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Abstract

A pressing issue in both psychology and agent-modeling com-
munities is the inability to account for the wide variance in hu-
man variability and individual differences. Added to this is the
further complexity of changing goals and social meaning in a
dynamic, sequential interaction. While prior work on artificial
agent design has prominently addressed physical cues and non-
verbal behavior, there is a lack of emphasis on (1) examining
cues in combination, and (2) assessing judgments of social sit-
uational meaning. In the current work, we present an ontology
of physical behavior (Social Kinematics) that accounts for the
combinatorial effects of multiple cues, as well as the changing
social meaning associated with these different combinations of
cues. Here, we assess individuals social situational judgments
of multiple combinations of ambiguously-defined virtual agent
animations. Ultimately, this paper provides a potentially useful
framework that has relevance for researchers in social robotics,
agent modeling, and cognitive science.

Keywords: Nonverbal behavior; Social perception; Virtual
agents; Situations; Motivation systems.

Introduction
As humans, we are constantly evaluating and re-evaluating
social information about others. Is this a friend or foe? At-
traction or threat? A subtle glance, a stiffening posture, a
quickening gait - Each are basic human physical actions that
progressively bring clarity to perceptions of individuals’ emo-
tional states and intentions.

How then, do humans generate and distinguish between the
social meanings attached to different physical movements?
For instance, under which parameters does a particular prox-
emic distance shift in social meaning from friendly to threat-
ening? How might we systematically define and measure
these parameters in isolation, as well as in combination?

To address these questions, we take the following steps: (1)
First, we present 4 primary categories of physical movement
cues: distance, direction, speed, and gaze. (2) Next, we use
animated virtual agents to simulate these 4 categories. A criti-
cal point here is that we attempt to offer a ”sterilized” contex-
tual framework in the presentation of the virtual agents. That
is, a completely ambiguous and undefined context: We pro-
vide no social context or narrative description, we present the
virtual agents upon a ”neutral” blank/white backdrop, and we
present the virtual agents’ facial expressions as neutral and
blank. (3) Finally, we assess individuals’ evaluations of these
animated combinations of physical cues.

Related Work
The current work builds on existing work using virtual agents
to systematically examine human physical movement, while

addressing two gaps in the literature, namely the (1) account-
ing of cues in combination, and (2) the mapping of cues to
situational social meaning. Before elaborating on these two
points however (See ”Virtual Agents”), we first provide a re-
view of prior work on physical cues and situational social
meaning in the study of human behavior.

Human Behavior
Physical Cues Interest in social perception of movement
has its roots in work using animated movements of abstract
shapes (e.g., triangles, squares) conducted by Heider and
Simmel (1944). That work involved understanding if and
when humans respond to inanimate entities (e.g., robots, and
intelligent agents) as if they have intentions and goals.

Locomotive movement The Heider-Simmel simulation is
impacted by features of locomotive movement, such as
changes in speed and trajectory, which correlate with greater
perceptions on animacy, and distance and degree of move-
ments, which correlate with intention (Roux et al., 2013).
Moreover, features such as position, velocity, and accelera-
tion of geometric shapes predict event (narrative) segmenta-
tion (Zacks, 2004). Further, walking behavior depictions of
human ”biological motion” (Johansson, 1973) is considered
an intentional (Baron-Cohen et al., 1995; Carey, 1999), goal-
directed movement (Dittrich, 1993). As such, we conceptu-
alize distance (position), direction (trajectory), and speed as
mechanical features of social kinematics.

Nonverbal Behavior Additional categories of physical
movement include the nonverbal behavior cues of proxemics,
gesture, and gaze. Proxemics, or social distance, (Hall, 1966),
has figured prominently in designing virtual humans (Bailen-
son et al., 2001, 2003) , and social robots (Mumm & Mutlu,
2011; Walters et al., 2009). Gesture and gaze are unique non-
verbal behaviors in that they involve more refined cues than
the locomotion or position of the body. While the function
and utility of certain gestures (emblems that are symbolic) are
largely culturally-specific and socially learned (illustrators
that augment speech), other gestures serve more basic, im-
plicit self-needs and emotions (adaptors) (Ekman & Friesen,
1972). Although Gaze is not necessarily a movement per se,
it is indeed a nonverbal cue that has its roots in intention and
Theory of Mind (Premack & Woodruff, 1978; Baron-Cohen
et al., 1995). Moreover, the design and impact of gaze in
virtual humans has been well-documented (Lee et al., 2007;
Gratch et al., 2002).

