marked by “0” in source opmask registers

will pollute bit(s) in the destination register during reduction and will be kept. Instead of

inserting a branch to the error handler for each comparison, only one branch instruction

is needed for every 4 comparisons in a loop iteration. This enlargement of the verification

interval further decreases the overhead from 4.9% to 2.7%.

2.4.4 Optimizations Underrepresented in Main Libraries

At this point, we still have not reached optimality. We review possible performance

concerns left from the previous step:

• Data hazards. A read-after-write hazard is a true data dependency, and severely impacts

this version of the code.

• Structural hazards. Four consecutive store instructions all demand specific AVX-512

units, but there are only two in SkylakeX processors; the instructions stall until hardware

becomes available.

Although out-of-order execution performed by a CPU can avoid unnecessary stalls in the

pipeline stage, it consumes hardware resources and those resources are not unlimited. There-

fore, we optimize instruction scheduling manually, assuming no hardware optimizations.

Heuristic Software Pipelining

We perform software pipelining to reschedule the instructions across the boundary

of basic blocks to reduce structural and data hazards. Unfortunately, finding an optimal

software pipelining scheme is NP-complete [87]. To simplify the issue, we design the software
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pipelining heuristically by not considering the actual latency of each type of instruction. To

scale eight consecutive elements that can be packed and processed in a AVX-512 SIMD reg-

ister, we should first load them from memory (L), multiply with the scalar (M1), duplicate

multiplication for verification (M2), compare between the original and duplicated results

(C), and store back to memory (S) if correct. Stacking these five stages within the loop

body causes a severe dependency chain because they all work on the same data stream. To

deal with this issue, we first write down the required five stages for a single iteration (L,

M1, M2, C, S) vertically and issue horizontally with a one-cycle latency for two adjacent

instruction streams.
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Figure 2.3: Software pipelining design.
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Verification Reduction and In-Register Check-Pointing

Since the loop is still unrolled four times, comparison results can be reduced via

kandw between opmask registers. The next loop iteration will start to execute only if the

loop does not terminate and the correctness of the current iteration is verified. With cross-

boundary scheduling, we compute for iterations 2, 3, 4, 5 but verify iterations 1, 2, 3, 4. The

comparison result of the fifth iteration is only stored and then verified in the next iteration

or in the epilogue. Because the memory is updated before the computing results are verified,

we checkpoint original elements loaded from memory in an unused register. This operation

coalesces the “in-register checkpoint” (B) followed by a store (S), and is denoted by BS

when designing our software pipelining. Once an error is detected in the loop body and the

recovery procedure is activated, the error handler restarts the computation from a couple

of prologue-like instructions where the load is substituted with recovery from the backup

registers. The corruption is recovered by a third calculation with duplication so the results

must be verified again. If the disagreement still exists, the program is terminated and

signals that it is unable to recover. If the recovered computing results reach consensus, the

control flow returns back to the end of the corrupted loop iteration and continues as normal.

Effectiveness of Scheduling

Experimental benchmarks report the latencies of vmulpd, vcmpeqpd, and vmovpd

(both store and load) are 4, 3, and 3 cycles (under a cache hit), respectively [4]. Af-

ter scheduling, operands are consumed after 3 instructions; before our scheduling, these

operands were consumed immediately by the following instruction. For structural hazards,

29



according to the Intel official development manual [50], two adjacent vectorized multipli-

cations (M2, M1) can be executed by Port 0 and Port 1, and Port 5 accommodates the

following comparison (C) simultaneously. Therefore, three consecutive ALU operations

C,M2, and M1 within the loop body produce no structural hazard concerns. Additionally,

Skylake processors can execute two memory operations at the same time so the structural

hazard concerns on load and store are also eliminated. Therefore, we confirm that our

heuristic scheduling strategy on DSCAL effectively ameliorates the hazards introduced by

fault tolerance. We optimize the non-FT version using the same method and compare with

our FT version. Our experimental result demonstrates that software pipelining improves

FT overhead from 2.7% to 0.67%.

Adding Software Prefetching

Prefetching data into the cache before it is needed can lower cache miss rates

and hide memory latency. Dense linear algebra operations demonstrate high regularity

on their memory access patterns, enabling performance improvement via accurate cache

prefetching. We can send a prefetch signal before data is needed by a proper prefetch

distance. When the data is actually needed, it has been prefetched into cache instead of

waiting the approximately 100 ns required to load it from DRAM. Accurate prefetching

distance is important. If data is prefetched too early or too late, the cache is polluted

and performance can degenerate. Here we select the prefetch distance to be 1024 bits:

We prefetch 128 elements in advance into the L1 cache using the instruction prefetcht0.

Instead of prefetching for all load operations, we only prefetch half of them in the loop body

to avoid conflicts with hardware prefetching. Prefetching improves the performance of both
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our non-FT and FT versions by ˜4%, and the overhead further decreases from 0.67% to

0.36%.

2.4.5 Enabling Parallel Support Using OpenMP

As has been discussed in Section 2.4.4, the redundant computation and verification

instructions for the FT functionality lead to extra structural and data dependencies, which

is the major reason of the fault-tolerant overhead for memory-bound routines. Therefore,

we propose delicate assembly-level optimizations to alleviate the overhead. On a multi-core

system, the massive parallelism introduced by enabling multithreading naturally reduces

the cost of FT.

Most Level-1 and Level-2 BLAS routines require little communication or synchro-

nization among threads, so one can promptly enable the parallel support for these routines

by partitioning input vectors and/or input matrices when mapping workloads to physical

cores. According to our evaluation, our DMR-based fault-tolerant BLAS implementations

maintain negligible overhead after being threaded on Intel Cascade Lake processors.

2.4.6 Extending to AVX2-Enabled CPUs

In an AVX2-enabled processor, there are 16 256-bit SIMD registers (ymm0 - ymm15),

which can store 4 packed DPs, namely 4 lanes. Compared with AVX-512-enabled Intel

processors, an AVX2-enabled microarchitecture possesses a shorter SIMD width and fewer

SIMD registers. Since the AVX2 instruction set does not support opmask registers, we

substitute the ymm registers for the opmask registers in AVX512 in select cases.
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Table 2.3. Code snippet of the AVX2 fault-tolerant code.

Original Computation AVX2 Protected Computation

mov $15, r14d

vfmadd231pd ymm0, ymm1, ymm2 vfmadd231pd ymm0, ymm1, ymm2

vfmadd231pd ymm0, ymm1, ymm3

vpcmpeqd ymm2, ymm3, ymm4

vmovskpd ymm4, r10d

cmp r14d, r10d

jne ERROR HANDLER

Table 2.3 shows the code snippet of computation, duplication, and comparison

using AVX2 instructions. We duplicate the original SIMD computation instruction and

perform a lane-by-lane comparison between the duplicated and the original computational

results using vpcmpeqd. The comparison result is stored in the SIMD register ymm4, which

is further extracted and stored in the 32-bit general-purpose register r10d. If all the four

DPs (lanes) of the two 256-bit SIMD registers are confirmed equal, the r10d register will

be 4 consecutive ’1’s. Otherwise, a mismatch at any specific lane will set its corresponding

bit in r10d to ’0’. We test r10d by comparing against r14d, which is pre-initialized to

’1111’. Any detected errors will redirect the the control flow to the error handler by jne.

When the loop body is unrolled and there are multiple comparisons in an iteration, we

store intermediate comparison results in different general purpose registers such as r11d,

r12d, and r13d. These intermediate results, similar to when adopting opmask registers
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in AVX-512, can be reduced by and to reduce the verification interval as well as the FT

overhead.

2.5 Optimizing Fault Tolerant Level-3 BLAS

Since Level-3 BLAS routines are computing-bound routines, adopting the same

DMR strategy as Level-1 and Level-2 BLAS, which doubles the computing instructions,

will consequently double the performance overhead. Considering the limited registers in a

single core, DMR will also increase the register pressure in the computing kernels, which

will further hinder the performance. Therefore, we adopt the classic checksum-based ABFT

scheme for our fault-tolerant functionality, introducing O(n2) computational overhead over

the original O(n3) computation.

2.5.1 First Trial: Building Online ABFT on a Third-Party Library

Building ABFT on a third-party library is not a new topic [194]. As shown in the

left side of Figure 2.4, we first encode checksums for matrices A, B, and C before starting

matrix multiplication. The checksums Cc and Cr are updated asynchronously using a

rank-k outer-product update of matrix C with a step size k=Kc. In every completed rank-k

update, we verify the checksum relationship by first computing the reference row checksum

Cr
ref according to the current matrix C and comparing it against Cf . If an error is detected,

we continue to compute the reference column checksum Cc
ref and compare it against Cc to

locate the erroneous row index ierr of C. If there is no error detected when comparing the

row checksum vectors, we do not need to verify the column checksum vectors.
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The total cost of the ABFT overhead consists of the initial checksum encoding,

online checksum updating, and reference checksum computing–all of which are matrix-

vector multiplications (DGEMV). Tenc includes the costs of encoding for four checksums

(Cc,Cr,Ar,Bc). Tupdate includes the costs of updating on two checksums (Cc,Cr). Denoting

the time of an n× n DGEMV as tmv, the total cost of ABFT Tovhd is

Tovhd = Tenc + Tupdate +
K

Kc
· (TCr

ref
+ TCc

ref
) = (6 +

2K

Kc
)tmv.

We further denote the performance of DGEMV and DGEMM as Pmv and Pmm,

both in the unit of GFLOPS. Then the total execution times of n×n DGEMM and DGEMV

are TGEMM=2e−9n3/Pm and tmv=2e−9n2/Pmv. Therefore, we have

Tovhd
TGEMM

=
(6 + 2K

Kc )tmv

2e−9n3/Pmm
=

(6 + 2K
Kc )Pmm

n · Pmv
.

As shown in the above derivation, the real influence of ABFT is not simply a O(1/n)

computationally negligible to the baseline, but is dependent on the relative performance

between the memory-speed-determined Pmv and the computing-capability-determined Pmm

as well. On non-AVX-512-enabled CPUs, Pmm/Pmv ranges from 5 to 20, while on AVX-512-

enabled CPUs, this ratio can be as large as 35, exaggerating the overhead up to 7-fold over

old processors. The ABFT overhead reported for an older CPU [194] is around 2%, while

the overhead on an AVX-512-enabled processor, measured by our benchmark in Section VI,

is 15.27% — much larger than on old processors.
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scale 𝐶𝐶 to β ⋅ 𝐶𝐶;
compute 𝐶𝐶𝑐𝑐 = 𝐶𝐶𝐶𝐶, 𝐶𝐶𝑟𝑟= 𝐶𝐶𝑇𝑇𝐶𝐶;
encode 𝐴𝐴𝑟𝑟 = 𝐶𝐶𝑇𝑇𝐴𝐴;
for 𝑝𝑝 = 0; 𝑝𝑝 < 𝐾𝐾; 𝑝𝑝 += 𝐾𝐾𝐶𝐶
𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐾𝐾-𝑝𝑝>𝐾𝐾𝐶𝐶)?𝐾𝐾𝐶𝐶 :𝐾𝐾-𝑝𝑝;
for 𝑗𝑗 = 0; 𝑗𝑗 < 𝑁𝑁; 𝑗𝑗 += 𝑁𝑁𝐶𝐶
𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑁𝑁-𝑗𝑗>𝑁𝑁𝐶𝐶 )?𝑁𝑁𝐶𝐶 :𝑁𝑁- 𝑗𝑗;
pack 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) → �𝐵𝐵
compute 𝐵𝐵𝑐𝑐 = 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) ⋅ 𝐶𝐶
update 𝐶𝐶𝑟𝑟(𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) += 𝐴𝐴𝑟𝑟 ⋅ 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1)
for 𝑖𝑖 = 0; 𝑖𝑖 < 𝑀𝑀; 𝑖𝑖 += 𝑀𝑀𝐶𝐶

𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑀𝑀-𝑖𝑖>𝑀𝑀𝐶𝐶)?𝑀𝑀𝐶𝐶 :𝑀𝑀- 𝑖𝑖;
pack 𝐴𝐴(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1) → �̃�𝐴
update 𝐶𝐶𝑐𝑐(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1) += 𝐴𝐴(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1) ⋅ 𝐵𝐵𝑐𝑐

𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏=𝐶𝐶(𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1,𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1) 
call macro_kernel_gemm for two purposes:
1. 𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏+= �̃�𝐴 * �𝐵𝐵, 
2. 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟 (𝑗𝑗:𝑗𝑗+𝑗𝑗_𝑖𝑖𝑖𝑖𝑖𝑖-1)+=𝐶𝐶𝑇𝑇𝐶𝐶_𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖𝑏𝑏;𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐 (𝑖𝑖:𝑖𝑖+𝑖𝑖_𝑖𝑖𝑖𝑖𝑖𝑖-1)+= 𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏𝑏 ⋅ 𝐶𝐶

p-loop: verify {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟 , 𝐶𝐶𝑟𝑟} and {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

𝑐𝑐 , 𝐶𝐶𝑐𝑐}; correct error if necessary;

macro_kernel_trsm ABFT-GEMM with kernel fusionABFT-GEMM baseline

// call DGEMV for encoding
compute 𝐶𝐶𝑐𝑐 = 𝐶𝐶𝐶𝐶, 𝐶𝐶𝑟𝑟= 𝐶𝐶𝑇𝑇𝐶𝐶;
encode 𝐴𝐴𝑟𝑟 = 𝐶𝐶𝑇𝑇𝐴𝐴; 𝐵𝐵𝑐𝑐 = 𝐵𝐵𝐶𝐶;
for 𝑝𝑝 = 0; 𝑝𝑝 < 𝐾𝐾; 𝑝𝑝 += 𝐾𝐾𝐶𝐶
𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖 = (𝐾𝐾-𝑝𝑝>𝐾𝐾𝐶𝐶)?𝐾𝐾𝐶𝐶 :𝐾𝐾-𝑝𝑝;
// call DGEMM
𝐶𝐶+= 𝐴𝐴(:, 𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1) ⋅ 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑖𝑖𝑖𝑖𝑖𝑖-1,:)
// call DGEMV
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟 +=𝐶𝐶𝑇𝑇𝐶𝐶; 𝐶𝐶𝑟𝑟+= 𝐴𝐴𝑟𝑟𝐵𝐵;

verify {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟 , 𝐶𝐶𝑟𝑟}

if (incorrect) // 𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 located by {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟 , 𝐶𝐶𝑟𝑟}

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐 += 𝐶𝐶 ⋅ 𝐶𝐶;𝐶𝐶𝑐𝑐+= 𝐴𝐴𝐵𝐵𝑐𝑐 ;

verify {𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟
𝑐𝑐 , 𝐶𝐶𝑐𝑐}; // 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟 located 

correct error at 𝐶𝐶(𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑗𝑗𝑟𝑟𝑟𝑟𝑟𝑟);

Fuse to re-use 𝑪𝑪

Fuse to re-use 𝑩𝑩

Fuse to re-use 𝑨𝑨

Fuse to re-use 𝑪𝑪

Figure 2.4: Outer-product online ABFT DGEMM optimization layout.

2.5.2 Reducing the Memory Footprint: Fusing ABFT Into DGEMM

As discussed in the previous section, the huge gap between memory transfer and

floating-point computation is the reason the O(n2) checksum-related operations can no

longer be amortized by O(n3) GEMM. We therefore design a fused ABFT scheme to min-

imize the memory footprint of checksum operations. To be more specific, the encoding of

Cc and Cr is fused with the matrix scaling routine C=βC. When we load B to pack it to

the continuous memory buffer B̃, checksum Bc is computed and checksum Cr is computed

simultaneously by reusing B. In this fused packing routine, each B element is reused three

times for each load. Similarly, each element of A loaded for packing is reused to update the

column checksum Cc. In the macro kernel, which computes Cblock+=Ã · B̃, we reuse the

computed C elements at register level to update the reference checksums Cr
ref and Cc

ref in

order to verify the correctness of the computation. By fusing the ABFT memory footprint

into DGEMM, the FT overhead decreases from 15% to 2.94%.
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2.5.3 Enabling Parallel Support for ABFT Using OpenMP

In addition to providing highly efficient serial implementations, we further enable

the multithreading support for DGEMM with and without fault tolerance. As discussed in

Section 3.3.2, our DGEMM starts from three for loops allowing submatrices of A (MC×KC)

and B (KC × NC) to reside in L2 cache and L3 cache, respectively. The cache blocking

parameters MC ,KC , and NC are tuned to fit with the physical cache size. In practice, we

set MC = 192,KC = 384, and NC = 9216 for AVX-512-enabled DGEMM. Before starting

the computation, both submatrices A and B are packed into continuous memory buffers,

namely Ã and B̃, to minimize TLB misses in performance-sensitive computing kernels.

On Intel Skylake and Cascade Lake server CPUs, physical cores share a large

unified L3 cache while each physical core holds a smaller private L2 cache. To map this

cache hierarchy in a threaded implementation, we allocate a memory buffer shared among all

the threads for B̃, and each thread requests a private memory buffer for Ã. The computation

workload on the C matrix is partitioned along the M -dimension. Since memory buffers Ã

are thread-private, each thread packs data from matrix A into their own Ã buffers. When

packing matrix C into the shared memory buffer B̃, the memory access workloads are

partitioned along the N -dimension and each thread is responsible for packing a chunk of

B̃. Just like the serial ABFT GEMM implementation, we conduct checksum encoding for

the row checksum vector of A (Ar) and full checksum vectors of C (Cc, Cr). To compute

the C checksums, we partition the C matrix along the M -dimension such that each thread

computes a slice of the column checksum Cc while maintaining a local copy of its own

row checksum vector Cr. Similarly, we partition the A matrix along the M -dimension to
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compute its row checksums Ar in parallel. The checksum encoding of Bc is fused with the

parallel packing operation for B to B̃ and at the same time, we update the reference row

checksum of C. Therefore, each B element loaded from the main memory is re-used three

times. Since the parallel copy operation partitions B from the N -dimension, an extra stage

of reduction operation among threads is required to compute the final column checksum

Bc.

