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Abstract

From 1965-2015, immense strides were made into understanding the mechanisms 

underlying the common androgen excess disorders, premature adrenarche and 

polycystic ovary syndrome (PCOS). The author reviews the critical discoveries of 

this era from his perspective investigating these disorders, commencing with his 

early discoveries of the unique pattern of plasma androgens in premature 

adrenarche and the elevation of an index of the plasma free testosterone 

concentration in most hirsute women. The molecular genetic basis, though not the 

developmental biologic basis, for adrenarche is now known and 11-oxytestosterones

shown to be major bioactive adrenal androgens. The evolution of the lines of 

research into the pathogenesis of PCOS is historically traced: research milestones 

are cited in the areas of neuroendocrinology; insulin resistance, hyperinsulinism, 

type 2 diabetes mellitus; folliculogenesis; androgen secretion; obesity; phenotyping,

prenatal androgenization, epigenetics, and complex genetics. Large scale genome-

wide association studies led to the 2014 discovery of an unsuspected steroidogenic 

regulator DENND1A (differentially expressed in normal and neoplastic 

development). The splice variant DENND1A.V2 is constitutively overexpressed in 

PCOS theca cells in long-term culture and accounts for their PCOS-like phenotype. 

The genetics are complex, however: DENND1A intronic variant copy number is 

related to phenotype severity, and recent data indicates that rare variants in a 

DENND1A  regulatory network and other genes are related to PCOS. Obesity 

exacerbates PCOS manifestations via insulin resistance and pro-inflammatory 

cytokine excess; excess adipose tissue also forms testosterone. Polycystic ovaries in

40% of apparently normal women lie on the PCOS functional spectrum. Much 

remains to be learned.
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Abbreviations 

Competitive protein binding (CPB),

Congenital adrenal hyperplasia (CAH)

Cytochrome P450c17 gene (CYP17A1), 

Dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS),

Differentially expressed in normal and neoplastic development protein, isoform 1A, 

variant 2 (DENND1A.V2),

Functional ovarian hyperandrogenism (FOH),

Genome-wide association studies (GWAS),

Hydroxysteroid dehydrogenase (HSD),

17-ketosteroids (17KS)

Polycystic ovary morphology (PCOM, ultrasonographically defined),

Polycystic ovary syndrome (PCOS),

Sex hormone binding globulin (SHBG),

Type 2 diabetes mellitus (T2DM)

Zona reticularis of the adrenal cortex (ZR)
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1 Introduction

The common hyperandrogenic disorders of children and adult women, premature 

adrenarche and polycystic ovary syndrome (PCOS) were recognized 1935-1952, but 

our understanding of their pathogenesis dates from the mid-1960s. At that time, 

measurements of hormones in blood were introduced, and these were followed by 

an accelerating pace of advances in biochemical and molecular genetics that 

permitted increasingly sophisticated understanding of the endocrinology of these 

disorders. However, the broad diversity of findings led to disparate interpretations 

that have lingered past their time. It is the purpose of this historical review to 

illustrate from a personal perspective the evolution of the different paths of 

discovery from 1965-2015 that led to our current understanding of the 

pathogenesis of these disorders.

Premature adrenarche accounts for ≥90% of the cases of isolated premature pubic 

hair development (premature pubarche), i.e., before 8 years of age in girls and 9 

years in boys (1). Premature pubarche occurs in 3-5% of children, and is a common 

finding (>7.5%) in girls attending pediatric clinics (2). PCOS prevalence is 5-10% 

among reproductive age women (3). Thus, both are much more common than the 

virilizing disorders that may resemble them in their presentation. The most common

of the latter is 21-hydroxylase deficient congenial adrenal hyperplasia (CAH): the 

prevalence of tne nonclassic form of the disorder, which presents with androgen 

excess in early childhood, adolescence, or adulthood, is 1:1000-1:2000, 10-fold 

greater than that of the classic form of the disorder which also presents in early 

childhood in boys, but neonatally in girls (4).
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This history is my perspective on how the important lines of research into the 

causes of premature adrenarche and PCOS evolved during my career investigating 

these disorders 1965-2015, and it 65udes with a look forward to how these relate to

current issues in research, with the help of systematic PubMed searches on these 

topics. I begin with the foundational discoveries that paved the way to the starting 

gate, so to speak. The main section of this review then commences when I entered 

the field, developing assays for androgens in blood and applying them to studies of 

premature adrenarche and hirsutism. The text is organized around the seminal 

discoveries (Table 1-2) and the research that each spawned. There have been 

myriad basic science advances during this period, but only those most directly 

related to the pathogenesis of premature adrenarche and PCOS are covered here. 

The history includes my personal history of how I entered clinical research from a 

background in clinical medicine. But this is mostly a story of ideas, of how medical 

puzzles have been (as yet incompletely) solved when the nature of the pieces of the

mechanism is not known and then, as these are revealed one-by-one, how they fit 

together is only gradually discovered. 

2 Foundational observations in female sex steroid endocrinology 

2.1 The adrenal zona reticularis and adrenarche 

An authoritative review of the history and function of the adrenal gland attributes 

the discovery of the adrenal gland to the Greco-Roman physician Galen (ca 130-

201AD) (5). The foundational observations of the adrenal zona reticularis (ZR), now 

known to be the major source of adrenal androgens, date to 1866, when Dr Julius 

Arnold, according to Dr. Joseph Marshall Flint described in 1900 “the generally 

accepted nomenclature of the (adrenal) cortex…into three layers…named… from 
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the arrangement of the blood vessels and connective tissue” (6, 7). Flint provided 

illustrative figures of this zonation that make clear the reticular nature of the ZR 

scaffolding (Fig. 1) (6). 