Movement Models One prominent framework for codi-
fying human movement is the Laban Movement Analysis
(LMA), which has previously been applied in generating ges-
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ture animations for virtual agents (Chi et al., 2000; Cas-
sell et al., 2001; Gratch et al., 2002) and robots (Nakata et
al., 1998). LMA is composed of four components (Zhao &
Badler, 2001): Body, Effort, Shape, and Space, where Body,
Shape, and Space define what motion is performed, while Ef-
fort describes how a motion is performed. Specifically, Body
specifies body parts and the sequencing of a motion, Space
describes the location and paths of a motion, and Shape de-
scribes the body’s changing forms. Of these LMA compo-
nents, Shape and Effort are most relevant to the current paper.

Another prominent taxonomy of body movement is that of
Wallbott (1998), which includes detailed specifications about
the upper body, shoulders, head orientation, arms movement,
and hand shapes (i.e., fists, pointing). Wallbott’s categoriza-
tion has high explanatory power and specificity in terms of
individual body components particularly in terms of describ-
ing arm and hand movements. This categorization, however,
does not account for locomotive movement.

According to both the Labanian and Wallbott models, ges-
ture is a cue that entails a completely distinct set of specifi-
cations. That is, we would have to account for a complete
ranges and shapes of arm and hand movements. For instance,
the body-specific features of Distance, Direction, and Speed
directly map onto mechanical arm-specific features of Posi-
tion, Direction, and Speed (of arm movements), respectively.
As such, we will not address Gesture as a variable in the cur-
rent work, instead engaging in more comprehensive analysis
of Gesture in our forthcoming work.
Social Situational Meaning Pervin (1978) suggested situ-
ations retained a narrative structure consisting of: who is in-
volved, where is the action occurring, and what activities are
involved. Adapted from the above, Read and Miller (1998)
used a model of neural network-based constraint satisfaction
processes to organize knowledge structures into a coherent
narrative-based structure that include components about who
(or what) did what to whom (or what) under what circum-
stance, why, where, how, with what effect (e.g., emotional
outcome) (Read & Miller, 1998). While various cues (fa-
cial expressions, speech, etc.) are in play in this meaning-
construction process, we focus strictly on physical move-
ments and nonverbal behavior of the body.

Rauthmann et al. (2014) recently introduced the DIA-
MONDS, a taxonomy-based behavioral assessment of per-
sonality characteristics, situations, and behaviors. The DIA-
MONDS consist of situational categories that correspond to
its acronym: Duty (e.g. work, tasks), Intellect (e.g., aesthetic,
profound), Adversity (e.g., threat, criticism), Mating (e.g. ro-
mance, sexuality), pOsitivity (e.g., pleasant, nice), Negativity
(e.g., unpleasant, bad), Deception (e.g., deceit, lies), and/or
Sociality (e.g., interaction).

Motivation Systems Read et al. (2017) argue for a con-
ceptualization of situations in terms of motivation-based sys-
tems, such as the approach-avoidance system (Elliot & Cov-
ington, 2001). That is, all situations may be reduced to two
motivations: Do I engage, or disengage? Indeed, the DI-

Figure 1: Social Kinematics Model

AMONDS may diverge according to positive and negative
judgments (Rauthmann et al., 2014), which align with ap-
proach and avoidance characteristics, respectively (Lewin,
1936; Osgood et al., 1957).