2.6 Experimental Evaluation

To validate the effectiveness of our optimizations, we compare the performance of

FT-BLAS with three state-of-the-art BLAS libraries: Intel oneMKL (2020.2, abbreviated

as MKL in this Section), OpenBLAS (0.3.13), and BLIS (0.8.0), on a machine with an

Intel Gold 5122 Skylake processor at 3.60 GHz, equipped with 96 GB DDR4-2666 RAM.

We also compare the performance of FT-BLAS under error injection with references on

an Intel Xeon W-2255 Cascade processor. This Cascade Lake machine has a 3.70 GHz

base frequency and 32 GB DDR4-2933 RAM. Hardware prefetchers on both machines are

enabled according to the Intel BIOS default [91]. In addition to Intel processors, we validate

our AVX2 implementations on an AMD Ryzen7 3700X processor. This AMD processor has

a 3.60 GHz base frequency and 32 GB DDR4-2933 RAM. We repeat each measurement

twenty times and then report the average performance. For Level-1 BLAS routines, the

performance is averaged from array lengths ranging from 5 × 106 to 7 × 106. For Level-2

and Level-3 BLAS routines, the performance is averaged for matrices ranging from 20482

to 102402. For the multi-threading parallel benchmark, we test the array lengths ranging
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from 2 × 108 to 3 × 108 and matrices ranging from 5122 to 204802. We compile the code

with icc 19.0 and the optimization flag -O3.

2.6.1 Performance of FT-BLAS Without FT Capability

We provide a brand-new BLAS implementation, comparable or faster than the

modern state-of-the-art, before embedding FT capability. We abbreviate this BLAS imple-

mentation FT-BLAS: Ori in the figures.

Optimizing Level-1 BLAS

For memory-bound Level-1 BLAS, the optimization strategies employed are: 1)

exploiting data-level parallelism using the latest SIMD instructions, 2) assisting pipelining

by unrolling the loop, and 3) prefetching. As seen in Table 2.1, OpenBLAS has under-

optimized routines, such as DSCAL and DNRM2, with respect to prefetching and AVX-

512 support. We add prefetching for DSCAL, obtaining 3.85% and 5.61% speed-up over

OpenBLAS and BLIS. DNRM2 is only supported with SSE2 by OpenBLAS, so our AVX-512

implementation provides a 17.89% improvement over OpenBLAS, while reaching 2.25-fold

speedup on BLIS. Our implementations for both routines reach comparable performance to

closed-source MKL, as seen in Figure 2.6.

Optimizing Level-2 BLAS

Register-level data re-use enters the picture in the Level-2 BLAS routine opti-

mization. Following the optimization schemes described in Section II, we see in Figure 2.6

that our DGEMV obtains a 7.13% speed-up over OpenBLAS. This is enabled by discard-
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ing cache blocking on matrix A over concerns about the potential harm of discontinuous

memory accesses regarding TLB thrashing and the corresponding performance of hard-

ware prefetchers. Because BLIS adopts the same strategy as OpenBLAS on DGEMV, our

DGEMV is 6.16% faster than BLIS, while achieving nearly indistinguishable performance

with MKL. For DTRSV, our strategy of minimizing the blocking parameter to cast the

maximized computations to the more efficient Level-2 BLAS DGEMV grants us higher per-

formance than all baselines, surpassing MKL, OpenBLAS, and BLIS by 3.76%, 11.17%, and

6.98%, respectively.

Optimizing Level-3 BLAS

Adopting the traditional cache blocking and packing scheme, our DGEMM per-

forms similarly to OpenBLAS DGEMM. As seen in Figure 2.7, both of these DGEMM

implementations outperform MKL and BLIS by 7.29-11.75%. For the Level-3 BLAS rou-

tine DTRSM, we provide a highly-optimized macro kernel to solve for the diagonal block and

cast the majority of the computation to the near-optimal DGEMM. Because OpenBLAS

and BLIS simply provide an unoptimized scalar implementation for the diagonal solver, our

DTRSM outperforms OpenBLAS and BLIS by 22.19% and 24.77%, and surpasses MKL by

3.33%.

2.6.2 Performance of FT-BLAS With Fault Tolerance Capability

Having achieved comparable or better performance than the current state-of-the-

art BLAS libraries without fault tolerance, we now add on fault tolerance functionalities.
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For memory-bound Level-1 and Level-2 BLAS routines, we propose a novel DMR verification

scheme based on the AVX-512 instruction set and then further reduce the overhead of fault

tolerance to a negligible level via assembly optimization. For compute-bound Level-3 BLAS,

we fuse the checksum calculations into the packing routines and assembly kernels to reduce

data transfer between registers and memory. The results in this section were obtained

with fault tolerant DMR and ABFT operating, but not under active fault injection—see

subsection C for injection experiments.

Reducing DMR Overhead for Memory-Bound Routines

Figure 2.8 presents the performance and overhead of DSCAL with step-wise as-

sembly level optimization. In each step, the assembly optimization described in Sections III

and IV are applied to the FT version and its baseline, our non-FT version evaluated above.

The performance of the most naive baseline, a scalar implementation, is 1.15 GFLOPs.

Duplicating computing instructions and verifying correctness for this baseline halves the

performance to 0.56 GFLOPS, bringing a 50.83% overhead. A vectorized implementation

based on AVX-512 instructions decreases overhead by 9.8-fold compared to the scalar du-

plication/verification scheme. A vectorized implementation with fault-tolerance capability

increases performance to 1.36 GFLOPs, a 2.42-fold of the scalar FT version. After this

vectorization, simply unrolling the loop gains 1.55% and 1.87% improvement on the non-

FT (vec-unroll-ori) and FT (vec-unroll-naive) versions respectively, while the overhead is

now 4.9%. It is at this point that our non-FT version reaches OpenBLAS performance.

Our novel verification scheme involving opmask registers improves the overhead to 2.7%.
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We then schedule instructions via heuristic software pipelining, improving the performance

of the non-FT (sp-unroll-ori) and FT (sp-unroll-FT) implementations to 1.48 and 1.47

GFLOPs respectively. The overhead improves to 0.67% in this step. We add prefetch

instructions as a final step, and the overhead settles at 0.36%.

Reducing ABFT Overhead for Compute-Bound Routines

Figure 2.9 (a) presents the performance of two methods of implementing ABFT for

GEMM: building upon MKL (FT-MKL) and fusing into the GEMM routine (FT-BLAS: FT

fused). FT-MKL under error injection leads to 15% overhead compared with baseline MKL.

When there is no error injected, we no longer compute and verify the checksum Cr so the

overhead decreases to 9%. In contrast, the fused implementation (2.9% overhead) of ABFT

does not generate an extra cost when encountering errors because its reference checksum

computation is fused into the assembly computing kernel and is computed regardless of

whether an error is detected. As shown in Figure 2.9 (b), the overhead of building ABFT

on a third-party library slightly varies when linking to different libraries but the trend is

clear: reference checksum construction generates the majority of the ABFT overhead, which

is eliminated by the fusing strategy. The overhead can be up to 5.35-fold that of fusing

ABFT into DGEMM. Our overhead is also lower than Smith et al’s work in 2015 [169],

where checkpoint/rollback recovery is used to tolerate errors. Their checkpoint/rollback

recovery has a wider error coverage, but the overhead is “in the range of 10%” [169].
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Generalizing to Other Routines

Figure 2.10 compares the performance of FT-BLAS with FT capability (FT-BLAS:

FT) against its baseline: our implementation without FT capability (FT-BLAS: Ori) and

reference BLAS libraries on eight routines of all three levels of BLAS. The DMR-based FT

implementations for the Level-1 and Level-2 BLAS routines (DSCAL, DNRM2, DGEMV,

DTRSV) generate 0.34%-3.10% overhead over the baseline. For the Level-3 BLAS routines,

DGEMM, DSYMM, DTRMM, and DTRSM, our strategy to fuse memory-bound ABFT

operations with matrix computation generates overhead ranging from 1.62% to 2.94% on

average. Our implementation strategy for DSYMM in both FT-BLAS: Ori and FT-BLAS:

FT is similar to the DGEMM scheme, with moderate modification to the packing routines.

For DTRMM, we use the same strategy with some additional modifications to the computing

kernel, similar to the methods in [74]. With these negligible overheads added to an already

high-performance baseline, our FT-BLAS with FT capability remains comparable to or

faster than the reference libraries.

Benchmarking on an Intel Cascade Lake Processor

Figure 2.11 benchmarks the performance of FT-BLAS with and without FT ca-

pability by comparing against reference BLAS libraries on an Intel Cascade Lake Xeon

W-2255 processor. Similar to the results on Skylake, our baseline BLAS implementations

(FT-BLAS: Ori) present comparable or better performance compared with MKL, Open-

BLAS, and BLIS. The DMR-based FT implementations for memory-bound Level-1 and

Level-2 BLAS routines (DSCAL, DNRM2, DGEMV, and DTRSV) add 0.06%-2.79% over-
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head to the non-FT baselines. Our fused fault tolerant strategy for compute-bound Level-3

BLAS routines (DGEMM, DSYMM, DTRMM, and DTRSM) generates 1.17%-3.58% over-

head on average over the baseline. With these negligible overheads added to our highly

efficient non-FT baselines, our FT-BLAS maintains its performance as comparable to or

faster than all of the state-of-the-art BLAS libraries.

Enabling the Parallel Support

Figure 2.12 compares the parallel performance of FT-BLAS with FT capability

(FT-BLAS: FT) against its baseline: our implementation without FT capability (FT-BLAS:

Ori) and reference BLAS libraries on four routines of all three levels of BLAS on an Intel

Cascade Lake Xeon W-2255 processor. After enabling parallel support, the memory-bound

Level-1 and Level-2 BLAS routines DDOT, DNRM2, and DGEMV, which require mostly

embarrassing parallelisms, maintain a negligible overhead (0.15% - 3.53%) similar to that of

serial implementations. It is worth mentioning that BLIS supports parallel implementations

only for Level-3 BLAS routines, and OpenBLAS also does not provide parallel support

for DNRM2. Therefore, enabling multi-threading does not increase their performance.

Regarding the compute-bound Level-3 BLAS DGEMM, with our parallel design introduced

in Figure 2.5, we manage to scale the performance of ABFT-DGEMM on the shared-memory

multi-core platform, obtaining a scalability similar to that of OpenBLAS. With the scalable

parallel design and ABFT operations fused into packing routines and assembly kernels,

FT-DGEMM presents a negligible overhead (1.79%). The performance of our DGEMM

implementation with FT is 16.97% faster than BLIS and comparable to OpenBLAS.
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Extending to AVX2-Enabled AMD Processors

Figure 2.13 compares the performance of four routines spanning all three levels of

BLAS on an AVX2-enabled AMD R7 3700X processor. Since the number of SIMD registers

on AVX2 ISA is halved compared with AVX-512, we suffer from register pressure for the in-

register checkpointing strategy that we have presented. Therefore, we choose to only detect

errors for memory bound routines rather than correcting them online. Experimental results

show that both of our DMR- and ABFT-based fault tolerant optimization strategies remain

valid for AVX2 routines. With negligible overhead added to our already highly efficient

non-FT baselines, our BLAS implementation with FT capability maintains its performance

comparable to or faster than the reference libraries. It is worth mentioning that our AMD

Zen2 CPU adopts the Uniform Memory Access (UMA) mode, or namely distributed mode,

by default, which enables a single-thread application to take advantage of the entire memory

bandwidth delivered by all of the memory channels. Therefore, we observe the performance

of single-thread memory-bound Level-1 and Level-2 BLAS routines to be significantly faster

than that on Intel processors under the NUMA mode (or local mode) [51].

2.6.3 Error Injection Experiments

We validate the effectiveness of our fault-tolerance scheme by injecting multiple

computing errors into each of our computing kernels and verifying our final computation

results against MKL. External error injection tools often significantly slow down the native

program [77, 121, 139]. Therefore, we inject errors at the source code level to minimize the

performance impact on native programs.
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We inject 20 errors into each routine. The length of the injection interval k is

determined based on the number of errors to inject, that is, we inject one error every k iter-

ations. For ABFT-protected Level-3 BLAS routines, the error injection is straightforward

because we can directly operate in C code. An element of matrix C is randomly selected

for modification when an injection point is reached. This injected error will lead to a dif-

ference in the checksum relationship, and the erroneous element and error magnitude will

be computed accordingly. This detected error is then corrected by subtracting the error

magnitude from the erroneous position. For DMR-protected Level-1 and Level-2 BLAS

routines, the injection is more complicated since the loop body is implemented purely using

assembly codes. Therefore, providing an assembly-level error injection mechanism becomes

necessary. Once the program reaches an injection point, we redirect the control flow to a

faulty loop body to generate an error. This generated error is then detected via compar-

ison with the computed results of the duplicated instruction. After the error is detected,

a recovery procedure is activated to recompute the corrupted iteration immediately. In all

cases we validate the correctness our final computations by comparing with MKL to ensure

all injected errors were truly corrected.

Figure 2.14 compares the performance of four routines under error injection. For

both DMR-protected (DGEMV, DTRSV) and ABFT-protected (DGEMM, DTRSM) rou-

tines, we maintain negligible (2.47%-3.22%) overhead, and the overall performance under

error injection remains comparable or faster than reference libraries. In particular, our

DTRSM outperforms OpenBLAS, BLIS, and MKL by 21.70%, 22.14%, and 3.50% even un-

der error injection. Experimental results confirm that our protection schemes do not require
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significant extra overhead to correct errors. This is because our correction methods—either

to recompute the corrupted iteration or to subtract an error magnitude from the incorrect

position—generate only a few ALU computations instead of expensive memory accesses.

Figure 2.15 benchmarks FT-BLAS under error injection using another processor,

the Intel Cascade Lake W-2255. According to experimental results, our protection scheme

is as lightweight as it was on the Skylake processor, and is still able to surpass open-source

OpenBLAS and BLIS by 22.89% and 21.56% and the closed-source MKL by 4.98% even

while tolerating 20 injected errors. The execution time of DTRSM and DTRSV for 5122 to

102402 matrices ranges from 2 ms to 20 seconds. Therefore, injecting 20 errors into these

two routines is equivalent to injecting 1 to 10,000 errors per second. Hence, FT-BLAS

is able to tolerate up to thousands of errors per second with comparable and sometimes

faster performance than state-of-the-art BLAS libraries—and none of them can tolerate soft

errors.

Figure 2.16 compares the parallel performance of DGEMV and DGEMM under

error injection on an Intel Cascade Lake W-2255 processor. When being threaded, our

FT-DGEMV under error injection remains 10.91% and 13.49% faster than OpenBLAS

and MKL. Compared with the non-threaded BLIS, our FT-DGEMV is 3.72X faster even

under error injection. Regarding the compute-bound DGEMM, our FT-BLAS presents a

performance comparable to OpenBLAS and is 16.83% faster than BLIS. Figure 2.17 further

benchmarks the serial performance of these two BLAS routines under error injection on an

AMD Zen2 Ryzen 3700X processor, validating that the overall performance of FT-BLAS
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remains comparable to the best of the-state-of-the-art reference libraries on AVX2-enabled

AMD processors.

2.7 Conclusions

We present a fault-tolerant BLAS implementation that is not only capable of

tolerating soft errors, but also achieves comparable or superior performance over the current

state-of-the-art libraries, OpenBLAS, BLIS, and Intel MKL. Future work will focus on

extending FT-BLAS to more architectures and eventually open-sourcing the code.
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Fuse to re-use 𝐶𝐶

Fuse to re-use 𝐵𝐵

Fuse to re-use 𝐴𝐴

Fuse to re-use 𝐶𝐶

malloc 𝐴𝐴𝑟𝑟 𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛][𝐾𝐾 ,𝐵𝐵𝑠𝑠𝑡𝑡𝑡𝑟𝑟𝑡𝑡
𝑐𝑐 𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛][𝐾𝐾 ;

malloc 𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟
𝑟𝑟 𝑁𝑁 ,𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟

𝑐𝑐 𝑀𝑀 ,𝐶𝐶𝑟𝑟 𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡_𝑛𝑛𝑛𝑛𝑛𝑛][𝑁𝑁 ,𝐶𝐶𝑐𝑐[𝑀𝑀];

#pragma omp parallel 
{

malloc 𝐵𝐵𝑟𝑟𝑡𝑡𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡
𝑐𝑐 𝐾𝐾 ;

// partition 𝑀𝑀, compute offset 𝑛𝑛𝑠𝑠 and length 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛
𝐴𝐴𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡, : = 𝑡𝑡𝑇𝑇𝐴𝐴 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, : ;
𝐶𝐶(𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, ∶) = 𝛽𝛽 ∗ 𝐶𝐶 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, 0:𝑁𝑁 ;
𝐶𝐶𝑐𝑐 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1 = 𝐶𝐶 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, : ∙ 𝑡𝑡;
𝐶𝐶𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡, : = 𝑡𝑡𝑇𝑇𝐶𝐶 𝑛𝑛𝑠𝑠:𝑛𝑛𝑠𝑠 +𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛−1, : ;
if (𝑡𝑡𝑡𝑡𝑡𝑡 == 0) malloc �𝐵𝐵; // prepare for a parallel copy for �𝐵𝐵
#pragma omp barrier
for 𝑝𝑝 = 0; 𝑝𝑝 < 𝐾𝐾; 𝑝𝑝 += 𝐾𝐾𝐶𝐶

𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐 = (𝐾𝐾-𝑝𝑝>𝐾𝐾𝐶𝐶)? 𝐾𝐾𝐶𝐶 : 𝐾𝐾- 𝑝𝑝;
for 𝑗𝑗 = 0; 𝑗𝑗 < 𝑁𝑁; 𝑗𝑗 += 𝑁𝑁𝐶𝐶

