
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Large-Scale Trust-Region Methods and Their Application to Primal-Dual Interior-Point
Methods

Permalink
https://escholarship.org/uc/item/8s29n42d

Author
Guldemond, Alexander

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8s29n42d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Large-Scale Trust-Region Methods and Their Application to Primal-Dual Interior-Point Methods

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Mathematics

by

Alexander Guldemond

Committee in charge:

Professor Philip Gill, Chair
Professor Michael Holst
Professor John Hwang
Professor Rayan Saab

2023

Copyright

Alexander Guldemond, 2023

All rights reserved.

The Dissertation of Alexander Guldemond is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2023

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

List of Algorithms . viii

Vita . ix

Abstract of the Dissertation . x

Introduction . 1
0.1 Overview . 1
0.2 Contributions of This Dissertation . 3
0.3 Notation . 4

Chapter 1 Linear Algebra . 6
1.1 Symmetric Positive Definite Matrices . 6
1.2 Congruence . 7
1.3 Vector Norms and Matrix Norms . 9
1.4 Condition Numbers . 11
1.5 Generalized Eigenvalues and Eigenvectors . 12
1.6 The Lanczos Process . 15

1.6.1 Lanczos-CG . 18
1.6.2 The Block Lanczos Process . 23

1.7 Other Results . 24

Chapter 2 Unconstrained Optimization . 25
2.1 Introduction . 25
2.2 Optimality Conditions . 26
2.3 Directions of Decrease . 29
2.4 Line-search Methods . 30

2.4.1 Sufficient decrease conditions . 30
2.5 The Trust-Region Method . 44

Chapter 3 Constrained Optimization . 77
3.1 Introduction . 77
3.2 Equality Constraints . 78

3.2.1 Optimality Conditions . 79
3.2.2 Augmented Lagrangian Methods . 87

3.3 Inequality Constraints . 91
3.3.1 Optimality Conditions . 91
3.3.2 Interior-Point Methods . 98
3.3.3 Primal-Dual Interior Methods . 100
3.3.4 The Slack Formulation . 103

Chapter 4 The Trust-Region Subproblem . 104
4.1 Overview . 104

iv

4.1.1 Optimality Conditions . 105
4.1.2 The Hard Case . 107

4.2 The Moré-Sorensen Algorithm . 108
4.3 The Truncated Conjugate-Gradient Algorithm . 113
4.4 The GLTR Algorithm . 114

4.4.1 The Algorithm. 115
4.5 The Shifted and Inverted GLTR Algorithm . 120

4.5.1 The Projected Trust-Region Subproblem . 126
4.5.2 Solving in the Hard Case . 128
4.5.3 The Full Algorithm . 129
4.5.4 Choice of Shift . 132
4.5.5 Convergence Properties . 133
4.5.6 Effect of Shifting on the Convergence Rate . 154
4.5.7 Warm-starting and Restarting . 156
4.5.8 Use in a Trust-Region Algorithm . 159

4.6 A Jacobi-Davidson Correction Trust-Region Algorithm . 160
4.7 A Locally-Optimal Preconditioned Conjugate-Gradient Trust-Region Algorithm 168
4.8 Doubly-Augmented Trust-Region Problems . 176

4.8.1 The Jacobi-Davidson QZ Trust-Region Algorithm . 181

Chapter 5 The All-Shifted Primal-Dual Penalty-Barrier Trust-Region Method 190
5.1 Introduction . 190
5.2 Shifted Primal-Dual Interior Point Algorithm . 191

5.2.1 Minimizing the Primal-Dual Merit Function . 194
5.2.2 Convergence Analysis . 201
5.2.3 Solving the Constrained Nonlinear Optimization Problem . 209
5.2.4 Implementation Details . 220

Chapter 6 Numerical Results . 226
6.1 Comparing the Different Trust-Region Algorithms . 226
6.2 The Shifted Primal-Dual Interior-Point Algorithm . 232

v

LIST OF FIGURES

Figure 6.1. A random Gaussian trust-region subproblem. 227

Figure 6.2. A random Gaussian trust-region subproblem with a small diagonal offset. 228

Figure 6.3. Hard Case. 229

Figure 6.4. SIGLTR vs Restarting SIGLTR. 230

Figure 6.5. A Doubly-Augmented Trust-Region Problem. 232

Figure 6.6. Performance Profile of function evaluations used in all-shifted primal-dual penalty-
barrier trust-region method with different trust-region matrices 234

Figure 6.7. Performance Profile of function evaluations used in all-shifted primal-dual penalty-
barrier trust-region method with different inner iterations strategies 236

Figure 6.8. Performance Profile of function evaluations used in all-shifted primal-dual penalty-
barrier trust-region method with Moré Sorensen vs. SIGLTR . 237

Figure 6.9. Performance Profile of function evaluations used in all-shifted primal-dual penalty-
barrier trust-region method with SIGLTR vs. LOPCGTR . 238

vi

LIST OF TABLES

Table 6.1. A Gaussian random trust-region problem. 227

Table 6.2. A Gaussian random trust-region problem with a small diagonal offset. 228

Table 6.3. A Gaussian random trust-region problem with a large diagonal offset. 229

Table 6.4. Hard Case. 229

Table 6.5. A Doubly-Augmented Trust-Region Problem. 231

Table 6.6. Algorithm 5.3 and 5.4 Parameters . 233

Table 6.7. Hock-Schittkowski Results . 239

vii

LIST OF ALGORITHMS

Algorithm 1.1. Preconditioned Conjugate Gradient Algorithm . 21

Algorithm 2.1. Backtracking Line-Search . 32

Algorithm 2.2. Basic Trust-Region Algorithm. 46

Algorithm 3.1. Classical Barrier Algorithm . 99

Algorithm 4.1. Biorthogonalization with Column Pivoting . 130

Algorithm 4.2. Shifted and Inverted GLTR . 131

Algorithm 4.3. Jacobi-Davidson Trust-Region Algorithm . 167

Algorithm 4.4. Locally-Optimal Preconditioned Conjugate-Gradient Trust-Region Algorithm . . . 171

Algorithm 4.5. Locally-Optimal Preconditioned Conjugate-Gradient Trust-Region Algorithm V2 173

Algorithm 5.1. Merit Function Trust-Region Algorithm . 200

Algorithm 5.2. All Shifted Trust-Region Interior Method . 211

Algorithm 5.3. Merit Function Flexible Trust-Region Algorithm . 222

Algorithm 5.4. All Shifted Flexible Trust-Region Interior Method . 223

Algorithm 5.5. Iterative inertia control algorithm . 224

viii

VITA

2016 Bachelor of Arts, Boston University, Boston

2020 Master of Arts, University of California San Diego

2023 Doctor of Philosophy, University of California San Diego

FIELDS OF STUDY

Major Field: Mathematics (Specialization or Focused Studies)

Studies in Applied Mathematics
Professors Philip Gill

ix

ABSTRACT OF THE DISSERTATION

Large-Scale Trust-Region Methods and Their Application to Primal-Dual Interior-Point Methods

by

Alexander Guldemond

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Philip Gill, Chair

Trust-region methods are amongst the most commonly used methods in unconstrained mathe-

matical optimization. Their impressive performance and sound theoretical guarantees make them suitable

for a wide range of problem types. However, the computational complexity of existing methods for

solving the trust-region subproblem prevents trust-region methods from being widely used in large-scale

problems in both unconstrained and constrained settings. This dissertation introduces and analyzes three

novel methods for solving the trust-region subproblem for large-scale constrained optimization problems.

Convergence rates and proofs are presented where applicable. Furthermore, a trust-region approach is

developed for the recently introduced all-shifted primal-dual penalty-barrier method for solving nonconvex,

constrained optimization problems.

The three trust-region algorithms introduced are the shifted and inverted generalized Lanczos

trust region algorithm, the locally optimal preconditioned conjugate gradient trust region, and the Jacobi-

Davidson QZ trust region algorithm. Each new method exhibits improved performance over the existing

x

standard methods and is best suited for problems too large for the traditional methods to handle efficiently.

Furthermore, each method exhibits particular benefits for differently scaled problems.

xi

Introduction

0.1 Overview

Mathematical optimization, sometimes called mathematical programming, is the selection of

the best element from a set of available alternatives. Although there are many different fields within

optimization, the subject can generally be divided into discrete and continuous optimization. Optimization

problems arise in every quantitative discipline, including but not limited to computer science, engineering,

operations research, economics, and data science. The study of optimization relies on formulating a

mathematical model of a given problem. Optimizing the model then means finding a point that either

minimizes or maximizes the model. These two formulations are interchangeable: maximizing a function is

equivalent to minimizing the negative of the function. Discrete optimization refers to problems in which

the set of allowable points is discrete, while continuous optimization refers to problems in which the set of

permissible points is continuous.

Continuous optimization can further be broken down into unconstrained and constrained op-

timization classes. In unconstrained optimization, all points in the domain of the function f(x) to be

minimized, the objective function, are possible solutions. In constrained optimization, the set of allowable

points, called the feasible set, excludes certain points. The mathematical model of the problem represents

the feasible set by a set of equality and inequality conditions.

The field of continuous optimization can further be broken down into the classes of convex and

nonconvex optimization. Convex optimization is only concerned with convex objective functions and

constraint sets. Nonconvex optimization, on the other hand, does not make any assumptions of convexity.

As a result, nonconvex algorithms are generally designed to perform well when applied to convex problems,

assuming that the convex problem in question satisfies whatever properties are required of the given

algorithm. On the other hand, algorithms for convex problems cannot be applied to nonconvex problems.

Every method discussed in this thesis is designed to solve continuous nonconvex optimization

problems and is both iterative and approximate in nature. If x⋆ is the unknown solution, then a

1

sequence {xk}∞k=1 is generated such that each subsequent point in the sequence is a better estimate of x⋆.

Theoretically, these sequences are infinite. In practice, all algorithms terminate once the approximate

solution xk satisfies some optimality conditions to sufficient accuracy. These optimality conditions differ

depending on the type of problem being solved and play an essential role in any implementation of an

algorithm and its accompanying theoretical discussion. Such a sequence is generated by formulating a

local model of the objective function at the current estimate xk, and computing an update of the form

xk+1 = xk + pk, where pk is a vector which decreases the objective value and is inferred from the local

model.

One of the most popular implementations of this general procedure is the trust-region method.

In the trust-region method, the local model function is typically taken to be the second-order Taylor

series of the objective about the current estimate xk. The model is then minimized subject to the

constraint that the minimum lie in a convex subset of the feasible set called the trust region. This simple

procedure has enormous practical success and has strong theoretical guarantees. However, the application

of trust-region algorithms to large-scale problems is made difficult by the fact that the minimization of

the quadratic model subject to the trust-region constraint, called the trust-region subproblem, is itself

a constrained potentially nonconvex optimization problem. Although some methods exist for solving

large-scale trust-region subproblems, they perform poorly for particular problems, especially in constrained

cases. This thesis introduces three novel approaches to solving the large-scale trust-region subproblem.

These methods are designed to apply to the constrained case. None of them is claimed to be the best

algorithm in every case. However, between these three methods and the existing ones reviewed here, all

but the most extreme problems should be amenable to the trust-region method.

Applying the trust-region strategy to constrained problems presents several difficulties. One of

the most widely used classes of algorithms for solving constrained problems is the class of interior-point

methods. As the name implies, interior-point methods generate a sequence of points {xk} that lies strictly

within the interior of the feasible set. This sequence is formed by adding a term to the objective function

that tends towards infinity as the sequence approaches the boundary. As the method continues, this barrier

term is modified to allow points to get closer to the boundary. As the solution to constrained problems

typically lies on the boundary of the feasible set, the sequence generated by interior-point methods will

only ever become arbitrarily close to the true solution. In [13], a new class of interior-point methods

called shifted barrier methods are introduced, which shifts the boundary of the feasible set, allowing the

sequence to fall on the feasible set’s boundary. This new approach has been shown to improve traditional

interior-point methods significantly. This dissertation presents a shifted barrier method with a trust-region

2

approach using the new algorithms for solving the trust-region subproblem.

This dissertation is organized into six chapters. Chapter 1 begins with a review of the necessary

results from linear algebra used throughout this thesis, including some less commonly known procedures,

such as the relationship between the Lanczos process and the preconditioned conjugate gradient algorithm.

Chapter 2 reviews results and techniques from unconstrained optimization, with particular emphasis on

the trust-region method. Chapter 3 examines results and techniques from constrained optimization, with

particular emphasis on interior-point methods. Chapter 4 reviews existing algorithms for solving the

trust-region subproblem and introduces the three new algorithms presented here. Chapter 5 discusses the

shifted barrier trust-region method. Finally, chapter 6 presents numerical results.

0.2 Contributions of This Dissertation

Chapter 2 introduces a more general set of assumptions under which the trust-region method is

guaranteed to converge. Typically speaking, the convergence results of trust-region algorithms assume

that the method used to compute the minimizer of the trust-region subproblem computes a point that is

as good as the negative gradient. This assumption is difficult to directly verify for the novel methods

presented in this dissertation. The more general result is that the method used to compute the minimizer

of the trust-region subproblem computes a point that is as good as any arbitrary steepest-descent direction.

Each of the techniques presented begins by first taking a different steepest-descent direction as the initial

estimate, making this assumption trivial to verify.

Chapter 4 introduces the three novel algorithms for solving the trust-region subproblem. The

first of these methods utilizes a shifted and inverted Lanczos process to transform a high-dimensional,

potentially ill-conditioned trust-region subproblem into a well-conditioned, low-dimensional problem that

can be trivially solved with existing methods. A technique for warm-starting this method, given an initial

approximation, is presented as well. As trust-region methods solve a sequence of trust-region subproblems,

the ability to utilize prior information from a previous subproblem is crucial to maintain rapid performance.

Additionally, the unstable nature of the Lanczos process necessitates the ability to restart the process

every so often. This enables the new algorithm to rapidly find the solution with previous information

to a high degree of accuracy. The second method presented is an application of a conjugate-gradient

style algorithm to the trust-region subproblem with a locally-optimal update taken at each iteration.

Equivalence between the trust-region subproblem and an unconstrained problem is established. This

equivalence allows results from unconstrained nonlinear conjugate-gradient algorithms to be applied to the

method, guaranteeing convergence. This second method differs from the first in that a fixed dimensional

3

subproblem is solved at each iteration to generate the locally optimal improvement to the approximate

solution. Additionally, unlike the first method, this method can use any preconditioning technique, or

potentially no preconditioning, to correct for any ill-conditioning. The final method discussed is based

on the Jacobi-Davidson QZ algorithm for solving generalized eigenvalue problems and is specifically

designed for a class of trust-region problems arising in constrained optimization called doubly-augmented

trust-region problems. The relationship between doubly-augmented matrices and regularized saddle-point

matrices is exploited to create a generalized algorithm that can use preconditioners that are not required to

be positive definite. For doubly-augmented problems, this implies that no explicit matrix factorizations are

necessary. Experiments reveal that for most practical problems, the first two methods perform considerably

better than existing methods. The last method, on the other hand, has demonstrated rapid convergence

on artificially generated doubly-augmented trust-region problems that are too large and ill-conditioned to

utilize any other method.

Chapter 5 presents a primal-dual penalty-barrier trust-region method for solving general nonlinear

constrained optimization problems utilizing the shifting strategy first introduced in [13] and [17]. Large-

scale trust-region methods typically suffer from the need to solve the trust-region subproblem at each

iteration, and thus techniques such as line searches are often preferred. However, the new methods

introduced in Chapter 4 make a large-scale trust-region algorithm far more feasible. This is particularly

useful in interior-point methods, where the barrier terms cause the trust-region subproblems to be

increasingly ill-conditioned as the solution is approached. The shifting of the primal-dual feasible set helps

reduce ill-conditioning’s influence, but it does not remove it entirely. The convergence of the trust-region

method for minimizing the penalty-barrier function is established. Additionally, global convergence is

established following the results in [13].

0.3 Notation

Given a set of vector {x1, x2, . . . , xm}, where xi ∈ Rni for some ni ∈ N for all i = 1, . . . ,m, the

vector x consisting of the concatenation of all vectors x1, . . . , xm is given by (x1, . . . , xm). The subscript

k appended to a vector will typically denote its value during the k-th iterate of an algorithm or the k-th

value in a sequence. Square brackets and subscripts shall denote a particular entry in a vector, i.e., [xk]i

shall denote the i-th entry of the vector xk. If x is not a member of a sequence of vectors, then the square

brackets are dropped. Given a matrix A ∈ Rn×m, pairs of subscripts shall denote a particular entry of

the matrix A, i.e., Ai,j denotes the entry of A in the i-th row and the j-th column. Given two vectors

x and z of the same dimension, the vector with i-th component [x]i[z]i is denoted by x · y. Similarly,

4

min{x, z} and max{x, z} shall denote the vector whose i-th component is min{[x]i, [z]i} or max{[x]i, [z]i},

respectively. The vectors ei shall denote the vector of all zeros except for the i-th entry, which has a 1,

and the vector e shall denote the vector of all 1s. The matrix I shall denote the identity matrix. The

context makes the size of ei, e, and I apparent. If the size of I is not apparent from the context, a

subscript is appended to denote its shape, i.e., In denotes the n×n identity matrix. The symbol 0 denotes

the scalar 0, the vector of all zeros, and the matrix of all zeros, where the size and shape are apparent

from the context. Arbitrary matrix and vector norms are denoted with || · ||. The typical p-norms, and

their corresponding induced matrix norms, are denoted with || · ||p. The notation {|| · ||k}k∈K denotes a

sequence of norms indexed by some set K. The inertia of a symmetric matrix A, denoted by In(A), is

the integer triple (n+, n−, n0) of positive, negative, and zero eigenvalues of A. The ordered pair (A,B)

denotes the matrix pencil defined by matrices A and B. Given a function f(x) : Rn → R, the gradient

of f at a point x is denoted as ∇f(x), and the Hessian matrix is denoted as ∇2f(x). The symbol g(x)

is often used to denote the gradient ∇f(x), and, given a sequence of points {xk}k∈K, {gk}k∈K denotes

the sequence {∇f(xk)}k∈K. The matrix J(x) denotes the Jacobian of a vector-valued function c(x). The

Lagrangian of a constrained optimization problem is L(x, y). The Hessian of the Lagrangian with respect

to the primal variables is denoted as H(x, y) and is given by ∇2
x,xL(x, y). Let {xk}k∈K be a sequence of

scalars, vectors, or matrices, and {bk}k∈K a sequence of positive scalars. The notation xk = O(bk) implies

that there exists a positive scalar γ such that ||xj || ≤ γbj for all j ∈ K. If there exists a sequence {γk}

converging to zero such that ||xj || ≤ γjbj , then xj = o(bj). If there exists a sequence {σk} converging to

zero and a positive constant b such that bj > bσj , then bj = Ω(σj). The symbols ≻, ⪰, ≺, and ⪯ denote

the Loener ordering on square, symmetric matrices, i.e., A ≻ B if and only if A−B is positive definite.

The statement A ≻ 0 implies that A is positive definite, and A ⪰ 0 implies that A is positive semi-definite.

Given a norm || · ||, the dual is denoted by || · ||∗. Given two vector norms || · ||α and || · ||β , the matrix

norm induced by these two norms is denoted as || · ||α,β , i.e., ||A||α,β = maxx ̸=0 ||Ax||β/||x||α. Given an

unadorned vector norm || · ||, the matrix norm induced by || · || and || · ||⋆ is denoted as ||A||. If B is a

symmetric positive definite matrix, then ⟨·, ·⟩B and || · ||B denote the inner-product and norm induced

by B, respectively, i.e. ⟨x, y⟩B = yTBx, and ||x||B =
√
xTBx. The symbols >, ≥, <, and ≤ applied to

vectors x and y are applied element-wise, i.e. x < y is true if [x]i < [y]i for all indices i.

5

Chapter 1

Linear Algebra

This section discusses some fundamental results of Linear Algebra that are used throughout this

dissertation. Most of these results shall be presented without proof, as the proofs can be found in any

graduate text on linear algebra.

1.1 Symmetric Positive Definite Matrices

Definition 1.1.1 (Symmetric Positive Semidefinite Matrices). Let A ∈ Rn×n be a symmetric matrix, i.e.,

A = AT. A is called positive semidefinite if

xTAx ≥ 0

for all x ∈ Rn.

Definition 1.1.2 (Symmetric Positive Definite Matrices). A symmetric positive semidefinite matrix

A ∈ Rn×n is called symmetric positive definite if xTAx > 0 for all x ∈ Rn not equal to zero.

Lemma 1.1.1 (Spectral Characterization of Positive Definite Matrices). Let A ∈ Rn×n be symmetric

positive semidefinite. Let λ be an eigenvalue of A, i.e., there exists a vector v ̸= 0 such that Av = λv.

Then λ is real and nonnegative. If A is a symmetric positive definite matrix, then λ is strictly positive.

Conversely, a symmetric matrix A is positive semidefinite (definite) if all eigenvalues of A are real and

nonnegative (positive).

Theorem 1.1.2 ([21], Theorem 7.2.6). Let A ∈ Rn×n be a symmetric positive semidefinite matrix. Let

k ∈ {2, 3, . . .}.

1. There is a unique symmetric positive semidefinite matrix B such that Bk = A.

6

2. There is a polynomial p with real coefficients such that B = p(A). Consequently, B commutes with

any matrix that commutes with A.

3. range(A) = range(B), so rank(A) = rank(B).

Theorem 1.1.3 (Cholesky decomposition, [21], Theorem 7.2.7). Let A ∈ Rn×n be a symmetric matrix.

Then A is positive semidefinite (respectively, positive definite) if and only if there is an upper triangular

matrix R ∈ Rn×n with nonnegative (respectively, positive) diagonals entries such that A = RTR. If A is

positive definite, then R is unique.

1.2 Congruence

Definition 1.2.1 (Congruence Relation). Let A, B ∈ Rn×n be given. If there exists a nonsingular matrix

S such that B = SAST, then B is said to be congruent to A.

Theorem 1.2.1 ([21], Theorem 4.5.5). Congruence is an equivalence relation.

The objective for examining this equivalence relation is to be able to infer properties of the

eigenvalues of a matrix A, for which the eigenvalues themselves may be infeasibly difficult to calculate,

by making observations of the spectrum of a congruent matrix B. For this, the inertia of a symmetric

matrix is defined to be

Definition 1.2.2 (Inertia). Let A ∈ Rn×n be symmetric. The inertia of A is the ordered triple

In(A) = (m+,m−,m0),

where m+ denotes the number of positive eigenvalues of A, m− the number of negative eigenvalues, and

m0 the number of eigenvalues identically zero,

The following result will be used extensively in the discussion of constrained optimization.

Theorem 1.2.2 (Sylvester’s Law of Inertia, [21], Theorem 4.5.8). Symmetric matrices A, B ∈ Rn×n are

congruent if and only if they have the same inertia, that is, if and only if they have the same number of

positive and negative eigenvalues.

Sylvester’s Law of Inertia states that a congruence transformation can be applied to a matrix A

to yield a matrix B whose inertia is readily apparent in order to learn the inertia of A. One particular

congruence transformation is that which yields the Schur complement.

7

Definition 1.2.3 (Schur Complement). Let a symmetric matrix M ∈ Rn×n be partitioned as

M =

 A B

BT C

 .

Assume that A is nonsingular. Let

L =

 I 0

−BTA−1 I

 .

Then In(M) = In(N), where

N = LTML =

A 0

0 C −BTA−1B

 =

A 0

0 S

 ,

where S = C −BTA−1B is referred to as the Schur Complement.

A second strategy that is ubiquitous in constrained optimization is the symmetric indefinite

factorization, sometimes referred to as the inertia revealing factorization.

Theorem 1.2.3 (Symmetric Indefinite Factorization). Let A ∈ Rn×n be nonsingular and symmetric.

Then there exists a permutation matrix P , a unit lower triangular matrix L, and a block diagonal matrix

D with 1× 1 and 2× 2 blocks such that

PAP T = LDLT,

with every 2× 2 block of D having one positive and one negative diagonal.

There are many different strategies for forming the symmetric indefinite factorization of a matrix.

More specifically, there are many different strategies for forming the permutation matrix P . In small to

medium-scale problems, P is chosen to preserve the stability of the factorization. In large, sparse cases,

there exists the additional goal of choosing P such that the factors L maintain the sparsity of A without

sacrificing stability. There exists a large array of available implementations of LDLT factorizations

to choose from. Bunch and Kaufman describe a pivoting strategy in [6]. The symmetric indefinite

factorization, when applied to a positive definite matrix, is sometimes referred to as the square root free

Cholesky decomposition, as the implementation requires no square roots. In this case, it is guaranteed that

D is positive definite and diagonal. The permutation matrix, in this case, can always be taken to be the

identity matrix, however, other choices are used to improve stability.

8

1.3 Vector Norms and Matrix Norms

Theorem 1.3.1 (Norm Equivalence on Finite Dimensional Vector Spaces, [21], Corollary 5.4.6). Let V

be a finite dimensional vector space, and let || · ||α and || · ||β be two norms on V . The norms || · ||α and

|| · ||β are equivalent, i.e., there exists constants c1 > 0, c2 > 0 such that

c1||x||α ≤ ||x||β ≤ c2||x||α

for all x ∈ V .

Note that Theorem 1.3.1 also implies that

1

c2
||x||β ≤ ||x||α ≤

1

c1
||x||β

for all x ∈ V .

Definition 1.3.1 (Dual Norm). Let V be a vector space equipped with norm || · ||. Let v∗ be the dual

space of V , i.e., the space of all linear functionals on V . The dual norm of || · ||, denoted as || · ||⋆, is given

by

||y||⋆ = max
x̸=0

|y(x)|
||x||

for all y ∈ v∗.

One immediate observation that can be made is that for any x ∈ V , y ∈ v∗, |y(x)| ≤ ||x|| ||y||⋆.

If V is an inner product space equipped with inner product ⟨·, ·⟩, then |⟨x, y⟩| ≤ ||x|| ||y||⋆. If V = Rn,

then this becomes |yTx| ≤ ||x|| ||y||⋆.

For 1 ≤ p ≤ ∞, let ||x||p denote the p-norm ||x||p = (
∑n

i=1 |x
p
i |)1/p, with ||x||∞ = maxi∈{1,...,n} |xi|.

Let B ∈ Rn×n be a symmetric positive definite matrix. B then induces an inner product and a norm

denoted by, respectively

⟨x, y⟩B = yTBx, and ||x||B =
√
xTBx

for all x, y ∈ Rn.

Theorem 1.3.2. Let B ∈ Rn×n be a symmetric positive definite matrix. The dual norm of || · ||B, denoted

as || · ||B⋆, is given by || · ||B−1 .

9

Proof. Due to the fact that B is a symmetric positive definite matrix, B is nonsingular. Then

||y||B⋆ = max
x ̸=0

|yTx|√
xTBx

.

Let B1/2 denote the unique, positive definite square root of B. Then

||y||B⋆ = max
x ̸=0

|yTx|√
xTBx

= max
x ̸=0

|yTx|√
xTB1/2B1/2x

= max
v ̸=0

|yT(B1/2)−1v|√
vTv

.

By the Cauchy-Schwartz inequality |yT(B1/2)−1v| ≤ ||(B1/2)−1y||2||v||2 = ||y||B−1 ||v||2 for all y, v ∈ Rn.

This upper bound is achieved with v = (B1/2)−1y. Therefore, ||y||B⋆ = ||y||B−1 .

Corollary 1.3.2.1. Let B ∈ Rn×n be a symmetric positive definite matrix. For all x, y ∈ Rn,

|yTx| ≤ ||x||B ||y||B−1 .

Let || · || be an arbitrary norm on Rn. This norm || · || can be used to construct a corresponding

matrix norm on the vector space of square matrices Rn×n.

Definition 1.3.2 (Induced Norms). Let V be a vector space equipped with a norm || · ||. Let A : V → V

be a linear operator. Then the induced norm of A is given by

||A|| = max
x ̸=0

||Ax||
||x||

.

This definition can be extended to the case where A : V →W , where V is a vector space equipped

with norm || · ||α, and W is a vector space equipped with norm || · ||β .

Definition 1.3.3. Let (V, || · ||α) and (W, || · ||β) be two normed linear spaces, and let A be a linear

operator from V to W . Then the norm of A induced by the norms || · ||α and || · ||β is given by

||A||α,β = max
x̸=0

||Ax||β
||x||α

.

This section is concluded with a common result about the induced 2-norm on symmetric matrices.

10

Lemma 1.3.3. Let A ∈ Rn×n be a symmetric matrix. Let λmax denote the eigenvalue of A with the

largest magnitude. Then

||A||2 = max
x ̸=0

||Ax||2
||x||2

= max
x ̸=0

xTAx

xTx
= λmax.

1.4 Condition Numbers

When analyzing the stability and performance of various numerical methods for solving linear

algebra problems, one frequently encounters the notion of the condition number of a matrix A.

Definition 1.4.1 (Condition Number). Given a matrix norm || · ||, the condition number of a nonsingular

matrix A is given by

κ(A) = ||A|| ||A−1||.

A matrix with a large condition number is said to be ill-conditioned. Conversely, if the condition

number is close to 1, then the matrix is considered to be well-conditioned. Clearly, the condition number

of a matrix depends on the norm. Typically, when referring to the condition number, the 2-norm is meant

implicitly. The performance of some algorithms can be improved by choosing a norm ahead of time which

reduces the condition number of a particular matrix.

Consider an orthogonal matrix Q. As ||Qx||2 = ||x||2 for all x ∈ Rn, and Q−1 = QT, it is clear

that

κ(Q) = ||Q||2 ||QT||2 = 1.

Therefore, a unitary matrix Q is perfectly conditioned in the 2-norm. Conversely, consider the matrix Hn

given by

(Hn)i,j =
1

i+ j − 1
, 1 ≤ i, j ≤ n.

This matrix is referred to as the Hilbert matrix of order n and is an extreme example of an ill-conditioned

matrix. For instance, even at the low dimension of n = 12, it can be shown that κ(H12) ≈ 1.6× 1016, and

that the standard method of Gaussian elimination applied to the equationH12x = b fails in double-precision

arithmetic.

If the matrix norm in question is induced by two norms instead of just one, i.e.,

||A||α,β = max
x ̸=0
||Ax||β/||x||α,

11

the condition number is more appropriately defined as

κ(A) = ||A||α,β ||A−1||β,α,

reflecting the fact that in this case, A is an operator from one normed space to a different normed space.

To see this, consider the nonsingular matrix A as an operator from (Rn, || · ||α) to (Rn, || · ||β). Consider

the system Ax = b, and the perturbed system A(x+ δx) = b+ δb. Then

||Ax||β = ||b||β , and ||δx||α = ||A−1δb||α.

From the first of these two equations, it holds that

||b||β ≤ ||A||α,β ||x||α,

and from the second,

||δx||α ≤ ||A−1||β,α||δb||β .

Combining these two results gives

||δx||α
||x||α

≤ κ(A) ||δb||β
||b||β

,

where κ(A) = ||A||α,β ||A−1||β,α.

1.5 Generalized Eigenvalues and Eigenvectors

Definition 1.5.1. Let A,B ∈ Rn×n be two square matrices. The generalized eigenvalues and eigenvectors

of matrices A and B are the solution pairs (λ, v) of the generalized eigenvalue problem

Av = λBv,

where v ∈ Cn and λ ∈ C ∪ ∞. The solutions λ and v are also referred to as an eigenvalue and an

eigenvector, respectively, of the matrix pencil (A,B).

The term matrix pencil may also be used to describe the family of matrices of the form A− λB.

The case λ =∞ corresponds to the case where B is singular, and v ∈ null(B). Some authors prefer to

12

avoid the inclusion of λ =∞, and so define the generalized eigenvalue problem as finding solutions to

αAv = βBv,

where α, β ∈ C are normalized so that |α|2 + |β|2 = 1. In this dissertation, only nonsingular choices of B

are considered, and therefore the first formulation of the generalized eigenvalue problem is preferred.

A matrix pencil (A,B) is called regular if det(A− λB) is not identically equal to zero. In this

case, the following result holds.

Theorem 1.5.1 (Generalized Schur Decomposition, [21], Theorem 2.6.1). Let A, B ∈ Rn×n. Then there

exist unitary matrices Q,Z ∈ Cn×n such that A = QSZ⋆ and B = QTZ⋆. The eigenvalues of (A,B) are

the ratio of the diagonals if the matrices S and T , i.e., λi = Si,i/Ti,i for each index i.

This decomposition is often referred to as the QZ decomposition. There are instances in which a

problem only calls for the real eigenvalues of a matrix pencil. In this case, it is more convenient to work

with the real version of the generalized Schur decomposition.

Theorem 1.5.2 ([21], Theorem 2.6.2). Let A,B ∈ Rn×n. There exist real orthogonal matrices Q,Z ∈ Rn×n

such that A = QSZT and B = QTZT, where T is a real upper triangular matrix with nonnegative diagonals,

and S is real and upper quasitriangular, i.e., block upper triangular with blocks of size 1× 1 and 2× 2, in

which the 2× 2 blocks correspond to complex eigenvalues.

One fairly intuitive method for dealing with generalized eigenvalue problems is to transform them

into a standard eigenvalue problem. Consider the generalized eigenvalue problem Av = λBv for matrices

A,B ∈ Rn×n. Assume the pencil (A,B) is regular so that there exists a shift µ such that A + µB is

nonsingular. Then the generalized eigenvalue problem is equivalent to the problem (A+µB)v = (λ+µ)Bv,

which in turn is equivalent to,

(A+ µB)−1Bv =
1

λ+ µ
v.

Many algorithms for finding generalized eigenvalues of (A,B) begin by performing this transformation for

some µ with −µ close to, but not identical to, the desired eigenvalue.

If B is a symmetric positive definite matrix, there is a simpler transformation that can be applied.

Let RTR = B be the Cholesky decomposition of B. Then

Ax = λBx = λRTRx.

13

If y = Rx, then

AR−1y = λRTy, or equivalently R−TAR−1y = λy.

If R−TAR−1 is normal, then the standard spectral theorem applies, and λ is guaranteed to be real. In

fact, if A is symmetric, the following generalization of the spectral decomposition exists.

Theorem 1.5.3. Let A ∈ Rn×n be symmetric and B ∈ Rn×n be symmetric positive definite. Then there

exists a B-orthogonal matrix U , i.e., UTBU = I, a B−1-orthogonal matrix V , and a real diagonal matrix

Λ such that

UTAU = Λ, A = V ΛV T, and V TU = I.

The diagonals of Λ are the eigenvalues of (A,B), and the columns of U are the corresponding eigenvectors.

Proof. The result follows from applying the real spectral theorem to the transformed eigenvalue problem

R−TAR−1y = λy.

Corollary 1.5.3.1. Let A,B ∈ Rn×n be symmetric. If there exists a shift µ such that A+ µB is positive

definite, then the matrix pencil (A,B) has all real eigenvalues.

It is important to note that the converse of this statement is not necessarily true. As previously

mentioned, if the matrix B is a symmetric positive definite matrix, then it induces an inner product,

which in turn induces a norm, with a corresponding dual norm induced by B−1. If a matrix pencil (A,B)

has A symmetric and B symmetric positive definite, the pencil (A,B) is called symmetric definite.

Lemma 1.5.4. Let A ∈ Rn×n be symmetric, and let B be symmetric positive definite. Let λmax and λmin

denote the largest and smallest eigenvalues, in magnitude, of the pencil (A,B). Then

||A||B,B−1 = |λmax|

and

κB(A) = ||A||B,B−1 ||A−1||B−1,B =
|λmax|
|λmin|

.

Proof. Let A = V ΛV T be the spectral decomposition of A with respect to the B-inner product, and let

U be defined by BU = V . Then

||A||B,B−1 = max
x ̸=0

||Ax||B−1

||x||B
= max

x ̸=0

√
xTAB−1Ax√
xTBx

14

can be written as

||A||B,B−1 = max
x ̸=0

√
xTV ΛV TB−1V ΛV Tx√

xTBx

= max
u̸=0

√
uTUTV ΛV TB−1V ΛV TUu√

uTUBUu

= max
u̸=0

√
uTΛ2u√
uTu

= |λmax|

Similarly,

||A−1||B−1,B = max
y ̸=0

√
yTA−1BA−1y√
yTB−1y

= max
v ̸=0

√
vTΛ−2v

vTv
=

1

|λmin|
.

Given a symmetric matrix A and a vector x, the Rayleigh-quotient of x is defined to be xTAx/xTx.

This quotient typically appears in estimations of eigenvalues, as if x is an eigenvector of A with corre-

sponding eigenvalue λ, then λ = xTAx/xTx. The Rayleigh-quotient can be generalized to the generalized

eigenvalue problem with respect to symmetric definite matrix pencil.

Definition 1.5.2. Let (A,B) be a matrix pencil in which A is symmetric, and B is a symmetric positive

definite matrix. Given a vector x, the Rayleigh quotient is given by xTAx/xTBx.

Theorem 1.5.5. Let (A,B) be a matrix pencil in which A is symmetric, and B is symmetric positive

definite. Let λmax denote the largest generalized eigenvalue and λmin the smallest generalized eigenvalue.

Then

λmax = max
x ̸=0

xTAx

xTBx
, and λmin = min

x ̸=0

xTAx

xTBx
.

Proof. The result follows from applying the equivalent standard eigenvalue result to the matrix R−TAR−1,

where R is the Cholesky factor of B.

1.6 The Lanczos Process

When dealing with a symmetric matrix A, it is often convenient to apply a similarity transform

to A to form a tridiagonal matrix and work with the equivalent transformed problem instead of the

original problem. Householder transformations are a convenient tool to perform this transformation.

Unfortunately, methods involving Householder reflectors do not scale well as the dimension of the matrix

A grows. As the dimension gets larger, it becomes more practical to work with an iterative process that

builds the tridiagonal matrix one step at a time, as opposed to all at once. The Lanczos process is one

method to achieve this goal. The Lanczos process is typically presented using the standard inner product

⟨x, y⟩ = yTx, however, inner products induced by symmetric positive definite matrices can be used as well.

15

Let A,B ∈ Rn×n be two symmetric matrices. Additionally, assume that B is positive definite. Let

R be the Cholesky factor of B so that B = RTR. Define Ā as R−TAR−1. From the theory of Householder

reflectors, it is well known that for any vector ū1 such that ||ū1|| = 1, there exists an orthogonal matrix Ū

such that Ūe1 = ū1 and ŪTĀŪ is a tridiagonal matrix

ŪTĀŪ = T =



α1 β2

β2 α2 β3

β3 α3
. . .

. . .
. . . βn

βn αn


.

Now, ŪTĀU = ŪTR−TAR−1Ū . Let U = R−1Ū , so that UTAU = T . Recall B induces an inner

product ⟨x, y⟩B = yTBx. The matrix U is B-orthogonal, as UTBU = ŪTR−TBR−1Ū = ŪTŪ = I. Thus,

for any B-orthonormal vector u1, there exists a B-orthogonal matrix U such that

Ue1 = u1, UTAU = T, and UTBU = I.

These three equations form the foundation of the Lanczos process. From the second and third equations,

it holds that

AU = BUT.

Let V = BU . As B is symmetric positive definite, B−1 exists and is also symmetric positive definite, and

V is B−1-orthogonal. In terms of the columns of U and V , the above equation becomes

(
Au1 Au2 Au3 · · · Aun

)
=

(
v1 v2 v3 · · · vn

)


α1 β2

β2 α2 β3

β3 α3
. . .

. . .
. . . βn

βn αn


.

Thus,

Au1 = α1v1 + β2v2, and

Aui = βivi−1 + αivi + βi+1vi+1 for all i = 2, . . . , n,

with βn+1 = 0. As UTV = I, uT
i vj = 0 if i ̸= j, and 1 if i = j. The scalars αi are then simply uT

i Aui.

16

Setting β1 = 0, it holds that

βi+1vi+1 =Aui − βivi−1 − αivi, and

βi+1ui+1 =B−1Aui − βiui−1 − αiui.

Thus,

βi+1 =
√

(Aui − βivi−1 − αivi)TB−1(Avi − βivi−1 − αivi),

vi+1 =
1

βi+1
(Aui − βivi−1 − αivi), and

ui+1 =
1

βi+1
(B−1Aui − βiui−1 − αiui).

These steps constitute the main loop of the Lanczos process. They can be summarized with the following

steps:

1. w = Aui − βivi−1.

2. αi = uT
i w.

3. w ← w − αivi.

4. ūi+1 = B−1w.

5. βi+1 =
√
wTūi+1.

6. vi+1 = 1
βi+1

w.

7. ui+1 = 1
βi+1

ūi+1.

In a practical implementation of these steps, the vectors ūj and uj do not need to be stored separately.

Let Ui and Vi be the n × i dimensional matrices whose columns consist of the vectors u1, . . . , ui and

v1, . . . , vi, respectively. Let Ti be the upper left i× i block of T . Then

AUi = ViTi + βi+1vi+1e
T
i = Vi+1T̂i, (1.1)

where

T̂i =

 Ti

βi+1e
T
i

 .

Equation (1.1) is referred to as the Lanczos decomposition, and is the foundation of numerous iterative

algorithms for solving both linear systems and eigenvector problems. Note that

range(Uk) = Span{u1, B−1Au1, . . . , (B
−1A)k−1u1} = Kk(B

−1A, u1),

17

the k-th Krylov subspace of B−1A and u1.

Consider the case where at the k-th iteration, it is determined that βk+1 = 0. Then, by (1.1),

AUk = VkTk = BUkTk.

As Tk is symmetric, there exists a basis of Rk consisting of orthonormal eigenvectors of Tk. Let (z, λ) be

some eigenpair of Tk. Then

AUkz = BUkTkz = λBUkz.

The vector q = Ukz solves the generalized eigenvector problem Aq = λBq. Let Z be the matrix consisting

of all orthonormal eigenvectors of Tk, and Q = UkZ. Then each column of Q is a generalized eigenvector

of the matrix pencil (A,B), and the columns of Q form a basis for an eigenspace of (A,B). In this case,

the Lanczos process has exhausted an eigenspace of (A,B), and the Lanczos process has broken down.

This occurs when the initial vector u1 ∈ range(Q). In most applications of the Lanczos process, this

indicates that, in exact arithmetic, the solution to the problem has been found. However, this is not

always the case. Sometimes, the Lanczos process needs to be continued. In that case, a new vector uk+1 is

chosen so that uT
k+1Buk+1 = 1, and UT

k Buk+1 = 0. Typical implementations of the Lanczos process only

store the matrix T in memory, not the matrices U and V . Thus, in the case of breakdown, the Lanczos

process would need to be rerun from the beginning in order to ensure that the chosen uk+1 does not have

any components in the exhausted subspace.

1.6.1 Lanczos-CG

The Lanczos process provides a simple, powerful method for transforming certain linear algebra

problems into equivalent problems which are significantly easier to solve. For instance, consider solving

the system of linear equations Ax = b when A is symmetric positive definite. Let B be a symmetric

positive definite matrix such that B ≈ A, and Bu = v is straightforward to solve. Popular choices include

B = diag(A), the matrix consisting of only the diagonals of A, or the incomplete Cholesky decomposition

of A (see [24]). Suppose the Lanczos process is initialized with v1 = b/β1, where β1 is a constant so

that (v1B
−1v1)

1/2 = 1, and β1BUe1 = b. The idea is to find, at each iteration, an approximate solution

xk ∈ range(Uk) such that the residual vector rk = b−Axk satisfies

rk ⊥ range(Uk) = Kk(B
−1A,B−1b).

18

Thus, at each iteration, the following projected subproblem needs to be solved:

UT
k AUkyk = Tkyk = UT

k b = β1e1.

The matrix A is positive definite, and therefore each Tk is positive definite, so Tk has a square root free

Cholesky decomposition Tk = LkDkL
T
k . This decomposition is the symmetric indefinite factorization of

Tk, where the positive definiteness of Tk guarantees that Dk is positive definite and diagonal. So,



α1 β2

β2 α2 β3

β3 α3
. . .

. . .
. . . βk

βk αk


=



1

l2 1

l3 1

. . .
. . .

lk 1





d1

d2

d3

. . .

dk





1 l2

1 l3

1
. . .

. . . lk

1


.

Therefore,

d1 = α1,

lk = βk/dk, and

dk = αk − lkdk−1lk for all k = 2, . . . , n.

As new entries are added to T , the previous Cholesky factors remain the same. These factors can be

stored in memory, so that the full Cholesky decomposition of Tk need not be recomputed at each iteration.

Now, introduce a new vector zk ∈ Rk such that DkL
T
k yk = zk. Then Lkzk = β1e1, or



1

l2 1

l3 1

. . .
. . .

lk 1





ξ1

ξ2

ξ3
...

ξk


=



β1

0

0

...

0


.

19

Then zk is easily solved to be

zk =



β1

−l2ξ1

−l3ξ2
...

−lkξk−1


=

 zk−1

−lkξk−1

 .

The vector zk need not be fully computed at each iteration. Only the last entry of zk is unknown at

iteration k. Define the matrix Pk by Uk = PkDkL
T
k . Then

xk = Ukyk = PkDkL
T
k yk = Pkzk.

Let p1, . . . , pk denote the columns of Pk. Then

(
u1 u2 · · · uk

)
=

(
p1 p2 · · · pk

)


d1

d2

. . .

dk





1 l2

1 l3

. . . lk

1


,

so that

p1 = (1/d1)u1 and pk = (1/dk)(uk − dk−1lkpk−1).

Notice that at each iteration, the first k − 1 columns of Pk are simply the columns of Pk−1. Thus,

xk = Pkzk = Pk−1zk−1 + pkξk = xk−1 + pkξk.

Now, consider the residual vector rk = b−Axk. It holds that

rk = b−Axk = b−AUkyk = β1Vke1 − (VkTk + βk+1vk+1e
T
k)yk,

or

rk = Vk(β1e1 − Tkyk)− βk+1vk+1e
T
k yk = −βk+1vk+1e

T
k yk.

This shows that the magnitude of the residual at iteration k depends only on βk+1 and the last entry

of yk. This is how the method can converge before the Lanczos process exhausts a complete eigenspace.

20

Now, in the B−1 norm, this becomes

rTk B
−1rk = β2

k+1(e
T
k yk)

2.

From the definitions of yk, ξk, lk, and dk, it holds that rTk B
−1rk = ξ2k+1, giving a convenient way to

measure the convergence of the algorithm.

It turns out that this algorithm is, in exact precision, equivalent to the more well-known pre-

conditioned conjugate gradient algorithm (PCG). The PCG algorithm is presented in Algorithm 1.1 for

completeness.

Algorithm 1.1. Preconditioned Conjugate Gradient Algorithm

1: Given A ≻ 0, B ≈ A such that B ≻ 0 and Bu = v is simple to compute, x0 ∈ Rn, b ∈ Rn, ϵ > 0.
2: Returns x such that ||Ax− b||22 ≤ ϵ.
3: k ← 0.
4: x← x0.
5: r0 ← b−Ax0.
6: if ||r0||22 ≤ ϵ then
7: exit.
8: end if
9: Solve Bz0 = r0.

10: p0 ← z0.
11: while Not Converged do

12: αk ← rTk zk

pTk Apk

13: x← x+ αkpk
14: rk+1 ← rk − αkApk
15: if ||rk+1||22 ≤ ϵ then
16: exit.
17: end if
18: Solve Bzk = rk.

19: βk+1 ←
rTk+1zk+1

rTk zk

20: pk+1 = zk+1 + βk+1pk
21: end while

Note that these parameters αj and βj are not identical to the parameters appearing in the Lanczos

process. While Algorithm 1.1 is presented using the most commonly used notation, a change of variables

is used to avoid confusion. Let γi denote the PCG parameter αi, and θi denote the parameter βi. The

residual in Algorithm 1.1 is updated at each iteration using the previous residual and the product of the

matrix A with the current search direction pk. Eliminating the search direction pk from this update yields

the three term-recursion

rk+1 = −γkAB−1rk + (1− γkθk
γk−1

)rk +
γkθk
γk−1

rk−1.

21

Compare this with the three-term recursion in the Lanczos process for vi+1:

vi+1 =
1

βi+1
AB−1vi −

αi

βi+1
vi −

βi
βi+1

vi−1.

Recall that the vectors vi have unit B−1 norm. Therefore,

vi+1 =
(−1)i

||ri+1||B−1

ri+1.

Thus, the search directions utilized in each method are equivalent to each other. Furthermore, considering

that both algorithms make the optimal choice of step length at each iteration, the two must be identical.

Theorem 1.6.1 (PCG Convergence). Let A, B ∈ Rn×n be two symmetric positive definite matrices,

where B−1 ≈ A is such that solving systems of the form Bu = v is straightforward, and let b ∈ Rn.

Suppose that Algorithm 1.1, or equivalently, Lanczos-CG, is used to solve the system Ax = b using some

initial approximation x0. Let x∗ be the exact solution, xk the k-th iterate, and ek = x∗ − xk. Then

||ek||A ≤ 2

(√
κB(A)− 1√
κB(A) + 1

)k

||e0||A,

where κB(A) = λmax(A,B)/λmin(A,B).

The above result shows that the worst-case convergence rate of Lanczos-CG depends on the

square root of the condition number of the matrix A in the B-norm. In practice, Lanczos-CG behaves

exceptionally well when a strong preconditioner is used and performs much faster than other methods.

In practical cases, PCG is preferred over Lanczos-CG due to the fact that one less vector needs

to be stored. However, this example demonstrates the power of the Lanczos process and how it can be

leveraged to find an approximate solution for various problems. For instance, a similar procedure can be

utilized to solve generalized eigenvalue problems of the form Ax = λBx by finding the eigenvalues of Tk

at each iteration. Suppose the LQ decomposition of T̂k is taken at each iteration instead of the Cholesky

decomposition of Tk. In that case, one can derive the popular MINRES algorithm for solving equations

Ax = b when A is only assumed to be symmetric.

It is crucial to note that the Lanczos process has drawbacks. In his Ph.D. thesis [26], Paige demon-

strated explicit bounds on the errors of the Lanczos vectors as the algorithm proceeds in finite-precision

arithmetic. Unfortunately, as the algorithm proceeds, the round-off errors build up until, eventually, the

vectors lose their B-orthogonality. Many schemes for correcting this issue have been proposed, such as the

22

partial reorthogonalization scheme presented in [27]. Unfortunately, reorthogonalization schemes require

either storing the Lanczos vectors or rerunning the Lanczos process from the beginning once a loss of

orthogonality has been detected.

One alternative to reorthogonalization is restarting. For example, most practical implementations

of Algorithm 1.1 include a restart technique so that the Lanczos process is restarted before any significant

errors can accumulate. However, restarting schemes are typically algorithm specific and are not discussed

here.

1.6.2 The Block Lanczos Process

The Lanczos process need not be initialized with a single vector u1. For example, consider the

problem of solving the system AX = C, where A ∈ Rn×n is positive definite, C ∈ Rn×m, and X ∈ Rn×m.

Lanczos-CG would need to be applied m times to solve this problem. Alternatively, the Lanczos process

can be formulated to use n×m blocks of vectors to avoid applying the same process multiple times. In

what follows, assume without loss of generality that m divides n.

Let Û1 = (u1,1, u1,2, . . . , u1,m) denote an n ×m matrix with B-orthonormal columns, and let

V̂1 = BÛ1. Then there exists a B-orthogonal matrix U and a B−1-orthogonal matrix V whose first m

columns are Û1 and V̂1, respectively, such that UTAU is a block tridiagonal matrix T . It still holds then

that AU = V T . Let Ûj and V̂j denote the j-th block of m columns of the matrices U and V . Equating

the columns of AU = V T yields

(
AÛ1 AÛ2 · · · AÛn/m

)
=

(
V̂1 V̂2 · · · V̂n/m

)


A1 BT
2

B2 A2

. . .
. . . BT

n/m

Bn/m An/m


,

where Ai and Bi ∈ Rm×m, and each Ai is symmetric, for all indices i. Thus,

AÛ1 = V̂1A1 + V̂2B2, and

AÛi = V̂i−1B
T
i + V̂iAi + V̂i+1Bi+1 for all i = 2, . . . , n,

23

with Bn/m+1 = 0. As before, it holds that Ai = ÛT
i AÛi, and

V̂i+1Bi+1 = AÛi − V̂i−1B
T
i − V̂iAi,

Ûi+1 = B−1V̂i+1, and

ÛT
i+1V̂i+1 = I.

Unlike the m = 1 case, there is some freedom in choosing how to form Bi+1. The most straightforward

method for forming Bi+1 is to perform Gram-Schmidt biorthogonalization on the columns of the matrices

AÛi− V̂i−1B
T
i − V̂iAi and B

−1(AÛi− V̂i−1B
T
i − V̂iAi). This yields a matrix Bi+1 that is upper triangular,

in which case Ti+1 is not only a block triangular matrix but a banded matrix. Column-pivoting can

be included to better detect when Bi+1 becomes rank-deficient, although this destroys the banded

structure of T . A block version of Lanczos-CG can be derived by taking a block square root free Cholesky

decomposition of Tk at each iteration and forming the appropriate approximate solution to the matrix X.

The block-Lanczos process is most commonly used for finding multiple eigenpairs simultaneously. It shall

be used in the shifted and inverted GLTR algorithm to allow convergence in the hard case and to enable

the warm-starting of the algorithm.

1.7 Other Results

Farkas’ lemma is a crucial result used when proving the optimality conditions for inequality-

constrained optimization problems. It has several equivalent statements, all of which are detailed here.

Lemma 1.7.1 (Farkas’ Lemma, [14] Section 7.7). Let A ∈ Rn×k be a nonzero matrix and c ∈ Rn. Then

1. cTp ≥ 0 for all p such that Ap ≥ 0 if and only if c = ATy for some y ≥ 0.

2. There exists a p such that cTp < 0 and Ap ≥ 0 if and only if c ̸= ATy.

3. Exactly one of the following holds:

(a) c can be written as a nonnegative linear combination of the columns of AT.

(b) There exists a vector p such that cTp < 0 and Ap ≥ 0.

Lemma 1.7.2 (Debreu’s Lemma, [8]). Given an m×n matrix A and an n×n matrix H, then xTHx > 0

for all x ∈ null(A) if and only if there exists a finite ρ̄ ≥ 0 such that H + ρATA is positive definite for all

ρ > ρ̄.

24

Chapter 2

Unconstrained Optimization

2.1 Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f(x), (2.1)

where x is a real vector with n components, and f : Rn → R is a continuous function. f may be assumed

to be continuously differentiable, or twice continuously differentiable, depending on the method being

examined. Generally, the goal would be to find a point x∗ that is a global minimizer, i.e., a point such that

f(x∗) ≤ f(x) for all x ∈ Rn. (2.2)

Unfortunately, this goal is beyond the scope of what is feasible. This is due to the fact that optimization

algorithms generally only have access to local information about the function f , so instead, practical

methods are developed with the goal of finding local minimizers.

Definition 2.1.1 (Local Unconstrained Minimizer, [16] Chapter 3). A point x∗ is a local unconstrained

minimizer to problem (2.1) if there exists a neighborhood B of x∗ such that

f(x∗) ≤ f(x) for all x ∈ B.

This is also sometimes referred to as a weak local unconstrained minimizer in order to distinguish

it from a strict local unconstrained minimizer.

Definition 2.1.2 (Strict Local Unconstrained Minimizer, [16] Chapter 3). A local unconstrained minimizer

25

x∗ is a strict local unconstrained minimizer if there exists a neighborhood B of x∗ such that

f(x∗) < f(x) for all x ∈ B, x ̸= x∗.

Strict local minimizers may have other local minimizers that are arbitrarily close. A stronger

definition is that of an isolated local minimizer.

Definition 2.1.3 (Isolated Local Unconstrained Minimizer, [16] Chapter 3). A local unconstrained

minimizer x∗ is an isolated local unconstrained minimizer if there exists an open ball B(x∗, δ) about x∗ of

radius δ > 0, such that x∗ is the only unconstrained minimizer in B(x∗, δ).

Theorem 2.1.1 (Isolated minimizers are strict, [16] Chapter 3). Given f : Rn → R, an isolated

unconstrained minimizer x∗ of f is a strict unconstrained minimizer.

Proof. The result is proved using a contrapositive argument. Let x∗ be a local minimizer of f that is not

strict. Then there exists a δ > 0 such that

f(x∗) ≤ f(x) for all x such that ||x− x∗|| < δ.

As x∗ is not strict, there exists a point x̂ ̸= x∗ such that ||x̂ − x∗|| < 1
3δ and f(x̂) = f(x∗). Then

B(x̂, 12δ) ⊂ B(x
∗, δ). This implies that

f(x̂) ≤ f(x) for all x ∈ B(x̂, 12δ).

Thus, x̂ is another local unconstrained minimizer of f within B(x∗, δ). The radius δ is arbitrary and can

be taken to be as small as necessary, so x∗ is not isolated. Therefore, x∗ can only be an isolated minimizer

if it is also a strict minimizer.

2.2 Optimality Conditions

The definitions of minimizers given so far are not particularly useful when it comes to determining

if a point is optimal because they require checking infinitely many points in a neighborhood of a potential

optimal solution. To formulate practical algorithms, a method is needed to characterize minimizers

without having to check nearby points. Fortunately, if f is differentiable, then the derivative at a point

gives local information about f .

26

Theorem 2.2.1 (First-order necessary condition for an unconstrained local minimizer, [16] Chapter 3).

Given f : Rn → R, let x∗ be a local unconstrained minimizer of f . Assume that f is differentiable at x∗.

Then ∇f(x∗) = 0.

Proof. By definition (2.1.1),

f(x∗) ≤ f(x∗ + αp) for all p ∈ Rn and, given p, all sufficiently small α. (2.3)

As f is differentiable at x∗, it holds that if α ↓ 0, then

lim
α→0+

1

α
(f(x∗ + αp)− f(x∗)) = ∇f(x∗)Tp for all p ∈ Rn. (2.4)

Combining (2.3) and (2.4) shows that ∇f(x∗)Tp ≥ 0 for all p ∈ Rn, thus ∇f(x∗) = 0.

The proof can be applied under the weaker condition that f is only Gateaux-differentiable at

x∗. Points that satisfy ∇f(x) = 0 are referred to as both stationary points and as critical points. It

is crucial to note that being a stationary point is not a sufficient condition for being an unconstrained

minimizer. Consider the functions f(x) = 1
2x

2 and g(x) = 1
6x

3. The point x = 0 satisfies ∇f(x) = 0 and

∇g(x) = 0, but is only a minimizer for the function f . Thus, any method that naively attempts to solve

for ∇f(x) = 0 may converge to an arbitrary stationary point. Therefore, stricter conditions are needed.

Theorem 2.2.2 (Second-order necessary conditions for an unconstrained minimizer, [16] Chapter 3).

Given f : Rn → R, let x∗ be a local unconstrained minimizer of f . Assume that f is twice differentiable at

x∗. Then ∇f(x∗) = 0 and ∇2f(x∗) ⪰ 0.

Proof. Theorem 2.2.1 shows that ∇f(x∗) = 0. By the definition of the second derivative,

lim
α→0

1

α2
(f(x∗ + αp)− f(x∗)) = 1

2
pT∇2f(x∗)p for all p ∈ Rn.

Suppose that ∇2f(x∗) is not positive semidefinite. Then there exists a vector q ∈ Rn such that

qT∇2f(x∗)q < 0. Thus

lim
α→0

1

α2
(f(x∗ + αq)− f(x∗)) < 0.

This contradicts that x∗ is a local minimizer, so ∇2f(x∗) ⪰ 0.

Theorem 2.2.2 only provides necessary conditions for optimality. Points that satisfy ∇f(x) = 0

and ∇2f(x) ⪰ 0 are not necessarily local minimizers. Again, consider the function f(x) = 1
6x

3. This

27

simple cubic function satisfies ∇f(0) = 0 and ∇2f(0) = 0, but does not have zero as a local minimizer.

The following theorem proves stricter conditions that guarantee that a point x is a local minimum.

Theorem 2.2.3 (Second-order sufficient conditions for an unconstrained minimizer, [16] Chapter 3).

Given f : Rn → R, and x∗ ∈ Rn, assume that the second derivative of f exists at x∗. If ∇f(x∗) = 0 and

∇2f(x∗) ≻ 0, then x∗ is an isolated (and therefore strict) local unconstrained minimizer of f .

Proof. First, it is shown that x∗ is a strict minimizer. By assumption, ∇f(x∗) = 0, so

lim
α→0

1

α2
(f(x∗ + αp)− f(x∗)) = 1

2
pT∇2f(x∗)p for all p ∈ Rn.

As ∇2f(x∗) ≻ 0, pT∇2f(x∗)p > 0 for all p ̸= 0, thus f(x∗+αp)−f(x∗) > 0 for all p ̸= 0 and α sufficiently

small. Therefore, there exists a neighborhood about x∗ in which f(x) > f(x∗) for all x ̸= x∗, so that x∗ is

a strict local minimizer.

Now it is shown that x∗ is also an isolated minimizer. As the second derivative of f exists at

x∗, the gradient ∇f(x) exists in a neighborhood of x∗ and is continuous at x∗. Suppose that x∗ is not

an isolated minimizer. Then, for every neighborhood of x∗, there exists a point x in this neighborhood,

which is also a stationary point. Therefore, a sequence of stationary points {xk}∞k=1 can be constructed

that is convergent to x∗. As the second derivative of f exists at x∗,

lim
||p||2→0

1

||p||2
||∇f(x∗ + p)−∇f(x∗)−∇2f(x∗)p||2 = 0.