Virtual Agents
As mentioned earlier, the current study addresses two gaps
in the literature using virtual agents to study physical cues:
(1) Accounting for the combinatorial effects of multiple si-
multaneous cues, and (2) A structured system of mapping
movement parameters onto the perception of situational so-
cial meaning, which is critical to understanding human be-
havior (Nisbett & Ross, 1991; Wagerman & Funder, 2009).
Physical Cues While prior work using artificial agents have
indeed examined the social impact of physical cues, these
are limited in that they often examine cues and situations, in
isolation. For instance, many have addressed the impact of
proxemic distance using social robots (Breazeal et al., 2009;
Mumm & Mutlu, 2011; Hüttenrauch et al., 2006; Walters et
al., 2009) and virtual humans (Bailenson et al., 2001, 2003).
Recently, however, there has greater focus on the explicit inte-
gration of multisensory information in a social context (Zaki,
2013). Further building on this framework, recent work on
HRI emphasizes the importance of congruency between cues
(Kennedy et al., 2017). Our approach attempts to add to this
prior work by presenting a step towards accounting for the
combinatorial effects of multiple simultaneous cues. We em-
phasize that this is the first of a series of planned studies,
and although we lay out a comprehensive theoretical model
of Social Kinematics and situational meaning, we acknowl-
edge that the analysis in the current paper is by no means
comprehensive.
Situational Meaning Prior work has made comprehensive
applications of movement categorization into gesture repre-
sentation in artificial agents (Chi et al., 2000), and exam-
ined the impact of categorizations of different body features
on emotions (Wallbott, 1998) and personality characteris-
tics (Neff et al., 2010). A gap exists however, in a structured
system of mapping movement parameters onto the perception
of situational social meaning, which along with personality,
represent critical components to understanding and measur-
ing human behavior (Nisbett & Ross, 1991; Wagerman &
Funder, 2009). Our approach attempts to adds to these prior
work by using an established social situations measurement
instrument to assess individuals’ judgments of different com-
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binations of physical cues.

Social Kinematics
Building specifically on the body of literature in develop-
mental psychology (i.e., Heider-Simmel), nonverbal behav-
ior, and drawing inspiration from the Laban Movement Anal-
ysis and Walbott’s Categorization of Movement, we present
a typology of movement that 1) distinguishes between body-
specific movement (locomotion) and arm-specific movement
(gesture), 2) distinguishes between movements performed
while standing and while walking, and 3) focuses specifically
on contextually meaningful movement. That is, we focus
on movements with a social component, as opposed to mere
functional movements.

We define Social Kinematics as the socially meaningful
features of physical, body-specific movement generated by
a social agent (human or non-human) in relation to one or
more other social agents. We conceptualize Social Kinemat-
ics into features that characterize either body-specific move-
ment (proxemics, locomotion) or gaze. Taken together, we
include the following 4 categories in our typology of So-
cial Kinematics, each including 2 levels of features: Distance
(near, far), Direction (towards, away), Speed (slow, fast), and
Gaze (direct, averted). Specifically, Speed corresponds to the
LMA component of Effort, and Distance and Direction cor-
respond to the LMA component of Space and Shape, respec-
tively. Levels (Figure 1) of each Social Kinematic Feature
(i.e., Towards-Away Directional movement) are similar to the
LMA sub-components of Shape and Effort.

Method1

Participants
197 participants (145 female, 52 male) were recruited from a
undergraduate subject pool at a university in the United States
in exchange for course credit.

Experimental Design
The statistical design of this study was a 2x2x2x2 (Distance,
Direction, Speed, Gaze) 4-way repeated measures MANOVA
to examine the effect of different combinations of movement
each at 2 levels (Far-Near, Towards-Away, Gaze-No Gaze,
Slow-Fast) on ratings of the 8 situational DIAMONDS (Duty,
Intellect, Adversity, Mating (Romance), pOsitivity, Negativ-
ity, Deception, Sociality).
Statistical Approach In addition to main effects of indi-
vidual Social Kinematics, we also examine the 2-way, 3-
way, and 4-way interaction effects of each feature. Effect
sizes in the present work are reported as partial eta-squared.
Though the general rules of thumb for ANOVAs is to mea-
sure effect size with eta-squared (Miles & Shevlin, 2001),
partial eta-squared (ηp2) arguably apply more to repeated-
measures ANOVAs as it more closely approximates what eta-
squared would have been for the factor had it been a one-way
ANOVA (Dunlap et al., 1996).