𝑗𝑗_𝑡𝑡𝑛𝑛𝑐𝑐 = (𝑁𝑁-𝑗𝑗>𝑁𝑁𝐶𝐶)? 𝑁𝑁𝐶𝐶 : 𝑁𝑁- 𝑗𝑗;
// partition 𝑗𝑗_𝑡𝑡𝑛𝑛𝑐𝑐, compute offset 𝑛𝑛𝑠𝑠 and length 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛
pack 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑗𝑗+𝑛𝑛𝑠𝑠: 𝑗𝑗+𝑛𝑛𝑠𝑠+𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-1) → �𝐵𝐵+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐*𝑛𝑛𝑠𝑠;
𝐵𝐵𝑠𝑠𝑡𝑡𝑡𝑟𝑟𝑡𝑡
𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡, 𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1 = 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑗𝑗+𝑛𝑛𝑠𝑠: 𝑗𝑗+𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-1) ∙ 𝑡𝑡;

𝐶𝐶𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡, 𝑗𝑗+𝑛𝑛𝑠𝑠: 𝑗𝑗+𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-1 = 𝐴𝐴𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡, : ∗ 𝐵𝐵(𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑗𝑗+𝑛𝑛𝑠𝑠: 𝑗𝑗+𝑛𝑛𝑠𝑠 + 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-1);
#pragma omp barrier
reduce 𝐵𝐵𝑠𝑠𝑡𝑡𝑡𝑟𝑟𝑡𝑡

𝑐𝑐 (: , : ) → 𝐵𝐵𝑟𝑟𝑡𝑡𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡
𝑐𝑐

if (�̃�𝐴==𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) malloc �̃�𝐴; // prepare for private copy for �̃�𝐴
for 𝑡𝑡 = 0; 𝑡𝑡 < 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛; 𝑡𝑡 += 𝑀𝑀𝐶𝐶

𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐 = (𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-𝑡𝑡>𝑀𝑀𝐶𝐶)? 𝑀𝑀𝐶𝐶 : 𝑛𝑛𝑚𝑚𝑡𝑡𝑛𝑛-𝑡𝑡;
pack 𝐴𝐴(𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐-1) → �̃�𝐴;
𝐶𝐶𝑐𝑐(𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐-1)= 𝐴𝐴(𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐-1,𝑝𝑝:𝑝𝑝+𝑝𝑝_𝑡𝑡𝑛𝑛𝑐𝑐−1)* 𝐵𝐵𝑟𝑟𝑡𝑡𝑡𝑡𝑛𝑛𝑐𝑐𝑡𝑡

𝑐𝑐 ;
𝐶𝐶_𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏=𝐶𝐶(𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐-1, 𝑗𝑗: 𝑗𝑗+𝑗𝑗_𝑡𝑡𝑛𝑛𝑐𝑐−1);
call macro_kernel_gemm for two purposes:
1. 𝐶𝐶_𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏+= 𝐴𝐴 ∗ 𝐵𝐵;
2. 𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟

𝑟𝑟 (𝑗𝑗: 𝑗𝑗+𝑗𝑗_𝑡𝑡𝑛𝑛𝑐𝑐−1)= eT𝐶𝐶𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏; 𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟
𝑐𝑐 (𝑛𝑛𝑠𝑠+𝑡𝑡:𝑛𝑛𝑠𝑠+𝑡𝑡+𝑡𝑡_𝑡𝑡𝑛𝑛𝑐𝑐−1)=𝐶𝐶𝑏𝑏𝑚𝑚𝑏𝑏𝑐𝑐𝑏𝑏 ∙ 𝑡𝑡;

#pragma omp barrier
p-loop: verify {𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟

𝑟𝑟 , 𝐶𝐶𝑟𝑟} and {𝐶𝐶𝑟𝑟𝑡𝑡𝑟𝑟
𝑐𝑐 , 𝐶𝐶𝑐𝑐}; correct error if necessary;

}

Figure 2.5: Parallel ABFT-GEMM with kernel fusion.
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Figure 2.6: Comparisons of selected Level-1/2 BLAS routines.
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Figure 2.7: Comparisons of selected Level-3 BLAS routines.
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Figure 2.8: Optimizing DSCAL with/without FT.
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Figure 2.9: Optimizing DGEMM with FT.
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(g) FT-DTRMM
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(h) FT-DTRSM

Figure 2.10: Comparisons of selected BLAS routines with FT on Skylake.
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(d) FT-DTRSM

Figure 2.11: Comparisons of BLAS routines with FT on Cascade Lake.
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(d) FT-DGEMM

Figure 2.12: Comparisons of parallel BLAS routines with FT on Cascade Lake.
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(d) FT-DGEMM

Figure 2.13: Comparisons of BLAS routines with FT on AMD Zen2.
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(a) DGEMV with error injection
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(d) DTRSM with error injection

Figure 2.14: Performance under error injection on Skylake.
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(d) DTRSM with error injection

Figure 2.15: Performance under error injection on Cascade Lake.
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(b) FT-DGEMM

Figure 2.16: Parallel performance under error injection on Cascade Lake.

51
2

15
36

25
60

35
84

46
08

56
32

66
56

76
80

87
04

97
28

Matrix Sizes (m=n=k)

3

4

5

6

7

8

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

MKL
BLIS
OpenBLAS
FT-BLAS: Ori
FT-BLAS: FT

(a) FT-DGEMV

51
2

15
36

25
60

35
84

46
08

56
32

66
56

76
80

87
04

97
28

Matrix Sizes (m=n=k)

35

40

45

50

55

60

65

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

MKL
BLIS
OpenBLAS
FT-BLAS: Ori
FT-BLAS: FT

(b) FT-DGEMM

Figure 2.17: Performance under error injection on AMD Zen2.
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Chapter 3

XeHE: A GPU-Accelerated

Homomorphic Encryption Library

3.1 Introduction

The COVID-19 pandemic boosts the rapidly growing demand of enterprises on

cloud computing. By 2021, 50% of enterprise workloads are deployed to public clouds, and

this percentage is expected to reach 57% in the next 12 months [64]. Although outsourcing

data processing to cloud resources enables enterprises to relieve the overhead of deployment

and maintenance for their private servers, it raises security and privacy concerns of the

potential sensitive data exposure.

Adopting traditional encryption schemes to address this privacy concern is less

favorable because a traditional encryption scheme requires decrypting the data before the

computation, which presents a vulnerability and may destroy the data privacy. In contrast,
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Homomorphic Encryption (HE), an emerging cryptographic encryption scheme, is consid-

ered to be one of the most promising solutions to such issues. HE allows computations to

be performed directly on encrypted messages without the need for decryption. This encryp-

tion scheme, thus, protects private data from both internal malicious actors and external

intruders, while assuming honest computations.

In 1978, Rivest, Adleman, and Dertouzous [158], first introduced the idea of com-

puting on encrypted data through the use of “privacy homomorphisms”. Since then, several

HE schemes have been invented, which can be categorized by the types of encrypted compu-

tation they support. Partial HE schemes enable only encrypted additions or multiplications.

The famous RSA cryptosystem is, in fact, the first HE scheme, supporting encrypted mod-

ular multiplications. In contrast, the Paillier cryptosystem [143] is a partial HE scheme

that supports only modular additions.

Levelled HE schemes, on the other hand, support both encrypted additions and

multiplications, but only up to a certain circuit depth determined by the encryption param-

eters. The Brakerski/Fan-Vercauteren (BFV) [62] and Brakerski-Gentry-Vaikuntanathan

(BGV) [21] schemes are two popular leveled HE schemes used today, which support exact

integer computation. In [43], Cheon, Kim, Kim and Song presented the CKKS scheme,

which treats the encryption noise as part of approximation errors that occur during compu-

tations within floating-point numerical representation. This imprecision requires a refined

security model [111], but provides faster runtimes than BFV/BGV in practice.

Fully HE schemes enable an unlimited number of encrypted operations, typically

by adding an expensive bootstrapping step to a levelled HE scheme, as first detailed by
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Craig Gentry [66]. TFHE [47] improves the runtime of bootstrapping, but requires eval-

uating circuits on binary gates, which becomes expensive for standard 32-bit or 64-bit

arithmetic. The improved capabilities and performance of these HE schemes have enabled

a host of increasingly sophisticated real-world privacy-preserving applications. Early appli-

cations included basic statistics and logistic regression evaluation [126]. More recently, HE

applications have expanded to a wide variety of applications, including privatized medical

data analytics and privacy-preserving machine learning. [19,20,44,76,153].

To address the memory and runtime overhead of HE — a major obstacle to imme-

diate real-world deployments, HE libraries support efficient implementations of multiple HE

schemes, including Microsoft SEAL [108] (BFV/CKKS), HElib [80] (BFV/BGV/CKKS),

and PALISADE [148] (BGV/BFV/CKKS/TFHE). In [18], Intel published HEXL, acceler-

ating HE integer arithmetic on finite fields by featuring Intel Advanced Vector Extensions

512® (Intel AVX512) instructions. Since GPUs deliver higher memory bandwidth and

computing throughput with lower normalized power consumption, researchers presented

libraries such as cuHE [53], TFHE [47] and NuFHE [129] to accelerate HE using CUDA-

enabled GPUs.

Although HE optimizations on CPUs and CUDA-enabled GPUs have been re-

ported before, an architecture-aware HE library optimized for Intel GPUs has not been

available. In addition, previous works that accelerate HE libraries majorly focus on opti-

mizing Number Theoretic Transform (NTT) and inverse NTT (iNTT) computing kernels,

since these two algorithms account for substantial execution time of HE routines (e.g.,

72%-81% in its baseline variant on Intel GPUs according to our benchmarks in Fig. 3.5).
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However, engineering an efficient HE library requires systematical optimizations for the

whole HE pipeline beyond computing kernels. In this chapter, we present a HE library

optimized for Intel GPUs based on the CKKS scheme. We not only provide a set of highly

optimized computing kernels such as NTT and iNTT, but also optimize the whole HE eval-

uation pipeline at both the instruction level and application level. More specifically, our

contributions include:

• To the best of our knowledge, we design and develop the first-ever SYCL-based GPU

backend for Microsoft SEAL APIs, which is also the first HE library based on the

CKKS scheme optimized for Intel GPUs.

• We provide a staged implementation of NTT leveraging shared local memory of Intel

GPUs. We also optimize NTT by employing strategies including high-radix algorithm,

kernel fusion, and explicit multiple-tile submission.

• From the instruction level, we enable low-level optimizations for 64-bit integer modular

addition and modular multiplication using inline assembly. We also provide a fused

modular multiplication-addition operation to reduce the number of costly modular

operations.

• From the application level, we introduce the memory cache mechanism to recycle freed

memory buffers on device to avoid the run-time memory allocation overhead. We also

design fully asynchronous HE operators and asynchronous end-to-end HE evaluation

pipelines.
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• We benchmark our HE library on two latest Intel GPUs. Experimental results show

that our NTT implementations reaches up to 79.8% and 85.7% of the theoretical

peak performance on both experimental GPUs, faster than the naive GPU baseline

by 9.93X and 7.02X, respectively.

• Our NTT and assembly-level optimizations accelerate five HE evaluation routines

under the CKKS scheme by 2.32X - 3.05X. In addition, the polynomial element-wise

matrix multiplication applications are accelerated by 2.68X - 3.11X by our all-together

systematic optimizations.

The rest of the paper is organized as follows: we introduce background and related

works in Section 3.2, and then detail the asynchronous design and systematic optimization

approaches in Section 3.3. Evaluation results are given in Section 3.4. We conclude our

paper and present future work in Section 3.5.

3.2 Background and Related Works

In this section, we briefly introduce the basics of the CKKS HE scheme. We

then introduce the general architecture of Intel GPUs and summarize prior works of NTT

optimizations on both CPUs and GPUs.

3.2.1 Basics of CKKS

The CKKS scheme was first introduced in [43], enabling approximation computa-

tion on complex numbers. This approximate computation is particularly suitable for real-

world floating-point operations that are approximate by design. Further work improved
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CKKS to support a full residue number system (RNS) [42] and bootstrapping [41]. In this

chapter, we select CKKS as our FHE scheme, as implemented in Microsoft SEAL [108].

The CKKS scheme is composed of following basic primitives: KeyGen, Encode,

Decode, Encrypt, Decrypt, Add, Multiply (Mul), Relinearize (Relin) and Rescale (RS ). To

be more specific, KeyGen first generates a set of keys for the CKKS scheme. An input

message is encoded to a plaintext and then encrypted to a ciphertext. One can evaluate

(compute) directly on the encrypted messages (ciphertexts). Noises are accumulated during

the HE evaluation until one applies a Relin followed by a RS to the ciphertext. Once all the

HE computations are completed, the result ciphertext is decrypted and decoded, providing

the same result as ordinary non-HE computations. We provide only cursory descriptions

here and refer interested readers to [43] for details.

3.2.2 Number Theoretic Transform and Residue Number System

As noted in [118], the NTT can be exploited to accelerate multiplications in the

polynomial ring Rq = Zq[x]/(xN + 1). We represent polynomials using a coefficient em-

bedding: a = (a0, ..., aN−1) ∈ ZN
q and b = (b0, ..., bN−1) ∈ ZN

q . Let ω be a primitive

N -th root of unity in Zq such that ωN ≡ 1( mod q). In addition, let ψ be the 2N -th

root of unity in Zq such that ψ2 = ω. Further defining ã = (a0, ψa1, ..., ψ
N−1aN−1) and

b̃ = (b0, ψb1, ..., ψ
N−1bN−1), one can quickly verify that for c = a · b ∈ ZN

q , there holds

the relationship c = Ψ−1⊙ iNTT(NTT(ã)⊙NTT (b̃)). Here ⊙ denotes element-wise mul-

tiplication and Ψ−1 represents the vector (1, ψ−1, ψ−2, ..., ψ−(N−1)). Therefore, the total

computational complexity of ciphertext multiplication in Rq is reduced from O(N2) to

O(N logN).

63



In practice, since polynomial coefficients in the ring space are big integers under

modulus q, multiplying these coefficients becomes computationally expensive. The Chinese

Remainder Theorem (CRT) is typically employed to reduce this cost by transforming large

integers to the Residue Number System (RNS) representation. According to CRT, one

can represent the large integer x mod q using its remainders (x mod p1, x mod p2, . . . , x

mod pn), where the moduli (p1, p2, ..., pn) are co-prime such that Πpi = q. We note the

CKKS scheme has been improved from the initial presentation in Section 3.2.1 to take full

advantage of the RNS [42].

To summarize what we have discussed, to multiply polynomials a and b repre-

sented as vectors in ZN
q , one needs to first perform the NTT to transform the negative

wrapped ã and b̃ to the NTT domain. After finishing element-wise polynomial multipli-

cation in the NTT domain, the iNTT is applied to convert the product to the coefficient

embedding domain. When the polynomials are in RNS form, both the NTT and iNTT are

decomposed to n concurrent subtasks. Finally, we compute the outer product result by

merging the iNTT-converted polynomial with Ψ−1.

3.2.3 NTT optimizations

Due to the pervasive usage of NTT and iNTT in HE, prior researchers proposed

optimized implementations for NTT on CPUs [18], CUDA-enabled GPUs [5,70,105,183] and

FPGAs [106,157]. On the CPU end, SIMD instructions enable a wider data processing width

to accelerate a broad range of applications [1,181,185,206,210]. Leveraging this architectural

feature, Intel HEXL provides a CPU implementation of the radix-2 negacyclic NTT using

Intel AVX512 instructions [18] and Harvey’s lazy modular reduction approach [81]. GPU-
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accelerated NTT implementations typically adopt the hierarchical algorithm first presented

by Microsoft Research for the Discrete Fourier Transform (DFT) [75]. In [183], researchers

implemented the hierarchical NTT with twiddle factors, which are multiplicative constants

in the butterfly computation stage (i.e. W in Algorithm 1), cached in shared memory.

Rather than caching twiddle factors, in [105], Kim et al. computed some twiddle factors

on-the-fly to reduce the cost of modular multiplication and the memory access number of

NTT. In [70], Goey et al. considered the built-in warp shuffling mechanism of CUDA-

enabled GPUs to optimize NTT.

The hierarchical NTT implementation computes the NTT in three or four phases

[70,75]. An N -point NTT sequence is first partitioned into two dimensions N = Nα ·Nβ and

then Nα NTT workloads are proceeded simultaneously, where each workload computes an

Nβ-point NTT. After this column-wise NTT phase is completed, all elements are multiplied

by their corresponding twiddle factors and stored to the global memory. In the next phase,

Nβ simultaneous row-wise Nα-point NTTs are computed followed by a transpose before

storing back to the global memory. Nα and Nβ are selected to fit the size of shared memory

on GPUs. Considering both the RNS representation of NTT and the batched processing

opportunities in real-world applications can provide us with sufficient parallelisms, we adopt

the staged NTT implementation rather than the hierarchical NTT implementation in this

chapter.

3.2.4 An Overview of Intel GPUs

We use the Intel Gen11 GPU as an example [96] to elaborate the hierarchical

architecture of Intel GPUs. An Intel GPU contains a set of execution units (EU), where
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each EU supports up to seven simultaneous hardware threads, namely EU threads. In each

EU, there is a pair of 128-bit SIMD ALUs, which support both floating-point and integer

computations. Each of these simultaneous hardware threads has a 4KB general register file

(GRF). So, an EU contains 7 × 4KB = 28KB GRF. Meanwhile, GRF can be viewed as a

continuous storage area holding a vector of 16-bit or 32-bit elements. For most Intel Gen11

GPUs, 8 EUs are aggregated into 1 Subslice. EUs in each Subslice can share data and

communicate with each other through a 64KB highly banked data structure — shared local

memory (SLM). SLM is accessible to all EUs in a Subslice but is private to EUs outside of

this Subslice. Not only supporting a shared storage unit, Subslices also possess their own

thread dispatchers and instruction caches. Eight Subslices further group into a Slice, while

additional logic such as geometry and L3 cache are integrated accordingly.

