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Monocytes are crucial regulators of inflammation, and are characterized by three distinct
subsets in humans, of which classical and non-classical are the most abundant. Different
subsets carry out different functions and have been previously associated with multiple
inflammatory conditions. Dissecting the contribution of different monocyte subsets to
disease is currently limited by samples and cohorts, often resulting in underpowered
studies and poor reproducibility. Publicly available transcriptome profiles provide an
alternative source of data characterized by high statistical power and real-world
heterogeneity. However, most transcriptome datasets profile bulk blood or tissue
samples, requiring the use of in silico approaches to quantify changes in cell levels.
Here, we integrated 853 publicly available microarray expression profiles of sorted human
monocyte subsets from 45 independent studies to identify robust and parsimonious gene
expression signatures, consisting of 10 genes specific to each subset. These signatures
maintain their accuracy regardless of disease state in an independent cohort profiled by
RNA-sequencing and are specific to their respective subset when compared to other
immune cells from both myeloid and lymphoid lineages profiled across 6160
transcriptome profiles. Consequently, we show that these signatures can be used to
quantify changes in monocyte subsets levels in expression profiles from patients in clinical
trials. Finally, we show that proteins encoded by our signature genes can be used in
cytometry-based assays to specifically sort monocyte subsets. Our results demonstrate
the robustness, versatility, and utility of our computational approach and provide a
framework for the discovery of new cellular markers.
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HIGHLIGHTS

• By integrating public expression data, we have developed gene
signatures to monitor monocyte subset levels in human gene
expression datasets

• Our signatures are accurate irrespective of biological and
technical confounders and can be used as new markers in
cytometry experiments
INTRODUCTION

Monocytes, together with macrophages and dendritic cells
(DCs), are part of the mononuclear phagocyte system.
Monocytes and monocyte-derived cells play important roles in
the regulation of inflammation, both as precursors as well as
effector cells (1–3). Monocytes are a heterogeneous group of
cells, and since Passlick and colleagues showed that the
combined use of CD16 (FcgRIII) and the LPS co-receptor
CD14 identified distinct subsets of monocytes in humans (4),
three major subsets have been defined, as well as their murine
counterparts. These subsets are: a classical (CD14+CD16- in
humans and Ly6Chi in mice), a nonclassical (CD14-CD16+ in
humans and Ly6Clo in mice), and an intermediate subset
(CD14+CD16+ in humans and Ly6C+Treml4+ in mice) (5–7).
Although plasticity is an important characteristic of monocytes
(8, 9), surface marker expression and functional studies have
shown each monocyte subset to be functionally distinct.
Consistent with this, transcriptome analyses of sorted
monocyte subsets have revealed different gene expression
profiles ascribed to each subset (7, 10, 11). Classical
monocytes, around 90% of total monocytes in humans, are
efficient phagocytic cells important for the initiation of
inflammatory response, with high expression of scavenger and
chemokine receptors, and elevated cytokine production (12, 13).
Earlier work on nonclassical monocytes, around 5% of total
monocytes, emphasized their capacity to produce inflammatory
cytokines, especially TNF (14). However, recent work has shown
that nonclassical monocytes are also involved in immune
surveillance of the vasculature and have pro- and anti-
inflammatory functions (9, 15). Intermediate monocytes are
considered efficient antigen presenting cells (12). Consequently,
altered frequencies of different subsets have been associated with
inflammatory conditions, such as infections and autoimmune
disorders including lupus, rheumatoid arthritis, and
inflammatory bowel disease (13, 16–19), and more recently,
COVID-19 (20, 21).

Dissecting the contribution of different monocyte subsets to
disease is currently limited by samples and cohorts that can be
profiled experimentally using cytometry and cell-staining-based
assays. These limitations often result in underpowered studies
and, consequently, poor reproducibility (22). Public
transcriptomes provide an alternative source of data
characterized by high statistical power and real-world
biological, clinical, and technical heterogeneity, resulting in
Frontiers in Immunology | www.frontiersin.org 2
increased reproducibility (23–30). However, most transcriptome
datasets profile bulk blood or tissue samples, requiring the use of
in silico approaches to quantify changes in the levels of specific
cell types (31–36).