As xk − x∗ → 0 and ∇f(xk) = ∇f(x∗) = 0 for all k, this relation holds for each pk = xk − x∗. For each k,

let uk = pk/||pk||. Thus,

lim
k→∞

||∇2f(x∗)uk||2 = 0.

However, ∇2f(x∗) is positive definite, and thus is nonsingular, so

||∇2f(x∗)u||2 ≥ λ > 0

for any unit length vector u, where λ is the eigenvalue of ∇2f(x∗) of least magnitude. This creates a

contradiction, which shows that there exists a neighborhood in which x∗ is the only stationary point. The

result follows.

28

2.3 Directions of Decrease

Consider an objective function f defined on Rn to minimize, and some point x that is not a

local minimizer. The optimality conditions discussed in the previous section can help to form methods

for finding a local minimizer by constructing a sequence of points starting at x that converge to a local

minimizer. Note that every neighborhood of x must contain points such that the value of f is less than

f(x). Consequently, there exists a path starting at x that strictly decreases f . The most obvious choice

for such a path is a ray that emanates from x (although some methods consider nonlinear paths).

Definition 2.3.1 (Direction of Decrease, [16] Chapter 3). Let f : Rn → R be a differentiable function.

Let x ∈ Rn. A vector p ∈ Rn is a direction of decrease for f at x if there exists a positive α̂ such that

f(x+ αp) < f(x) for all 0 < α < α̂.

An immediate result of this definition is that if a direction of decrease exists at x, then x is not a

minimizer.

Result 2.3.1 (Existence of a direction of decrease, [16] Chapter 3). Given f : Rn → R, assume that f is

continuously differentiable on a convex set D ⊆ Rn, and let x ∈ int(D).

1. If a vector p satisfies ∇f(x)Tp < 0, then p is a direction of decrease at x

2. If f has a second derivative at x, then any p satisfying ∇f(x)Tp = 0 and

pT∇2f(x)p < 0 is a direction of decrease at x.

Proof. Due to the fact that x is an interior point of D and ∇f(x) is continuous on D, the inequality

∇f(x)Tp < 0 implies there exists a δ > 0 such that, for all α ∈ [0, δ), x+ αp ∈ D and ∇f(x+ αp)Tp < 0.

By the mean-value theorem, for every α ∈ (0, δ), there exists a t ∈ (0, 1) such that

f(x+ αp)− f(x) = α∇f(x+ tαp)Tp.

It follows that f(x+αp)−f(x) < 0, which establishes (1). Conversely, any direction satisfying∇f(x)Tp > 0

cannot be a direction of decrease. Thus, for part (2), it suffices to consider vectors that satisfy ∇f(x)Tp = 0.

Suppose that f has a second derivative at x. Let p be a vector satisfying the properties in (2).

Then

lim
α→0

1

α2
(f(x+ αp)− f(x)) = 1

2
pT∇2f(x)p < 0,

so f(x+ αp)− f(x) < 0 for α sufficiently small, therefore p is a direction of decrease.

29

Vectors p that satisfy ∇f(x)Tp < 0 are referred to as descent directions, while vectors that satisfy

pT∇2f(x)p < 0 are referred to as directions of negative curvature.

2.4 Line-search Methods

In this section it is shown how to use a descent direction pk found by minimizing a strictly convex

local model of the objective function to take a suitable step toward a local minimizer. The goal of this

method is to generate a sequence of points {xk}∞k=1 such that limk→∞∇f(xk) = 0, where the sequence of

points is generated via an update rule of the form

xk+1 = xk + αkpk,

where pk is a descent direction at xk, and αk is a suitable step-length. Such methods are commonly referred

to as line-search methods, as the descent directions are formed first, and then a suitable step-length is

found by sampling the function f along the ray {x : x = xk + αp, α > 0}. Two common methods for

choosing the search direction pk are considered: the steepest-descent method and Newton’s method.

2.4.1 Sufficient decrease conditions

It has been shown that if pk is a descent direction at xk, there exists a step-length α̂ such that

f(xk + αpk) < f(xk) for all 0 < α < α̂. A naive approach would be to choose the step-length α as an

arbitrarily small value. Unfortunately, this will lead to an algorithm requiring far too many iterations to

achieve a sufficiently accurate local minimizer. It is necessary that any line-search method attempt to find

a step length that decreases the objective function without the decrease becoming so small that progress

is inhibited. This leads to the notion of sufficient decrease conditions.

The most extreme approach would be to choose the first minimizer of f along the ray {xk + αpk :

α > 0}. This is referred to as an exact line search. Note that a step length αk chosen via exact line search

must satisfy

d

dα
f(xk + αpk) = ∇f(xk + αpk)

Tpk = 0.

The update is taken as xk+1 = xk + αkpk, and has the property that the gradient of f at the new point is

orthogonal to the search direction, i.e., no more progress can be made along the given direction pk. In the

case that f is a strictly convex quadratic function of the form f(x) = 1
2x

THx+ gTx, then, given a search

30

direction pk, the optimal step length αk can be computed as

αk =
−∇f(xk)Tpk

pTkHpk
=
−(g +Hxk)

Tpk
pTkHpk

.

However, exact line searches are generally considered inefficient for more complicated objective functions,

as minimizing f along a direction pk is comparable in work to the overall problem of minimizing f itself.

So instead, the exact step length is used for theoretical purposes as the “best” step possible.

The convergence analysis of a line-search method depends on the method used to choose the

search direction pk and the method used to choose the step length αk. For now, suppose that a line-search

algorithm yields a sequence of points {xk} such that f(xk+1) < f(xk) for all k. Further, assume that

the function f is bounded below (otherwise, the optimization problem is not well posed). Then the

strictly decreasing sequence {f(xk)} converges to a limit. Thus, given an initial iterate x0, all iterates

lie in the level set L(f(x0)) = {x : f(x) ≤ f(x0)}. If this level set is compact, then {f(xk)} is bounded

below and must converge. However, this is not enough to guarantee that f(xk) converges to the value

of f at a solution. More conditions are needed to show that the sequence of iterates xk converges to an

optimal point x∗. Thus, instead of simply requiring that f(xk+1) < f(xk), stricter conditions are enforced

to ensure that each new iterate achieves a decrease that is sufficient to guarantee progress to a local

minimizer.

Backtracking and the Armijo condition

At each iterate xk of a line-search method, a local model of f at xk, denoted mk(x), is constructed

to measure how much improvement a step actually makes. The step length αk is then chosen so that the

actual reduction in the objective function is at least as large as a multiple of the predicted reduction given

by the local model function. To be more precise, αk is chosen so that

f(xk)− f(xk + αkpk) ≥ ηA(mk(xk)−mk(xk + αkpk)), (2.5)

where ηA is held constant throughout the algorithm and 0 < ηA < 1.

For the local model function mk to be a good model, two conditions are required. First,

m(xk + αkpk) < mk(xk) for all α sufficiently small, so that pk is a descent direction not only for f but for

mk as well. Furthermore, it is required that

lim
α→0+

f(xk)− f(xk + αpk)

mk(xk)−mk(xk + αpk)
= 1,

31

so that as α→ 0, the local behavior of mk more closely matches that of f . The model mk is also typically

chosen so that mk(xk) = f(xk). This property can be enforced for higher order derivatives as well, i.e.,

∇mmk(xk) = ∇mf(xk) for all m = 1, . . . , M for some positive integer M . Typical values of M do not

exceed 2.

For non-differentiable functions, the choice of the model function mk can be somewhat unintuitive.

For differentiable functions, the first-order Taylor series satisfies these conditions quite nicely. Thus,

mk(x) = ℓk(x) = f(xk) +∇f(xk)(x− xk)

gives the predicted reduction

mk(xk)−mk(xk + αpk) = −α∇f(xk)Tpk.

The search direction pk may also be chosen via a method that requires a local model of f . However, the

two model functions need not be the same. If pk is a descent direction, notice that the predicted reduction

is always positive. The sufficient decrease condition (2.5) can be written as

f(xk + αpk) ≤ f(xk) + αηA∇f(xk)Tpk, (2.6)

commonly called the Armijo condition. Any line search attempting to satisfy this condition is called an

Armijo line search. However, this condition does not enforce the requirement that the step length α is not

too small. A sufficiently small α will always satisfy the Armijo condition. Instead, the goal should be

to find the largest α such that the Armijo condition holds. This motivates the backtracking line-search

algorithm. Notice that the main computational work is done in evaluating f(x+ αp) for each choice of α.

Algorithm 2.1. Backtracking Line-Search

1: Given kmax, 0 < ηA < 1, 0 < γC < 1, α0, x, p
2: k ← 0
3: α← α0

4: while k ≤ kmax and f(x+ αp) > f(x) + αηA∇f(x)Tp do
5: α← γCα
6: end while

For methods based on computing search directions via Newton’s method, α0 is chosen to be 1, whereas

steepest-descent methods may use a different initial choice at each step. This simple strategy works quite

well in practice. More sophisticated approaches add additional conditions on α. For instance, the Wolfe

32

conditions require that

1. f(xk + αpk) ≤ f(xk) + αηA∇f(xk)Tpk,

2. ∇f(xk + αpk)
Tpk ≥ ηW∇f(xk)Tpk,

where ηA < ηW < 1. The strong Wolfe conditions are slightly stricter in that the requirements become

1. f(xk + αpk) ≤ f(xk) + αηA∇f(xk)Tpk,

2. |∇f(xk + αpk)
Tpk| ≤ ηW |∇f(xk)Tpk|.

Less used nowadays is also the Goldstein conditions, which require that

f(xk) + (1− ηA)∇f(xk)Tpk ≤ f(xk + αkpk) ≤ f(xk) + ηA∇f(xk)Tpk,

where 0 < ηA < 1
2 . These three sets of conditions prevent the step length α from becoming too small.

Line-search methods that attempt to satisfy these stricter conditions often operate via interpolation and

bracketing to find an initial interval in which a step length α satisfies the conditions, then iterate to refine

the interval down to a point. Methods for solving the Wolfe conditions are particularly complicated both

theoretically and practically. Any practical implementation of a Wolfe line search must go to great lengths

to compensate for round-off error.

Two of the most widely used methods for choosing the search directions pk are the steepest-descent

method and Newton’s method. First, the steepest-descent method is considered. Suppose that at the

current iterate xk of some iterative method, ∇f(xk) ̸= 0. The descent direction condition states that to

proceed, finding a vector such that ∇f(xk)Tpk < 0 suffices. Thus, an intuitive choice would be to find a

search-direction p that minimizes the quantity ∇f(xk)Tpk. Let gk = ∇f(xk). Then the task is to find a

vector pk such that

pk = argmin
p∈Rn

− gTk p. (2.7)

Problem (2.7) is unbounded below. However, note that pk is a search direction, i.e. an iterative method is

allowed to search along the open ray {xk + αpk : α > 0}. Thus, the scaling of the search direction does

not matter here. Instead, pk is chosen to be

pk = argmin
p∈Rn

{−gTk p : ||p|| = δ} (2.8)

33

for some scalar δ and some norm. Then pk is the vector for which the inequality

−||pk|| ||gk||⋆ = −δ||gk||⋆ ≤ gTk pk

is satisfied with equality. Suppose the norm in question is the Euclidean norm. Then pk = − δ
||gk||2 gk.

A straightforward choice for δ is simply ||gk||2, thus giving the gradient-descent direction pk = −gk. Of

course, the Euclidean norm is not the only norm possible. Choosing δ in (2.8) to be ||g||⋆ gives the

steepest-descent direction in an arbitrary norm. Let Bk be a symmetric positive definite matrix, and

let || · ||Bk
be the norm induced by Bk. Then the steepest-descent direction in the Bk norm is given by

pk = −B−1
k g. Other common choices are the 1-norm and the ∞-norm.

The next common method for choosing a search direction considered is Newton’s method. First,

consider the steepest-descent direction in the Bk-norm, pk = −B−1
k g. This vector can also be found by

solving an unconstrained quadratic optimization problem

min
p∈Rn

qk(xk + p) = f(xk) + gTk p+
1

2
pTBkp. (2.9)

The function qk(x) is a quadratic model of f at xk, where the Hessian matrix of f at xk is approximated

by a positive definite matrix Bk. Suppose now that f is strongly convex and twice-differentiable, i.e.,

there exists an m > 0 such that

mI ⪯ ∇2f(x) (2.10)

for all x ∈ L(f(x0)). Then, at each iterate xk, the approximate quadratic model qk can be taken to be

the true quadratic model

qk(x) = f(xk) + gTk (x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk).

Minimizing the function Qk(p) = qk(xk + p) yields the Newton direction pk = −∇2f(xk)
−1gk. Thus, the

Newton direction is the steepest-descent direction in the ∇2f(xk) norm.

The convergence behavior of a backtracking line-search method can now be analyzed. First, a

theorem is presented that shows that backtracking produces a sufficient decrease regardless of how the

search direction is chosen. Next, two theorems are presented, demonstrating convergence when the search

direction is chosen via steepest descent and Newton’s method.

Theorem 2.4.1 (An Armijo line-search gives a sufficient decrease, [16] Chapter 3). Let f : Rn → R be

34

twice continuously differentiable on an open convex set D ⊆ Rn. Let x0 ∈ D be chosen so that L(f(x0)) is

compact. At each iteration k, let pk be a descent direction such that ||pk|| ≤ γ for some γ independent of

k, i.e. the sequence {||pk||} is bounded above by γ. Then

lim
k→0
|∇f(xk)Tpk| = 0.

Proof. The Armijo condition implies

f(xk)− f(xk+1) ≥ −ηAαk∇f(xk)Tpk = ηAαk|∇f(xk)Tpk|.

Thus, the sequence {xk} is well-defined and lies entirely in L(f(x0)). As f is bounded below on L(f(x0)),

{f(xk)} is a bounded, strictly decreasing sequence and thus converges.

To establish a contradiction, assume that |∇f(xk)Tpk| does not converge to zero. Thus, there

exists an ε > 0 such that |∇f(xk)Tpk| ≥ ε infinitely many times. Let G denote the subsequence

{k : |∇f(xk)Tpk| ≥ ε}. Now, the step length for the backtracking line search is given by αk = γjkC , where

jk is the smallest nonnegative integer such that the Armijo conditions holds. Due to the fact that f(xk)

converges, f(xk)− f(xk+1) = f(xk)− f(xk +αkpk)→ 0, and |∇f(xk)Tpk| ≥ ε, it must hold that αk → 0.

By assumption, {||pk||} is uniformly bounded, thus {αkpk} converges to zero.

Let Ḡ denote the subsequence of G where the initial step was rejected, i.e., Ḡ = {k ∈ G : jk > 0}.

The sequence {αk}k∈G converges to zero, so Ḡ is infinite. For each k ∈ Ḡ, let σk = αk/γC, i.e., the last

rejected trial step length. As this step length fails the Armijo condition,

f(xk + σkpk) > f(xk) + σkηA∇f(xk)Tpk for all k ∈ Ḡ.

Equivalently,

f(xk + σkpk)− f(xk)− σk∇f(xk)Tpk > −σk(1− ηA)∇f(xk)Tpk

> σk(1− ηA)ε.

(2.11)

Consider the Taylor expansion of f about xk + σkpk using the integral form of the remainder:

f(xk + σkpk)− f(xk)− σk∇f(xk)Tpk = σk

∫ 1

0

(∇f(xk + tσkpk)−∇f(xk))Tpkdt. (2.12)

35

Let || · ||⋆ denote the dual norm of || · ||. Then

|(∇f(xk + tσkpk)−∇f(xk))Tpk| ≤ ||∇f(xk + tσkpk)−∇f(xk)||⋆||pk||.

Applying this to (2.11) and (2.12) gives

(1− ηA)ε <

∫ 1

0

(∇f(xk + tσkpk)−∇f(xk))Tpkdt ≤ max
0≤t≤1

||∇f(xk + tσkpk)−∇f(xk)||⋆||pk||

for each k ∈ Ḡ. As ∇f is continuous, there exists a t⋆k that achieves the maximum on the right-hand side.

Let θk = t⋆kσk = t⋆kαk/γC < αk. Then

(1− ηA)ε < ||∇f(xk + θkpk)−∇f(xk)||⋆||pk||.

Now, {αkpk} converges to zero, and θk < αk, therefore θkpk converges to zero as well. The continuity of

∇f then implies

||∇f(xk + θkpk)−∇f(xk)||⋆ → 0.

However, ε and ηA are fixed, so (1− ηA)ε > 0. This gives the desired contradiction.

This result can be refined to take into account how the search direction pk is chosen. For now,

assume that the search direction pk is chosen to be the steepest-descent direction in the || · ||2 norm, i.e.,

pk = −∇f(xk). Then the following holds:

Theorem 2.4.2 (Convergence of steepest-descent with backtracking line-search, [16] Chapter 3). Let

f : Rn → R be continuously differentiable on an open convex set D. Consider the sequence {xk}∞k=1 ⊂ D

generated by the steepest-descent line-search method. If the initial point x0 ∈ D is chosen such that the

level set L(f(x0)) is compact, then either ∇f(xl) = 0 for some index l <∞, or limk→∞∇f(xk) = 0.

Proof. Let || · || denote the Euclidean 2 norm. By the compactness of L(f(x0)), the sequence {||pk||} =

{||∇f(xk)||} is bounded. Thus, by theorem (2.4.1),

lim
k→∞

|∇f(xk)Tpk| = lim
k→∞

||∇f(xk)||22 = 0

.

36

Convergence of Newton’s methods with backtracking line-search

It has been shown that when a backtracking line search is used, it holds that

limk→∞ |∇f(xk)Tpk| = 0 under mild assumptions of f , assuming that pk is a descent direction at each

iteration. Letting pk be the steepest-descent direction shows that the sequence of gradients also converges

to zero. In the case of methods inspired by Newton’s method, the situation becomes more complicated.

First off, the condition that limk→∞ |∇f(xk)Tpk| = 0 does not guarantee that ∇f(xk) → 0. Thus, pk

needs to be chosen in such a manner that |∇f(xk)Tpk| → 0 only if ∇f(xk) → 0. This property of the

search direction pk is independent of the line-search procedure.

Definition 2.4.1 (Directions of sufficient descent, [16] Chapter 3). A sequence of directions {pk} is a

sequence of directions of sufficient descent if ||pk|| is bounded and

∇f(xk)Tpk → 0 implies ∇f(xk)→ 0 and pk → 0.

The steepest-descent direction pk = −∇f(xk) clearly satisfies this definition. A more general set

of directions of sufficient decrease can be provided by the following lemma.

Lemma 2.4.3 ([16] Chapter 3). Let {Hk} be a sequence of symmetric positive-definite matrices with

bounded condition number, i.e.,

λmax(Hk) ≤M <∞ and λmin(Hk) ≥ m > 0,

where M and m are constants and λmin and λmax denote the largest and smallest eigenvalues of Hk. If

pk is chosen to be the solutions of Hkpk = −∇f(xk), then pk is a direction of sufficient descent.

Proof. By the definition of pk,

|∇f(xk)Tpk| = |pTkHkpk| ≥ λmin(Hk)||pk||2 ≥ m||pk||2.

Thus, if |∇f(xk)Tpk| → 0, pk → 0. Furthermore,

||Hk|| ||pk|| ≥ ||∇f(xk)||,

or equivalently,

||pk|| ≥
||∇f(xk)||
||Hk||

.

37

Now, ||Hk|| = λmax(Hk) ≤M , thus pk → 0 implies that ∇f(xk)→ 0.

This notion of directions of sufficient decrease is enough to show the global convergence of

Newton’s method with a backtracking line search.

Theorem 2.4.4 (Global Convergence of Newton-based method, [16] Chapter 3). Let f : Rn → R be twice

continuously differentiable on an open convex set D ⊆ Rn. Assume that f is strongly convex, i.e., that

there exists a uniform lower bound on the lowest eigenvalue of ∇2f(x) for all x ∈ D, i.e.,

dT∇2f(x)d ≥ m||d||22 for some m > 0.

Given x0 such that L(f(x0)) is compact, consider the sequence of iterates xk+1 = xk + αkpk, where

pk satisfies ∇2f(xk)pk = −∇f(xk) and αk satisfies the Armijo condition. Then the sequence {xk} is

well-defined and lies in L(f(x0)), and the algorithm finds some xk that meets a convergence criterion, or

limk→∞∇f(xk) = 0.

Proof. Given xk ∈ L(f(x0)), the positive definiteness of ∇2f(xk) ensures that pk is a descent direction

at every iterate. Thus, there exists an αk that satisfies the Armijo condition, so xk+1 ∈ L(f(x0)). By

assumption, the lowest eigenvalue of ∇2f(xk) is bounded away from zero. By the continuity of ∇2f(x)

and the compactness of L(f(x0)), ||∇2f(xk)||2 is bounded, i.e., the largest eigenvalue is bounded above

by some constant M . Thus, pk is a direction of sufficient decrease, so the method is convergent.

The next theorem shows that the initial choice of step length αk = 1 eventually will produce a

sufficient decrease in f .

Theorem 2.4.5 (Sufficient decrease with unit step, [16] Chapter 3). Let f : Rn → R be twice continuously

differentiable on an open convex set D ⊆ Rn. Assume that f is strongly convex, i.e., that there exists a

uniform lower bound on the lowest eigenvalue of ∇2f(x) for all x ∈ D, i.e.,

dT∇2f(x)d ≥ m||d||22 for some m > 0.

Given x0 such that L(f(x0)) is compact, consider the sequence of iterates xk+1 = xk + αkpk, where

pk satisfies ∇2f(xk)pk = −∇f(xk) and αk satisfies the Armijo condition with the Armijo parameter

ηA <
1
2 . Then there exists an index K such that for all k ≥ K for which convergence has not been achieved

38

(∇f(xk) ̸= 0), the step αk = 1 satisfies the Armijo condition

f(xk)− f(xk + αpk) ≥ −ηaα∇f(xk)Tpk.

Proof. Notice that

−∇f(xk)Tpk = pTk∇2f(xk)pk ≥ m||pk||2.

It has been shown that ∇f(xk) → 0 implies that the sequence of Newton direction {pk} converges

to zero. This condition, along with the descent property of pk, implies that for k sufficiently large,

xk + pk ∈ L(f(x0)). Assume that index k is such an index where this is true. It remains to show that the

Armijo condition is satisfied with αk = 1.

Consider the Taylor expansion of f about x with the integral form of the remainder

f(x+ p) = f(x) +∇f(x)Tp+ 1

2
pT∇2f(x)p+

∫ 1

0

pT
(
∇2f(x+ tp)−∇2f(x)

)
p(1− t)dt.

Substituting the definition of pk gives

f(xk + pk)− f(xk)− ηA∇f(x)Tpk =
1

2
(1− 2ηA)∇f(xk)Tpk

+

∫ 1

0

pTk
(
∇2f(x+ tp)−∇2f(x)

)
pk(1− t)dt.

Let

ωk = max
0≤t≤1

||∇2f(xk + tpk)−∇2f(xk)||.

Due to the fact that L(f(x0)) is compact and ∇2f(x) is continuous, ωk is bounded. Then

f(xk + pk)− f(xk)− ηA∇f(xk)Tpk ≤
1

2
(1− 2ηA)∇f(xk)Tpk +

1

2
ωk||pk||2

≤ 1

2
(1− 2ηA −

ωk

m
)∇f(xk)Tpk.

As pk → 0, there must exist an index K such that for all k ≥ K, ωk will be sufficiently small so that

ωk < m(1− 2ηA). Assuming that ηA < 1/2, then the term on the right-hand side will be negative. Thus,

the Armijo condition is satisfied with αk = 1 for k ≥ K.

The following theorem demonstrates that, under certain conditions, Newton’s method with unit

step size achieves quadratic convergence.

Theorem 2.4.6 (Quadratic convergence of Netwon’s method, [16] Chapter 3). Suppose that f : Rn → R

39

is twice continuously differentiable and that the Hessian matrix ∇2f(x) is Lipschitz continuous in a

neighborhood of a solution x∗ at which the second order sufficient conditions are satisfied. Consider the

Newton iterations xk+1 = xk + pk, where pk satisfies ∇2f(xk)pk = −∇f(xk). Then,

1. If the starting point x0 is sufficiently close to x∗, xk → x∗,

2. The rate of convergence is quadratic, and

3. The sequence {||∇f(xk)||} converges to zero quadratically.

Proof. Recall the optimality condition ∇f(x∗) = 0. Consider the error in xk+1 and the optimal solution

x∗:

xk + pk − x∗ = xk − x∗ −∇2f(xk)
−1∇f(xk)

= ∇2f(xk)
−1
(
∇2f(xk)(xk − x∗)− (∇f(xk)−∇f(x∗))

)
By Taylor’s theorem, it holds that

∇f(xk)−∇f(x∗) =
∫ 1

0

∇2f(xk + t(x∗ − xk))(xk − x∗)dt.

Putting these two equations together yields

||∇2f(xk)(xk − x∗)− (∇f(xk)−∇f(x∗))||

= ||
∫ 1

0

(
∇2f(xk)−∇2f(xk + t(x∗ − xk))

)
(xk − x∗)dt||

≤
∫ 2

0

||∇2f(xk)−∇2f(xk + t(x∗ − xk))|| ||xk − x∗||dt

≤ ||xk − x∗||2
∫ 1

0

Ltdt =
1

2
L||xk − x∗||2,

where L is the local Lipschitz constant of ∇2f(x). As ∇2f(x∗) is nonsingular, and ∇2f(x) is continuous,

there exists a radius r such that ||∇2f(xk)
−1|| ≤ 2||∇2f(x∗)−1|| for all xk such that ||xk − x∗|| ≤ r.

Therefore,

||xk + pk − x∗||2 ≤ L||∇2f(x∗)−1|| ||xk − x∗||2.

If x0 is chosen so that ||x0 − x∗|| ≤ min(r, 1/(2L||∇2f(x∗)−1||)), then it can inductively be shown that

the sequence converges quadratically to x∗.

40

Now, consider the relations xk+1 − xk = pk and ∇f(xk) +∇2f(xk)pk = 0. Then

||∇f(xk+1)|| = ||∇f(xk+1)−∇f(xk)−∇2f(xk)pk||

= ||
∫ 1

0

∇2f(xk + tpk)(xk+1 − xk)dt−∇2f(xk)pk||

≤
∫ 1

0

||∇2f(xk + tpk)−∇2f(xk)|| ||pk||dy

≤ 1

2
L||pk||2

≤ 1

2
L||∇2f(xk)

−1||2||∇f(xk)||2

≤ 2L||∇2f(x∗)−1||2||∇f(xk)||2,

proving that the norm of the gradients converges quadratically.

Note that this proof only shows convergence to stationary points, not necessarily to minimiz-

ers. The following theorem shows that if f satisfies additional properties, Newton’s method converges

quadratically to a local minimizer.

Theorem 2.4.7 ([5]). Let f : Rn → R be twice continuously differentiable. Assume that the Hessian

matrix ∇2f(x) is Lipschitz continuous with Lipschitz constant L and that the eigenvalues of ∇2f(x) are

bounded above and below, i.e., there exist constants m and M such that

mI ⪯ ∇f(x) ⪯MI.

Then Newton’s method with a backtracking line search is globally convergent. Furthermore, an index K

exists such that, for all k ≥ K, the backtracking line search accepts α = 1, and the method converges

quadratically once k ≥ K.

Proof. Let η be some number such that 0 < η ≤ m2/L. Assume that, at iteration k, ||∇f(xk)||2 ≥ η.

First, a lower bound on the step size selected by the backtracking line search is derived when this is the

case. By assumption, ∇2f(xk) ≺MI, and therefore,

f(xk + αkpk) ≤ f(xk) + αk∇f(xk)Tpk +
M

2
α2
k||pk||22

≤ f(x)− αkλ(xk)
2 +

M

2m
α2
kλ(xk)

2,

where λ(x)2 = pTk∇2f(xk)pk = (∇f(xk))T(∇2f(xk))
−1∇f(xk) is the Newton decrement. Consider the

41

step size α̂ = m/M . Then α̂ satisfies the Armijo condition, as

f(xk + α̂pk) ≤ f(xk)−
m

2M
λ2(xk) ≤ f(x)− ηAα̂λ(x)

2.

Therefore, the backtracking line search yields a step αk ≥ γCm/M . The reduction in the objective is then

f(xk+1)− f(xk) ≤ −ηAαkλ(xk)
2

≤ −ηAγC

m

M
λ(xk)

2

≤ −ηAγC

m

M2
||∇f(xk)||22

≤ −ηAγCη
2 m

M2
.

Let γ = ηAγCη
2 m
M2 . Then

f(xk+1)− f(xk) ≤ −γ (2.13)

when ||∇f(xk)||2 ≥ η. Thus, if the gradient at xk is sufficiently large, the backtracking line search will

produce a reduction in the objective at least as large as γ.

Now, suppose that ||∇f(xk)||2 < η. Furthermore, assume that

η ≤ 3(1− 2ηA)
m2

L
.

By the Lispchitz continuity of the second derivative, it holds for all positive step-sizes α that

||∇2f(xk + αpk)−∇2f(xk)||2 ≤ αL||pk||2.

Therefore, it holds that

|pTk (∇2f(xk + αpk)−∇2f(xk))pk| ≤ αL||pk||32. (2.14)

Let f̃k(α) = f(xk + αpk), so that f̃ ′′k (α) = pT∇2f(xk + αpk)pk. Thus, (2.14) can be written as

|f̃ ′′k (α)− f̃ ′′k (0)| ≤ αL||pk||32. (2.15)

After some rearrangement, this becomes

f̃ ′′k (α) ≤ f̃ ′′k (0) + αL||pk||32 ≤ λ(xk)2 + α
L

m3/2
λ(xk)

3.

42

Integrating the above inequality yields

f̃ ′k(α) ≤ f̃ ′k(0) + αλ(xk)
2 + α2 L

2m3/2
λ(xk)

3

≤ −λ(xk)2 + αλ(xk)
2 + α2 L

2m3/2
λ(xk)

3,

where the second inequality uses the fact that f̃ ′k(0) = −λ(xk)2. Integrating again yields

f̃k(α) ≤ f̃k(0)− αλ(xk)2 +
α2

2
λ(xk)

2 + α3 L

6m3/2
λ(xk)

3.

Taking α = 1 gives

f(xk + pk) ≤ f(xk)−
1

2
λ(xk)

2 +
L

6m3/2
λ(xk)

3. (2.16)

Consider the assumption that ||∇f(xk)||2 ≤ η ≤ 3(1− 2ηA)m
2/L. By strong convexity and the definition

of the Newton decrement, it holds that

λ(xk) ≤ 3(1− 2ηA)m
3/2/L.

Combining this with (2.16) yields

f(xk + pk) ≤ f(xk)−
1

2
λ(xk)

2

(
1

2
− Lλ(xk)

6m3/2

)
≤ f(xk)− ηAλ(xk)

2

= f(xk) + ηA∇f(xk)Tpk.

Thus, the backtracking line search accepts the unit step. Next, the rate of convergence is analyzed.

Consider the following:

||f(xk + pk)||2 = ||f(xk + pk)−∇f(xk)−∇2f(xk)pk||2

=

∣∣∣∣∣∣∣∣ ∫ 1

0

(∇2f(xk + tpk)−∇2f(x))pkdt

∣∣∣∣∣∣∣∣
2

≤ L

2
||pk||22

=
L

2
||∇2f(xk)

−1∇f(xk)||22

≤ L

2m2
||∇f(x)||22

(2.17)

Note that (2.17) implies that if ||∇f(xk)||2 ≤ η ≤ m2/L, then ||f(xk + pk)||2 ≤ η as well. It follows then

43

that the method will select the full Newton step for the kth and all subsequent iterations and converge

quadratically if ||∇f(xk)|| < η = min{1, 3(1− 2ηA)}m2/L. If this does not hold, the objective function is

still guaranteed to decrease by at least γ each time the Newton step is not selected. Thus, there can only

be finitely many steps at which ||∇f(xk)||2 ≥ η. The result follows.

Unfortunately, it is not always the case that the objective function is strongly convex. For

certain functions, there is no guarantee that the Hessian matrices of f are positive definite. In this case,

the Newton direction may not even be a descent direction. This opens up a wide array of potential

algorithms that fall under the category of modified Newton methods, in which the search directions pk

are determined via (∇2f(xk) + Ek)pk = ∇f(xk), where Ek is some symmetric positive definite matrix

such that (∇2f(xk) +Ek) is sufficiently positive definite. These methods can be shown to still be globally

convergent, and if Ek is chosen to be zero if ∇2f(xk) is already sufficiently positive definite, then quadratic

convergence can still be achieved. There exists an enormous amount of literature on modified Newton’s

methods. In the next section, an alternative family of methods is analyzed: trust-region methods. Trust-

region methods have the benefit of being able to work with the Hessian of f without needing to perform

some sort of modification. Instead, convergence is guaranteed by minimizing a sequence of potentially

non-convex quadratic models subject to a convex constraint.

2.5 The Trust-Region Method

Trust-region methods provide an alternative method of utilizing the local quadratic model of a

function f without modifications or assuming that the quadratic model is positive definite. In certain

situations, the distinction between line-search methods and trust-region methods becomes quite blurry,

and as the understanding of the two methods has grown, the distinction between the two has shrunk.

A basic trust-region algorithm is thoroughly analyzed in this section. This method already shares

some similarities with backtracking line searches. As before, a sequence of iterates {xk} is computed with

an update rule of the form xk+1 = xk + pk, where a sufficient decrease condition is enforced by comparing

the actual reduction f(xk)− f(xk+1) with the predicted reduction mk(xk)−mk(xk + pk), where mk is a

local model of f . As in a line-search method, should the sufficient decrease condition fail, the norm of

the search direction ||pk|| is reduced. However, in the trust-region case, instead of merely contracting the

step by reducing the step length, the direction of the vector pk may be changed as well. This is done by

explicitly limiting the norm of the vector pk and by defining it as a minimizer of the constrained quadratic

44

problem

min
p∈Rn

qk(xk + p) subject to ||p|| ≤ δk,

where qk is the local quadratic model of f about xk, given by

qk(x) = f(xk) + gk(x− xk) +
1

2
(x− xk)THk(x− xk), (2.18)

with gk = ∇f(xk) and Hk ≈ ∇2f(xk). Note that the norm || · || in the constraint is arbitrary. The scalar

quantity δk is referred to as the trust-region radius, and the set {p : ||p|| ≤ δk} is referred to as the trust

region. Once the step pk is computed, the actual versus predicted reduction ratio is computed as

ρk =
f(xk)− f(xk + pk)

mk(xk)−mk(xk + pk)
.

A typical trust-region method chooses the model mk in the definition of ρk to be qk, however, other choices

are possible. To simplify the notation, let Qk(p) = qk(xk + p)− qk(xk). This test deviates from the Armijo

condition, which uses a linear model function in the definition of ρk. If ρk ≥ ηA, then the trust-region

step is accepted, setting xk+1 = xk + pk. Should the test fail, i.e., ρk < ηA, then the trust-region radius

is reduced by some constant factor γC, and the trust-region subproblem is solved again with the new

radius. This method already bears some similarities to backtracking line searches, except now there is the

additional computational work of approximately solving the trust-region subproblem.

In order for the method to be competitive with the backtracking line-search method, the trust

region needs to have the opportunity to expand as well as shrink, otherwise, the method will fall into the

trap of simply taking arbitrarily small steps at each iteration. To achieve this goal, a second sufficient

decrease parameter ηE is chosen such that ηA < ηE < 1. If ρk ≥ ηE, then the local quadratic model is

assumed to be a very good model of the objective function f , so the trust-region radius is expanded by

some constant factor γE. This motivates the basic trust-region algorithm, presented in Algorithm 2.2.

Up until this point, the choice of norm used to define the trust region has not been specified. Two

of the most natural choices are the polygonal norms || · ||1 and || · ||∞, and elliptic norms (including the

Euclidean norm). Unfortunately, polygonal norm trust-region subproblems have a number of theoretical

and practical difficulties associated with them, as they are instances of linearly-constrained quadratic

problems. In what follows, practical implementations of Algorithm 2.2 are restricted to use elliptic norms,

i.e., ||p|| = ||p||B = (pTBp)1/2 for some positive definite matrix B. In the unconstrained optimization

setting, B is typically chosen as I, however when the trust-region method is applied to a constrained

45

Algorithm 2.2. Basic Trust-Region Algorithm

1: Given constants ηA, ηE, γC , γE, δ0 such that 0 < ηA < ηE < 1, ηA < 1/2, 0 < γC < 1 < γE, and δ0 > 0
2: k ← 0
3: while Not converged do
4: pk ≈ argminp∈Rn{qk(xk + p) : ||p||k ≤ δk}
5: ρk = (f(xk)− f(xk + pk))/(qk(xk)− qk(xk + pk))
6: if ρk ≥ ηA then
7: xk+1 = xk + pk
8: if ρk ≥ ηE then
9: δk+1 ← max{δk, γE||pk||}

10: else
11: δk+1 ← δk
12: end if
13: else
14: xk+1 ← xk
15: δk+1 ← γC ||pk||
16: end if
17: k ← k + 1
18: end while

problem, the matrix B is varied at each iteration. In the analysis, it shall be assumed that the norm

|| · || = || · ||k is changing at each iteration and that the family of norms {|| · ||k} satisfies certain conditions

that ensure the algorithm converges.

The steepest-descent approximation to the trust-region subproblem

When using the basic trust-region method 2.2 to solve an optimization problem, it is crucial that

not too much effort be taken to solve the trust-region subproblem at each iteration. At the same time,

whatever method is used to compute an approximate solution to the subproblem must yield a solution

accurate enough that it does not interfere with the progress of the overall algorithm. Steepest-descent

directions play a vital role in defining viable approximations to the trust-region subproblem. It will be

shown that the convergence of the trust-region method will be guaranteed as long as the approximate

solution gives a predicted reduction in the objective function that is at least a fixed fraction of the

reduction predicted by the steepest-descent step scaled to lie within the trust-region.

Definition 2.5.1 (Gradient-descent Cauchy point, [7] Chapter 6, [16] Chapter 3). Let || · || be any norm.

Consider the trust-region problem.

min
x∈Rn

Q(p) =
1

2
pTHx+ gTp

subject to ||p|| ≤ δ.
(2.19)

46

Then the Cauchy point of the above problem is defined as

argmin
p∈Rn,α∈R

Q(p) =
1

2
pTHp+ gTp

subject to ||p|| ≤ δ and p = −αg.

Let pC denote the Cauchy point as in Definition 2.5.1, and let αC denote the step length used to

scale the Cauchy point, i.e., the scalar so that pC = −αCg. Then

αC =


gTg

gTHg
if

gTg

gTHg
≤ δ

||g||B
and gTHg > 0;

δ

||g||B
otherwise.

This definition can be used to create an upper bound for the objective function Q(pC).

Lemma 2.5.1 ([16] Chapter 3). Let pC be the Cauchy point along the search direction −g of problem

(2.19). Then,

Q(pC) ≤ −1

2
||g||2 min{δ ||g||2

||g||
,
||g||2
||H||2

}

Proof. First, consider the case where gTHg > 0. Then Q(−αg) = 1
2α

2gTHg − αgTg. This has a unique

unconstrained minimizer at αC = α⋆ = gTg/gTHg. Then

Q(−αCg) = −1

2

(gTg)2

gTHg
≤ −1

2

||g||22
||H||2

.

Next, consider the case where gTg/gTHg > δ/||g||, so that αC = δ/||g|| ≤ α⋆, and

Q(−αCg) =− αCgTg +
1

2
(αC)2gTHg

≤− αCgTg +
1

2
αCα⋆gTHg

=− 1

2
gTg

(
δ

||g||

)
= −1

2
||g||2

(
δ
||g||2
||g||

)
.

Finally, consider the case where gTHg ≤ 0, so no minimizer exists along −g, and αC = δ/||g||. Then

Q(−αCg) =− αCgTg +
1

2
(αC)2gTHg ≤ −αCgTg ≤ −1

2
||g||2

(
δ
||g||2
||g||

)
.

The result follows.

47

Corollary 2.5.1.1. Let || · || denote any norm, and let c > 0 be a constant such that ||d||2 ≥ c||d||. Then

Q(pC) ≤ −1

2
c2||g||min

{
δ,
||g||
||H||2

}
.

Defining the Cauchy step as in Definition 2.5.1 is sufficient to prove the theoretical convergence

of Algorithm 2.2. However, it is fairly unintuitive to define the Cauchy point of a trust-region problem in

which an arbitrary norm defines the shape of the trust region in terms of the gradient-descent direction.

Instead, the Cauchy step can be defined using the steepest-descent direction induced by the norm which

defines the trust region. Recall that, given a norm || · ||, it’s dual norm || · ||⋆, and a vector g = ∇f(x) at

some point x, the steepest-descent direction at x is defined as

h = argmin
x∈Rn

{gTx : ||x|| = ||g||⋆}, (2.20)

with h = −g when the norm is the 2-norm. Note that the Cauchy-Schwartz inequality implies h is the

vector that satisfies −||g||⋆||h|| = gTh. Combining this with (2.20) gives ||g||2⋆ = −gTh. This leads to the

following more general definition of the Cauchy point pC .

Definition 2.5.2 (Cauchy Point 2). Let || · || be any norm, with dual norm || · ||⋆. The Cauchy point of

problem (2.19) along the steepest-descent direction h induced by g and || · || is defined as

argmin
x∈Rn,α∈R

Q(p) =
1

2
pTHp+ gTp

subject to ||p|| ≤ δ and p = αh.

This definition is more often used when defining an approximate solution to be used in a specific

implementation, whereas the previous definition more commonly appears in proofs of convergence. The

step length can similarly be defined as

αC =


||g||2⋆
hTHh

||g||2⋆
hTHh

≤ δ

||g||⋆
and hTHh > 0

δ

||g||⋆
otherwise

,

Lemma 2.5.2. Let pC be the Cauchy point along the direction the steepest-descent direction h induced by

g and || · ||. Then,

Q(pC) ≤ −1

2
||g||⋆ min{δ, ||g||⋆/||H||},

48

where ||H|| = maxx ̸=0
||Hx||⋆
||x||

.

The proof is essentially identical to the proof of lemma (2.5.1). Finally, a third definition is

presented in which the search direction is any steepest-descent direction. This definition is a generalization

of Definitions 2.5.1 and 2.5.2.

Definition 2.5.3 (Cauchy Point Definition 3). Let || · || and || · ||′ be any two norms, with dual norms

|| · ||⋆ and || · ||′⋆, respectively. Let h denote the steepest-descent direction induced by || · ||′ and the vector

g. Then the Cauchy step along h is given by

argmin
x∈Rn,α∈R

Q(p) =
1

2
pTHp+ gTp

subject to ||p|| ≤ δ and p = αh.

Lemma 2.5.3. Let pC be the Cauchy point along the direction the steepest-descent direction h with respect

to some norm || · ||′ not necessarily identical to the trust-region norm || · ||. Then,

Q(pC) ≤ −1

2
||g||′⋆ min{δ ||g||

′
⋆

||h||
,
||g||′⋆
||H||′

},

where ||H||′ = maxx ̸=0
||Hx||′⋆
||x||′ .

Proof. To begin, recall that h satisfies −gTh = ||h||′||g||′⋆ = (||g||′⋆)2. Consider the case where hTHh > 0.

Then Q(αh) = 1
2α

2hTHh + αgTh. Let α⋆ denote the unique unconstrained minimizer along this arc.

Then α⋆ = −gTh/hTHh = (||g||′⋆)2/hTHh, and

Q(α⋆h) =
1

2

(
(||g||′⋆)2

hTHh

)2

hTHh−
(
(||g||′⋆)2

hTHh

)
(||g||′⋆)2

= −1

2

(||g||′⋆)4

hTHh
≤ −1

2

(||g||′⋆)2

||H||′
.

If αC = α⋆, then the result holds. Assume then that this is not the case so that αC = δ/||h|| ≤ α⋆. Then

Q(αCh) = αCgTh+
1

2
(αC)2hTHh

≤ −αC(||g||′⋆)2 +
1

2
αCα⋆hTHh

= − δ

||h||
(||g||′⋆)2 +

1

2

δ

||h||
(||g||′⋆)2

hTHh
hTHh

= −1

2
||g||′⋆δ

||g||′⋆
||h||

.

49

Finally, consider the case where hTHh ≤ 0. Then αC = δ/||h|| and

Q(αCh) = αCgTh+
1

2
(αC)2hTHh ≤ −αC(||g||′⋆)2 ≤ −

1

2
||g||′⋆δ

||g||′⋆
||h||

.

The result follows from combining all three cases.

This new third definition reflects the case that arises in the proposed methods for solving the

trust-region subproblem for large-scale problems. These methods can trivially be shown to select a search

direction that achieves a reduction in the model function at least as large as the reduction predicted by the

steepest-descent direction induced by norms that are identical to neither the 2-norm nor the trust-region

norm.

Before analyzing Algorithm 2.2 using Definition 2.5.3, it is crucial to understand the concept of a

uniformly equivalent family of norms, as well as establish some results about such families. To begin, a

straightforward result about how the equivalence of two norms relates to the equivalence of their duals is

presented.

Lemma 2.5.4. Let || · || and || · ||′ be two norms norm such that c1||x|| ≤ ||x||′ ≤ c2||x|| for all x ∈ Rn,

with corresponding dual norm || · ||⋆ and || · ||′⋆. Then

1

c2
||y||⋆ ≤ ||y||′⋆ ≤

1

c1
||y||⋆

for all y ∈ Rn.

Proof. Let y ∈ Rn. Then

||y||⋆ = max
x̸=0

|yTx|
||x||

≤ max
x̸=0

||y||′⋆||x||′

||x||
≤ c2||y||′⋆.

Similarly,

||y||′⋆ = max
x̸=0

|yTx|
||x||′

≤ max
x̸=0

||y||⋆||x||
||x||′

≤ 1

c1
||y||⋆.

The result follows.

Definition 2.5.4 (Uniform equivalence of norms). Let {|| · ||k}k∈K be a family of norms indexed by some

potentially infinite set K. Let || · || denote some other norm. The family of norms {|| · ||k}k∈K is uniformly

50

equivalent to || · || if there exists positive constants c1 and c2 such that

c1||x||k ≤ ||x|| ≤ c2||x||k

for all x ∈ Rn and k ∈ K.

Lemma 2.5.5. Suppose that {|| · ||k}k∈K if uniformly equivalent to || · || with constants c1 and c2. Then

the family of dual norms {|| · ||k⋆} is uniformly equivalent to || · ||⋆, i.e.,

1

c2
||y||k⋆ ≤ ||y||⋆ ≤

1

c1
||y||k⋆.

.

Proof. The result follows from Lemma 2.5.4 and the definition of uniform equivalence.

Lemma 2.5.6. Let {|| · ||}k∈K be a family of norms uniformly equivalent to some norm || · ||. Then

{|| · ||}k∈K is uniformly equivalent to || · ||j for all j ∈ K.

Proof. Let j ∈ K, and x ∈ Rn. Then

1

c2
||x|| ≤ ||x||j ≤

1

c1
||x||.

Furthermore, it holds that

c1
c2
||x||k ≤

1

c2
||x|| ≤ ||x||j ≤

1

c1
||x|| ≤ c2

c1
||x||k

for every k ∈ K. The result follows.

Lemma 2.5.7. Let {|| · ||}k∈K be a family of uniformly equivalent norms, i.e., there exist positive constants

c1 and c2 such that, for each i, j ∈ K and x ∈ Rn, c1||x||i ≤ ||x||j ≤ c2||x||i. Then {|| · ||}k∈K is uniformly

equivalent to every norm on Rn.

Proof. Fix j ∈ K. Then, for each k ∈ K,

c1||x||j ≤ ||x||k ≤ c2||x||j .

Let || · || denote some other norm. As Rn is finite-dimensional, there exists positive constants κ1 and κ2

51

such that

κ1||x|| ≤ ||x||j ≤ κ2||x||.

It follows that

κ1c1||x|| ≤ c1||x||j ≤ ||x||k ≤ c2||x||j ≤ κ2c2||x||.

Thus, the proof is complete.

The previous two lemmas demonstrate that a uniformly equivalent family of norms on Rn need

not be defined with respect to a secondary norm. Henceforth, a uniformly equivalent family of norms

shall be defined as a family of norms that are uniformly equivalent to any norm. Properties of the matrix

norms that are induced by a uniformly equivalent family of norms can be inferred as well.

Lemma 2.5.8. Let {|| · ||k}k∈K be a family of uniformly equivalent norms, and let {|| · ||k⋆}k∈K be the

corresponding dual family of uniformly equivalent norms. Then the family of matrix norms {|| · ||k,k⋆}k∈K

is also a uniformly equivalent family of norms.

Proof. By definition, for each j, k ∈ K,

c1||x||k ≤ ||x||j ≤ c2||x||k, and
1

c2
||y||k⋆ ≤ ||y||j⋆ ≤

1

c1
||y||k⋆

for each x ∈ Rn and y ∈ Rn. Let A ∈ Rn×n. Then

||H||j,j⋆ = max
x̸=0

||Hx||j⋆
||x||j

≤ 1

c21
max
x ̸=0

||Hx||k⋆
||x||k

and

||H||k,k⋆ = max
x ̸=0

||Hx||k⋆
||x||k

≤ c22 max
x̸=0

||Hx||j⋆
||x||j

.

The result follows.

Lemma 2.5.9. Let {|| · ||k}k∈K be a family of uniformly equivalent norms, and let {|| · ||k⋆}k∈K be the

corresponding dual family of uniformly equivalent norms. Then the family of matrix norms {|| · ||}k⋆,k is

also a uniformly equivalent family of norms.

Proof. The result follows from Lemma 2.5.8 and the fact that the dual norm of a dual norm is the original

norm, i.e., ||x||⋆⋆ = ||x|| for all x ∈ Rn.

52

Now, when analyzing Algorithm 2.2 with the bound given in Lemma 2.5.3, it will sometimes be

necessary to compare the difference of various quantities at different iterations. In this case, it will not be

obvious which norm out of a family of uniformly equivalent norms should be applied. For this reason, a

new norm is constructed out of an existing uniformly equivalent family of norms to suit this purpose.

Theorem 2.5.10. Let {|| · ||k}k∈K be a uniformly equivalent family of norms with constants c1 and c2

such that c1||x||k ≤ ||x||j ≤ c2||x||k for all j, k ∈ K and x ∈ Rn. Consider the function

ψ(x) = sup
k∈K
||x||k.

Then ψ(x) is a norm, and ||x||k ≤ ψ(x) ≤ c2||x||k for all x ∈ Rn and k ∈ K.

Proof. First, it must be established that ψ(x) is in fact a norm. Let x ∈ Rn be some vector. Then

ψ(x) = supk∈K ||x||k ≥ 0, with equality if and only if x = 0. Next, consider ψ(αx) = supk∈K ||αx||k =

supk∈K |α|||x||k = |α| supk∈K ||x||k = |α|ψ(x). It remains to show that the triangle inequality holds.

ψ(x+ y) = sup
k∈K
||x+ y||k ≤ sup

k∈K
||x||k + ||y||k ≤ sup

k∈K
||x||k + sup

k∈K
||y||k = ψ(x) + ψ(y).

Thus, ψ(x) is a norm. Let ||x||K = ψ(x) for all x ∈ Rn. Now, for the bounds, it clearly holds that

||x||k ≤ ||x||K for all k ∈ K. On the other hand, let j ∈ K be fixed. Then ||x||K = supk∈K ||x||k ≤ c2||x||j .

As j is arbitrary, the upper bound holds.

The upper bound on || · ||K is crucial, as it prevents ||x||K from being infinite for some finite vector

x. Now, note that in the definition of uniform equivalence, c1 can be taken to be 1/c2, as the roles of j

and k can be freely swapped. Henceforth, reference is made only to a single constant c = c2.

Lemma 2.5.11. Let {|| · ||k}k∈K be a uniformly equivalent family of norms with equivalence constant c.

Then

1

c
||y||k⋆ ≤ ||y||K⋆ ≤ ||y||k⋆

for all k ∈ K, where || · ||K⋆ is the dual norm of || · ||K.

Proof. The result follows from the definition of || · ||K⋆ and Lemma 2.5.4.

The above result demonstrates that || · ||K⋆ is not identical to supk∈K || · ||k⋆. It remains to establish

the equivalence of the uniformly equivalent family of induced matrix norms and the matrix norm induced

by || · ||K and || · ||K⋆.

53

Lemma 2.5.12. Let {|| · ||k}k∈K be a uniformly equivalent family of norms with equivalence constant c.

Then

1

c2
||H||k,k⋆ ≤ ||H||K,K⋆ ≤ ||H||k,k⋆

for all k ∈ K and H ∈ Rn×n.

Proof. Let H ∈ Rn×n, and let k ∈ K. Then

||H||K,K⋆ = max
x ̸=0

||Hx||K⋆

||x||K
≤ max

x ̸=0

||Hx||k⋆
||x||k

= ||H||k,k⋆,

and

||H||k,k⋆ = max
x̸=0

||Hx||k⋆
||x||k

≤ c2 max
x ̸=0

||Hx||K⋆

||x||K
= c2||H||K,K⋆,

Algorithm 2.2 can now be analyzed. In what follows, the model function qk is defined to be the

quadratic function

qk(xk + p) = f(xk) + gTk p+
1

2
pTHkp,

where gk = ∇f(xk), but Hk is not necessarily identical to ∇2f(xk). Note then that f(xk) = qk(xk) and

∇f(xk) = ∇qk(xk). Let S and V denote the following iteration index sets:

S = {k : ρk ≥ ηA}, and V = {k : ρk ≥ ηE}.

These two definitions constitute the sets of successful and very successful iterations, respectively. The

following properties are additionally assumed:

Assumption 2.5.1. The objective function f is twice continuously differentiable,

Assumption 2.5.2. The objective function f is bounded below by some f̄ ,

Assumption 2.5.3. The Hessian of the objective function is uniformly bounded, that is, there exists a

constant M1 such that {||∇2f(x)||′k} ≤M1 for all k ∈ S, and

Assumption 2.5.4. The sequence of Hessians of the model functions is uniformly bounded, that is, there

exists a constant M2 such that {||Hk||′k} ≤M2 for all k ∈ S.

Assumption 2.5.3 and 2.5.4 and Lemma 2.5.12 imply that {||∇2f(xk)||′S} ≤M1 and {||Hk||′S} ≤

M2. Note that Assumption 2.5.3 is often too strong of an assumption. Without loss of generality, this

54

assumption can be replaced by the much weaker assumption that the Hessian is bounded for values of x

between two subsequent iterations. This is clearly satisfied when the level set L(f(x0)) is bounded. The

following assumptions about the family of trust-region norms || · ||k used in Algorithm 2.2 must also be

made:

Assumption 2.5.5. The family of norms {|| · ||k} is a uniformly equivalent family of norms with an

equivalence constant c.

This assumption is crucial, otherwise, in the limit, the norms may asymptotically “flatten out.”

From here on out, the proofs diverge from the standard presentation of the convergence results of Algorithm

2.2, in that the Cauchy point along a steepest-descent direction hk induced, at each iteration, by gk and a

norm || · ||′k not necessarily identical to either || · ||k or || · ||2. The following assumption on the family

{|| · ||′k} is made:

Assumption 2.5.6. The family of norms {|| · ||′k} is a uniformly equivalent family of norms with an

equivalence constant c′.

Let || · ||S and || · ||′S denote the norms ||x||S = supk∈S ||x||k and ||x||′S = supk∈S ||x||′k, respectively.

As both families of norms are uniformly equivalent, there exists a positive constant κ such that

1

κ
||x||k ≤ ||x||′k ≤ κ||x||k

for all x ∈ Rn and k ∈ S.

In light of Lemma 2.5.3, the following assumption on the computed solution of the trust-region

subproblem in Algorithm 2.2 is made:

Assumption 2.5.7. For all iterations k, let pk be the computed approximate solution to the kth trust-region

subproblem. Assume that

qk(xk)− qk(xk + pk) ≥ τ1||gk||′k⋆ min{δk,
||gk||′k⋆
||Hk||′k

}, (2.21)

where ||H||′k = maxx̸=0 ||Hx||′k⋆||x||k, and hk is the steepest-descent direction induced by || · ||′k satisfying

||hk||′k = ||gk||′k⋆, for some τ1 ∈ (0, 1).

This implies that the model decrease is at least as large as a fraction of the model decrease had

the Cauchy step pC

k been taken instead of pk. In practice, pk will be much closer to the true solution p⋆k,

but for theoretical purposes, this bound is sufficient to prove convergence. These assumptions are the

55

assumptions made in [7] Chapter 6 to analyze the basic trust-region method. The following result follows

directly from Assumption 2.5.7 .

Lemma 2.5.13. If Assumption 2.5.7 holds, and ∇f(xk) ̸= 0, then qk(xk + pk) < qk(xk) and pk ̸= 0.

The value of ρk is then well-defined as long as xk is not a first-order stationary point. Assumption

2.5.7 can be shown to hold in cases where the trust-region subproblem is assumed to be solved to a high

degree of accuracy, as seen in the following result.

Theorem 2.5.14 ([7] Chapter 6). Suppose that for all k, the computed solution pk satisfies

qk(xk)− q(xk + pk) ≥ τ̄1(qk(xk)− qk(xk + p⋆k)),

where τ̄1 ∈ (0, 1). Then Assumption 2.5.7 holds for some value of τ1.

Proof. It trivially holds that qk(xk + p⋆k) ≤ qk(xk + pC

k). Then

qk(xk)− q(xk + pk) ≥ τ̄1(qk(xk)− qk(xk + p⋆k)) ≥ τ̄1(qk(xk)− qk(xk + pC

k)).

The result then follows from Lemma 2.5.3.

This result demonstrates the value of assuming the model is at least as good as a fraction of the

Cauchy point, as more practical implementations fall within this framework.

First-order Convergence

The goal of this section is to demonstrate that Algorithm 2.2 generates a sequence of point {xk}

such that all limit points satisfy the first-order necessary conditions for optimality. The results an theorems

of this section closely follow those of [7] Chapter 6, with some minor technical results changed to reflect

the use of a different definition of the Cauchy step. This first result bounds the error between f and the

model function qk at the new iterates xk + pk.

Theorem 2.5.15. Suppose that Assumptions 2.5.1, 2.5.3, 2.5.4, 2.5.5, and 2.5.6 hold. Then, for all k,

|f(xk + pk)− qk(xk + pk)| ≤
(
||pk||′k
||p||k

)2

max{M1,M2}δ2k,

where M1 is the upper bound of the sequence {||∇2f(xk)||′k} and M2 is the upper bound of the sequence

{||Hk||′k}.

56

Proof. By the mean value theorem, it holds that

f(xk + pk) = f(xk) +∇f(xk)Tpk +
1

2
pTk∇2f(xk + ξkpk)pk

for some ξk ∈ [0, 1]. The definition of qk gives

qk(xk + pk) = f(xk) +∇f(xk)Tpk +
1

2
pTkHkpk.

Subtracting these two equations and taking the absolute value gives

|f(xk + pk)− qk(xk + pk)| =
1

2
|pTk∇2f(xk + ξkpk)pk − pTkHkpk|

≤ 1

2
|pTk∇2f(xk + ξkpk)pk|+

1

2
|pTkHkpk|

≤ 1

2
(M1 +M2)(||pk||′k)2

≤ 1

2
(M1 +M2)(||pk||k)2

(||pk||′k)2

(||pk||k)2

≤ max{M1,M2}δ2k
(||pk||′k)2

(||pk||k)2
.

Corollary 2.5.15.1. If 2.5.5 and 2.5.6 hold, then there exists a constant τ2 such that

|f(xk + pk)− qk(xk + pk)| ≤ τ2δ2k, (2.22)

with

τ2 = κ2 max{M1,M2}.

Thus, the error between the objective function and the model function decreases quadratically

with the trust-region radius. This intuitively leads to the next result, which states that if the trust-region

radius is sufficiently small, then the next iteration is guaranteed to be very successful.

Theorem 2.5.16. Suppose that Assumptions 2.5.1, 2.5.3, 2.5.4, 2.5.5, 2.5.6, and 2.5.7 all hold. Suppose

that gk ̸= 0, and that

δk ≤
τ1||gk||′k⋆(1− ηE)

τ2
. (2.23)

Then iteration k is very successful.

57

Proof. Recall that τ1 ∈ (0, 1) and ηE ∈ (0, 1). Thus τ1(1 − ηE) < 1. Conditions (2.23) and (2.22) then

imply that

δk <
||gk||k⋆
M1

. (2.24)

Assumption 2.5.7 then gives

qk(xk)− qk(xk + pk) ≥ τ1||gk||′k⋆δk. (2.25)

On the other hand, Theorem 2.5.15, Corollary 2.5.15.1, (2.24), (2.25), and (2.23) yield

|ρk − 1| =
∣∣∣∣f(xk + pk)− qk(xk + pk)

qk(xk)− qk(xk + pk)

∣∣∣∣ ≤ τ2
τ1||gk||′k⋆

δk ≤ 1− ηE.

Therefore, ρk ≥ ηE, and the iteration is very successful.

It then follows logically that the trust-region radius cannot become too small. This property

shows that progress will always be made unless the algorithm arrives at a critical point.

Theorem 2.5.17. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, and 2.5.7 hold.

Further suppose there exists a constant ḡ such that ||gk||′k⋆ ≥ ḡ for all iterations k. Then there is a

constant δ̄ such that δk ≥ δ̄ for all iterations k.