3.3 Designs and Optimizations

In the CKKS scheme, an input message is first encoded and then encrypted to

generate ciphertexts using the public key provided by the key generation primitive. We

compute directly on the encrypted messages. Once the all computations are completed,

the results can be decrypted and decoded by the private key’s owner. Figure 3.1 describes

the control flow of our asynchronous HE library. The client host (CPU) generates security

parameters, submits GPU compute kernels and sends encrypted data to the GPU upon

request. The CPU works asynchronously to the GPU until it receives result ciphertexts

from the GPU. Regarding the data flow presented in the same figure, the CPU sends

encrypted input data to GPU memory and receives output ciphertexts from the GPU for
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Figure 3.1: Client (CPU)/Server (GPU) control/data flow.

decryption. Our HE library accelerates the HE evaluation using Intel GPUs while leaving

other phases such as key generation, encoding, encryption, decryption and decoding on the

client CPU.

Once all the inputs and static data are sent to the GPU, the synchronization with

the host becomes unnecessary. Since all host-device synchronizations take additional time,

we developed a fully asynchronous execution pipeline to economize on synchronizations. As

shown in Figure 3.2, the computation on the GPU starts as soon as the first kernel of the

computational graph is submitted. Meanwhile, GPU buffers are allocated and managed

at runtime. GPU synchronizes with the host only after the buffers with the results are

transferred back to the system memory. In coordination with our memory allocation cache

design (Fig. 3.11), all ciphertext objects are alive until the result ciphertext is sent to the
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CPU for decryption. At that moment, all differed deletions for memory buffers are served.

This design simplifies the lifetime management of ciphertext objects for SEAL API users.

A more detailed description of our system design is presented in a book chapter at [123].

In the following contents of this section, we present optimizations of our library from three

different angles: instruction, algorithm and application.

3.3.1 Instruction-Level Optimizations

Our HE library supports basic instructions such as addition, subtraction, multipli-

cation and modular reduction – all are 64-bit integer (int64) operations. We explicitly select

int64 because our goal has been to provide accelerated SEAL APIs on Intel GPUs transpar-

ently. This is the key reason why our current top-level software does not exactly fit to drive

32-bit integer (int32) calculations, although we envision to support both int32 and int64

eventually. Among these operations, the most expensive are modulus-related operations

such as modular addition and modular multiplication. Although we can accelerate modular

reduction using the Barrett reduction algorithm, which transforms the division operation
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to the less expensive multiplication operation, modular computations remain costly since

no modern GPUs support int64 multiplication natively. Such multiplications are emulated

at software level with the compiler support.

Based on these observations, we propose instruction-level optimizations from two

aspects: 1) fusing modular multiplication with modular addition to reduce the number of

modulo operations and 2) optimizing modular addition/multiplication from assembly level

to remedy the compiler deficiency.

Fused Modular Multiplication-Addition Operation (mad mod)

Rather than eagerly applying modulo operation after both multiplication and ad-

dition, we propose to perform only one modulo operation after a pair of consecutive multi-

plication and addition operations, namely a mad mod operation. We store the output of int64

multiplication in an 128-bit array. The potential overflow issue introduced by cancelling a

modulus after addition is not a concern when both operands of addition are integers strictly

less than 64 bits. This assumption holds because to assure a faster NTT transform, we adopt

David Harvey’s optimizations [81] following SEAL. Therefore, all of our ciphertexts are in

the ring space under a integer modulus less than 60 bits.

Optimizing Modular Addition/Multiplication From Assembly Level

We review the assembly codes generated by the Intel DPC++ compiler and seek

low-level optimization opportunities for the HE pipeline. We locate such opportunities in

two of our core arithmetic operations: Unsigned Modular Addition, and Unsigned Integer

Multiplication.
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1: add dst, src1, src2
2: cmp.lt P1, dst, modulus
3: (P1) add dst, dst, (-)modulus

(a) Compiler-generated assembly (b) Hand-crafted assembly

1: add dst, src1, src2
2: cmp.lt P1, dst, modulus
3: (P1) sel modulus, 0x0, modulus
4: add dst, dst, (-)modulus

Figure 3.3: Pseudo int64 addmod assembly

Unsigned Modular Addition (add mod) Fig. 3.3(a) presents the compiler-generated

sequence of add mod. Two source operands (src1, src2), and the result is stored to the

register (dst). If the summation exceeds the value of modulus, the result is added by the

negative modulus; otherwise, no update is needed. The compiler suboptimally implements

this logic by conditionally initializing the addend (modulus) and then updating the result.

At line4 in Fig. 3.3(b), we directly perform a conditional addition by leveraging the optional

guard predicate (P1) of add on Intel GPUs. Here we eliminate one instruction at the

assembly level for this core HE arithmetic operation, which enables direct benefits to the

whole HE pipeline.

1: mul_low_high dst_low_high, src1, src2

(a) Compiler-generated assembly

1: mul temp, src2, src1
2: mulh temp1, src2, src1
3: mul temp2, src2, src1
4: add temp1, temp1, temp2
5: mul temp2, src2, src1
6: add temp1, temp1, temp2
7: mov dst_low, temp
8: mov dst_high, temp1

(b) Hand-crafted assembly

Figure 3.4: Pseudo mul64 assembly

Unsigned Integer Multiplication (mul64) Another example where our hand-crafted

assembly code outperforms the compiler-generated instruction sequence can be found in
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int64 multiplication. Fig. 3.4(a) shows the compiler-generated instruction sequence to

multiply two 64-bit integers, producing an 128-bit result which is stored in two 64-bit

registers (dst high, dst low). The instruction mul takes two 64bit operands to compute the

lower 64 bits of the multiplication result, while mulh computes the higher 64 bits.

Although the compiler-generated code provides us with a correct result (the lower

64 bits of int64 multiplication), it also computes the higher 64 bits of in64 multiplication,

which are redundant in our case. In order to address this issue, we adopt the built-in

mul low high operator to explicitly compute the lower 64-bit multiplication result, as shown

in Fig. 3.4(b). To elaborate, mul low high receives two int32 operands (cast from int64)

and stores both the lower and higher 32 bits of the result in a 64-bit destination [93].

This presents an example of a compilation deficiency related to variables’ type-

casting. By default, the compiler minimizes the number of type-casting instructions, but it

is overall detrimental in the above case. An integer multiplication, where both operands are

int32, is more efficient than a longer emulated implementation whose both operands are of

type int64. Our inline assembly bypasses this deficiency, yielding a significant reduction in

instruction count from our original int64 multiplication implementation. As will be shown

in Section 3.4, optimizations aimed at our core arithmetic operations greatly impact the

performance of HE.

3.3.2 Algorithmic Level Optimizations (NTT)

An efficient NTT implementation is crucial for HE computations since it accounts

for a substantial percentage of the total HE computation time [103, 105, 159]. Figure 3.5
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(b) Profiling on Device2

Figure 3.5: Profiling for HE routines

presents the relative execution time of five HE evaluation routines and the percentage of

NTT in each routine before and after optimizing NTT kernels on two latest Intel GPUs,

Device1 and Device2. We observe that NTT accounts for 79.99% and 75.64% of the total

execution time in average on these two platforms. After applying optimizations as shown

in Fig. 3.16 and 3.18, these NTT kernel ratios remain greater than 56% on both devices.

Naive Radix-2 NTT

We start NTT optimizations from the most naive radix-2 implementation. This

reference implementation of NTT, as shown in Figure 3.6, distributes rounds of radix-2

NTT butterfly operations among work-items, which are analogs to CUDA threads. In each

round of the NTT computation, all the work-items compute their own butterfly operations

and exchange data with other work-items using the global memory. More specifically, the

k-th element will exchange with the k + gap th element, while the exchanging gap sizes

are halved after each round of NTT until it becomes equal to 1. Accordingly, an N-point
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GPU Global Memory
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last round: load from global memory

last round: store to global memory
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gap=8K

gap=4K

gap=2K

gap=1

…

Figure 3.6: Naive implementation of 16K-point NTT

NTT is executed log(N) rounds throughout the computation. For each round of the NTT

butterfly computation, one accesses the global memory 2N times. Here we multiply it by

two because of both load and store operations. We ignore the twiddle factor memory access

number in this semi-quantitative analysis.

At the lowest level, the NTT butterfly computation is accelerated using Algorithm

1 [81]. Since the output X ′, Y ′ of Algorithm 1 are both in [0, 4p), to ensure all elements of

the output NTT sequence falls inside of the interval [0, p), a last round offsetting needs to be

appended to the end of NTT computations. Therefore, the naive implementation of an N -
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point NTT needs to access the global memory 2N log(N) times for the NTT and 2N extra

times for last round processing. This kernel reaches only 10.08% of the peak performance for

a 32K-point, 1024-instance NTT as shown in Fig. 3.12(b). Here the number of instances

refers to the number of polynomials in Fig. 3.10. More specifically, 1024-instance NTT

denotes 1024 batched instances of N-point NTT computation.

Algorithm 1 Input: 0 ≤ X,Y ≤ 4p, p < β/4, 0 < W < p, 0 < ⌊Wβ/p⌋ = W ′ < β Output:

X ′ = X + WY mod p Y ′ = X − WY mod p 0 ≤ X ′, Y ′ ≤ 4p if X ⩾ 2p then X ← X − 2p

Q← ⌊W ′Y/β⌋ T ← (WY −Qp) mod β X ′ ← X + T Y ′ ← X − T + 2p return X’, Y’

Staged Radix-2 NTT With Shared Local Memory

Since the naive radix-2 NTT exchanges data using the global memory, its perfor-

mance is significantly bounded by the global memory bandwidth. To address this issue, we

keep data close to computing units by leveraging shared local memory (SLM) in Intel GPUs,

a memory region that is accessible to all the work-items belonging to the same work-group.

Here the work-group is analogous to the CUDA thread block. Because the data exchang-

ing gap size is halved after each round of NTT, at a certain round, the gap size becomes

sufficiently small so that all data to exchange can be held in SLM. We call this threshold

gap size TER SLM GAP SZ, after which we retain the data in SLM for communication among

work-items to avoid the expensive global memory latency. For example, in a 16K-point

NTT, we first compute one round of NTT and exchange data using global memory and

then the data exchanging gap size has decreased to 4K. We set the TER SLM GAP SZ to 4K

because the size of the SLM on most Intel GPUs is 64KB, which can hold 8K int64 elements.

For the remaining rounds, the data are held in SLM until all computations are completed.
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SIMD Shuffling

In addition to introducing shared local memory, when the exchanging distance

becomes sufficiently small that all data to exchange are held by work-items in the same

subgroup, we perform SIMD shuffling directly among all the work-items in the same sub-

group after NTT butterfly computations. In Figure 3.7, we present the rationale of two

SIMD shuffling operations among three stages. When the SIMD width equals to 8, there

are 8 work-items in a subgroup. For the radix-2 NTT implementation, each work-item

holds two elements of the NTT sequence in registers, namely one slot. We denote two local

registers of each work-item as Register 0 and Register 1. At the end of Stage 1, where the

gap size equals to 8, one needs to exchange data at positions “8, 9, 10, 11” with “4, 5, 6, 7”.

Such operations can be implemented using shuffle of the Intel extension of DPC++ [94].

More specifically, four lanes (lane ID: 0, 1, 2, 3) are exchanging data stored in their Register

1 with Register 0 of lane 4, 5, 6, 7. At the end of Stage 2, where the exchanging gap size

is halved from 8 to 4, lanes 0, 1 will exchange data of their Register 1 with Register 0 of

lanes 2, 3; similarly, lanes 4, 5 exchange their Register 0 with Register 1 of lanes 6, 7. For

the remaining rounds, the data are held in registers and exchanged among work-items in

the same subgroup by SIMD shuffling until the gap size becomes equal to 1.

Figure 3.8 summarizes our staged NTT implementation with both SLM and SIMD

shuffling considered using 16K-point NTT as an example. Before the data exchanging gap

size reaches the threshold to exchange data in SLM, work-items communicate through the

global memory. The gap size is initially equal to 8K and is halved after each round of

the NTT butterfly computation. After reaching the SLM threshold (8K-point NTT in this
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Figure 3.7: SIMD shuffling for data exchanging in NTT.

graphical example), one computes NTT butterfly operations and exchanges data through

SLM until the gap size equals the threshold to exchange data using SIMD shuffling inside

subgroups. It is worth mentioning that the SIMD kernel is fused with the aforementioned

last round processing operation to reduce all NTT elements to [0, p).

More Aggressive Register Blocking

Intel GPUs typically consist of 4KB GRF for each EU thread. When the SIMD

width equals 8, that indicates 8 work-items are bounded executing as an EU thread in the

SIMD manner. For the radix-2 NTT implementation, each work-item needs four registers,

where two of them are used to hold NTT data elements and the other two are for twiddle
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Figure 3.8: Staged implementation of 16K-point NTT

factors. Therefore, the NTT-related computation consumes 4 · 8 · 8B= 256B GRF for each

EU thread — 6.25% of total GRF, indicating that the hardware is significantly underutilized

at the register level.

Rather than initializing 1 slot of registers, one can assign more workloads (e.g. 2

register slots) to each work-item. For a subgroup of size 8, there are 8 ·2 = 16 NTT elements

being held in registers in the SIMD kernel. We refer it as SIMD(16,8). Figure 3.9 shows

a graphical example of the shuffling operation between two stages in SIMD(16,8). In this

two-slot SIMD shuffling example, each work-item holds 4 elements in registers, namely 2

slots of registers, for the butterfly computation and data exchanging. Compared with the
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Figure 3.9: Multi-slot SIMD shuffling in NTT

single-slot implementation, the multi-slot SIMD implementation results in fewer accesses

to the shared local memory, but suffers from higher register pressure and the in-register

data exchange overhead. In practice, the efficiencies of both 2-slot SIMD(16,8) and 4-slot

SIMD(32,8) implementations are worse than the 1-slot SIMD(8,8), suggesting that negative

aspects dominate the performance.

High-Radix NTT

The staged NTT implementation with multi-slot SIMD shuffling increases the

register-level data re-use without introducing the register spilling issue. However, this higher

hardware utilization on registers comes at a cost of introducing extra efforts to compute

target shuffling register indices and lane indices for SIMD shuffling. These integer operations
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compete for the same ALU port with NTT butterfly computations, adding a non-negligible

overhead to the overall performance as shown in Section 3.4. This performance loss, caused

by data exchange overhead, motivates the high-radix NTT implementation, which requires

no extra data exchange and communication among work-items compared with the naive

radix-2 implementation.

We use radix-8 NTT as an example to demonstrate high-radix NTT algorithms.

Each work-item allocates 8 registers to hold NTT elements and 8 more registers to hold

root power and root power quotients as for the twiddle factors. For a specific round where

the exchanging gap size is gap, one loads eight NTT elements from either global or shared

local memory, indexing at {k, k + gap, k + 2 · gap, ..., k + 7 · gap}. There are three internal

rounds of butterfly computations before a radix-8 NTT algorithm needs to exchange data

among work-items. In the first internal round, four pairs of 2-point butterfly computations

are performed among {x[k], x[k+4·gap]}, {x[k+gap], x[k+5·gap]}, {x[k+2·gap], x[k+6·gap]}

and {x[k + 3 · gap], x[k + 7 · gap]}. For the second internal round, these eight elements,

still held in registers, are re-paired to {x[k], x[k + 2 · gap]}, {x[k + gap], x[k + 3 · gap]},

{x[k+ 4 · gap], x[k+ 6 · gap]} and {x[k+ 5 · gap], x[k+ 7 · gap]} so that Algorithm 1 can be

leveraged. In the last internal round of the radix-8 kernel, each two consecutive elements are

paired and fed into the 2-point butterfly algorithm. After all in-register computations are

completed, we store results back to either global memory or shared local memory, depending

on whether it is a global memory kernel or a shared local memory kernel. The exchanging

gap size gap is divided by 8 as a new round of NTT is initiated. Same as the radix-2 NTT,

the radix-8 NTT computations are completed when gap becomes equal to 1.
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Compared with the radix-2 NTT, a radix-R NTT (R = 4, 8, 16, ...) decreases the

total memory access number from 2N log2(N) to 2N logR(N). In coordination with adopt-

ing SLM to exchange data, the high-radix NTT maintains the data close to computing units

and maximizes the overall efficiency. In Section 3.4 we show that the radix-8 NTT with

SLM is up to 4.23X faster than the naive radix-2 NTT on Intel GPUs.

The Parallelism of Staged NTT for HE

Figure 3.10 presents the parallelism of NTT in the HE pipeline. Besides mapping

one dimensional NTT operations to work-items as elaborated previously, both RNS and the

batched number of polynomials can provide the staged NTT implementation with additional

parallelisms. To be more specific, the RNS base can be up to several dozens [105] while a

batch size can be up to tens of thousands in real-world deep learning tasks [104].

…

number of polynomials

1-
d

 N
T

T

Figure 3.10: The parallelism of NTT for HE

3.3.3 Application-Level Optimizations

In addition to instruction-level and algorithm-level optimizations, we also optimize

our GPU-accelerated HE library from the application level.
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Memory Cache

To reduce the overhead introduced by runtime memory allocation, we design a

memory cache mechanism for our HE library, as shown in Figure 3.11. Similar to Microsoft

SEAL, we introduce a memory pool to reuse allocated GPU memory buffers in the HE

pipeline. A request for a new GPU memory buffer is routed through the memory cache for

any existing free buffer with a capacity larger than the current request. If such buffer is

found, this existing buffer is reused instead of allocating a new one. Upon freeing such a

buffer, it is moved back to the free pool for potential reuse.

Inter-Device Scaling

Intel packages multiple computing tiles on a single board for scalable performance

[17]. At this time, DPC++ does not implicitly support the multi-tile submission. As such,

the workloads cannot automatically be distributed over all the computing units of a multi-

tile Intel GPU. Therefore, we explicitly submit workloads to the multi-tile device through

multiple queues. We refer a reader to [98] for more details of the DPC++ multi-queue

submission.
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3.4 Evaluation

We evaluate our optimizations on two Intel GPUs with the latest microarchitec-

ture. Both of them are pre-released models of Intel Xe GPUs. Due to confidentiality

requirements, at this time, we do not disclose hardware specifications of these GPUs. For

the same purpose, we present performance data by showing normalized execution time

rather than the absolute elapsed time or showing performance in the unit of GOPS. The

first Intel GPU, denoted as Device1 in following discussions, is a multi-tile GPU while the

second Intel GPU, Device2, is a single-tile GPU. We utilize up to 2 tiles in the multi-tile

Device1 for performance benchmarking and efficiency estimation. Both GPU devices are

connected with 24-core Intel Icelake server CPUs, whose boost frequency is up to 4 GHz.