Here, we integrated 853 publicly available microarray
expression profiles of sorted human monocyte subsets from 45
independent studies to identify robust and parsimonious gene
expression signatures, consisting of 10 genes specific to each
subset. These signatures, although derived using only datasets
profiling healthy individuals, maintain their accuracy
independent of the disease state in an independent cohort
profiled by RNA-sequencing. Furthermore, we demonstrate
that these signatures are specific to monocyte subsets
compared to other immune cells such as B, T, dendritic cells
(DCs) and natural killer (NK) cells. This increased specificity
results in estimated monocyte subset levels that are strongly
correlated with cytometry-based quantification of cellular
subsets. Consequently, we show that these monocyte subset-
specific signatures can be used to quantify changes in monocyte
subsets levels in expression profiles from patients in clinical
trials. Finally, we show that proteins encoded by our signature
genes can be used in cytometry-based assays to specifically sort
monocyte subsets. Our results demonstrate the robustness,
versatility, and utility of our computational approach and
provide a framework for the discovery of new cellular markers.
METHODS

Public Data Collection, Annotation,
and Analysis
Unless otherwise noted, we obtained all gene expression data used
in this study from the Gene Expression Omnibus (GEO) database
(www.ncbi.nlm.nih.gov/geo/) using theMetaIntegrator R package
from CRAN (35) (Supplemental Table 1). All data was
manually annotated using the available expression metadata.
We normalized each expression dataset using quantile
normalization and computed gene-level expression from probe-
level data using the original probe annotation files available from
GEO as described previously (31). We performed co-
normalization, effect size calculation, and gene ranking as
previously described (31). We performed gene set selection to
identify parsimonious gene signatures using the following criteria:
(a) we ranked genes based on effect size (b) we filtered genes that
were up-regulated in the cell subset of interest (c) we filtered
genes with a mean expression difference of 32 expression units or
above (d) We selected the top 10 genes for each subset. We chose
these criteria to increase the likelihood of successful independent
experimental validation of each marker gene. Signature scores
were computed by calculating the geometric mean of expression
levels of the signature genes in the dataset of interest, as described
previously (17–23). All follow-up analyses were performed using
R (v. 3.4.1). Analysis scripts are included as Supplemental
Materials and available online here (https://www.biorxiv.org/
content/biorxiv/early/2020/12/22/2020.12.21.423397/DC1/
embed/media-1.gz?download=true).
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Pathway Analysis
We performed gene set enrichment analysis (GSEA) as previously
described (37). Briefly, for each monocyte subset we computed an
effect size vector across all genes as described above. We then
applied GSEA to the effect size vectors by comparing to MSigDB,
a collection of molecular signatures derived from pathway
analysis databases and published molecular data (http://
software.broadinstitute.org/gsea/msigdb/index.jsp). We
corrected for multiple hypothesis testing across all pathways
using Benjamini-Hochberg’s FDR correction. We performed
this analysis using the ‘fgsea’ and ‘MSigDB’ packages in R.

Samples
For the monocyte sorting and expression profiling, de-identified
blood samples from 3 healthy adult donors were obtained from
the Stanford Blood Center (SBC) and from 3 Rheumatoid
Arthritis (RA) patients at UCSF (Supplemental Table 6). For
the flow cytometry, 8 de-identified blood samples from healthy
adults from the SBC, and 12 samples from patients with Systemic
Juvenile Idiopathic Arthritis from Lucille Packard Children’s
Hospital were tested (Supplemental Table 7). The work was
conducted with approval from the Administrative Panels on
Human Subjects Research from Stanford University and UCSF.

Fluorescent-Activated Cell Sorting
of Monocytes
Venous blood from healthy controls and RA patients was
collected in heparin tubes (BD Vacutainer, BD, Franklin Lakes,
NJ); peripheral blood mononuclear cells (PBMCs) were isolated
by density gradient centrifugation using LSM Lymphocyte
Separation Medium (MP Biomedicals, Santa Ana, CA). PBMCs
were enriched for total monocytes using the Pan Monocyte
Isolation Kit (Miltenyi Biotech, San Diego, CA). Enriched
monocytes were stained for surface antigens as previously
described (38). Briefly, cells were stained with LIVE/DEAD
Fixable Aqua Dead Cell Stain (Life Technologies, Eugene, OR).
Antibodies against CD3, CD19, CD56, and CD66b, all labeled
with PercpCy5.5, were used to exclude T cells, B cells, NK cells,
and neutrophils respectively (‘dump’); antibodies against CD1c
and CD141 were used to identify and exclude dendritic cells.
Antibodies against HLA-DR-APC Cy7 (clone L243), CD14-
Pacific Blue (clone M5E2), and CD16-PE Cy7 (clone 3G8)
were used to identify monocytes and their three subsets. All
antibodies are from Biolegend (San Diego, CA). Fluorescence
minus one (FMO) were used as control for gating cell
populations. Sterile flow cytometry sorting was performed
using a BD FACSAria II (BD Biosciences) at the Stanford
Shared FACS Facility (SSFF) using a 100uM nozzle, yielding
monocyte subset purity of over 98% (verified using the classical
subset). Sorted cells were collected into polypropylene tubes
containing RPMI media (RPMI+10% Heat inactivated Fetal
Bovine Serum +1% Penicillin Streptomycin), counted and spun
down for total RNA extraction.