Proof. Let k denote the first iteration at which

δk+1 ≤
γCτ1ḡ(1− ηE)

τ2
(2.26)

holds. As k is the first such iterate, it must hold that γCδk ≤ δk+1, and thus

δk ≤
τ1ḡ(1− ηE)

τ2
.

Therefore, (2.23) is satisfied, and iteration k is very successful. But this contradicts that k was the first

such index that (2.26) holds. It follows that no iteration satisfies (2.26), and thus the trust-region radii

are bounded below when the norm of gk is bounded below.

Now, consider the case where the number of successful iterations is finite. The following result

holds.

Theorem 2.5.18. Suppose that assumptions 2.5.1, 2.5.3, 2.5.4, 2.5.5, 2.5.6, and 2.5.7 hold, and that the

number of successful iterations is finite. Then xk = x∗ for all k sufficiently large, and x∗ is a first-order

58

stationary point.

Proof. Algorithm 2.2 ensures that x∗ = xk+1 = xk+j for all j > 0 if k is the last successful iteration. Now,

all iterations are unsuccessful for sufficiently large k. Therefore limk→∞ δk = 0. If ||gk+1||′k+1⋆ > 0, then

Theorem 2.5.16 implies that there must be a successful iteration after iteration k. This is a contradiction.

Thus ||gk+1||′k = 0, and Assumption 2.5.6 implies that x∗ is a first-order stationary point.

The more likely scenario is that there will be infinitely many successful iterations. The following

result established that the algorithm converges to a stationary point on a subsequence of the iterations.

Theorem 2.5.19. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, and 2.5.7 hold. Then

lim inf
k→∞

||∇f(xk)||′k⋆ = 0.

Proof. For the sake of establishing a contradiction, assume that the result does not hold, i.e., there exists

an ε > 0 such that ||∇f(xk)||′k⋆ = ||gk||′k⋆ ≥ ε for all k. Suppose now that k is a successful iteration. It

then follows that

f(xk)− f(xk + pk) ≥ ηA(qk(xk)− qk(xk + pk)) ≥ τ1εηA min{ ε

M2
, δ̄}.

Let nk denote the number of successful iterations in between the initial iteration and the kth iteration.

Then

f(x0)− f(xk+1) =

k∑
j=0,j∈S

(f(xj)− f(xj+1)) ≥ nkτ1εηA min{ ε

M2
, δ̄}.

Now, as there are infinitely many successful iterations, nk →∞ as k →∞. Thus, the difference between

f(x0) and f(xk+1) is unbounded. This contradicts Assumption 2.5.2. The result follows.

Theorem 2.5.19 can be leveraged to prove the following stronger result.

Theorem 2.5.20. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, and 2.5.7 hold. Then

lim
k→∞

||∇f(xk)||′k⋆ = 0.

Proof. Assume, for the sake of establishing a contradiction, that the result does not hold, i.e., that there

exists a subsequence of successful iterates such that ||∇f(xk)||′k⋆ ≥ ||∇f(xk)||′S⋆ ≥ 2ε for some ε > 0.

Theorem 2.5.19 and Assumption 2.5.6 ensures that for each iteration k, there exists a subsequent iteration

59

ℓk such that ℓk is the first iteration larger than k to satisfy ||gℓk ||′S⋆ ≤ ||gℓk ||′ℓk⋆ < ε. Let K denote the

subset of successful iterations from k to ℓk, i.e.,

K = {j ∈ S : k ≤ j ≤ ℓk}.

Then, it holds that, for all k ∈ K,

f(xk)− f(xk+1) ≥ ηA(qk(xk)− qk(xk + pk)) ≥ τ1εηA min{ ε

M2
, δk}. (2.27)

Now, the sequence {f(xk)} is monotonically decreasing and bounded below, so f(xk)− f(xk+1)→ 0, and

therefore δk → 0. It follows then that, for k ∈ K sufficiently large,

δk ≤
1

τ1εηA

(f(xk)− f(xk+1)). (2.28)

From Assumption 2.5.5 and 2.5.6, it follows that,

||xk − xℓk ||′S ≤
ℓk∑

i=k,i∈K

||xi − xi+1||′S

≤ c′
ℓk∑

i=k,i∈K

||xi − xi+1||′i

≤ c′
ℓk∑

i=k,i∈K

||xi − xi+1||′i
||xi − xi+1||i

δi

≤ c′κ

τ1εηA

(f(xk)− f(xℓk)).

(2.29)

The right-hand side of this inequality must converge to zero, and thus ||xk − xℓk ||′S converges to zero. By

the continuity of the gradient, it follows that ||∇f(xk) − ∇f(xℓk)||′S⋆ converges to zero. However, the

definitions of k and ℓk ensure that ||gk − gℓk ||′S⋆ ≥ ε. This is a contradiction. The result follows.

This powerful result demonstrates that all limit points of the sequence of iterates satisfy the

first-order necessary conditions. In the next section, similar results are established for second-order

optimality conditions.

Second-order Convergence

Up until this point, the model functions qk have been assumed to agree with f at xk up to

first-order. Outside of boundedness, no assumptions on the matrices Hk have been made. In order to

60

ensure convergence to points that satisfy second-order conditions, the second-order information of the

model qk must be considered. As with the previous section, the results and theorems of the previous

section closely follow those of [7] Chapter 6, with some technical details changed to reflect the use of a

different definition of the Cauchy step.

Notice that Theorem 2.5.20 only guarantees that {gk} converges to zero. It does not guarantee

that the sequence of iterates xk converges to a single limit point. In order to show this result, second-order

information is needed. The second-order derivatives of the model provide insight into the curvature of the

model. The following defines the notion of the least curvature of the quadratic model qk.

Definition 2.5.5. The least curvature of the quadratic model qk in the || · ||′k norm is defined as

λ′k(Hk) = min
||x||′k=1

xTHkx.

Note that if || · ||′k is the 2-norm, then λ′k(Hk) = λmin(Hk), and if || · ||′k is the Bk-norm for

some positive definite matrix Bk, then λ
′
k(Hk) = λmin(Hk, Bk). Here again, the results depart from the

standard presentation, where λ′k is always taken to be λmin(Hk). The curvature in the || · ||′S norm is

similarly defined as

λ′S(Hk) = min
||x||′S=1

xTHkx.

Note that if Hk is positive semidefinite, then

λ′S(Hk) = min
||x||′S=1

xTHkx

= min
x̸=0

xTHkx

(||x||′S)2

≤ min
x ̸=0

xTHkx

(||x||′k)2
= min

||x||′k=1
xTHkx = λ′k(Hk)

(2.30)

Lemma 2.5.21. Suppose that λ′k(Hk) ≥ ε > 0. Then

||pk||′k ≤
2

ε
||gk||′k⋆.

Proof. Consider the model decrease at xk + pk, given by

qk(xk)− qk(xk + pk) = −gTpk −
1

2
pTkHkpk.

Two cases are considered. First, consider the case where qk(xk) = qk(xk + pk). Then gk = 0. Therefore,

61

pTkHkpk = 0. But, by the fact that λ′k(Hk) ≥ ε, Hk is positive definite, so pk = 0, in which case the result

holds trivially. Now, consider the more common case where qk(xk + pk) < qk(xk), and pk ̸= 0. Let

ϕ(t) = qk(xk)− qk(xk + tpk) = −tgTk pk −
t2

2
pTkHkpk

for positive values of t. By assumption, ϕ is concave and quadratic, i.e., a downwards-facing parabola.

Note that ϕ(0) = 0 and ϕ(1) > 0 by construction. Furthermore, note that gTk pk < 0. Then the maximum

of ϕ satisfies

t⋆ = argmax
t

ϕ(t) ≥ 1

2
,

Furthermore, a simple calculation yields

t⋆ =
|gTk pk|
pTkHkpk

≤ ||gk||
′
k⋆

ε||pk||′k
.

Combining these two equations yields the result.

Corollary 2.5.21.1. Suppose that λ′S(Hk) ≥ ε > 0. Then

||pk||′k ≤ ||pk||′S ≤
2

ε
||gk||′S⋆ ≤

2

ε
||gk||′k⋆.

Proof. The proof is identical to the proof of Lemma 2.5.21

The behavior of Algorithm 2.2 is now examined when the sequence of approximate Hessian Hk

are asymptotically positive definite along a subsequence of iterates.

Theorem 2.5.22. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, and 2.5.7 hold.

Further, suppose that {xki} is a subsequence of iterates converging to the first-order critical point x∗ and

that there exists a positive constant λ̂ such that λ′k(Hk) ≥ λ′S(Hk) ≥ λ̂ for all k such that xk is sufficiently

close to x∗. Furthermore, suppose that ∇2f(x∗) is nonsingular. Then the sequence {xk} converges to x∗.

Proof. By Theorem 2.5.20, x∗ is a first-order stationary point. If there are only finitely many successful

iterations, then the result follows from Theorem 2.5.18. Assume without loss of generality that the

subsequence {xki
} consists only of successful iterations, so that

xki+1 = xki + pki

62

for all i. Let δ > 0 be a constant so that λ′k(Hk) ≥ λ′S(Hk) ≥ λ̂ holds for all k such that ||xk − x∗||′k ≤

||xk − x∗||′S ≤ δ and that

||∇2f(x)−∇2f(x∗)||′S ≤
1

4
min{1, λ̂, σ′

S(∇2f(x∗))} := d0 (2.31)

for all x such that ||x− x∗||′S ≤ δ, where σ′
S(∇2f(x∗)) = min||x||′S=1 ||∇2f(x∗)x||′S⋆, i.e., the measure of

the curvature of ∇2f(x∗) of least magnitude. As ∇2f(x∗) is assumed to be nonsingular, it holds that

σ′
S(∇2f(x∗)) > 0. Let i1 be an index large enough to ensure

||xki − x∗||′S ≤
λ̂δ

2d0 + λ̂
:= d1 (2.32)

for all i ≥ i1 and that

||gk||′S⋆ ≤ ||gk||′k⋆ ≤ d0d1 < δ (2.33)

for all k ≥ ki1 . Equation (2.32) is possible due to the convergence of {xki
} to x∗, while (2.33) is possible

because of Theorem 2.5.20. Lemma 2.5.21 may now be applied at iteration ki with ε = λ̂ to yield

||pki ||′ki
≤ ||pki ||′S ≤

2

λ̂
||gki ||′S⋆ ≤

2

λ̂
||gki ||′k⋆.

Thus, it follows that

||xki+1 − x∗||′S ≤ ||xki
− x∗||′S + ||pk||′S ≤

(
1 +

2d0

λ̂

)
d1 = δ. (2.34)

Next, assume that

||xki+1 − x∗||′S > d1. (2.35)

See now that

gki+1 = ∇f(xki+1) = ∇f(x∗) +
∫ 1

0

∇2f(xki+1 + t(x∗ − xki+1))(xki+1 − x∗)dt.

63

By the triangle inequality, the definition of σ′
S(∇2f(x∗)), (2.34), the fact that ∇f(x∗) = 0, and (2.35),

||gki+1||′S⋆ = ||∇2f(x∗)(xki+1 − x∗) +
∫ 1

0

(
∇2f(xki+1 + t(x∗ − xki+1))−∇2f(x∗)

)
(xki+1 − x∗)dt||′S⋆

≥ ||∇2f(x∗)(xki+1 − x∗)||′S⋆ −
∣∣∣∣∣∣∣∣ ∫ 1

0

(
∇2f(xki+1 + t(x∗ − xki+1))−∇2f(x∗)

)
dt

∣∣∣∣∣∣∣∣′
S
||xki+1 − x∗||′S

> σ′
S(∇2f(x∗))d1 −

∣∣∣∣∣∣∣∣ ∫ 1

0

(
∇2f(xki+1 + t(x∗ − xki+1))−∇2f(x∗)

)
dt

∣∣∣∣∣∣∣∣′
S
δ.

(2.36)

Additionally, ∣∣∣∣∣∣∣∣ ∫ 1

0

(
∇2f(xki+1 + t(x∗ − xki+1))−∇2f(x∗)

)
dt

∣∣∣∣∣∣∣∣′
S

≤ max
t∈[0,1]

||∇2f(xki+1 + t(x∗ − xki+1))−∇2f(x∗)||′S

≤ d0.

(2.37)

By combining (2.36), (2.37), and the definitions of d0 and d1, it holds that

||gki+1||′S⋆ > σ′
S(∇2f(x∗))d1 − d0δ ≥ 4d0d1 − d0d1

2d0 + λ̂

λ̂
=
d0d1(3λ̂− 2d0)

λ̂
> d0d1.

This contradicts (2.33). Therefore,

||xki+1 − x∗||′S ≤ d1 < δ.

All the conditions established at xki remain satisfied at xki+1. Thus, for all j > 1, it holds that

||xki+j − x∗||′S ≤ d1 < δ.

Taking the limit δ → 0 shows that {xk} converges to x∗.

An additional assumption of Hk is added to ensure that the model asymptotically coincides with

the objective up to the second-order terms.

Assumption 2.5.8. Assume that limk→∞ ||∇2f(xk)−Hk||′k = 0 whenever limk→∞ ||gk||′k = 0.

Two technical lemmas are now presented, the second of which shall be used to improve the

convergence results.

Lemma 2.5.23. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, 2.5.7, and 2.5.8 hold.

Further suppose that there exists a subsequence {ki} and a constant m > 0 such that

qki(xki)− qki(xki + pki) ≥ m(||pki ||′ki
)2 > 0

64

for all i sufficiently large. Furthermore, suppose that limi→∞ ||pki
||ki

= 0. Then ρki
≥ ηE for i sufficiently

large.

Proof. The mean value theorems implies that for i sufficiently large and some constant ξki
∈ (0, 1),

|ρki − 1| =
∣∣∣∣f(xki + pki)− qki(xki + pki)

qki
(xki

)− qki
(xki

+ pki
)

∣∣∣∣
≤ 1

m(||pki ||′ki
)2
|pTk∇2f(xki + ξkipki)pk − pTkHkpk|

=
1

m(||pki ||′ki
)2
|pTk (∇2f(xki + ξkipki)−Hk)pk|

≤ 1

m
||∇2f(xki + ξkipki)−Hk||′ki

=
1

m
||(∇2f(xki

+ ξki
pki

)−∇2f(xki
))− (Hk −∇2f(xki

))||′ki

≤ 1

m

(
||∇2f(xki

+ ξki
pki

)−∇2f(xki
)||ki

+ ||Hk −∇2f(xki
)||′ki

)
.

Now, both terms on the left-hand side converge to zero as i goes to infinity. and thus ρki
converges to 1.

The result follows.

A consequence of Lemma 2.5.23 is the following:

Lemma 2.5.24. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, 2.5.7, and 2.5.8 hold.

Further suppose that there exists a positive constant m such that

qk(xk)− qk(xk + pk) ≥ m(||pk||′k)2

for all k sufficiently large. Additionally, suppose that limk→∞ ||pk||′k = 0. Then all iterations are eventually

very successful and δk is bounded away from zero.

The next result uses this lemma to show that if one of the limit points of the sequence of iterates

is an isolated minimizer, then the full sequence converges to the said minimizer. Furthermore, the steps

pk eventually do not depend on the trust-region radius.

Theorem 2.5.25. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, 2.5.7, and 2.5.8

hold, and that {xki
} is a subsequence of iterates generated by Algorithm 2.2 converging to the first-order

stationary point x∗. Suppose that the steps pk ̸= 0 for k are sufficiently large. Finally, suppose that x∗

satisfies second-order sufficient optimality conditions, i.e., that ∇2f(x∗) ≻ 0. The {xk} converges to x∗,

all iterations are eventually very successful, and the trust-region radius δk is bounded away from zero.

65

Proof. Theorem 2.5.20, Assumption 2.5.8, and the positive definiteness of ∇2f(x∗) imply that Hki
is

positive definite for i sufficiently large, where the subsequence {ki} is chosen to be the set of successful

iteration indices converging to x∗. Thus, there exists a constant λ̂ such that λ′k(Hk) ≥ λ′S(Hk) ≥ λ̂ holds

for any such subsequence. Theorem 2.5.22 can then be applied to see that {xk} converges to x∗. Lemma

2.5.21 can be applied to show that

||gk||′k ≥ ||gk||′S⋆ ≥
λ̂

2
||pk||′S ≥

λ̂

2
||pk||′k > 0 (2.38)

for k sufficiently large. Assumption 2.5.7 and the fact that ||pk||′k = ||pk||k ||pk||′k
||pk||k ≤ δk

||pk||′k
||pk||k ≤ κδk yield

qk(xk)− qk(xk + pk) ≥
1

2
λ̂τ1||pk||′k min{ λ̂||pk||

′
k

2M2
, δk}

≥ 1

2
λ̂τ1||pk||′2k min{ λ̂

2M2
,
1

κ
}

≥ δ||pk||′2k

(2.39)

where

δ =
1

2
λ̂τ1 min{ λ̂

2M2
,
1

κ
}.

As gk → 0 by Theorem 2.5.20, (2.38) additionally also shows that

lim
k→∞

||pk||′k = 0.

Lemma 2.5.24 can then be applied, and the result follows.

Theorem 2.5.25 fully captures what occurs when the algorithm converges to an isolated minimizer.

Next, the convergence of the sequence of iterates to points that satisfy second-order necessary conditions

is examined without assuming the positive definiteness of the Hessian of the objective at the limit points.

Such points may be minimizers, but this is not necessarily the case. Such a result can only be possible if

the algorithm is able to avoid converging to maximizers and saddle points.

So far, it has only been assumed that the step pk yields a model reduction at least as large as

the predicted reduction yielded by the Cauchy step. The predicted reduction when the step pk takes

advantage of directions of negative curvature is now examined. Consider the model Hessian Hk at iteration

k. Assume that it is indefinite, i.e., has at least one direction of negative curvature. Here again, the proofs

diverge from the standard presentation by considering directions of negative curvature with respect to

66

the norm || · ||′k, as opposed to || · ||2. Let θk = λ′k(Hk) = min||x||′k=1 x
THkx. The assumption that Hk is

indefinite guarantees that θk < 0. Let uk be a direction that achieves a fraction of this negative curvature,

scaled so that ||uk||k = δk and gTk uk ≤ 0. Then

uT
kHkuk ≤ τ̄ θkδ2k

(||uk||′k)2

||uk||2k
(2.40)

for some constant τ̄ ∈ (0, 1]. Just like with the Cauchy step, the goal is to minimize the trust-region

subproblem along the vector uk. By construction, the minimizer is simply uk. An additional requirement

that the overall model decrease at xk + pk to satisfy

qk(xk)− qk(xk + pk) ≥ τ3(qk(xk)−min{qk(xk + pC

k), qk(xk + uk)) (2.41)

for some τ3 ∈ (0, 1] is enforced.

Theorem 2.5.26. Suppose that Hk is indefinite. Then

qk(xk)− qk(xk + uk) ≥ −
1

2
τ̄ θkδ

2
k

(||uk||′k)2

||uk||2k

Proof. The result follows from the definition of qk and (2.40).

Putting all assumptions on the model decrease together gives

qk(xk)− qk(xk + pk) ≥ τ3 max

{
1

2
||gk||′k⋆ min

{
||gk||k⋆
||Hk||′k

, δk
||gk||′⋆
||hk||k

}
,−1

2
τ̄ θkδ

2
k

(||uk||′k)2

||uk||2k

}

This equation is quite cumbersome to work with. To simplify things, the following assumption on

Algorithm 2.2 is made alongside Assumption 2.5.7:

Assumption 2.5.9. If θk < 0, then

qk(xk)− qk(xk + pk) ≥ τ4|θk|δ2k

for some constant τ4 ∈ (0, 1/2)

This assumption is essentially stating that if the model function has negative curvature, a first-

order stationary point is approached, and if the second-order terms of the model appear to be relevant,

then the negative curvature is not ignored by the computed trust-region step.

67

The first result with the new assumption states that the objective function must be convex on a

neighborhood of a subsequence of the iterates.

Theorem 2.5.27. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, 2.5.7, 2.5.8, and

2.5.9 hold. Then

lim sup
k→∞

xT∇2f(xk)x ≥ 0.

for all x ∈ Rn,

Proof. For the sake of establishing a contradiction, assume that there exists a constant λ̂ < 0 such that

λ′k(∇2f(xk)) = min
||x||′k=1

xT∇2f(xk)x ≤ λ̂ < 0.

Theorem 2.5.20 guarantees that limk→ ||gk||′k⋆ = 0. Assumption 2.5.8 yields that, for k sufficiently large,

λ′k(Hk) ≤
1

2
λ̂.

Combining this with Assumption 2.5.9 gives

qk(xk)− qk(xk + pk) ≥
1

2
τ4|λ̂|δ2k.

Lemma 2.5.23 applied to the full sequence and the bound

||pk||′k = ||pk||k
||pk||′k
||pk||k

≤ δk
||pk||′k
||pk||k

≤ κδk

shows that there exists an index k0 and a scalar d1 such that

ρk ≥ ηE for all k ≥ k0 such that δk ≤ d1.

Thus, each iteration that satisfies these two conditions is very successful, and the trust-region radius may

be expanded, i.e., δk+1 ≥ δk. As a consequence, it holds that, for all j ≥ 0,

δk0+j ≥ min{γCd1, δk0
} := d2. (2.42)

68

The true reduction in the objective function is then bounded by

f(xk0+j)− f(xk0+j+1) ≥
1

2
ηAτ4|λ̂|d22 > 0

when iteration k0 + j is successful. If there are infinitely many successful iterations, then this contradicts

Assumption 2.5.2. Thus, once k is sufficiently large, all iterations fail to be successful, and δk is driven to

zero by the algorithm. But this contradicts (2.42). the result follows.

This theorem does not make any reference to the limit points of {xk}. In fact, it does not even

assume that limit points exist. Thus, the following assumption, which guarantees the existence of limit

points, is made.

Assumption 2.5.10. All iterates {xk} lie within a compact domain.

This assumption is ubiquitous throughout optimization literature. It is often stated as an

assumption on the objective function and starting point, in that Assumption 2.5.10 holds if the level set

L(f(x)) is compact, as Algorithm 2.2 guarantees that f(xk+1) ≤ f(xk) for all k

Theorem 2.5.28. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, 2.5.7, 2.5.8, 2.5.9,

and 2.5.10 hold. Then {xk} has at least one limit point x∗ at which the second-order necessary conditions

hold.

Proof. Theorem 2.5.27 ensures the existence of a subsequence of iterates {xki} such that {λ′k(∇2f(xki))}

converges to a nonnegative number. Under Assumption 2.5.10, {xki
} must have a limit point x∗. Along

with Assumption 2.5.6, this gives

λ′S(∇2f(x∗)) ≥ 0 and ∇f(x∗) = 0,

where the second inequality follows from Theorem 2.5.20.

In order to make further claims, the behavior of Algorithm 2.2 when it yields a sequence {xk}

that has a limit point x∗ that does not satisfy the second-order necessary conditions for optimality must

be investigated.

Lemma 2.5.29. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, 2.5.8, 2.5.7, and 2.5.9

hold. Suppose that {xki} is a subsequence of iterates that converges to a point x∗ at which the matrix

69

∇2f(x∗) is indefinite, i.e., λ′S(∇2f(x∗)) = λ̂ < 0. Then

lim
i→∞

δki
= 0

and λ′ki
(Hki

) ≤ 1
2 λ̂ for i sufficiently large in every subsequence {xki

} of iterates converging to x∗.

Proof. First, consider that

0 > λ̂ = λ′S(∇2f(x∗))

= min
||x||′S=1

xT∇2f(x∗)x

= min
x ̸=0

xT∇2f(x∗)x

(||x||′S)2

≥ min
x ̸=0

xT∇2f(x∗)x

(||x||′k)2
= λ′k(∇2f(x∗))

for all k ∈ S, where the last inequality makes use of the fact that ||x||′k ≤ ||x||′S for all k, and therefore

−1/||x||′k ≤ −1/||x||′S for all k.

Now, Theorem 2.5.20 ensures that {||gki
||′ki⋆
} converges to zero. Along with Assumption 2.5.8,

this gives

lim
k→0
||∇2f(xki

)−Hk||′k = 0.

Assumption 2.5.1 then implies that λ′ki
(∇2f(xki

)) is at most equal to λ̂/2 for i sufficiently large. Using

2.5.8 again shows that for i sufficiently large, λ′k(Hk) ≤ 1
2 λ̂.

In order to show that the trust-region radius converges to zero, first consider the case where

S is finite. In this case, the result holds trivially, as the algorithm forces the radius to decrease. Next,

assume that there are infinitely many successful iterations. To establish a contradiction, assume that

there exists a subsequence {xki
} converging to x∗ and a ε ∈ (0, 1) such that δki

≥ ε for all i. Without loss

of generality, assume that the subsequence consists only of successful iterates. Notice that

−λ′k(Hk)δk ≥
1

2
|λ̂|δ2ki

≥ 1

2
|λ̂|ε2 := δ.

(2.43)

Assumption 2.5.9 then yields that, for i sufficiently large,

qki
(xki

)− qki
(xki

+ pki
) ≥ τ4δ,

70

and therefore

f(xki
)− f(xki

) ≥ ηAτ4δ.

This then implies that f is unbounded below, which is a contradiction. Thus, the sequence of trust-region

radii converges to zero, and the proof is complete.

The main second-order convergence result can now be proved.

Theorem 2.5.30. Suppose that assumptions 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, 2.5.8, 2.5.7, and

2.5.9 hold. Let x∗ be any limit point of the sequence of iterates generated by Algorithm 2.2. Then x∗

satisfies the second-order necessary conditions for optimality.

Proof. Theorem 2.5.20 ensures that limk→∞ ||gk||′k = 0. For the sake of establishing a contradiction,

assume that

0 > λ̂ = λ′S(∇2f(x∗)),

so that

λ̂ ≥ λ′k(∇2f(x∗))

for all k. Assumption 2.5.8 then ensures that there exists a k0 and a δ > 0 such that

0 >
1

2
λ̂ ≥ λ′k(Hk)

for each k ≥ k0 such that ||xk − x∗||′S ≤ δ. Let K be the subset of all such iteration indices. Assumption

2.5.9 then yields, for all k ∈ K,

qk(xk)− qk(xk + pk) ≥
1

2
τ4|λ̂|δ2k. (2.44)

Consider now the ratio ρk. Lemma 2.5.24 applied to K, along with the bound ||pk||′k ≤ κδk, ensures that

there exists a k0 and a d1 such that

ρk ≥ ηE ≥ ηA for all k ≥ k0 such that ||xk − x∗||′S ≤ δ and δk ≤ d1.

Thus, any such iteration is very successful. Now, let ℓ ≥ k0 be an iteration such that ||xℓ − x∗|| ≤ 1
2δ.

Consider the sequence {xℓ+j}. The two cases of the iterates remaining in {x : ||x− x∗||′S ≤ δ} and leaving

{x : ||x− x∗||′S ≤ δ} are considered separately.

First, suppose that the iterates remain in {x : ||x − x∗||′S ≤ δ}. Then each iteration is very

71

successful if the trust-region radius is as small as d1, and therefore

δℓ+j ≥ min{γCd1, δℓ} := d2 (2.45)

for j ≥ 0. Combining this with (2.44) yields

f(xℓ+j)− f(xℓ+j+1) ≥
1

2
ηAτ4|λ̂|d22 > 0 (2.46)

whenever iteration ℓ + j is successful. If there are only finitely many successful iterations, then the

trust-region radii converge to zero, contradicting the fact that δℓ+j ≥ d2 > 0. Thus, there must be

infinitely many successful iterations. In this case, however, (2.46) contradicts Assumption 2.5.2. Thus,

the iterates must leave the ball {x : ||x− x∗||′S ≤ δ}.

If the sequence {xℓ+j} leaves the ball, then there must be a first successful iteration index p ≥ ℓ

such that xℓ = xp ̸= xp+1. Let xq+1 be the first iterate to leave the ball. Then

δ

2
≤ ||xq+1 − xp+1||′S ≤

q∑
k=p,k∈S

||xk+1 − xk||′S

≤ c′
q∑

k=p,k∈S

||xk+1 − xk||′k

≤ c′κ
q∑

k=p,k∈S

δk.

(2.47)

Now, assume there exists a smallest integer j such that p ≤ j ≤ q, and

δj > min{δmax, d1} := d4. (2.48)

If iteration j is successful, (2.44) yields

f(xp)− f(xq+1) ≥ f(xj)− f(xj+1) ≥
1

2
ηAτ4|λ̂|d24 := d3 > 0.

If iteration j is not successful, then j > p (as p is successful), and

d4 < δj ≤ γEδj−1.

Now, j was assumed to be the first index such that (2.48) holds, so δj−1 < δj . Thus, iteration j − 1 had

72

to have been successful. It then follows that

f(xp)− f(xq+1) ≥ f(xj−1)− f(xj) ≥
1

2
ηAτ4|λ̂|(d4/γE)

2 := d5 > 0 (2.49)

On the other hand, if no such j satisfying (2.48) exists, then all iterations between p and q are very

successful, and
q∑

k=p,k∈S

δk ≤
q∑

k=p,k∈S

δq

γq−k
E

≤ γE

γE − 1
δq.

Combining this with (2.47) yields

δq ≥
(γE − 1)δ

2γEc′κ
:= d6.

Now, due to the fact that q is the first iteration to leave the ball, it must have been successful. Therefore,

f(xp)− f(xq+1) ≥ f(xq)− f(xq+1) ≥ ηAτ4|λ̂|d26 := d7 > 0.

Putting all bounds on f(xp)− f(xq+1) together yields

f(xp)− f(xq+1) > min{d3, d5, d7} > 0.

Assumption 2.5.2 then implies that the sequence {xℓ+j} may only leave the ball a finite number of times.

Recall that it has already been shown that the iterates cannot remain in the ball, it must hold that

||xk − x∗||′S ≥
δ

2

for all k sufficiently large. However, x∗ is a limit point of the sequence {xk}. This is a contradiction, and

the result follows.

This theorem implies that every limit point of the iterates produced by Algorithm 2.2 satisfies

the second-order necessary conditions. Adding in Assumption 2.5.10 ensures that limit points do in fact

exist, and thus the algorithm is guaranteed to converge to second-order stationary points.

The generality of Theorem 2.5.30 is applicable to a much larger class of methods than the standard

trust-region convergence theorems using the standard steepest-descent direction. Consider, for instance,

the case where Hk = ∇2f(xk) for all iterations k, the norms ||·||k are taken to be ||·||Bk
for some symmetric

positive definite family of matrices Bk such that Hk and Bk have the same sparsity pattern, and || · ||′k is

taken to be || · ||Hk+µkBk
for some bounded sequence of shifts µk such that each Hk + µkBk is positive

73

definite. The steepest-descent direction induced by this family of norms, i.e., g′k = (Hk + µkBk)
−1gk is

now a much better approximation to the true solution than the direction gk, and no modifications are

needed for the results to prove convergence.

This section is concluded with a proof of convergence of the trust-region method when the

trust-region subproblems are solved exactly, the matrix Hk is chosen to be ∇2f(xk) for all k, and the

families of norms {|| · ||k} and {|| · ||′k} are both taken to be {|| · ||Bk
, where there exist positive constants

m and M such that mI ⪯ Bk ⪯MI for all k. Let dk denote the solution to the subproblem

min
d∈Rn

Qk(d) = ∇f(xk)Td+
1

2
dT∇2f(xk)d

subject to ||dk||Bk
≤ δk.

(2.50)

If qk is the quadratic model of f at xk, then

qk(xk)− qk(xk + dk) > 0 and ||dk||Bk
≤ δk.

Theorem (4.1.1) implies the existence of σk ≥ 0 such that

(∇2f(xk) + σkBk)dk = −∇f(xk) and σk(δk − ||dk||Bk
) = 0.

Therefore, σk||dk||2Bk
= σkδ

2
k, and

qk(xk)− qk(xk + dk) =
1

2
(dTk (∇2f(xk) + σkBk)dk + σkδ

2
k).

The sufficient decrease condition ensures that

f(xk)− f(xk+1) ≥ ηA(qk(xk)− qk(xk + dk)) =
1

2
ηA(d

T
k (∇2f(xk) + σkBk)dk + σkδ

2
k) (2.51)

Theorem 2.5.31 ([16] Chapter 3). Let f(x) be twice continuously differentiable in an open convex subset

D ⊆ Rn, and assume that x0 ∈ D is chosen so that the level set L(f(x0)) is compact. Let {xk} be the

sequence defined by the trust-region method, where the sequence of trust-region matrices {Bk} satisfies

mI ⪯ Bk ⪯MI, then either the algorithm terminates at xℓ ∈ L(f(x0)) with ∇f(xℓ) = 0 and ∇2f(xℓ) ⪰ 0,

or {xk} has a limit point x∗ such that x∗ ∈ L(f(x0)) with ∇f(x∗) = 0 and ∇2f(x∗) ⪰ 0.

Proof. If ∇f(xℓ) = 0 and ∇2f(xℓ) is positive semidefinite for some iteration ℓ, the algorithm terminates

74

with dℓ = 0. Otherwise, qk(xk)− q(xk + dk) > 0 for all k > 0, thus {xk} is well-defined and lies in the

set L(f(x0)). First, assume that a subsequence of {σk} converges to zero. As L(f(x0)) is assumed to be

compact, the same subsequence of {xk} must converge to some x∗ ∈ L(f(x0)). The matrix ∇2f(xk)+σkBk

is positive semidefinite, therefore {∇2f(xk)} is positive semidefinite matrix on the given subsequence.

Now,

dTk (∇2f(xk) + σkBk)dk = (∇f(xk))T(∇2f(xk) + σkBk)
−1∇f(xk).

Let Uk be a Bk-orthogonal matrix such that UT
k ∇f(xk)Uk = Λ, where Λ is diagonal. Let Vk =

BkUk, so that ∇f(xk) = VkΛV
T
k . Then ∇f(xk) = VkU

T
k ∇f(xk) = Vky, where y = UT

k ∇f(xk). Thus,

||∇f(xk)||B−1
k

= ||y||, and V T
k (∇2f(xk) + σkBk)

−1Vk = Λ−1. Then,

(∇f(xk))T(∇2f(xk) + σkBk)
−1∇f(xk) = yT(Λ−1 + σkI)y

≥ ||y||2

||Λ||+ σ

=
||∇f(xk)||2B−1

k

||∇2f(xk)||Bk
+ σk

.

By (2.51), dTk (∇2f(xk) + σkBk)dk and ∇f(xk) converge to zero for the given subsequence.

It remains to show that σk cannot remain bounded away from zero indefinitely. For the sake of

contradiction, assume that σk ≥ ε for all k. By (4.1.1), this implies that ||dk||Bk
= δk. Therefore,

qk(xk)− qk(xk + dk) ≥
1

2
σkδk ≥

ε

2
||dk||2Bk

.

By the second-order mean value theorem,

|f(xk + dk)− qk(xk + dk)| ≤
1

2
||dk||2Bk

max
0≤t≤1

||∇2f(xk + dk)−∇2f(xk)||Bk
.

Recall that

ρk =
f(xk)− f(xk + dk)

qk(xk)− qk(xk + dk)
,

and that qk(xk) = f(xk). Combining these four equations gives

|ρk − 1| ≤ 1

ε
max
0≤t≤1

||∇2f(xk + dk)−∇2f(xk)||Bk
. (2.52)

The assumption that σk ≥ ε and (2.51) implies that {δk} converges to zero, and therefore ||dk||Bk

75

converges to zero. By the assumptions on Bk, this implies that ||dk|| → 0. As the parameter ηA < 1

in the trust-region algorithm, and 1/ε is bounded, (2.52) and the continuity of ∇2f(x) on the compact

set L(f(x0)) imply that ρk > ηA for k sufficiently large. However, the updating rules for δk imply that

δk stays bounded away from zero, as the step is accepted when ρk ≥ ηA. This contradicts that δk → 0.

Therefore σk must not be bounded away from zero.

Methods for solving the trust-region subproblem are explored in Chapter 4.

76

Chapter 3

Constrained Optimization

3.1 Introduction

In this section, problems of the form

minimize
x∈Rn

f(x)

subject to ci(x) = 0 for all i ∈ E ,

and ci(x) ≥ 0 for all i ∈ I,

(3.1)

are examined, where E and I are finite index sets of the equality and inequality constraints, respectively,

as well as methods used to solve such problems. The list of methods is by no means exhaustive. Only

methods that will help develop an understanding of the all-shifted penalty-barrier method are examined.

Particular focus is placed on augmented Lagrangian methods for equality constraints and barrier methods

for equality constraints. The only assumptions made on problem (3.1) is that f and c are both twice

continuously differentiable. The feasible set of problem (3.1) is defined as

Ω = {x : ci(x) = 0 for all i ∈ E and ci(x) ≥ 0 for all i ∈ I}.

Let D ⊆ Rn denote the intersection of the domains of the functions f(x), c1(x), . . . , cm−1(x), and cm(x),

where m is the number of constraints. For a given constraint ci(x), denote ∇ci(x) as its gradient. Denote

c(x) as the vector valued function c(x) = (c1(x), . . . , cm(x))T and J(x) as the Jacobian of the function c.

The gradient of the objective function f is denoted as ∇f(x), although the notation ∇f(x) = g(x) will

often be more convenient. The Hessian of f is similarly denoted as ∇2f(x). The symbol H is reserved for

the Hessian of the Lagrangian function of (3.1).

77

3.2 Equality Constraints

Consider the case where the index set of inequality constraints I is empty so that the problem

being considered is

minimize
x∈Rn

f(x)

subject to c(x) = 0.

(3.2)

As in the case of unconstrained problems, it is crucial to begin by defining the notion of what it means to

be an optimal point.

Definition 3.2.1 (Constrained Global Minimizer, [16] Chapter5). A point x∗ ∈ D is a constrained global

minimizer of f if x∗ is feasible, i.e., x ∈ Ω, and f(x∗) = min{f(x) : x ∈ Ω}. If x∗ is a minimizer, then

f(x∗) is called the global minimum of f .

Unless f is convex and c is affine, the problem of finding a constrained global minimizer is

generally intractable. Instead, most methods focus on finding a point that minimizes f on a neighborhood

of feasible points. Let x∗ ∈ Ω. Define N (x∗, δ) to be the set of feasible points in an open δ-ball about x∗,

i.e., {x ∈ D : ||x− x∗|| < δ}. This motivates the following definition.

Definition 3.2.2 (Constrained Local Minimizer, [16] Chapter 5). Let f be defined on D ⊆ Rn. Let

N (x∗, δ) denote the set B(x∗, δ)∩Ω, where s∗ and δ are such that B(x∗, δ) ⊆ D. A point x∗ is a constrained

local minimizer of f if there exists a δ sufficiently small such that

f(x∗) ≤ f(x) for all x ∈ N (x∗, δ).

Such an x∗ is called strict if this inequality holds strictly except at x∗.

Note that if x∗ is locally unique, then it is necessarily a constrained local minimizer. As in the

unconstrained case, it is important to consider points that are isolated minimizers, i.e., points that lie in

a neighborhood in which there are no other minimizers of any kind. This is a stronger condition than

simply being a strict minimizer.

Definition 3.2.3 (Isolated Constrained Local Minimizer, [16] Chapter 5). Let N (x∗, δ) = B(x∗, δ) ∩Ω.

A constrained local minimizer x∗ is isolated if there is a δ sufficiently small such that x∗ is the unique

constrained local minimizer in N (x∗, δ).

Open balls are not the only neighborhoods that can be considered.

78

Definition 3.2.4 (Constrained Local Minimizer (2), [16] Chapter 5). The point x∗ is a constrained local

minimizer of f : D ⊆ Rn → R if there exists a compact set S such that

x∗ ∈ int(S) ∩Ω and f(x∗) = min{f(x) : x ∈ S ∩Ω}.

3.2.1 Optimality Conditions

As in the case of unconstrained optimization, the above definitions of solutions are not particularly

useful for developing methods, as certifying optimality would require checking all points in a neighborhood

of a potential solution. The key observation is that if a point x∗ is to be locally optimal, then the objective

function cannot decrease on any path that remains in the feasible set. Such a path is called a feasible path.

Definition 3.2.5 (Feasible Path, [16] Chapter 5). A feasible path is a directed, twice-differentiable curve

x(α) starting at a point x∗, parameterized by the scalar α such that

1. x(0) = x∗ and c(x(α)) = 0 for all α satisfying 0 ≤ α < α̂, where α̂ > 0, and

2. The curve is regular, i.e., the tangent p to the curve x(α) is never equal to zero.

If x(α) is to remain feasible as α increases, each constraint function must remain equal to zero

for all α ∈ [0, α̂). Thus, the derivative of the function c(x(α)) must be zero for all α ∈ [0, α̂). Taking the

derivative of the i-th constraint along x(α) gives

d

dα
ci(x(α))

∣∣∣∣
α=0

= ∇ci(x)Tp = 0,

where p is the tangent vector of x(α) at α = 0, i.e.,

p = lim
α→0+

1

α
(x(α)− x(0)).

If this holds for each constraint i, then

J(x∗)p = 0. (3.3)

Thus, it holds that the tangent p of a feasible path lies in the null space of the Jacobian matrix J(x). A

similar result can be established for feasible sequences.

Definition 3.2.6 (Feasible sequences, [16] Chapter 5). Let x ∈ Ω. A feasible sequence converging to x is

a sequence {xk}∞k=0 such that for all k, xk is feasible and xk ̸= x∗.

79

Consider the related sequence {pk}, where pk is given by xk = x+ tkpk, with tk a normalizing

constant so that ||pk|| = 1. Then limk→∞ tk = limk→∞ ||x − xk|| = 0. The sequence {pk} then lies in

a compact set, and therefore it holds that a subsequence converges to some vector p. Without loss of

generality, it suffices to only consider this subsequence. A nonzero vector p is a tangent of Ω at x ∈ Ω if

there exists a feasible sequence {xk} such that xk ̸= x for all k and

lim
k→∞

1

||xk − x||
(xk − x) =

1

||p||
p.

In order for each vector in the feasible sequence to be feasible, it must hold that each constraint satisfies

ci(xk) = 0 for all k. Therefore,

ci(xk) = ci(x+ tkpk) = 0.

Taking the limit as k goes to infinity and recalling that both c(x∗) and c(x∗ + tkpk) are zero gives

lim
k→∞

ci(x
∗ + tkpk)− c(x∗)

tk
= ∇ci(x∗)Tp = 0,

where p = limk→∞ pk. As this must hold for each constraint, it again holds that J(x∗)p = 0, (see (3.3)).

The identity (3.3) show that the vector p lies in the null space of the matrix J(x). Let Z(x)

denote a matrix whose columns form a basis for the null space of J(x) so that J(x)Z(x) = 0. The vector

p can then be written as a linear combination of the columns of Z(x), i.e., p = Z(x)pz for some z.

Of particular interest is the collection of all tangent vectors corresponding to all feasible sequences

at x. This leads to the notion of the tangent cone at a feasible point x.

Definition 3.2.7 (Tangent Cone, [16] Chapter 5). Let T +(x) denote the set of all tangent vectors

associated with a feasible sequence starting at a feasible point x. Then T (x) = T +(x) ∪ {0} is known as

the tangent cone of c at x.

Readers familiar with the definition of the tangent space of a submanifold of Rn defined by

{x ∈ Rn : c(x) = 0} for some sufficiently regular function c : Rn → Rm may wonder why the terminology

used here is tangent cone as opposed to tangent space. The reason for this is that no assumptions about

c(x) are made beyond the assumption that it is twice continuously differentiable. Thus it can only be

concluded that T (x) is a cone and not necessarily a vector space. The tangent cone provides the tools

needed to define usable conditions of optimality.

Theorem 3.2.1 ([16] Chapter 5). Assume that f and c are differentiable. Let x∗ ∈ Ω be a feasible point

80

at which at least one feasible sequence exists. x∗ is a local solution to (3.2) only if ∇f(x∗)Tp ≥ 0 for every

p ∈ T (x∗).

Proof. Let {xk} be a feasible sequence converging to x∗. The definition of a constrained local minimizer

states that f(xk) ≥ f(x∗) for all k sufficiently large. Consider the sequences {tk} and {pk} given by

xk = x∗ + tkpk, where tk are normalizing constants such that ||pk|| = 1. Then

f(x∗ + tkpk) ≥ f(x∗)

for all sufficiently large k. By assumption, f is differentiable at x∗, so

lim
k→0

f(x∗ + tkpk)− f(x∗)
tk

= ∇f(x∗)Tp, with p = lim
k→∞

pk.

It follows from the two above relations that ∇f(x∗)Tp ≥ 0.

Thus, it holds that x is optimal only if ∇f(x∗)Tp ≥ 0 for each p ∈ T (x). Consider the sets

T ⋆(x) = {g : gTp ≥ 0 for all p ∈ T (x)}.

This set is referred to as the dual cone of T (x). It is clear from the definition of the dual cone that x is

optimal only if ∇f(x) ∈ T ⋆(x). However, this notion of optimality is still not particularly useful. What is

needed is a way to certify that ∇f(x) lies within the dual cone without having to actually check every

vector in the dual cone.

From (3.3), it is clear that T (x) ⊆ null(J(x)). Null(J(x)) is itself a tangent cone (actually a

tangent space) of the linearized constraint at x. Consider the Taylor series of constraint function c(x) at a

point x0:

c(x) = c(x0) + J(x0)(x− x0) +O(||x− x0||2).

Ignoring the higher order terms, the linearized constraint function at x0 is defined as

cL(x;x0) = c(x0) + J(x0)(x− x0). (3.4)

If c is nonlinear with c(x0) ̸= 0, then cL(x;x0) = 0 defines an affine approximation of c(x) = 0 at x0. If x0

is feasible, and c(x0) = 0, then cL(x;x0) = 0 defines a set consisting of the intersection of m hyperplanes.

If x0 is clear from context, this linearized constraint is written as cL(x). A key property of the

81

linearized constraint is that every vector p ∈ null(J(x)) is tangent to a feasible sequence (with respect

to the linearized constraint) at a point x = x̂. It is fairly obvious that the tangent cone for a linearized

constraint is equivalent to the null space of J(x).

Lemma 3.2.2 ([16] Chapter 5). If TL(x) denotes the tangent cone of the linearized constraint cL(x) = 0,

then TL(x) = null(J(x)) = {p : p = Z(x)pz}, where the columns of Z(x) form a basis for the null space

of J(x).

Lemma 3.2.2 implies then that T (x) ⊆ TL(x). The linearized tangent cone gives the machinery

needed to define a usable notion of optimality.

Theorem 3.2.3 (Lagrange Multipliers for problem (3.2), [16] Chapter 5). Assume that f and c are

differentiable at a feasible point x∗. Then

∇f(x∗)Tp ≥ 0 for all p ∈ null(J(x∗))

if and only if there exists a vector y∗, called the Lagrange multipliers, such that

∇f(x∗)− J(x∗)Ty = 0.

Proof. If ∇f(x∗)− J(x∗)Ty∗ = 0 for some y∗, then for all p ∈ null(J(x∗)), it holds that

∇f(x∗)Tp = (y∗)TJ(x∗)p = 0.

On the other hand, suppose there is no y∗ such that ∇f(x∗) − J(x∗)Ty∗ = 0. Then ∇f(x∗) /∈

range(J(x∗)T), so ∇f(x∗) can be uniquely decomposed into

∇f(x∗) = gR + gN , where gN ̸= 0,

and gN ∈ null(J(x∗)) and gR ∈ range(J(x∗)T). Choosing p = −gN satisfies J(x∗)p = 0. Then

∇f(x∗)Tp = −||gN ||22 < 0.

The result follows.

The Lagrange multipliers y∗ can be shown to be unique if J(x∗) has full row rank. The existence

of Lagrange multipliers provides a computable certificate of optimality.

82

Definition 3.2.8 (KKT point for problem (3.2), [16] Chapter 5). Let x∗ ∈ Ω such that there exists a

vector y∗ ∈ Rm such that ∇f(x∗)− J(x∗)Ty∗ = 0. The point x∗ is referred to as a first-order KKT point

for (3.2).

It is important to note that being a KKT point is not always a necessary condition for optimality.

The definition of KKT points depended on the linearized tangent cone and the true tangent cone at

a point x∗ to have equivalent dual cones, i.e., T ⋆(x∗) = T ⋆
L (x∗). For most problems, this is the case.

However, problems can be constructed for which this does not hold. In practice, it is useful to assume

that the constraint function c possesses a regularity condition that is verifiable in practice, and implies

that a problem is not one of these pathological cases. Such a condition is called a constraint qualification.

Optimality conditions are often phrased using the following language: if x∗ is a local minimizer, then x∗ is

a KKT point or a constraint qualification does not hold. There are many different constraint qualifications

that are utilized when formulating algorithms. Different constraint qualifications tend to trade strictness

for practical verifiability, i.e., a constraint qualification may only apply to a small subset of problems for

which a local minimizer is a KKT point, but the qualification is easy to verify in practice. Conversely, a

constraint qualification may apply to a vast number of problems but may be quite difficult to verify. Only

a few commonly used constraint qualifications are listed here.

Definition 3.2.9 (Guignard constraint qualification, [16] Chapter 5). The Guignard constraint qualifica-

tion holds at x if x ∈ Ω and T ⋆(x) = T ⋆
L (x).

Working with the dual cones is not as convenient as working with the original cones. This

motivates the following definition.

Definition 3.2.10 (Abadie Constraint Qualification, [16] Chapter 5). The Abadie constraint qualification

holds at x if x ∈ Ω and T (x) = TL(x).

The Abadie constraint qualification implies the Guignard constraint qualification, but not vice

versa. However, even the Abadie constraint qualification is difficult to verify in practice. A much more

convenient constraint qualification is the following:

Definition 3.2.11 (Linearly independent constraint qualification (LICQ), [16] Chapter 5). Assume that

the constraint function c(x) : Rn → Rm is continuously differentiable. A sufficient condition for the

constraint qualification to hold at a feasible point x is that the rows of J(x∗) are linearly independent.

Constraint qualifications and the KKT conditions are enough to establish first-order necessary

conditions for optimality, as the following result shows.

83

Theorem 3.2.4 (First-Order Necessary Conditions for (3.2), [16] Chapter 5). If a constraint qualification

holds at x∗, then x∗ is a local minimizer of (3.2) only if x∗ is a KKT point.

Note that the KKT conditions consists of ∇f(x∗)− J(x∗)Ty∗ = 0 and the fact that x∗ ∈ Ω, i.e.,

c(x∗) = 0. These two conditions together make up the KKT conditions. Both conditions can be described

in terms of a single function called the Lagrangian function

L(x, y) = f(x)− yTc(x).

The KKT conditions then become a stationarity condition of L, i.e.,

∇L(x, y) =

∇xL(x, y)

∇yL(x, y)

 =

∇f(x)− J(x)Ty
−c(x)

 =

0

0

 .

In general, a solution x∗ and an associated Lagrange multiplier y∗ that satisfies the KKT conditions do

not constitute a minimizer of L. Thus, algorithms for solving (3.2) cannot simply attempt to minimize

the Lagrangian. Instead, algorithms typically attempt to find critical points of L that satisfy both first

and second-order optimality conditions.

Second-Order Optimality Conditions

In the unconstrained case, second-order optimality conditions focused on properties of the second

derivative of the objective function at points that satisfied first-order optimality conditions. The same is

true here, except the second derivatives of the constraint function c must be considered alongside the

second derivatives of the objective function f . The second derivatives of the Lagrangian play a crucial

role.

At a point (x, y), the Hessian of the Lagrangian with respect to the x variables is given by

H(x, y) = ∇2f(x)−
m∑
i=1

yi∇2ci(x). (3.5)

This matrix plays a critical role in the following result.

Theorem 3.2.5 (Second-Order Necessary Conditions for (3.2), [16] Chapter 5). If a constraint qualification

holds at x∗, then x∗ is a local solution of (3.2) if

1. c(x∗) = 0,

2. there exist a vector y∗ such that ∇f(x∗)− J(x∗)Ty∗ = 0, and

84

3. pTH(x∗, y∗)p ≥ 0 for every p ∈ null(J(x∗)).

Proof. The first two conditions are simply the first-order necessary conditions. Let p satisfy J(x∗)p = 0.

If there is no such p, the result holds. Let x∗(α) be a twice continuous differentiable path such that

x(0) = x∗ and x′(0) = p. Such a path is guaranteed to exist by the constraint qualification. Let v = x′′(0).

Due to the fact that c(x(α)) = 0, it holds that

d2

dα2
ci(x(α))

∣∣∣∣
α=0

= ∇ci(x∗)Tv + pT∇2ci(x
∗)p. (3.6)

By the second condition, ∇f(x∗)− J(x∗)Ty∗ = 0 for some y∗. Then

d

dα
f(x(α))

∣∣∣∣
α=0

= ∇f(x∗)Tp = (y∗)TJ(x∗)p = 0. (3.7)

Therefore, x∗ is a stationary point along the feasible path. In order for x∗ to be a local minimizer along

this path, then the second order necessary condition for an unconstrained minimizer must hold, i.e.,

d2

dα2
f(x(α))

∣∣∣∣
α=0

≥ 0.

Using (3.7) and the definition of v, it holds that

d2

dα2
f(x(α))

∣∣∣∣
α=0

= (y∗)TJ(x∗)v + pT∇2(x∗)p ≥ 0. (3.8)

Combining (3.6) and (3.8) yields

d2

dα2
f(x(α))

∣∣∣∣
α=0

= −pT
(

m∑
i=1

y⋆i∇2ci(x
∗)

)
p+ pT∇2f(x∗)p = pTH(x, y)p ≥ 0.

A point satisfying the conditions of Theorem 3.2.5 is called a second order KKT point of (3.2).

The following result gives sufficient conditions for a point x∗ to be a local minimizer of (3.2).

Theorem 3.2.6 (Second-Order Sufficient Conditions for (3.2), [16] Chapter 5). A point x∗ is a strict

local minimizer of (3.2) if

1. x∗ is feasible, i.e., c(x∗) = 0,

2. there exists a vector y∗ such that ∇f(x∗)− J(x∗)Ty∗ = 0, and

85

3. the strict inequality pTH(x∗, y∗)p > 0 holds for every p ̸= 0 such that J(x∗)p = 0.

Proof. Consider a feasible sequence {xk} converging to x∗. Define the sequence {tk} and {pk} via the

equation xk = x∗ + tkpk, where tk is a normalizing constant so that ||pk|| = 1. It follows that tk → 0. The

sequence {pk} is bounded, and therefore has a convergent subsequence. In what follows, {pk} will denote

the subsequence converging to p. The Taylor-series expansion with the integral form of the remainder of

the constraint function c at x∗ gives

c(xk) = c(x∗) + tkJ(xk)pk + tk

∫ 1

0

(
J(x∗ + ξtkpk)− J(x∗)

)
pk dξ.

By construction, c(xk) = c(x∗), so

J(x∗)pk = −
∫ 1

0

(
J(x∗ + ξtkpk)− J(x∗)

)
pk dξ.

Taking the limit as k →∞ gives J(x∗)p = 0.

Suppose now that x∗ is not a strict minimizer. Then there exists a feasible sequence {xk} such

that xk → x∗ and f(x∗) ≥ f(xk) for k sufficiently large. Again using a Taylor-series with an integral

remainder gives

0 ≥ f(xk)− f(x∗) = tk∇f(xk)Tpk + t2k

∫ 1

0

pTk∇2(x∗ + ξtkpk)pk(1− ξ) dξ, (3.9)

and

0 = tk∇ci(x∗)Tpk + t2k

∫ 1

0

pTk∇2ci(x
∗ + ξtkpk)pk(1− ξ) dξ.

Multiplying the above expression by y⋆i for each index i and subtracting the result from (3.9), and using

∇f(x∗)− J(x∗)Ty∗ = 0 gives

0 ≤ t2k
∫ 1

0

pTkH(x∗ + ξtkpk, y
∗)pk(1− ξ) dξ.

Taking limits as k →∞ yields pTH(x∗, y∗)p ≤ 0. Therefore, in order for x∗ to be a strict minimizer, it

must hold that pTH(x∗, y∗)p > 0. The result follows.

It is important to note that the above result does not require that a constraint qualification hold

at x∗. If a constraint qualification is included, as stronger statement about x∗ can be made, as seen in the

next result.

86

Theorem 3.2.7 (Second-Order Sufficient Conditions for an Isolated Minimizer of (3.2), [16] Chapter 5).

A point x∗ is an isolated local minimizer of (3.2) if

1. x∗ is feasible, i.e., c(x∗) = 0,

2. there exists a vector y∗ such that ∇f(x∗)− J(x∗)Ty∗ = 0,

3. the strict inequality pTH(x∗, y∗)p > 0 holds for every p ̸= 0 such that J(x∗)p = 0, and

4. the constraint gradients at x∗ are linearly independent.

Proof. The first three conditions are the sufficient conditions of a strict local minimizer. All that remains

to show is that x∗ is isolated. Conditions (1) and (2) state that the point (x∗, y∗) is a zero of the function

F (x, y) = ∇L(x, y). The result follows from applying the implicit function theorem to F and combining

it with condition (3).

3.2.2 Augmented Lagrangian Methods

In this section, augmented Lagrangian methods are briefly reviewed. Techniques from these

methods will be applied to the equality constraints in the all-shifted primal-dual penalty-barrier trust-region

method.

Augmented Lagrangian methods can be derived using a variety of tools. They can be viewed as

a penalty method applied to a version of (3.2) with the constraints shifted by some optimal shift. If a

problem is convex, it can be viewed as applying a proximal method to the corresponding concave dual

problem. They can also be viewed as applying unconstrained optimization techniques to a sequence of

modified Lagrangian functions with additional terms added to ensure positive curvature in the necessary

directions.

Assume that the sufficient optimality conditions of Theorem 3.2.6 hold at a point x∗. As previously

mentioned, x∗ is a stationary point of L(x, y∗), where y∗ is the Lagrange multiplier, but not necessarily a

minimizer. By (3.2.6), the Hessian of L(x, y) at (x∗, y∗) is positive definite when restricted to the subspace

null(J(x∗)). Therefore, the Lagrangian can only have directions of negative curvature in complementary

space range(J(x∗)). This suggests that the Lagrangian can be augmented by an additional term to correct

for this negative curvature. Although there are many possible ways to augment the Lagrangian, the most

commonly seen approach is to add a quadratic penalty term, yielding

LA(x; y
E, ρ) = L(x, yE) +

ρ

2
||c(x)||22, (3.10)

87

for some parameter ρ, referred to as the penalty parameter. This penalty term has the effect of increasing

the potentially negative eigenvalues of H(x, y) but leaving eigenvalues that are guaranteed to be positive

unchanged.

Theorem 3.2.8 ([16] Chapter 5). Assume that x∗ satisfies second-order sufficient conditions for a strict

local minimizer of (3.2). Let y∗ be the Lagrange multipliers at x∗. There is a finite ρ̄ such that, for each

ρ > ρ̄, a solution x∗ of (3.2) is an isolated unconstrained local minimizer of the augmented Lagrangian

function LA(x; y
∗, ρ).

Proof. The gradient of LA(x; y, ρ) is given by

∇LA(x; y, ρ) = ∇f(x)− J(x)T(y − ρc(x)),

and the Hessian is given by

∇2LA(x; y, ρ) = H(x, y − ρc(x)) + ρJ(x)TJ(x).

At a local minimizer x∗ of (3.2), c(x∗) = 0, and therefore

∇LA(x
∗; y∗, ρ) = ∇f(x∗)− J(x∗)Ty∗ = 0,

and

∇2LA(x
∗; y∗, ρ) = H(x∗, y∗) + ρJ(x∗)TJ(x∗).

The second order sufficient conditions imply that if Z is a matrix whose columns form a basis of null(J(x∗)),

then ZTH(x∗, y∗)Z ≻ 0. Therefore, there exists a constant ρ̄ such that H(x∗, y∗) + ρJ(x∗)TJ(x∗) is

positive definite for all ρ > ρ̄. Therefore, x∗ is an isolated minimizer of LA(x; y
∗, ρ).

The above result is one of the main reasons augmented Lagrangian methods are preferred over

more classical penalty methods. Furthermore, note that the above result does not require that the

constraint gradients are linearly independent at x∗.

One drawback of Theorem 3.2.8 is that y∗ is not known in advance. Therefore, practical augmented

Lagrangian methods make do with an estimate of the Lagrange multiplier yE that is updated along with

the penalty parameter. This forms the general outline of augmented Lagrangian methods:

1. Solve minx∈Rn LA(x; y
E, ρ).

88

2. Check for optimality.

3. Update ρ and yE.

These simple steps are iterated until some approximate optimality conditions are satisfied. A simple form

of the update for yE can be seen in the first-order optimality conditions of LA(x; y
E, ρ). Recall that

∇LA(xj ; y
E, ρ) = ∇f(xj)− J(x)T(yE − ρc(xj)).

Clearly, the vector yE
j+1 = yE

j − ρc(xj) satisfies ∇f(xj)− J(xj)TyE
j+1 = 0. Thus, this update can be used

as a suitable approximation of y∗. This expression is known as the first-order multipliers, due to the fact

that

||yE

j+1 − y∗|| ≤M ||yE

j − y∗||

for j sufficiently large. The augmented Lagrangian method using first-order multipliers can only converge

as fast as yE
j+1 converges to y∗. Thus, even a quadratically convergent technique will be slowed down by

this update rule. Although there exists other multiplier estimates that avoid this problem at the cost of

additional computation, they are not discussed here.