The associated main memory systems are both 128GB at 3200 MHz. We compile programs

using Intel Data Parallel C++ (DPC++) Compiler 2021.3.0 with the optimization flag

−O3.

3.4.1 Optimizing NTT on Intel GPUs

Figure 3.5 shows that NTT accounts for significant ratios regarding the total exe-

cution time of HE evaluation routines. Therefore, we start optimizations from this decisive

algorithm.

First Trial: Optimizing NTT Using SLM and SIMD

Figure 3.12 (a) compares the speedup of our first batch of NTT trials using the

staged NTT implementation over the naive GPU implementation of NTT described in
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Figure 3.12: Radix-2 NTT with SLM and SIMD on Device1

Figure 3.6. We use SIMD(TER SIMD GAP SZ, SIMD WIDTH) to denote the different imple-

mentation variants. Here TER SIMD GAP SZ refers to the switching threshold from SLM to

SIMD shuffling for data exchanging among work-items. The number of register slots for

each work-item can be computed by dividing TER SIMD GAP SZ over SIMD WIDTH. For ex-

ample, each work-item holds a pair of NTT elements in registers for SIMD(8,8), and 4

pairs of NTT elements for SIMD(32,8). With the shared local memory as well as the SIMD

shuffling for data exchanging among work-items included, we observe that SIMD(8,8) is

faster than the baseline by up to 28%. Meanwhile, SIMD(16,8) is slightly slowed down

compared with SIMD(8,8) but remains up to 19% faster than baseline. This indicates that

the non-negligible cost of SIMD shuffling leads to the unfavorable performance. Accord-

ingly, SIMD(32,8), which more aggressively performs SIMD shuffling and in-register data

exchange than previous two variants, becomes even slower than the baseline.

Figure 3.12 (a) compares the efficiency of each NTT variant on Device1. The

efficiency is computed by dividing the performance of each NTT implementation over the
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computed int64 peak performance, both in the unit of GFLOPS. The naive NTT reaches

only 10.08% of the peak performance for a 32K-point NTT with 1024 instances executed

simultaneously. The best one, SIMD(8,8) obtains an efficiency up to 12.93%. Since SIMD

shuffling together with the SLM data communication fail to provide us with a high efficiency,

we deduce that the cost of data communication is so high that radix-2 NTT cannot fully

utilize the device.

Second Trial: Optimizing High-Radix NTT Using SLM

Figure 3.13 (a) compares the speedup of high-radix NTT implementations with

shared local memory against the naive GPU baseline. High-radix NTT implementations re-

use more data at the register-level, reducing the communication among work-items through

either global memory or SLM. With the shared local memory also included, this time we

obtain an up to 4.23X acceleration over the naive baseline. In Figure 3.13 (b), we see that

the efficiency reaches its optimum, 34.1% of the peak performance, at radix-8 NTT with

1024 instances instantiated for 32K-point NTT computations. The radix-16 NTT, though

it brings more aggressive register-level data re-use and requires less data exchange among

work-items, leads to the register spilling issue so its performance becomes significantly slower

than radix-8 NTT.

Assembly-Level Optimizations - add mod/mul64

We further introduce assembly-level optimizations to improve the speed of the

add mod and mul64 ops. As shown in Figure 3.14 (a), these low-level optimizations improve
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Figure 3.13: High-radix NTT with SLM on Device1

the NTT performance by 35.8% - 40.7%, increasing the efficiency of our radix-8 SLM NTT to

47.1%. The inline assembly low-level optimization provides a relatively stable acceleration

percentage for different NTT sizes and instance numbers. This is because assembly-level

optimization directly improves the clock cycle of the each int64 multiplication and modular

addition operation, which is independent of the number of active EUs at runtime.
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Explicit Dual-Tile Submission Through DPC++
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Figure 3.14: NTT with inline-asm and multi-tile on Device1

With the low-level optimization, we observe that our NTT saturates only up to

47.1%, less than half of the peak performance. We observe this low efficiency because

DPC++ runtime does not implicitly support multi-tile execution such that only half of the

machine has been utilized. To address this issue, we explicitly submit workloads through

multiple queues to enable a full utilization of our multi-tile GPU and manage to reach 79.8%

of the peak performance. Meanwhile, our most optimized NTT is 9.93-fold faster than the

naive baseline for the 32K-point, 1024-instance batched NTT.

3.4.2 Roofline Analysis for NTT

The most naive NTT needs to access the global memory for each round of the NTT

computation. Therefore, its total memory access number can be computed as 2N log2(N).

Here we multiply it by 2 because of both load and store operations at each round of NTT.

We do not count the memory access of last round NTT processing to simplify the analysis.
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Table 3.1. Number of 64-bit integer ALU operations of each work-item per round for NTT.

64-bit int ops / round

other butterfly total

radix-2 20 28 48

radix-4 45 112 157

radix-8 120 336 456

radix-16 260 896 1156

Table 3.1 summarizes the number of ALU operations for each NTT variant. Butter-

fly refers to the ALU operations for the NTT butterfly computations while other denotes

other necessary ALU operations such as index and address pointer computations. The

radix-2 NTT performs 48 integer operations for each work-item in a single round of NTT,

indicating that the naive NTT consumes N/2 · 48 · log2(N) ALU operations throughout the

whole computation process. Further dividing the total ALU number over the total memory

access number, one can find that the operational density of naive NTT is equal to 1.5 for

int64 NTT. This low operational density, as plotted in Figure 3.15, suggests that the naive

NTT implementation is bounded by the global memory bandwidth and can never reach the

int64 peak performance.

For the high-radix NTT, such as the radix-8 implementation for a 32K-point NTT,

we first perform one round of radix-8 NTT to reduce the data exchanging gap size from

16K to 2K. After the first kernel stores the data to the global memory, another kernel

is launched to compute the remaining rounds of NTT operations, where all the work-
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Figure 3.15: Roofline Analysis on Device1

groups hold 4K NTT sequence elements in the shared local memory for NTT operations.

Therefore, we need only two rounds of global memory access for an instance of 32K-point

NTT computation. Considering that its total ALU operation count equals to 456 ALU

operations/round × log8(N) rounds — 456× log8(N), one can compute that the operational

density of shared local memory radix-8 NTT equals 8.9, pushing the overall performance

to the limits of int64 ALU throughput on Device1. The operational density of other NTT

variants are computed similarly.

It is worth mentioning that a sound operational density with respect to the global

memory access does not guarantee satisfactory overall performance. Although the staged

radix-2 NTT with SLM and SIMD shuffling is no longer bounded by the global memory

bandwidth, its practical efficiency remains far from the green line — int64 peak performance.
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According to the Figure 3.15, we conclude that radix-8 shared local memory NTT with last

round kernel fusion enables a sufficient operational density, which allows the performance to

be shifted from memory bound to compute bound. Additionally, the shared local memory

utilization together with the low-level optimization for int64 multiplication and DPC++

multi-tile submission, pushes the performance of radix-8 NTT to the ceiling of int64 ALU

throughput on Device1.

3.4.3 Benchmarking for CKKS HE Evaluation Routines

Figure 3.16 benchmarks the performance of five basic HE evaluation routines under

the CKKS scheme on Device1. Here MulLin denotes a multiplication followed by a relin-

earization; MulLinRS denotes a multiplication followed by relinearization and rescaling.

Relinearization decreases the length of a ciphertext back to 2 after a multiplication. Rescal-

ing is a necessary step for multiplication operation with the goal to keep the scale constant

and reduce the noise present in the ciphertext. In addition, SqrLinRS refers to a ciphertext

square computation with relinearization and rescaling followed. MulLinRSModSwAdd com-

putes a ciphertext multiplication, then relinearizes and rescales it. After this, we switch the

ciphertext modulus from (q1, q2, ..., qL) down to (q1, q2, ..., qL−1) and scale down the message

accordingly. Finally this scaled messaged is added with another ciphertext. The last bench-

marked routine, Rotate, rotates a plaintext vector cyclically. We count the GPU kernel

time exclusively for routine-level benchmarks. All evaluated ciphertexts are represented as

tuples of vectors in ZN
qL

where N = 32K and the RNS size is L = 8.
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Figure 3.16: Benchmarking HE evaluation routines on Device1.

We present the impact of NTT optimizations to HE evaluation routines in four

steps. We first substitute the naive NTT with our radix-8 NTT with SLM. We then employ

assembly-level optimizations to accelerate the clock cycle of int64 add mod and mul mod.

Finally we enable implicit dual-tile submission through the OpenCL backend of DPC++

to fully utilize our wide GPU. The baseline is the naive GPU implementation where no

presented optimizations are adopted for the comparison purpose.

The radix-8 NTT with data communications through SLM improves the routine

performance by 43.5% in average. It is worth mentioning that we do not benchmark batched

routines and our wide GPU is not fully utilized such that the NTT acceleration is not as

dramatic as the results in previous sections. The inline assembly optimization provides a

further average 27.4% improvement in compared with the previous step. Meanwhile, the

non-NTT computations show less sensitivity to the inline assembly optimization than the

NTT because their computations are typically not as compute-intensive as NTT. We finally
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submit the kernels through multiple queues to enable the full utilization of our multi-tile

GPUs, further improving the performance by 49.5% to 78.2% from the previous step, up to

3.05X faster than the baseline.

3.4.4 Benchmarking on Device2

In addition to Device 1, a high-end multi-tile GPU, we benchmark our optimiza-

tions on another GPU, Device2, which is a single-tile GPU consisting of fewer EUs than

Device1. Similar to the results obtained on Device1, the naive radix-2 NTT starts at a ∼15%

efficiency of the peak performance, while the shared local memory SIMD implementation

either fails to provide significant improvement, but reaches only 20.95%-24.21% efficiencies.

After adopting the radix-8 shared local memory implementation, we manage to obtain up

to 66.8% of the peak performance, where we are up to 5.47X faster than the baseline at this

step. Since Device2 is a single-tile GPU, our final optimization here is to introduce inline

assembly to optimize add mod and mul64. Further improving the performance by 28.48% in

average from the previous step, we reach an up to 85.75% of the peak performance, 7.02X

faster than the baseline for 32K-point, 1024-instance NTT.

Figure 3.18 benchmarks the normalized execution time of HE evaluation routines

on Device2. SIMD(8,8) denotes the radix-2 NTT with data exchanging through SLM and

SIMD shuffling, where each work-item holds one slot of NTT elements in registers. opt-

NTT refers to the optimal NTT variant, radix-8 NTT with data exchanging through SLM,

shown in Figure 3.17. The last step is to further employ inline assembly to optimize modular

addition and modular multiplication from instruction level. When substituting the naive
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Figure 3.17: Benchmark for NTT on Device2.

NTT using SIMD(8,8) NTT, we observe the execution time of the NTT part is improved by

34% in average while the overall routines are accelerated by 29.6%. When switching to our

optimal NTT variant, we observe the overall performance becomes faster than the baseline

by 1.92X in average. Further enabling assembly-level optimizations, we manage to reach

2.32X - 2.41X acceleration for all five HE evaluation routines on this single-tile Intel GPU.

3.4.5 Benchmarks for Polynomial Matrix Multiplication

Besides the algorithmic level optimizations, we also demonstrate our instruction-

level and application-level optimizations, which are modulus fusion, inline assembly for HE

arithmetic operations and memory cache using a representative application of HE, encrypted

element-wise polynomial matrix multiplication. In Figure 3.19, matMul mxnxk denotes a
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Figure 3.18: Benchmarking HE evaluation routines on Device2.

matrix multiplication C+=A ∗ B, where C is m-by-n, A is m-by-k and B is k-by-n. Each

matrix element is an 8K-element plaintext polynomial so each element-wise multiplication

of matMul is a polynomial multiplication. Modulo operations are always applied at the

end of each multiply or addition between polynomial elements. Before starting matMul, we

need to allocate memory, initialize, encode and encrypt input sequences. Once matMul is

completed, we decode and decrypt the computing results. We measure the elapsed time for

this whole process.

Figure 3.19 compares our instruction-level and application-level optimizations for

matMul on both Device1 and Device2. The fused mad mod and inline assembly accelerate the

both 100x100x1 and 10x9x8 polynomial matrix multiplications by 11.8% and 28.2%, respec-

tively, in average on Device1. With the memory cache introduced, both matMul applications

are further improved by ∼90%. On Device1, our all-together systematic optimizations ac-

celerate matMul 100x10x1 and matMul 10x9x8 by 2.68X and 2.79X, respectively. In regards
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Figure 3.19: Element-wise polynomial multiplication.

to Device2, we observe a similar trend. These three optimizations together provide us with

3.11X and 2.82X acceleration for two matMul tests over the baseline on this smaller GPU.

3.5 Conclusions

In this chapter, we design and develop the first-ever SYCL-based GPU backend for

Microsoft SEAL APIs. We accelerate our HE library for Intel GPUs spanning assembly level,

algorithmic level and application level optimizations. Our optimized NTT is faster than the

naive GPU implementation by 9.93X, reaching up to 85.1% of the peak performance. In

addition, we obtain up to 3.11X accelerations for HE evaluation routines and the element-

wise polynomial matrix multiplication application. Future work will focus on extending our

HE library to multi-GPU and heterogeneous platforms.

©Notice: Copyright ©2021, Intel Corporation. All Rights Reserved. Intel TM
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Chapter 4

ByteTransformer: A

High-Performance Transformer

Boosted for Variable-Length Inputs

4.1 Introduction

The transformer model [182]is a proven effective architecture widely used in a vari-

ety of deep learning (DL) applications, such as language modeling [55,201], neural machine

translation [61, 182] and recommendation systems [33, 172]. The last decade has witnessed

rapid developments in natural language processing (NLP) pre-training models based on the

transformer model, such as Seq2seq [182], GPT-2 [150], XLNET [201] and ChatGPT [141],

which have also greatly accelerated the progress of NLP. Of all the pre-training models

based on transformers, Bidirectional Encoder Representations from Transformers (BERT),
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proposed in 2018 [55], is arguably the most seminal, inspiring a series of subsequent works

and outperforming reference models on a dozen NLP tasks at the time of creation.

BERT-like models consume increasingly larger parameter space and correspond-

ingly more computational resources. When BERT was discovered, a large model required

340 million parameters [205], but currently a full GPT-3 model requires 170 billion param-

eters [22]. The base BERT model requires 6.9 billion floating-point operations to inference

a 40-word sentence, and this number increases to 20 billion when translating a 20-word

sentence using a base Seq2Seq model [63]. The size of the parameter space and the com-

putational demands increase the cost of the training and inference for BERT-like models,

which requires the attention of the DL community in order to accelerate these models.

To exploit hardware efficiency, DL frameworks adopt a batching strategy, where

multiple batches are executed concurrently. Since batched execution requires task shapes in

different batches to be identical, DL frameworks presume fixed-length inputs when designing

the software [151, 152, 163, 188]. However, this assumption cannot always hold, because

transformer models are often faced with variable-length input problems [63,205]. In order to

deploy models with variable-length inputs directly to conventional frameworks that support

only fixed-length models, a straightforward solution is to pad all sequences with zeros to

the maximal sequence length. However, this immediately brings in redundant computations

on wasted padded tokens. These padded zeros also introduce significant memory overhead

that can hinder a large transformer model from being efficiently deployed.

Existing popular DL frameworks, such as Google TensorFlow with XLA [3, 72],

Meta PyTorch with JIT [145], and OctoML TVM [48], leverage the domain-specific just-
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in-time compilation technique to boost performance. Another widely-adopted strategy

to generate low-level performance optimization is delicate manual tuning: NVIDIA Ten-

sorRT [131], a DL runtime, falls into this category. Yet all of these frameworks require the

input sequence lengths to be identical to exploit the speedup of batch processing. To lift

the restriction on fixed sequence lengths, Tencent [63] and Baidu [205] provide explicit sup-

port for models with variable sequence lengths. They group sequences with similar lengths

before launching batched kernels to minimize the padding overhead. However, this proac-

tive grouping approach still introduces irremovable padding overhead when grouping and

padding sequences with similar yet different lengths.

In contrast to training processes that can be computed offline, the inference stage of

a serving system must be processed online with low latency, which imposes high performance

requirements on DL frameworks. A highly efficient DL inference framework for NLP models

requires delicate kernel-level optimizations and explicit end-to-end designs to avoid wasted

computations on zero tokens when handling variable-length inputs. However, existing DL

frameworks do not meet these expectations. In order to remedy this deficit, we present

ByteTransformer, a highly efficient transformer framework optimized for variable-length

inputs in NLP problems. We not only design an algorithm that frees the entire transformer

of padding when dealing with variable-length sequences, but also provide a set of hand-

tuned fused GPU kernels to minimize the cost of accessing GPU global memory. More

specifically, our contributions include:
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• We design and develop ByteTransformer, a high-performance GPU-accelerated trans-

former optimized for variable-length inputs. ByteTransformer has been deployed to

serve world-class applications including TikTok and Douyin of ByteDance.

• We propose a padding-free algorithm that packs the input tensor with variable-length

sequences and calculates the positioning offset vector for all transformer operations to

index, which keeps the whole transformer pipeline free from padding and calculations

on zero tokens.

• We propose a fused Multi-Head Attention (MHA) to alleviate the memory overhead of

the intermediate matrix, which is quadratic to the sequence length, in MHA without

introducing redundant calculations due to padding for variable-length inputs. Part of

our fused MHA has been deployed in the production code base of NVIDIA CUTLASS.