Total RNA Extraction and RNA-Seq
Total RNA extraction was performed using the Qiagen RNeasy
Micro kit (Qiagen, Germantown, MD). Total RNA
Frontiers in Immunology | www.frontiersin.org 3
concentration and quality were determined using a NanoDrop
1000 Spectrophotometer (ThermoFisher Scientific, Waltham,
MA) and a BioAnalyzer 2100 (Agilent Technologies, Santa
Clara, CA) at the Stanford PAN Facility. RNA sequencing
(RNA-seq) was performed by BGI Americas (Cambridge, MA).
The total RNA was enriched for mRNA using oligo(dT), and the
RNA was fragmented. cDNA synthesis was performed using
random hexamers as primers. After purification and end
reparation, the short fragments were connected with adapters.
The suitable fragments were selected for PCR amplification. The
library was then sequenced using Ilumina HiSeq 2000.

Gene Expression by Real Time RT-PCR
Total RNA from sorted monocytes was converted into cDNA
using the iScript Reverse Transcription Supermix (Bio-Rad,
Hercules, CA), and cDNA was amplified with SsoAdvanced™

SYBR® Green Supermix (Bio-Rad); reactions were performed in
a CFX384 real time PCR instrument (Bio-Rad). Primers
sequences were obtained from qPrimerDepot (http://
primerdepot.nci.nih.gov/), synthesized at the Stanford
University Protein and Nucleic Acid Facility (PAN) and
validated in our laboratory as previously described (39) using
unsorted total monocytes. Primers are listed on Supplemental
Table 8. Relative starting amounts of each gene of interest were
determined using the delta delta Cq method.

Flow Cytometry
PBMCs were isolated by density gradient centrifugation; healthy
donors cells were treated with ACK lysing buffer (Thermo
Fisher) to lyse red blood cells (RBCs). Cells were frozen in 10%
DMSO/10% heat inactivated (HI) human AB serum (Corning)
for later flow cytometry staining. Frozen PBMC were thawed in
RPMI 1640 with 10% HI AB human serum. The cells were
washed with DPBS before staining with LIVE/DEAD Aqua
(1:1000 dilution in PBS, ThermoFisher Scientific) for 10 min at
room temperature. Cells were then washed with flow buffer
(DPBS supplemented with 1% BSA and 0.02% NaN3) before
blocking for nonspecific binding with flow buffer containing 5%
heat inactivated AB serum (Corning), 5% goat serum
(ThermoFisher Scientific), 0.5% mouse serum, and 0.5% rat
serum for 15 min on ice. After blocking, cells were stained on
ice for 30 min with the following fluorochrome-conjugated
antibodies in a 12-color staining combination: APC anti-
IL17RA (clone W15177A, BIolegend) at 1:50; APC-
Vio770anti-CD32 (clone 2E1, Miltenyi Biotec) at 1:100;FITC
anti-CD16 (clone 3G8, Biolegend) at 1:20; PerCP/Cy5.5 anti-
CD114 (cloneLMM741, Biolegend) at 1: 20; Brilliant Violet 605
anti-Siglec 10 (clone 5G6, BD) at 1:20; Brilliant Violet 785 anti-
CD14 (clone M5E2, Biolegend)at 1:50; PE anti-GPR183 (clone
SA313E4, Biolegend)at 1:20; PE-CF594 anti-CD13 (clone VM15,
BD)at 1: 20; PE/Cy7 anti-HLA-DR (clone L243, Biolegend) at
1:50; BUV395 anti-CD36 (clone CB38, BD) at 1:50. Alexa 700
dump channel includes anti-CD3 (clone UCHT1, Biolegend) at
1:300, anti-CD19 (clone HIB19, Biolegend) at 1:300, anti-CD56
(clone HCD56, Biolegend)at 1:300, anti-CD1c (clone L161,
Biolegend)at 1:150, anti-CD66b (clone G10F5, Biolegend) at
1:150, anti-CD141 (clone 501733, Novus Biologicals) at 1:150.
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After wash, cells were fixed with 200 ml fixation buffer (Cytofix,
BD Biosciences) followed by 2 washes with flow buffer and
resuspensionin 200 ml flow buffer. Cells were analyzed on a
Becton Dickinson LSRII Analyzer at Stanford Shared FACS
facility. Data were analyzed using FlowJo version 10
(FlowJo LLC).
RESULTS