Note that the augmented Lagrangian method treats the primal variables x and the dual variables

(Lagrange multipliers) y separately. Alternative approaches operate by treating both sets of variables

as variables minimized that minimize an objective function. One such approach is the primal-dual

augmented-Lagrangian method.

The Primal-Dual Augmented-Lagrangian Method

In [15], Gill et al. propose methods for solving problem (3.2) centered around the primal dual

augmented Lagrangian

M(x, y; yE, µP) = f(x)− c(x)TyE +
1

2µP
||c(x)||22 +

1

2µP
||c(x) + µP (y − yE)||22. (3.11)

The penalty parameter ρ in this equation has been replaced with 1/µP . µP will be referred to as the

penalty parameter from now on. This function M will be incorporated into the merit function used in the

all-shifted primal-dual penalty-barrier merit function. The general framework of a method utilizing M

would be as follows:

1. Take a step (xk+1, yk+1) = (xk + pk, yk + qk) towards a solution of the unconstrained problem

minx∈Rn,y∈Rm M(x, y; yE

k , µ
P

k)

89

2. Check for optimality.

3. Update yE and µB.

In this case, the update to yE is based on the most recently computed yk, as opposed to some estimate

based on xj . Although the details of the overall method are not investigated here (see [15] for more

details), some properties of M are examined. Consider the first and second-order derivatives of M in both

x and y:

∇M =

∇f(x)− J(x)T(2(yE − 1
µP c(x))− y)

µP (y − (yE − 1
µP c(x)))

 .

Let πy = (yE − 1
µP c(x)). Note that πy is equivalent to the first-order multiplier update detailed in the

augmented Lagrangian method. Then

∇M =

∇f(x)− J(x)T(2πy − y)

µP (y − πy)

 ,

and

∇2M =

H(x, 2πy − y) + 2
µP J(x)

TJ(x) J(x)T

J(x) µP I

 .

From the gradient of M , it can be observed that at a local minimizer of M , πy − y = 0. After some

rearrangement, this becomes the perturbed feasibility condition c(x) = µP (yE − y). Thus, it can be shown

that minimizing a sequence of primal-dual augmented Lagrangian functions is equivalent to solving a

sequence of perturbed first-order KKT conditions

∇f(x)− J(x)y = 0,

c(x) = µP (yE − y).

This basic structure will be expanded upon once methods for managing inequality constraints have been

discussed.

90

3.3 Inequality Constraints

Now, consider the case where the set of equality constraints E is empty, so that the problem under

consideration becomes

minimize
x∈Rn

f(x)

subject to c(x) ≥ 0.

(3.12)

As in the unconstrained and equality-constrained case, the first task is to characterize the notion of

optimality for problem (3.12).

3.3.1 Optimality Conditions

Definition 3.3.1 ([16] Chapter 6). A constraint ci(x) ≥ 0 is said to be active at a point x∗ if ci(x
∗) = 0,

and inactive if ci(x
∗) > 0.

As before, let Ω denote the feasible set {x : ci(x) ≥ 0 for all i ∈ I}. The feasible set is said

to have a strict interior if there exists a point x̄ ∈ Ω such that all constraints are inactive at x̄. The

discussion of optimality conditions proceeds similar to the equality constrained case, with the distinction

that feasible paths and sequences are not bound to lie on the constraint surface for all constraints.

Definition 3.3.2 ([16] Chapter 6). Let x ∈ Ω be a feasible point. The set A(x) = {i ∈ I : ci(x) = 0} is

referred to as the active set at x, and consists of the index set of the active constraints at a point x.

The notation ca(x) is used to denote the subset of constraints in the active set evaluated at x.

Similarly, Ja(x) is used to denote the gradient of the active constraints at x. Let ma(x) = |A(x)|.

Definition 3.3.3 (Feasible path, [16] Chapter 6). Let x ∈ Ω. A feasible path is a twice-differentiable

curve x(α) such that

1. x(0) = x and c(x(α)) ≥ 0 for all α satisfying 0 ≤ α < α̂ for some α̂ > 0, and

2. the tangent vector p = x′(0) to the feasible path at x is nonzero.

Definition 3.3.4 (Feasible sequences, [16] Chapter 6). Let x ∈ Ω. A feasible sequence converging to x is

a sequence {xk} such that, for all k, c(xk) ≥ 0, xk ̸= x, and limk→∞ xk = x.

The tangent of a feasible sequence is defined by constructing sequence {tk} and {pk} via xk =

x+ tkpk, where tk is a normalizing constant so that ||pk|| = 1. The sequence {pk} is therefore bounded, so

there exists a convergent subsequence. Without loss of generality, the convergent subsequence converges

to a vector p, the tangent vector of {xk}.

91

Definition 3.3.5 (The tangent cone, [16] Chapter 6). Let T +(x) denote the set of tangent vectors

associated with every feasible sequence converging to a feasible point x. The tangent cone is then

T (x) = T +(x) ∪ {0}.

If a constraint ci(x) is inactive at x, then there exists a neighborhood of x in which ci(x) is

inactive for all points in this neighborhood, thus it does not place any restrictions on tangent vectors. On

the other hand, active constraints limit the directions of potential tangent vectors of feasible sequences. A

feasible path x(α), or a feasible sequence {xk}, is called binding if some constraint ci(x) remains feasible

for all points along the path or sequence. If p is tangent to a binding feasible sequence, then that constraint

functions as an equality constraint for the sequence, so the result

∇ci(x)Tp = 0 (3.13)

holds. On the other hand, if p is tangent to a nonbinding sequence, then

∇ci(x)Tp > 0. (3.14)

As was the case with equality constraints, optimality conditions are determined by examining the behavior

of the objective function along feasible paths and sequences.

Theorem 3.3.1 ([16] Chapter 6). Assume that f and c are differentiable. A feasible point x∗ is a local

solution of problem (3.12) only if ∇f(x∗)Tp ≥ 0 for every p ∈ T (x∗), i.e., if ∇f(x∗) ∈ T ⋆(x∗).

It follows from (3.13) and (3.14) that every vector p ∈ T (x∗) satisfies Ja(x
∗)p ≥ 0. This

relation describes the linearized tangent cone TL(x
∗) of the linearized active constraints ca(x;x

∗) =

ca(x
∗) + Ja(x

∗)(x− x∗). So, the goal is to discover algebraic conditions that imply that ∇f(x∗)Tp ≥ 0

for all p such that Ja(x
∗) ≥ 0. Conditions for the existence of Lagrange multipliers follow directly from

Farkas’ lemma.

Theorem 3.3.2 (Lagrange Multipliers for (3.12), [16] Chapter 6). Assume that f and c are differentiable

at a feasible point x∗. If Ja(x
∗) ∈ Rma×n denotes the matrix of active constraint gradients at x∗, then

1. ∇f(x∗)Tp ≥ for all p such that Ja(x
∗)p ≥ 0 if and only if ∇f(x∗)− Ja(x∗)Ty∗a for some y∗a ∈ Rma

such that y∗a ≥ 0.

2. There exists a vector p such that∇f(x∗)Tp < 0 and Ja(x
∗)p ≥ 0 if and only if ∇f(x∗)−Ja(x∗)Tya ̸= 0

for any ya ≥ 0.

92

3. Exactly one of the following statements holds:

(a) ∇f(x∗) can be written as a nonnegative linear combination of the columns of Ja(x
∗)T, or

(b) there exists a vector p such that ∇f(x∗)Tp < 0 and Ja(x
∗)p ≥ 0.

The key difference between this and the equality-constrained case is that the Lagrange multipliers

are nonnegative, whereas previously they were unconstrained.

Definition 3.3.6 (First-order KKT point for (3.12), active set form, [16] Chapter 6). The first-order KKT

conditions for the inequality constrained problem (3.12) hold at x∗ if there exists a vector of Lagrange

multipliers y∗a ∈ Rma such that

∇f(x∗)− Ja(x∗)Ty∗a = 0, (3.15a)

c(x∗) ≥ 0, and ca(x
∗) = 0, (3.15b)

y∗a ≥ 0. (3.15c)

This definition is often refined into a second definition in which the vector of Lagrange multipliers

is extended to include zero multipliers for the inactive constraints.

Definition 3.3.7 (First-order KKT point for (3.12), complementarity form, [16] Chapter 6). The first-

order KKT conditions for the inequality constrained problem (3.12) hold at x∗ if there exists a vector of

Lagrange multipliers y∗ ∈ Rm such that

∇f(x∗)− J(x∗)Ty∗ = 0, (3.16a)

c(x∗) ≥ 0, (3.16b)

y∗ ≥ 0, (3.16c)

c(x∗) · y∗ = 0. (3.16d)

Condition (3.16a) can be interpreted as a stationarity condition of the Lagrangian function

L(x, y) = f(x)− yTc(x), i.e., ∇xL(x
∗, y∗) = 0. Depending on the problem, there may be more than one

possible value of y∗ for a first-order KKT point x∗. This motivates the following definition.

Definition 3.3.8 ([16] Chapter 6). Given a KKT point x∗ for problem (3.12), the set of acceptable

Lagrange multipliers is defined as

Y(x∗) = {y ∈ Rm : ∇f(x∗)− J(x∗)Ty = 0, and c(x∗) · y∗ = 0}.

93

Condition (3.16d) forces the Lagrange multiplier yi of an inactive constraint ci(x) ≥ 0 to be

zero. On the other hand, if the i-th constraint is active, there is nothing preventing y∗i from being

zero. Strict complementarity is defined to be the case when all active constraints have strictly positive

Lagrange multipliers. If an active constraint does not satisfy strict complementarity, i.e., y⋆i = 0 is the

only acceptable multiplier, then ci(x) ≥ 0 is said to have a null multiplier, and is said to be weakly active.

If there exists a single positive acceptable multiplier, it is said to be strongly active.

As was the case with equality-constrained problems, the first-order KKT conditions are not always

necessary conditions for optimality. Some constraint qualifications need to hold in order for the KKT

conditions to be used as a certificate of optimality. Here, a few of the most commonly used constraint

qualifications are enumerated.

Definition 3.3.9 (Guignard constraint qualification, [16] Chapter 6). The Guignard constraint qualifica-

tion holds at x∗ if T ⋆
L (x

∗) = T ⋆(x∗).

The following constraint qualifications all imply the Guignard constraint qualification.

Definition 3.3.10 (First-order constraint qualifications, [16] Chapter 6).

1. The Abadie constraint qualification holds at x if x is strictly feasible, i.e., no constraints are active,

or TL(x) = T (x).

2. The linear constraint qualification holds at x if the active constraints at x are all linear.

3. The linear independence constraint qualification (LICQ) holds at x if the active constraint gradients

at x are all linearly independent.

4. The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x if there exists a vector p

such that ∇ci(x)Tp > 0 for all i ∈ A(x).

5. Slater’s condition holds if the feasible set Ω = {x : c(x) ≥ 0} is convex and there exists a strictly

feasible point x, i.e., c(x) > 0.

The first-order necessary conditions for optimality can now be stated.

Theorem 3.3.3 ([16] Chapter 6). If x∗ is a local minimizer of problem (3.2) at which the MFCQ holds,

then x∗ is a KKT point.

Proof. Let x∗ be a local minimizer at which MFCQ holds. Then x∗ ∈ Ω. If the set of active constraint

A(x) is empty, then x∗ is an unconstrained local minimizer, and the result holds. Suppose then at least

94

one constraint is active. The MFCQ states that there exists a vector p such that Ja(x
∗)p > 0. As c is

differentiable, the Taylor-series of c yields

ci(x
∗ + αp) = ci(x

∗) + α∇ci(x∗)Tp+O(||p||2).

. If α is sufficiently small and the i-th constraint is active, it follows that ci(x
∗ + αp) > 0. If, for this

same vector p, ∇f(x∗)Tp < 0, then the differentiability of f similarly gives f(x∗ + αp) < f(x∗), as p

would be a descent direction for f . This contradicts the fact that x∗ is a local minimizer. Therefore, it

can be concluded that ∇f(x∗)Tp ≥ 0 for every P such that J(x∗)p > 0. By Farkas’ lemma, ∇f(x∗) is a

nonnegative linear combination of the columns of Ja(x
∗). The result follows.

Second-Order Optimality Conditions

Like the unconstrained and equality-constrained cases, first-order conditions alone are insufficient

to ensure optimality, unless the problem in question is convex. As in the equality-constrained case,

second-order conditions involve the Hessian of the Lagrangian function

H(x, y) = ∇2f(x)−
m∑
i=1

yi∇2ci(x).

A key difference between the equality-constrained case and the inequality-constrained case is that in the

inequality-constrained case, second-order conditions need not be examined along all feasible directions.

Instead, it suffices to investigate the curvature of the objective function f along feasible directions on

which f is stationary. In the equality-constrained case, these two sets of directions were identical, whereas

here, they are not. It suffices to only examine the curvature of f along binding feasible directions, i.e.,

direction p such that Ja(x)p = 0. This motivates a second-order constraint qualification.

Definition 3.3.11 (Second-order constraint qualification (SOCQ). [16] Chapter 6). A second-order

constraint qualification for inequality-constrained optimization problems holds at a feasible point x if

every nonzero p satisfying Ja(x)p = 0 is tangent to a twice-differentiable path x(α) such that ca(x(α)) = 0

for all 0 ≤ α < α̂ for some α̂ > 0.

The second-order necessary conditions for inequality-constrained optimization can now be stated.

Theorem 3.3.4 (Second-order necessary conditions for (3.12), [16] Chapter 6). Let x∗ be a point such

that c(x∗) ≥ 0, with c(x∗)a = 0. If the first and second-order constraint qualifications hold at x∗, then x∗

is a local solution to (3.12) only if

95

1. x∗ is a first-order KKT point, and

2. for some y ∈ Y(x∗) and all p ̸= 0 satisfying ∇f(x∗)p = 0 and Ja(x
∗)p ≥ 0, it holds that

pTH(x∗, y∗)p ≥ 0.

There are many different statements of the second-order sufficient conditions for both strict and

isolated minimizers of (3.12); too many to discuss here. This discussion is limited to the statement of

sufficient second-order conditions for a strict minimizer.

Theorem 3.3.5 (Second-order sufficient conditions for a strict minimizer (3.12), [16] Chapter 6). A point

x∗ is a strict minimizer of problem (3.12) if

1. x∗ is a KKT point, and

2. There exists a vector y ∈ Y(x∗) such that for all p ̸= 0 such that ∇f(x∗)Tp = 0 and Ja(x
∗)p ≥ 0,

there exists a positive scalar ω such that pTH(x∗, y∗)p ≥ ω||p||2.

Proof. For the same of establishing a contradiction, suppose that the assumptions of the theorem hold, but

that x∗ is not a strict local minimizer. Then there exists a feasible sequence {xk} ⊆ Ω that converges to

x∗ such that f(xk) ≤ f(x∗). Let {tk} and {pk} denote the sequences given by the equation xk = x∗+ tkpk,

where tk is a normalizing constant such that ||pk|| = 1 for all k. The sequence {pk} lies in a compact set,

and thus {pk} has a convergent subsequence. Therefore, it can be assumed, without loss of generality,

that pk → p for some vector p. Furthermore, due to the fact that a nonnegative y is assumed to exist, it

must be true that c(xk)
Ty ≥ 0.

For each k, let ϕk(t) = c(x∗t + pk)
Ty, so that ϕk(0) = 0 and ϕk(tk) = c(xk)

Ty ≥ 0. The

Taylor-expansion of ϕk then gives

ϕk(tk) = tkϕ
′(0) +

1

2
t2kϕ

′′
k(θktk) ≥ 0 (3.17)

for some θk ∈ (0, 1). The first and second-order derivatives of ϕ are

ϕ′k(t) = pTk J(x
∗ + tpk)

Ty, and ϕ′′k(t) =

m∑
i=1

yip
T
k∇2ci(x

∗ + tpk)pk.

Therefore,

ϕ′k(0) = pTk J(x
∗)y. (3.18)

96

By assumption, f(x∗ + tkpk)− f(x∗) ≤ 0, thus

f(x∗ + tkpk)− f(x∗) = tk∇f(x∗)Tpk +
1

2
pTk∇f(x∗ + ξktkpk)p ≤ 0, (3.19)

for some ξk ∈ (0, 1). Combining (3.17), (3.18), and (3.19) yields

tk
(
∇f(x∗)− J(x∗)Ty

)T
pk +

1

2
t2kp

T
k

(
∇2f(x∗ + ξktkpk)−

m∑
i=1

yi∇2ci(x
∗ + θktkpk)

)
pk ≤ 0.

As x∗ is assumed to be a KKT point, and y ∈ Y(x∗), ∇f(x∗)− J(x∗)Ty = 0. Therefore,

pTk

(
∇2f(x∗ + ξktkpk)−

m∑
i=1

yi∇2ci(x
∗ + θktkpk)

)
pk ≤ 0.

In the limit as k →∞,

pTkH(x∗, y∗)pk ≤ 0. (3.20)

Now, as tk → 0 and ϕk(tk) ≥ 0, (3.17) implies that lim inf k →∞ϕ′k(0) ≥ 0. But pk → p, and therefore

(3.18) implies that limk→∞ exists an is given by

lim
k→∞

ϕ′(0)k = pTJ(x∗)y. (3.21)

The assumed properties of x∗ then yield

lim
k→∞

ϕ′(0)k = pTJ(x∗)y = ∇f(x∗)Tp.

By the construction of the vector p, it holds that

lim
k→∞

ϕ′(0)k = pTJ(x∗)y = ∇f(x∗)Tp = 0. (3.22)

As ca(x
∗) = 0 and ca(x

∗ + tkpk) ≥ 0, it must hold that Ja(x
∗)p ≥ 0. Along with (3.22), this gives

Ja(x
∗)p ≥ 0 and ∇f(x∗)Tp = 0.

Combining the above result with (3.20) contradicts the assumptions of the theorem. Therefore, x∗ is a

strict local minimizer.

97

3.3.2 Interior-Point Methods

Interior point methods are some of the most widely-used methods for solving nonlinear inequality-

constrained optimization problems. In this section, a brief overview of modern approaches to interior

methods is presented with the goal of building up enough intuition to motivate the all-shifted primal-dual

penalty-barrier method.

The motivating idea behind some of the more basic interior-point methods is to solve problem

(3.12) by approximately solving a sequence of unconstrained problems whose solutions converge to the

solution of (3.12). This idea is quite similar to the motivating ideas of penalty methods and augmented

Lagrangian methods for equality-constrained optimization. The situation is complicated by the fact

the constraints in question are inequality constraints. Thus, the objective function of the proposed

unconstrained problem should not penalize points that are feasible but should penalize points that are

infeasible. This motivates the idea of a barrier function, i.e., a function that is defined to be infinite off of

the feasible region. Consider the function

IΩ(x) =


0 if x ∈ Ω

∞ if x /∈ Ω
.

If Ω is convex, this function is sometimes referred to as the convex indicator function. Problem (3.12) is

then equivalent to solving

min
x∈Rn

f(x) + IΩ(x). (3.23)

Unfortunately, none of the previously discussed methods for solving unconstrained problems can be applied

to (3.23), due to the extreme irregularity of the indicator function. The goal then is to approximate (3.23)

with a sequence of problems with computable solutions. Consider the function

Ilog(x) = −
m∑
i=1

log(ci(x)).

This is the so-called logarithmic-barrier function and is the most commonly used barrier function in

interior-point methods. With this function, the composite objective function

B(x;µB) = f(x)− µBIlog(x) = f(x)− µB

m∑
i=1

log(ci(x))

can be constructed for some positive barrier parameter µB. Note that B(x;µB) preserves the differentiability

98

of f and c on the strict interior of the feasible set and is infinite outside the feasible set and on {x : c(x) = 0}.

As µB is driven towards zero, B(x;µB) behaves like f except in close proximity to points where c(x) = 0.

The classic barrier method is then intuitively given by the following algorithm:

Algorithm 3.1. Classical Barrier Algorithm

1: Given x0 such that c(x0) > 0, µB
0 > 0, and γC such that 0 < γC < 1.

2: k ← 0
3: while Not Converged do
4: xk+1 ← argmin

x∈Rn

B(x;µB

k)

5: µB

k+1 ← γCµ
B

k

6: k ← k + 1.
7: end while

In practical applications of Algorithm 3.1, the unconstrained minimization step is only carried

out approximately, with only a few iterations of any given unconstrained method being applied at any

given iteration.

Consider the first-order optimality conditions of B(x;µB) for a given µB

∇B(x;µB) = ∇f(x)− µB

m∑
i=1

1

ci(x)
∇ci(x). (3.24)

Let yµB denote the vector [yµB]i = µB/ci(x). Then

∇B(x;µB) = ∇f(x)− µB

m∑
i=1

1

ci(x)
∇ci(x)

= ∇f(x)− J(x)TyµB .

(3.25)

Furthermore, note that if ci(x) > 0, then [yµB]i > 0. The components of the vector yµB are called the

barrier multipliers. Observe the similarity between the derivative of B and the first-order stationarity

condition ∇f(x∗)− J(x∗)Ty∗ = 0 for some y∗ ∈ Y(x∗).

Furthermore, observe the similarity between the complementarity condition c(x∗) · y∗ = 0 and the

following rearrangement of the definition of yµB :

c(x) · yµB = µB. (3.26)

Equation (3.26) is referred to as the perturbed complementarity condition. As µB is driven towards zero,

the perturbed complementarity condition approaches the true complementarity condition.

It is important to note that the set on which B(x;µB) is less than infinity differs from both the

99

feasible set Ω and the topological notion of the interior of Ω, denoted as int(Ω).

Definition 3.3.12 (Strictly Feasible Set). The subset of points in Ω for which all constraint functions

are strictly positive is denoted by intc(Ω) and is given by

intc(Ω) = {x : ci(x) > 0}.

If x ∈ intc(Ω), then x is said to be strictly feasible.

Consider the constraint set Ω = {x : x2 ≥ 0}. This set is equivalent to R, and therefore int(Ω) = R.

However, intc(Ω) = R\{0}. A constraint for which intc(Ω) ̸= int(Ω) is said to be topologically inconsistent.

Such constraints tend to cause problems with interior-point methods, and care should be taken to address

topologically inconsistent constraints when modeling problems.

Although the convergence of classical barrier methods can be proven under relatively weak

assumptions, such results are not presented here. Instead, the focus is given to a more modern class of

methods: the class of primal-dual interior methods.

3.3.3 Primal-Dual Interior Methods

The classical barrier method presented in Algorithm 3.1 only solves for the primal variables x.

The approximation of the Lagrange multipliers, also called the dual variables, is inferred via the current

iterate xk and not solved directly. Primal-dual methods instead treat the dual variables similarly to

the primal variables. Instead of attempting to iterate towards a constrained minimizer of the objective

function f , primal methods iterate towards a zero of the first-order KKT conditions by perturbing the

complementarity condition, as in (3.26). To be more precise, given a barrier parameter µB, a primal-dual

method attempts to solve

∇f(x)− J(x)Ty = 0, (3.27a)

c(x) · y = µBe. (3.27b)

Let C(x) denote the diagonal matrix diag(c(x)), Y = diag(y), and FµB

be

FµB

=

∇f(x)− J(x)Ty
C(x)Y e− µBe

 .

100

Newton’s method can be applied directly to FµB

. The corresponding Newton’s equations are given by

H(x, y) −J(x)T

Y J(x) C(x)


∆x

∆y

 = −

∇f(x)− J(x)Ty
C(x)Y e− µBe

 . (3.28)

This matrix can be symmetrized to yield a regularized saddle-point system

H(x, y) J(x)T

J(x) −Y −1C(x)


 ∆x

−∆y

 = −

∇f(x)− J(x)Ty
C(x)e− µBY −1e

 . (3.29)

Recall from the discussion of the classical barrier method that the barrier multipliers were defined as

[yµB]i = µB/ci(x). Use πy to denote this auxiliary vector. Then (3.29) can be written as

H(x, y) J(x)T

J(x) −Y −1C(x)


 ∆x

−∆y

 = −

 ∇f(x)− J(x)Ty

(Y −1C(x))(y − πy)

 ,

or, letting D = Y −1C(x), as

H(x, y) J(x)T

J(x) −D


 ∆x

−∆y

 = −

∇f(x)− J(x)Ty
D(y − πy)

 . (3.30)

All primal-dual methods begin with this formulation. On its own, however, these equations are insufficient

to ensure convergence. For starters, Newton’s method is a zero-finding strategy; thus, iterations of this

form may not converge to a minimizer. However, if a suitable technique is employed to guarantee a

sufficient decrease at each iteration, methods based on solving equation (3.30) perform exceptionally well

in practice.

Typically, primal-dual interior methods are broken into inner and outer iterations. Inner iterations

correspond to iterations of Newton’s method or one of its variants for a particular value of µB. Outer

iterations correspond to a reduction of the barrier parameter once the inner iterations have made sufficient

progress. It remains to show what it means for a sequence of inner iterations to achieve “sufficient

progress.”

One of the most popular methods to measure progress is to define a suitable merit function. While

some methods use the primal log-barrier function f(x)− µB
∑m

i=1 log(ci(x)) as a merit function, this goes

against the spirit of the primal-dual method, in which both primal and dual variables are considered at

101

the same time. Instead, consider the Forsgren-Gill merit function presented in [11]:

M(x, y;µB) = f(x)− µB

m∑
i=1

(
log ci(x) + log

ci(x)yi
µB

+ 1− ci(x)yi
µB

)
. (3.31)

This merit function penalizes departure from the feasible path, as well as the departure from the barrier

trajectory, defined to be the path of zeroes of the function FµB

for decreasing values of µB. An equivalent

form of (3.31) (up to constant terms) is

M(x, y;µB) = f(x) + c(x)Ty − 2µB

m∑
i=1

log ci(x)− µB

m∑
i=1

log yi. (3.32)

In this form, it becomes clear that M penalizes the departure of the feasible set for the primal constraints

and the departure of the dual variables from the dual constraint y ≥ 0. Simple calculation yields

∇M(x, y;µB) =

∇f(x)− J(x)T(2πy − y)

D(y − πy)

 (3.33)

and

∇2M(x, y;µB) =

H(x, 2πy − y) + 2J(x)TC(x)−1ΠyJ J(x)T

J(x) DΠyY −1

 . (3.34)

By the second part of (3.33), it can be seen that y and πy are equivalent at stationary points of M . This

motivates the substitution

HM =

H(x, y) + 2J(x)TD−1J J(x)T

J(x) D

 . (3.35)

Linear and quadratic models of the merit function can be formed with ∇M and HM , which allows

line-search and trust-region methods to be applied to M . The modified Newton’s equations of M are thus

H(x, y) + 2J(x)TD−1J J(x)T

J(x) D


∆x

∆y

 = −

∇f(x)− J(x)T(2πy − y)

D(y − πy)

 .

A simple transformation of the above Newton’s equations shows that this is equivalent to Newton’s

equations for FµB

(3.30).

102

3.3.4 The Slack Formulation

Consider a line-search approach applied to the merit function defined in (3.31). Suppose a search

direction (∆x,∆y) is computed such that, at iteration k, c(xk +∆x)i < 0. Then the merit function M is

undefined at (xk +∆x, yk +∆y). In this case, maintaining the strict feasibility of the iterates becomes

complicated by the fact that each constraint c(xk +αk∆x) needs to be checked before evaluating the merit

function M . Fortunately, a straightforward remedy exists. Each inequality constraint can be reformulated

into a linear inequality constraint and a nonlinear equality constraint by introducing a vector s of slack

variables. To be more precise, for each i, the constraint ci(x) ≥ 0 becomes ci(x)− si = 0 and si ≥ 0. Thus,

problem (3.12) becomes

minimize
x∈Rn,s∈Rm

f(x)

subject to c(x)− s = 0, and s ≥ 0.

(3.36)

Primal-dual interior and penalty methods can then be combined to handle the inequality and equality

constraints.

103

Chapter 4

The Trust-Region Subproblem

4.1 Overview

This section reviews two commonly used methods for solving the trust-region subproblem.

Additionally, three novel approaches for solving the trust-region subproblem are introduced. In the most

general case, the trust-region subproblem can be expressed as the following quadratically constrained

quadratic optimization problem:

min
x∈Rn

q(x) =
1

2
xTHx+ gTx

subject to ||x||M ≤ δ,
(4.1)

where H, M ∈ Rn×n, H = HT, M =MT, M ≻ 0, and g ∈ Rn. As M is positive definite, many authors

use the Cholesky decomposition of M , M = RTR, to transform the problem into the form

min
x∈Rn

1

2
xTH̄x+ ḡTx

subject to ||x||2 ≤ δ,

to avoid explicitly working with the matrix M . While there is nothing theoretically wrong with this

approach, there exist situations in which the Cholesky factorization of M would add significant overhead

to the run time of any algorithm, so all results shall work with the generalized form. Before analyzing

various methods for solving the trust-region subproblem, it is important to understand the conditions

guaranteeing that a point x is a solution.

104

4.1.1 Optimality Conditions

Algorithms for finding the global minimum of the trust-region subproblem are based on the

following result.

Theorem 4.1.1 ([16] Chapter 3). Let δ > 0. A vector x is a global minimum of (4.1) with radius δ if

and only if ||x||M ≤ δ and there exists a scalar σ ≥ 0 such that

(H + σM)x+ g = 0, and σ
(
1
2δ

2 − 1
2x

TMx
)
= 0, (4.2)

with H + σM positive definite. If H + σM is positive definite, then the global minimizer is unique.

Proof. The above theorem can be proven using the second-order optimality conditions for constrained

minimization. However, this proof will not use such techniques. Suppose that the pair (x, σ) satisfy (4.2),

and that ||x||M ≤ δ and H + σM ⪰ 0. Then x is the global minimum of the unconstrained optimization

problem minvQ(v) = gTv + 1
2v

T(H + σM)v. Therefore, for all v ∈ Rn, Q(v) ≥ Q(x). Thus,

gTv +
1

2
vTHv ≥ gTx+

1

2
xTHx+

1

2
σ(xTMx− vTMv). (4.3)

Now, ||x||M = δ, and σ ≥ 0, so gTv+ 1
2v

THv ≥ gTx+ 1
2x

THx+ 1
2σ(δ

2− vTMv). Thus, gTv+ 1
2v

THv ≥

gTx+ 1
2x

THx for all v such that vTMv ≤ δ2. Therefore, x is a solution to the trust-region subproblem.

Assume now that x is additionally a global solution. If ||x||M < δ, then x is an unconstrained

minimizer of the objective function. Paired with σ = 0, (x, σ) satisfies the conditions of Theorem 4.1.1.

Now, if ||x||M = δ, then x must solve the constrained problem min{gTx+ 1
2x

THx : 1
2x

TMx =

1
2δ

2}. The method of Lagrange multipliers guarantees the existence of a multiplier λ ∈ Rn such that the

gradient of the Lagrangian L(x, λ) = gTx+ 1
2x

THx− 1
2λ(δ

2 − xTMx) is zero. Differentiating L gives

∇L =

g +Hx+ λMx

xTMx− δ2

 = 0.

Consequently, σ = λ. As x solves the trust-region problem, it follows that gTx+ 1
2x

THx ≤ gTv+ 1
2v

THv

for all v such that vTMv ≤ δ2. This implies that

gTv +
1

2
vTHv ≥ gTx+

1

2
xTHx+

1

2
σ(xTMx− vTMv)

105

for any v such that vTMv = xTMx. Using the condition (H + σM)x+ g = 0 gives

1

2
(v − x)T(H + σM)(v − x) ≥ 0.

As the direction of the vector v is arbitrary, it follows that v − x is also arbitrary, and H + σM must be

positive semidefinite.

To show that σ ≥ 0, observe that the optimality conditions for an unconstrained quadratic

function with a Hessian matrix H + σM imply that (4.3) is valid for each v ∈ Rn. If σ ≤ 0, then this

implies that

gTv +
1

2
vTHv ≥ gTx+

1

2
xTHx for all vTMv ≥ xTHx.

As x solves the trust-region subproblem, it must be an unconstrained minimizer. Otherwise, if ||x||M = δ,

then there must exist a v with vTMv > xTMx such that gTv+ 1
2v

THv < gTx+ 1
2x

THx, which contradicts

the above bound. If x is an unconstrained minimizer, then the Lagrange multiplier σ is 0. Thus, σ ≥ 0.

An important observation is that only one possible value of σ exists, such that H +σM is positive

semidefinite and singular. Let λn ≤ . . . ≤ λ1 be the generalized eigenvalues of the matrix pencil (H,M).

For any σ > −λn, H + σM is positive definite and nonsingular, and the solution is given by

x(σ) = −(H + σM)−1g.

The function ψ(x) =
√
x(σ)TMx(σ) is a well-defined function for all σ > −λn.

Corollary 4.1.1.1 ([16] Chapter 3). The scalar σ exists and is unique.

Proof. The feasible set {x : ||x||M ≤ δ} is compact, implying that a global solution x exists. Theorem

4.1.1 implies that there exists a scalar σ ≥ 0 and a vector x such that

(H + σM)x+ g = 0 and σ(12x
TMx− 1

2δ
2) = 0,

with H+σM positive semidefinite. Let σ̄ also satisfy the optimality conditions. Without loss of generality,

assume that σ̄ ≥ σ ≥ −λn. If σ̄ = −λn, then σ̄ = σ. Assume that σ̄ > −λn. Then H + σ̄M is positive

definite, and x is the unique solution. Therefore, (H+σM)x+g = 0 and (H+ σ̄M)x+g = 0. Subtracting

the two equations yields

(σ − σ̄)Mx = 0.

106

Recall that M is positive definite, so M is nonsingular, thus

(σ − σ̄)x = 0.

If x ≠ 0, then σ = σ̄. If x = 0, then x is the unconstrained minimizer (recall the assumption that δ > 0),

thus σ = σ̄ = 0. Therefore, σ is unique.

It has been shown that if σ > −λn, the solution to the trust-region subproblem is easily attainable

once the value of σ is known. If, however, σ = −λn, then the problem becomes, computationally, much

more challenging to solve. The most difficult subset of such problems is frequently referred to as the hard

case.

4.1.2 The Hard Case

Consider a solution pair (x, σ) of (4.1), where σ = −λn. By Theorem 4.1.1, (H − λnM)x = −g,

with H − λnM positive semidefinite and singular. Thus, the vector g must lie in the range of the matrix

H − λnM , or equivalently, the orthogonal complement to the null space of H − λnM , i.e., g is orthogonal

to the leftmost eigenvector of the matrix pencil H − λnM . Therefore, the solution vector x can be

decomposed into two components:

x = s+ u, with s = −(H − λnM)†g, and u ∈ null(H − λnM).

Consider now the constraint ||x||M ≤ δ. If λn < 0, then the constraint must be active, so

||x||M = δ. Without loss of generality, assume that λn is a simple eigenvalue. Let un be the normalized

eigenvector of λn such that uT
nMun = 1. Then x = s+ αun for some scalar α such that ||x||M = δ. If

sTMs > δ2, no such α exists. In this case, the vector s already violates the trust-region constraint, so

σ ̸= −λn. Therefore, the hard case occurs when the following two conditions are met:

1. g ∈ null(H − λnM), and

2. s = −(H − λnM)†g is such that sTMs ≤ δ2.

The solution of the subproblem for the hard case is then given by

x = −(H − λn)M†g + αun, σ = −λn,

where α is chosen such that ||x||M = δ.

107

This degenerate case is called the hard case as it adds the additional complexity of solving an

eigenvector problem to solve the trust-region subproblem. Several algorithms for solving the trust-region

subproblem disregard the hard case entirely and will converge to some vector that is not necessarily a

minimizer. Fortunately, the hard case rarely occurs in practice. On the other hand, the so-called “near

hard case” can occur quite frequently. As a result, algorithms that disregard the hard case may struggle

to converge if the problem is arbitrarily close to the hard case. This problem is particularly evident with

the GLTR algorithm.

4.2 The Moré-Sorensen Algorithm

The Moré-Sorensen approach is perhaps the most well-known method for solving the trust-region

subproblem. It is relatively straightforward to implement and can quickly find highly accurate solutions

in low to medium-dimension problems. In the methods to follow, this algorithm will primarily be used for

finding the solutions to the trust-region problem projected onto various subspaces that approximate the

true solution, thus representing an essential step in building robust, large-scale methods.

Let λ1, . . . , λn denote the eigenvalues of the symmetric definite matrix pencil (H,M), where H,

M ∈ Rn×n are symmetric, and M is positive definite. Let g ∈ Rn, and δ > 0. Consider the trust-region

problem defined by H, M , g, and δ, as in (4.1). Let x and σ denote the optimal solution and Lagrange

multiplier. If σ > −λn, then, by Theorem 4.1.1, H + σM is positive definite, and x = −(H + σM)−1g.

Use the notation x(σ) to denote, for any σ > −λn, −(H + σM)g. Let U be a matrix whose columns are

the M -orthonormal generalized eigenvectors of (H,M). Let V = BU . Then

H = V ΛV T =

n∑
j=1

λiviv
T
i ,

and

(H + σM)−1 =

n∑
i=1

1

λi + σ
uiu

T
i ,

so

x(σ) = −
n∑

i=1

uT
i g

λi + σ
ui.

Therefore, by taking the M -norm of each side and squaring,

||x(σ)||2M =

n∑
i=1

(uT
i g)

2

(λi + σ)2
. (4.4)

108

This expression implies that if, for some i ∈ {1, . . . , n}, uT
i g ≠ 0, then ||x(σ)||M has a pole at σ = −λi.

Suppose that the solution x lies on the boundary of the trust region, i.e., ||x||M = δ. Then solving the

trust-region problem is equivalent to finding the appropriate zero of the function

ψ(σ) = ||x(σ)||M − δ, where x = −(H + σM)−1g. (4.5)

More specifically, suppose that σ̂ is the zero of ψ such thatH+σ̂M is positive definite. Then σ = max{0, σ̂}

is the unique optimal Lagrange multiplier of problem (4.1). A straightforward calculation shows that ψ is

convex and nonincreasing on (−λn,∞). If g ̸= 0, then ψ is strictly convex and strictly decreasing.

The following result gives the conditions under which it is guaranteed that a zero of ψ exists in

(−λn,∞).

Lemma 4.2.1 ([16] Chapter 3). If limσ→−λn
||x(σ)||M ≥ δ, then ψ has a unique zero in (−λn,∞).

Proof. (4.4) implies that limσ→∞ ||x(σ)||M = 0, and therefore limσ→∞ ψ(σ) = −δ < 0. If limσ→−λn
||x(σ)||M >

δ, then limσ→−λn ψ(σ) > 0. Therefore, ψ undergoes a sign change on the interval (−λn,∞). The result

follows as ψ is convex, strictly decreasing, and continuous on (−λn,∞).

Consider the hard-case, where g ∈ null(H − λnM)⊥. Then uT
n g = 0. Consider the implications of

this in the expansion (4.4) of ||x(σ)||2M . If uT
n g ̸= 0, then ||x(σ)||M diverges as σ → −λn. The case where

g ∈ null(H − λnM)⊥ is said to be degenerate. Note that all instances of the hard case are degenerate, but

not all degenerate problems are instances of the hard case.

Lemma 4.2.2 ([16] Chapter 3). The quantity ||x(σ)||M is finite as σ → −λn if an only if g ∈ null(H −

λnM)⊥.

Proof. If ||x(σ)||M is finite as σ → −λn, then (4.4) implies that uT
n g = 0 for all ui ∈ null(H − λnM).

This collection of ui form a basis for null(H − λnM), thus uTg = 0 for all u ∈ null(H − λnM), thus

g ∈ null(H − λnM)⊥. On the other hand, if ||x(σ)||M →∞ as σ → −λn, then gTui ≠ 0 for at least one

ui ∈ null(H − λnM).

The following result gives an equivalent characterization for when the trust-region problem is

degenerate.

Lemma 4.2.3 ([16] Chapter 3). The quantity limσ→−λn
ψ(σ) is finite if and only if the equations

(H − λnM)x = −g are compatible, i.e., there exists at least one solution.

109

Proof. Assume that limσ→−λn
ψ(σ) is finite. Then Lemma 4.2.2 implies that uT

i g = 0 for all ui ∈

null(H − λnM), thus g ∈ null(H − λnM)⊥ = range(H − λnM). Therefore, the system has at least one

solution.

On the other hand, if limσ→−λn
ψ(σ) = ∞, then (4.2.2) implies that there exists a vector

u ∈ null(H − λnM) such that uTg ̸= 0. The vector g can be uniquely decomposed into g = gN + gR,

where gN ∈ null(H − λnM) and gR ∈ range(H − λnM). Then it holds that gTu = gTNu+ gTRu = gTn u ̸= 0,

so gN ̸= 0. Therefore, g ̸= gR, and g /∈ range(H − λnM), and the system is not compatible.

Corollary 4.2.3.1 ([16] Chapter 3). If limσ→−λn ψ(σ) is finite, then limσ→−λn x(σ) = −(H − λn)†g

If the trust-region problem is degenerate, and ||(H − λnM)†g||M < δ, then ψ has no zero in

(−λn,∞). Only this situation is referred to as the hard case, as outside this situation, the degeneracy of

the system does not come into play.

Now, the function ψ could be used in a method for solving the trust-region problem. A safeguarded

Newton’s method could be applied, and it would eventually converge to a zero, giving a solution on the

boundary or terminated early if σ = 0 yields a solution. However, in most cases, ψ has a singularity at

−λn, which may be arbitrarily close to the optimal value of σ. Newton’s method for zero finding converges

in one solution if the function is linear but may converge slowly if the function is highly nonlinear, as is

the case with ψ near a singularity. Therefore, Newton’s method applied ψ will not be a reliable method in

many cases.

In [25], Moré and Sorensen instead suggested using Newton’s method on the function

ϕ(σ) =
1

δ
− 1

||x(σ)||M
, where (H + σM)x = −g. (4.6)

To be precise, their paper only considered the case M = I. However, the result is easily extended to the

general case. The derivative of ψ has discontinuities at the eigenvalues of (−H,M) but has no poles,

and is approximately linear in a larger neighborhood of the optimal value of σ, making ϕ a much more

suitable function on which to apply Newton’s method and achieve convergence in a reasonable number of

iterations. This forms the basis of the Moré-Sorensen algorithm for solving the trust-region problem. A

straightforward calculation shows that the Newton iterates of ϕ are given by

σj+1 = σj +
xT
j Mxj

xT
j M(H + σjM)−1Mxj

(
||xj ||M − δ

δ

)
, where (H + σjM)xj = −g.

Typically, these iterates are implemented by taking the Cholesky decomposition of H + σjM at

110

each iteration. These factorizations constitute the majority of the work done by the algorithm. Like any

eigenvalue algorithm, the Moré-Sorensen algorithm is iterative, and no exact a priori quantity can be

given for the computation needed to solve the trust-region problem. Thus, this algorithm is iterative and

approximate, and requires some termination criteria to indicate that the solution found is sufficiently close

to the true solution. A reasonable stopping criterion is terminating the algorithm when |ψ(σ)| is smaller

than some predefined tolerance. However, as ψ will not be exactly zero, the solution x may violate the

trust-region constraint by some amount that depends on the given tolerance. To compensate for this, the

algorithm instead attempts to find the approximate zero of ψ defined with a scalar ∆ slightly less than

the true radius δ. Suppose the Newton iteration terminates when σ satisfies

(H + σM)x = −g, and ψ̂(σ) =

∣∣||x||M −∆
∣∣

∆
≤ ε, (4.7)

for some 0 < ε < 1. then

∆(1− ε) ≤ ||x||M ≤ ∆(1 + ε).

A reasonable choice of ∆ is δ/(1 + ε), as then ||x||M ≤ δ, as is required. Thus, the zero finding method

should be applied to the perturbed trust-region problem minx∈Rn{q(x) : ||x||M ≤ ∆}.

Theorem 4.2.4 ([16] Chapter 3). Let ε be a scalar such that 0 < ε < 1, ∆ = δ/(1 + ε), and let s ∈ Rn

satisfy

(H + σM)s+ g = 0, and
∣∣||s||M −∆|/∆ ≤ ε,

with H + σM ⪰ 0. Then s satisfies

q(s) ≤ (1− ε)2q(s∗), where q(s∗) = min
x∈Rn
{q(x) : ||x||M ≤ ∆}. (4.8)

Furthermore, q(s) approximates the unique global minimum q⋆ = minx∈Rn{q(x) : ||x||M ≤ δ}, i.e.,

q(s) ≤ (1− ε)2

(1 + ε)2
q⋆ and ||s||M ≤ δ.

Proof. The vector s is the exact solution to the problem q(s) = minx∈Rn{q(s) : ||x||M ≤ ||s||M}. By

assumption, ||s||M ≥ (1− ε)∆ ≥ ||(1− ε)s∗||M , thus,

q(s) ≤ q((1− ε)s∗) = (1− ε)gTs∗ + 1

2
(1− ε)2s∗Hs∗.

111

Now, gTs∗ = −s∗(H + σ∗M)s∗ ≤ 0, where σ∗ is the Lagrange multiplier of s∗, and therefore

q(s) ≤ (1− ε)2q(s∗), and ||s||M ≤ (1 + ε)∆.

Let x∗ be such that q⋆ = q(x∗) = minx∈Rn{q(x) : ||x||M ≤ δ}. Recall δ = (1 + ε)∆. Then

||x∗|| ≤ δ = (1 + ε)∆, so ||x∗/(1 + ε)||M ≤ ∆. Then,

q(s∗) ≤ q(x∗/(1 + ε)) = gTx∗/(1 + ε) +
1

2
x∗Hx∗/(1 + ε)2 ≤ q(x∗)/(1 + ε)2.

Combining the two results gives

q(s) ≤ (1− ε)2q(s∗) ≤ ((1− ε)/(1 + ε))2q⋆.

Recall that in the hard case, the solution is given by x∗ = (H − λnM)†g + τun. In this case, ψ

does not have a zero in (−λn,∞), and Newton’s iteration applied to ϕ will not necessarily yield an optimal

solution. Simply solving for the eigenvalue λn is considerably more difficult than finding σ in most cases.

Therefore, the method should avoid any such explicit calculation unless the dimension of the problem

is sufficiently small. The definition of the hard case does, however, suggest an alternative resolution.

Consider the case when σj , the current best estimate of the optimal value of σ, has σj > max{0,−λn}.

Let sj satisfy (H + σjM)sj + g = 0. If ||sj ||M ≤ ∆, then the method should search for a vector zj so that

the step satisfies ||sj + zj || = ∆ and (4.8). Unless σj = −λn, zj will not be a null vector. However, if it is

sufficiently close to a null vector, then the solution sj + zj may be sufficiently accurate as an approximate

solution. Let x = sj + zj . Then,

q(x) = −1

2
sTj (H + σjM)sj −

1

2
σj∆

2 +
1

2
zTj (H + σjM)zj .

The vector z that minimizes the above quantity is z = s∗ − sj . As s∗ is unknown, other values of zj that

seek to minimize q(x) should be chosen. A reasonable option would be to find zj such that ||zj || = 1 and

zTj (H + σj)zj is as small as possible. Then zj could be scaled so that xj = sj + zj lies on the boundary of

the trust region. As zTj (H + σjM)zj ≥ 0 for all z ∈ Rn, including zj = s∗ − sj , it holds that

−1

2
sTj (H + σjM)sj −

1

2
σj∆

2 ≤ q(s∗).

112

Suppose that zj is found to satisfy

zT(H + σjM)z ≤ ε(2− ε)(sTj (H + σjM)xj + σj∆
2). (4.9)

Then

q(x) ≤ −(1− ε)2(1
2
sTj (H + σjM)sj +

1

2
σj∆

2) ≤ (1− ε)2q(s∗).

Thus, x = sj + zj is a sufficiently accurate solution if zj satisfies (4.9). In their original paper, Moré and

Sorensen recommended using LINPACK for finding zj . A more modern implementation might use the

LAPACK routine DLACN2, a thread-safe version of DLACON, which estimates the 1-norm condition

number of a matrix using matrix-vector products and produces an approximate null vector as a by-product.

The precise termination criteria for the Moré-Sorensen algorithm can now be stated. Let {σj}

be the sequence of Lagrange multipliers created by Newton’s method applied to ϕ(σ). σ = σj , with

associated vector xj is considered an approximate zero of ϕ(σ) if |ψ̂| ≤ ε. Additionally, the algorithm is

terminated early if either

1. σj = 0 and ψ̂(σj) < ε, or

2. σj > 0, ψ̂(σj) < −ε, and there exists a sufficiently accurate null vector zj of (H + σjM) such that

(4.9) is true.

Now, notice that the function ϕ on which Newton’s method is being performed is univariate.

Thus, Newton’s method can be combined with a bisection method to create a safeguarded Newton’s

method. This both improves the performance of the algorithm and guarantees convergence. This involves

constructing a sequence of intervals Ij = [aj , bj] with Ij ⊂ Ij−1 and σ ∈ Ij . If any bj is negative, λn < 0,

and the algorithm can be terminated with σ = 0. If σ0 ∈ (−λn,∞), then all subsequent iterations lie in

(−λn,∞), and the method converges. For more details, see [25].

4.3 The Truncated Conjugate-Gradient Algorithm

The Moré-Sorensen algorithm works very well for problems of small to medium size and even for

some large problems in which matrices of the form H + σM are reasonably sparse. However, the need

to compute a new factorization of H + σjM at each iteration makes it unsuitable for large optimization

problems. As mentioned, it is important not to waste too much computational effort on solving the

trust-region subproblem exactly. One of the first methods for approximately solving the trust-region

subproblem that does not rely on explicit factorizations is the truncated conjugate-gradient method. The

113

method is introduced here as a natural predecessor to the more sophisticated GLTR algorithm and the

new locally-optimal preconditioned conjugate-gradient trust-region algorithm presented later. As shown

later, phase one of the GLTR algorithm is equivalent to the truncated conjugate-gradient algorithm.

Consider an instance of the trust-region problem in which σ = 0. Then problem (4.1) is equivalent to the

unconstrained convex quadratic problem minx∈Rn gTx+ 1
2x

THx. One of the most well-known algorithms

for solving problems of this form is the preconditioned conjugate-gradient algorithm, which is given in

Algorithm 1.1. As inferred by its name, the truncated conjugate-gradient algorithm is a truncated version

of the preconditioned conjugate-gradient method.

More specifically, consider running Algorithm 1.1 on minx∈Rn
1
2g

Tx+xTHx using the trust-region

matrix M as a preconditioner, i.e., computing the vector zk via Mzk = rk. As will be shown in Section

4.5, the iterates {xk} produced by PCG using M as a preconditioner have ||xk||M ≤ ||xk+1||M for all k.

Furthermore, the PCG algorithm can detect the positive definiteness of the matrix H by checking that

the step-length parameter αk is positive at each iteration. If, at iteration k, it is determined that either

αk < 0 or ||xk||M > δ, then a final update is make to xk, with xk+1 = xk + α̃kpk, where α̃k is chosen so

that ||xk + α̃kpk||M = δ, and the algorithm is terminated. In the case where σ = 0, as will be the case

when the trust-region method becomes Newton’s method, the truncated conjugate-gradient method can

find the solution to arbitrary accuracy. Otherwise, the final vector is guaranteed to lie within the trust

region. Furthermore, if the algorithm is started with x0 = 0, then the final value xk is guaranteed to have

q(xk) ≤ q(xM), where xM = −αMB−1g and αM is scalar forcing xM to lie in the trust-region.

In the case that σ > 0, this method may produce a result quite far from the true solution to the

trust-region problem. For some optimization problems, this may not present an issue. The truncated

conjugate-gradient method has been demonstrated to work quite well for a wide range of problems.

However, for some problems, it may be necessary that the trust-region subproblem is solved far more

accurately at each step. This motivates the GLTR algorithm, which allows the truncated conjugate-

gradient algorithm to continue past the point of detecting indefiniteness or exceeding the trust-region

boundary at the expense of requiring more iterations.

4.4 The GLTR Algorithm

This section presents the generalized Lanczos trust-region (GLTR) algorithm introduced by Gould

et al. in [18]. The GLTR algorithm utilizes a Galerkin approach to solving the trust-region problem, i.e.,

it constructs a matrix V whose columns form a basis for some m ≤ n dimensional subspace of Rn, and

114

problem (4.1) is solved on this subspace. This is equivalent to solving the subproblem

min
y∈Rm

1

2
yTV THV y + gTV y

subject to ||y||V TMV ≤ δ.
(4.10)

By (4.2), a primal dual solution pair (y, σ) satisfies

V Tg + (V THV + σV TMV)y = 0.

The approximate solution x is recovered via x = V y. This is equivalent to the Galerkin condition

g + (H + σM)x ⊥ range(V), x ∈ range(V).

In the GLTR algorithm, the basis matrix V is generated via a generalized Lanczos process on the matrix

pencil (H,M). The algorithm is terminated when the residual vector g + (H + σM)x is sufficiently close

to the zero vector.

4.4.1 The Algorithm

As the matrix M in the constraint equation ||x||M ≤ δ is symmetric positive definite, it induces

an inner product ⟨x, y⟩M = yTMx. The GLTR algorithm uses a Lanczos process on the matrix pencil

(H,M) to generate a sequence of M orthonormal vectors {uj}kj=1 such that

UT
j HUj = Tj ,

where Uj = [u1 · · ·uj] and Tj is symmetric and tridiagonal. The choice of the initial vector u1 is given by

β = ||g||B−1 and u1 = B−1g/β. Subsequent vectors are computed via the Lanczos decomposition (1.1).

These vectors span the j dimensional Krylov subspace

Kj(M
−1H,M−1g) = span{M−1g, . . . , (M−1H)j−1M−1g},

115

just as in the Lanczos-CG method. After each new Lanczos vector is computed, a trust-region subproblem

is solved on the subspace Kj(M
−1H,M−1g), i.e.,

min
x∈Rn

q(x) =
1

2
xTHx+ gTx

subject to ||x||M ≤ δ, x ∈ range(Uj).

(4.11)

This simplifies to

min
x∈Rn

ψ(y) =
1

2
yTTjx+ βeT1 y

subject to ||y||2 ≤ δ.
(4.12)

For any σ, Tj + σI is tridiagonal. Thus, the Moré-Sorensen algorithm can quickly solve problem (4.12).

Unlike Lanczos-CG, a complete Cholesky decomposition of the matrix Tj + σjI must be computed at each

iteration. However, at each iteration, the previous Lagrange multiplier σj−1 will be reasonably close to σj ,

so the Moré-Sorensen algorithm can be easily warm-started using the value of σj−1 from the previous

iteration. Should σj = σj+1, as will likely be the case close to termination, the Cholesky decomposition of

Tj−1 + σj−1I can be used to find the Cholesky decomposition of Tj + σjI. The projected solution of the

original problem is then given by x = Ujyj , where yj is the solution to problem (4.12). It is crucial to

note that this vector x need not be constructed at each iteration but only after convergence is achieved.

Further note that at each iteration j, the optimality condition yTj U
T
j MUjyj = xT

j Mxj ≤ δ2 is satisfied.

Convergence of the GLTR algorithm is measured via the residual vector rj = (H + σjM)Ujyj + g.

It can be shown that

||HUjyj + σjMUjyj + g||2M−1 = (βj+1e
T
j yj)

2.

Once this measure of the residual is sufficiently small, the vector x is constructed by either regenerating

the Lanczos vectors or calling them from in-memory storage.

While the GLTR method performs reasonably well for many large-scale sparse problems, several

problems exist. First, the method as described does not account for the hard case. If g ⊥ null(H − λnM),

then each Lanczos vector ui will lie in the M -orthogonal compliment of null(H − λnM). Thus, the hard

case will not be detected, and the iterates xj will instead converge to the solution of

min
x∈Rn

1

2
xTHx+ gTx

s.t ||x||M ≤ δ, xTMu = 0 for all u ∈ null(H − λnM),

(4.13)

completely ignoring the direction with the most negative curvature.

116

A second issue concerns the rate of convergence. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the generalized

eigenvalues of the matrix pencil (H,M). This matrix pencil is symmetric definite, and therefore all

eigenvalues are real. It is shown in [23] that the rate of convergence for xj = Ujyj to the optimal

solution x∗ is related to the M -condition number of the matrix H + σ∗M in a manner similar to the

preconditioned conjugate-gradient method. Unfortunately, M may not be a suitable preconditioner for

the matrix H + σ∗M . Denote the M condition number as

κM (H + σM) =
λ1 + σ

λn + σ
.

Then the following theorem applies.

Theorem 4.4.1 (GLTR Convergence, [23] Theorem 4.11). Let H,M ∈ Rn×n be symmetric, and M ≻ 0.

Let g ∈ Rn, and δ > 0. Let x∗ and σ∗ be the optimal solution and Lagrange multiplier, respectively, of

the trust-region problem given by H, M , g, and δ, as in (4.1). Let {(xk, σk)} be the sequence of iterates

produced by the GLTR algorithm. Then

||xk − x∗||H+σ∗M ≤ 2

(√
κM (H + σ∗M)− 1√
κM (H + σ∗M) + 1

)k+1

||x∗||H+σ∗M , (4.14)

and

|σ∗ − σk| ≤ c

(√
κM (H + σ∗M)− 1√
κM (H + σ∗M) + 1

)2(k+1)

for some constant c.

Suppose κM (H + σ∗M) is sufficiently large. In that case, the GLTR algorithm will require many

iterations to converge, so much so that in a practical setting, the algorithm may need to end early before

the convergence criteria are reached. It is well known that the Lanczos algorithm is numerically unstable,

eventually leading to the vectors uj losing their M -orthogonality. Partial or full reorthogonalization can

be implemented. However, these schemes may significantly slow down runtime, particularly as the number

of iterations grows very large. Furthermore, they require that the vectors uj be stored in fast memory,

which may be quickly exhausted as the number of iterations grows.

Even if M is a reasonable choice of the preconditioner for H + σ∗M , the conditioning of the

trust-region problem is adversely affected by the proximity of σ∗ to −λn.

Lemma 4.4.2. Let H,M ∈ Rn be symmetric, and M be positive definite. Let λ1 and λn denote the

117

algebraically largest and smallest eigenvalues of (H,M), respectively. Let ε > 0, and let σ ≥ −λn. If

σ + λn ≤ ε(λ1 − λn),

then the condition number κM (H + σM) is bounded below by 1/ε

Proof. It is straightforward to see that, under the above assumptions,

κM (H + σM) =
λ1 + σ

λn + σ
≥ λ1 − λn

λn + σ
≥ λ1 − λn
ε(λ1 − λn)

=
1

ε
.

Unfortunately, the trust-region subproblem must be solved to know whether this lemma applies.

However, it can be used to show a priori that specific trust-region problems are poorly conditioned.

Theorem 4.4.3. Let H,M ∈ Rn be symmetric, and M be positive definite. Let g ∈ Rn, and δ > 0.

Let λ1 ≥ λ2 ≥ . . . ≥ λn denote the eigenvalues of the matrix pencil (H,M). Assume that λn < 0. Let

1 > ε > 0. If

||g||M−1

δ
≤ ε(λ1 − λn),

then the trust-region problem defined by H, M , g, and δ has an optimal dual solution σ∗ such that the

condition number κM (H + σ∗M) is bounded below by 1/ε.

Proof. Consider the optimality condition (H + σM)x = −g. Then

||g||M−1 = ||(H + σM)x||M−1

≤ ||H + σM ||M ||x||M

= (λ1 + σ)δ,

so ||g||M−1/δ − λ1 ≤ σ. Similarly, it can be shown that σ ≤ ||g||M−1/δ − λn. By the second-order

optimality condition H + σM ⪰ 0, it also holds that −λn ≤ σ. In addition to the nonnegativity of σ, the

following bounds on σ hold:

max{0,−λn,
||g||M−1

δ
− λ1} ≤ σ ≤ max{0, ||g||M

−1

δ
− λn}. (4.15)

By assumption, ||g||M−1/δ ≤ λ1 − λn, and −λn ≥ 0. Therefore, the maximum on the left-hand side

is achieved by −λn. By the upper bound, it also holds that σ + λn ≤ ||g||M−1/δ. By Lemma 4.4.2, it

118

is known that if σ + λn ≤ ε(λ1 − λn), the lower bound is true. Thus, if ||g||M−1/δ ≤ ε(λ1 − λn), the

condition number is at least 1/ε.

Experiments reveal that this can result in needing a number of iterations on the scale of the

dimension of the problem, drastically reducing the reliability of the GLTR method. A similar issue

involving the ill-conditioning of trust-region problem occurs in the near hard case.

Theorem 4.4.4. Let H,M ∈ Rn be symmetric, and M be positive definite. Let g ∈ Rn, and δ > 0.

Let λ1 ≥ λ2 ≥ . . . ≥ λn denote the eigenvalues of the matrix pencil (H,M), and q1, . . . qn denote the

corresponding M -orthonormal eigenvectors. Assume that λn < 0, and that |qTn g| > 0. Let 1 > ε > 0. Let

x̄ = −(H − λnM)†g. If

||x̄||M < δ and |qTn g| ≤ ε(λ1 − λn)(δ2 − x̄TMx̄)1/2,

then the trust-region problem defined by H, M , g, and δ has an optimal dual solution σ∗ such that condition

number κM (H + σ∗M) is bounded below by 1/ε.