1Data, syntax available for access at https://tinyurl.com/y7j68l8u

Figure 2: Virtual agent walking away (Distance: Far, Direc-
tion: Away, Speed: Slow, Gaze: Direct).

Materials
Participants were presented 16 different randomized videos
on Qualtrics, which included virtual agent animations of the
unique combinations of the 4 categories of Social Kinematic
cues. Please refer to Figure 2 for an example of a stimulus
condition. We further elaborate on the construction of this
stimuli below. After viewing the 16 stimuli videos, partici-
pants then provided ratings on the likelihood that the above
visual stimuli would involve a DIAMONDS situation on a
graphical slider that ranged from 0-7. The decision to use
a graphical slider as opposed to a conventional Likert-scale
was to mitigate the reliability issues that arise from forcing
participants to select whole integers as values of judgment.
An example of an item that addressed the Duty element of
the DIAMONDS was, ”How likely is this situation to involve
work, tasks, or duties?” This wording of the items were de-
rived from Serfass and Sherman (2015).
Stimuli We used virtual agents as stimuli because we felt
that virtual agents could reliably represent various forms of
human movement. We built visual stimuli used in this ex-
periment using the animation software Smartbody (Thiebaux
et al., 2008), an open source modular framework for animat-
ing virtual humans and other embodied characters developed
by the USC Institute for Creative Technologies. Smartbody
is an engine that allows BML behavior descriptions to be
converted into real-time 3D character animations (Shapiro,
2011) (e.g., walking/jogging, facial expressions, gaze, ges-
tures, head nods), making it an ideal platform to generate
human-like movement animations for the current study. For
the purposes of this study, we adapted a GUI of Smartbody
that enabled simple manipulation of the relevant movement
cues (Distance, Direction, Gaze, Speed). See Figure 2 for a
sample of the study stimuli.

Results
Multivariate Effects
Multivariate main effects were observed for all 4 cues, but
we will not report individual main effects due to space limi-
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Table 1: Univariate Main Effects (F scores)

DIAMONDS (Distance) (Direction) (Speed) (Gaze)

Duty .000 66.646*** 3.793 .334
Intellect .368 98.907*** 1.395 2.382
Adversity 2.221 63.851*** 1.7 2.076
Romance .824 99.859*** .017 1.111
Positivity 7.442** 194.279*** 3.898 1.337
Negativity .044 137.069*** .177 6.295*
Deception .224 123.011*** 1.096 6.590*
Sociality 8.279** 133.526*** .408 6.768*

* p <.05, ** p <.01, *** p <.001

tations. 2-way multivariate interaction effects were observed
for Gaze and Direction (F(8, 189) = 2.734, p = .007, Wilks’
Λ = .896, ηp2 = .104), and Speed and Direction, (F(8, 189)
= 5.913, p <.001, Wilks’ Λ = .800, ηp2 = .2) . Signifi-
cant 3-way multivariate interaction effects were observed for
Distance, Speed, and Direction, F(8, 189) = 3.81, p <.001,
Wilks’ Λ = .861, ηp2 = .139). Finally, there was a signifi-
cant 4-way interaction effect of Distance, Speed, Gaze, and
Direction, F(8, 189) = 2.641, p = .009, Wilks’ Λ = .899, ηp2

= .101. While a discriminant analysis may better reveal how
the 4 categories differ from each other in multivariate terms,
this was not feasible due to the repeated measures design of
the study and data collection.

Univariate Effects
Univariate main effects Among the 4 kinematic variables,
Direction (towards, away) demonstrated the strongest direct
effects on social judgments. Univariate main effects of Di-
rection were observed for all 8 DIAMONDS (See Table 1 for
reporting). Post hoc test using the Bonferroni correction re-
vealed that movement Away was associated with Adversity,
Negativity, and Deception whereas movement Towards was
associated with Duty, Intellect, Romance, Positivity, and So-
ciality. Here, we observe an alignment of positive and nega-
tive judgments with towards and away direction, respectively.

Univariate main effects of Distance were observed for Pos-
itivity, F(1, 196) = 7.44, p = .007, and Sociality, F(1, 196) =
8.28, p = .004. A post-hoc test using the Bonferroni correc-
tion revealed that participants judged the virtual human to be
more Positive and Social when he was near as opposed to far.