Robust Subset-Specific Monocyte
Signatures From Heterogeneous Gene
Expression Datasets
We hypothesized that integrating heterogeneous transcriptome
profiles of sorted human monocyte subsets across multiple
cohorts would allow us to identify robust subset-specific gene
expression signatures. To test this hypothesis, we collected and
annotated 853 publicly available gene expression profiles of
sorted human monocytes across 45 studies. These datasets
spanned 22 microarray platforms for transcriptome profiling of
samples acquired from healthy donors (Supplemental Table 1).
After sample annotation, we co-normalized and integrated all
expression data as previously described (31) (Figure 1). For each
gene, we calculated effect sizes as Hedge’s g between the samples
from a cell subset of interest compared to all other samples. We
then characterized the underlying biological functions
represented within the transcriptional data for each monocyte
subset by performing Gene Set Enrichment Analysis (GSEA)
(see Methods). We identified 91 significantly enriched pathways
in classical monocytes and 1737 for the nonclassical subset
Frontiers in Immunology | www.frontiersin.org 4
(FDR < 5%). Our analysis revealed pathways associated with
known functions of classical monocytes, such as wound healing,
cytoskeleton remodeling, and phagocytosis, positively enriched
in the classical subset (Supplemental Table 2). In contrast, our
analysis of the nonclassical subset revealed categories of disease-
associated gene expression changes, cell cycle, and metabolism
(Supplemental Table 3). Notably, our most significant
enrichment consisted of a gene signature previously reported
to be down-regulated in Alzheimer’s Disease (pathway:
‘BLALOCK_ALZHEIMERS_DISEASE_DN’, p = 9.9e-6). This
is in agreement with previous reports showing that nonclassical
monocytes are found to be reduced in patients affected by
Alzheimer’s (40). These results suggest that our data
integration strategy allowed us to preserve and capture
previously described biological functions of monocyte subsets
irrespective of technical and biological confounders within our
collection of datasets. We then applied our multi-cohort analysis
framework to identify robust cell-subset specific genes (see
Methods) (23, 31, 41). We considered classical and
nonclassical monocyte subsets for our analysis because of their
functional importance and the number of available datasets for
each subset that could be integrated into our analysis (n>=4).
There were 30 genes significantly over-expressed in classical
monocytes and 268 genes over-expressed in nonclassical
monocytes. We created classical and nonclassical monocyte
specific gene signatures using the top 10 genes for each
monocyte subset that were consistently elevated within the
subset of interest across all our discovery cohorts (Figures
2A, B and Supplemental Table 4). Among the classical
signature genes, five have been previously associated with the
classical monocytes in a single-cell RNA-seq study of healthy
FIGURE 1 | Generation of monocyte-specific signatures: Workflow depicting collection and annotation of publicly available discovery datasets from NCBI GEO
profiling sorted human monocyte cell subsets (classical and non classical). Data was the combined and co-normalized to identify subset-specific signatures.
Signatures were validated on a independent RNA-seq chohort, and on PBMCs expression profiles with paired flow data. After validation, signatures were applied on
disease-affected cohorts and tested for their viability as phenotypic markers in cytometry-based assays.
May 2021 | Volume 12 | Article 659255
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monocytes, and SIGLEC10 was identified in non-classical
monocytes as well (42).