• We hand-tune the memory footprints of layer normalization, adding bias and activa-

tion to squeeze the final performance of the system.

• We benchmark the performance of ByteTransformer on an NVIDIA A100 GPU for

forward pass of BERT-like transformers, including BERT, ALBERT, DistilBERT,

and DeBERTa. Experimental results demonstrate our fused MHA outperforms stan-

dard PyTorch attention by 6.13X. Regarding the end-to-end performance of standard

BERT transformer, ByteTransformer surpasses PyTorch, TensorFlow, Tencent Tur-

boTransformer, Microsoft DeepSpeed and NVIDIA FasterTransformer by 87%, 131%,

138%, 74%, and 55%, respectively.
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The rest of the chapter is organized as follows: we introduce background and

related works in Section 4.2, and then detail our systematic optimization approach in Section

4.3. Evaluation results are given in Section 4.4. We conclude our chapter and present future

work in Section 4.5.

4.2 Background and Related Works

We provide an overview of the transformer model, including its encoder-decoder

architecture and multi-head attention layer. We also survey related works on DL framework

acceleration.

4.2.1 The Transformer Architecture

Figure 4.1 shows the encoder-decoder model architecture of the transformer. It

consists of stacks of multiple encoder and decoder layers. In an encoder layer, there is

a multi-head attention layer followed by a feed-forward network (FFN) layer. A layer

normalization (layernorm) operation is applied after both MHA and FFN. In a decoder

layer, there are two sets of consecutive MHA layers and one FFN layer, and each operation

is normalized with a layernorm. The FFN is used to improve the capacity of the model.

In practice, FFN is implemented by multiplying the tensor by a larger scaled tensor using

GEMM. Here we skip the embedding descriptions in the figure, and refer an interested

reader to [182] for details. Although we show both encoder and decoder modules for this

transformer, a BERT transformer model only contains the encoder section [55]. In this

chapter, we present optimizations for BERT-like transformer models.
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Figure 4.1: The transformer architecture [182]
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Self-attention is a key module of the transformer architecture. Conceptually, self-

attention computes the significance of each position of the input sequence, with the infor-

mation from other positions considered. A self-attention receives three input tensors: query

(Q), key (K), and value (V). Self-attention can be split into multiple heads. The Q and K

tensors are first multiplied (1st GEMM) to compute the dot product of the query against

all keys. This dot product is then scaled by the hidden dimension dk and passed through a

softmax function to calculate the weights corresponding to the value tensor. Each head of

the output tensor is concatenated before going through another linear layer by multiplying

against tensor V (2nd GEMM). Expressing self-attention as a mathematical formula, we

have:

Attention(Q,K, V ) = softmax(
QKT

√
dk

) × V (4.1)

4.2.2 Related Works on DL Acceleration

Performance is a crucial aspect in the real-world deployment of software systems,

attracting significant attention across various applications [206, 208, 210], including DL

frameworks. The conventional DL frameworks, such as PyTorch, TensorFlow, TVM, and

TensorRT are designed explicitly for fixed-length input tensors. When dealing with NLP

problems with variable-length input, all sequences are padded to the maximal length, which

leads to significant wasted calculations on zero tokens. A few DL frameworks, such as Ten-

cent TurboTransformer [63] and NVIDIA FasterTransformer [134], employ explicit designs

for variable-length inputs. TurboTransformer designs run-time algorithms to group and pad

sequences with similar lengths to minimize the padding overhead. TurboTransformer also

uses a run-time memory scheduling strategy to improve end-to-end performance. Kernel-

102



level optimizations are of the same significance as algorithmic optimizations. NVIDIA’s

FasterTransformer uses vendor-specific libraries such as TensorRT and cuBLAS [132] as

its back-end, which provide optimized implementations of various operations at the kernel

level.

Other end-to-end DL frameworks have also presented optimizations for BERT-like

transformers, such as E.T. [34] and DeepSpeed-Inference [7]. E.T. introduces a novel MHA

architecture for NVIDIA Volta GPUs and includes pruning designs for end-to-end trans-

former models. In contrast, ByteTransformer targets unpruned models and is optimized for

NVIDIA Ampere GPUs. DeepSpeed-Inference is optimized for large distributed models on

multiple GPUs, while ByteTransformer currently focuses on lighter single-GPU models.

In addition to end-to-end performance acceleration, the research community has

also made focused efforts to improve a key algorithm of the transformer, multi-head at-

tention. PyTorch provides a standard implementation of MHA [149]. NVIDIA TensorRT

utilizes a fused MHA for short sequences with lengths up to 512, as described in [133].

To handle longer sequences, FlashAttention was proposed by Stanford researchers in [54].

FlashAttention assigns the workload of a whole attention unit to a single threadblock (CTA).

However, this approach can result in underutilization on wide GPUs when there are not

enough attention units assigned. Our fused MHA, on the other hand, provides high per-

formance for both short and long sequences for variable-length inputs without leading to

performance degradation in small-batch scenarios.

Table 4.1 surveys state-of-the-art transformers. TensorFlow and PyTorch provide

tuned kernels but require padding for variable-length inputs. NVIDIA FasterTransformer
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Table 4.1. Summarizing state-of-the-art transformers.

variable-len kernel fused kernel

support tuning MHA fusion

Tensorflow XLA no yes no no

PyTorch JIT no yes no no

FasterTransformer yes yes ≤ 512 no

TurboTransformer yes yes no partially

ByteTransformer yes yes yes yes

and Tencent TurboTransformer, although providing support for variable-length inputs, do

not perform comprehensive kernel fusion or explicit optimization for the hot-spot algorithm

MHA for any length of sequence. In addition, TurboTransformer only optimizes part of the

fusible operations in the transformer model, such as layernorm and activation, namely ’par-

tial kernel fusion’ in the table. Our ByteTransformer, in contrast, starting with a systemic

profiling to locate bottleneck algorithms, precisely tunes a series of kernels including the

key algorithm MHA. We also propose a padding-free algorithm which completely removes

redundant calculations for variable-length inputs from the entire transformer.

4.3 Designs and Optimizations

In this section, we present our algorithmic and kernel-level optimizations to im-

prove the end-to-end performance of BERT transformer under variable-length inputs.
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4.3.1 Math Expression of BERT Transformer Encoder

Figure 4.2(a) illustrates the architecture of the transformer encoder. The input

tensor is first processed through the BERT pipeline, where it is multiplied by a built-in

attribute matrix to perform Q, K, and V positioning encoding. This operation can be

implemented using three separate GEMM operations or in batch mode. Realizing that

the corresponding attribute matrices to Q, K, and V are all the same shape (hidden dim x

hidden dim), we pack them to continuous memory space and launch a single batched GEMM

kernel that calculates Q, K, and V to reduce the kernel launch overhead at runtime. Bias

matrices for Q, K, and V are then added to the encoded tensor, which is passed through

the self-attention module. In addition to the multi-head attention module, the BERT

transformer encoder includes projection, feed forward network, and layer normalization.

The encoder pipeline can be represented as a series of mathematical operations, including

six GEMMs (shown in light purple) and other memory-bound operations (shown in light

blue).

4.3.2 Profiling for Single-Layer Standard BERT Transformer

We implement the pipeline of Figure 4.2 (a) by calling cuBLAS and profile its

single-layer performance on an NVIDIA A100 GPU. We adopt the standard BERT trans-

former configuration (batch size: 16, head number: 12, head size: 64) and profile for two

different sequence lengths: 256 and 1024.

Figure 4.3 shows the performance breakdown for two sequence lengths. GEMM0

to GEMM3 refer to the consecutive four GEMMs that are enumerated from GEMM #0 to
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Figure 4.2: BERT transformer architecture and optimizations

GEMM0
15%

Attention
22%

GEMM1
6%Layernorm0

5%

GEMM2
22%

Add BIAS & 
Gelu
7%

GEMM3
18%

Layernorm1
5%

(a) Sequence lengths 256

GEMM0
10%

Attention
49%

GEMM1
4%

Layernorm0
3%

GEMM2
13%

Add BIAS & 
Gelu
5%

GEMM3
13%

Layernorm1
3%

(b) Sequence lengths 1024

Figure 4.3: Performance breakdown of BERT transformer

106



GEMM #3 in Figure 4.2 (a). The other two batched GEMMs are part of the attention

module and are therefore profiled together with the softmax as a whole, referred to as MHA

in Figure 4.3. The two sets of ”add bias and layernorm” operations are referred to as

layernorm0 and layernorm1. The profiling results show that the compute-bound GEMM

operations account for 61% and 40% of the total execution time for both test cases. The

attention module, which includes a softmax and two batched GEMMs, is the most time-

consuming part of the transformer. As the sequence length increases to that of a GPT-2

model (1024), attention accounts for 49% of the total execution time, while the remaining

memory-bound operations (layernorm, add bias and activation) only take up 11%-17%.

4.3.3 Fusing Memory-Bound Operations of BERT Transformer

Since cuBLAS uses architectural-aware optimizations for high performance GEMMs,

presumably there remain limited opportunities for further acceleration. Therefore, we turn

our eyes to optimizing the modules containing memory-bound operations, such as attention

(with softmax), feed forward network (with layernorm) and add bias followed by element-

wise activation. We improve these operations by fusing distinct kernels and reusing data

in registers to reduce global memory access. Figure 4.2 (b) presents the BERT transformer

pipeline with memory-bound kernel fusion, where we fuse layernorm and activation with

their consecutive kernels.

Add Bias and Layer Normalization

These operations account for 10% and 6% of the overall execution time for sequence

lengths 256 and 1024, respectively. After MHA, the result tensor needs to first be added
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upon the input tensor (bias) and perform layer normalization. Here hidden dimension

(hidden dim) equals head num×head size. In standard BERT configuration, head number

and head size are fixed to 12 and 64. The naive implementation introduces two rounds of

memory access to load and store the tensor. We provide a fused kernel that only needs to

access the global memory in one round to finish both layernorm and adding bias. Kernel

fusion for this sub-kernel improves the performance by 61%, which accordingly increases

the single-layer BERT transformer performance by 3.2% for sequence lengths ranging 128

to 1024 in average.

Add Bias and Activation

These operations account for 7% and 5% of the overall execution time for sequence

lengths 256 and 1024, respectively. After the projection via matrix multiplication, the result

tensor will be added against the input tensor and perform an element-wise activation using

GELU [83]. Our fused implementation, rather than storing the GEMM output to global

memory and loading it again to conduct adding bias and activation, re-uses the GEMM

result matrix at the register level by implementing a customized and fused CUTLASS [135]

epilogue. Experimental results validate that our fused GEMM perfectly hides the memory

latency of bias and GELU into GEMM. After this step, we further improve the single-layer

BERT transformer by 3.8%.
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4.3.4 The Zero Padding Algorithm for Variable-Length Inputs

Because the real-time serving process receives sentences with various words as

input tensor, the sequence lengths can often be different among batches. For such an

input tensor composed of sentences with variable lengths, the conventional solution is to

pad them to the maximal sequence length with useless tokens, which leads to significant

computational and memory overhead. In order to address this issue, we propose the zero

padding algorithm to pack the input tensor and store the positioning information for other

transformer operations to index the original sequences.

Figure 4.4 presents the details of the zero padding algorithm. We use an input

tensor with 3 sentences (proceeded in 3 batches) as an example. The longest sentence

contains 5 word tokens while the other two have 2 and 4 words. The height of the sample

input tensor is 3, which is equal to the hidden dimension. The conventional method is to

pad all sentences to the maximal sequence length by filling zeros. The elements, either 1 or

0, of the mask matrix correspond respectively to a valid token or a padded token of an input

tensor with variable size. By calculating the prefix sum of the mask matrix, we can skip the

padded tokens and provide the position indices of all valid tokens. We implement an efficient

CUDA kernel to calculate the prefix sum and the position offset. Each warp computes the

prefix sum for tokens of a whole sentence, so in total there are batch size warps assigned

in each threadblock for prefix sum calculation. Once the prefix sum is computed, we pack

the input tensor to a continuous memory area so that the total number of words used in

future calculations is reduced from seq len× batch size to the actual valid word count of

the packed tensor.
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Figure 4.2 (c) presents the detailed modifications on BERT by introducing our zero

padding algorithm. Before conducting the positioning encoding, we calculate the prefix sum

of the mask matrix to pack the input tensor so that we avoid computations on useless tokens

in the first GEMM. Since batched GEMM in MHA requires identical problem shapes among

different batches, we unpack the tensor before entering the attention module. Once MHA is

completed, we pack the tensor again such that all remaining operations can benefit from the

zero padding algorithm. The final result tensors are validated element-by-element against

TensorFlow such that the correctness and accuracy are ensured. It is worth mentioning that

padding and remove padding operations are fused with existing memory-bound footprints

such as adding bias and transpose to minimize the overhead led by this feature.

Our presented padding-free algorithm is designed to ensure semantic preservation.

We maintain an array that stores the mapping relationship of the valid tokens between

the original tensor and the packed tensor. The transformer operates on the packed tensor,

and intermediate operations, such as MHA, layernorm and activation, refer to this position

array to ensure the correctness. At the end of each layer, we reconstruct the output tensor

according to the position array such that the whole pipeline is semantic preserving.

Table 4.2 counts the floating point computations of a single-layer BERT trans-

former. The computations of memory-bound operations are not included since they are

negligible compared with the listed modules. Enabling the zero padding algorithm elimi-

nates redundant computations for all compute-intensive modules other than MHA due to

the restrictions of batched GEMM. When the average sequence length is equal to 60% of the

maximum, the padding-free algorithm further accelerates the BERT transformer by 24.7%.
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Baseline Zero Padding Zero Padding + fused MHA

GEMM0 6mk2 6(α ·m)k2 6(α ·m)k2

MHA 4m2

bs k 4m2

bs k 4 (α·m)2

bs k

GEMM1 2mk2 2(α ·m)k2 2(α ·m)k2

GEMM2 8mk2 8(α ·m)k2 8(α ·m)k2

GEMM3 8mk2 8(α ·m)k2 8(α ·m)k2

Table 4.2. The computation number needed for variable-length inputs.

4.3.5 Optimizing Multi-Head Attention

The zero-padding algorithm, although it effectively reduces wasted calculations

for variable-length inputs, cannot directly benefit batched GEMM operations in MHA.

This disadvantage becomes increasingly significant when the sequence length increases, as

demonstrated in Table 4.2. The complexity of MHA is quadratic to the sequence length,

while the complexity of all other GEMMs is linear to the sequence length. This motivates

us to provide a high-performance fused MHA while maintaining the benefits of the zero-

padding algorithm. With our fused MHA, attention no longer faces redundant calculations

on useless tokens, as shown in Table 4.2.

Unpadded Fused MHA for Short Sequences

For short input sequences, we hold the intermediate matrix in shared memory and

registers throughout the MHA computation kernel to fully eliminate the quadratic memory

overhead. We also access Q, K, and V tensors according to the positioning information ob-

tained in the prefix sum calculation step to avoid redundant calculations on padding zeros for
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the MHA module. Algorithm 1 shows the pseudo code of our fused MHA for short sequences.

We launch a 3-dimensional grid map: {head num, seq len/split seq len, batch size}.

Here split seq len is a user-defined parameter to determine the size of a sequence tile

preceded by a threadblock (typically set to 32 or 48). The warp count of a threadblock is

computed by the maximal sequence length: split seq len/16×(seq len/16). Each thread-

block loads a chunk of Q (split seq len× head size), K (max seq len× head size) and

V ((head size×max seq len)) into shared memory and computes MHA for a tile of the re-

sult tensor. We allocate three shared-memory buffers to hold Q, K, V sub-matrices. Due to

the algorithmic nature of MHA, we can re-use K and V chunks in the same shared-memory

buffer s kv. The intermediate matrix of MHA is held and re-used in another pre-allocated

shared-memory buffer s logits.

The workflow of fused MHA for short sequences is straightforward yet efficient.

Each thread first loads its own tile of Q and K into shared memory and computes GEMM

for P = Q ×K. The element-wise adding bias and scaling operations are both fused with

the load process to hide the memory latency. GEMM is computed using the CUDA wmma

intrinsic to leverage tensor cores of NVIDIA Ampere GPUs. The intermediate matrix P is

held in shared memory during the reduction. Because we explicitly design this algorithm

for short sequences, each thread can load a whole sequence of P from shared memory into

register files for both reduction and element-wise exponential transform in softmax. Once

the softmax operation is completed, we load a K tile to shared memory to compute the

second GEMM O = P × V , and then store the result tensor O to the global memory.
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Algorithm 1: Unpadded fused MHA for short sequences
/* define skew offset to avoid bank conflict */

#define SKEW HALF 8

Shared memory:

half s kv [max seq len][size per head + SKEW HALF];

half s query [split seq len][size per head + SKEW HALF];

half s logits [max seq len][size per head + SKEW HALF];

/* warps collaboratively fill s query with adding bias fused */

Load half2 q bias

for seq id = warp id : warp num : split seq len do

query = Q[batch seq offset + seq id + thread offset];

offset = seq id*(head size+SKEW HALF)+(lane id*2);

( half2 *)s query[offset] = fast add(query, k bias);

/* warps collaboratively fill s kv with adding bias fused */

Load half2 k bias

for seq id = warp id : warp num : batch seq len do

key = K[batch seq offset + seq id + thread offset];

offset = seq id*(head size+SKEW HALF)+(lane id*2);

( half2 *)s kv[offset] = fast add(key, k bias);

/* compute Q*K using WMMA */

Clear wmma fragment QK to zero

for k id = 0 : head size / 16 do

Load 16x16 wmma fragments of Q

Load 16x16 wmma fragments of K

Update QK = Q * K + QK using wmma::mma sync

Store fragment QK to s logits using wmma::store matrix sync

/* Compute softmax */

for seq id = warp id : warp num : batch seq len do

float logits[max seq len];

each thread loads a whole sequence to fill local registers

/* 1st round of reduction with register-level data re-use*/

compute max val in local registers

/* register-level data re-use*/

compute P = exp(P − max) and update local registers

/* 2st round of reduction with register-level data re-use*/

compute sum val in local registers

/* register-level data re-use*/

compute P = P/sum val and stream to s logits

/* warps collaboratively fill s kv with adding bias fused */

Load half2 v bias

for seq id = warp id : warp num : batch seq len do

value = V[batch seq offset + seq id + thread offset];

offset = seq id*(head size+SKEW HALF)+(lane id*2);

( half2 *)s kv[offset] = fast add(value, v bias);

/* Similar to Q * K so omitting the details here */

Compute P * V using wmma and stream to global memory
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Unpadded Fused MHA for Long Sequences

Figure 4.5: Grouped GEMM demonstration

Because of the limited resources of register files and shared memory, the previous

fused MHA is no longer feasible for long sequences. Therefore, we set 384 to be the cut-off

sequence length and propose a grouped GEMM based fused MHA for large models.