Proof. Let x∗ denote the optimal solution x∗ = −(H + σ∗M)−1g. Let Q denote the matrix whose i-th

column is qi, for i = 1, . . . , n. Then QTMQ = I, QQTM = I, and MQQT = I. The vectors g, x∗, and x̄

can each be expanded in terms of this M -orthonormal bases:

g =MQQTg =

n∑
i=1

(qTi g)Mqi,

x∗ = −(H + σ∗M)−1g

= −QQTM(H + σ∗M)−1MQQTg

= −Q(Λ+ σ∗I)QTg = −
n∑

i=1

qTi g

λi + σ∗ qi, and

x̄ = −(H − λnM)†g = −QQTM(H − λnM)†MQQTg =

n−1∑
i=1

qTi g

λi − λn
qi.

As the matrix H is indefinite, the trust-region constraint (x∗)TMx∗ ≤ δ2 must be active, therefore

δ2 =

n−1∑
i=1

(qTi g)
2

(σ∗ + λi)2
+

(qTn g)
2

(σ∗ + λn)2
.

119

Without loss of generality, assume that λn−1 > λn. As σ
∗ > −λn and λi − λn > 0 for all i = 1, . . . , n− 1,

δ2 ≤
n−1∑
i=1

(qTi g)
2

(λi − λn)2
+

(qTn g)
2

(σ∗ + λn)2
,

or equivalently

(σ∗ + λn)
2 ≤ (qTn g)

2

δ2 −
∑n−1

i=1
(qTi g)2

(λi−λn)2

=
(qTn g)

2

δ2 − x̄TMx̄
.

Thus, by Lemma 4.4.2, if

|qTn g| ≤ ε(λ1 − λn)(δ2 − x̄TMx̄)1/2,

then κM (H + σM) ≥ 1/ε.

These two results show that unlike the preconditioned-conjugate-gradient algorithm, where a

preconditioner can be specifically chosen to reduce the condition number, the trust-region subproblem,

when solved with GLTR, has an intrinsic condition number determined by the parameters of the problem

itself. If this condition number is large enough, GLTR may take far too many iterations to be considered

useful in a practical setting, particularly when many trust-region subproblems must be solved without any

prior information.

4.5 The Shifted and Inverted GLTR Algorithm

As the previous section shows, using the GLTR method with the matrix pencil (H,M) does not

necessarily yield favorable results. Therefore, this section presents a new approach that utilizes a Lanczos

process with a shift and invert technique capable of resolving the issues inherent in the GLTR method.

For this reason, it is referred to as the shifted and inverted generalized Lanczos trust-region algorithm

(SIGLTR).

Let µ ≥ 0 be a shift such that H + µM is positive definite. If the trust-region problem is not an

instance of the hard case, then the ideal choice would be µ = σ. The Lanczos process is performed on the

symmetric definite matrix pencil (M,H + µM), i.e., a sequence of vectors u1, . . . , uk is found such that if

Uk =

[
u1 · · · uk

]
,

UT
k MUk = Tk, and UT

k (H + µM)Uk = I, (4.16)

where Tk is a k × k tridiagonal matrix, just as in the GLTR algorithm. Thus, it holds that

UT
k HUk = UT

k (H + µM)Uk − µUT
k MUk = I − µTk. (4.17)

120

If the Lanczos process is allowed to run for n iterations, the result is an H +µM -orthonormal basis matrix

Un for Rn such that UT
n MUn = Tn. Therefore, BUn = (H + µM)UnTn, with

Tn =



α1 β2

β2 α2 β3

β3 α3
. . .

. . .
. . . βn

βn αn


.

Equating the columns of both sides gives the following 3-term recursion relation:

Muj = βj(H + µM)uj−1 + αj(H + µM)uj + βj+1(H + µM)uj+1,

or, if (H + µM)uj = vj for all j, and Vj =

[
v1 · · · vj

]
,

Muj = βjvj−1 + αjvj + βj+1vj+1.

As, by definition, uT
i vj = 0 for all i ̸= j, it holds that

αj = uT
j Muj = uT

j (Muj − βjvj−1) = uT
j wj .

Then

βj+1vj+1 = wj − αjvj , ||vj+1||(H+µM)−1 = 1,

so

βj+1 = ||wj − αjvj ||(H+µM)−1 , vj+1 = (wj − αjvj)/βj+1, uj+1 = (H + µM)−1vj+1.

The following steps summarize one iteration of the Lanczos process:

1. w ←Muj − βjvj−1

2. αj ← uT
j w

3. w ← w − αjvj

4. uj+1 ← (H + µM)−1w

5. βj+1 ← (wTuj+1)
1/2

121

6. vj+1 ← w/βj+1

7. uj+1 ← uj+1/βj+1,

where β1 = ||g||(H+µM)−1 , v0 = 0, v1 = −g/β1, and u1 = (H + µM)−1v1. The Lanczos decomposition

can then be written as

MUk = VkTk + βk+1vk+1e
T
k . (4.18)

By applying a similar argument to (4.17), it holds that

HUk = Vk − µVkTk − µβk+1vk+1e
T
k . (4.19)

At each iteration, a subproblem of the form

min
y∈Rk

1

2
yT(I − µTk)y + β1e

T
1 y

subject to ||y||Tk
≤ δ

(4.20)

is solved via the Moré-Sorensen algorithm. The approximate solution to the original problem (4.1) is then

given by xk = Ukyk. As in GLTR, it is unnecessary to construct xk at each iteration. Instead, xk is only

constructed once the residual vector rk = (H + σkM)xk + g is sufficiently small. By Theorem 4.1.1, the

solution (yk, σk) to (4.20) has (Ik + (σk − µk)Tk)yk + β1e1 = 0. By applying (4.18) and (4.19), it holds

that

rk = (H + σkM)xk + g =

= (H + σkM)Ukyk + β1(H + µM)Uke1

= (H + µM)Ukyk + (σk − µ)MUkyk + β1(H + µM)Uke1

= (H + µM)Ukyk + (σk − µ)(H + µM)(UkTk + βk+1uk+1e
T
k)yk + β1(H + µM)Uke1

= (H + µM)Uk((Ik + (σk − µ)Tk)yk + β1e1) + (σk − µ)βk+1(H + µM)uk+1e
T
k yk

= (σk − µ)βk+1(H + µM)uk+1e
T
k yk.

Thus,

rTk (H + µM)−1rk = (σk − µ)2β2
k+1(e

T
k yk)

2. (4.21)

The solution xk is only constructed once ||rk||(H+µM)−1 is less than some predefined tolerance. Note that

if µ = σ, the solution is found after only a single iteration. Intuitively, this method will require far fewer

122

iterations than the standard GLTR method.

As mentioned, if the optimal Lagrange multiplier σ is 0, the GLTR algorithm reduces to Lanczos-

CG. The shifted-and-inverted GLTR algorithm can similarly use the matrices Tk to construct conjugate-

gradient-like iterates so that xk is constructed as the algorithm proceeds instead of all at once at the

end. At each iteration, the solution to Hx = −g is approximated on the subspace spanned by the first k

Lanczos vectors. A Galerkin condition is imposed so that the approximate solution xk is given by

UT
k HUkyk = −UT

k g = −β1e1.

By 4.19, this is simply

(Ik − µTk)yk = −β1e1. (4.22)

At each iteration, I − µTk must be checked for positive definiteness. If indefiniteness is detected, the

method switches to solving (4.20) at each iteration.

Positive definiteness is most easily checked by taking a square root-free Cholesky decomposition

LkDkL
T
k = Ik − µTk,

where

Lk =



1

l2 1

l3 1

. . .
. . .

lk 1


and Dk =



d1

d2

d3

. . .

dk


,

where d1 = 1 − µα1, lk = −µβk/dk−1, and dk = (1 − µαk) − lkdk−1lk = (1 − µαk) + µ lkβk. Equation

(4.22) is now separated into two systems

Lkzk = −β1e1, DkL
T
k yk = zk.

123

The vector zk is easily solved as

zk =



ξ1

ξ2

ξ3
...

ξk


=



−β1

−l2ξ1

−l3ξ2
...

−lkξk−1


.

Instead of solving for yk, xk is directly formed by defining the matrix Pk by Uk = PkDkLk. Then

xk = Ukyk = PkDkLkyk = Pkzk.

As the first k − 1 components of zk are just zk−1, xk can be built via the equation xk = Pkzk =

Pk−1zk−1 + pkξk = xk−1 + pkξk. To find pk, take Uk = PkDkLk, or

(
u1 u2 · · · uk

)
=

(
p1 p2 · · · pk

)


d1

d2

. . .

dk





1 l2

1 l3

. . . lk

1


.

Thus,

p1 = (1/d1)u1 and pk = (1/dk)(uk + µβkpk−1).

This process is repeated at each iteration k until either dk ≤ 0 or ||xk||M ≥ δ. The quantity xT
kMxk must

be calculated recursively at each iteration. Using xk = xk−1 + pkξk yields

xT
kMxk = (xk−1 + pkξk)

TM(xk−1 + pkξk)

= xT
k−1Mxk−1 + 2ξkpkMxk−1 + ξ2kp

T
kMpk,

(4.23)

so two additional recursions are required, one for pTkMxk−1 and another for pTkMpk.

pTkMxk−1 =
1

dk
(uk + µβkpk−1)

TM(xk−2 + pk−1ξk−1)

=
1

dk
(uT

kMxk−2 + uT
kMpk−1ξk−1 + µβk(p

T
k−1Mxk−2 + pTk−1Mpk−1ξk−1)).

(4.24)

124

Now, xk−2 = Uk−2yk−2, so u
T
kMxk−2 = 0. Furthermore, uT

kMpk−1 = βk/dk−1. Thus

pTkMxk−1 =
1

dk
(
βkξk−1

dk−1
+ µβk(p

T
k−1Mxk−2 + pTk−1Mpk−1ξk−1)), (4.25)

so all that remains is the recursion relation for pTkMpk.

pTkMpk =
1

d2k
(uk + µβkpk−1)

TM(uk + µβkpk−1)

=
1

d2k
(uT

kMuk + 2µβkp
T
k−1Muk + µ2β2

kp
T
k−1Mpk−1)

=
1

d2k
(αk + 2µ

β2
k

dk−1
+ µ2pTk−1Mpk−1).

(4.26)

These three recursion relations can compute xT
kMxk without calculating additional matrix-vector opera-

tions. Much like in the Lanczos-CG algorithm, the norm of the residual vector ||g +Hxk||2(H+µM)−1 is

given by ξ2k+1.

A crucial aspect of the GLTR algorithm is that xT
kMxk increases at each iteration while in phase

one. This enables the algorithm to switch to phase two upon detecting that the trust-region constraint

is violated and detecting indefiniteness. It remains to be seen that the same holds for SIGLTR. Thus,

it suffices to investigate the ξkp
T
kMxk−1 term. By construction, each βk ≥ 0 and dk > 0. Thus, each

lk = −µβk/dk−1 ≤ 0. The scalar ξ1 satisfies ξ1 = −β1 ≤ 0, therefore ξi = −liξi−1 ≤ 0 for all subsequent

iterations i. Thus, each ξk = −lkξk−1 ≤ 0. So, it suffices to show that each pkMxk−1 ≤ 0 to show that

xT
kMxk is increasing.

x0 is always taken to be the zero vector, so pT1 Mx0 = 0. Thus,

pT2 Mx1 =
1

d1
(
β2ξ1
d1

+ µβ2p
T
1 Mp1ξ1) ≤ 0.

Using induction, it is straightforward to see that this term will always be non-positive. Putting everything

together, it is seen that xT
kMxk is non-decreasing at each iteration, and therefore, SIGLTR can utilize

the same two-phase structure as GLTR. This gives all the necessary elements of the shifted-and-inverted

GLTR algorithm.

The key detail is that this still requires at least one factorization of a matrix of the form (H+µM).

In some cases, this is comparable to the work that GLTR must perform, as GLTR requires a factorization

of the positive definite matrix M . However, most practical instances of the trust-region problem possess a

matrix M that is simple to invert, such as the identity matrix or a diagonal matrix. Thus, the significantly

125

fewer iterations are the primary benefit of shifting and inverting. Conversely, this method requires far fewer

factorizations than a Moré-Sorensen style algorithm, particularly in a nonlinear optimization algorithm,

where the choice of µ can be selected as the dual solution σ of the previous problem. Furthermore, the

choice of µ and the factorization of (H + µM) can be reused on subsequent solutions of the trust-region

subproblem with a restricted radius.

Recall from Section 2.5 the convergence of a trust-region method requires that the computed

solution yields a value of the objective function that is less than a fixed fraction of the value of the

objective function for some steepest-descent direction. Consider the initial vector Lanczos vector β1u1 =

(H + µM)−1g. This vector is colinear with the steepest-descent direction induced by the H + µM

norm. Thus, the objective value after the first iteration is sufficient to ensure the convergence of an

outer trust-region method. Furthermore, the sequence of iterates {xk} generated by SIGLTR satisfies

q(xk+1) ≤ q(xk) for all iterations k. Thus, solutions computed by SIGLTR are sufficient to ensure the

convergence of a trust-region method after one iteration.

4.5.1 The Projected Trust-Region Subproblem

Consider the reduced trust-region subproblem (4.20). By Theorem 4.1.1, the optimality conditions

of this problem are:

1. (I + (σ − µ)Tk)y + βe1 = 0,

2. δ2 − yTTky ≥ 0,

3. σ ≥ 0,

4. σ(δ2 − yTTky) = 0,

5. I + (σ − µ)T ⪰ 0.

Recall that the shifted and inverted GLTR algorithm acts as Lanczos-CG until either the trust-region

boundary is encountered or the matrix H is detected not to be positive definite. Thus, if the algorithm

switches to trust-region mode, then the solution to the trust-region problem must lie on the trust-region

boundary. Problem 4.20 can be simplified to

min
y∈Rk

1

2
yT(I − µTk)y + βe1y

s.t. ||y||Tk
= δ,

(4.27)

which has optimality conditions

126

1. (I + (σ − µ)T)y + βe1 = 0,

2. δ2 − yTTky = 0,

3. I + (σ − µ)T ⪰ 0.

Let ν = σ − µ. Then the first condition becomes (I + νT)y + βe1 = 0, and the third condition becomes

I+νT ⪰ 0. The second condition remains unchanged. These are the optimality conditions for the problem

min
y∈Rk

1

2
yTy + βe1y

s.t. ||y||Tk
= δ.

(4.28)

This problem can easily be solved via the Moré-Sorensen algorithm, just as in the unshifted GLTR

algorithm. However, one modification needs to be made that is worth mentioning. The Moré-Sorensen

algorithm begins by creating an interval in which the optimal ν must lie. BY (4.15), a sufficient choice of

the initial interval is
||βe1||T−1

k

δ
− λ(k)1 ≤ ν ≤

||βe1||T−1
k

δ
− λ(k)n ,

where λ
(k)
1 , and λ

(k)
n are the largest and smallest eigenvalues of the matrix pencil (I, Tk), respectively.

However, computing both λ
(k)
1 and λ

(k)
n is, in general, more difficult than computing ν(k), the optimal

Lagrange multiplier. Instead,
||βe1||T−1

k

δ
− u ≤ ν ≤

||βe1||T−1
k

δ
− l,

where l ≤ λn and u ≥ λ1 are constants found via the Gershgorin circle theorem.

Typically, in the Moré-Sorensen algorithm, in the case where the matrix which defines the trust

region is the identity matrix, this interval is approximated by replacing the eigenvalues with the upper and

lower bounds given via the Gershgorin circle theorem. However, unless Tk is strictly diagonally dominant,

there is no equally convenient theorem to find upper and lower bounds on the eigenvalues of the pencil

(I, Tk).

Consider the generalized eigenvalue problem s = λTks. This is a banded symmetric positive

definite generalized eigenvalue problem. Thus all the eigenvalues are positive. Next, consider the related

problem Tks = γs. Thus, λ1 = 1/γn, and λn = 1/γ1, and Gershgorin circle bounds for the problem

Tks = γs can be used for the problem s = λTks. Alternatively, a split Cholesky decomposition of the

matrix Tk can be used to transform the problem s = λTks to a problem of the form Cks = λs, where Ck

is a tridiagonal matrix. The LAPACK routine DPBSTF can be used to perform this transformation.

127

4.5.2 Solving in the Hard Case

The GLTR algorithm, as originally presented in [18], does not attempt to solve problem (4.1)

correctly if it is an instance of the hard case. The SIGLTR algorithm, as presented thus far, suffers from the

same issue, i.e., if g ∈ null(H−λnM)⊥, then all subsequent Lanczos vectors ui will lie in the same subspace,

and a solution of the form x = (H − λnM)† + τun will never be found. Fortunately, there exists a simple

correction to mitigate this issue. A block-Lanczos process can replace the standard Lanczos process used

to construct the basis for solving the projected subproblem. Let m ≥ 1 be the predetermined block size.

Let Ṽ1 ∈ Rn×m, where Ṽ1e1 = −g, and Ṽ1ei for i = 2, . . . ,m be Gaussian random vectors with variance

||g||2(H+µM)−1 . Let Ũ1 = (H + µM)−1Ṽ1. With high probability, range(Ũ1) ∩ null(H − λnM) ̸= {0}.

By utilizing the Gram-Schmidt biorthogonalization process, matrices U1, V1 ∈ Rn×m, and B1 ∈ Rm×m

upper-triangular can be found such that Ũ1 = U1B1 and Ṽ1 = V1B1. Note then that UT
1 g = B1e1 ∈ Rm.

The block-Lanczos process then proceeds like the standard Lanczos process, replacing the normalization

step with a Gram-Schmidt biorthogonalization step.

In the Lanczos process with m = 1, breakdown occurs when βj+1 = 0. In this case, no other

Lanczos vectors can be found without initializing a new vector uj+1 that is M -orthogonal to all previous

Lanczos vectors. In exact arithmetic, breakdown occurs when the Lanczos vectors computed thus far

span the smallest (H + µM)−1M -invariant subspace containing the vector (H + µM)−1g. Fortunately,

the GLTR and SIGLTR algorithms do not need to take this extra step, as the convergence criteria show

that if a breakdown occurs, the algorithm has converged. Typically, convergence will occur far before

breakdown. However, as this algorithm should also function in the low dimensional case, this must still be

considered in any practical implementation.

In the block-Lanczos process, extra care must be taken. Breakdown occurs in this case when

rank(Bj+1) = rj+1 < m. If rj+1 > 0, then an additional rj+1 Lanczos vectors are obtained with which to

search for a solution. Thus, one additional iteration is carried out with Uj+1 ∈ Rn×rj+1 , Bj+1 ∈ Rrj+1×m,

and Aj+1 ∈ Rrj+1×rj+1 . Subsequently, Bj+2 = 0, so the convergence criteria indicate that convergence

will occur in this final step. It is essential to carry out this final step in the low dimensional case when m

does not divide n. In the block case, the residual vector can be computed via the expression

rTk (H + µM)−1rk = (σk − µ)2||Bk+1Ekyk||22, (4.29)

128

where

Ekyk =


[yk]k−m+1

...

[yk]k


There is a trade-off for using the block version. The computation per iteration involving vectors

of size n is effectively multiplied by m per iteration. Unfortunately, this does not hold for the number of

iterations. As the block-size increases, the number of iterations only slightly decreases, with diminishing

returns asm→ n. Ifm = n, the algorithm reduces to the Moré-Sorensen algorithm acting on a transformed

trust-region problem. Thus, it is recommended to keep the block-size m small.

4.5.3 The Full Algorithm

Here, the pseudocode for the full shifted-and-inverted GLTR algorithm is presented. This uses

the block version without loss of generality to account for the hard case. In a typical implementation

of a block-Lanczos process, the k, k + 1 block of T , denoted Bk+1, is typically found by taking the QR

decomposition of Ũk+1 = HUk −UkAk −Uk−1B
T
k to get Uk+1Bk+1 = Ũk+1. As the block size is typically

on the order of m ≤ 10, and the dimension n may be enormous, the Gram-Schmidt version of the QR

decomposition is the best choice. Two modifications are made. First, due to the use of the matrix

H + µM over the Euclidean inner product, the biorthogonal Gram-Schmidt process is used to form

Uk+1Bk+1 = Ũk+1 such that UT
k+1(H +µM)Uk+1 = Im. Additionally, the QR decomposition with column

pivoting is used to detect better when a breakdown occurs. The biorthogonalization process with column

pivoting is presented in Algorithm 4.1.

129

Algorithm 4.1. Biorthogonalization with Column Pivoting

1: Given Ũ ∈ Rn×m, Ṽ ∈ Rn×m

2: Yields U , V such that V TU = Im, M is an upper triangular matrix with permuted columns, and P is
a permutation matrix such that UM = ŨP , and VM = Ṽ P , and r = rank(Ũ)

3: U ← Ũ
4: V ← Ṽ
5: B ← 0m×m

6: r ← 0
7: ipiv←

[
1 2 · · · m

]
8: for i = 1, . . . , m do
9: normsi ← (V T

i Ui)
1/2

10: end for
11: for i=1, . . . , m do
12: k ← maxk∈{i,...,m} normsk
13: if normsk <

√
ε then exit

14: end if
15: rank← rank + 1
16: if k ̸= i then
17: Swap Ui and Uk

18: Swap Vi and Vk
19: Swap normsi and normsk
20: Swap ipivi and ipivk
21: end if
22: Ui ← Ui/normsi
23: Vi ← Vi/normsi
24: Bi,ipivi

← normsi
25: for j= i + 1, . . . , m do
26: Bi,ipivj

← V T
i Uj

27: Vj ← Vj −Bi,ipivj
Vi

28: Uj ← Uj −Bi,ipivj
Ui

29: normsj ← |norms2j −B2
i,ipivj

|1/2

30: end for
31: end for
32: P ← Permutation matrix form of ipiv.

The full SIGLTR algorithm is presented in Algorithm 4.2.

130

Algorithm 4.2. Shifted and Inverted GLTR

1: Given H,M ∈ Rn×n, B ≻ 0, µ ≥ 0 such that H + µM ≻ 0, g ∈ Rn, and δ > 0.
2: Let ε1, ε2 > 0
3: Let m ≥ 1 be the block-size.
4: k ← 0
5: Ṽ ←

[
g v2 · · · vm

]
, where v2, . . . , vm are Gaussian random vectors.

6: Ũ ← (H + µM)−1Ṽ .
7: (U, V,B0)← Biorthogonalize(Ũ , Ṽ)
8: β ← B0e1
9: x← 0

10: (xTMx)← 0
11: (P TMx)← 0m
12: (P TMP)← 0m×m

13: A0 ← 0m×m

14: B0 ← 0m×m

15: D ← Im
16: Dprev ← 0m×m

17: L← 0m×m

18: z ← 0m
19: Vprev ← 0
20: mode← CG
21: TR Solved← false
22: breakdown← false
23: while not converged do
24: k ← k + 1
25: if k > 1 then
26: Store Bk in Tk,k−1

27: end if
28: W ←MU − VprevBT

29: Ak ← UTW
30: Store Ak in Tk,k
31: if mode = CG then
32: Dprev ← D
33: L← −µBkD

−1
prev

34: D ← (Im − µAk)− LDprevL
T

35: if D ≻ 0 then
36: P ← (U + µPBT

k)D−1

37: (P TMx)← D−1(BkD
−1
prevz + µBk((P

TMx) + (P TMP)z))
38: if k = 1 then
39: z ← −β
40: else
41: z ← −Lz
42: end if
43: ||r||2(H+µM)−1 = zTz

44: if ||r||2(H+µM)−1 ≤ ε1 then
45: converged← true
46: else
47: x← x+ Pz
48: (P TMP)← D−1(Ak + 2µBkD

−1
prevB

T
k + µ2M(P TMP)BT

k)D−1

49: (xTMx)← (xTMx) + 2zT(P TMx) + zT(P TMP)z
50: if

√
(xTMx) > (1 + ε2)δ then

51: mode← TR
52: end if
53: end if

131

54: else ▷ If D is indefinite
55: mode← TR
56: end if
57: end if
58: if TR Solved and not converged then
59: ||r||2(H+µM)−1 = (σ − µ)||BkEky||2

60: if ||r||2(H+µM)−1 ≤ ε1 then
61: converged← true
62: end if
63: end if
64: if not converged and mode ̸= CG then
65: Solve (4.20) for y and σ.
66: TR Solved← true
67: end if
68: if breakdown then
69: exit
70: end if
71: if converged then
72: exit
73: end if
74: W ←W − V Ak

75: Vprev ← V
76: V ←W
77: U ← (H + µM)−1V
78: (U, V,Bk+1, rank)← BOCP(U, V)
79: if rank < m then
80: breakdown← true
81: if rank = 0 then
82: exit
83: end if
84: end if
85: Optional: Orthogonalize U and V against previous Lanczos vectors.
86: end while
87: if mode = TR then
88: Build x from y and regenerated or stored vectors U
89: end if

4.5.4 Choice of Shift

One question that remains to be answered is how to choose the shift µ. The ideal choice would

be to choose µ = σ. Thus, the goal is to approximate σ as close as possible. Recall that

max{0,−λn,
||g||M−1

δ
− λ1} ≤ σ ≤ max{0, ||g||M

−1

δ
− λn}.

132

The choice of µ should attempt to remain within these bounds. Consider the optimality condition

(H + σM)x+ g = 0. If x is the optimal solution and is a constrained minimizer, then

σ(x) =
−gTx− xTHx

xTMx
.

This expression can be used to construct a guess σ from any approximate solution on the boundary. The

only vector available before any computation is g, so suppose an initial guess of σ of the form

σ(
−δ
||g||M

g) =
gTg

δ||g||M
− gTHg

gTMg
.

is chosen. Notice that the second term is simply the Rayleigh quotient of the vector g. Since max{−λn, ||g||M−1/δ−

λ1} ≤ σ ≤ ||g||M−1/δ − λn, −gTHg/gTMg can be replaced with −λn to ensure that µ yields a positive

definite matrix. Thus,

µ =
gTg

δ||g||M
− λn (4.30)

is a reliable choice of µ.

Note that the Cauchy-Schwartz inequality implies gTg/||g||M ≤ ||g||M−1 , so −λn ≤ µ ≤

||g||M−1/δ − λn. Of course, the complexity of finding λn generally exceeds that of finding σ, so an

approximation should be used. Approximations can be found via Gerschgorin circles, or from a few steps

of any iterative eigenvalue algorithm.

4.5.5 Convergence Properties

Before analyzing the rate of convergence of the shifted and inverted GLTR algorithm, it will help to

prove that the sequence of Lagrange multipliers {σk}kmax

k=1 generated satisfies σ1 ≤ σ2 ≤ . . . ≤ σkmax
≤ σ∗.

First, consider the case ||x∗||M < δ, so that σk = σ∗ = 0 for all iterations k. The following lemma

demonstrates the relationship between the Krylov subspace used in the shifted and inverted GLTR

algorithm and the Krylov subspace used in the preconditioned conjugate-gradient algorithm.

Lemma 4.5.1. Let H, M ∈ Rn×n be symmetric matrices, with M additionally positive definite, and let

µ > 0. If µ = 0 and σ∗ = 0, the shifted and inverted GLTR algorithm converges in one iteration. Let

C = H + µM . Let

Kk(C
−1M,C−1g) = span{C−1g, C−1MC−1g, . . . , (C−1M)k−1C−1g}

133

be the k-th Krylov subspace searched in the shifted-and-inverted GLTR method. Then

Kk(C
−1M,C−1g) = Kk(C

−1H,C−1g)

Proof. The lemma immediately holds for k = 1. Suppose that lemma (4.5.1) holds for some k > 1. Then

(C−1H)kC−1g = (C−1H)(C−1H)k−1C−1g = C−1Hv

for some v ∈ Kk(C
−1M,C−1g) = Kk(C

−1H,C−1g). Now,

C−1Hv = C−1Cv − µC−1Mv = v − µC−1Mv ∈ Kk+1(C
−1M,C−1g),

so Kk+1(C
−1H,C−1g) ⊆ Kk+1(C

−1M,C−1g). Similarly,

(C−1M)kC−1g = (C−1M)(C−1H)k−1C−1g = C−1Mv

for some v ∈ Kk(C
−1M,C−1g) = Kk(C

−1H,C−1g). Now,

C−1Mv =
1

µ
C−1Cv − 1

µ
C−1Hv =

1

µ
v − 1

µ
C−1Hv ∈ Kk+1(C

−1H,C−1g),

so Kk+1(C
−1M,C−1g) ⊆ Kk+1(C

−1H,C−1g).

Corollary 4.5.1.1. It holds that

Kk(C
−1M,C−1g) = Kk(C

−1(H + σM), C−1g)

for any σ ̸= µ.

Lemma 4.5.2. Let H and M be symmetric positive definite matrices, and let µ ≥ 0. Let C = H + µM .

Let

Kk(C
−1M,C−1g) = span{C−1g, C−1MC−1g, . . . , (C−1M)j−1C−1g}

be the k-th Krylov subspace searched by the shifted-and-inverted GLTR method, and

xk = argmin
x∈Kk(C−1M,C−1g)

1

2
xTHx+ gTx.

134

If 1 ≤ k ≤ l ≤ n, then ||xk||C ≤ ||xl||C .

Proof. The lemma follows from Lemma 4.5.1 and the well-known fact that the conjugate-gradient iterates

increase in the norm induced by the preconditioner as the algorithm proceeds.

From the construction of phase one of the SIGLTR algorithm, the following result holds:

Lemma 4.5.3. Let H,M be symmetric positive definite matrices, and let µ ≥ 0. Let C = H + µM . Let

Kk(C
−1M,C−1g) = span{C−1g, C−1MC−1g, . . . , (C−1M)j−1C−1g}

be the k-th Krylov subspace searched by the shifted-and-inverted GLTR method, and

xk = argmin
x∈Kk(C−1M,C−1g)

1

2
xTHx+ gTx.

If 1 ≤ i ≤ j ≤ n, then ||xi||M ≤ ||xj ||M .

To simplify notation, let Sk = Kk(C
−1M,C−1g). Let Zk be any C-orthonormal basis for Sk.

Lemma 4.5.4. Let H be symmetric, M be symmetric positive definite, µ ≥ 0, and C = H + µM positive

definite. Let ZkHZk + σiZkMZk be positive definite for i ∈ {1, 2}. Let

x
(i)
k = argmin

x∈Sk

1

2
xT(H + σiM)x+ gTx.

Then

σ2 ≤ σ1 ⇐⇒ ||x(2)k ||C ≥ ||x
(1)
k ||C .

Proof. For each i, x
(i)
k is given by ZT

k (H + σiM)Zky
(i)
k = −ZT

k g, and xk = Zkyk. As H + σiM is

nonsingular, ZT
k (H + σiM)Zk is as well. Therefore, y

(i)
k = −(ZT

k (H + σiM)Zk)
−1ZT

k g, and

x
(i)
k = −Zk(Z

T
k (H + σiM)Zk)

−1ZT
k g.

Thus,

||x(i)k ||
2
C = gTZk(Z

T
k (H + σiM)Zk)

−2ZT
k g

The result follows.

While the above result does have some useful implications, the trust-region problem is more

concerned with ||x||M than ||x||C . Thus, the following result is needed.

135

Lemma 4.5.5. Let H be symmetric and M be positive definite. Let µ ≥ 0 and C = H + µM be positive

definite. Let ZkHZk + σiZkMZk be positive definite for i ∈ {1, 2}. Let

x
(i)
k = argmin

x∈Sk

1

2
xT(H + σiM)x+ gTx.

Then

σ2 ≤ σ1 ⇐⇒ ||x(2)k ||M ≥ ||x
(1)
k ||M .

Proof. For each i, x
(i)
k is given by ZT

k (H + σiM)Zky
(i)
k = −ZT

k g, and xk = Zkyk. As H + σiM is

non-singular, ZT
k (H + σiM)Zk is as well. Thus y

(i)
k = −(ZT

k (H + σiM)Zk)
−1ZT

k g, and

x
(i)
k = −Zk(Z

T
k (H + σiM)Zk)

−1ZT
k g.

Thus

||x(i)k ||
2
M = gTZk(Z

T
k (H + σiM)Zk)

−1ZT
k MZk(Z

T
k (H + σiM)Zk)

−1ZT
k g

To simplify the notation, let ḡ = ZT
k g, H̄ = ZT

k HZk, and M̄ = ZT
k MZk. Then

||x(i)k ||
2
M = ḡT(H̄ + σiM̄)−1M̄(H̄ + σiM̄)−1ḡ.

Then

||x(2)k ||
2
M − ||x

(i)
k ||

2
M = ḡT

(
(H̄ + σ2M̄)−1M̄(H̄ + σ2M̄)−1 − (H̄ + σ1M̄)−1M̄(H̄ + σ1M̄)−1

)
ḡ.

Recall that for two nonsingular matrices X,Y ∈ Rn×n, X − Y ⪰ 0 if and only if Y −1 −X−1 ⪰ 0. With

this in mind, consider the matrix

(H̄ + σ1M̄)M̄−1(H̄ + σ1M̄)− (H̄ + σ2M̄)M̄−1(H̄ + σ2M̄)

= 2(σ1 − σ2)(H̄ + σ2M̄) + (σ1 − σ2)2M̄ ⪰ 0.

The result follows.

It can now be shown that the sequence of Lagrange multipliers is non-decreasing.

Theorem 4.5.6. Let H be symmetric, M symmetric positive definite, and µ ≥ 0 such that C = H+µM ≻

136

0. For k ∈ {1, . . . , n}, let xk be the solution to

min
x∈Sk

1

2
xTHx+ gTx

s.t. ||x||M ≤ δ

with corresponding Lagrange multipliers σk. If 1 ≤ i ≤ j ≤ n, then

σi ≤ σj .

Proof. For each Sk, let Zk be a C-orthonormal basis for Sk, and let xk = Zkyk for all k. Then, by

Theorem 4.1.1, xk solves the k-th trust-region subproblem if and only if

1. ZT
k (H + σkM)Zkyk = −ZT

k g,

2. σk ≥ 0,

3. δ2 − yTk ZT
k MZkyk ≥ 0,

4. σj(δ
2 − yTk ZT

k MZkyk) = 0,

5. ZT
k (H + σkM)Zk ⪰ 0.

Recall that xk lies strictly within the trust region only if σk = 0; otherwise, it lies on the boundary.

Thus, if i < j and σj = 0, ||xi||M ≤ ||xj ||M < δ, so σi = 0. If σi = 0 and σj ≥ 0, there is nothing to show.

Thus, assume that σi > 0 and σj > 0, so that ||yi||ZT
i MZi

= ||xi||M = ||yj ||ZT
j MZj

= ||xj ||M = δ. First,

assume that ZT
i (H + σiM)Zi is singular, and that σj < σi. Then there exists some vector w ∈ Ki ⊂ Kj

such that wT(H + σjM)w < 0. Thus, ZT
j (H + σjM)Zj is not positive semidefinite, so σj is not the

Lagrange multiplier of the j-th trust-region subproblem. Thus, σi ≤ σj .

Now, assume that both ZT
i (H + σiM)Zi ≻ 0 and ZT

j (H + σjM)Zj ≻ 0. By Corollary 4.5.1.1, xi

is a solution to the unconstrained minimization problem

min
x∈Si

1

2
xT(H + σiM)x+ gTx.

For the sake of contradiction, assume that σi > σj . This implies that ZT
j (H + σiM)Zj ≻ 0. Let x̃j be the

solution to

min
x∈Sj

1

2
xT(H + σiM)x+ gTx.

137

By Lemma 4.5.3, ||x̃j ||M ≥ ||xi||M = ||xj ||M = δ. By Lemma 4.5.5, σi ≤ σj , which is a contradiction.

Finally, assume that ZT
j (H + σjM)Zj is singular, so that ZT

j (H + (σj + ε)M)Zj ≻ 0. Then ZT
i (H +

(σj + ε)M)Zi ≻ 0. Let x̂i and x̂j solve

min
x∈Ki

1

2
xT(H + (σj + ε)M)x+ gTx and min

x∈Kj

1

2
xT(H + (σj + ε)M)x+ gTx,

respectively. Then ||x̂i||M ≤ ||x̂j ||M ≤ δ. As ||xi||M = δ, σi ≤ σj + ε. As ε can be made arbitrarily small,

σi ≤ σj . The result follows.

Theorem 4.4.1 shows that the standard GLTR algorithm converges towards the optimal solution

x∗ in a manner identical to that of the preconditioned conjugate-gradient algorithm for solving the system

(H +σ∗M)x+ g = 0 when σ∗ is known, and M is used as a preconditioner, assuming that the trust-region

problem being solved is not an instance of the hard-case. It stands to reason that a similar result could be

shown for SIGLTR, where the convergence is instead identical to solving the same system using H + µM

as a preconditioner. The proof presented in [23] is closely followed with some technical details changed to

show this similar result.

Without loss of generality, assume that the trust-region constraint matrix M = I. Adachi et al.

prove in [1] that the trust-region subproblem is equivalent to solving a 2n× 2n generalized eigenvector

problem of the matrix

N =

−H 1
δ2 gg

T

I −H

 ∈ R2n×2n (4.31)

Let µ1, . . . , µ2n be the eigenvalues of N ordered in decreasing order of the real parts, i.e.,

Re(µ1) ≥ · · · ≥ Re(µ2n).

Then the following intuitive theorem holds:

Theorem 4.5.7. Let (x∗, σ∗) be the optimal primal-dual solution to the trust-region problem defined by

H, g, and δ, with ||x∗|| = δ. Then the leftmost eigenvalue µ1 of N is real and simple, and µ1 = σ∗. Let

y = (y1, y2) ∈ R2n be the eigenvector of N corresponding to µ1, and suppose that gTy2 ̸= 0. Then the

unique solution to the trust-region problem is

x∗ = − δ2

gTy2
y1.

138

Remark. Adachi et al. also prove that gTy2 = 0 corresponds to the hard case. By assumption, the problem

is not an instance of the hard case, which guarantees that gTy2 ̸= 0.

Let {(xk, σk)} be the iterates generated by the SIGLTR algorithm with shift µ such that C =

H + µI ≻ 0. Let k∗ be the final iteration index. It has already been shown in Theorem 4.5.6 that

0 ≤ σ1 ≤ . . . ≤ σk∗ = σ∗. Assume that at iteration K, phase one ends and phase two begins, so that

||xk|| = δ and σk > 0 for each k > K. Let Uk ∈ Rn×k be the C-orthogonal matrix consisting of the first k

Lanczos vectors. Use Sk to denote the Krylov subspace Kk(C
−1H,C−1g). Then range(Uk) = Sk. Let

Ũk =

Uk

Uk

 ,

and

S̃k = range(Ũk) = Sk ⊕ Sk ⊂ R2n.

Let Dk = I − µTk. Let

Nk = ŨT
k NŨk =

−Dk
β2

δ2 e1e
T
1

Tk −Dk

 ,

and

T̃k =

Tk
Tk

 .

Then the projected eigenvalue problem is, at each iteration k,

Nk

z(k)1

z
(k)
2

 = µ(k)T̃k

z(k)1

z
(k)
2

 .

By Theorem 4.5.7 and the construction of the SIGLTR algorithm, µ
(k)
1 = σk, and µ

(k)
1 is real and

simple. Let z(k) =

z(k)1

z
(k)
2

 be the eigenvector of Nk associated with µ
(k)
1 , scaled so that (z(k))TT̃kz

(k) = 1.

Note that Tk is symmetric positive definite (as Tk = UT
k Uk), and therefore T̃k is as well. Then

y(k) = Ũk

z(k)1

z
(k)
2

 =

Ukz
(k)
1

Ukz
(k)
2


is the Ritz vector of N associated with the rightmost eigenvalue µ1 = σ∗, and has unit length.

139

Recall that a left eigenvector of the pencil (Nk, T̃k) is a right eigenvector of the pencil (NT
k , T̃

T
k) =

(NT
k , T̃k). With this in mind, it is trivial to see that the left eigenvector of (Nk, T̃k) is

z(k)2

z
(k)
1

 .

Alternatively, note that the generalized eigenvector problem Nkz
(k) = µkT̃kz

(k) is equivalent to the

standard eigenvector problem T̃−1
k Nkz

(k) = µ(k)z(k), which has a left eigenvector

Tkz(k)2

Tkz
(k)
1


associated with µ

(k)
1 . From the structure of Nk, it holds that

z
(k)
2 = (Dk + σkTk)

−1Tkz
(k)
1 = (I + (σk − µ)Tk)−1Tkz

(k)
1 .

Before proceeding, the following lesser-known definition of the spectral condition number of an eigenvalue

is needed.

Definition 4.5.1. Let λ be an eigenvalue of the matrix pencil (M,N), where N is symmetric positive-

definite, and let u and v be the corresponding left and right eigenvectors. Then the spectral condition

number of λ is

s(λ) =
||u||N ||v||N
|vTNu|

.

Thus, the spectral condition number of µ
(k)
1 is

s(µ
(k)
1) =

1

|(z(k))TT̃kz(k)|
=

1

2(z
(k)
1)TTk(Dk + σkTk)−1Tkz

(k)
1

. (4.32)

Similarly, the spectral condition number of σ∗, the leftmost eigenvalue of N , is

s(σ∗) =
1

2yT1 (H + σ∗I)−1y1
. (4.33)

By Theorem 4.5.7, the unique solution to (4.20) is

hk = − δ2

βeT1 z
(k)
2

z
(k)
1 ,

140

giving

xk = Ukhk = − δ2

βeT1 z
(k)
2

y
(k)
1 .

Let ∠(u, V) denote the acute angle between a vector u and a subspace V , so that

sin∠(u, V) =
||(I − π)u||
||u||

,

where π is the orthogonal projector onto V . This notion is generalized to the case where the finite-

dimensional space in which V is embedded uses a different inner product than the Euclidean inner product,

as is the case here. Let M be the positive-definite matrix that induces the inner product. Denote the

M -angle between u and V by ∠(u, V)M , so that

sin∠(u, V)M =
||(I − π)u||M
||u||M

,

where π is now a M -orthogonal projector onto V . Let

C̃ =

C
C

 =

H + µI

H + µI

 .

Let π̃k = ŨkŨ
T
k C̃ be the C̃-orthogonal projector onto S̃k, and πk = UkU

T
k C be the C-orthogonal projector

onto Sk. At iteration k,

σ∗ − σk = µ1 − µ(k)
1 .

The following lemma from [22] can be applied.

Lemma 4.5.8. Let µ
(k)
1 = σk and µ1 = σ∗ be the rightmost eigenvalues of Nk and N , respectively.

Suppose that ||x∗|| = ||xk|| = δ. Then for sin∠(y, S̃k)C̃ sufficiently small, it holds that

σ∗ − σk ≤ s(σk)γ̃k sin∠(y, S̃k)C̃ +O(sin2 ∠(y, S̃k)C̃),

where s(σk) is defined by (4.32), and γ̃k = ||π̃T
k N(I − π̃k)||C̃

From (4.32) and the definition of yk,

s(σk) =
1

2|(y(k)2)Ty
(k)
1 |

,

141

which converges to s(σ∗) defined by (4.33) as y(k) → y. Furthermore, γ̃k ≤ ||N ||C̃ . Thus, in order to

analyze how fast σk converges to σ∗, it suffices to analyze how quickly sin∠(y, S̃k)C̃ decreases as k → k∗.

Now, notice that the definitions of s(σk) and s(σ
∗) do not depend on the scaling of (y

(k)
1 , y

(k)
2) and (y1, y2).

Let y be rescaled so that ||y||C̃ = 1. Then,

sin2 ∠(y, S̃k)C̃ = ∥(I − π̃k)

y1
y2

 ∥2C̃ = ∥(I − πk)y1∥2H+µI + ∥(I − πk)y2∥2H+µI .

Before analyzing this expression, the relationship between the eigenvalues of (H,C) and (H +

σ∗I, C) must be made clear.

Lemma 4.5.9. Suppose the matrix pencil (H,C) has eigenvalues λ1 ≥ . . . ≥ λn. Denote the eigenvalues

of (H + σ∗I, C) as λ̃1 ≥ . . . ≥ λ̃n. Let Λ = diag(λ1, . . . , λn) and Λ̃ = diag(λ̃1, . . . , λ̃n). If µ = σ∗, then

Λ̃ = I. If µ > σ∗, then λ̃i =
σ∗

µ + µ−σ∗

µ λi, and if µ < σ∗, λ̃i =
σ∗

µ + µ−σ∗

µ λn+1−i.

Proof. Let Q ∈ Rn×n such that QTCQ = I and QTHQ = Λ, the diagonal matrix consisting of eigenvalues

λ1, . . . , λn. Let S = CQ, so that H = SΛST, STQ = I, and STC−1S = I. Then

H + σ∗I =
σ∗

µ
(H + µI) + (1− σ∗

µ
)H =

σ∗

µ
C + (1− σ∗

µ
)H,

thus

QT(H + σ∗I)Q =
σ∗

µ
I +

µ− σ∗

µ
Λ,

and

H + σ∗I =
σ∗

µ
SST +

µ− σ∗

µ
SΛST.

Two cases must be considered: µ > σ∗, and µ < σ∗. µ = σ∗ has n unit eigenvalues. First, consider µ > σ∗.

Then, for i = 1, . . . , n,

λ̃i =
σ∗

µ
+
µ− σ∗

µ
λi.

On the other hand, if µ < σ∗, then

λ̃i =
σ∗

µ
+
µ− σ∗

µ
λn+1−i.

First, ∥(I − πk)y1∥C is analyzed. Let Pk denote the set of polynomials of degree no larger than

142

k + 1. Consider the following lemma:

Lemma 4.5.10. The distance ∥(I − πk)x∗∥C between x∗ and the Krylov subspace Sk satisfies

∥(I − πk)x∗∥C = min
pk∈Pk,pk(0)=1

∥pk
(
C−1(H + σ∗I)

)
x∗∥C ,

and

∥(I − πk)x∗∥C ≤ ||x⋆||C ε
(k)
1 ,

where

ε
(k)
1 = min

p∈Pk,p(0)=1
max
1≤i≤n

||p(σ
∗

µ
+
µ− σ∗

µ
λi)||,

with λ1 ≥ . . . ≥ λn the generalized eigenvalues of the pencil (H,C). Furthermore,

ε
(k)
1 ≤ 2

(√
κC(H + σ∗I)− 1√
κC(H + σ∗I) + 1

)k+1

.

where

κC(H + σ∗I) =
λ̃1

λ̃n

is the C condition number of H + σ∗I.

Proof. By Theorem 4.1.1, (H + σ∗)x∗ + g = 0. Recall that, by the shift-invariance of Krylov subspaces,

Sk = Kk(C
−1(H + σ∗I), C−1g). Let Q, S, and Λ be defined as in Lemma 4.5.10. Then

∥(I − πk)x∗∥C = min
x∈Kk(C−1(H+σ∗),C−1g)

||x∗ − x||C

= min
q∈Pk−1

||x∗ − q
(
C−1(H + σ∗I)

)
C−1g||C

= min
q∈Pk−1

||x∗ + q
(
C−1(H + σ∗I)

)
C−1(H + σ∗I)x∗||C

= min
pk∈Pk,pk(0)=1

||pk
(
C−1(H + σ∗I)

)
x∗||C

≤ ||x∗||C min
pk∈Pk,pk(0)=1

||pk
(σ∗

µ
I +

µ− σ∗

µ
Λ
)
||

= ||x∗||C ε
(k)
1 ,

where the last equality is derived via the standard estimates applied to ε
(k)
1 using scaled and shifted

Chebyshev polynomials of the first kind.

Now, y1 and x∗ only differ in scaling. Thus, the above theorem establishes an upper bound for

143

∥(I − πk)y1∥C .

Corollary 4.5.10.1. Let y = (y1, y2) be the eigenvector of M associated with µ1 = σ∗. Then

∥(I − πk)y1∥C ≤ 2||y1||C

(√
κC(H + σ∗I)− 1√
κC(H + σ∗I) + 1

)k+1

.

So far, the proof has been mostly identical to standard proofs of the convergence of the precondi-

tioned conjugate-gradient algorithm. Unfortunately, in order to analyze the convergence of σk to σ∗, the

quantity ||(I − πk)y2||C must be analyzed as well. First, to simplify the notation, let

κ = κC(H + σ∗I).

Theorem 4.5.11. It holds that

||(I − πk)y2||C ≤ 4
λ̃1

(λ̃1 − λ̃n)2
||y1||Cε(k)2 ,

where

ε
(k)
2 = min

q∈Pk−1

max
x∈[−1,1]

∣∣∣∣ 1

(x− η)2
− q(x)

∣∣∣∣ ,
and

η =
κ+ 1

κ− 1
> 1.

Proof. Let Q, S, and Λ̃ be defined as in Lemma 4.5.10. From Theorem 4.1.1, (H + σ∗I)x∗ + g = 0.

Combining this with Theorem 4.5.7 yields

δ2

gTy1
(H + σ∗)y1 = g.

The structure of the matrix N yields

y2 = (H + σ∗I)−1y1.

Making use of the shift-invariance of Krylov subspaces and the C-orthogonality of the matrix Q in the

144

generalized spectral decomposition of H + σ∗I, it holds that

||(I − πk)y2||C = min
z∈Kk(C−1(H+σ∗I),C−1g)

||y2 − z||C

= min
q∈Pk−1

||y2 − q
(
C−1(H + σ∗I)

)
C−1g||C

= min
q∈Pk−1

||(H + σ∗I)−1y1 −
δ2

gTy1
q
(
C−1(H + σ∗I)

)
C−1(H + σ∗I)y1||C

= min
q∈Pk−1

||(H + σ∗I)−1y1 −
δ2

gTy1
C−1(H + σ∗I)q

(
C−1(H + σ∗I)

)
y1||C

= min
p∈Pk−1

||C−1(H + σ∗I)
[
(H + σ∗I)−1C(H + σ∗I)−1 − p

(
C−1(H + σ∗I)

)]
y1||C

≤ ||H + σ∗I||C min
p∈Pk−1

||
[
(H + σ∗I)−1C(H + σ∗I)−1 − p

(
C−1(H + σ∗I)

)]
y1||C

= ||H + σ∗I||C min
p∈Pk−1

||Q
[
Λ̃−2 − p

(
Λ̃
)]
QTy1||C

≤ λ̃1||y1||C min
p∈Pk−1

max
z∈[λ̃n,λ̃1]

∣∣∣∣ 1z2 − p(z)
∣∣∣∣ .

Consider the change of variables

z =
λ̃1 − λ̃n

2
x+

λ̃n + λ̃1
2

,

which creates a bijection from [−1, 1] to [λ̃n, λ̃1]. Then

min
p∈Pk−1

max
z∈[λ̃n,λ̃1]

∣∣∣∣ 1z2 − p(z)
∣∣∣∣

= min
p∈Pk−1

max
x∈[−1,1]

∣∣∣∣ 4

(λ̃1 − λ̃n)2(x− η)2
− p(x)

∣∣∣∣
=

4

(λ̃1 − λ̃n)2
min

p∈Pk−1

max
x∈[−1,1]

∣∣∣∣∣ 1

(x− η)2
− (λ̃1 − λ̃n)2

4
p(x)

∣∣∣∣∣
=

4

(λ̃1 − λ̃n)2
min

q∈Pk−1

max
x∈[−1,1]

∣∣∣∣ 1

(x− η)2
− q(x)

∣∣∣∣
=

4

(λ̃1 − λ̃n)2
ε
(k)
2 .

Unlike ε
(k)
1 , ε

(k)
2 does not have a well-known explicit solution. However, if it can be shown that

it is of the same order ε
(k)
1 , then the proof can proceed. Following [23], Chebyshev polynomials of the

second kind shall be used to establish a similar bound.

145

Theorem 4.5.12. The approximation error satisfies

ε
(k)
2 ≤

(
1 +

k + 2

| ln t|

)
4

1− t2

(√
κ− 1√
κ+ 1

)k+3

and ||(I − πk)y2||C satisfies

||(I − πk)y2||C ≤
16λ̃1||y1||C

(λ̃1 − λ̃2)2(1− t2)

(
1 +

k + 2

| ln t|

)(√
κ− 1√
κ+ 1

)k+3

,

where t = η −
√
η2 − 1.

Proof. Let Uj(x) = sin(j arccos(x)) denote the j-th degree Chebyshev polynomial of the second kind.

Then Uj has the following generating function, see [3]:

∞∑
j=0

(j + 1)tjUj(x) =
1− t2

(1 + t2 − 2tx)2
. (4.34)

If t = η −
√
η2 − 1, then it is easily confirmed that 1 + t2 = 2ηt. Then (4.34) becomes

∞∑
j=0

(j + 1)tjUj(x) =
1− t2

4t2(x− η)2
,

or equivalently

1

(x− η)2
=

4t2

1− t2
∞∑
j=0

(j + 1)tjUj(x).

Let

pk(x) =
4t2

1− t2
k∑

j=0

(j + 1)tjUj(x).

Note that pk is in fact a k-th degree polynomial, despite the 1/(1 − t2) term. Furthermore, note that

146

− ln t = | ln t| for t ∈ (0, 1) and |Uj(x)| ≤ 1 for x ∈ [−1, 1]. Then

ε
(k)
2 ≤ max

x∈[−1,1]

∣∣∣∣ 1

(x− η)2
− pk(x)

∣∣∣∣
= max

x∈[−1,1]

∣∣∣∣∣∣ 4t2

1− t2
∞∑

j=k+1

(j + 1)tjUj(x)

∣∣∣∣∣∣
≤ 4t2

1− t2
∞∑

j=k+1

(j + 1)tj

=
4t2

1− t2

∫ ∞

k+1

(z + 1)tzdz

=
4t2

1− t2

(
z + 1

ln t
tz
∣∣∣∣∞
k+1

− tz
∣∣∣∣∞
k+1

)

=

(
1− k + 2

ln t

)
4tk+3

1− t2

=

(
1 +

k + 2

| ln t|

)
4tk+3

1− t2
.

As before, η = κ+1
κ−1 , thus t = η −

√
η2 − 1 =

√
κ−1√
κ+1

. Thus, the result holds.

Combining the above results yields the following bounds.

Theorem 4.5.13. Suppose that ||x∗|| = ||xk|| = δ. Then

sin∠(y, S̃k)C ≤ ck||y1||
(√

κ− 1√
κ+ 1

)k+1

and

σ∗ − σk ≤ cks(σk)γ̃k||y1||
(√

κ− 1√
κ+ 1

)k+1

,

where

ck = 2 +
16λ̃1

(λ̃1 − λ̃n)2(1− t2)

(
1 +

k + 2

| ln t|

)(√
κ− 1√
κ+ 1

)2

.

This establishes that σk → σ∗ as k increases. However, experimentally, it is quite clear that this

bound is not particularly sharp. To improve upon this result, the following technical result is derived:

Theorem 4.5.14. For k = 0, . . . , k∗, the following bound holds:

eT1 (Dk∗ + σ⋆Tk∗)−1e1 − eT1 (Dk + σ⋆Tk)
−1e1 ≤

4δ||g||
β2

(√
κ− 1√
κ+ 1

)2(k+1)

.

Proof. Suppose, in the SIGLTR algorithm, σ∗ and k∗ are known a priori. Then, at iteration k∗, the

147

projected trust-region subproblem (4.20) could be replaced with the linear system

(Dk∗ + σ⋆Tk∗)h = −βe1, (4.35)

where β = ||g||C−1 , and Dk∗ + σ⋆Tk∗ is symmetric positive definite (by the assumption that the problem

in question is not an instance of the hard-case). The linear system implicitly solved at each previous

iteration would be

(Dk + σ∗Tk)ỹk = −βe1.

Let Ek = (e1, e2, . . . , ek+1). Let hk = Ekỹk. Define εk = h − hk, and the residual vector rk =

−βe1 − (Dk∗ + σ∗Tk∗)hk. Thus,

(Dk∗ + σ∗Tk∗)εk = rk,

and ||r0|| = β2. Therefore,

||εk||2Dk∗+σ∗Tk∗ = εTk (Dk∗ + σ∗Tk∗)εk

= rTk (Dk∗ + σ∗Tk∗)−1rk

= β2(eT1 (Dk∗ + σ∗Tk∗)−1e1 − eT1 (Dk + σ∗Tk)
−1e1),

so

eT1 (Dk∗ + σ∗Tk∗)−1e1 − eT1 (Dk + σ∗Tk)
−1e1 =

||εk||2Dk∗+σ∗Tk∗

β2
. (4.36)

By construction, the eigenvalues of Dk∗ + σ∗Tk∗ are a subset of the eigenvalues of (H + σ∗I, C), thus the

eigenvalues of Dk∗ + σ∗Tk∗ lie in the interval [λ̃n, λ̃1]. The error εk and residuals rk are exactly the error

and residual vectors of the conjugate-gradient iterations applied to (4.35). Therefore,

||εk||2Dk∗+σ∗Tk∗ ≤ 4

(√
κ− 1√
κ+ 1

)2(k+1)

||ε0||2Dk∗+σ∗Tk∗ .

The initial error is given by

||ε0||2Dk∗+σ∗Tk∗ = β2eT1 (Dk∗ + σ∗Tk∗)−1e1,

Now, β||(Dk∗ + σ∗Tk∗)e1||Tk∗ = ||h||Tk∗ = δ, so

β2eT1 (Dk∗ + σ∗Tk∗)−1e1 ≤ β||e1||T−1
k∗
δ.

148

Assume that SIGLTR runs, in exact precision, until breakdown occurs. Thus, at iteration k∗, it holds that

Uk∗ = Vk⋆Tk∗ , or Uk∗T−1
k∗ = Vk⋆,

so that T−1
k∗ = V T

k∗Vk∗ = UT
k∗C2Uk∗ . Therefore eT1 T

−1
k∗ e1 = gTg/β2, and

β2eT1 (Dk∗ + σ∗Tk∗)−1e1 ≤ ||g||δ.

The result then follows.

The left-hand side of the inequality in Theorem 4.5.14 can be utilized in an upper bound for

σ∗ − σk.

Theorem 4.5.15. Assume that the shifted and inverted Lanczos process breaks down at iteration k∗ and

that ||x∗|| = ||xk|| = δ for k = 0, . . . , k∗. Then for k sufficiently large,

σ∗ − σk ≤ ηk,1
(
eT1 (Dk∗ + σ∗Tk∗)−1e1 − eT1 (Dk + σ∗Tk)

−1e1
)
+ ηk,2

(
q(xk)− q(x∗)

)
,

where the scalars ηk,1 and ηk,2 are given by

ηk,1 =
β2

δ2 + β2eT1 (Dk + σ∗Tk)−1Tk(Dk + σ∗Tk)−1e1
,

and

ηk,2 =
2

δ2 + β2eT1 (Dk + σ∗Tk)−1Tk(Dk + σ∗Tk)−1e1
,

and β = ||g||(H+µI)−1 .

Proof. At iteration k, the solution to the projected trust-region subproblem is

hk = −β(Dk + σkTk)
−1e1,

149

and ||hk||Tk
= β||(Dk + σkTk)

−1e1||Tk
= δ. By (4.20), q(xk) = ϕ(hk), and

q(xk) = −β2eT1 (Dk + σkTk)
−1e1 +

1

2
β2eT1 (Dk + σkTk)

−1Dk(Dk + σkTk)
−1e1

= −β2eT1 (Dk + σkTk)
−1e1

+
1

2
β2eT1 (Dk + σkTk)

−1(Dk + σkTk − σkTk)(Dk + σkTk)
−1e1

= −β2eT1 (Dk + σkTk)
−1e1 +

1

2
β2eT1 (Dk + σkTk)

−1e1

− 1

2
σkβ

2eT1 (Dk + σkTk)
−1Tk(Dk + σkTk)

−1e1

= −1

2
β2eT1 (Dk + σkTk)

−1e1 −
1

2
σkβ

2eT1 (Dk + σkTk)
−1Tk(Dk + σkTk)

−1e1

= −1

2
β2eT1 (Dk + σkTk)

−1e1 −
1

2
σkδ

2.

(4.37)

Now, by assumption,

xk∗ = Uk∗hk∗ = x∗, σk∗ = σ∗, and q(xk∗) = q(x∗) = ϕ(hk∗),

with ||hk∗ ||T∗
k
= δ, and the eigenvalues of Dk∗ are a subset of the eigenvalues of (H,C). By letting k = k∗

in (4.37),

q(x∗) = −1

2
β2eT1 (Dk∗ + σ∗Tk∗)−1e1 −

1

2
σ∗δ2. (4.38)

Subtracting (4.37) and (4.38) yields

(σ∗ − σk)δ2 = β2
(
eT1 (Dk + σkTk)

−1e1 − eT1 (Dk∗ + σ∗Tk∗)−1e1
)
+ 2
(
q(xk)− q(x∗)

)
.

Consider the expression eT1 (Dk + σkTk)
−1e1. It holds that

(Dk + σkTk)
−1 = (Dk + σ∗Tk + (σk − σ∗)Tk)

−1

=
(
(Dk + σ∗Tk)(I − (σ∗ − σk)(Dk + σ∗Tk)

−1Tk)
)−1

= (I − (σ∗ − σk)(Dk + σ∗Tk)
−1Tk)

−1(Dk + σ∗Tk)
−1.