Univariate main effects of Gaze were observed for Nega-
tivity, F(1, 196) = 6.30, p = .013, Deception, F(1, 196) = 6.59,
p = .011, and Sociality, F(1, 196) = 6.77, p = .01. A post-hoc
test using the Bonferroni correction revealed that judgments
of Direct Gaze were significantly greater than judgments of
Averted Gaze for Negativity, Deception, and Sociality. No
univariate main effect of Speed was observed (See Table 1).
Univariate 2-way interaction effects A univariate 2-way
interaction effect of Distance-Speed was observed for Mating
(Romance), F(1, 196) = 4.39, p = .037. A univariate 2-way
interaction effect of Direction-Speed was observed for Intel-
lect, F(1, 196) = 7.94, p = .005, Adversity, F(1, 196) = 7.72,

p = .006, Romance, F(1, 196) = 9.46, p = .002, Positivity,
F(1, 196) = 22.03, p <.001, Negativity, F(1, 196) = 23.12, p
<.001, Deception, 38.29, p <.001, and Sociality, F(1, 196) =
7.82, p = .006. A univariate 2-way interaction effect of Gaze-
Direction was observed for Adversity, F(1, 196) = 5.88, p =
.016, Negativity, F(1, 196) = 7.67, p = .006, Deception, F(1,
196) = 17.40,p <.001, and Sociality, F(1, 196) = 7.43, p =
.007. No other 2-way interaction effects were observed.
Univariate 3-way interaction effects A univariate 3-way
interaction effect of Distance-Gaze-Speed was observed for
Positivity, F(1, 196) = 5.73, p = .018, Negativity, F(1, 196)
= 8.85, p = .003, and Deception, F(1, 196) = 3.89, p = .05
– albeit marginally. A univariate 3-way interaction effect of
Direction-Distance-Speed was observed for Adversity, F(1,
196) = 13.77, p <.001, Positivity, F(1, 196) = 7.80, p = .006,
Negativity, F(1, 196) = 6.91, p = .009, and Deception, F(1,
196) = 21.76, p <.001.
Multi-level Mean Ratings Thus far, we have seen that
there are significant main effects, as well as 2-way and 3-way
interaction effects. Although we found no 4-way interaction
effects, below we present high and low mean scores across
each Kinematic feature (4-way) for each DIAMONDS. This
may provide some insight into the physical characteristics of
each situational variable in an itemized format. Due to space
constraints, we will only report on Duty and Romance here
as exemplars. Complete results for the other DIAMONDS
are available upon request.

Duty The highest values for Duty were observed for Mov-
ing Towards, Fast, Direct Gaze, from a Far Distance (m =
2.738). Duty was generally associated with movement To-
wards, and there appear to be little effect of the nature of the
Gaze, corroborating the lack of Gaze-related results above.
The lowest value for Duty was observed for movement Away,
Slowly, with Averted Gaze, from a Far Distance.

Romance None of the 16 virtual human conditions were
rated highly in terms of Romance, raising a unforeseen lim-
itation of the stimuli in that it only involves one virtual hu-
man character. Among the 16 conditions, the highest rating
for Romance was observed for movement Towards, Quickly,
with Averted Gaze from a Near Distance (m = 2.25). The
lowest rating for Romance was observed for movement Away,
Quickly, with Direct Gaze from a Far Distance (m = 1.09).

Discussion
The current study examines the intersection of Social Kine-
matic cues and situational social meaning using virtual
agents. Analyzing the simultaneous perception of binary lev-
els of Distance, Direction, Speed, and Gaze, we find strongest
effects for directional movement (towards, away) on social
judgments of multiple situational items, relative to distance,
speed. Specifically, away direction was associated with neg-
ativity while towards direction was more associated with
positivity (although more ambiguously defined), consistent
with prior connections of physical directional movement to
approach-avoidance motivation systems (Elliot & Coving-
ton, 2001). Gaze was also more impactful on social judg-
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ments than more mechanistic cues like Distance and Speed.
We present this work as an initial exemplar of potential

methodology to analyzing multiple cues in combination. Al-
though space constraints limit our complete reporting of the
analysis of cue combinations, the study considers all possible
combinations of the identified social kinematics categories.
We reiterate that the situational context for the social kine-
matic stimuli was intentionally designed as ambiguous and
ill-defined (e.g., blank backdrop, no narrative description).
The objective here was to control for any potential confounds
to individuals’ judgments of the social kinematic cues. In-
evitably however, there were indeed implicit confounds to
judgments (e.g., gender, race, appearance, attire) that we dis-
cuss further in the limitations section below.