Monocyte Signatures Are Robust in an
Independent Validation Cohort and
Independent of Disease State
Although the gene signatures for classical and non-classical
monocytes were derived by integrating independent datasets
with substantial technical and biological heterogeneity, they only
included healthy human subjects. We have previously shown that
the accuracy of cell-type specific genes can be significantly affected
by disease-induced changes in gene expression (31). Therefore, we
investigated whether these monocyte subset-specific signatures
are confounded by disease state in an independent cohort of
healthy controls (n=3) and patients with rheumatoid arthritis
(RA; n=3). We sorted monocyte subsets (classical, nonclassical,
and intermediate) from peripheral blood samples and measured
their transcriptomic profile using RNA-seq (see Materials
and Methods).
Frontiers in Immunology | www.frontiersin.org 5
Hierarchical clustering of the RNA-seq data using all genes in
our monocyte subset-specific signatures accurately separated
samples according to their cell subset identity, but not by their
disease status (Figure 3A). Importantly, the signature genes
showed variable expression levels in the intermediate
monocytes, suggesting that the intermediate monocytes may
represent a transitional cellular state rather than a stable state.
All genes except two from the non-classical monocyte signature,
(IER2 and CTSA), were correctly over-expressed in their
respective subset, and most (15 of 20) were independently
confirmed by RT-PCR in sorted monocytes from healthy
controls and patients with RA (Supplemental Figure 1). Next,
we defined a classical monocyte subset score (cMSS) of a sample
as a geometric mean of expression of genes in classical
monocyte-specific signature, and nonclassical monocyte subset
score (ncMSS) of a sample as a geometric mean of expression of
genes in nonclassical monocyte-specific signature. We computed
cMSS and ncMSS for each sample. In the independent cohort of
healthy controls and patients with RA, we found that cMSS was
A B

FIGURE 2 | Identification of monocyte-subset specific gene expression signature: (A) Forest plots displaying genes specific to the classical monocyte subset in the
discovery cohort. Dots indicate Hedge’s g effect size values and bars correspond to their standards errors. (B) Same as (A) but for non classical subset.
A B C

FIGURE 3 | Subset-specific genes are independent of disease state: (A) Heat-map showing expression of subset signature genes (rows) on sorted human
monocytes (columns) from independent RNA-seq validation. Samples are labeled by cell type and disease state. (B) Bee-swarm plots displaying classical monocyte
signature (cMSS) scores across monocyte subsets and disease condition. Significance was computed by t-test. (C) Same as (B) for non-classical monocyte subset
signature (ncMSS) scores.
May 2021 | Volume 12 | Article 659255
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higher in classical monocytes compared to nonclassical
monocytes (p=3e-6), whereas ncMSS was higher in
nonclassical monocytes compared to the classical subset
(p=2.7e-6) (Figures 3B, C). Both scores identified their
respective monocyte subset with high accuracy irrespective of
the disease state of the sample (AUROC=1; Supplemental
Figure 2), although IER2 and CTSA were expressed in
opposite directions. Importantly, cMSS and ncMSS for
intermediate monocytes possessed scores between those of
classical and non-classical monocytes (cMSS: intermediate vs
classical p-value = 7.4e-4; intermediate vs non-classical p-value =
3.4e-4) (ncMSS: intermediate vs classical p-value = 1.5e-3;
intermediate vs non-classical p-value = 9.9e-3) (Figures 3B, C).
Overall, our results provide further independent evidence that
our monocyte subset-specific signatures are consistently accurate
across healthy and disease-affected samples.

Monocyte Signatures Are Highly Specific
Across All Immune Cells
Although our transcriptional signatures are accurate and specific
within monocyte subsets, irrespective of disease state and gene
expression platform, they were obtained using gene expression
data solely derived from monocytes. Therefore, we asked
whether our signatures maintained their specificity and
accuracy when compared across all immune cell lineages,
including B cells, T cells, NK cells. This is important, as their
direct application to blood or biopsy-derived expression profiles,
which contain multiple and diverse cell populations, would
otherwise produce confounded results (43). To answer this
question, we compared effect sizes for each gene in our
monocyte subset signatures across 20 sorted human immune
cell types using 6160 transcriptomes from across 42 different
microarray platforms described before (31). Hierarchical
clustering of Hedge’s g effect sizes (see Methods) of the genes
in monocyte subset-specific signatures distinguished myeloid
Frontiers in Immunology | www.frontiersin.org 6
and lymphoid lineages (Supplemental Figure 3). Further,
within the myeloid cluster, both CD14+ and CD16+ subsets
clustered separately from other myeloid cells (Supplemental
Figure 3). Next, we calculated cMSS and ncMSS scores for
each sample and evaluated their ability to accurately
distinguish each subset among all immune cells. As expected,
cMSS scores were significantly higher in classical monocytes
compared to nonclassical monocytes (t-test p=1.2e-7) and other
immune cell types (t-test p<2.2e-16, Figure 4A). Similarly,
ncMSS were significantly higher in nonclassical monocytes
compared to classical monocytes (t-test p=4.6e-9) and other
immune cell types (t-test p<2.2e-16, Figure 4B). Furthermore,
we observed high classification accuracy across both signatures
(cMSS AUROC = 0.88; 95% CI: 0.87-0.89; ncMSS AUROC =
0.87; 95% CI: 0.83-0.91; Supplemental Figure 4), indicative of
their specificity across all immune cells.