The Grouped GEMM idea is first presented by NVIDIA CUTLASS [135]. Different

from batched GEMM, where all GEMM sub-problems are required to have an identical

shape, grouped GEMM allows arbitrary shapes for sub-problems. This is enabled by a

built-in scheduler that iterates over all GEMM sub-problems in a round-robin manner.

Figure 4.5 demonstrates the idea of grouped GEMM using an example with 3 sub-problems.

Supposing 3 threadblocks (CTAs) are launched, each CTA calculates a fix-sized CTA tile

at each step until all GEMM sub-problems have been covered. GPU computes in waves,

logically. In the first wave, All three CTAs calculate 3 tiles (light red, light yellow and light
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Figure 4.6: Grouped GEMM based FMHA. Source codes are available at [130].
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blue in the figure). And then in the second CTA wave, CTA #0 moves to the bottom-right

tile of GEMM 0 while CTA #1 and CTA #2 move to sub-problems of GEMM 1. In the

final CTA wave, CTA #0 and CTA #1 continue to compute tasks in GEMM 1 and GEMM

2 while CTA #2 keeps idle because there are no more available tiles in the computational

graph.

Since grouped GEMM lifts the restriction on the shape of sub-problems, it can di-

rectly benefit MHA problems with variable-length inputs. Figure 4.6 presents our grouped-

GEMM-based fused MHA for long sequences. The total number of MHA problems is equal

to batch size× head num. The MHA problems among different batches have different se-

quence lengths, while sequence lengths within the same batch are identical. The grouped

GEMM scheduler iterates over all attention units in a round-robin manner. In each at-

tention unit, we first compute GEMM Pi = Qi × Ki, and conduct softmax on Pi. The

second GEMM Oi = Pi×Vi provides us with the final attention result. Here i indicates the

ith problem of grouped MHA with variable shapes. The softmax operation is fused with

GEMMs to hide the memory latency. We have upstreamed the prototype of our grouped

GEMM based fused MHA into NVIDIA CUTLASS [130].

Figure 4.7: Warp prefetching for grouped GEMM
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Grouped GEMM frequently checks with the built-in scheduler on the current task

assignments, which leads to the runtime overhead. To address this issue, we propose an

optimization over the built-in CUTLASS group GEMM scheduler. Figure 4.7 shows our

optimization for the original CUTLASS grouped GEMM scheduler. Rather than asking one

thread to compute the current tasks metadata, we have all 32 threads in a warp compute the

tile indices to visit at one time. Therefore, we achieve 32X fewer scheduler visit overhead.

In practice, this strategy brings a ∼10% improvement over the original CUTLASS grouped

GEMM for standard BERT configurations. The prototype of this optimization has also

been upstreamed to NVIDIA CUTLASS. We would refer an interested reader to [136] for

detailed source codes.
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MR
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N / NC

...

    int half_thread_in_row = (kThreadsPerRow >> 1);
    CUTLASS_PRAGMA_UNROLL
    for (int i = half_thread_in_row; i > 0; i >>= 1) {
      float tmp = __shfl_xor_sync(0xFFFFFFFF, res_, i);
      res_ = reduce_op(res_, tmp);
    }

intra-warp reduction 
using warp shufflingMR

Figure 4.8: Fused softmax reduction in grouped GEMM epilogue

In addition to optimizing the grouped GEMM scheduler, we fuse the memory

footprints of softmax into two grouped GEMMs of MHA. Figure 4.8 shows the details of

epilogue fusion for softmax reduction. A CTA computes an MC × NC sub-matrix. MC
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and MC are both set to 128 to maximize the performance of GEMM. Under the default

CUTLASS threadmap assignment, there are 128 threads per CTA, and the threadmap is

arranged as 8 × 16, where each thread holds a 128-bit register tile in each step. After the

intra-thread reduction, the MR × NC (8 × 128) sub-matrix is reduced to 8 × 16, with one

reduced result held by one thread. We then conduct an intra-warp reduction to further

reduce from the column dimension, which is implemented via CUDA warp shuffling for

efficiency. Similar reductions (intra-thread followed by intra-warp reduction) are performed

to compute both max and sum in epilogue. Once max and sum are both reduced, we store

them to global memory.

The reduction in epilogue only provides us with partial reduction within a thread-

block because cross-threadblock communication is impractical under the current CUDA pro-

gramming model. Hence, we need to launch a separated lightweight kernel, as shown in Fig-

ure 4.6, to conduct the full reduction. In partial reduction, the target tensor of each atten-

tion unit is seq len×seq len while the full reduction just reduces a seq len×seq len/128.

Therefore, the workload of full reduction is negligible to that of partial reduction In practice,

the full reduction kernel only accounts for ∼ 2% of total execution time in fused MHA.

Once we have obtained the fully reduced max and sum vectors, we are ready to

proceed element-wise transform exij−max
sum on the first GEMM’s output matrix. To hide the

memory latency, we fuse these element-wise operations into the mainloop of the second

GEMM. Algorithm 2 presents our modifications (marked in red) of the original CUTLASS

GEMM mainloop to enable softmax fusion. The original GEMM mainloop adopts the

pipelining strategy to alleviate memory access latencies on both global memory and shared
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Algorithm 2: Mainloop fusion of grouped FMHA
Register Tiles:

WarpLoadedFragmentA warp loaded frag A[2];

WarpLoadedFragmentB warp loaded frag B[2];

WarpLoadedFragmentNormSum warp loaded frag norm sum;

Shared memory: (kStages + 1) shared-memory tiles for A and B

/* prologue */

Load k-invariant fused softmax tile to warp loaded frag norm sum

Prefetch kStages - 1 tiles of A to shared memory using cp.async

Prefetch kStages - 1 tiles of B to shared memory using cp.async

Prefetch a tile of A from shared memory to warp loaded frag A[0]

Prefetch a tile of B from shared memory to warp loaded frag B[0]

/* fused element-wise operation */

/* A =
exp(A−max)

sum
*/

elementwise transform(

warp loaded frag A[0],

warp loaded frag norm sum);

/* mainloop */

for k to -kStages + 1 do

/* Computes a warp-level GEMM */

/* with pipelined load during iterations */

for warp mma k = 0 to kWarpGemmIterations - 1 do

Prefetch warp loaded frag A[(warp mma k + 1) % 2]

Prefetch warp loaded frag B[(warp mma k + 1) % 2]

/* fused element-wise transform */

elementwise transform(

warp loaded frag A[(warp mma k + 1) % 2],

warp loaded frag norm sum);

/* Computes a warp-level GEMM*/

/* on data loaded in previous iteration */

warp mma(

accum,

warp loaded frag A[warp mma k % 2],

warp loaded frag B[warp mma k % 2],

accum);

Prefetch a tile of A to shared memory using cp.async

Prefetch a tile of B to shared memory using cp.async
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memory. For shared memory accesses, double register tiles are utilized to ensure that what

is consumed in the current iteration has always been loaded in the previous iteration. For

global memory accesses, a multi-stage loading strategy is employed with the help of the

cp.async instruction of NVIDIA Ampere GPUs. The cp.async instruction allows loading

data asynchronously from global memory to shared memory without consuming registers.

Multiple such transactions can be proceeded concurrently, and a stage barrier ensures se-

lected stages to be synchronized. The number of load stages (kStages) is a compile-time

constant defined by a user. Similar to shared memory accesses, loading from global mem-

ory is also pipelined to overlap memory latency with computation. Therefore, kStages

pieces of shared memory buffers are needed under the multi-stage pipeline scheme. As

shown in Algorithm 2, we preload the k-invariant vectors sum and max in prologue, and

conduct element-wise transform right after the matrix elements are loaded into registers.

Since the fused vectors are loaded outside of the GEMM mainloop, only negligible over-

head is brought into the baseline GEMM and the memory latency to perform element-wise

transform is perfectly hidden with GEMM computations.

The baseline MHA is a computational chain containing a batched GEMM, a soft-

max, and another batched GEMM. The time and memory complexity of all these oper-

ations are quadratic in the sequence length. Because the padding-free algorithm directly

reduces the effective sequence length, MHA with variable-length input also gains a direct

improvement. Our fused MHA, which is explicitly designed to handle both short and long

sequences, incorporates the padding-free algorithm to alleviate the memory overhead of

the intermediate matrix in MHA caused by padding for variable-length inputs. Our highly
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optimized MHA outperforms the standard PyTorch MHA by 6.13X and further accelerates

the single-layer BERT transformer by 19% compared to the previous step. As a result,

this fully optimized version surpasses the baseline implementation in Figure 4.2 (a) by 60%.

Since the remaining operations of a forward BERT transformer are all near-optimal GEMM

operations, we conclude our optimizations at this step.

4.4 Evaluation

We evaluate our optimizations on an NVIDIA A100 GPU. The GPU device is

connected to a node with four 32-core Intel Xeon Platinum 8336C CPUs, whose boost

frequency is up to 4.00 GHz. The associated CPU main memory system has a capacity of

2TB at 3200 MHz. We compile programs using CUDA 11.6u2 with the optimization flag

O3. We compare the performance of ByteTransformer with latest versions of state-of-the-

art transformers, such as TensorFlow 2.8, PyTorch 1.13, Tencent TurboTransformer 0.5.1,

Microsoft DeepSpeed-Inference 0.7.7, and NVIDIA FasterTransformer 5.1. All the tensors

benchmarked in this paper, unless specified, are in the half-precision floating-point format

(FP16) to leverage tensor cores of NVIDIA GPUs. The variable sequence lengths in this

section are generated randomly based on a uniform distribution with a range from 1 to the

maximum length. We average the reported performance data over tens of runs to minimize

fluctuations.

4.4.1 Kernel Fusion for Layernorm and Add-Bias Operations

As depicted in Figure 4.2, BERT transformer is composed of a series of GEMM

and memory-bound operations. Since GEMM are accelerated by near-optimal vendor’s li-
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braries cuBLAS and CUTLASS, we focus on optimizing the functional modules that involve

memory-bound operations.
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Figure 4.9: Kernel fusion for add-bias and layernorm under the standard BERT.

The result tensor needs to be added by the input tensor and normalized after

projection and feed forward network of BERT transformer. Rather than launching two

separated kernels, we fuse them into a single kernel and re-use data at the register level. In

addition to kernel fusion, we leverage FP16 SIMD2 to increase the computational through-

put of layernorm by assigning more workload to each thread. We normalize the execution

time by that of the optimized layernorm and present the results in Figure 4.9: the improved

version with kernel fusion provides us with a 69% improvement on average over the unfused

baseline for sequence lengths ranging 128 to 1024.
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Figure 4.10: Kernel fusion for GEMM, add-bias, and GELU.

4.4.2 Kernel Fusion for GEMM and Add-Bias & Activation

Regarding the GEMM, add-bias and activation pattern in BERT transformer, we

also provide a fused kernel to reduce the global memory access. An unfused implemen-

tation is to call vendor’s GEMM, store the output to global memory, and then load the

result matrix from global memory for further element-wise operations. In our optimized

version, when the result matrix of GEMM is held in registers, we conduct fused element-

wise operations that re-use data at the register level. Once the element-wise transform

(add-bias and GELU) is completed, we then store the results to the global memory. Figure

4.10 compares the performance of fused and unfused versions. In each clustered bar plot,

the detailed execution time breakdown of the unfused implementation, normalized by the

fused execution time (shown in the left bars), is shown in the stacked bar on the right. By

fusing element-wise operations into the GEMM epilogue, we improve the performance by

24% on average for sequence lengths ranging 128 to 1024. It is worth mentioning that we
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feed packed tensors into both fused and non-fused kernels, such that the performance gain

in Sec IV A and B are solely from kernel fusion.

4.4.3 Optimizing Multi-Head Attention

Figure 4.3 shows that MHA accounts for 22% - 49% of the total execution time. We

optimize this key algorithm by fusing softmax into GEMMs without calculating for useless

padded tokens under variable-length inputs. For short sequences, we hold the intermediate

matrix in registers and shared memory. For long sequences, we adopt a grouped GEMM

based fused MHA and fuse softmax operations into our customized GEMM epilogue and

mainloop to hide the memory latency. In both implementations, the input matrices are

accessed according to the position information obtained from the zero padding algorithm

so that no redundant calculations are introduced.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

64 128 192 256 320 384

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Max Sequence Length
Average = 0.6 * max; 

Batch Size = 16, Head Size = 64, Head Number = 12

PyTorch MHA
cuBLAS
cuBLAS + zero padding
fused MHA

Figure 4.11: Fused MHA for short sequences.
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Figure 4.11 compares the MHA performance for sequences shorter than 384. Here

cuBLAS denotes the unfused implementation that calls cuBLAS for batched GEMM. The

softmax operation between two batched GEMM can benefit from the zero padding algo-

rithm, by only accessing unpadded tokens according to the known indices. This variant is

denoted as cuBLAS + zero padding in the figure. cuBLAS batched GEMM improves the

performance over stand PyTorch MHA by 5 folds while enabling the zero padding algorithm

for softmax further improves the performance by 9%. Our MHA fully fuses the softmax

and two batched GEMMs into one kernel, resulting in average speedups of 617%, 42%, and

30% over all three variants for variable sequence lengths ranging from 64 to 384.
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Figure 4.12: Fused MHA for long sequences

Figure 4.12 compares the performance of the MHA for sequences longer than 448.

The cuBLAS batched GEMM triples the MHA performance over PyTorch, while eliminating

wasted calculations in softmax further brings a 17% improvement. By introducing the high-

performance grouped GEMM and fusing softmax into GEMMs, our fused MHA outperforms
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the variant MHA implementations by 451%, 110% and 79% for maximal sequence lengths

ranging 448 to 1024, where the average sequence length is 60% of the maximum.
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Figure 4.13: Comparisons of our FMHA with FlashAttention.

Figure 4.13 compares the scaled execution time of the FMHA module of our Byte-

Transformer against FlashAttention under the standard BERT setup. As shown in the

figure, our FMHA presents advantages for small batch sizes (101% faster on average) while

FlashAttention becomes more efficient for large batch sizes (59% faster on average). This

is because FlashAttention maps a whole attention unit to a threadblock, which, although

allows for the complete preservation of the intermediate matrix of an attention unit within

shared-memory for any sequence length, results in performance degradation when there are

insufficient tasks assigned.
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Figure 4.14: Single-layer BERT transformer with step-wise optimizations.

4.4.4 Benchmarking Single-Layer BERT Transformer With Step-Wise

Optimizations

Figure 4.14 compares the performance of a single-layer BERT transformer to reflect

our step-wise optimizations. At each step, we add a new optimization upon the previous

variant. The baseline transformer implements the workflow in Figure 4.2 (a) with padding.

We then enable kernel fusion for adding bias and layernorm, which corresponds to layernorm

fusion in the figure. The next step is to fuse adding bias and GELU into GEMM, denoted

by add bias & GELU fusion. In order to avoid calculating padded tokens for the variable-

length inputs, we further propose the zero padding algorithm as shown in Figure 4.2 (c).

This is denoted by rm padding in the figure. Our optimized transformer includes our high-

performance fused MHA, as well as all previous optimizations.
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Fusing adding bias and layernorm into one kernel improves the performance by

3.2%. Fusing adding bias and activation into GEMM epilogue further improves the per-

formance by 3.8%. These two optimizations together improve the overall performance by

7.1%. After bringing in the zero padding algorithm, the redundant calculations are elimi-

nated in most modules other than MHA. We observe a 24% improvement from the previous

step. Finally, our fused MHA removes wasted calculations on padded tokens and enables an

additional 20% improvement. To summarize, the final version achieves 60% improvement

over the baseline version on single-layer BERT.

Table 4.3. Single-layer BERT versus E.T. on A100.

Sequence Length E.T. (ms) ByteTransformer (ms) Speedup

256 0.25 0.07 3.57×

1024 1.04 0.09 11.56×

Table 4.3 compares the execution time for a single-layer, non-pruned BERT (batch

size = 1) between E.T. and ByteTransformer, as E.T. has only open-sourced its single-

layer, single-batch prototype. We achieve a speed-up of up to 11 times over E.T., which is

optimized specifically for pruned models on legacy Volta GPUs. Since a pruned model can

lead to significant reduction in total computations but with possible accuracy trade-offs,

we do not include E.T. in our further end-to-end performance evaluations for non-pruned

models on an A100 GPU for fairness and comparability.
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(b) Batch size = 8
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Figure 4.15: End-to-end benchmark for standard BERT transformer.
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4.4.5 Benchmarking End-to-End Performance of BERT

The standard BERT transformer is a stacked structure of 12 layers of the encoder

module. The output of each encoder module is utilized as an input tensor in the next

iteration. Figure 4.15 shows the end-to-end performance of ByteTransformer and compares

it against state-of-the-art transformer implementations: PyTorch with JIT, TensorFlow

with XLA acceleration, Micorsoft DeepSpeed-Inference, NVIDIA FasterTransformer and

Tencent TurboTransformer. We adopt the standard BERT transformer configuration for

end-to-end benchmark: 12 heads, head size equal to 64 and 12 iterations (layers). We

benchmark for cases whose batch sizes are equal to 1, 8 and 16 and change sequence lengths

from 64 to 1024.