Consider the matrix (I − (σ∗− σk)(Dk + σ∗Tk)
−1Tk)

−1. If ||(σ∗− σk)(Dk + σ∗Tk)
−1Tk|| < 1, a Neumann

series can be used to analyze (I − (σ∗ − σk)(Dk + σ∗Tk)
−1Tk)

−1. It has been shown that (σ∗ − σk) is

nonnegative and tends towards zero as k → 0, so it suffices to show that ||(Dk + σ∗Tk)
−1Tk|| is bounded

above by some constant. Note that Dk+σ
∗Tk = I+(σ∗−µ)Tk and Tk commute, therefore (Dk+σ

∗Tk)
−1

and Tk commute. Tk is positive definite, thus Tk has a unique positive definite square root T
1/2
k , which

150

also commutes with (Dk + σ∗Tk)
−1. So,

||(Dk + σ∗Tk)
−1Tk|| = ||T 1/2

k (Dk + σ∗Tk)
−1T

1/2
k ||

= max
x ̸=0

xTT
1/2
k (Dk + σ∗Tk)

−1T
1/2
k x

xTx

= max
y ̸=0

yT(Dk + σ∗Tk)
−1yT

yT−1
k y

≤ 1

αn + σ∗ ,

where αn is the smallest standard eigenvalue of H. Therefore, in order to apply a Neumann series, k needs

to be sufficiently large so that (σ∗ − σk)||(Dk + σ∗Tk)
−1Tk|| < 1, i.e., σ∗ − σk < αn + σ∗. By Theorem

4.5.13, a sufficient choice of k is an index such that

cks(σk)γ̃k||y1||
(√

κ− 1√
κ+ 1

)k+1

≤ αn + σ∗.

By continuity, as σk → σ∗,

eT1 (Dk + σkTk)
−1e1 − eT1 (Dk∗ + σ∗Tk∗)−1e1 → eT1 (Dk + σ∗Tk)

−1e1 − eT1 (Dk∗ + σ∗Tk∗)−1e1.

By (4.36), eT1 (D + σkTk)
−1e1 − eT1 (Dk∗ + σ∗Tk∗)−1e1 must become nonpositive for k sufficiently large.

Thus,

(σ∗ − σk)δ2 ≤ β2
(
eT1 (Dk∗ + σ∗Tk∗)−1e1 − eT1 (Dk + σkTk)

−1e1
)
+ 2
(
q(xk)− q(x∗)

)
(4.39)

when k is sufficiently large.

Now, consider the term eT1 (Dk + σkTk)
−1e1. As (σ

∗ − σk)||(Dk + σkTk)
−1Tk|| < 1, the Neumann

series of the matrix (I − (σ∗ − σk)(Dk + σkTk)
−1Tk)

−1 can be considered.

(Dk + σkTk)
−1 = (I − (σ∗ − σk)(Dk + σ∗Tk)

−1Tk)
−1(Dk + σ∗Tk)

−1

= (I + (σ∗ − σk)(Dk + σ∗Tk)
−1Tk +O((σ∗ − σk)2))(Dk + σ∗Tk)

−1

= (Dk + σ∗Tk)
−1 + (σ∗ − σk)(Dk + σ∗Tk)

−1Tk(Dk + σ∗Tk)
−1

+O((σ∗ − σk)2).

151

Therefore,

eT1 (Dk∗ + σ∗Tk∗)−1e1 − eT1 (Dk + σkTk)
−1e1

= eT1 (Dk∗ + σ∗Tk∗)−1e1 − eT1 (Dk + σ∗Tk)
−1e1

− (σ∗ − σk)eT1
(
(Dk + σ∗Tk)

−1Tk(Dk + σ∗Tk)
−1
)
e1

−O
(
(σ∗ − σk)2

)
,

(4.40)

which is nonnegative if k is sufficiently large. Substituting this into (4.39) and dropping higher order

terms gives

σ∗ − σk ≤ ηk,1
(
eT1 (Dk∗ + σ∗Tk∗)−1e1 − eT1 (Dk + σ∗Tk)

−1e1
)
+ ηk,2

(
q(xk)− q(x∗)

)
,

proving the result. Note that both ηk,1 and ηk,2 can be bounded above for k sufficiently large.

All that remains now is to bound q(xk)− q(x∗).

Theorem 4.5.16. Suppose that ||x∗|| = ||xk|| = δ. Let c1, c2 > 0 be constants such that

c1||x|| ≤ ||x||C ≤ c2||x||,

and

1

c2
||x||C ≤ ||x|| ≤

1

c1
||x||C

for all x. Then,

0 ≤ q(xk)− q(x∗) ≤
(1 + c2

c1
)2

2
λ̃1||x̃− x∗||2C (4.41)

for any x̃ ∈ Kk(C
−1H,C−1g) not equal to zero.

Proof. Let x̃ ∈ Kk(C
−1H,C−1g) and x̃ ̸= 0. Let v = δ

||x̃|| x̃, and r = v − x∗. Then,

0 ≤ q(xk)− q(x∗) ≤ q(v)− q(x∗)

=
1

2
rTHr + rT(Hx∗ + g)

=
1

2
rTHr − σ∗rTx∗

=
1

2
rT(H + σ∗I)r ≤ 1

2
||H + σ∗I||C ||r||2C .

152

Now,

||r||C ≤ ||x∗ − x̃||C + ||x̃− v||C

= ||x∗ − x̃||C + ||x̃− δ

||x̃||2
x̃||C

= ||x∗ − x̃||C + ||x̃||C
∣∣∣∣1− δ

||x̃||2

∣∣∣∣
≤ ||x∗ − x̃||C + c2||x̃||

∣∣∣∣1− δ

||x̃||2

∣∣∣∣
≤ ||x∗ − x̃||C + c2

∣∣||x̃|| − δ∣∣
= ||x∗ − x̃||C + c2

∣∣||x̃|| − ||x∗||∣∣
≤ ||x∗ − x̃||C + c2||x̃− x∗||

≤ ||x∗ − x̃||C +
c2
c1
||x̃− x∗||C

= (1 +
c2
c1

)||x∗ − x̃||C .

Thus,

q(xk)− q(x∗) ≤
(1 + c2

c1
)2

2
||H + σ∗I||C ||x̃− x∗||2C .

Using bounds for ||xk − x∗||C yields the following result.

Theorem 4.5.17. Suppose ||x∗|| = ||xk|| = δ. Then

0 ≤ q(xk)− q(x∗) ≤ 2(1 +
c2
c1

)2c22δ
2λ̃1

(√
κ− 1√
κ+ 1

)2(k+1)

.

Proof. Equation (4.41) gives

0 ≤ q(xk)− q(x∗) ≤
(1 + c2

c1
)2

2
λ̃1 min

x̃∈Kk(C−1H,C−1g)
||x̃− x∗||2C .

Recall that

min
x̃∈Kk(C−1H,C−1g)

||x̃− x∗||2C = ||(I − πk)x∗||2C .

Combining this with lemma (4.5.10) gives

min
x̃∈Kk(C−1H,C−1g)

||x̃− x∗||2C ≤ 4||x∗ ≤ 4||x∗||2C
(√

κ− 1√
κ+ 1

)2(k+1)

.

Using ||x∗||2C ≤ c22δ2 yields the result.

153

The quantity σ∗ − σk can now be bounded.

Theorem 4.5.18. Suppose that ||x∗|| = ||xk|| = δ. Then, if k is sufficiently large,

σ∗ − σk ≤
(
4ηk,1||g||δ

β2
+ 2ηk,2(1 +

c2
c1

)2c22δ
2λ̃1

)(√
κ− 1√
κ+ 1

)2(k+1)

.

This theorem indicates that σ∗−σk converges at least as fast as
(√

κ−1√
κ+1

)2(k+1)

. Thus, as expected,

σk converges to σ∗ significantly faster than xk converges to x∗. The multiplier σk will converge to some

level of accuracy in about half as many iterations as xk will need to reach the same level of accuracy.

This indicates that a restarting technique could be used in which SIGLTR is restarted with a new shift

µ2 = σk.

4.5.6 Effect of Shifting on the Convergence Rate

This section analyzes the effect of the choice of µ on the convergence rate. Consider the generalized

eigenvalue problem

Hx = λMx,

with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Then the problem

(H + σM)x = λMx,

has eigenvalues λ1 + σ ≥ λ2 + σ ≥ . . . ≥ λn + σ. Now, consider

(H + σM)x = ν(H + µM)x.

The eigenvalues νi of this problem can be expressed in terms of λ1, . . . , λn. So,

Hx =
νµ− σ
1− ν

Mx.

Thus, if ν is an eigenvalue of the above problem, λ = (νµ− σ)/(1− ν) is an eigenvalue of the original

problem. A simple rearrangement of this expression gives

ν =
λ+ σ

λ+ µ
.

154

Note that by assumption, λj + µ > 0 for all j ∈ {1, . . . , n}. Thus, if σ ≤ µ, the (H + µM)-condition

number is given by

κH+µM (H + σM) =
ν1
νn

=
(λ1 + σ)/(λ1 + µ)

(λn + σ)/(λn + µ)
=
κM (H + σM)

κM (H + µM)
.

Conversely, if µ < σ, then

κH+µM (H + σM) =
ν1
νn

=
(λn + σ)/(λn + µ)

(λ1 + σ)/(λ1 + µ)
=
κM (H + µM)

κM (H + σM)
.

Thus,

κH+µM (H + σM) =
κM (H +min{σ, µ}M)

κM (H +max{σ, µ}M)
. (4.42)

Consider the the case where µ is very close to σ. More specifically, consider the case 0 < µ− σ ≤

ε(λ1 − λn). Then

κH+µM (H + σM) = κM (H + σM)
λn + µ

λ1 + µ

= κM (H + σM)
λn + σ + µ− σ
λ1 + σ + µ− σ

≤ κM (H + σM)
λn + σ + ε(λ1 − λn)

λ1 + σ

≤ κM (H + σM)(
1

κM (H + σM)
+ ε

λ1 − λn
λ1 + σ

).

By assumption, −λn ≤ σ, so it holds that

1 ≤ κH+µM (H + σM) ≤ 1 + εκM (H + σM).

Similarly, if 0 < σ − µ < ε(λ1 − λn), then

1 ≤ κH+µM (H + σM) ≤ 1 + εκM (H + µM).

Thus, if |µ− σ| ≤ ε(λ1 − λn)

1 ≤ κH+µM (H + σM) ≤ 1 + εκM (H +min{σ, µ}M).

Thus, it can be seen here that it is essential to choose a µ that is not too close to λn. Otherwise, the

matrix H + µM becomes nearly singular. If the trust-region radius is relatively small, then this will lead

155

to ill-conditioning.

4.5.7 Warm-starting and Restarting

Consider using PCG, or equivalently Lanczos-CG, to solve the problem Hx = b, where some vector

x0 is known such that the residual vector r = b−Ax0 has ||r|| ≪ ||b||, i.e., x0 is an initial approximation

to the solution x of Hx = b. Then the linear system can be reformulated as H(x0 + x̄) = b, or equivalently

Hx̄ = r, where the solution to the original problem is then x = x0 + x̄, and x̄ can be solved for via PCG.

Such a procedure can be added to an implementation of Algorithm 1.1 to either warm-start PCG or

restart PCG when the search directions lose their H-conjugacy (or equivalently, when the residual vectors

lose their M -orthogonality). A similar technique can be applied to SIGLTR. It is unknown if any similar

procedure has been used with GLTR. However, what follows would only require minor modifications to

apply to GLTR.

Consider an initial approximation x0 to the solution of the trust-region problem (4.1). No

restrictions are placed on x0, though for practical reasons, x0 should be scaled to lie within the trust

region. Problem (4.1) can be written as

min
x̄∈Rn

1

2
(x̄+ x0)

THx̄+ gT(x̄+ x0)

subject to ||x̄+ x0||M ≤ δ,
(4.43)

or, after removing constant terms from the objective, as

min
x̄∈Rn

1

2
x̄THx̄+ (g +Hx0)

Tx̄

subject to x̄TMx̄+ 2xT
0 Mx̄+ xT

0 Mx0 ≤ δ2,
(4.44)

Problem (4.44) is not a trust-region problem. Instead, it is an instance of what is referred to as a generalized

trust-region problem. However, as it is equivalent to a trust-region problem, a simple modification to

SIGLTR allows problem (4.44) to be solved without resorting to more complicated methods for solving

generalized trust-region problems.

The goal is to apply the block version of SIGLTR to problem (4.44), with a block size of 2. Suppose

the initial block is chosen so that V̄1 = (g +Hx0,Mx0). Applying Gram-Schmidt biorthogonalization

then yields U1 and V1, where V1B1 = V̄1, (H + µM)U1 = V1, and B1 =

β1,1 β1,2

0 β2,2

. If U is the full

156

n× n matrix of Lanczos vectors, then

UT(g +Hx0) =



β1,1

0

0

...

0


, and UTMx0 =



β1,2

β2,2

0

...

0


.

Also note that the initial residual r0 = g +Hx0 + σ0Mx0 ∈ range(V1) for any value of σ0. Projecting the

problem onto the k-th Krylov subspace then gives

min
y∈R(2k)

1

2
yT(I − µTk)y + β1,1e

T
1 y

subject to yTTky + 2(β1,2e1 + β2,2e2)
Ty + (xT

0 Mx0) ≤ δ2,
(4.45)

where the k-th approximation to the true solution x is given by xk = x0+Ukyk. The optimality conditions

of problem (4.45) are

1. (I + (σ − µ)Tk)yk + β1,1e1 + σ(β1,2e1 + β2,2e2) = 0,

2. σ ≥ 0,

3. yTTky + 2(β1,2e1 + β2,2e2)
Ty + (xT

0 Mx0) ≤ δ2,

4. σ(δ2 − yTTky − 2(β1,2e1 + β2,2e2)
Ty − (xT

0 Mx0)) = 0, and

5. (I + (σ − µ)Tk) ⪰ 0.

A simple calculation shows that the (H + µM)−1 norm of the residual vector rk = g +Hxk + σkMxk is

given by equation (4.29).

The projected subproblem (4.45) is not a trust-region subproblem. It can, however, be manipulated

into a trust-region subproblem. Let b1 = β1,1e1 and b2 = β1,2e1 + β2,2e2. The projected constraint can be

written as

yTTky
T + 2bT2 y + bT2 T

−1
k b2 ≤ δ2 + bT2 T

−1
k b2 − (xT

0 Mx0),

or equivalently

(y + T−1
k b2)

TTk(y + T−1
k b2) ≤ δ2 + bT2 T

−1
k b2 − (xT

0 Mx0),

157

Let δ̄ = (δ2 + bT2 T
−1
k b2 − (xT

0 Mx0))
1/2. Then the projected problem can be written as

min
ȳ∈R(2k)

1

2
ȳT(I − µTk)ȳ + (b1 − T−1

k b2 + µb2)
Tȳ

subject to ||ȳ||Tk
≤ δ̄,

(4.46)

As Tk is a block-tridiagonal matrix, problem (4.46) can be solved efficiently with the Moré-Sorensen

algorithm. The vector yk can be recovered with yk = ȳk − T−1
k b2. If x0 is chosen to lie within the trust

region, i.e., ||x0|| ≤ δ, then δ̄ is guaranteed to be positive.

As with SIGLTR, warm-started SIGLTR can be broken up into two phases. While the approximate

solution xk = x0 +Ukyk lies strictly within the trust region, SIGLTR is equivalent to Lanczos-CG applied

to the warm-started system H(x0 + x̄) = r0 = −g −Hx0. All computations for computing xk remain

identical, including the calculation of the residual rk(H + µM)−1rk = ξ2k+1,1 + ξ2k+1,2. More precisely, at

each iteration, xk is computed to be xk = x0 + Ukyk = x0 + Pkzk = xk−1 + pk,1ξk,1 + pk,2ξk,2, where the

search-directions pk,1 and pk,2 are computed in the same manner as before. Using two search directions

reflects that the block size was chosen to be two. The only change is in the computation of the norm of the

approximation xk. Now, it holds that xkMxk = (x0 + x̄k)
TM(x0 + x̄k) = xT

0 Mx0 + 2xT
0 Mx̄k + x̄T

kMx̄k,

where x̄k = Ukyk = Pkzk. The term xT
0 Mx0 can be computed upfront, while x̄T

kMx̄k can be computed

using block versions of equations (4.23), (4.24), (4.25), and (4.26). All that remains is to show how to

compute xT
0 Mx̄k. It holds that

xT
0 Mx̄k =

(
β1,2 β2,2

)
V T
1 x̄k =

(
β1,2 β2,2

)
V T
1 Pkzk

= xT
0 Bx̄k−1 +

(
β1,2 β2,2

)
V T
1

(
pk,1 pk,2

)ξk,1
ξk,2


Now, xT

0 Mx̄0 = 0, (
p1,1 p1,2

)
=

(
u1,1 u1,2

)
D−1

1 ,

and (
pk,1 pk,2

)
=

((
uk,1 uk,2

)
+ µ

(
pk−1,1 pk−1,2

)
BT

k

)
D−1

k

for all k > 1, and therefore

V T
1

(
p1,1 p1,2

)
= D−1

1 , and V T
1

(
pk,1 pk,2

)
= µV T

1

(
pk−1,1 pk−1,2

)
BT

k D
−1
k .

158

These equations can update xT
0 Mx̄k without computing additional inner products with vectors of length

n or any other matrix-vector multiplications. Thus, SIGLTR can be effectively warm-started or restarted

by relaxing the trust-region problem to a generalized trust-region problem. Experiments reveal that the

convergence to the true solution x is effected similarly to restarting the preconditioned conjugate-gradient

method.

4.5.8 Use in a Trust-Region Algorithm

In a typical trust-region algorithm, such as Algorithm 2.2, it is often necessary to solve a sequence

of trust-region subproblems where the only difference is the decreased radius. Suppose the GLTR algorithm

is used in a case where a particular subproblem needs to be solved multiple times, with a reduced radius in

each instance. Recall that GLTR requires access to the matrix-vector operations v ← Hu and u←M−1v.

In the limit as the radius δ goes to zero, the solution to the subproblem converges in direction to the

steepest-descent direction −M−1g. Because the operation u ← M−1v is assumed to be available, the

GLTR algorithm will eventually only require one iteration to converge. This is further motivated by the

fact that as δ → 0, σ →∞ and κM (H + σM)→ 1. This implies that as δ → 0, GLTR will require fewer

and fewer iterations to converge. Observe that the tridiagonal matrix T generated by the GLTR algorithm

does not depend on the value of δ. Therefore, it can be reused for each value of δ without needing to

be regenerated. An optimist may look at this situation as a positive. If the subproblem needs to be

resolved with a different radius, less work is required. On the other hand, a pessimist may argue the extra

computation used to compute the solution of the initial trust-region subproblem is wasted, and that it

would be preferable that the initial problem be the simpler problem to solve. This is another benefit that

SIGLTR affords.

Suppose a trust-region method arrives at a point where a trust-region subproblem needs to be

solved for a sequence of radii δ1 > δ2 > . . . > δjmax
. Additionally, suppose some oracle provides the

optimal value of the dual variable σ1 for the initial trust-region problem, and that the problem in question

is not an instance of the hard case. Let µ be the fixed shift used for each application of SIGLTR, and set

µ = σ1. Then the initial problem is solved in one iteration, with the solution given by −(H + µM)−1g,

and κH+µM (H + σ1M) = 1. It then holds that µ = σ1 < σ2 < . . . < σjmax . Moreover, by (4.42), it holds

that

κH+µM (H + σjM) = κM (H + µM)
λn + σj
λ1 + σj

,

where λ1 > λn are the largest and smallest eigenvalues of (H,M), respectively. This expression is

strictly increasing on the domain σ > −λn and is bounded above by κM (H + µM), and therefore

159

κH+µM (H + σjM) < κH+µM (H + σj+1M) < κM (H + µM) for all j. This implies that, in general, the

number of iterations required by SIGLTR will increase as the radius converges to zero. Of course, no

oracle to provide µ = σ1 exists, however, good choices of µ will exhibit similar asymptotic behavior.

As with GLTR, the matrix T computed by the Lanczos process can be recycled. If the i-th

vectors used in the Lanczos process are stored, then SIGLTR can begin solving the reduced problem

at iteration i, and proceed until termination. Thus, no unnecessary Lanczos vectors are computed. A

similar argument applies to the warm-started SIGLTR algorithm. Of course, the instability of the Lanczos

process still presents a problem, and thus the best results are found by combining the restart strategies of

this section and the previous section. To be more precise, for a given trust-region subproblem solved for a

decreasing sequence of trust-region radii, an upper limit on the number of SIGLTR iterations should be

set. Once this number is reached, the algorithm should be restarted with the technique of the previous

section independent of how many times the trust-region subproblem has been solved thus far. This upper

limit should depend on whether the Lanczos vectors are stored in memory, whether a reorthogonalization

scheme is used, and the estimated conditioning of the problem.

4.6 A Jacobi-Davidson Correction Trust-Region Algorithm

One advantage of the shifted and inverted GLTR algorithm is that the subproblem on the basis

spanned by the computed Lanczos vectors is increasing in dimension at each iteration. Unlike methods

that work with successive subspaces, no information is discarded as the algorithm proceeds. Provided that

the choice in shift µ is reasonably accurate, significantly fewer iterations are required than in standard

GLTR. However, there is still the unfortunate need to compute solutions to (H + µM)u = v at each

iteration. In many large, well-structured problems, sophisticated sparse factorization techniques can

mitigate this issue. However, an upper limit of matrix size and density exists where using explicit matrix

factorizations becomes infeasible. One reasonable option would be to solve (H + µM)u = v at each

iteration via an iterative method. As H+µM is constructed to be positive definite, the conjugate-gradient

or preconditioned conjugate-gradient method is a natural choice. Unfortunately, a tight convergence

criterion must be employed to ensure sufficient accuracy. Otherwise, the computed solution will have

some error component away from the actual Lanczos vector. This will lead to each iteration requiring

many matrix-vector products to calculate the necessary Lanczos vector to high precision.

Furthermore, unlike using an approach based on explicit matrix factors, no work can be preserved

between each iteration. One benefit of this approach is that an arbitrary preconditioner of H + µM may

be used, giving this approach somewhat more flexibility. However, the high degree of accuracy needed

160

makes this method prohibitively expensive.

Instead, it would be convenient to derive a method that builds up an orthonormal basis of

subspaces, like SIGLTR, in which the basis vectors can be computed by solving a linear system with

low accuracy. These goals are accomplished by relaxing the requirement that the subspace be a Krylov

subspace.

Consider some initial guess of the trust-region problem’s primal-dual solution (x0, σ0), and the

corresponding residual vector r0 = −g − (H + σ0M)x0. Furthermore, suppose that x0 is scaled such that

it is the best approximation in the span of the matrix V = (v0), and that σ0 is the appropriate dual

variable, i.e. so that rT0 x0 = 0. Finally, let σ∗ be the optimal value of σ. The motivating idea is to extend

the search space by adding a column v1 to the matrix V such that vT1 Mx0 = 0, and that solution in the

expanded basis reduces the residual to zero. This ideal vector is constructed by solving the following

problem, referred to as the correction equation:

(H + σ∗M)(x0 + v1) = −g, vT1 Mx0 = 0, (4.47)

or equivalently

(H + σ∗M)v1 = r0 + (σ0 − σ∗)Mx, vT1 Mx0 = 0.

Solving this equation exactly would yield the solution to the trust-region subproblem. However, as σ∗ is

unknown at this point, it is replaced with the best approximation available, i.e., σ0, yielding

(H + σ0M)v1 = r0, vT1 Mx0 = 0. (4.48)

By the second condition, v1 = (I − (x0x
T
0 M)/(xT

0 Mx0))v1, so

(H + σ0M)(I − x0x
T
0 M

xT
0 Mx0

)v1 = r0.

This equation can be projected onto the space spanned by Mx0 and its orthogonal complement.

Mx0x
T
0

xT
0 Mx0

(H + σ0M)(I − x0x
T
0 M

xT
0 Mx0

)v1 =
Mx0x

T
0

xT
0 Mx0

r0 = 0,

as rT0 x0 = 0 by assumption, and

(I − Mx0x
T
0

xT
0 Mx0

)(H + σ0M)(I − x0x
T
0 M

xT
0 Mx0

)v1 = (I − Mx0x
T
0

xT
0 Mx0

)r0 = r0.

161

Putting everything together, the correction equation is

(I − Mx0x
T
0

xT
0 Mx0

)(H + σ0M)(I − x0x
T
0 M

xT
0 Mx0

)v1 = r0, vT1 Mx0 = 0.

This correction equation is similar to the correction equation used in the Jacobi-Davidson method for

solving eigenvector problems (see [10]). However, in that case, the residual takes a different form. As it is

used here to correct the error in the solution to the trust-region equation, the same terminology is used.

It is for this reason that this method is called the Jacobi-Davidson trust-region algorithm (JDTR). Once

solved, v1 is added to the search space matrix V , and the subproblem

min
y∈R2

1

2
yTV THV y + gTV y

subject to ||y||V TMV ≤ δ,

is solved. The solution is approximated as x1 = V y, and σ1 is set to the dual variable of the above

problem. The residual is computed to be r1 = −g − (H + σ1M)x1. A new correction equation is solved,

and v2 is added to V . However, as v2 is only guaranteed to be M -orthogonal to x1, it is important to use

Gram-Schmidt biorthogonalization on v2 against the vectors currently in V . Thus, the main computational

work at each iteration lies in solving the correction equation

(I − Mxix
T
i

xT
i Mxi

)(H + σiM)(I − xix
T
i M

xT
i Mxi

)vi+1 = ri, vTi+1Mxi = 0, (4.49)

and maintaining the M -orthogonality of the basis vectors.

A solution y to the subproblem at any iteration k satisfies the equation

V Tg + V T(H + σM)V y = V T(g + (H + σM)V y) = 0.

This is equivalent to imposing a Galerkin condition on x at each iteration, i.e.,

x ∈ range(V), and g + (H + σM)x ⊥ V,

which enforces the condition rTk xk = 0 for all k.

A reasonable question would be whether it is crucial to enforce the condition vTk+1Mxk = 0 when

computing search directions. If this condition is dropped, and H + σM is nonsingular (as will most

162

commonly be the case), then (4.48) becomes

vi+1 = −(H + σiM)−1g − xi.

However, if the algorithm is reasonably far along, then x will already be a good approximation of

−(H + σM)−1g, meaning that very little new information is obtained. If g = 0, the solution becomes

v = −x, and no new information is obtained. Thus, enforcing the condition vTk+1Mxk = 0 ensures

that the subspace remains robust and keeps the algorithm from breaking down prematurely. This is

particularly important when using floating point arithmetic, as round-off error and the instability of

the Gram-Schmidt process will cause the search directions to become linearly dependent. The biggest

remaining question is how to solve the correction equation (4.49). If H + σM is positive definite, then

H̄ = (I −Mxkx
T
k /(x

T
kMxk))(H + σM)(I − xkxT

kM/(xT
kMxk)) is positive definite on the M -orthogonal

complement of xk. Therefore, preconditioned conjugate-gradient is a viable choice of algorithm. Let

B ≈ H + σiM be some preconditioner for H + σiM . Then

B̄ = (I − Mxkx
T
k

xT
kMxk

)B(I − xkx
T
kM

xT
kMxk

)

is a suitable preconditioner for H̄. What remains to show is how to solve the equation B̄u = v, uTMxk = 0,

where vTxk = 0. As uTMxk = 0, (I − xkx
T
k M

xTk Mxk

)u = u, so

(I − Mxkx
T
k

xT
kMxk

)Bu = v.

Therefore,

u = αB−1Mxk +B−1v.

The scalar α can be determined via the condition uTMxk = 0.

0 = xT
kMu = αxT

kMB−1Mxk + xT
kMB−1v,

or

α = − xT
kMB−1v

xT
kMB−1Mxk

.

Note that B−1Mxk need only be computed once.

Suppose the preconditioned conjugate-gradient algorithm is used to solve H̄kvk+1 = −rk exactly.

163

In that case, the Jacobi-Davidson trust-region algorithm will require prohibitively many matrix-vector

products per iteration, much like SIGLTR using preconditioned conjugate-gradient to solve for each

Lanczos vector. Fortunately, as the Jacobi-Davidson trust-region method does not impose any conditions

on the matrix V besides M -orthogonality, equation (4.47) need not be solved exactly. Relatively loose

stopping criteria are sufficient to achieve fast convergence. In addition, suppose at some iteration k, the

matrix (H + σkM) is not positive semidefinite. The preconditioned conjugate gradient algorithm can still

be applied as long as it is terminated once the indefiniteness is detected. The vector vk computed thus far

can still be used to expand the subspace. Alternatively, an algorithm that does not require H + σM to be

positive definite, such as MINRES or MINRES-QLP, could be used instead of preconditioned conjugate

gradient.

At the same time, if the correction equations are sufficiently well conditioned, in the sense that

preconditioned conjugate-gradient can be allowed to run to completion, then the algorithm can exhibit

rapid convergence, as shown by the following theorem.

Theorem 4.6.1. Suppose the correction equation (4.49) is solved exactly at each iteration. Then, if the

initial vector x1 is sufficiently close to the optimal solution x∗, the sequence of iterates {xk} converges s

quadratically to x∗, and the sequence of Lagrange multipliers {σk} converges to σ∗.

Proof. Let x∗ and σ∗ be the optimal solution and Lagrange multiplier to the trust-region subproblem given

by H, M , g, and δ. Let x1 and σ1 be the starting point of the algorithm, with r1 = −g − (H − σ1M)x1

such that rT1 x1 = 0. By Theorem 4.1.1, (H + σ∗M)x∗ + g = 0. Then x∗ can be written as x∗ = x1 + e1,

where e1 is the error. Then,

(H + σ1M)e1 = (H + σ1M)x∗ − (H + σ1M)x1

= (H + σ∗M)x∗ + (σ1 − σ∗)Mx∗ − (H + σ1M)x1

= −g − (H + σ1)x1 + (σ1 − σ∗)Mx∗

= r1 + (σ1 − σ∗)Mx∗.

(4.50)

Let v2 be the exact solution to the correction equation (4.49), so

(
I − Mx1x

T
1

xT
1 Mx1

)
(H + σ1M)v2 = r1, and vT2 Mx1 = 0.

164

Note that by construction, (I − Mx1x
T
1

xT1 Mx1

)r1 = r1. Now,

x∗ − (x1 + v2) = e1 − v2.

Thus, for quadratic convergence, it suffices to show that

||x∗ − (x1 + v2)|| = ||e1 − v2|| = O(||e1||2).

Multiplying (4.50) by the projection operator (I − Mx1x
T
1

xT1 Mx1

) and subtracting from the correction equation

gives (
I − Mx1x

T
1

xT
1 Mx1

)
(H + σ1M)(e1 − v2)

= (σ1 − σ∗)

(
I − Mx1x

T
1

xT
1 Mx1

)
Mx∗

= (σ1 − σ∗)

(
I − Mx1x

T
1

xT
1 Mx1

)
Mx1 + (σ1 − σ∗)

(
I − Mx1x

T
1

xT
1 Mx1

)
Me1

= (σ1 − σ∗)

(
I − Mx1x

T
1

xT
1 Mx1

)
Me1.

(4.51)

Multiplying (4.50) by xT
1 and using the fact that rT1 x1 = 0 gives:

σ1 − σ∗ =
xT
1 (H + σ1M)e1

xT
1 Mx∗

. (4.52)

Thus,

||(σ1 − σ∗)

(
I − Mx1x

T
1

xT
1 Mx1

)
Me1|| = O(||e1||2).

Assuming that H + σ1M is nonsingular, the result follows.

A second advantage Jacobi Davidson trust-region has over SIGLTR is that it can be restarted

using the best approximation xk found thus far without resorting to any block-matrix structure. Once a

set number of iterations is reached, the current estimate xk can be used as the first column of a new basis

matrix V . This is useful for keeping the memory requirements down to a fixed, reasonable level and the

subproblem sufficiently small.

Now, the first several iterations of this method are likely to yield approximations σk that are far

from σ∗. If σk < σ∗, then the matrix H + σkM may be very poorly conditioned, as σk may be arbitrarily

close to some eigenvalue, making the matrix H + σkM nearly singular. It is efficient to begin with a

low-rank basis matrix V that is simple to compute and yields a reasonable approximation of σ∗. Thus,

165

for the first ℓ iterations, the correction equation (4.49) is modified, replacing σk with some σ̂ chosen

beforehand such that H + σ̂M is positive definite. The larger the value of σ̂, the lower the condition

number of H+ σ̂M , making the first few iterations require fewer conjugate-gradient iterations. This allows

the method to build up an initial subspace and helps to avoid any iterations where the preconditioned

conjugate-gradient method requires too many iterations to be feasible. This is particularly useful if

MINRES is used to solve (4.49), as most off-the-shelf implementations of MINRES do not track whether

indefiniteness has been detected.

The Jacobi-Davidson trust-region method will converge in at most n iterations, where n is the

dimension of the problem. However, convergence is typically achieved significantly faster. If ℓ is chosen

large enough to avoid any ill-conditioned instances of the correction equation, the algorithm typically

requires just a few more iterations. The algorithm may even converge before ℓ iterations if the trust-region

problem is well-conditioned. Furthermore, any preconditioner of the form H + σkM may be used to solve

the k-th correction equation, giving the algorithm quite a bit of flexibility. The preconditioner need not

be updated at each iteration. It can instead be reused at each iteration, particularly when |σk − σk+1| is

small.

To accommodate the hard case, including a randomly initialized vector u in the initial matrix V

suffices. When restarting, the new matrix V should include a column consisting of the best approximation

of the left-most eigenvector.

Overall, the Jacobi-Davison trust-region method behaves quite well in practice. However, it tends

to struggle with particularly ill-conditioned problems. The principal advantages of this method over

SIGLTR are that any preconditioner can be used and that the linear systems solved at each step need not

be solved exactly. Furthermore, as the value of σ is updated in the correction equation at each iteration,

this method often requires fewer iterations than SIGLTR. However, considerably more computation is

needed to compute each basis vector. Therefore, SIGLTR is still recommended if factoring one matrix of

the form H + σM is not prohibitively expensive. If, on the other hand, factoring H + σM constitutes the

vast majority of the run time of SIGLTR, then the Jacobi-Davidson trust-region method is preferred. Of

course, the algorithm presented here is only one potential variant. Other methods that either solve the

correction equation using different techniques or solve approximations of the correction equation could be

implemented and found to have differing degrees of effectiveness.

The Jacobi-Davidson trust-region algorithm is presented in Algorithm 4.3.

166

Algorithm 4.3. Jacobi-Davidson Trust-Region Algorithm

1: Given H,M ∈ Rn×n, M ≻ 0, g ∈ Rn, x0 ∈ Rn with xT
0 Mx0 ≤ δ2, σ0 ≥ 0 such that r0 =

−g − (H + σ0M)x0 satisfies rT0 x0 = 0, and ε > 0.
2: Given ℓ > 0 and m > 0.
3: Given σ̂ such that H + σ̂M ≻ 0.
4: Returns x and σ such that ||g + (H + σM)x||22 ≤ ε and

√
xTMx ≤ (1 + ε)δ.

5: k ← 0.
6: r0 ← −g − (H + σ0M)x0.
7: if ||r0||22 ≤ ε then
8: exit.
9: end if

10: v0 ← x0/
√
xT
0 Mx0

11: V ←
[
v0 u

]
, where u is a random vector.

12: k ← 0
13: while ||rk||22 ≤ ε do
14: if k < m then

15: u← argminu̸=0,u∈range(V)
uTHu

uTMu

16: vk ← xk/
√
xT
kMxk

17: V ←
[
vku
]

18: end if
19: if k ≤ ℓ and σk ≤ σ̂ then
20: σ̄ ← σ̂
21: else
22: σ̄ ← σk
23: end if

24: Solve (I − Mxkx
T
k

xTk Mxk

)(H + σ̄M)(I − xkx
T
k M

xTk Mxk

)vi+k = rk, vTi+kMxk = 0

25: M -othonormalize vk+1 against V
26: V ←

[
V vk+1

]
27: Solve miny∈Rk+1{ 12y

TV THV y + gTV Ty : yTV TMV y ≤ δ2}
28: xk+1 ← V y
29: rk+1 ← −g − (H + σkM)xk+1

30: end while

Recall from Section 2.5 the convergence of a trust-region method requires that the computed

solution yields a value of the objective function that is less than a fixed fraction of the value of the

objective function for some steepest-descent direction. Thus, in order to guarantee convergence, it suffices

to choose an initial vector x0 that is the steepest-descent direction in some norm. Since the subspace is

expanded at each iteration, the objective value is guaranteed to decrease until restarting. At a restart,

the new starting vector is the best approximation thus far, so the value of the objective function cannot

increase. Therefore, choosing x0 = −αg for some scalar α is sufficient convergence of an outer trust-region

method using the Jacobi-Davidson trust-region algorithm to solve the trust-region subproblem.

167

4.7 A Locally-Optimal Preconditioned Conjugate-Gradient
Trust-Region Algorithm

The main aspect that both SIGLTR and the JDTR have in common is that they work with a

sequence of expanding subspaces, i.e., the subspace on which the trust-region subproblem is solved is

extended by at least one vector per iteration. As both of these methods are designed to require significantly

fewer iterations than GLTR, the subproblem can be expected to remain reasonably low dimensional.

Thus each method requires reasonably few iterations. The trade-off is that computing each subsequent

basis vector comes at a significant computational effort in each technique. As a result, there may be

some problems in which neither of these methods is feasible. The overwhelming majority of optimization

algorithms for solving arbitrary problems, such as gradient descent or nonlinear conjugate gradient, operate

by computing a new search direction at each iteration, and discarding all previous search directions, in

direct contrast to the methods described thus far. Thus, to solve problems in which computing the new

search direction in each of the previous methods is infeasible, it stands to reason that a method requiring

more iterations, but less computation per iteration, will offer some advantages. The preconditioned

conjugate-gradient algorithm for solving linear systems of the form Hx = b, where H is positive definite,

motivates such a method. The preconditioned conjugate-gradient algorithm can be seen in Algorithm 1.1.

The preconditioned conjugate gradient is derived as a method for minimizing the quadratic

function

q(x) =
1

2
xTHx+ gTx,

where H is symmetric positive definite. An instance of the trust-region problem in which σ = 0 is

thus equivalent to this unconstrained minimization problem and can be solved with the same algorithm.

However, the preconditioned conjugate-gradient algorithm cannot be applied to any instance of the

trust-region subproblem with σ > 0. As σ is not known, it also cannot be used to solve the system

(H + σM)x = −g, or equivalently the problem

min
x∈Rn

q(x) +
σ

2
(xTMx− δ2).

However, techniques employed by this algorithm can still be used.

In line 11 of Algorithm 1.1, the scalar α is determined by performing an exact line search along

the direction pk. As seen in the review of Lanczos-CG, this is equivalent to finding the optimal solution

xk restricted to the subspace span{p0, . . . , pk}. In the shifted and inverted GLTR method, this property

168

is preserved, with the trade-offs of being unable to use an arbitrary preconditioner and needing to either

store or regenerate every search vector once the termination criteria are satisfied. In this method, the

opposite trade-off is made.

Consider line 12 of the conjugate-gradient algorithm, x ← x + αkpk. This is equivalent to

performing the operation

x← argmin
v=x+αpk,α∈R

gTv +
1

2
vTHv,

which in turn is equivalent to

x← argmin
v∈span{x,pk}

gTv +
1

2
vTHv.

By line 18, pk = zk + βkpk−1. Therefore, line 12 is, in exact precision, equivalent to the locally optimal

update

x← argmin
v∈span{x,zk,pk−1}

gTv +
1

2
vTHv.

In the case of the trust-region algorithm, this three-term recursion is modified to suit the structure

of the trust-region subproblem. In what follows, pk−1 denotes the previous search direction, rk denotes

the current residual rk = −g− (H + σkM)xk, where σk is the current approximation of σ, and zk denotes

the solution to Bzk = rk, for some positive definite preconditioner B. The update step becomes

x← argmin
v

gTv +
1

2
xTHx

subject to v ∈ span{x, zk, pk−1},

||v|| ≤ δ,

(4.53)

and σk is updated with the value of σ from the above low-dimensional trust-region subproblem. The

low-dimensional problem can be solved quickly using the Moré-Sorensen algorithm. Therefore, the new

vector is a linear combination of the previous estimate, the preconditioned residual, and the previous

search direction, i.e.,

xk+1 = γkxk + αkzk + βkpk−1,

where γk, αk, and βk, are determined by solving the low dimensional subproblem. The vector pk is

intuitively set to

pk = xk+1 − xk.

Observe this update guarantees that xk ∈ span{xk+1, pk}. Thus, the previous approximation lies within

the subsequent three-dimensional subspace. The basis {xk, zk, pk−1} is preferred over the equivalent basis

169

{xk, zk, xk−1} simply because, as the algorithm converges, xk and xk−1 will only differ slightly. The

matrix

[
xk zk xk−1

]
will have nearly linearly dependent columns. The new residual is given by

rk+1 = −g − (H + σk+1M)xk+1

= −g − (H + σk+1M)(xk + pk)

= −g − (H + σkM + (σk+1 − σk)M)(xk + pk)

= −g − (H + σkM)xk − (H + σkM)pk + (σk − σk+1)M(xk + pk)

= rk − (H + σk+1M)pk + (σk − σk+1)Mxk

(4.54)

Notice that this update differs from the residual update in the conjugate-gradient algorithm in that an

extra vector Mxk is needed. This vector is also used to compute the scalars γk, αk, and βk−1. In the

preconditioned conjugate-gradient algorithm, the subproblem is solved via an exact line search, which can

be calculated explicitly without resorting to any iterative algorithm. In the trust-region case, this property

is discarded, and the subproblem is solved via an iterative method. However, it is well known that in

floating-point arithmetic, the H-conjugacy of the search directions is lost as the algorithm proceeds. In

the trust-region case, this implies that the vectors {xk, zk, pk−1} will eventually become nearly linearly

dependent, creating difficulties for the iterative algorithm to solve the subproblem. To mitigate this effect,

the Gram-Schmidt biorthogonalization process is used at each iteration to force the search directions

to be M -orthogonal. In addition, column pivoting can be included to detect better when a breakdown

has occurred. This gives enough to form an initial locally-optimal preconditioned conjugate-gradient

trust-region algorithm (LOPCGTR).

170

Algorithm 4.4. Locally-Optimal Preconditioned Conjugate-Gradient Trust-Region Algorithm

1: Given H,M ∈ Rn×n, M ≻ 0, B ∈ Rn×n such that Bz = r is simple to compute and B ≻ 0, x0 ∈ Rn,
σ0 ≥ 0, g ∈ Rn, ε > 0.

2: Returns x and σ such that ||g + (H + σM)x||22 ≤ ε and
√
xTMx ≤ (1 + ε)δ.

3: k ← 0.
4: r0 ← −g − (H + σ0M)x0.
5: if ||r0||22 ≤ ε then
6: exit.
7: end if
8: Solve Bz0 = r0
9: p−1 ← 0

10: while Not Converged do
11: Z ←

[
xk zk pk−1

]
12: (MZ)←MZ
13: (Z, (MZ), R, r)← qr(Z, (MZ))
14: (HZ)← HZ
15: (ZHZ)← ZT(HZ)
16: (ZMZ)← ZT(MZ).
17: (Zg)← ZTg
18: y ← argminy∈Rr{ 12y

T(ZHZ)y + (Zg)Ty : yT(ZMZ)y ≤ δ2}
19: pk ← (HZ)y − xk
20: xk+1 ← xk + pk
21: σk+1 ← dual solution
22: rk+1 ← rk − (H + σk+1M)pk + (σk − σk+1)Mxk
23: if rk+1 is sufficiently small then
24: exit
25: end if
26: Solve Bzk+1 = rk+1

27: end while

The operation (Z, (MZ), R, r) ← qr(Z, (MZ)) refers to the action of biorthonormalizing the

columns of the matrices Z and (MZ), by left multiplying by the matrix R, where r denotes the numerical

rank of the result.

This method could be modified to include a larger history of previous search directions so that

each iteration solves a subproblem over the subspace span{xk, zk, pk−1, . . . , pk−ℓ} for some ℓ > 0. For the

first ℓ iterations, the iterates would be, in exact arithmetic, equivalent to the first ℓ iterations of shifted

and inverted GLTR, assuming the same preconditioner is used. However, the cost of biorthonormalizing

the subspace at each iteration grows rapidly with ℓ. For this reason, the subspace should be limited to

one previous search direction.

It is worth noting that this is only one potential implementation of a conjugate-gradient style

algorithm for solving the trust-region subproblem. For example, instead of solving the low dimensional

subproblem exactly, the update of x could be x← x+αkpk, where αk would be computed via an exact line

search. Due to the simple structure of the trust-region problem, an exact line search in any direction can

171

be calculated explicitly. The update to the search direction could similarly be replaced by pk ← zk + βkpk,

where βk would be computed by any of the numerous expressions used in the nonlinear conjugate-gradient

method. However, the trust-region problem has a convenient structure that makes finding the locally

optimal update based on the three vectors xk, zk, and pk−1 relatively straightforward. Therefore this

version is preferred.

As previously mentioned, if the solution x∗ to the trust-region problem is an unconstrained

minimizer with ||x|| < δ, then this algorithm reverts to the standard conjugate-gradient algorithm for

solving Hx = −g. With this in mind, the algorithm could be broken up into two phases: an initial

conjugate-gradient phase that runs until either the trust-region constraint is violated or indefiniteness of

H is detected, and then a second phase that runs the locally-optimal preconditioned conjugate-gradient

trust-region algorithm.

Now, consider the case where the trust-region subproblem is an instance of the hard case and

x0 = 0. Then clearly, this algorithm will not converge to the true solution, as no search directions will

ever be generated with a nonzero component in the direction of the leftmost eigenvector un. Thus, to

accommodate convergence to the solution in the hard case from x0 = 0, a secondary step approximating

u = un must be included. Before updating any vectors, a second subproblem

uk+1 = argmin
u∈span{xk,uk,zk,pk−1}

uTHu

uTMu

is solved. The initial choice of u0 must be randomly initialized. Otherwise, the leftmost eigenvector may

not be found. This ensures that no components of the leftmost eigenvector are lost as the iterations

proceed, yielding a reasonable approximation of the leftmost eigenvector by the time convergence is

reached. This is sufficient to formulate a method that converges even in the hard case.

172

Algorithm 4.5. Locally-Optimal Preconditioned Conjugate-Gradient Trust-Region Algorithm V2

1: Given H,M ∈ Rn×n, M ≻ 0, B ∈ Rn×n such that Mz = r is simple to compute and B ≻ 0, σ0 ≥ 0,
x0, u0 ∈ Rn, g ∈ Rn, ε > 0.

2: Returns x and σ such that ||g + (H + σM)x||22 ≤ ε and
√
xTMx ≤ (1 + ε)δ.

3: r0 ← −g −Hx0.
4: if ||r0||22 ≤ ε then
5: exit.
6: end if
7: Solve Bz0 = r0
8: p−1 ← 0
9: while Not Converged do

10: Z ←
[
xk uk zk pk−1

]
11: (MZ)←MZ
12: (Z, (MZ), R, r)← qr(Z,MZ)
13: (HZ)← HZ
14: (ZHZ)← ZT(HZ)
15: (ZMZ)← ZT(MZ).
16: (Zg)← ZTg
17: y ← argminy∈Rr{ 12y

T(ZHZ)y + (Zg)Ty : yT(ZMZ)y ≤ δ2}

18: q ← argminq∈Rr
qT(ZHZ)q

qT(ZMZ)q

19: pk ← Zy − xk
20: xk+1 ← xk + pk
21: σk+1 ← dual solution
22: uk+1 ← Zq
23: rk+1 ← rk − (H + σk+1M)pk + (σk − σk+1)Mxk
24: if rk+1 is sufficiently small then
25: exit
26: end if
27: Solve Bzk+1 = rk+1

28: end while

The preconditioner B is chosen so that B ≈ H+σ∗M , where σ∗ is the optimal Lagrange multiplier.

Unfortunately, σ∗ is not known ahead of time, so instead, M is chosen such that B ≈ H + σ̂M , where σ̂

is some approximation of σ∗. In most implementations of preconditioned conjugate-gradient, a restarting

scheme is utilized to help mitigate the effects of the numerical instability of the Gram-Schmidt process.

The LOPCGTR algorithm can be restarted similarly. Say the algorithm is restarted after m iterations.

Before the algorithm is resumed, the preconditioner B may be updated using the current estimate of σ so

that B ≈ H + σmM . This can significantly reduce the number of iterations until convergence and helps

to ensure that not too many restarts are required.

In the standard conjugate-gradient algorithm, the residual rk = b−Hxk is the gradient of the

quadratic objective function 1
2x

THx− bTx. Therefore, the conjugate-gradient method is guaranteed to

converge at least as fast as gradient descent and is guaranteed to converge. However, in the LOPCGTR

algorithm, rk = −g− (H+σkM)xk is not the gradient of any obvious function. Instead, it is the derivative

173

of the Lagrangian function L with respect to the primal variables x. To better motivate convergence,

it would help to show that the residual vector rk is colinear with the gradient of some unconstrained

objective function that shares a global minimum x∗ with the trust-region problem.

Consider the case where the solution x satisfies the trust-region constraint so that ||x||M = δ.

Then the value of the objective function q(x) is equivalent to the value of the function

w(x) = δ2
1
2x

THx+
||x||M
δ

gTx

xTMx
.

This function is continuous everywhere except at x = 0. Furthermore, for any x ̸= 0, w(αx) = αw(x) for

all α > 0. Thus, if x is a constrained global minimizer of the trust-region subproblem, then αx is a global

minimizer of w for all α > 0. Note that for any α > 0, αx is not an isolated minimizer of w. Now, w and

q agree on the trust-region boundary but not on the interior of the trust region. Let

f(x) = δ2
1
2x

THx+
max(||x||M , δ)

δ
gTx

max(xTMx, δ2)
.

Then f(x) = q(x) for all x such that ||x||M ≤ δ, and if ||x||M = δ, f(αx) = q(x) for all α ≥ 1. Thus,

if x is either an unconstrained or constrained global minimizer of the trust-region problem, then x is

an unconstrained global minimizer of f . On the other hand, if x is an unconstrained minimizer of f ,

then x̄ = (δ/max(δ, ||x||M))x is a minimizer of the trust-region problem. Thus, techniques for solving

unconstrained problems (such as the nonlinear conjugate-gradient method) can be used to solve the

trust-region problem. The gradient of f is clearly discontinuous on {x : ||x||M = δ}. However, it will be

shown that this does not present any difficulties. First, on the interior of the trust-region {x : ||x||M < δ},

f(x) = q(x), so

∇f(x) = g +Hx.

On the set {x : ||x||M > δ}, f(x) = w(x), so ∇f(x) = ∇w(x), and

∇w(x) = δ2

xTMx

 ||x||M
δ

g +Hx−

 ||x||Mδ gTx+ xTHx

xTMx

Mx

 .

Let {xn} ⊂ {x : ||x||M > δ} be a sequence outside the trust-region that converges to a point x̂ on the

trust-region boundary. Then

lim
xn→x̂

∇f(x) = g +Hx+ σ̄(x)Mx,

174

where

σ̄(x) = −
||x||M

δ gTx+ xTHx

xTMx
.

If

σ̃(x) =


0 if ||x||M < δ

σ̄(x) if ||x||M ≥ δ,

then

∇f(x) = δ2

max(xTMx, δ2)

(
max(||x||M , δ)

δ
g +Hx+ σ̃(x)Mx

)
everywhere but the boundary of the trust region. Let

h(x) =
δ2

max(xTMx, δ2)

(
max(||x||M , δ)

δ
g +Hx+ σ̃(x)Mx

)
,

with domain Rn. Suppose that x is a minimizer of f satisfying ||x||M = δ. Then x is a constrained

minimizer of the trust-region problem. Therefore, a σ > 0 exists such that g +Hx+ σMx = 0. By left

multiplying by x, it holds that

σ = −
gTx+ 1

2x
THx

xTMx
= −

||x||M
δ

gTx+ 1
2x

THx

xTMx
= σ̃(x).

Thus, if x is a minimizer of f , then h(x) = 0, even where ∇f(x) is undefined. The residual vector

rk = −g− (H +σkM)xk used in the LOPCGTR algorithm is equivalent to −g− (H + σ̃(xk)M)xk when x

is restricted to the trust-region, and is colinear with h(x). It is worth mentioning that, in the constrained

case, σ∗ does not necessarily maximize the function σ̃(x). Note that the locally optimal update step

guarantees each iterate xk lies within the trust region. Therefore, the LOPCGTR algorithm can be

expected to converge at least as fast as the nonlinear conjugate-gradient algorithm applied to the function

f(x), and is guaranteed to converge.

Overall, the trust-region conjugate-gradient algorithm performs in a very predictable manner.

Convergence requires more iterations than in the shifted and inverted SIGLTR algorithm when B = H+µM ,

where µ is the shift parameter. This is because subsequent iterations discard previous information. However,

the subproblem being solved is limited to four dimensions, unlike SIGLTR, in which the subproblem adds

a new search direction at each iteration without discarding any previous information. Furthermore, the

computation required to compute each new search direction only requires the solution of the preconditioning

equation Bzk = rk instead of the significantly more costly (H + µM)u = v. In addition, the conjugate-

175

gradient trust region method is considerably more flexible in choosing a preconditioner. Any positive

definite matrix B can be used, whereas SIGLTR is restricted to preconditioners of the form B = H + µM .

Overall, SIGLTR is still the preferred method if one factorization of H+µM is not prohibitively expensive.

Experiments also indicate that this conjugate-gradient style algorithm performs much more

favorably than the Jacobi-Davidson style algorithm in practically all cases. At best, the Jacobi-Davidson

style algorithm required a comparable number of conjugate-gradient iterations while requiring the additional

overhead of orthogonalizing the update vector against every computed vector thus far. The only true

advantage the Jacobi-Davidson trust-region method maintains is that the correction equation can be

solved via any means possible, simplifying the method if the objective and constraint matrices have a

particular structure.

Recall from Section 2.5 the convergence of a trust-region method requires that the computed

solution yields a value of the objective function that is less than a fixed fraction of the value of the objective

function for some steepest-descent direction. If the locally-optimal preconditioned conjugate-gradient

algorithm is not warm started and used a preconditioner B, the first search space is a one-dimensional

subspace spanned by z1 = B−1r1 = −B−1g. As B is chosen to be positive definite, z1 is the steepest-

descent direction in the B norm. Furthermore, the current subspace span{xk, rk, pk−1} always contains

xk and xk−1, so the value of the objective function can only decrease at each iteration. Thus, the locally-

optimal preconditioned conjugate-gradient algorithm guarantees a sufficient reduction of the quadratic

objective function after 1 iteration.

4.8 Doubly-Augmented Trust-Region Problems

In the trust-region method for unconstrained optimization, the trust-region subproblem is typically

of the form

min
d∈Rn

dTg +
1

2
dTHd

subject to ||d|| ≤ δ,

where g is the gradient of the objective function f , and H is the (potentially indefinite) Hessian of f .

Depending on the problem, Moré-Sorensen, SIGLTR, or LOPCGTR can reliably solve the trust-region

subproblem to any arbitrary level of accuracy. In the constrained case, as shall be seen in later chapters,

176

the trust-region method can be applied with trust-region subproblems of the form

min
dx∈Rn,dy∈Rm

(
gTx gTy

) dx

−dy

+
1

2

(
dTx −dTy

)H + 2JTD−1J −JT

−J D


 dx

−dy


subject to

(
dTx −dTy

)B1,1 BT
2,1

B2,1 B2,2


 dx

−dy

 ≤ δ2,
(4.55)

where D is a diagonal and positive definite matrix. Let

HM =

H + 2JTD−1J −JT

−J D

 , and B =

B1,1 BT
2,1

B2,1 B2,2

 .

The superscript on HM denotes that H is the Hessian matrix of some merit function. Due to the 2JTD−1J

term in the upper diagonal block, the matrix B is referred to as doubly augmented. The doubly-augmented

structure of HM makes this problem considerably more difficult to solve than the general sparse case.

If J is sparse, then even performing the matrix triple product JTD−1J may be prohibitively expensive.

Moreover, if J has a single dense row, the resulting matrix HM will have a dense upper left block.

Additionally, the objective matrix HM is extremely ill-conditioned in the Euclidean norm, partic-

ularly when the elements of D approach either 0 or infinity. Thus, special consideration must be given

to any implementations of the previous algorithms for problems of this form. It is also crucial that the

matrix B be chosen carefully, so whatever special treatment is given to the matrix HM can be given to

matrices HM + σB. For this reason, two special cases of the matrix B are considered:

B(1) =

I 0

0 D

 , and B(2) =

I + 2JTD−1J −JT

−J D

 , (4.56)

both of which are positive definite.

Proof. B(1) is clearly positive definite given that D is positive definite. Let R̂ denote the matrix

R̂ =

I JTD−1

0 I

 .

177

Then

R̂B(2)R̂T =

I + JTD−1J 0

0 D

 .

Note that R is nonsingular, with

R̂−1 =

I −JTD−1

0 I

 .

The identity matrix is positive definite, and the matrix JTD−1J is positive semidefinite. Thus, the Schur

complement matrix I + JTD−1J is also positive definite. Therefore, R̂B(2)R̂T is positive definite. For

any v ∈ Rn, vTB(2)v = vTR̂−1(R̂B(2)R̂T)(R̂T)−1v ≥ 0, with equality if v = 0. Thus, B(2) is positive

definite.

For both the Moré Sorensen and SIGLTR algorithms, inertia-revealing factors of HM + σM are

required, i.e., factorizations that also provide the integer triple In(HM + σM) = (n+, n−, n0), where n+ is

the number of positive eigenvalues, n− is the number of negative eigenvalues, and n0 is the number of 0

eigenvalues. The complete inertia is not strictly necessary, as a Cholesky decomposition can suffice to

determine if a matrix is positive definite. That being said, it is essential to factor matrices of this form

without computing the matrix triple product, and use said factors in determining whether the matrix is

positive definite. Let

R =

I 2JTD−1

0 −I

 . (4.57)

Observe that R2 = I. Define the following matrices:

K = RHM =

H JT

J −D

 ,

T (1) = RB(1) =

I 2JT

0 −D

 , and

T (2) = RB(2) =

I JT

J −D

 .

It then holds that HM +σB(i) = R(K+σT (i)), and (HM +σB(i))−1 = (K+σT (i))−1R for i = 1, 2. Thus,

178

it is sufficient to factor matrices of the form K + σT (i). Consider the case i = 1. Then

K + σT (1) =

H + σI (1 + 2σ)JT

J −(1 + σ)D

 .

This matrix is not symmetric. However, the columns can be scaled so that the resulting matrix is

symmetric. Let

S =

I 0

0 1
1+2σ

 , and K̂(1)
σ = (K + σT (1))S =

H + σI JT

J − 1+σ
1+2σD

 . (4.58)

Let σ̂ = (1+σ)/(1+2σ). As this matrix is symmetric, an inertia-revealing symmetric indefinite factorization

can be applied.

Theorem 4.8.1. HM +σB(1) is positive definite if and only if K̂
(1)
σ has exactly n positive and m negative

eigenvalues.

Proof.

HM + σB(1) =

H + σI + 2JTD−1J −JT

−J (1 + σ)D

 , (4.59)

so I 1
1+σJ

TD−1

0 I


H + σI + 2JTD−1J −JT

−J (1 + σ)D


 I 0

1
1+σD

−1J I


=

H + σI + 1
σ̂J

TD−1J

(1 + σ)D

 .

(4.60)

Therefore, HM +σB(1) is positive definite if an only if H +σI+ 1
σ̂J

TD−1J is positive definite. Conversely,

I 1
σ̂J

TD−1

0 I


H + σI JT

J −σ̂D


 I 0

1
σ̂D

−1J I

 =

H + σI + 1
σ̂J

TD−1J

−σ̂D

 ,

therefore In(K̂
(1)
σ) = (n,m, 0) if and only if H+σI+ 1

σ̂J
TD−1J is positive definite. The result follows.

Now, consider the case i = 2. Then

K + σT (2) =

H + σI (1 + σ)JT

(1 + σ)J −(1 + σ)D

 .

179

This matrix is already symmetric, so no additional transformations are required. The following result

shows that the inertia of HM + σB(2) can be inferred from the inertia of K + σT (2).

Theorem 4.8.2. The matrix HM + σB(2) is positive definite if and only if In(K + σT (2)) = (n,m, 0).

Proof. Consider the transformation

I JTD−1

0 I


H + σI + 2(1 + σ)JTD−1J −(1 + σ)JT

−(1 + σ)J (1 + σ)D


 I 0

D−1J I


=

H + σI + (1 + σ)JTD−1J

(1 + σ)D

 .

Therefore, HM + σB(2) is positive definite if an only if H + σI + (1 + σ)JTD−1J is positive definite.

Conversely,

I JTD−1

0 I


H + σI (1 + σ)JT

(1 + σ)J −(1 + σ)D


 I 0

D−1J I


=

H + σI + (1 + σ)JTD−1J

−(1 + σ)D

 .

Therefore, In(K + σT (2)) = (n,m, 0) if and only if H + σI + (1 + σ)JTD−1J is positive definite. The

result follows.

Note that any system involving HM + σB(i) can be solved in terms of K̂
(1)
σ , K + σT (2) and

the transformations R and S. Thus, any factorizations that need to be performed can be done with

an inertia-revealing symmetric indefinite factorization, allowing any of the algorithms discussed in the

previous sections for solving the trust-region problem to be applied. This is particularly beneficial for the

Moré Sorensen and SIGLTR algorithms, regardless of whether the problem being solved uses B(1) or B(2),

as K̂
(1)
σ and K + σT (2) share the same sparsity pattern.