Monocyte Signatures Reveal Changes
Associated With Disease and Treatment
Next, we hypothesized that monocyte subset-specific signatures
and their corresponding scores, cMSS and ncMSS, could be used
to monitor changes in proportions of monocyte subset levels
associated with disease. To test this hypothesis, we analyzed
transcriptome profiles of whole blood samples (GSE93272) from
healthy controls (n=43) and patients with RA (n=232) (44). We
computed cMSS and ncMSS for each sample. We observed a
significant increase in both cMSS (p = 4.2e-4) and ncMSS (p =
4.4e-8) in RA-patients compared to healthy controls, which is in
line with increased monocyte proportion in patients with RA
that has been previously observed (Figure 5A) (45). Finally, we
assessed whether our signatures could detect changes in cellular
composition induced by treatment. To this end, we analyzed a
longitudinal dataset, GSE80060, profiling whole blood samples of
patients affected by sJIA before and after treatment with
canakinumab, a monoclonal antibody against IL-1 beta.
A B

FIGURE 4 | Monocyte signatures are specific across all immune cells: (A) Beeswarm plots displaying cMSS scores across 6160 transcriptomes profiling sorted
human immune cells. Colors indicate whether a sample is a classical, non-classical monocyte, or any other immune cell. P-values were computed by t-test.
(B) Same as (A) with respect to ncMSS.
May 2021 | Volume 12 | Article 659255
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Changes in levels of circulating monocytes in sJIA have been
described, with higher levels during active disease (46, 47). When
comparing pre- and post-treatment samples, we measured a
significant decrease in both classical (p = 2.9e-12) and non-
classical (p = 1.5e-6) signatures post-treatment irrespective of
response (Figure 5B). Our results indicate that our signatures
can be used to specifically monitor changes in monocyte subsets
occurring during disease and treatment.

Validation of Monocyte Signature Genes
as Novel Cell Surface Markers for Subset
Quantification Using Cytometry
Cell type-specific gene signatures have been shown to enable
accurate in silico estimation of corresponding cell types from
expression data of mixed-cell samples, such as whole blood or
peripheral blood mononuclear cells (PBMCs) (31). We therefore
tested whether these signatures could be used to accurately
quantify monocyte subsets within human samples by using
publicly available expression profiles from healthy human
PBMCs with paired flow-cytometry [GSE65316 (48)]. We
indeed found the cMSS to be strongly and significantly
correlated with cytometry-measured monocyte proportions
across all samples (r = 0.69, p = 6.7e-4; Figure 6).

Next, we hypothesized that our large-scale transcriptome
analysis would enable identification of cell surface markers to
improve cellular phenotyping by cytometry using FACS or
CyTOF. To test this hypothesis, we selected an extended set of
genes that were significantly highly expressed in either classical
or non-classical monocytes in both discovery and validation
samples with an absolute effect size ≥ 1, had documented surface
expression, and for which an antibody for follow-up protein
quantification by cytometry was commercially available
(Supplemental Table 5). We selected CD114 (gene name:
CSF3R, ES=-1.28, p=2.84e-7), CD32 (gene name: FCGR2A,
ES=-1.21, p=9.48e-7), CD36 (ES=-1.17, p=3.63e-6), and
IL17RA (ES=-1.10, p=4.39e-6) as markers with higher
expression in classical monocytes, and SIGLEC10 (ES=4.93,
p=2.2e-70) as a marker with higher expression in nonclassical
monocytes compared to classical monocytes (Figures 7A, B).
Frontiers in Immunology | www.frontiersin.org 7
We profiled cell surface proteins corresponding to these
differentially expressed genes in PBMCs from healthy adult
donors (n=8) and pediatric patients with sJIA (n=12). In both
healthy adults and sJIA subjects, expression of the selected
markers was higher in the corresponding monocyte subset, as
predicted by transcriptome analysis (Figures 7C, D) and
Supplemental Figure 5). All of our predicted proteins had
significantly different levels between classical and nonclassical
monocytes on the cell surface in both healthy controls and sJIA
patients (p<0.05).