Compared with popular DL frameworks PyTorch, TensorFlow, and Microsoft

DeepSpeed-Inference, our ByteTransformer achieves 87%, 131%, and 74% faster end-to-

end performance on average. When benchmarking Tencent TurboTransformer, we turn

on its SmartBatch mode to reach optimal batching performance. Since TurboTransformer

only supports sequence lengths smaller than or equal to 512, we do not benchmark longer

sequences for it. TurboTransformer re-groups and pads similar sequences into a batch

so it launches excessive kernels at the run-time. It is faced with significant performance

degradation for models with large batch numbers and sequence lengths. NVIDIA Faster-

Transformer, although it supports long sequences regarding the functionality, its back-end

TensorRT fused MHA cannot be scaled to long sequences due to the limited register, its end-

to-end efficiency cannot be maintained when the sequence length becomes longer than 512.

Experimental results in Figure 4.15 show that ByteTransformer outperforms TurboTrans-
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former and FasterTransformer by 138% and 55% on average, respectively. Figure 4.15 (c)

further includes the end-to-end performance of ByteTransformer for average-to-maximum

sequence length ratios ranging from 0.1 to 1.0. The upper dashed blue line represents the

execution time of ByteTransformer at a ratio of 1.0, while the lower dashed line corresponds

to a ratio of 0.1. Our padding-free algorithm reduces the runtime by up to 66% for a ratio

of 0.1 compared to a fixed-sequence-length input. When disabling the support for variable-

length inputs of FasterTransformer, as shown by the dashed green lines in Figure 4.15, we

observe a moderate decrease in performance for larger batch sizes (batch sizes = 8 and 16)

but an improvement in performance for a small batch size (batch size = 1). In contrast,

our FMHA-enabled padding-free algorithm significantly improves the performance of the

end-to-end BERT transformer for variable-length input with an average-to-maximum ratio

of 0.6, outpacing NVIDIA FasterTransformer by a notable difference of 54% to 16%.

Table 4.4. Configurations of other BERT-like transformers.

Model layer number head number head size

ALBERT 12 16 64

DistilBERT 6 12 64

DeBERTa 12 12 64

4.4.6 Extending to Other BERT-Like Transformers

We extend the optimizations on kernel fusion and the padding-free algorithm pre-

sented in our work to other BERT-like transformers, including ALBERT, DistilBERT,
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and DeBERTa. Table 4.4 summarizes the model configurations, and readers can refer

to [82, 109, 160] for more detailed information about their architectures. Figure 4.16 com-

pares the performance of the ByteTransformer with state-of-the-art DL frameworks under

these models. Following the setup for our demonstrated standard BERT benchmarks, the

average sequence length is set to 60% of the maximal sequence length. TurboTransfomer

only supports sequences shorter than 512, so its performance data for long sequences are not

presented. FasterTransformer and TurboTransformer do not support DeBERTa, so their

results are not included in that model. It is worth noting that TensorFlow encountered

an out-of-memory error for sequence length 1024 in the DeBERTa model, resulting in this

data point being excluded. For ALBERT and DistilBERT, our ByteTransformer on average

outperforms PyTorch, TensorFlow, Tencent TurboTransformer, DeepSpeed-Inference, and

NVIDIA FasterTransformer by 98%, 158%, 256%, 93%, and 53%, respectively. For the

DeBERTa model, our ByteTransformer outperforms PyTorch, TensorFlow, and DeepSpeed

by 44%, 243%, and 74%, respectively.

4.5 Conclusions

We have presented ByteTransformer, a high-performance transformer optimized

for variable-length sequences. ByteTransformer not only brings algorithmic level innova-

tion that frees the transformer from padding overhead, but also incorporates architecture-

aware optimizations to accelerate functioning modules of the transformer. Our optimized

fused MHA, as well as other step-wise optimizations, together provide us with significant

speedup over current state-of-the-art transformers. The end-to-end performance of the stan-
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Figure 4.16: End-to-end benchmark for other BERT-like models.

dard BERT transformer benchmarked on an NVIDIA A100 GPU demonstrates that our

ByteTransformer surpasses PyTorch, TensorFlow, Tencent TurboTransformer, Microsoft

DeepSpeed-Inference, and NVIDIA FasterTransformer by 87%, 131%, 138%, 74% and 55%,

respectively. Moreover, we have shown that our optimizations are not specific to BERT,

but can be applied to other BERT-like transformers, including ALBERT, DistilBERT, and

DeBERTa. We are striving to make ByteTransformer completely open-source. This will

allow the wider research community to benefit from our optimized implementation and to

continue advancing the field. We are also dedicated to further expanding the presented

strategies to accelerate a wider range of BERT-like transformer models, both in inference

and training.
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Chapter 5

Conclusions

This dissertation has presented a collection of performance optimization techniques

applied to diverse software systems on modern computing platforms, including Intel and

AMD x86 CPUs, and Intel and NVIDIA GPUs. The target applications range from the

foundational Basic Linear Algebra Subprograms (BLAS) library to emerging applications in

homomorphic encryption (HE) and machine learning systems. As hardware advancements

slow down, software-level optimizations have emerged as an increasingly vital approach to

enhancing performance, energy efficiency, and cost-effectiveness.

In this thesis, we have explored architectural-aware performance optimizations

in three critical areas: BLAS, HE, and transformer-based machine learning models. Our

key contributions include the development of FT-BLAS, XeHE, and ByteTransformer, all

optimized to deliver significant performance improvements on modern processors.

FT-BLAS is a novel implementation of BLAS routines that incorporates fault tol-

erance while achieving competitive performance compared to state-of-the-art BLAS libraries
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on widely-used processors. Our approach leverages a hybrid strategy, combining instruction

duplication for memory-bound Level-1 and Level-2 BLAS routines with Algorithm-Based

Fault Tolerance for compute-bound Level-3 BLAS routines. Assembly-level optimization

and kernel fusion techniques contribute to our high performance and low overhead.

XeHE is a software framework that accelerates privacy-preserving computations

on Intel GPUs, providing the first-ever GPU backend for the Microsoft SEAL library. Our

optimizations span the instruction, algorithm, and application levels, resulting in significant

performance gains for HE operations based on the CKKS scheme. The roofline analysis

confirms the effectiveness of our optimizations, and the performance improvements extend

to encrypted element-wise polynomial matrix operations.

ByteTransformer is a high-performance transformer model optimized for variable-

length inputs, eliminating redundant computations caused by zero-padding. We implement

architecture-aware optimizations for transformer functional modules, with a particular focus

on the performance-critical Multi-Head Attention (MHA) algorithm. Our experimental

results demonstrate that ByteTransformer surpasses the performance of state-of-the-art

transformer frameworks for a forward BERT transformer, and our optimization methods

are applicable to other BERT-like models, such as ALBERT, DistilBERT, and DeBERTa.

In summary, this dissertation demonstrates the importance and effectiveness of

software-level optimizations in addressing the performance, energy efficiency, and cost chal-

lenges of modern computing platforms. Our work on BLAS, HE, and transformer-based

machine learning systems showcases the potential for architectural-aware optimizations to

accelerate a wide range of applications. As hardware advancements continue to slow, our
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research contributes to the ongoing effort to push the boundaries of software performance,

delivering sustainable and efficient computing solutions for the future.
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[60] Yarkın Doröz, Berk Sunar, and Ghaith Hammouri. Bandwidth efficient pir from ntru.
In International Conference on Financial Cryptography and Data Security, pages
195–207. Springer, 2014.

[61] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-
translation at scale. arXiv preprint arXiv:1808.09381, 2018.

[62] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. IACR Cryptol. ePrint Arch., 2012:144, 2012.

[63] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. Turbotransformers: an effi-
cient gpu serving system for transformer models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
389–402, 2021.

[64] Flexera. https://www.flexera.com/blog/cloud/

cloud-computing-trends-2021-state-of-the-cloud-report/, Retrieved in
2021. Online.

[65] Al Geist. Supercomputing’s monster in the closet. IEEE Spectrum, 53(3):30–35, 2016.

[66] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[67] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.

143

http://prace.it4i.cz/sites/prace.it4i.cz/files/files/advancedopenmptutorial_2.pdf
http://prace.it4i.cz/sites/prace.it4i.cz/files/files/advancedopenmptutorial_2.pdf
https://www.flexera.com/blog/cloud/cloud-computing-trends-2021-state-of-the-cloud-report/
https://www.flexera.com/blog/cloud/cloud-computing-trends-2021-state-of-the-cloud-report/


[68] Craig Gentry. Computing arbitrary functions of encrypted data. Communications of
the ACM, 53(3):97–105, 2010.

[69] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation of the aes
circuit. In Annual Cryptology Conference, pages 850–867. Springer, 2012.

[70] Jia-Zheng Goey, Wai-Kong Lee, Bok-Min Goi, and Wun-She Yap. Accelerating num-
ber theoretic transform in gpu platform for fully homomorphic encryption. The
Journal of Supercomputing, 77:1455–1474, 2021.

[71] Leonardo Arturo Bautista Gomez and Franck Cappello. Detecting and correcting
data corruption in stencil applications through multivariate interpolation. In 2015
IEEE International Conference on Cluster Computing, pages 595–602. IEEE, 2015.

[72] Google. https://www.tensorflow.org/xla, Retrieved in 2022. Online.

[73] Kazushige Goto and Robert A van de Geijn. Anatomy of high-performance matrix
multiplication. ACM Transactions on Mathematical Software (TOMS), 34(3):1–25,
2008.

[74] Kazushige Goto and Robert Van De Geijn. High-performance implementation of the
level-3 BLAS. ACM Transactions on Mathematical Software (TOMS), 35(1):1–14,
2008.

[75] Naga K Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Man-
ferdelli. High performance discrete fourier transforms on graphics processors. In
SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages
1–12. Ieee, 2008.

[76] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml confidential: Machine learn-
ing on encrypted data. In International Conference on Information Security and
Cryptology, pages 1–21. Springer, 2012.

[77] Qiang Guan, Nathan Debardeleben, Sean Blanchard, and Song Fu. F-sefi: A fine-
grained soft error fault injection tool for profiling application vulnerability. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium, pages 1245–
1254. IEEE, 2014.

[78] John A Gunnels, Daniel S Katz, Enrique S Quintana-Orti, and RA Van de Gejin.
Fault-tolerant high-performance matrix multiplication: Theory and practice. In 2001
International Conference on Dependable Systems and Networks, pages 47–56. IEEE,
2001.

[79] Doug Hakkarinen, Panruo Wu, and Zizhong Chen. Fail-stop failure algorithm-
based fault tolerance for cholesky decomposition. IEEE Transactions on Parallel and
Distributed Systems, 26(5):1323–1335, 2014.

[80] Shai Halevi and Victor Shoup. Design and implementation of a homomorphic-
encryption library. IBM Research (Manuscript), 6(12-15):8–36, 2013.

144

https://www.tensorflow.org/xla


[81] David Harvey. Faster arithmetic for number-theoretic transforms. Journal of Symbolic
Computation, 60:113–119, 2014.

[82] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-
enhanced bert with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

[83] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[84] Michael A Heroux. Toward resilient algorithms and applications. In Proceedings of
the 3rd Workshop on Fault-tolerance for HPC at Extreme Scale, pages 1–2. ACM,
2013.

[85] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public
key cryptosystem. In International Algorithmic Number Theory Symposium, pages
267–288. Springer, 1998.

[86] Robert W Horst, Richard L Harris, and Robert L Jardine. Multiple instruction issue
in the nonstop cyclone processor. ACM SIGARCH Computer Architecture News,
18(2SI):216–226, 1990.

[87] P YT Hsu and Edward S Davidson. Highly concurrent scalar processing. ACM
SIGARCH Computer Architecture News, 14(2):386–395, 1986.

[88] Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang Liu, Ken Raffenetti, Hui
Zhou, Kai Zhao, Zizhong Chen, Franck Cappello, et al. C-coll: Introducing error-
bounded lossy compression into mpi collectives. arXiv preprint arXiv:2304.03890,
2023.

[89] Jianyu Huang, Tyler M Smith, Greg M Henry, and Robert A van de Geijn. Strassen’s
algorithm reloaded. In SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 690–701. IEEE,
2016.

[90] Kuang-Hua Huang and Jacob A Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE transactions on computers, 100(6):518–528, 1984.

[91] Intel. https://software.intel.com/content/www/us/en/develop/articles/

disclosure-of-hw-prefetcher-control-on-some-intel-processors.html,
2014. Online.

[92] Intel. https://software.intel.com/en-us/articles/

intel-mkl-link-line-advisor, 2020. Online.

[93] Intel. https://01.org/sites/default/files/documentation/

intel-gfx-prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf,
Retrieved in 2021. Online.

[94] Intel. https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/

SubGroup/SYCL_INTEL_sub_group.asciidoc, Retrieved in 2021. Online.

145

https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf
https://01.org/sites/default/files/documentation/intel-gfx-prm-osrc-icllp-vol02a-commandreference-instructions_2.pdf
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroup/SYCL_INTEL_sub_group.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroup/SYCL_INTEL_sub_group.asciidoc


[95] Intel. https://github.com/intel/intel-graphics-compiler/tree/master/

documentation/visa, Retrieved in 2022. Online.

[96] Intel Corporation. https://software.intel.com/content/dam/develop/

external/us/en/documents/the-architecture-of-intel-processor-graphics-gen11-r1new.

pdf, Retrieved in 2021. Online.

[97] Intel Corporation. https://download.intel.com/newsroom/2021/

client-computing/intel-architecture-day-2021-presentation.pdf, Retrieved
in 2021. Online.

[98] Intel LLVM. https://intel.github.io/llvm-docs/

MultiTileCardWithLevelZero.html, Retrieved in 2021. Online.

[99] Intel Xeon Processor Scalable Family Technical Overview. https:

//software.intel.com/content/www/us/en/develop/articles/

intel-xeon-processor-scalable-family-technical-overview.html. Online.

[100] intelskylake. https://www.7-cpu.com/cpu/Skylake.html, 2019. Online.

[101] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[102] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM international conference
on Multimedia, pages 675–678, 2014.

[103] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Keewoo Lee, Namhoon Kim, Chohong
Min, Jung Hee Cheon, and Jung Ho Ahn. Heaan demystified: Accelerating fully ho-
momorphic encryption through architecture-centric analysis and optimization. arXiv
preprint arXiv:2003.04510, 2020.

[104] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap
and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[105] Sangpyo Kim, Wonkyung Jung, Jaiyoung Park, and Jung Ho Ahn. Accelerating num-
ber theoretic transformations for bootstrappable homomorphic encryption on gpus. In
2020 IEEE International Symposium on Workload Characterization (IISWC), pages
264–275. IEEE, 2020.

[106] Sunwoong Kim, Keewoo Lee, Wonhee Cho, Yujin Nam, Jung Hee Cheon, and Rob A
Rutenbar. Hardware architecture of a number theoretic transform for a bootstrappable
rns-based homomorphic encryption scheme. In 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), pages
56–64. IEEE, 2020.

146

https://github.com/intel/intel-graphics-compiler/tree/master/documentation/visa
https://github.com/intel/intel-graphics-compiler/tree/master/documentation/visa
https://software.intel.com/content/dam/develop/external/us/en/documents/the-architecture-of-intel-processor-graphics-gen11-r1new.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/the-architecture-of-intel-processor-graphics-gen11-r1new.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/the-architecture-of-intel-processor-graphics-gen11-r1new.pdf
https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf
https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf
https://intel.github.io/llvm-docs/MultiTileCardWithLevelZero.html
https://intel.github.io/llvm-docs/MultiTileCardWithLevelZero.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://www.7-cpu.com/cpu/Skylake.html


[107] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhatotia, Pascal Felber, and Christof Fetzer.
Haft: hardware-assisted fault tolerance. In Proceedings of the Eleventh European
Conference on Computer Systems, page 25. ACM, 2016.

[108] Kim Laine. Simple encrypted arithmetic library
2.3. 1. Microsoft Research https://www. microsoft.
com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1. pdf, 2017.

[109] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
and Radu Soricut. Albert: A lite bert for self-supervised learning of language repre-
sentations. arXiv preprint arXiv:1909.11942, 2019.

[110] Jean-Claude Laprie. Dependable computing and fault-tolerance. Digest of Papers
FTCS-15, pages 2–11, 1985.

[111] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryption
on approximate numbers. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 648–677. Springer, 2021.

[112] Dong Li, Jeffrey S Vetter, and Weikuan Yu. Classifying soft error vulnerabil-
ities in extreme-scale scientific applications using a binary instrumentation tool.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, page 57. IEEE Computer Society Press, 2012.

[113] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik Pat-
tabiraman, Joel Emer, and Stephen W Keckler. Understanding error propagation in
deep learning neural network (DNN) accelerators and applications. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, page 8. ACM, 2017.

[114] Sihuan Li, Hongbo Li, Xin Liang, Jieyang Chen, Elisabeth Giem, Kaiming Ouyang,
Kai Zhao, Sheng Di, Franck Cappello, and Zizhong Chen. FT-iSort: efficient fault
tolerance for introsort. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, page 71. ACM, 2019.

[115] Xin Liang, Jieyang Chen, Dingwen Tao, Sihuan Li, Panruo Wu, Hongbo Li, Kaiming
Ouyang, Yuanlai Liu, Fengguang Song, and Zizhong Chen. Correcting soft errors
online in fast Fourier transform. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, page 30. ACM,
2017.

[116] JH Lim, HK Kim, and YK Kim. Recent r&d trends for pretrained language model.
Electronics and Telecommunications Trends, 35(3):9–19, 2020.

[117] Liyuan Liu, Jialu Liu, and Jiawei Han. Multi-head or single-head? an empirical
comparison for transformer training. arXiv preprint arXiv:2106.09650, 2021.

147



[118] Patrick Longa and Michael Naehrig. Speeding up the number theoretic transform for
faster ideal lattice-based cryptography. In International Conference on Cryptology
and Network Security, pages 124–139. Springer, 2016.
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