However, some remarks must be made before applying the standard GLTR and the LOPCGTR

algorithms. Recall that the SIGLTR algorithm utilizes a matrix of the form HM +µB(i) as a preconditioner

in the Lanczos process, whereas GLTR uses B(i). The matrix B(1) is diagonal and thus does not require

any factorizations to solve the system B(1)u = v. On the other hand, B(2) has the same doubly-augmented

structure as HM and cannot be directly factored. Instead, the matrix T (2) can be factored, and the

system B(2)u = v can be solved via B(2)u = RT (2)u = v. Thus, applying the GLTR algorithm may be

180

limited to i = 1. At the same time, consider the case where the trust-region subproblem given by HM and

B(1) has σ = 0. Then the GLTR algorithm becomes the preconditioned conjugate-gradient method using

the matrix B(1) as a preconditioner. This system is poorly conditioned and thus may take far too many

iterations per trust-region subproblem to be considered viable. These factors must be considered before

choosing an algorithm.

The LOPCGTR algorithm requires some remarks as well. As in the case of preconditioned

conjugate gradient, the algorithm’s success largely depends on the choice of the preconditioner. For both

HM + σB(1) and HM + σB(2), an appropriate choice of the preconditioner is far from obvious due to the

presence of the doubly-augmented upper left block. In experiments, preconditioners N (i) were chosen to

have the form

N (1) =

G+ µI + 2JTD−1J −JT

−J (1 + µ)D


and

N (2) =

G+ µI + 2(1 + µ)JTD−1J −(1 + µ)JT

−(1 + µ)J (1 + µ)D

 ,

where G denotes the diagonal matrix such that Gi,i = Hi,i. Equations of the form N (i)u = v can be

solved using the same transformations R and T and an indefinite matrix with a similar sparsity pattern as

K + µT (i). In a typical problem, factoring N (i) should take less computation than factoring HM + σB(i).

However, if the dimension of the problem is particularly large, this may still be prohibitively expensive.

The common thread between the application of Moré Sorensen, GLTR, SIGLTR, and LOPCGTR

to the doubly-augmented trust-region problem is that particularly large problems may be out of reach for

all four methods, especially when at least one factorization of a saddle point matrix is required. What is

needed is a method that does not require any sparse factorization techniques but can still use an arbitrary

preconditioner to combat any ill-conditioning inherent to the problem. The Jacobi-Davidson trust-region

method, while an impractical choice in the general case, can be modified to meet these goals.

4.8.1 The Jacobi-Davidson QZ Trust-Region Algorithm

The modifications to the Jacobi-Davidson algorithm for solving the doubly-augmented trust-region

problem are inspired by the JDQZ algorithm for solving indefinite generalized eigenvalue problems. See

[10] for the details of the JDQZ algorithm. Hence, this algorithm is dubbed the Jacobi-Davidson QZ

trust-region algorithm (JDQZTR). This method exploits the relationship between the potentially dense

trust-region equations and the sparse indefinite saddle point systems of the previous section. Consider

181

problem (4.55), with either B = B(1) or M = B(2). By Theorem 4.1.1, the optimality conditions of this

problem are the following:

1. (HM + σB(i))x+ g = 0,

2. xTB(i)x ≤ δ2,

3. σ ≤ 0,

4. σ(δ2 − xTB(i)x) = 0, and

5. HM + σB(i) ⪰ 0.

Let g̃ = Rg. The first condition can be written as

(K + σT (i))x+ g̃ = 0.

The final condition is equivalent to the condition that the matrix HM +σB(i) has only positive eigenvalues.

If i = 1, then this is equivalent to K̂
(1)
σ having the correct inertia, and if i = 2, K + σT (2) having the

correct inertia. However, in the large-scale case, in which inertia-revealing factorizations are not viable,

this inertia condition is not particularly useful, as using it would require making commentary on every

single eigenvalue of an indefinite matrix. On the other hand, showing that all eigenvalues are positive

only requires commentary on the smallest eigenvalue, i.e., if the smallest eigenvalue is positive, then all

eigenvalues are positive. This motivates the following result.

Theorem 4.8.3. The matrix HM + σB(i), for some σ ∈ Rn and i ∈ {1, 2} is positive semidefinite if and

only if the generalized eigenvalue problem (K + σT (i))x = λT (i) has only nonnegative solutions.

Proof. Suppose the matrix HM +σB(i) has inertia (n+, n−, n0). As B
(i) is positive definite, it has a unique

positive definite square root. By Sylvester’s Law of Inertia, In((B(i))−1/2(HM + σB(i))(B(i))−1/2) =

(n+, n−, n0). The eigenvalue problem

(B(i))−1/2(HM + σB(i))(B(i))−1/2x = λx

is equivalent to

(HM + σB(i))y = λB(i)y,

182

where y = (B(i))−1/2x. Right multiplying by the matrix R gives

(K + σT (i))y = λT (i)y.

The result follows.

The Jacobi-Davidson method, as presented earlier, seeks to solve the standard trust-region

optimality conditions. The goal here is to devise a new method that seeks to solve the following equivalent

conditions:

1. (K + σT (i))x+ g̃ = 0,

2. xTB(i)x ≤ δ2,

3. σ ≥ 0,

4. σ(δ2 − xTB(i)x) = 0, and

5. (K + σT (i), T (i)) has no negative eigenvalues.

As (K + σT (i), T (i)) is not a symmetric-definite pencil, one would typically also have to add a condition

that all of the eigenvalues of are real (K + σT (i), T (i)) as well. However, the proof of Theorem 4.8.3 also

shows that all eigenvalues of (K + σT (i), T (i)) are real.

The main idea of the Jacobi-Davidson method is to build a suitable subspace on which to solve

a projected trust-region subproblem. The projected trust-region subproblem in JDTR is derived via a

Galerkin condition. However, due to the indefinite nature of the pencil under consideration, a Galerkin

condition may no longer be appropriate. Instead, consider a Petrov-Galerkin condition, in which the

search space range(V) is distinct from the test space range(W) for some basis matrices V and W . Let

r denote the residual vector (K + σT (i))x + g̃ = 0. Given a search space range(V) and a test space

range(W), the method seeks to solve the following projected conditions:

W T(K + σT (i))V y +W Tg̃ = 0 (4.61a)

yTV TB(i)V y ≤ δ2 (4.61b)

σ ≥ 0 (4.61c)

σ(δ2 − yTV TB(i)V y) = 0 (4.61d)

(W TKV + σW TT (i)V,W TT (i)V) has no real eigenvalues less than zero. (4.61e)

183

Projecting the generalized eigenvalue problem onto V and W may introduce complex eigenvalues. Observe

that condition 1 above is equivalent to finding a vector x ∈ V such that

(K + σT (i))x+ g̃ ⊥W.

To formulate a practical method out of these conditions, how to construct the subspaces V and W must

be understood. Additionally, a strategy is needed for solving the projected subproblem.

Suppose, at iteration k, k orthonormal basis vectors for both k-dimensional spaces Vk and

Wk are known, and some approximate solution xk ∈ Vk and σk ≥ 0 such that the residual vector

rk = −(K + σkT
(i))xk − g̃ is orthogonal to Wk has been computed. The next basis vector is found by

approximately solving the correction equation

(
I − zkz

T
k

zTk zk

)
(K + σkT

(i))

(
I − xkx

T
k

xT
k xk

)
vk+1 = rk, vTk+1xk = 0. (4.62)

The key difference between (4.62) and (4.49) is that the projection operator on the left-hand side differs

from the projection operator on the right. Following [10], zk is chosen to lie in the span of KxK and Txk,

i.e., zk = αkKxk + βkTxk for some scalars αk and βk. The scheme for choosing αk and βk is postponed

until the correction equation is further examined. As in the case of the symmetric definite Jacobi-Davidson

algorithm, the convergence is quadratic if the correction equation is solved exactly.

Once vk+1 has been found, Vk+1 is taken to be [Vk, vk+1], and thus a new vector wk+1 needs to be

found for Wk+1. Following the construction of zk, wk+1 is chosen to lie in the space αkKVk+1 + βkTVk+1.

A straightforward choice is

wk+1 = αkKvk+1 + βkTvk+1.

Once vk+1 and wk+1 have been computed, they are orthogonalized against the previous k basis vectors

using the modified Gram-Schmidt process. Then, the next projected subproblem is solved.

Some care needs to be taken when solving the projected subproblem. In the symmetric definite

case, the projected subproblem was a low dimensional trust-region problem, and thus the Moré-Sorensen

algorithm could be applied without any complications. In this case, it is less clear how to formulate a

solution. At iteration k, let yk denote a vector in Rk that satisfies (4.61), and let σk be the associated

multiplier. Then xk = Vkyk, and σk will be used to formulate the k + 1-th correction equation.

Let K̄k = W T
k KVk, T̄k = W T

k TVk, M̄k = V T
k MVk, and ḡk = W T

k g̃. Like the Moré-Sorensen

algorithm, the goal is to create a sequence of trial multipliers {σ̄k} converging to σk. Unfortunately,

184

there is no direct inertia-revealing factorization for determining if all real eigenvalues of the matrix pencil

(K̄k + σ̄j T̄k, T̄k) are nonnegative, given a trial value σ̄j . Fortunately, the projected subproblem is low

dimensional, so more computationally intensive techniques can be used. Define the matrices Qk, Zk, Sk,

and Pk as factors in the real, generalized Schur decomposition of (K̄k, T̄k), i.e.,

QT
k K̄kZk = Sk, and QT

k T̄kZk = Pk,

where Qk, Zk ∈ Rk are real and orthogonal, Sk ∈ Rk is a real, upper quasi-triangular matrix (block upper

triangular with blocks of size one or two), and Pk ∈ Rk a real, upper triangular matrix with nonnegative

values along the diagonal. Such a decomposition always exists. The real eigenvalues of (K̄k, T̄k) are given

by the ratios of the diagonal entries of Sk and Pk, where the real eigenvalues correspond to the 1×1 blocks

of Sk. The complex eigenvalues correspond to the 2× 2 blocks. The eigenvalues of (K̄k + σ̄j T̄k, T̄k) can

therefore be easily found for any value of σ̄j . Let λ
(k)
min denote the lowest real eigenvalue of the pencil. Then,

for any σ > −λ(k)min, the system (K̄k +σT̄k)yk = −ḡk has a unique solution. If the Schur decomposition has

been found, the entire system can be transformed to use the Schur factors. Let zk = ZT
k yk, hk = QT

k ḡk,

and Nk = ZT
k MZk. Then (4.61) becomes

(Sk + σPk)zk + hk = 0 (4.63a)

zTk Nkzk ≤ δ2, (4.63b)

σ ≥ 0, (4.63c)

σ(δ2 − zTk Nkzk) = 0, and (4.63d)

(Sk + σPk, Pk) has no real eigenvalues less than zero. (4.63e)

Note that Nk is symmetric positive definite. Thus, if λ
(k)
min > 0 and zk = −S−1

k hk has zTk Nkzk ≤ δ2,

then zk satisfies the above conditions, and can be used to form the approximation xk to the trust-region

problem. This corresponds to the solution of the trust-region problem where σ = 0. If this zk fails to

satisfy the above conditions, then σk > 0 and zTk Nkzk = δ2. Let zk(σ) = −(Sk + σPk)
−1hk and

ψ(σ) =
√
zk(σ)TNkzk(σ)− δ.

The following result shows that, under suitable conditions, the function ψ has a zero on (−λ(k)min,∞).

Theorem 4.8.4. If Pk is nonsingular, that is all the diagonals of Pk are positive, and the system

185

(Sk − λ(k)minPk)zk = −hk is not compatible, then ψ(σ) has at least one root on the interval (−λmin,∞).

Proof. Without loss of generality, assume the matrix Sk is upper triangular, i.e., there are no complex

eigenvalues, and that Nk = I. To simplify notation, drop the iteration index k. Assume the eigenvalue

λmin has algebraic multiplicity m. The generalized Schur decomposition can be constructed so that λmin

corresponds to the lower right m×m block. Then,

z(σ) = −(S + σP)−1h

can be solved via backward substitution, i.e.,

zk−j+1 =
hk−j+1 −

∑n
i=k−j+2(Sk−j+1,i + σPk−j+1,i)zi

Sk−j+1,k−j+1 + σTk−j+1,k−j+1

for j = 1, . . . , k. By the incompatibility assumption, hk−m+1 through hk are not equal to zero. So,

zk =
hk

Sk,k + σPk,k

is a rational function of σ. Proceeding via induction, it is straightforward to show that

zk−j+1 =
qj(σ)

pj(σ)
,

where qj is a polynomial of degree not exceeding j − 1, and pj is a polynomial of degree j with largest

root −λmin. Then

z(σ)Tz(σ) =

k∑
j=1

qj(σ)
2

pj(σ)2
.

Then limσ→−λmin
z(σ)Tz(σ) = ∞, as limσ→−λmin

zk(σ)
2 = ∞, and all other terms in the sum are

nonnegative, and limσ→∞ z(σ)Tz(σ) = 0. Now, z(σ)Tz(σ) is continuous and nonnegative, therefore√
z(σ)Tz(σ) is continuous. By the intermediate value theorem, ψ(σ) must then have at least one zero in

(−λmin,∞).

Unlike the standard trust problem, ψ may in fact have multiple roots in (−λmin,∞). Fortunately,

this does not seem to cause issues in practice and is rarely the case. Like the Moré-Sorensen algorithm, a

safeguarded Newton’s method can be performed on the function

ϕ(σ) =
1

δ
− 1

||zk(σ)||Nk

186

to find such a root.

It is worth mentioning that the condition that Pk be nonsingular will almost always be true in

practice. If this fails to hold at some iteration k, solving the subproblem can be skipped. The updated

solution can be taken to be xk+1 = α(xk + vk+1), where α ≥ 0 is chosen so that the approximation does

not exceed the trust-region boundary, and σk+1 is taken to be zero if xk+1 is on the interior of the trust

region, and σk+1 = −(gTxk+1 + xT
k+1Hxk+1)/δ

2 if xk+1 is on the boundary. A more difficult issue is the

compatibility condition. This corresponds to the hard case in the standard trust-region problem. To

illustrate the situation, assume that λ
(k)
min is a simple eigenvalue appearing in the upper left entry of Sk and

Pk, and that (Sk −λ(k)minPk)zk = −hk is compatible. Then hk ∈ range(Sk −λ(k)minPk) ⊥ null(ST
k −λ

(k)
minP

T
k).

Let v
(k)
min be the left eigenvector of (Sk − λ(k)minPk) corresponding to λ

(k)
min. Then the system is compatible if

and only if hT
k v

(k)
min = 0. Note that the corresponding right eigenvector is u

(k)
min = e1. Let sk be the solution

to the following problem:

min
s∈Rk

||s||Nk

subject to (Sk − λ(k)minPk)s = −hk.

If λ
(k)
min is simple, then this corresponds to a one-dimensional minimization problem. If ||sk||Nk

≤ δ, then

sk + τu
(k)
min satisfies (4.63) for some τ . Otherwise, ψ must have at least one root in (−λ(k)min,∞), which

can be solved for via Newton’s method. Using the computed Schur decomposition, the left and right

eigenvectors are straightforward to find. Therefore, the hard case can be checked upfront before running

Newton’s method. Furthermore, the Schur decomposition implies that (Sk + σPk) will always be nearly

upper triangular. Thus any systems of the form (Sk + σPk)zk = −hk are trivial to solve. Therefore, the

termination criteria used in this method are more straightforward than that of the Moré Sorensen method,

i.e. once the σ = 0 and the hard case are checked for, the safeguarded Newton’s method is applied to ϕ(σ)

until |ψ(σ)| ≤ εδ and ||z(σ)||Nk
≤ (1 + ε)δ for some tolerance ε > 0.

The scheme for updating the interval in which σ belongs is equivalent to the Moré-Sorensen

algorithm. However, the initial choice of interval [σl, σu] is less obvious. As λmin can be inferred from the

Schur decomposition, σl is set to max{0,−λmin}. On the other hand, there is no simple expression with

which to infer a choice of σu. Instead, an iterative approach is taken. Choosing σ0 = max{τ, σl} for some

τ > 0, and σj = γjσ0 for some γ > 0, a sequence {ψ(σj)} can be computed until a j with ψ(σj) < 0 is

found. Setting σu = σj then creates a viable initial interval. The modified Moré-Sorensen algorithm can

then proceed. The upper quasi-triangular structure of Sk + σPk and low dimension imply that this initial

iterative procedure only negligibly impacts the run time. Nevertheless, it is still recommended to choose γ

187

to be large enough that an acceptable σu can be quickly found.

The final issue to be discussed is the choice of αk and βk. A simple option is αk = 0 and βk = 1,

which experimentally yield the most consistent results. However, other choices seem best suited for scalars

in the interior of the spectrum of (K,T), as would be the case for using a Jacobi-Davidson method to find

interior eigenvalues.

This choice of αk and βk yields a correction equation (4.62) that is not symmetric and, therefore,

cannot be solved with preconditioned conjugate gradient. This, however, is in line with the primary

motivation of this method. Recall that K and T , in the case i = 2, form a saddle point system, and

in the case i = 1, create a system equivalent to a saddle point system under column scaling. Unlike

the locally-optimal preconditioned conjugate-gradient trust-region method, preconditioners no longer

need to be limited to the form

G JT

J −D

. Any preconditioner can be used, such as the incomplete LU

decomposition or the incomplete signed Cholesky decomposition if i = 2. As both preconditioners were

developed with GMRES in mind, restarted GMRES is used to solve the correction equation. However,

other methods, such as CGS or BiCGSTAB, could be used instead of GMRES.

As was the case with the standard JDTR algorithm, it is beneficial to set a fixed number of

initial iterations in which the correction equation is solved with σi replaced with µ such that HM + µB(i)

is positive definite. This is equivalent to the requirement placed on the shift of the SIGLTR algorithm.

Equation (4.30) suggests using

µ =
gTg

δ||g||B
− λest,

where λest is an estimate of the lowest eigenvalue of (HM , B(i)). Recall that HM + σB(1) is positive

definite if and only if H + σI + 1
σ̂J

TD−1J is positive definite, and HM + σB(2) is positive definite if and

only if H + σI + (1 + σ)JTD−1J is positive definite. This implies that if H + σI is positive definite, then

HM +B(i) for both values of i. Thus, finding an estimate of the lowest eigenvalue of H provides a reliable

choice of µ. One simple method would be to use a few iterations of the Lanczos process to find such an

estimate. Let λest(H) be the approximate eigenvalue found by a few iterations of the Lanczos process.

Then λn(H) ≤ λest(H), and µ = gTg
δ||g||B − λest(H) is not guaranteed to yield a positive definite matrix.

Let ℓ denote the lower bound on λn(H) found by the Gerschgorin circle theorem. Then ℓ ≤ λn(H). Most

likely, ℓ will be a significant underestimate of λn(H). This motivates the choice of

gTg

δ||g||B
− ((1− τ)λest(H) + τℓ) (4.64)

188

for some small positive value of τ . If this choice of µ fails to yield a positive definite matrix, the choice

gTg

δ||g||B
− ℓ (4.65)

is guaranteed to succeed. These estimates work well for both JDQZTR and SIGLTR applied to doubly-

augmented trust-region problems.

The Jacobi-Davidson QZ trust-region algorithm is best suited for doubly-augmented trust-region

problems in which the dimension is so large that even one factorization of a matrix of the form

G JT

J −D


is infeasible. If such a factorization can be performed efficiently, then the other methods discussed thus

far tend to outperform this method. No problems in the CUTEST NLP collection required using this

method in experiments. However, some artificially constructed doubly-augmented trust-region problems

could rapidly converge using this method. In contrast, the other methods could not be applied, as the

single matrix factorization exhausted all available memory before completing. This method also suffers all

of the issues from ill-conditioning that GMRES suffers from. Namely, if the correction equation using a

given preconditioner is ill-conditioned, convergence can be quite slow when far from the solution. In these

situations, SIGLTR and locally optimal preconditioned conjugate-gradient tended to perform comparably

to this method, even if the initial factorization took a large percentage of the execution time. The key

takeaway is that the collection of methods presented here should provide a suitable means of solving all

but the most extreme of doubly-augmented trust-region subproblems.

189

Chapter 5

The All-Shifted Primal-Dual Penalty-Barrier
Trust-Region Method

5.1 Introduction

Consider the inequality-constrained optimization problem

min
x∈Rn

f(x)

subject to c(x) ≥ 0,

(5.1)

where f : Rn → R and c : Rn → Rm are assumed to be twice continuously differentiable, and the notation

v ≥ 0 is defined to act element-wise on a vector v. This problem can be reformulated to only include

simple bounds by introducing a vector s ∈ Rm of slack variables. The resulting problem is given by

min
x∈Rn,s∈Rm

f(x)

subject to c(x)− s = 0,

and s ≥ 0.

(5.2)

Note that any additional equality constraints and bounds on x can easily be incorporated into this

formulation. Most practical implementations of constrained optimization algorithms explicitly work with

problems in the generic form

min
x∈Rn

f(x)

subject to ℓx ≤ x ≤ ux,

and ℓs ≤ c(x) ≤ us,

190

or the slack formulation

min
x∈Rn

f(x)

subject to ℓx ≤ x ≤ ux,

ℓs ≤ s ≤ us,

and c(x)− s = 0,

(5.3)

where −∞ ≤ ℓx ≤ ux ≤ ∞ and −∞ ≤ ℓs ≤ us ≤ ∞, however the problem formats (5.1) and (5.2) are

sufficient for any theoretical analysis.

5.2 Shifted Primal-Dual Interior Point Algorithm

Consider the inequality and equality constrained problem (5.2). A vector v∗ = (x∗, s∗, y∗, w∗) is

a first-order KKT point of (5.2) if

c(x∗)− s∗ = 0, s∗ ≥ 0, (5.4a)

g(x∗)− J(x∗)Ty∗ = 0, y∗ − w∗ = 0 (5.4b)

s∗ · w∗ = 0, w∗ ≥ 0. (5.4c)

The vectors y∗ ∈ Rm and w∗ ∈ Rm are the Lagrange multipliers for the equality and inequality constraints,

respectively. Let vk = (xk, sk, yk, wk) denote the k-th primal-dual iterate computed by the algorithm,

with the goal that the limit points of {vk}∞k=0 are first-order KKT points that satisfy (5.4).

In a typical interior-point algorithm, the complementarity condition (5.4c) is perturbed to be

s · w = µBe,

where e is the vector of all ones and µB > 0 is the barrier parameter. This has the effect of forcing the

variables sk and wk to remain in the set {s > 0, w > 0}, i.e., the strictly feasible set. In [13], Gill et al.

propose perturbing the complementarity condition instead by

s · w = µB(wE − w),

where wE is an estimate of the optimal values of w. This has the effect of shifting the primal constraint

191

s ≥ 0 to s ≥ −µBe. In [17], Gill et al. further suggest perturbing the complementarity condition by

s · w = µB(sE − s) + µB(wE − w),

where sE is an estimate of the optimal value of s. This can be rewritten as

(s+ µBe) · (w + µBe) = µBsE + µBwE + (µB)2e.

Perturbing the complementarity condition in such a manner, therefore, has the effect of shifting the

boundary of the strictly feasible set to {s+ µBe = 0, w + µB = 0}, allowing iterates to temporarily leave

the feasible set on the way to the optimal value. Moreover, as the optimal values of s and w will, in many

cases, lie on the boundary of the feasible set, this formulation avoids requiring µB to be driven to zero.

The equality constraints are similarly perturbed using a primal-dual augmented Lagrangian

approach, as in [15]. The perturbed first-order KKT conditions are then

∇f(x)− J(x)Ty = 0, y − w = 0 (5.5a)

c(x)− s = µP (yE − y), s ≥ 0 (5.5b)

s · w = µB(wE − w) + µB(sE − s), w ≥ 0, (5.5c)

where µP > 0 is the penalty parameter, and yE is an estimate of the optimal value of y. In a neighborhood

of a first-order KKT point, it is well known that computing a search direction as the solution of Newton’s

equations for a zero of the perturbed optimality conditions provides the ideal local convergence rates

commonly associated with Newton’s method. At the same time, to ensure convergence from an arbitrary

starting point, any algorithm must include a strategy for deciding whether one iterate is preferable to

192

another. To that end, the following merit function is introduced.

M(x, s, y, w; sE, yE, wE, µP , µB) = f(x)︸︷︷︸
A

−(c(x)− s)TyE︸ ︷︷ ︸
B

+
1

2µP
||c(x)− s||2︸ ︷︷ ︸

C

+
1

2µP
||c(x)− s+ µP (y − yE)||2︸ ︷︷ ︸

D

−2
m∑
i=1

(µBwE

i + µBsEi + (µB)2) ln(si + µB)︸ ︷︷ ︸
E

+2µBsTe︸ ︷︷ ︸
F

−
m∑
i=1

(µBwE

i + µBsEi + (µB)2) ln(wi + µB)︸ ︷︷ ︸
G

+µBwTe︸ ︷︷ ︸
H

+wTs︸︷︷︸
I

. (5.6)

It will be shown that, in a neighborhood of a minimizer of (5.2) satisfying certain second-order optimality

conditions, Newton’s equations for a zero of the perturbed optimality conditions (5.5) are equivalent to

the Newton equations for a minimizer of M . Additionally, it will be shown that if the parameters sE, yE,

wE, µP and µB are updated appropriately, then stationary points of M have convenient properties that

can be used to construct a globally convergent method to solve (5.2).

Before proceeding, some additional notation is needed. Let S and W denote the diagonal matrices

diag(s) and diag(w), respectively. Let

πy = yE − 1

µP

(
c(x)− s

)
, and πw = (S + µBI)

−1 (
µBwE − µB(s− sE)

)
, (5.7)

and

Dy = µP I, and Dw =
(
S + µBI

)(
W + µBI

)−1
. (5.8)

Note that y = πy and w = πw are the stationary points of M with the variables x and s fixed. Then ∇M

may be written as

∇M =



g(x)− J(x)T(2πy − y)

(2πy − y)− (2πw − w)

Dy(y − πy)

Dw(w − πw)


. (5.9)

193

Let WB =W + µBI and Πw
B = diag(πw + µBe). The penalty barrier function Hessian can be written as

∇2M =



H + 2J(x)TD−1
y J(x) −2J(x)TD−1

y J(x)T 0

−2D−1
y J(x) 2(D−1

y +D−1
w W−1

B Πw
B) −I I

J −I Dy 0

0 I 0 DwW
−1
B Πw

B


, (5.10)

where H = H(x, 2πy − y) is the Hessian of the Lagrangian with respect to the x variables, i.e. H(x, y) =

∇2f(x)−
∑m

i=1 yi∇2ci(x).

5.2.1 Minimizing the Primal-Dual Merit Function

In [13] and [17], Gill et al. propose a method for minimizing the merit function M using a suitable

line search approach. However, the method presented here differs in that a trust-region approach is

used instead of a line search procedure. With the trust-region algorithms introduced in Chapter 4, a

pure trust-region approach has become significantly more feasible for use in large-scale optimization, and

unlike in [12], a solution to the trust-region subproblem can be followed up with solving a trust-region

subproblem with a reduction of the trust-region radius, as opposed to a line search.

In what follows, consider the parameters sE, yE, wE, µP , and µB to be fixed. Let

qk(v) =M(vk) +∇M(vk)
T(v − vk) +

1

2
(v − vk)THM

k (v − vk)

be a local quadratic model of the merit function M , and let Qk(dv) = qk(vk + dv) − qk(vk). At each

iteration, the following trust-region subproblem is solved:

min
dv∈Rn+3m

Qk(dv) = dTv ∇M(vk) +
1

2
dTv H

M

k dv

subject to dTv Bkdv ≤ δ2,
(5.11)

where Bk is a positive definite matrix, and

HM =



H(x, y) + 2J(x)TD−1
y J(x) −2J(x)TD−1

y J(x)T 0

−2D−1
y J(x) 2(D−1

y +D−1
w) −I I

J −I Dy 0

0 I 0 Dw


(5.12)

194

is the matrix obtained by replace πy and πw with y and w, respectively. Note that HM has a doubly-

augmented structure. Before defining Bk, suppose that the problem being solved has H(x, y) strongly

positive definite and that Newton’s method can be directly applied to M . Then the search direction at

each step satisfies

HM

k dv = −∇Mk.

Following Section 4.8, this can be transformed to



H(x, y) 0 −J(x) 0

0 0 I −I

−J(x) I Dy 0

0 −I 0 Dw





dx

ds

dy

dw


= −



∇f(x)− J(x)Ty

y − w

Dy(π
y − y)

Dw(π
w − w)


. (5.13)

This system should not be solved directly. Instead, the system can be further reduced to

H(x, y) −J(x)

−J(x) −(Dy +Dw)


dx
dy

 = −

 ∇f(x)− J(x)Ty

Dy(π
y − y) +Dw(πw − w)

 (5.14)

and

dw = y − w + dy, and ds = µBW−1
B (wE + sE − s)−Dw(y + dy).

It can be shown that the matrix HM is positive definite if and only if the matrix appearing in (5.14) has

exactly n positive and m negative eigenvalues. Depending on the definition of Bk, a similar procedure can

be followed to simplify systems of the form

(HM

k + σBk)dv = ∇Mk.

The choice of model function Hessian HM can be further justified by examining the path-following

equations. Consider the path-following equations of the perturbed KKT conditions (5.5)

F (x, s, y, w; sE, yE, wE, µP , µB) =



∇f(x)− J(x)Ty

y − w

c(x)− s+ µP (y − yE)

s · w + µB(s− sE) + µB(w − wE)


= 0. (5.15)

195

A zero of F satisfying s > −µBe and w > −µBe approximates a solution of problem (5.2). The

approximation becomes increasingly accurate as µP (y − yE)→ 0, µB(s− sE)→ 0, and µB(w − wE)→ 0.

The Newton equations for F are



H(x, y) 0 −J(x) 0

0 0 I −I

J(x) −I Dy 0

0 W + µBI 0 S + µBI





dx

ds

dy

dw


= −



∇f(x)− J(x)Ty

y − w

c(x)− s+ µP (y − yE)

s · w + µB(s− sE) + µB(w − wE)


.

A simple row scaling shows that these equations are equivalent to (5.13).

In [12], Gertz et al. propose a primal dual interior point trust-region algorithm in which the

trust-region matrix Bk is defined as

B
(1)
k =



I 0 0 0

0 I 0 0

0 0 Dy 0

0 0 0 Dw


. (5.16)

While this matrix is straightforward to work with, the matrix pencils (HM

k , B
(1)
k) are poorly conditioned

because of the doubly-augmented structure of HM

k . The matrix B
(1)
k is referred to as the diagonal

trust-region matrix. Consider the alternative trust-region matrix

B
(2)
k =



I + 2J(x)TD−1
y J(x) −2J(x)TD−1

y J(x)T 0

−2D−1
y J(x) I + 2(D−1

y +D−1
w) −I I

J −I Dy 0

0 I 0 Dw


, (5.17)

which is called the doubly-augmented trust-region matrix. Both matrices are positive definite, and systems

of the form (HM

k + σB
(i)
k)dv = −∇Mk can be reduced similarly to (5.14) for both i = 1 and 2.

196

First, consider the case i = 1, so for any µ,

HM + µB(1) =



H(x, y) + µI + 2J(x)TD−1
y J(x) −2J(x)TD−1

y J(x)T 0

−2D−1
y J(x) µI + 2(D−1

y +D−1
w) −I I

J −I (1 + µI)Dy 0

0 I 0 (1 + µI)Dw


.

Regardless of which trust-region method is used, equations of the form (HM + µB(1))v = r should not be

solved directly. Let r = (rx, rs, ry, rw), and v = (x, s, y, w). Let J = J(x), H = H(x, y), and

R =



I 0 2JTD−1
y 0

0 I −2D−1
y 2D−1

w

0 0 −I 0

0 0 0 −I


.

Then

R(HM + µB(1))v =



H + µI 0 −(1 + 2µ)JT 0

0 µI (1 + 2µ)I −(1 + 2µ)I

−J I −(1 + µ)Dy 0

0 −I 0 −(1 + µ)Dw





x

s

y

w


=



rx + 2JTD−1
y ry

rs − 2D−1
y ry + 2D−1

w rw

−ry

−rw


.

Let µ̂ = 1+µ
1+2µ . Then the above equation can be symmetrized to become



H + µI 0 −JT 0

0 µI I −I

−J I −µ̂Dy 0

0 −I 0 −µ̂Dw





x

s

(1 + 2µ)y

(1 + 2µ)w


=



rx + 2JTD−1
y ry

rs − 2D−1
y ry + 2D−1

w rw

−ry

−rw


.

A row and column permutation then gives



H + µI −JT 0 0

−J −µ̂Dy I 0

0 I µI −I

0 0 −I −µ̂Dw





x

(1 + 2µ)y

s

(1 + 2µ)w


=



rx + 2JTD−1
y ry

−ry

rs − 2D−1
y ry + 2D−1

w rw

−rw


.

197

These equations, which are almost block-diagonal with the majority of nonzero blocks diagonal, can be

further simplified. Let D̂ = (µI + 1
µ̂D

−1
w)−1, and

R̂ =



I 0 0 0

0 I −D̂ 1
µ̂D

−1
w D̂

0 0 I − 1
µ̂D

−1
w

0 0 0 I


.

Left multiplying by R̂ gives



H + µI −JT 0 0

−J −µ̂Dy − D̂ 0 0

0 I D̂−1 0

0 0 −I −µ̂Dw





x

(1 + 2µ)y

s

(1 + 2µ)w



=



rx + 2JTD−1
y ry

−ry − D̂(rs − 2D−1
y ry + 2D−1

w rw)− 1
µ̂D

−1
w D̂rw

rs − 2D−1
y ry + 2D−1

w rw + µ̂Dwrw

−rw


.

The upper left block can be used to solve for x and y, and then substitution can be used to find the

remaining variables. Thus, the (n + 3m) × (n + 3m) dimensional system can be converted into an

(n+m)× (n+m) dimensional saddle-point system.

Next, consider the case i = 2, so for any µ,

(HM + µB(2)) = (1 + µ)



1
1+µ (H + µI) + 2JTD−1

y J −2JTD−1
y JT 0

−2D−1
y J µ

1+µI + 2(D−1
y +D−1

w) −I I

J −I Dy 0

0 I 0 Dw


.

198

Let R be defined the same as before, so that

R(HM + µB(2))v = (1 + µ)



1
1+µ (H + µI) 0 −JT 0

0 µ
1+µI I −I

−J I −Dy 0

0 −I 0 −Dw





x

s

y

w


=



rx + 2JTD−1
y ry

rs − 2D−1
y ry + 2D−1

w rw

−ry

−rw


.

A row and column permutation then gives

(1 + µ)



1
1+µ (H + µI) −JT 0 0

−J −Dy I 0

0 I µ
1+µI −I

0 0 −I −Dw





x

y

s

w


=



rx + 2JTD−1
y ry

−ry

rs − 2D−1
y ry + 2D−1

w rw

−rw


.

Let D̂ = (µ
1+µI +D−1

w)−1, and

R̂ =



I 0 0 0

0 I −D̂ D−1
w D̂

0 0 I −D−1
w

0 0 0 I


.

Left multiplying by R̂ gives

(1 + µ)



1
1+µ (H + µI) −JT 0 0

−J −Dy − D̂ 0 0

0 I D̂−1 0

0 0 −I −Dw





x

y

s

w



=



rx + 2JTD−1
y ry

−ry − D̂(rs − 2D−1
y ry + 2D−1

w rw)−D−1
w D̂rw

rs − 2D−1
y ry + 2D−1

w rw +Dwrw

−rw


.

The upper left block can be used to solve for x and y, and then substitution can be used to find the

remaining variables. Thus, the (n + 3m) × (n + 3m) dimensional system can be converted into an

(n+m)× (n+m) dimensional saddle-point system.

199

As discussed in Section 2.5, trust-region methods for unconstrained optimization problems have

excellent theoretical properties and work quite well in practice, often exhibiting convergence in fewer

iterations than inertia-controlling line-search strategies at the cost of the larger computational overhead

required to solve the trust-region subproblems. However, some difficulties emerge when applying these

results to the minimization of M . First, because of the barrier terms in the merit function, M is not

defined outside the strict interior of the shifted feasible set. The merit function M can be defined as

infinity off this set. Doing so ensures that the trust-region method will reject any steps outside this set.

Because of the improvements in trust-region algorithms presented in Chapter 4, it is possible to solve a

subsequent trust-region subproblem with a reduced radius quickly. The trust-region step vk+1 = vk + dv

is accepted if the condition

M(vk)−M(vk+1) ≥ −η1Qk(dv) (5.18)

holds, where η1 ∈ (0, 12). Due to the shifted constraints, iterates vk+1 can satisfy this condition even if

they lie outside the feasible set. This includes the boundary of the feasible set, which is excluded in typical

interior methods. As usual, the restriction of η1 to (0, 12) prevents the sufficient decrease condition from

interfering with the asymptotic convergence rate of the algorithm.

The trust-region algorithm used is presented in Algorithm 5.1

Algorithm 5.1. Merit Function Trust-Region Algorithm

1: Given constants η1, η2, γC , γE, δ0 such that 0 < η1 < η2 < 1, η1 < 1/2, 0 < γC < 1 < γE, and δ0 > 0
2: k ← 0
3: while not converged do
4: dk = argminp∈Rn{Qk(dv) : ||dv||B(i)

k

≤ δk}
5: ρk = (M(vk)−M(vk + dk))/Qk(dk)
6: if ρk ≥ η1 then
7: v̂k+1 = vk + dk
8: if ρk ≥ η2 then
9: δk+1 ← max{δk, γE||dk||B(i)

k

}
10: else
11: δk+1 ← δk
12: end if
13: sk+1 ← max{ŝk+1, c(xk+1)− µP (yE + 1

2 (wk+1 − yk+1) + µBe) ▷ Slack Reset
14: vk+1 ← (x̂k+1, sk+1, ŷk+1, ŵk+1)
15: else
16: vk+1 ← vk
17: δk+1 ← γC ||dk||B(i)

k

18: end if
19: k ← k + 1
20: end while

200

An approximate solution dv to (5.11) is required to satisfy the following conditions:

Qk(dv) ≤ τ min{bk,1, bk,2}, (5.19a)

||dv||B(i)
k

≤ δk, and (5.19b)

either ∇M(vk)
Tdv < 0, or ∇M(vk)

Tdv ≤ 0 and dTv H
M

k dv < 0, (5.19c)

where

bk,1 = −||∇M(vk)||(B(i)
k)−1 min

{
δk,
||∇M(vk)||(B(i)

k)−1

||HM
k ||B(i)

k

}
, (5.20)

and

bk,2 =
1

2
δ2k min{0, λmin(H

M

k , B
(i)
k)} (5.21)

for some τ ∈ (0, 1). These bounds are the model decrease of Q subject to the trust-region constraint

along the steepest-descent direction induced by the trust-region norm and the leftmost eigenvector of

(HM

k , B
(i)
k), respectively. Compare this with Assumptions 2.5.7 and 2.5.9. In practice, the approximate

solution to each trust-region subproblem will be very close to the true solution. However, this requirement

is sufficient to achieve convergence. Line 13 of Algorithm 5.1 constitute an additional step known as a

slack reset. This step is crucial to the convergence of the outer algorithm. It will be shown that the slack

reset does not hinder the convergence of Algorithm 5.1 to a local minimizer of M .

5.2.2 Convergence Analysis

The following assumptions are made for the convergence analysis:

Assumption 5.2.1. The functions f and c are twice continuously differentiable.

Assumption 5.2.2. The sequence of iterates {xk} is contained in a bounded set.

Note the similarities between Assumptions 5.2.1 and 5.2.2 and Assumption 2.5.1 and 2.5.10. It is

important to note that not every iteration of Algorithm 5.1 is successful. Recalling that M is defined to

be infinite outside the shifted feasible set, define the sets

S = {k : ρk ≥ η1} and V = {k : ρk ≥ η2}

to be the set of successful and very successful trust-region iterations, respectively. Note that if k /∈ S,

then δk+1 ≤ δk. The following result shows that M satisfies the decrease condition M(vk+1) ≤M(vk).

201

Lemma 5.2.1. For each iteration k ≥ 0, it holds that M(vk+1) ≤M(vk).

Proof. Before the slack reset, the sufficient decrease condition ensures thatM is decreasing. Thus, the only

way the result can be false is if the slack reset can increase M . The vector c(xk+1)− µP (yE + 1
2 (wk+1 −

yk+1) + µBe) is the unique minimizer of the sum of terms (B), (C), (D), (F), (H), and (I) in the definition

of M , so the slack reset does not increase these terms. (A) is independent of s. The slack reset can only

increase the individual entries of s. Thus the remaining terms can only decrease. Thus, the slack reset

can only reduce the value of M .

Corollary 5.2.1.1. If k ∈ S, then

M(vk)−M(vk+1) ≥M(vk)−M(v̂k+1) ≥ −η1Q(dv,k).

The above inequality will allow the proofs of the following results to closely follow the results

presented in Section 2.5. The following result demonstrates that most of the assumptions of section 2.5

are satisfied by the function M and the model functions qk.

Lemma 5.2.2. The sequence of iterates {vk} = {(xk, sk, yk, wk)} computed by Algorithm 5.1 satisfies the

following properties.

1. The sequences {sk}, {c(xk)− sk}, {yk} and {wk} are bounded.

2. For each index i ∈ {1, . . . ,m}, it holds that

lim inf
k≥0

(sk + µBe)i ≥ 0 and lim inf
k≥0

(wk + µB)i ≥ 0.

3. The sequences {πy(xk, sk)}, {πw(sk)}, and ∇M(vk) are bounded.

4. There exists a scalar M̄ such that M(vk) ≥ M̄ for all K.

5. The eigenvalues of the matrices {B(i)
k } are all positive, bounded away from zero, and bounded

above. Therefore, there exists a positive constant κ1 such that (1/κ1)||v|| ≤ ||v||Bi
k
≤ κ1||v|| for all

v ∈ Rn+3m.

6. The sequence {||HM

k ||} is bounded.

7. The sequence {||∇2M(vk)||} is bounded.

202

Proof. Assume that the sequence {sk} is unbounded to establish a contradiction. By construction,

sk + µBe > 0 for all k. Therefore, if {sk} is unbounded, then there exists a subsequence K and an index i

such that

lim
k∈K

[sk]i =∞ and [sk]i ≥ [sk]j for all k ∈ K and j. (5.22)

It will be shown that if this is the case, then M goes to infinity, contradicting Lemma 5.2.1. It follows

from (5.22), Assumption 5.2.2, and the continuity of c that the term (A) in the definition of M is bounded

below for all k, the term (B) cannot go to −∞ faster than ||sk|| on K, and the term (C) goes to ∞ on K

at the same rate as ||sk||2. Furthermore, (D) is bounded below by zero. On the other hand, the barrier

term (E) goes to −∞ on S like − ln([sk]i + µB). The terms (F), (H), and (I) can be rewritten as

(F) + (H) + (I) = (wk + µBe)T(sk + µBe) + µB(sk + µBe)Te− 2(µB)2e.

As sk + µBe > 0 and w + µBe > 0 for all k by construction, the sum (F) + (H) + (I) is bounded below.

Therefore, if (G) is bounded below, M goes to ∞ on M , establishing the contradiction with lemma (5.2.1).

If instead (G) goes to −∞, then it follows that there exists an index j of w such that [wk]j → ∞. In

that case, the (H) term will go to ∞ faster than (G) goes to −∞, so M goes to ∞. Thus, {sk} must be

bounded. Now, because c is continuous and {xk} is bounded, {c(xk)− sk} is bounded as well.

Next, it will be shown that {yk} is bounded. To establish a contradiction, assume that it is not,

i.e., that there exists a subsequence K and index i such that

lim
k∈K
|[yk]i| =∞ and |[yk]i| ≥ |[yk]j | for all k ∈ K and j. (5.23)

Terms (A), (B), and (C) are bounded below for all k, and (D) converges to ∞ at the same rate as ([yk]i)
2.

By the boundedness of {sk}, (E) is bounded below. Similar to before, if (G) is bounded below, then M

goes to ∞, establishing the contradiction, and if not, i.e., if (G) goes to −∞, it does so slower than (H)

goes to ∞, so M goes to ∞. Thus, {yk} is bounded.

Finally, {wk} is bounded, otherwise (G) may be unbounded below on a subsequence K, and (H)

goes to ∞ on K faster than (G) goes to −∞.

Part 2 is similarly proved by contradiction, in that if it is false, M goes to ∞. Suppose that

lim infk≥0(sk+µ
Be)i = 0 for some index i. Then there exists a subsequence K such that limk∈S si+µ

B = 0.

Then all terms except the barrier terms (E) and (G) are bounded below for all k. By construction,

(wE + sE + µBe) > 0, and {sk} and {wk} are bounded. Then (E) goes to ∞ on S, contradiction lemma

203

(5.2.1). Similarly, if limk∈S wi + µB = 0, then (G) goes to ∞ of S, contradicting the same lemma.

Part 3 follows from parts 1 and 2, and Assumptions 5.2.1 and 5.2.2.

For part 4, it suffices to show that each term in M is bounded below. (A) is bounded below

by assumptions 5.2.1 and 5.2.2. (B) is bounded below by the boundedness of {xk} and {sk}, and the

continuity of c. (C) and (D) are bounded below by zero, and the sum of (F), (H), and (I) are bounded

below by construction, as sk + µBe > 0 and wk + µBe > 0 for all k. The barrier terms are bounded below

by the boundedness of {sk} and {wk} established in part 1. Therefore, M(vk) is bounded below by some

M̄ .

Part 5 follows from parts 1 and 2, Assumptions 5.2.1 and 5.2.2, and the fact that B(i) are

constructed to always be positive definite.

Parts 6 and 7 follow from parts 1 and 2, Assumptions 5.2.1 and 5.2.2.

Lemma 5.2.2 validates Assumptions 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6, and 2.5.10.

First-order convergence of Algorithm 5.1

This section shows the convergence of iterates {vk} generated by Algorithm 5.1 to first-order

stationary points of M . Let || · ||S denote the norm ||v||S = supk∈S ||v||B(i)
k

, || · ||S⋆ its dual, and

||H||S = ||H||S,S⋆ the induced matrix norm. The following proofs differ slightly from section 2.5 in that

some slight modifications are needed to address the extra slack reset step when an iteration is successful.

Lemma 5.2.3. There exists constants H1 and H2 such that ||∇2f(vk)||B(i)
k

≤ H1 and ||HM

k ||B(i)
k

≤ H2

for all iterations k.

Proof. The result follows directly from Lemma 5.2.2 parts 5, 6, and 7.

Theorem 5.2.4. For all iterations k, it holds that

|M(v̂k+1)− qk(v̂k+1)| ≤ max{H1, H2}δ2k.

Proof. By the mean value theorem, there exists a ξk ∈ [0, 1] such that

M(v̂k+1) =M(vk) +∇M(vk)
Tdv,k +

1

2
dTv,k∇2M(vk + ξkdv,k)dv,k.

204

Subtracting qk(v̂k+1) and taking the absolute value yields

|M(v̂k+1)− qk(v̂k+1)| =
1

2
|dTv,k∇2M(vk + ξkdv,k)dv,k − dTv,kHM

k dv,k|

≤ 1

2
|dTv,k∇2M(vk + ξkdv,k)dv,k|+

1

2
|dTv,kHM

k dv,k|

≤ 1

2
(H1 +H2)||dv,k||2B(i)

k

≤ max{H1, H2}δ2k

If the scalar τ2 is set to max{H1, H2}, then

|M(v̂k+1)− qk(v̂k+1)| ≤ τ2δ2k. (5.24)

Thus, the error between the merit and model functions before the slack reset decreases quadratically with

the trust-region radius. Intuitively, this implies that as the radius shrinks, the model function becomes a

better and better approximation of the merit function. This leads to the following result, which states that

if the trust-region radius is sufficiently small at iteration k, then the k-th iterate will be very successful,

assuming that stationarity has yet to be achieved.

Theorem 5.2.5. Suppose that ∇M(vk) ̸= 0, and that

δk ≤
τ ||∇M(vk)||(B(i)

k)−1(1− η2)

τ2
.

Then ρk ≥ η2, and iteration k is very successful.

Proof. By construction, 0 < η2 < 1 and 0 < τ < 1, and τ2 ≤ H1. It follows then that

δk <
||∇M(vk)||(B(i)

k)−1

H1
.

By assumption,

qk(vk)− qk(v̂k+1) ≥ τδk||∇M(vk)||(B(i)
k)−1 .

On the other hand, Theorem 5.2.4 gives

|ρk − 1| =
∣∣∣∣M(v̂k+1)− qk(v̂k+1)

qk(vk)− qk(v̂k+1)

∣∣∣∣ ≤ τ2
τ ||∇M(vk)||(B(i)

k)−1

δk ≤ 1− η2.

205

Therefore, iteration k is very successful.

The following result shows that not only can the trust-region radii not be too small in between

two iterates, but that the entire sequence of trust-region radii {δk} is bounded below while the optimality

conditions fail to hold.

Theorem 5.2.6. Suppose that there exists a constant ḡ such that ||∇M(vk)||(B(i)
k)−1 ≥ ḡ for all iterations

k in a subsequence S of the iterates. Then there exists a constant δ̄ such that δk ≥ δ̄ for all iterations k.

Proof. The result follows from Theorem 5.2.5, Lemma 5.2.2, and Theorem 2.5.17

This result can be used to show that if there are only finitely many successful iterations, then the

sequence {vk} generated by Algorithm 5.1 converges to a first-order stationary point of M .

Theorem 5.2.7. Suppose that |S| <∞. Then vk = v∗ for all k sufficiently large, and v∗ is a first-order

stationary point.

Proof. Suppose that k is the final successful iterate. Then vk+j = vk+1 = v∗ for all j > 0. As all

subsequent iterates are unsuccessful, δk → 0. If vk+1 is not a stationary point, i.e. ||∇M(vk)||(B(i)
k)−1 ≥ 0,

then 5.2.6 implies that there must be a subsequent successful iteration. This is a contradiction, and thus

||∇M(vk)||(B(i)
k)−1 = 0. The result follows.

Consider the more general case where S is infinite. The following result shows convergence to a

first-order stationary point on a subset of the iterates.

Theorem 5.2.8. It holds that lim infk→∞ ||∇M(vk)||(B(i)
k)−1 = 0.

Proof. Suppose there exists an ε > 0 such that ||∇M(vk)||(B(i)
k)−1 ≥ ε for all iterations k. Suppose that

the k-th iterate is successful, so that

M(vk)−M(vk+1) ≥M(vk)−M(v̂k+1) ≥ η1(qk(vk)− qk(v̂k+1)) ≥ τεη1 min
{ ε

H2
, δ̄
}
,

where δ̄ is the lower bound on the trust-region radii guaranteed by Theorem 5.2.6. Let nk denote the

206

number of successful iterations in between the first and k-th iterate. It then follows that

M(v0)−M(vk+1) =

k∑
j=0,j∈S

(M(vj)−M(vj+1))

≥
k∑

j=0,j∈S
(M(vj)−M(v̂j+1))

≥ nkτεη1 min
{ ε

H2
, δ̄
}
.

Now, as there are infinitely many successful iterations, nk →∞ as k →∞. Thus, the difference between

M(v0) andM(vk+1) is unbounded. This, however, contradicts Lemma 5.2.2 part 4. The result follows.

Theorem 5.2.8 can be leveraged to prove the following stronger result.

Theorem 5.2.9. It holds that limk→∞ ||∇M(vk)||(B(i)
k)−1 = 0.

Proof. For the sake of establishing a contradiction, assume that there exists a subsequence of successful

iterates such that ||∇M(vk)||S⋆ ≥ 2ε for some ε > 0. Then ||∇M(vk)||(B(i)
k)−1 ≥ 2ε. Theorem 5.2.8 and

Lemma 5.2.2 part 5 ensure that for each iteration k, there exists a subsequent iteration ℓk such that ℓk

is the first iteration after k to satisfy ||∇M(vℓk)||S⋆ ≤ ||∇M(vℓk)||(B(i)
ℓk

)−1 < ε. Let c be the equivalence

constant of the family of the uniformly equivalent norms || · ||
B

(i)
k

. Let K denote the subset of successful

iterations from k to ℓk, i.e.,

K = {j ∈ S : k ≤ j ≤ ℓk}.

Then, it holds that, for all k ∈ K,

M(vk)−M(vk+1) ≥M(vk)−M(v̂k+1)

≥ η1(qk(vk)− qk(v̂k+1))

≥ τεη1 min
{ ε

H2
, δk

}
.

(5.25)

Now, the sequence {M(vk)} is monotonically decreasing and bounded below by Lemma 5.2.1 and 5.2.2

part 4, so M(vk)−M(vk+1)→ 0, and therefore δk → 0. It follows then that, for k sufficiently large,

δk ≤
1

τεη1
(M(vk)−M(vk+1)). (5.26)

207

From Lemma 5.2.2 part 5, it follows that

||vk − vℓk ||S ≤
ℓk∑

i=k,i∈K

||vi − vi+1||S

≤ c
ℓk∑

i=k,i∈K

||vi − vi+1||B(i)
k

≤ c
ℓk∑

i=k,i∈K

δi

≤ c

τεη1
(M(vk)−M(vk+1)).

The right-hand side of this inequality must converge to zero, and thus ||vk − vℓk ||S converges to zero. By

the continuity of the gradient of M , it follows that ||∇M(vk)−∇M(vℓk)||S⋆ converges to zero. However,

the definitions of k and ℓk ensure that ||∇M(vk) − ∇M(vℓk)||S⋆ ≥ ε. The result follows from this

contradiction.

Thus, iterates generated by Algorithm 5.1 converge to first-order stationary points. Next,

convergence to points satisfying second-order optimality conditions is established. The second-order

information of the merit function M and the model function qk must be examined to establish convergence

to second-order stationary points.

Lemma 5.2.10. It holds that limk→∞ ||∇2M(vk)−HM

k || = 0 whenever limk→ ||∇M(vk)|| = 0.

Proof. The result follows from the definitions of ∇M , ∇2M , and HM

k combined with Lemma 5.2.2 part

3.

The above lemma validates assumption 2.5.8. The final result can be directly stated with the last

assumption from section 2.5 validated.

Theorem 5.2.11. Let v∗ be any limit point of the sequence of iterates generated by Algorithm 5.1, Then

v∗ satisfies the second-order necessary conditions for optimality.

Proof. The result follows from Theorem 2.5.30, Lemmas 5.2.2 and 5.2.10, and the fact that M(vk) ≤

M(v̂k+1) for all iterations k.

Theorems 5.2.9 and 5.2.11 demonstrate that neither the slack reset nor the lack of uniform

continuity on the entire shifted feasible set weaken the results of the basic trust-region algorithm when

applied to the merit function M . Thus, Algorithm 5.1 is well-suited to guarantee convergence to a

minimizer of problem (5.2) along the sequences of inner iterations.

208

5.2.3 Solving the Constrained Nonlinear Optimization Problem

This section discusses and analyzes the outer algorithm used to solve problem (5.2). The algorithm

is based on an inner and outer iteration strategy, where the inner iterations use a few steps of Algorithm

5.1 to take steps towards a minimizer of the merit function, and the outer iterations adjust the parameters

that were treated as fixed in the previous section.

The Algorithm

The proposed algorithm is presented in Algorithm 5.2. The method separates iterates into O, M,

and F iterates, depending on how the algorithm is coming along.

Optimality iterates, or O iterates, are characterized by a non-negligible improvement to the

optimality conditions. This progress is defined in terms of the following measures of the feasibility,

stationarity, and complementarity conditions:

χfeas(vk+1) = ||c(xk+1)− sk+1||

χstny(vk+1) = max{||g(xk+1)− J(xk+1)
Tyk+1||, ||yk+1 − wk+1||}, and

χcomp(vk+1;µ
B

k) = ||min{q1(vk+1), q2(vk+1;µ
B

k)}||,

(5.27)

where

q1(vk+1) = max{|min{sk+1, wk+1, 0}|, |sk+1 · wk+1|},

q2(vk+1 µ
B

k) = max{µB

k e, |min{sk+1 + µB

k e, wk+1 + µB

k e, 0}|, |(sk+1 + µB

k e) · (wk+1 + µB

k e)|}.

With these definitions in mind, a first-order KKT point of vk+1 for problem (5.2) satisfies

χ(v, µ) = χfeas(v) + χstny(v) + χcomp(v, µ) = 0. (5.28)

Iteration k is classified as an O-iterate if χ(vk+1, µ
B

k) ≤ χmax
k , where {χmax

k } is a monotonically decreasing

positive sequence. At such an iterate, the parameters are updated as sEk+1 = max{0, sk+1}, yE

k+1 = yk+1,

wE

k+1 = wk+1 and χmax
k+1 = χmax

k /2. This reflects the fact the current iterate vk+1 represents the best-known

approximation of the optimal values for s, y, and w, and ensures that if there are infinitely many O-iterates,

then {χmax
k } is driven to zero monotonically.

If the test for an O-iterate fails, a second test is used to determine if the current iterate vk+1 is

209

an approximate first-order solution to the unconstrained problem

minimize
v=(x,s,y,w)

M(v sEk , y
E

k , w
E

k , µ
P

k , µ
B

k). (5.29)

To be more precise, an iterate is called an M-iterate (or a merit iterated), if vk+1 satisfies

||∇xM(vk+1; s
E

k+1, y
E

k+1, w
E

k+1, µ
P , µB)||∞ ≤ τk, (5.30a)

||∇sM(vk+1; s
E

k+1, y
E

k+1, w
E

k+1, µ
P , µB)||∞ ≤ τk, (5.30b)

||∇yM(vk+1; s
E

k+1, y
E

k+1, w
E

k+1, µ
P , µB)||∞ ≤ τk||Dy

k+1||∞, and (5.30c)

||∇wM(vk+1; s
E

k+1, y
E

k+1, w
E

k+1, µ
P , µB)||∞ ≤ τk||Dw

k+1||∞, (5.30d)

where τk is a positive tolerance. In this case, vk+1 is classified as an M-iterate due to the fact that it is an

approximate first-order solution of (5.29). In this case, the estimates sE, yE, and wE are defined by the

safeguarded update

sEk+1 = max{max{0, sk+1}, smaxe},

yE

k+1 = max{−ymaxe,min{yk+1,ymaxe}}, and

wE

k+1 = max{wk+1, wmaxe},

(5.31)

where smax, ymax, and w
E
max are large positive constants. The method then checks if

χfeas(vk+1) ≤ τk.

If so, the penalty parameter µP remains unchanged. Otherwise, it is reduced by 1
2 to place greater

emphasis on satisfying the equality constraints c(x) − s = 0 on subsequent iterations. Similarly, the

method checks if

χcomp(vk+1, µ
B

k) ≤ τk, sk+1 ≥ −τke, and wk+1 ≥ −τke. (5.32)

The barrier parameter µB remains unchanged if these conditions are true. Otherwise, it is reduced by a

factor of 1/2 to place greater emphasis on satisfying the complementarity conditions s · w = 0.

An iterate vk+1 that cannot be classified as an O or an M iterate is called an F-iterate, or a failed

iterate. F-iterates neither improve the optimality of the overall constrained problem nor the solution to

the merit function. In this case, all parameters are left unchanged so that progress is measured solely in

terms of the reduction of the merit function.

210

Algorithm 5.2. All Shifted Trust-Region Interior Method

1: Given initial point v0 = (xT
0 , s

T
0 , y

T
0 , w

T
0)

T, where (s0, w0) > 0.
2: Given constants η1, η2, γC , γE, δ0 such that 0 < η1 < η2 < 1, η1 < 1/2, 0 < γC < 1 < γE, and δ0 > 0.
3: Given constants ymax > 0, wmax > 0, smax > 0.
4: Given constants µP

0 > 0 and µB
0 > 0.

5: Choose wE
0 and sE0 such that wE

0 + sE0 + µBe > 0.
6: Choose yE

0 , χ
max
0 > 0.

7: k ← 0
8: while ||∇M(vk)|| > 0 do
9: (sE, yE, wE, µP , µB)← (sEk , y

E

k , w
E

k , µ
P

k , µ
B

k)
10: Compute vk+1 in steps 4-19 of Algorithm 5.1 until the sufficient decrease condition is achieved.
11: if χ(vk+1;µ

B

k) ≤ χmax
k then ▷ O-Iterate

12: (χmax
k+1, y

E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (12χ
max
k , yk+1, wk+1, µ

P

k , µ
B

k , τk)
13: sEk+1 ← max{0, sk+1}
14: else if vk+1 satisfies (5.30 then ▷ M-Iterate
15: (χmax

k+1, τk+1)← (χmax
k , τk)

16: Update sEk+1, y
E

k+1, w
E

k+1 using 5.31
17: if χfeas(vk+1) ≤ τk then
18: µP

k+1 ← µP

k

19: else
20: µP

k+1 ← µP

k/2
21: end if
22: if χcomp(vk+1;µ

B

k) ≤ τk, sk+1 ≥ −τke, and wk+1 ≥ −τke then
23: µB

k+1 ← µB

k

24: else
25: µB

k+1 ← µB

k /2
26: Reset sk+1 and wk+1 so that sk+1 + µBe > 0 and wk+1 + µBe > 0
27: end if
28: else ▷ F-Iterate
29: (χmax

k+1, y
E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (χmax
k , yE

k , w
E

k , µ
P

k , µ
B

k , τk)
30: end if
31: end while

211

Now, the initial shifting of the feasible set by µB
0 and subsequent reduction of the barrier parameter

implies that, at some M iterations, the reduction of µB

k+1 may force the current values of sk+1 and wk+1

to violate the shifted constraints sk+1 + µB

k+1e ≥ 0 and wk+1 + µB

k+1e ≥ 0. If, for some iteration k,

a multiplier [wk]i becomes infeasible, it is reset as max{yi, 12wi}. If a slack variable [sk]i is infeasible,

the inequality constraint si ≥ 0 is temporarily converted into a trivial equality constraint si = 0. The

primal-dual augmented Lagrangian term enforces this constraint in the merit function (terms (C) and (D)

of the merit function), until the constraint value c(x)i becomes large enough that it reenters the shifted

feasible set, at which point si is assigned c(x)i. At this point, it becomes free to change value again. The

corresponding Lagrange multiplier is reinitialized as max{yi, ε}, where ε is some positive constant.