In summary, we have developed monocyte subset-specific
robust and parsimonious gene expression signatures. Our results
highlight their specificity and accuracy irrespective of technical
and biological confounders and show their utility in translational
applications. More importantly, our approach demonstrates that
genes differentially expressed between two groups despite
biological and technical heterogeneity across multiple
independent datasets can be robust differentiators of the two
groups at the protein level as well.
DISCUSSION

Here, we describe the generation and application of robust and
parsimonious gene expression signatures to accurately and
specifically quantify changes in monocyte subset levels from
existing publicly available datasets. Our analysis presented here
builds upon an existing framework that was previously applied to
create a new and unbiased basis matrix for cell-mixture
deconvolution of gene expression data. By applying this
computational framework that integrates existing heterogeneous
public expression data from sorted human monocytes, we
identified gene signatures for the classical and nonclassical
subsets, each consisting of ten over-expressed genes. We then
validated our signatures using transcriptome profiles of 6661
sorted immune cell samples across 168 studies, including
samples from patients with various diseases to demonstrate
their generalizability despite biological, clinical, and technical
heterogeneity. In addition, we profiled two independent
A B

FIGURE 5 | Monocyte subset signatures reveal specific changes in immune cell-composition in disease and treatment: (A) Increase in monocyte levels in
Rheumatoid Arthritis (RA) patients compared to healthy controls. Significance measured by Wilcoxon’s Rank Sum Test. (B) Reduction in monocyte after
Canakinumab treatment of SJIA patients independently of response. Significance measured by Wilcoxon’s Rank Sum Test.
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validation cohorts by RNA-seq and flow-cytometry, respectively,
to validate our signatures at the individual gene level.

Our current work differs from previous efforts in several
meaningful ways: First, our previous work on deconvolution
aimed at building a basis matrix, immunoStates, that would
account for 20 immune cell types. As a result, immunoStates is
composed of more than 300 genes, and is applied in its entirety to
deconvolve a sample of interest. Other studies, such as the one by
Monaco et al. (36), established deconvolution approaches to
quantify different cell types with high accuracy, as they rely on
larger gene sets and statistical approaches tailored toward a
specific data type or platform (e.g., RNA-seq).

In contrast, here we focused on creating cell-type specific
signatures consisting of only a small set of genes to be used
independent of any other signatures or deconvolution
framework, while retaining high specificity and accuracy across
multiple platforms. This strategy allows the researcher to
specifically measure our parsimonious signature genes in a
sample of interest using targeted assays such as qPCR or
nanoString, which can be useful and cost-effective in pilot
studies and clinical settings and is therefore complementary to
tailored deconvolution approaches (36).

Second, our current gene selection strategy was chosen to
prioritize genes that could be easily used as individual biomarkers
Frontiers in Immunology | www.frontiersin.org 8
for cytometry-based assays. Such strategies take into account the
directionality of the markers and their expression difference, to
increase the likelihood of validation by flow-cytometry. Indeed, a
number of genes in our signatures correspond to surface markers
with commercially available antibodies. Using this set of markers,
we confirmed the subset specificity of the markers in both healthy
and disease samples at the protein level. Among the markers
identified and validated by flow cytometry, only CD16 and CD36,
in addition to CD14 and HLA-DR, have been commonly used to
identify monocyte subsets (49, 50). The additional markers we
identified could thus be potentially useful in further probing the
heterogeneity of monocyte subsets, as revealed by recent studies
utilizing the high dimensionality of mass cytometry and single cell
sequencing to tease out the heterogeneity of the human monocyte
population (42, 43, 51).