Limitations
There are several limitations of the present work that should
be addressed. First, the present study is quite minimal in
terms of combinatorial analysis, and future work should ac-
count for both more cues and levels of cues. For example, our
failure to account for Gesture presents a significant concern as
a framework of socially impactful movement cannot exclude
gesture. That said, we plan to account a separate typology for
gesture kinematics in our forthcoming work.

Second, we note that the stimuli used in the present study
was entirely based on one male virtual human. The gen-
der and the appearance of the virtual human would certainly
impact different participants’ (i.e., a male or female partic-
ipants’) social judgments, and as such future work should
work to eliminate gender, appearance, and race confounds.
Relatedly, in our design of the experiment, we failed to pre-
pare for the general creepy nature of an expressionless vir-
tual human walking and running in different patterns. Again,
facial expression and appearance would have a clear impact
of inferred social meaning. These effects may potentially
be mitigated in future work by blurring faces, by designing
animated silhouettes (rather than complete virtual humans),
or by introducing different variations of expressions as addi-
tional conditions.

Third, our use of the DIAMONDS measure is not without
its flaws. Most notably, some of its dimensions, such as posi-
tivity and negativity, should be defined as higher-order levels
that nests on top of the other dimensions. We also suggest
expanding on the DIAMONDS to a measurement more ap-
propriate for the perception of nonverbal cues.

Implications
While this work contributes our understanding of social
meaning construction and human movement, we also feel it
contributes to the development of autonomous virtual agents.
Indeed, the future goal of this project is to build a framework
for both the generation and perception of socially meaningful
virtual agent movement.

A pressing issue in both psychology and agent-modeling
communities is the inability to account for the wide variance
in human variability and individual differences. Added to

this is the further complexity of changing human goals in
response to sequential turn-taking. Therefore, in our future
work, we plan to develop a computational model of this social
complexity in order to ultimately design intelligent agents ca-
pable of responding dynamically to a wide range and combi-
nation of cues, in a wide range of social situations.

Conclusion
In this paper, we present a systematic explication of So-
cial Kinematics, which is empirically based on developmen-
tal psychology (Heider-Simmel), Laban Movement Analy-
sis, and nonverbal behavior. We also introduce a frame-
work for studying inferred situational social meaning that in-
cludes narrative components, behavioral measurements, and
approach-avoidance motivation systems. Centrally, this paper
explores the mapping of Social Kinematics onto situational
social meaning using artificial agents as stimuli.

Our forthcoming work will focus on a more systematic use
of virtual agents to examine the perception of different non-
verbal cues. Namely, we plan to design contextualized virtual
scenarios where participants may engage in a more dynamic
interaction with the virtual agent. Such a virtual agent model
would adjust its nonverbal behavior according to a specific
situational parameter (i.e., less creepy), and attempt to induce
greater sense of such a parameter in the human subjects (i.e.,
feeling more comfortable), which we would evaluate with
a questionnaire (more refined than the DIAMONDS). Using
such a virtual agent model would enable a more refined ”tun-
ing” of social parameters as experimental stimuli, aiding not
only the development of research into human kinematics, but
also the development of an autonomous virtual agent systems.

Ultimately, the current paper provides a potentially useful
framework that has relevance for social robotics and agent-
based modeling fields, where it is desirable to develop social
agents that can enact social kinematics. By the same token,
a taxonomy of social kinematic events, and results regarding
their social significance are of importance to cognitive sci-
ence researchers as well. As humans, we constantly use the-
ory of mind to infer social meaning from other individuals’
cues. Our vision for our future work is to extend such mean-
ing construction into machine perception of social kinematics
in intelligent agents.
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