Convergence Analysis

Convergence of the iterates is established under the properties of the complementary approximate

KKT condition (CAKKT) proposed by Andreani, Mart́ınez, and Svaiter [2].

Definition 5.2.1 (CAKKT Condition). A feasible point (x∗, s∗) (i.e., a point such that c(x∗)− s∗ = 0

and s∗ ≥ 0) is said to satisfy the CAKKT condition if there exists a sequence {(xj , sj , yj , wj)} with

xj → x∗ and sj → s∗ such that

g(xj)− J(xj)Tyj → 0, (5.33a)

yj − zj → 0, (5.33b)

wj ≥ 0, and (5.33c)

sj · wj → 0. (5.33d)

Any such (x∗, s∗) is called a CAKKT point.

The CAKKT condition is a sequential optimality condition that holds for each local minimizer.

Compared to other sequential optimality conditions, it is relatively tight insofar as not many CAKKT

points are not local minimizers. The method for relating CAKKT points with KKT points is given by

CAKKT-regularity, which is the weakest known constraint qualification that guarantees the following

result.

Theorem 5.2.12. If (x∗, s∗) is a CAKKT point that satisfies CAKKT regularity, then (x∗, s∗) is a

first-order KKT point for (5.2).

The first part of the analysis concerns the conditions under which limit points of the sequence

212

{(x∗, s∗)} are CAKKT points. As the results are tied to the different iterations types, the following index

sets are defined:

O = {k : iteration k is an O-iteration}

M = {k : iteration k is an M-iteration}

F = {k : iteration k is an F-iteration}

The first part of the analysis establishes that limit points of the sequence of O-iterates are CAKKT

points.

Lemma 5.2.13. If |O| = ∞, then there exists at least one limit point (x∗, s∗) of the infinite sequence

{(xk+1, sk+1)}k∈O, and any such limit point is a CAKKT point.

Proof. Assumption 5.2.2 implies that there must exist at least one limit point of {xk+1}k∈O. If x∗ is such

a limit point, assumption 5.2.1 implies the existence of a subsequence K ⊆ O such that {xk+1}k∈K → x∗

and {c(xk+1)}k∈K → c(x∗). As |O| = ∞, {χmax
k } → 0. Furthermore, as χ(vk+1, µ

B

k) ≤ χmax
k for all

k ∈ K, and χfeas(vk+1) ≤ χ(vk+1;µ
B

k) for all k, it follows that χfeas(vk+1) converges to zero on K. With

the definition s∗ = c(x∗), if follows that {sk+1}k∈K → limk∈K c(xk+1) = c(x∗) = s∗, which implies that

(x∗, s∗) is feasible for the general constraints because c(x∗)− s∗ = 0. The remaining feasibility condition

is proved componentwise. For any 1 ≤ i ≤ m, define

Q1 = {k : [q1(vk+1)]i ≤ [q2(vk+1, µ
B

k)]i} and Q2 = {k : [q1(vk+1)]i > [q2(vk+1, µ
B

k)]i},

where q1 and q2 are as they are in the definition of χcomp. If K ∩Q1 is infinite, then it follows from the

inequalities {χcomp(vk+1;µ
B

k)}k∈K ≤ {χ(vk+1, µ
B

k)}k∈K ≤ {χmax
k }k∈K → 0 that s∗i = limk∈K∩Q1

[sk+1]i ≥

0. Similarly, if K ∩Q2 is infinite, then s∗i = limk∈K∩Q2 [sk+1]i = limk∈K∩Q2 [sk+1 + µBe]i ≥ 0, where the

second inequality uses the limit {µB

k } → 0 that follows from the definition of Q2. Combining these two

cases implies s∗i ≥ 0, as claimed. It follows that the limit point (x∗, s∗) is feasible.

It remains to show that (x∗, s∗) is a CAKKT point. Let

[s̄k+1]i =


[sk+1]i if k ∈ Q1

[sk+1]i + µB if k ∈ Q2

and

[w̄k+1]i =


max{[wk+1]i, 0} if k ∈ Q1

[wk+1]i + µB if k ∈ Q2

213

for every 1 ≤ i ≤ m, and consider the sequence (xk+1, s̄k+1, yk+1, w̄k+1) as a candidate for the sequence

used in Definition 5.2.1 to verify that (s∗, s∗) is a CAKKT point. If O∩Q2 is finite, then it follows from the

definition of s̄k+1 and the limit sk+1 → s∗ that {[s̄k+1]i}k∈K → s⋆i . Furthermore, {χcomp(vk+1;µB
k
)}k∈K →

0 implies that lim infk∈K[wk+1] ≥ 0, and therefore {[w̄k+1−wk+1]i}k∈K → 0. On the other hand, ifO∩Q2 is

infinite, then the definitions of Q2 and χcomp(vk+1;µ
B

k), together with the limit {χcomp(vk+1, µ
B

k)}k∈K → 0

imply that {µB

k } → 0, giving {[s̄k+1]i}k∈K → s∗i and {[w̄k+1 − wk+1]i}k∈K → 0. A i is an arbitrary index,

these cases together imply that {s̄k+1}k∈K → s∗ and {w̄k+1 − wk+1}k∈K → 0.

The next step is to show that {(xk+1, s̄k+1, yk+1, w̄k+1)}k∈K satisfies the conditions required by

Definition 5.2.1. It follows from the limit {χ(vk+1 µ
B

k)}k∈K → 0 established above that {χstny(vk+1) +

χcomp(vk+1;µ
B

k)}k∈K → 0. This, together with the limit {w̄k+1−wk+1}k∈K → 0 implies that {∇f(xk+1)−

J(xk+1)
Tyk+1}k∈K → 0 and {yk+1−wk+1} → 0, which establishes that the first two conditions of Definition

5.2.1 hold. Then nonnegativity of w̄k+1 for all k is clear from the definition. It must finally be shown

that the sequential complementarity holds. Consider the i-th components of w̄k+1 and w̄k+1. If the

set K ∩ Q1 is infinite, then the definitions of s̄k+1, q2(vk+1, µ
B

k), and χcomp(vk+1, µ
B

k), along with the

limit {χcomp(vk+1;µ
B

k)}k∈K → 0 imply that {[w̄k+1 · s̄k+1]i}k∈K∩Q1
→ 0. On the other hand, if the

set K ∩ Q2 is infinite, then the definitions of s̄k+1, q2(vk+1, µ
B

k), and χcomp(vk+1, µ
B

k), along with the

limits {χcomp(vk+1;µ
B

k)}k∈K → 0 and {w̄k+1 − wk+1}k∈K → 0 imply that {[w̄k+1 · s̄k+1]i}k∈K∩Q2 → 0.

Combining these two shows that the last condition is satisfied. Therefore, (x∗, s∗) is a CAKKT point.

In the complementary case, where |O| <∞, it will be shown that every limit point of the iterations

sequence {xk+1, sk+1}k∈M is infeasible with respect to the constraint c(x) − s = 0, but does solve the

least-infeasibility problem

minimize
x∈Rn,s∈Rm

1

2
||c(x)− s||22 subject to s ≥ 0. (5.34)

The first-order KKT conditions to (5.34) are

J(x)T(c(x)− s) = 0, s∗ ≥ 0, (5.35a)

s · (c(x)− s) = 0, c(x)− s ≤ 0. (5.35b)

These conditions define an infeasible stationary point.

Definition 5.2.2 (Infeasible Stationary Point). The pair (x∗, s∗) is an infeasible stationary point if

c(x∗)− s∗ ̸= 0 and (x∗, s∗) satisfies conditions (5.35).

214

The following result shows that if there are only finitely many O-iterations, then there are infinitely

many M-iterations.

Lemma 5.2.14. If |O| <∞, then |M| =∞.

Proof. Suppose that |M| <∞, in which case |O ∪M| <∞. Therefore, k ∈ F for all k sufficiently large,

i.e., there exists an iteration index kF such that

k ∈ F , yE

k = yk, and (τk, w
E

k , µ
P

k , µ
B

k) = (τ, wE, µP , µB) > 0

for all k ≥ kF . This means that the iterates computed by Algorithm 5.2 are equivalent to the successful

iterations of 5.1 for all k ≥ kF . In this case, Lemma 5.2.2 and Theorem 5.2.9 can be applied to show

that the (5.30) is satisfied for all k sufficiently large. This contradicts the assumption that the number of

M-iterates is finite. The result follows.

The following result justifies the right-hand side of (5.30).

Lemma 5.2.15. If |M| =∞ then

lim
k∈M

||πy
k+1 − yk+1||∞ = 0,

lim
k∈M

||πw
k+1 − wk+1||∞ = 0,

lim
k∈M

||πy
k+1 − π

w
k+1||∞ = 0, and

lim
k∈M

||yk+1 − wk+1||∞ = 0,

Proof. It follows from (5.9) and (5.30) that

||πy
k+1 − yk+1||∞ ≤ τk, and ||πw

k+1 − wk+1||∞ ≤ τk. (5.36)

By assumption, |M| =∞, thus τk → 0 as k →∞. This fact, together with (5.36), establishes the first

two limits in the result. It also then follows, by (5.30) and (5.9), that the third limit holds. Finally, it

follows that

0 = lim
k∈M

||πy
k+1 − π

w
k+1||∞

= lim
k∈M

||(πy
k+1 − yk+1) + (yk+1 − wk+1) + (wk+1 + πw

k+1)||∞

= lim
k∈M

||yk+1 − wk+1||∞.

215

The following result shows that if the set of O-iterates is finite, then any limit point of the

sequence {(xk+1, sk+1)}k∈M is infeasible with respect to (c(x)− s) = 0. It is important to note here that

an M-iterate satisfies conditions (5.30) and fails to be an O-iterate.

Lemma 5.2.16. If |O| <∞, then every limit point (x∗, s∗) of the subsequence

{(xk+1, sk+1)}k∈M satisfies c(x∗)− s∗ ̸= 0.

Proof. Let (x∗, s∗) be a limit point of the infinite sequenceM. Then a subsequence K ⊆ M exists on

which iterates converge to (x∗, s∗). For the sake of establishing a contradiction, assume that c(x∗)−s∗ = 0,

so that

lim
k∈K
||c(xk+1)− s|| = 0. (5.37)

First, it is shown that s∗ ≥ 0, which will imply that (x∗, s∗) is feasible. The trust-region method ensures

that sk+1 + µk
Be > 0 for all k. Thus, if limk→∞ µB

k = 0, then s∗ ≥ 0. On the other hand, if µB

k does

not converge to zero, then that must mean that µB is reduced only a finite number of times so that

µB

k = µB > 0 and (5.32) holds for all k ∈M sufficiently large. Taking the limit over all k ∈M in (5.32)

and recalling that limk→∞ τk = 0 gives s∗ ≥ 0. Therefore, the limit point (x∗, s∗) is feasible.

Now the assumption that O is finite and the implication thatM is infinite, along with the update

rule for χmax
k establishes that limk→0 τk = 0 and

χmax
k = χmax > 0 for all sufficiently large k ∈ K. (5.38)

Using |O| <∞, Lemma 5.2.15, and the fact that M is defined to be infinite outside the shifted feasible

set in Algorithm 5.2 gives

lim
k∈K
||yk+1 − wk+1|| = 0, and wk+1 + µB

k+1e > 0 for all k ≥ 0. (5.39)

From the definitions of πy
k+1 and ∇xM , it holds that

∇f(xk+1 − J(xk+1))
Tyk+1 = ∇f(xk+1)− J(xk+1)

T(2πy
k+1 + yk+1 − 2πy

k+1)

= ∇xM(xk+1; s
E

k , y
E

k , w
E

k , µ
P

k , µ
B

k)− 2J(xk+1)
T(yk+1 − πy

k+1).

Thus,

lim
k∈K
∇f(xk+1)− J(xk+1)

Tyk+1 = 0. (5.40)

It is now shown that limk∈K χcomp(vk+1;µ
B

k) = 0, the proof of which involves two cases.

216

Case 1: Assume that limk→∞ µB

k ̸= 0. In this case, µB

k > 0 for all sufficiently large k. Combined with

the fact that limk→∞ τk = 0, it must be that (5.32) holds for all k ∈ K sufficiently large. Therefore,

lim k ∈ Kχcomp(vk+1;µ
B

k) = 0.

Case 2: Assume that limk→∞ µB

k = 0. Lemma 5.2.15 implies that limk∈K(π
w
k+1 − wk+1) = 0. Now,

the matrix sequence {Sk+1 + µB

k I}k∈K must be bounded, as sk+1 → s∗ on K and µB

k is monotonically

decreasing to zero. The definition of πw
k+1 then gives

0 = lim
k∈K

(Sk+1 + µB

k I)(π
w
k+1 − wk+1) = lim

k∈K
(µB

kw
E

k − (Sk+1+µB
k I)wk+1). (5.41)

Moreover, as |O| <∞ and wk + µB

k > 0 by construction, the updating strategy for wE

k in Algorithm 5.2

guarantees that wE

k is bounded over all iterations k. It then follows from (5.41), the uniform boundedness

of {wE

k }, and the fact that limk→∞ µB

k = 0 that

0 = lim
k∈K

([sk+1]i + µB

k)[wk+1]i = lim
k∈K

([sk+1]i + µB

k)([wk+1]i + µB

k) (5.42)

for all indices i. Consider an individual constraint si ≥ 0. This constraint may either be active, in which

case si = 0, or inactive, in which case si > 0. The two cases are considered separately.

Subcase 2a: s⋆i > 0 for some index i. As limk∈K[sk+1]i = s⋆i and limk→∞ µB

k = 0, it follows from (5.42)

that limk∈K[wk+1]i = 0. Combining these two limits shows that limk∈K[q1(vk+1)]i = 0.

Subcase 2b: s⋆i = 0 for some index i. In this case, it follows from limk→∞ µB

k = 0, (5.42), the fact that

wk+1 + µB

k > 0, and the limit limk∈K[sk+1]i = s⋆i = 0 that limk∈K[q2(vk+1;µ
B

k)]i = 0.

As one of these two subcases must occur for each index i, it follows that

lim
k∈K

χcomp(vk+1;µ
B

k) = 0,

which completes the proof of case 2.

It has been shown that the limit limk∈K χ(vk+1;µ
B

k) = 0 holds under the assumption that

c(x∗)− s∗ = 0. Therefore, k ∈ O for all k ∈ K sufficiently large. However, this contradicts the fact that

|O| <∞, which establishes the result that c(x∗)− s∗/neq0.

The following result establishes that if the number of O-iterates is finite, then the sequence of

M-iterates {(xk+1, sk+1)}k∈M has at least one limit point and that any such limit point is an infeasible

stationary point.

217

Lemma 5.2.17. If |O| <∞, then there exists at least one limit point (x∗, s∗) of the necessarily infinite

sequence {(xk+, sk+1)}k∈M, and any such point is an infeasible stationary point as defined by Definition

5.2.2.

Proof. Suppose that |O| < ∞. Then Lemma 5.2.14 implies that |M| = ∞. The updating strategy of

Algorithm 5.2 ensures that {sEk }, {yE

k }, and {wE

k } are bounded. The next step is to show that {sk+1}k∈M

is bounded as well.

For a proof by contradiction, suppose that there is an index i and a subsequence K ⊆M on which

limk∈K[sk+1]i =∞. When Assumption 5.2.1 and 5.2.2 hold, the sequences {c(xk+1)}k∈K, {∇f(xk+1)}k∈K,

and {J(xk+1)}k∈K must be bounded. Therefore, {πy
k+1}k∈K must be unbounded. On the other hand,

(5.9), (5.30a), the fact that limk→∞ τk = 0, and Lemma 5.2.15 imply that

0 = lim
k∈M

||∇xM(vk+1; s
E

k , y
E

k , w
E

k , µ
P

k , µ
B

k)||

= lim
k∈M

||∇f(xk+1)− J(xk+1)
Tπy

k+1 − J(xk+1)
T(πy

k+1 − yk+1)||

= lim
k∈M

||∇f(xk+1)− J(xk+1)
Tπy

k+1||.

However, this contradicts that πy
k+1 is unbounded. Therefore, {sk+1}k∈M is bounded.

The next step is establishing the feasibility of s∗, i.e., that s∗ ≥ 0. The M-iterate check in Algorithm

5.2, i.e., the check that (5.32) holds, is performed infinitely many times. If (5.32) is satisfied only a finite

number of times, then the reduction of µB

k forces limk→∞ µB

k = 0. By construction, sk+1 + µB

k > 0, and

therefore s∗ ≥ 0. On the other hand, if (5.32) holds for all but finitely many iterations, thenµB

k+1 = µB > 0

for all k sufficiently large. Therefore, limk∈K χcomp(vk+1;µ
B

k) = 0, as τk → 0. It follows then that s∗ ≥ 0.

The boundedness of {sk+1}k∈M and the assumed boundedness of {xk+1}k∈M ensures the existence

of at least one limit point of {(xk+1, sk+1)}k∈M. Let (x∗, s∗) be such a limit point. Then there exists

a subsequence K ⊆ M such that {(xk+1, sk+1)}k∈K → (x∗, s∗). It remains to show that (x∗, s∗) is an

infeasible stationary point.

As |O| < ∞, it follows from Lemma 5.2.16 that c(x∗) − s∗ ̸= 0. As K ⊆ M is infinite, it holds

that limk→∞ τk = 0. It follows then that χfeas ≤ τk will not hold for all sufficiently large k ∈ K. The

barrier parameter updates ensure {µP

k} → 0. Combining this with the boundedness of {yE

k } and Lemma

5.2.15 gives

{c(xk+1 − sk+1)}k∈K ≤ {µP

k (y
E

k +
1

2
(wk+1 − yk+1))}k∈K → 0.

This implies that c(x∗)− s∗ ≤ 0, and the second condition in (5.35b) holds.

218

For a proof of the first condition of (5.35a), observe that the merit function gradients must satisfy

{∇xM(vk+1; s
E

k , y
E

k , w
E

k , µ
P

k , µ
B

k)}k∈K → 0, as condition (5.30a) is satisfied for all k ∈M. Multiplying this

by the penalty parameter µP

k and applying the definition of πy
k+1 gives

lim
k∈K

µP

k g(xk+1)− J(xk+1)
T(µP

kπ
y
k+1 + µP

k (π
y
k+1 − yk+1))→ 0.

Combining this with limk∈K xk+1 → x∗, limk→∞ µP

k = 0, and Lemma 5.2.15 yields

lim
k∈K
−J(xk+1)

T(µP

kπ
y
k+1) = lim

k∈K
−J(xk+1)

T(µP

k y
E

k − (c(xk+1)− sk+1)) = 0.

The boundedness of {yE

k }, and the facts that µP

k → 0 and {(xk+1, sk+1)}k∈K → (x∗, s∗) shows that the

equality condition of (5.35a) holds.

It remains to show that the complementarity condition of (5.35b) holds. Lemma 5.2.15 shows

that limk∈K π
w
k+1 − π

y
k+1 = 0. Therefore, multiplying the sequence of vectors {πw

k+1 − π
y
k+1} term by term

by the bounded sequence {µP

k (Sk+1 + µB

k I)} does not change the limit. This yields

lim
k∈K

µB

kµ
P

k (w
E

k − sk+1 + sEk)− µP

k (Sk+1 + µB

k I)y
E

k + (Sk+1 + µB

k I)(c(xk+1)− sk+1)→ 0.

Thus,

lim
k∈K

(Sk+1 + µB

k I)(c(xk+1)− sk+1)→ 0.

As c(x∗)− s∗ ̸= 0, there must exist an index i such that [c(x∗)− s∗]i ̸= 0. For this index, it follows that

limk∈K[sk+1]i + µB

k = 0. As s∗ ≥ 0, it then follows that µB

k → 0. It then follows that s∗ · (c(x∗)− s∗) = 0.

Thus, all conditions of (5.35) hold, completing the proof.

The following result directly follows from the preceding discussion.

Theorem 5.2.18. Under Assumption 5.2.1 and 5.2.2, one of the following occurs:

1. |O| =∞, in which case limit points of {(xk+1, sk+1)}k∈O exist, and every such limit point (x∗, s∗) is

a CAKKT point for problem (5.2). If, in addition, CAKKT regularity holds at (x∗, s∗), then (x∗, s∗)

is a KKT point for problem (5.2).

2. |O| < ∞, in which case |M| = ∞, limit points of {(xk+1, sk+1)}k∈M exist, and every such limit

point (x∗, s∗) is an infeasible stationary point of (5.2).

219

5.2.4 Implementation Details

Numerical results are given for a Fortran implementation of the all-shifted primal-dual penalty-

barrier trust-region algorithm (Algorithm 5.2). Results are obtained for the CUTEst NLP test collection

(see Bongartz et al. [4] and Gould, Orban, and Toint [19]). The CUTEst problems are given in the form

min
x∈Rn

f(x) subject to

lx
ls

 ≤
 x

c(x)

 ≤
ux
us

 .

The i-th constraint is an equality constraint if [lx]i = [ux]i or [ls]i = [us]i. A variable or constraint

is unbounded either above or below if the bound is greater than or equal to 1020. Internally, the

implementation converts problems to the equivalent form

minimize
x∈Rn,s∈Rm

f(x)

subject to c(x)− s = 0, Exx = b, Elx− lx ≥ 0, ux − Eux ≥ 0,

Fxs = h, Fls− ls ≥ 0, us − Fus ≥ 0.

The matrices Ex, El, Eu, Fx, Fl, Fu correspond to matrices with rows of the identity matrix which selects

the entries of x and s that are fixed, bounded below, and bounded above, respectively. The constraint

Exx = b is not treated as an equality constraint. Instead, Exx is held constant, and those particular

variables are not allowed to change. Thus, the problem can be written in the equivalent form

minimize
x∈Rn,s∈Rm

f(x)

subject to c(x)− s = 0, Elx− lx ≥ 0, ux − Eux ≥ 0,

Fxs = h, Fls− ls ≥ 0, us − Fus ≥ 0.

The dual variables corresponding to Elx − lx ≥ 0 and ux − Eux ≥ 0 are denoted as zl and zu,

while the dual variables corresponding to Fxs = h, Fls − ls ≥ 0, and us − Fus ≥ 0 are denoted as wx,

wl, and wu. As the algorithm proceeds, any of the variables may become infeasible with respect to

the shifted inequality constraints. An infeasible slack variable is treated by temporarily fixing it on its

bound, and treating the corresponding constraint function c(x) as an equality constraint. A different

strategy is needed should a variable [x]i become infeasible. Suppose that [x]i becomes less than [lx]i − µB.

The constraint [x]i − [lx]i is then included as a temporary equality constraint, with its own term in the

merit function, and its own Lagrange multiplier [vl]i. The same is done if [x]i becomes infeasible with

220

respect to its upper bound. While it is infeasible, its associated barrier terms are removed from the

merit function. Analogously, it is possible for a dual variable to become infeasible with respect to the

shifted dual inequality constraints. Suppose [ET
l zl]i becomes infeasible. Then it is simply reinitialized as

max{[∇f(x)− J(x)Ty − ET
u zu]i,

1
2 [E

T
l zl]i}. Similarly, if [F T

l wl]i becomes infeasible, it is reinitialized to

max{[y − F T
x wx − F T

u wu]i,
1
2 [F

T
l wl]i}

The iterates are terminated at the first point which satisfies ep < τp and ed < τd, where ep and

ed are the primal and dual infeasibilities

ep(x, s) =

∣∣∣∣∣∣∣∣


min{0, Elx− lx, ux − Eux}

min{0, Fls− ls, us − Fus}

||Fxs− h||∞

||c(x)− s||∞/max{1, ||s||∞}


∣∣∣∣∣∣∣∣
∞
,

and

ed(x, s, y, zl, zu, wx, wl, wu) =

∣∣∣∣∣∣∣∣



||∇f(x)− J(x)Ty − ET
l zl − ET

u zu||∞/σ

||y − F T
x wx − F T

l wl − F T
u wu||∞

zl ·min{1, Elx− lx}

zu ·min{1, ux − Eux}

wl ·min{1, Fls− ls}

wu ·min{1, us − Fus}



∣∣∣∣∣∣∣∣
∞
,

where σ = max{1, ||∇f(x)||∞,max{1, ||y||∞}||J(x)||∞}.

Experiments reveal that the basic trust-region approach of Algorithm 5.1 is not always effective.

In [17], a flexible projected line-search approach is used to minimize the merit function M . Experiments

reveal that a similar approach adapted to the basic trust-region algorithm can yield better results. In the

flexible line-search strategy, a second barrier parameter µL such that µL > µP is established. Let F (v;µP)

denote the path-following equations (5.15) with penalty parameter µP , and let M(v;µP) denote the value

of the merit function M evaluated at v with barrier parameter µP . The sufficient-decrease condition in

the flexible trust-region approach is satisfied if

M(vk + dk;µ
P) < max

{
M(vk;µ

P),Mmax

}
, (5.43a)

M(vk + dk;µ
L) < max

{
M(vk;µ

L),Mmax

}
, and (5.43b)

||F (vk + dk;µ
P)||∞ < ηF max

{
||F (vk + dk;µ

P)||∞, Fmax

}
, (5.43c)

221

or if

M(vk;µ
F)−M(vk + dk;µ

F) ≥ η1Qk(dk), (5.44)

where µF ∈ [µP , µL], ηF < 1, and Mmax and Fmax are large preassigned parameters. If equations (5.43)

hold, then Fmax is updated to ηFFmax. It is not feasible to check for all µF ∈ [µP , µL], so instead, the

search is restricted to the two endpoints. If either of these two sets of conditions holds for η1 and ηF,1,

then the iteration is successful. If they hold for η2 and ηF,2 < ηF,1, then it is very successful. With these

modifications, Algorithm 5.1 becomes Algorithm 5.3.

Algorithm 5.3. Merit Function Flexible Trust-Region Algorithm

1: Given constants η1, η2,ηF,1, ηF,2, γC, γE, δ0 such that 0 < η1 < η2 < 1, η1 < 1/2, ηF,2 < ηF,1,
0 < γC < 1 < γE, and δ0 > 0

2: k ← 0
3: while not converged do
4: dk = argminp∈Rn{Qk(dv) : ||dv||B(i)

k

≤ δk}
5: if (5.43) or (5.44) hold for η1 and ηF,1 then
6: v̂k+1 = vk + dk
7: if (5.43) or (5.44) hold for η2 and ηF,2 then
8: δk+1 ← max{δk, γE||dk||B(i)

k

}
9: else

10: δk+1 ← δk
11: end if
12: sk+1 ← max{ŝk+1, c(xk+1)− µF (yE + 1

2 (wk+1 − yk+1) + µBe) ▷ Slack Reset
13: vk+1 ← (x̂k+1, sk+1, ŷk+1, ŵk+1)
14: else
15: vk+1 ← vk
16: δk+1 ← γC ||dk||B(i)

k

17: end if
18: k ← k + 1
19: end while

Additionally, Algorithm 5.2 needs to be modified to include an update to µL that ensures that

µL

k > µP

k for all k. Consider the update

µL

k+1 =


µL

k if M(vk;µ
L

k)−M(vk + dk;µ
L

k) ≥ η1Qk(dk) and µP

k+1 = µP

k ,

max{ 12µ
L

k , µ
P} otherwise .

(5.45)

Algorithm 5.2 then becomes Algorithm 5.4.

Another issue that is important to address is what occurs when computed iterates become

arbitrarily close to the shifted boundary. Consider the constraint xi ≥ 0 for some index i, which, when

shifted, becomes xi > −µB. In the theoretical discussion, there are no issues in saying that xi becomes

222

Algorithm 5.4. All Shifted Flexible Trust-Region Interior Method

1: Given initial point v0 = (x0, s0, y0, w0), where (s0, w0) > 0.
2: Given constants η1, η2, ηF,1, ηF,2, γC , γE, δ0 such that 0 < η1 < η2 < 1, η1 < 1/2, ηF,2 < ηF,1,

0 < γC < 1 < γE, and δ0 > 0.
3: Given constants ymax > 0, wmax > 0, smax > 0.
4: Given constants µP

0 > 0 and µB
0 > 0.

5: Choose wE
0 and sE0 such that wE

0 + sE0 + µBe > 0.
6: Choose yE

0 , χ
max
0 > 0.

7: k ← 0
8: while ||∇M(vk)|| > 0 do
9: (sE, yE, wE, µP , µL, µB)← (sEk , y

E

k , w
E

k , µ
P

k , µ
L

k , µ
B

k)
10: Compute vk+1 in steps 4-19 of Algorithm 5.3 until the sufficient decrease condition is achieved.
11: Update Fmax.
12: if χ(vk+1;µ

B

k) ≤ χmax
k then ▷ O-Iterate

13: (χmax
k+1, y

E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (12χ
max
k , yk+1, wk+1, µ

P

k , µ
B

k , τk)
14: sEk+1 ← max{0, sk+1}
15: else if vk+1 satisfies (5.30 then ▷ M-Iterate
16: (χmax

k+1, τk+1)← (χmax
k , τk)

17: Update sEk+1, y
E

k+1, w
E

k+1 using (5.31)
18: if χfeas(vk+1) ≤ τk then
19: µP

k+1 ← µP

k

20: else
21: µP

k+1 ← 1
2µ

P

k

22: end if
23: if χcomp(vk+1;µ

B

k) ≤ τk, sk+1 ≥ −τke, and wk+1 ≥ −τke then
24: µB

k+1 ← µB

k

25: else
26: µB

k+1 ← 1
2µ

B

k

27: Reset sk+1 and wk+1 so that sk+1 + µBe > 0 and wk+1 + µBe > 0
28: end if
29: else ▷ F-Iterate
30: (χmax

k+1, y
E

k+1, w
E

k+1, µ
P

k+1, µ
B

k+1, τk+1)← (χmax
k , yE

k , w
E

k , µ
P

k , µ
B

k , τk)
31: end if
32: Update µL

k via Equation (5.45).
33: end while

223

arbitrarily close to −µB. In the computational setting, the logarithmic barrier terms can create errors

when trying to evaluate the barrier arbitrarily close to the shifted boundary. To mitigate this issue, a

so-called fraction to the boundary rule can be imposed. Let σ be some parameter such that 0 < σ < 1.

Consider a bound v ≥ ℓ for some variable v. The shifted constraint is then v > ℓ − µB. An update

vk+1 = vk + dk is rejected if

vk+1 < vk − σ(vk − ℓ− µB). (5.46)

This condition is checked before the merit function is evaluated to prevent issues with the barrier terms in

the merit function. In the implementation, σ was chosen to be fixed throughout the algorithm, although

other interior-point methods take an adaptive approach in which the fraction to the boundary parameter

depends on µB.

The final implementation detail that remains to be discussed is how to choose the initial trust-

region radius δ0. Experimentally, it has been determined that this initial choice can drastically impact

the performance of the algorithm, so much so that the trust-region method approach may perform worse

than an inertia-controlling technique. If the initial radius is chosen to be too small, many iterations may

be needed until the radius expands to a value large enough to enable rapid convergence. If the initial

radius is chosen to be too large, then several iterations may be needed before the radius shrinks to a point

where the model function becomes a good approximation of the merit function. For this reason, the initial

trust-region radius is chosen adaptively on a problem-dependent basis by using an inertia-controlling

scheme at the first iteration.

Algorithm 5.5 presents an inertia-controlling algorithm in which the matrix HM
0 is modified by

scalar multiples of B
(i)
0 until HM

0 + σB
(i)
0 has the correct inertia.

Algorithm 5.5. Iterative inertia control algorithm

1: Given HM and B, σic > 0, γic > 1.
2: if HM ≻ 0 then
3: exit
4: end if
5: σ ← σic
6: while HM + σB ⊁ 0 do
7: σ ← σγic
8: end while

Once a suitable value of σ0 is found, the search direction is taken to be dv,0 = (HM
0 +

σ0B0)
−1∇M(v0), and the initial radius is taken to be δ0 = ||dv,0||B0

. The trust-region method then

proceeds as presented previously. This adaptive choice ensures that a suitable initial radius is chosen. Of

course, Algorithm 5.5 cannot be run as is for large-scale problems. Instead, this algorithm can replace the

224

Moré-Sorensen algorithm when solving the projected subproblem in each of the methods presented in

Chapter 4. This simple strategy provides a reliable adaptive method for choosing the initial trust-region

radius.

225

Chapter 6

Numerical Results

6.1 Comparing the Different Trust-Region Algorithms

This section examines the experimental performance of the various trust-region algorithms at

varying scales. All algorithms are implemented in Fortran using the 2018 standard, and are compiled with

gfortran. Intel MKL is used for all BLAS and LAPACK operations. The Intel oneAPI Inspector-Executor

routines are used for sparse matrix-vector multiplications. All of the experiments were performed on an

Intel Core (TM) i7 CPU with 2.2GHz and 16 GM of RAM. First, consider the trust-region problem given

by

minimize
x∈Rn

q(x) =
1

2
xTHx+ gTx

subject to ||x|| ≤ δ.

Let µ = ||g||/δ − ℓ, where ℓ is the lower bound on the smallest eigenvalue of H given by the Gershgorin

circle theorem. All algorithms will choose x0 = 0 as the initial estimate. Let τ1 = 10−8. SIGLTR is

applied with shift µ. The Lanczos vectors are stored, but no reorthogonalization is applied. SIGLTR is

terminated once ||rk||(H+µI)−1 ≤ τ1||g||(H+µI)−1 . For now, SIGLTR does not use the restarting strategy.

LOPCGTR uses the incomplete Cholesky decomposition of H + µI as a preconditioner. Let B denote the

preconditioner. LOPCGTR is terminated once ||rk||B ≤ τ1||g||B, and is restarted every 1000 iterations.

JDTR uses the same preconditioner B to solve the correction equation. The preconditioner is not updated

as the value of σ changes. JDTR is set to substitute σj with µ in the correction equation for the first 15

iterations and is restarted after 50 iterations. Let τ2 = 10−3. The application of preconditioned conjugate

gradient to the correction equation is terminated when ||rj ||B ≤ τ2||r||B , where r is the right-hand side of

the correction equation. JDTR uses the same termination criteria as LOPCGTR. Additionally, conjugate-

gradient is applied to the system (H + σ∗I)x = −g with no preconditioner and with preconditioner

B for comparison. Recall that in exact arithmetic, GLTR converges in the same number of iterations

226

(a) Residual norm vs. iterations (b) σ vs. iterations

Figure 6.1. A random Gaussian trust-region subproblem.

Table 6.1. A Gaussian random trust-region problem.

Method H products M products Preconditioner Applications Iterations
SIGLTR 0 87 86 86

LOPCGTR 123 123 121 120
JDTR 413 413 386 22
CG 142 142 142 142
PCG 112 112 112 112

as conjugate-gradient with no preconditioner. The incomplete Cholesky decomposition is found using

HSL MI28 with all parameters set to their default values. The factorization of H + µI used in SIGLTR is

found using HSL MA57 with all parameters set to their default values. Each solve of H + µI uses one

iterative refinement step.

For the first experiment, let n = 10, 000, δ = 100, g be a Gaussian random vector with mean

0 and variance 1, and H be a random sparse matrix with an average of 25 nonzero entries per column,

whose entries are Gaussian random with mean 0 and variance 1. This is a relatively well-conditioned

problem. For this reason, it is expected that standard conjugate-gradient, and therefore GLTR, shall

perform reasonably well and that the number of iterations is not dramatically improved by the new

methods. See Figure 6.1 and Table 6.1.

For the second experiment, let all parameters remain the same except for the objective matrix H.

Let H = Ĥ +D, where Ĥ is the same random matrix as before, and D is a diagonal matrix such that

(D)i,i = i3/2/n− 1. This additional diagonal term makes the problem slightly more ill-conditioned. Thus,

it is expected that the new algorithms will show more noticeable improvements over GLTR. See Figure

227

(a) Residual norm vs. iterations (b) σ vs. iterations

Figure 6.2. A random Gaussian trust-region subproblem with a small diagonal offset.

Table 6.2. A Gaussian random trust-region problem with a small diagonal offset.

Method H products M products Preconditioner Applications Iterations
SIGLTR 0 69 67 66

LOPCGTR 64 64 64 62
JDTR 155 155 134 18
CG 136 136 136 136
PCG 73 73 73 73

6.2 and Table 6.2.

For the third experiment, let all parameters remain the same, except for the diagonal offset to

the objective matrix H, which is now set to (D)i,i = i2 − n. This matrix is extremely ill-conditioned

and is dominated by the D term. The extreme ill-conditioning of this system all but guarantees that

conjugate-gradient fails to converge. It is worth noting that the eigenvalues of the matrix H are clustered

toward the low end of the spectrum, which may help the convergence of all methods considered. For the

instance of this problem shown, σ ≈ 9998.9, and |σ − µ| ≈ 35.7. Thus, µ is relatively close to σ. See

Table 6.3 for details. The plots of the residual norms and Lagrange multiplier values are not particularly

illustrative for this problem and are excluded.

For the next experiment, let δ = 1, 000, and H be the diagonal matrix such that (H)i,i = i− 101.

Let g be a Gaussian random vector with mean 0 and variance 1 such that [g]1 = 0, thus making this

problem an instance of the hard case. The optimal value of σ is then 100. Conjugate gradient and

preconditioned conjugate gradient are not used in this comparison, as the matrix H + σ∗I is singular.

SIGLTR is run with a block size of 2 to guarantee convergence. See Figure 6.3 and Table 6.4. Each

228

Table 6.3. A Gaussian random trust-region problem with a large diagonal offset.

Method H products M products Preconditioner Applications Iterations
SIGLTR 0 21 18 18

LOPCGTR 20 20 18 17
JDTR 72 72 72 16
CG +10,000 +10,000 +10,000 +10,000
PCG 21 21 21 21

(a) Residual norm vs. iterations (b) σ vs. iterations

Figure 6.3. Hard Case.

algorithm was able to converge to the actual solution, and σ was computed to be equal to the left-most

eigenvalue.

These experiments reveal that the best choice for an arbitrary trust-region problem using the

identity matrix to define the trust region is LOPCGTR. Its ability to use the incomplete Cholesky

decomposition of H+µI as a preconditioner gives the method a distinct advantage over GLTR. Conversely,

the fact that LOPCGTR does not require a full factorization of H + µI gives a distinct advantage over

SIGLTR. Although SIGLTR has the benefit of not requiring any multiplications of H, this is offset by

the fact that linear systems of the form (H + µI)u = v must be solved at each iteration. This operation

is significantly more expensive than applying the incomplete Cholesky decomposition. Moreover, if the

Table 6.4. Hard Case.

Method H products M products Preconditioner Applications Iterations
SIGLTR 0 17 14 6

LOPCGTR 13 13 11 10
JDTR 43 43 30 10

229

(a) Residual norm vs. iterations (b) σ vs. iterations

Figure 6.4. SIGLTR vs Restarting SIGLTR.

block size is taken to be 2 in SIGLTR, even more matrix-vector operations are required, although this is

offset by the fact that most implementations of these libraries heavily optimize the application to vector

blocks. Although JDTR tends to converge in fewer iterations, each iteration requires more applications of

H and the precondition, which usually means more work for JDTR.

For the next experiment, the restarting of SIGLTR is examined. Let g be a Gaussian random

vector with mean 0 and variance 1, M = I, δ = 1000, and H a matrix with on average 25 nonzero entries

per column, whose values are Gaussian random variables with mean 0 and variance 1. First, SIGLTR

is run with a block size of 2 and no restarting. Next, it is set to restart every 25 iterations. This is a

very aggressive restart strategy. In practice, it is advisable to restart far less often. See Figure 6.4. These

graphs indicate that restarting, even frequently, only negligibly hinders convergence.

For the next experiment, consider the doubly-augmented problem

min
dx∈Rn,dy∈Rm

(
gTx gTy

)x
y

+
1

2

(
xT yT

)H + 2JTD−1J −JT

−J D


x
y


subject to

(
xT yT

)I + 2JTD−1J −JT

−J D


x
y

 ≤ δ2,
,

where g = (gx, gy) is a Gaussian random vector with mean 0 and variance 1, δ = 1, 000, J ∈ Rm×n is a

sparse Gaussian random matrix with an average of 5 nonzero entries per column with mean 0 and variance

1, H ∈ Rn×n is a sparse Gaussian random matrix with an average of 5 nonzero entries per column with

mean 0 and variance 1 plus a diagonal matrix E given by (E)i,i = i3/2− 100, and D ∈ Rm×m is a random

230

Table 6.5. A Doubly-Augmented Trust-Region Problem.

Method H products J products Preconditioner Applications Iterations
SIGLTR 0 398 78 77

LOPCGTR 146 582 144 143
JDTR 483 1091 440 41

diagonal matrix whose entries are the absolute value Gaussian random variables with mean 10−3 and

variance 0. Let n = 10, 000, and m = 9, 999. Let HM denote the objective matrix, and M denote the

constraint matrix. Let µ = gTg/(δ||g||M) − λn(H), where λn(H) is the leftmost eigenvalue of H. As

before, SIGLTR is used with shift µ, stored Lanczos vectors, and no reorthogonalization. LOPCGTR is

run with the matrix

B =

diag(H + µI) + (1 + µ)2JTD−1J −(1 + µ)JT

−(1 + µ)J (1 + µ)D


implicitly used as a preconditioner. JDQZTR is applied using the signed incomplete Cholesky decomposi-

tion of the fixed matrix

C =

H + µI (1 + µ)JT

(1 + µ)J −(1 + µ)D


as a preconditioner for the correction equation. The signed incomplete Cholesky decomposition is found

with HSL MI30 with all parameters set to default values. The correction equation is solved using restarted

GMRES with a relative convergence tolerance of τ2 = 10−3. Due to the fact that JDQZTR measures

the residual in the Euclidean norm, the results in 6.5 are normalized by dividing by the largest value

that the residual norm takes as the algorithm proceeds. This example shows that for both SIGLTR and

LOPCGTR, it is possible for the residual to increase in between iterations. However, once the correct

value of σ is found, the residual seems to be strictly decreasing. This example also shows that the value of

σ does not strictly increase in the JDQZTR algorithm, as the Petrov-Galerkin condition does not preserve

the Cauchy interlacing property. The results of this experiment are more challenging to interpret. Both

SIGLTR and LOPCGTR require one call to HSL MA57. This constitutes the majority of the execution

time for this problem. LOPCGTR required the factorization of a less dense matrix. However, it required

almost twice as many iterations. JDTR required the fewest iterations but significantly more matrix-vector

products with H and J . Overall, it seems that the best choice of algorithm is problem dependent. That

being said, the instability of the JDQZTR algorithm suggests that it should only be used in problems so

231

(a) Residual norm vs. iterations (b) σ vs. iterations

Figure 6.5. A Doubly-Augmented Trust-Region Problem.

large that a single call to HSL MA57 is prohibitively expensive. For instance, consider the same problem

as above, but with δ = 10, n = 100, 000, and m = 99, 999. JDQZTR was able to converge for this problem

in 29 iterations and required 264 multiplications with H, 618 multiplications with J , and 232 applications

of the preconditioner.

On the other hand, both SIGLTR and LOPCGTR could not complete the single factorization of

their respective preconditioners without exhausting the available memory of the workstation. At the same

time, it is well known that GMRES can converge very slowly when applied to saddle-point systems, even

when preconditioning is used. For these reasons, in most cases, SIGLTR and LOPCGTR are recommended

over GLTR and JDQZTR.

6.2 The Shifted Primal-Dual Interior-Point Algorithm

This section examines the experimental performance of the all-shifted primal-dual penalty-barrier

trust-region method. The algorithm is run on the CUTEst NLP problem collection, consisting of problems

with nonlinear objective functions, bound constraints, linear constraints, and nonlinear constraints, ranging

from low dimension (less than five variables and constraints) to large dimension (greater than 50,000

variables and constraints). Analysis of the results is carried out with performance profiles, see [9]. See

Table 6.6 for the parameters used in the implementation of Algorithm 5.1 and Algorithm 5.2.

The first test examines the performance between using the diagonal trust-region matrix M (1) vs

M (2). Intuitively, it stands to reason that M (2) will yield better results, as the trust-region subproblems

are better conditioned, and as the trust-region radius converges to zero, the search direction still takes into

232

Table 6.6. Algorithm 5.3 and 5.4 Parameters

Parameter Description Value
η1 Successful trust-region iteration parameter 0.001
η2 Very successful trust-region iteration parameter 0.25
ηF,1 Successful trust-region iteration parameter for de-

crease in path-following equations
0.9

ηF,2 Very successful trust-region iteration parameter for
decrease in path-following equations

0.45

γC Trust region contraction parameter 0.5
γE Trust region expansion parameter 2.0
smax Safeguard for sE 1.0× 106

ymax Safeguard for yE 1.0× 106

wmax Safeguard for wE 1.0× 106

µP
0 Initial penalty parameter 0.001
µL
0 Initial flexible trust-region parameter 0.1
µB
0 Initial barrier parameter 0.001
σ Fraction to the boundary parameter 0.9
σic Initial inertia control modification 0.1
γic Inertia control expansion parameter 1.5
funbounded Unbounded objective function tolerance −1.0× 109

Mmax Constant in sufficient decrease tolerance 1.0× 1015

Fmax Initial constant in sufficient decrease tolerance 1.0× 108

χmax
0 Initial O-iterate tolerance 1000
τ0 Initial M-iterate tolerance 0.1
τP Primal feasibility tolerance 1.0× 10−5

τD Dual feasibility tolerance 1.0× 10−5

τinf Infeasible stationary-point tolerance 1.0× 10−5

233

Figure 6.6. Performance Profile of function evaluations used in all-shifted primal-dual penalty-barrier
trust-region method with different trust-region matrices

account some of the curvature information of the constraints. On the other hand, when using M (1), as

the trust-region radius decreases, the search directions converge to the gradient-descent direction, which is

well known to yield poor search directions in interior-point methods. This experiment is run with the

Moré-Sorensen method for solving the trust-region subproblem. The method was considered to have failed

if it required more than 500 iterations or if the execution took longer than 30 minutes. The performance

profiles shown here are of the number of evaluations of the objective function and objective function

gradient. The results are essentially identical when the performance profiles are of the number of inner

iterations. See Figure 6.6. Disappointingly, the result is not uniform, as some problems converged in fewer

iterations with the diagonal trust-region matrix. However, the results indicate that the doubly-augmented

trust-region matrix is the preferred choice.

Table 6.7 shows the number of iterations and function evaluations of the all-shifted primal-dual

penalty-barrier trust-region method using SIGLTR with the doubly-augmented trust-region matrix to

234

solve the trust-region subproblem on the Hock-Schittkowski [20] problems. These simpler problems tend

to yield a good initial benchmark of how well an algorithm will perform before applying it to larger, more

complicated problems. The iterations column only reflects the number of successful trust-region iterations.

The fevals column counts the number of objective function evaluations. This count coincides with the

number of total trust-region iterations, as one function evaluation occurs per trust-region iteration. Simple

bounds on the primal variables are not included in the number of constraints.

The next experiment compares the performance of the all-shifted primal-dual penalty-barrier

trust-region method with two different implementations to guarantee convergence of the inner iterations.

The first is a hybrid trust-region line-search method. This method follows the method presented in [12].

The hybrid trust-region line-search method differs from a pure trust-region method in that progress is

made even in unsuccessful iterations by performing a backtracking line search or a Wolfe line search on the

search direction computed by solving the trust-region subproblem if the iteration is unsuccessful. The idea

behind this method is that fewer trust-region subproblems need to be solved in such a method than in a

pure trust-region approach at the expense of more iterations. The second method is similar to the pure

trust-region method, however after an unsuccessful iteration yields a search direction dv,k, subsequent

trust-region subproblems are projected onto the subspace span{dv,k, (B(2))−1∇M}. This two-dimensional

subproblem is trivial to solve. Therefore this method does not require significantly more computation

than the hybrid trust-region line-search method. This experiment used the doubly-augmented trust-region

matrix and the Moré-Sorensen algorithm. See Figure 6.7. As expected, the trust-region method performs

best overall. However, the additional computation required by the Moré-Sorenson algorithm makes this

method prohibitively expensive. The SIGLTR and LOPCGTR methods enormously help to alleviate this

overhead, particularly when their warm-starting capabilities are taken advantage of. Interestingly, the

JDQZTR algorithm tended to perform slower than even the Moré-Sorenson algorithm when applied to

these real problems. This is perhaps because GMRES tends to converge quite slowly on saddle-point

problems, and thus even if JDQZTR requires fewer iterations than other methods, the cost of each iteration

outweighs this benefit. For this reason, JDQZTR is not compared here. Instead, JDQZTR should be

considered a last resort for problems that are too large to handle by other methods.

First, the number of function evaluations between the method using the Moré-Sorensen algorithm

and the SIGLTR algorithm are compared in Figure 6.8. Interestingly, using the SIGLTR algorithm led to

better overall performance, even though the same trust-region subproblems are being solved. This could

be because SIGLTR yields more accurate trust-region solutions. More likely, the faster execution time of

SIGLTR meant that fewer problems were deemed to have failed.

235

Figure 6.7. Performance Profile of function evaluations used in all-shifted primal-dual penalty-barrier
trust-region method with different inner iterations strategies

236

Figure 6.8. Performance Profile of function evaluations used in all-shifted primal-dual penalty-barrier
trust-region method with Moré Sorensen vs. SIGLTR

237

Figure 6.9. Performance Profile of function evaluations used in all-shifted primal-dual penalty-barrier
trust-region method with SIGLTR vs. LOPCGTR

238

Table 6.7. Hock-Schittkowski Results

Problem Variables Constraints Iterations fevals

HS6 2 1 20 36

HS7 2 1 9 13

HS8 2 2 4 6

HS9 2 1 4 5

HS10 2 1 9 10

HS11 2 1 8 9

HS12 2 1 28 40

HS13 2 1 12 13

HS14 2 2 8 9

HS15 2 2 71 78

HS16 2 2 8 9

HS17 2 2 9 10

HS18 2 2 22 35

HS19 2 2 29 30

HS20 2 3 18 19

HS21 2 1 8 9

HS21MOD 7 1 11 12

HS22 2 2 8 9

HS23 2 5 15 16

HS24 2 3 9 10

HS26 3 1 25 26

HS27 3 1 47 59

HS28 3 1 1 2

HS29 3 1 65 114

HS30 3 1 7 8

HS31 3 1 8 9

HS32 3 2 11 12

HS33 3 2 51 97

HS34 3 2 10 11

239

Table 6.7. (cont.)

HS35 3 1 7 8

HS35I 3 1 7 8

HS35MOD 3 1 9 10

HS36 3 1 12 13

HS37 3 2 12 13

HS39 4 2 8 9

HS40 4 3 3 4

HS41 4 1 8 9

HS42 4 2 4 5

HS43 4 3 19 20

HS44 4 6 9 10

HS44NEW 4 6 9 10

HS46 5 2 19 20

HS47 5 3 29 44

HS48 5 2 1 2

HS49 5 2 13 14

HS50 5 3 8 9

HS51 5 3 1 2

HS52 5 3 2 3

HS53 5 3 6 7

HS54 6 1 6 7

HS55 6 6 6 7

HS56 7 4 13 20

HS57 2 1 105 153

HS59 2 3 14 17

HS60 3 1 6 7

HS61 3 2 14 22

HS62 3 1 18 19

HS63 3 2 11 16

HS64 3 1 24 25

240

Table 6.7. (cont.)

HS65 3 1 47 68

HS66 3 2 7 8

HS67 3 14 17 18

HS68 4 2 20 22

HS69 4 2 11 12

HS70 4 1 14 21

HS71 4 2 12 13

HS72 4 2 26 27

HS73 4 3 14 15

HS74 4 5 22 13

HS75 4 5 33 34

HS76 4 3 9 10

HS76I 4 3 9 10

HS77 5 2 35 47

HS78 5 3 5 6

HS79 5 3 6 7

HS80 5 3 6 8

HS81 5 3 7 8

HS83 5 3 27 28

HS84 5 3 26 27

HS85 5 21 3 4

HS86 5 10 13 14

HS87 6 4 74 96

HS88 2 1 62 84

HS89 3 1 62 85

HS90 4 1 62 97

HS91 5 1 53 82

HS92 6 1 55 88

HS93 6 2 16 17

HS95 6 4 18 20

241

Table 6.7. (cont.)

HS96 6 4 49 79

HS97 6 4 15 21

HS98 6 4 16 24

HS99 7 2 13 14

HS99EXP 31 21 28 32

HS100 7 4 28 37

HS100LNP 7 2 16 21

HS100MOD 7 4 10 13

HS101 7 5 51 77

HS102 7 5 71 104

HS103 7 5 35 48

HS104 8 5 9 10

HS105 8 1 19 20

HS106 8 6 64 71

HS107 9 6 31 34

HS108 9 13 28 54

HS109 9 10 39 41

HS111 10 3 15 19

HS111LNP 10 3 32 52

HS112 10 3 7 8

HS113 10 8 133 222

HS114 10 11 21 22

HS116 13 14 99 104

HS117 15 5 16 17

HS118 15 17 21 22

HS119 16 8 17 18

HS268 5 5 15 15

242

Finally, the number of function evaluations required by the outer algorithm when using SIGLTR

and LOPCGTR are compared in Figure 6.9. This plot shows that the two methods yield comparable

results.

In conclusion, the methods presented in this dissertation yield noticeable improvements over

existing trust-region methods when applied to interior-point methods. In particular, the SIGLTR and

LOPCGTR methods exhibit exceptional performance in all cases, especially compared to existing methods.

Both methods have strong theoretical guarantees and can be restarted and warm-started to accelerate

convergence and improve stability. These two methods make pure trust-region implementations of

interior-point methods significantly more practical than traditional methods, allowing interior-point

methods to take advantage of the strong theoretical results of trust-region methods. The JDTR algorithm,

while showing improvements over existing methods, does not exhibit the performance of the SIGLTR or

LOPCGTR methods. For unconstrained problems, trust-region methods using SIGLTR and LOPCGTR

should be attempted before JDTR. JDQZTR should only be used for constrained problems if SIGLTR

and LOPCGTR cannot be applied.

243

Bibliography

[1] Satoru Adachi, Satoru Iwata, Yuji Nakatsukasa, and Akiko Takeda. “Solving the Trust-Region
Subproblem By a Generalized Eigenvalue Problem”. SIAM Journal on Optimization 27.1 (2017),
pp. 269–291.

[2] Roberto Andreani, José Mario Mart́ınez, and B. F. Svaiter. “A new sequential optimality condition
for constrained optimization and algorithmic consequences”. SIAM J. Optim. 20.6 (2010), pp. 3533–
3554.

[3] Richard Beals and Roderick Wong. Special Functions and Orthogonal Polynomials. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 2016.

[4] I. Bongartz, A. R. Conn, N. I. M. Gould, and Philippe L. Toint. “CUTE: Constrained and uncon-
strained testing environment”. ACM Trans. Math. Software 21.1 (1995), pp. 123–160.

[5] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. New York, NY, USA: Cambridge
University Press, 2004.

[6] James R. Bunch and Linda Kaufman. “Some stable methods for calculating inertia and solving
symmetric linear systems”. Mathematics of Computation 31 (1975), pp. 163–179.

[7] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-Region Methods. Philadelphia,
PA: Society for Industrial and Applied Mathematics (SIAM), 2000, pp. xx+959.

[8] Gerard Debreu. “Definite and semidefinite quadratic forms”. Econometrica 20 (1952), pp. 295–300.

[9] Elizabeth D. Dolan and Jorge J. Moré. “Benchmarking optimization software with performance
profiles”. Math. Program. 91.2, Ser. A (2002), pp. 201–213.

[10] Diederik R. Fokkema, Gerard L. G. Sleijpen, and Henk A. Van der Vorst. “Jacobi–Davidson Style
QR and QZ Algorithms for the Reduction of Matrix Pencils”. SIAM Journal on Scientific Computing
20.1 (1998), pp. 94–125.

[11] Anders Forsgren and Philip E. Gill. “Primal-Dual Interior Methods for Nonconvex Nonlinear
Programming”. SIAM Journal on Optimization 8.4 (1998), pp. 1132–1152.

[12] E. Michael Gertz and Philip E. Gill. A primal-dual trust-region algorithm for nonlinear programming.
Numerical Analysis Report NA 02-1. University of California, San Diego, 2002.

[13] Philip E. Gill, Vyacheslav Kungurtsev, and Daniel P. Robinson. A Shifted Primal-Dual Penalty-
Barrier Method for Nonlinear Optimization. Center for Computational Mathematics Report CCoM
19-03. University of California, San Diego, 2019.

[14] Philip E. Gill, Walter Murray, and Margaret H. Wright. Numerical Linear Algebra and Optimization,
volume 1. Redwood City: Addison-Wesley Publishing Company, 1991.

[15] Philip E. Gill and Daniel P. Robinson. “A primal-dual augmented Lagrangian”. Computational
Optimization and Applications 51.1 (Jan. 2012), pp. 1–25.

244

[16] Philip E. Gill and Margaret H. Wright. Computational Optimization: Nonlinear Programming. To
be published in 2023. New York, NY, USA: Cambridge University Press, 2023.

[17] Philip E. Gill and Minxin Zhang. A Projected-Search Interior Method for Nonlinear Optimization.
Center for Computational Mathematics Report CCoM 22-01. La Jolla, CA: Center for Computational
Mathematics, University of California, San Diego, 2022.

[18] Nicholas I. M. Gould, Stefano Lucidi, Massimo Roma, and Philippe L. Toint. “Solving the Trust-
Region Subproblem using the Lanczos Method”. SIAM Journal on Optimization 9.2 (1999), pp. 504–
525.

[19] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. “CUTEr and SifDec: A constrained
and unconstrained testing environment, revisited”. ACM Trans. Math. Softw. 29 (2003), pp. 373–394.

[20] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes. Lecture Notes in
Econom. Math. Syst. 187. Berlin: Springer-Verlag, 1981.

[21] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[22] Zhongxiao Jia. “The Convergence of Generalized Lanczos Methods for Large Unsymmetric Eigen-
problems”. SIAM Journal on Matrix Analysis and Applications 16.3 (1995), pp. 843–862.

[23] Zhongxiao Jia and Fa Wang. The convergence of the Generalized Lanczos Trust-Region Method for
the Trust-Region Subproblem. 2019.

[24] Chih-Jen Lin and Jorge J. Moré. “Incomplete Cholesky factorizations with limited memory”. SIAM
J. Sci. Comput. 21.1 (1999), pp. 24–45.

[25] Jorge J. Moré and Danny C. Sorensen. “Computing a trust region step”. SIAM J. Sci. and Statist.
Comput. 4 (1983), pp. 553–572.

[26] C. C. Paige. “The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices”.
PhD thesis. University of London, 1971.

[27] Horst Simon. “The Lanczos Algorithm With Partial Reorthogonalization”. Mathematics of Compu-
tation - Math. Comput. 42 (Jan. 1984), pp. 115–115.

245

	Dissertation Approval Page
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Vita
	Abstract of the Dissertation
	Introduction
	Overview
	Contributions of This Dissertation
	Notation

	Linear Algebra
	Symmetric Positive Definite Matrices
	Congruence
	Vector Norms and Matrix Norms
	Condition Numbers
	Generalized Eigenvalues and Eigenvectors
	The Lanczos Process
	Lanczos-CG
	The Block Lanczos Process

	Other Results

	Unconstrained Optimization
	Introduction
	Optimality Conditions
	Directions of Decrease
	Line-search Methods
	Sufficient decrease conditions

	The Trust-Region Method

	Constrained Optimization
	Introduction
	Equality Constraints
	Optimality Conditions
	Augmented Lagrangian Methods

	Inequality Constraints
	Optimality Conditions
	Interior-Point Methods
	Primal-Dual Interior Methods
	The Slack Formulation

	The Trust-Region Subproblem
	Overview
	Optimality Conditions
	The Hard Case

	The Moré-Sorensen Algorithm
	The Truncated Conjugate-Gradient Algorithm
	The GLTR Algorithm
	The Algorithm

	The Shifted and Inverted GLTR Algorithm
	The Projected Trust-Region Subproblem
	Solving in the Hard Case
	The Full Algorithm
	Choice of Shift
	Convergence Properties
	Effect of Shifting on the Convergence Rate
	Warm-starting and Restarting
	Use in a Trust-Region Algorithm

	A Jacobi-Davidson Correction Trust-Region Algorithm
	A Locally-Optimal Preconditioned Conjugate-Gradient Trust-Region Algorithm
	Doubly-Augmented Trust-Region Problems
	The Jacobi-Davidson QZ Trust-Region Algorithm

	The All-Shifted Primal-Dual Penalty-Barrier Trust-Region Method
	Introduction
	Shifted Primal-Dual Interior Point Algorithm
	Minimizing the Primal-Dual Merit Function
	Convergence Analysis
	Solving the Constrained Nonlinear Optimization Problem
	Implementation Details

	Numerical Results
	Comparing the Different Trust-Region Algorithms
	The Shifted Primal-Dual Interior-Point Algorithm