Finally, our analysis leveraged only samples profiled from
healthy individuals, whereas our previous work included
expression data from disease-affected samples as well. Our
rationale for this decision was based on having on average 22
studies per targeted cell type in our discovery set, which triples
both the statistical power and the amount of accounted
heterogeneity in this study compared to our previous work [8
studies per cell type, (31)]. We hypothesized these increases
would result in more robust signatures, and our validation
FIGURE 6 | Monocyte signature quantifies monocytes in PBMC by flow-cytometry: Correlation between cMSS score and measured monocyte fraction by flow-
cytometry from healthy PBC<s measured in GSE65136. Y-axis indicates measured cellular proportions by flow-cytometry, X-axis indicates cMSS score for the same
samples. Correlation and significance are computed by calculating Pearson’s correlation coefficient.
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cohort validated our signatures irrespective of disease state.
Analysis of our cohort also revealed that the expression levels
of our signature scores in intermediate monocytes were
intermediate between the classical and non-classical subsets. It
has long been debated whether intermediate monocytes exist as a
stable subset or represent a transitional state between classical and
non-classical monocytes (52). Another alternative, not necessarily
mutually exclusive, is that intermediate monocytes may comprise
a heterogeneous cell mix (42, 53). Our results are consistent with
evidence that human intermediate monocytes, like similar cells in
mice (54) are an intermediate, transitory subset between classical
and non-classical monocytes rather than a fixed, independent
population (55). To test this hypothesis, we generated an
additional expression signature from our discovery data,
identifying genes that could specifically distinguish intermediate
monocytes compared to all other subsets. Using the same
criteria applied for the other signatures, we identified 10 genes
that accurately distinguished intermediate monocytes from all
other subsets (ATG2A, ATP50, DX39A, EVL, GPR183, LPCAT1,
POU2F2,TSC22D4,ZNF14,ARHGAP27, Supplemental Figure 6).
Unlike our previous signatures, we did not observe a good
distinction of intermediate monocyte samples, neither in our own
discovery set, nor in our validation cohort. Similarly, although gene
expression analysis, both frommicroarray aswell as from single cell
RNA-seq analysis, generally support the concept of genetically
separate three monocyte subsets, the exact nature of the
intermediate subset, and its relationship to other monocyte
subsets, could not be fully determined (56).
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Our work has several limitations. First, our discovery data sets
consist exclusively of microarray datasets, which can limit the
number and type of cell-type specific markers that can be
discovered compared to sequencing-based transcriptome
profiling. This is particularly relevant in the context of
intermediate monocytes. For example, HLA-DM has been
identified as a strong discriminating marker that separates the
intermediate subset from classical and non-classical (37).
However, this marker is not usually profiled on microarrays,
limiting our discovery potential. Secondly, we identified our
signature genes by simply selecting the top 10 from a ranked
list. While this approach is simple and intuitive, it prevents the
consideration of other high-ranking genes as potential biomarkers.
This potential can be explored in future work, where additional
gene set selection strategies can be applied to this data.

Finally, to increase robustness and power of our signatures,
our work leverages solely transcriptomic data without accounting
for differences occurring post-transcriptionally that may affect
final protein levels (57). This concern is especially relevant when
translating our results into cytometry/staining based assays that
leverage protein expression of surface markers. To this date, high-
throughput proteomics data is limited by technical constraints on
the number of protein markers that can be simultaneously
profiled on a single sample. Advances in mass-cytometry based
techniques can in principle extend our ability to profile multiple
markers expressed in a single-cell (58), as well as proteomics (59),
but at scales substantially lower than transcriptomics-based
assays. In conclusion, we present a collection of robust and
A B

DC

FIGURE 7 | Monocyte signature genes distinguish monocyte subsets by flow-cytometry: (A) mRNA expression effect sizes comparing classical vs. non-classical
subsets in both discovery and validation cohorts for each marker associated with classical monocytes (lower effect sizes values indicate higher expression in classical
monocytes). (C) Same as (A) but for markers associated with non-classical monocytes (higher effect size values indicate higher expression in non-classical
monocytes). (C) Monocyte subsets were manually gated using FlowJo software. Data shown are geometric mean fluorescene intensity (gmean) in both healthy (top
row) and sJIA patients (bottom row). Comparisons made using T-test unpaired unless specified for markers associated with classical monocytes. (D) Same as (cs)
for markers associated with non-classical monocytes.
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parsimonious gene expression signatures that can distinguish and
quantify monocyte subsets across disease affected samples and
can be used to identify cytometry biomarkers. Our work provides
several applications and highlights the potential for our signatures
and markers to be used in clinical and translational settings.
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