 

The term “adrenarche” was coined by the trailblazing Massachusetts General 

Hospital (MGH) physician Fuller Albright in 1942 to explain the growth of pubic and 

axillary hair in girls with probable gonadal dysgenesis who lacked breast and uterus 

development (8). These children excreted more 17-ketosteroids (17-KS) than 

expected in adrenal insufficiency, though subnormal, which he attributed it to the 

production of a testosterone-like, nitrogen-retaining (“N”) hormone by the adrenal 

gland (8, 9). 

Dr. Nathan Talbot’s MGH group, although not Albright collaborators (5)  adapted 

Albright’s concept to the condition of  isolated premature sexual hair development, 

attributing it to unusually early production of 17-KS and terming the condition 

“precocious adrenarche” (10). Lawson Wilkins, MD at Johns Hopkins Hospital 

disputed Talbot’s conclusion. He termed the condition “premature pubarche” 

irrespective of mild elevation of 17-KS output, which Wilkins thought “…may be due

to minor variations in technic (sic)” (11). Today “premature pubarche” has come to 

refer to the onset of sexual hair development, irrespective of cause.

2.2 The ovary and its hormones

The ovaries were known to Aristotle (384-322 BC) as the source of sexual behavior 

and fertility: he is quoted thusly: “the ovaries of sows are excised with a view to 
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quenching their sexual appetites and…female camels are mutilated to prevent their

being got with young” (12). Soranus provided the first written description of the 

ovaries as “didymi (paired organs)…attached to the outside of the uterus, near the 

isthmus, one on each side”(12). 

The first accurate picture of the female reproductive system appeared in De Humani

Corporis Fabrica (1553), prepared by Andreas Vasalius of Brussels while he was a 

Professor at the University of Padua (12, 13). Vesalius’ figure of the “female testes” 

is recognized as the first description the ovarian follicles (Fig. 2) (14)—this also 

appears to be the first depiction of polycystic ovaries! Gabrielle Falloppio, a 

successor at Padua, provided an appreciatively corrected commentary on Vesalius’ 

work, Observationes anatomicae, in 1562 (13). In 1671 the Italian anatomist 

Marcello Malpighi concluded that the  “female testes” of the cow were ovaries and 

named the corpora lutea (15). In 1672 the Dutch physician Regnier de Graaf 

published observations on his dissections of the human “female testes”, also 

terming them ovaries after showing that they contained vesicles (now termed antral

or “Graafian” follicles) that he considered to be eggs by analogy to birds’ eggs (15). 

To him is also attributed the first detailed description of the human corpus luteum 

and its association with pregnancy (16). The discovery of the mammalian oocyte 

was reported in 1827 by the embryologist Carl Ernst von Baer (17).

Turning to hormones-- The first associations of hirsutism and infertility have been 

traced to descriptions by the Greek physician Hippocrates (ca. 400 BC) (18, 19). 

Soranus of Ephesus (AD ca. 50 AD) later described this as well.  Otherwise only 

sporadic descriptions of this association are to be found during the middle ages (18,
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19). During the 1800s, such reports increased and reports of associations with 

menstrual disorders and/or “sclerocystic” or “microcystic” ovaries appeared; 

however, the association of the ovaries with the other two abnormalities was 

described only in isolated cases (18). 

The discovery of the hormonal function of the ovaries began in 1921 with the 

detailed observations of the sow estrus cycle by George W Corner, MD (20). His 

studies showed the cyclic chain of events beginning with rupture of the ovarian 

follicle, followed by the organization of the corpus luteum from successive vascular 

invasion of the ruptured follicle and fusion of its granulosa and theca cells. He 

further demonstrated that the characteristic periodic uterine mucosal proliferation 

was related to corpus luteum development (16, 20). He followed with the 

description of the rhesus monkey’s menstrual cycle (21). Corner and others then 

embarked on what proved to be an era of discovery of the steroidal nature of sex 

hormones.  

In 1923 Edgar Allen, PhD and Edward A Doisy, PhD reported that the ovarian 

follicles contained a feminizing hormone: partially purified extract of follicular fluid 

from sow ovaries injected into oophorectomized rodents caused vaginal 

cornification (Allen-Doisy bioassay) (22). Female hormone was first isolated in 1929 

from human pregnancy urine by the Doisy and Adolph Butenandt groups (23-25): 

this was estrone, initially named folliculin, theelin, and progynin (Fig. 3). The 

following year Doisy and Guy Frederic Marrian, PhD independently crystallized 

estriol (initially termed theelol by the Doisy group) from pregnancy urine, which 

later proved to almost entirely be a product of the fetal adrenal-placental unit (25, 
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26). In 1936, the estrogenic hormone initially reported in sow ovaries was 

crystallized from follicular fluid aspirated from 4 tons of sow ovaries in the Doisy 

laboratory and was found to be estradiol (initially “dihydrotheelin”) (25, 27).

In 1929, Corner and Willard M Allen demonstrated that the corpus luteum produced 

a hormone that supported the proliferation of the uterine mucosa (Corner-Allen test)

and pregnancy in the castrated rabbit, and in 1930 they isolated the active 

substance from alcohol extracts of sow corpora lutea (16, 21). From such extracts, 

Allen and Oskar Wintersteiner, PhD in 1934 prepared a crystalline progestin (28), 

almost simultaneously with 3 other groups:  that of Butenandt, which determined 

the structure, Slotto and Ruschig; and Hartmann and Wettstein (29, 30). By mutual 

consent the compound was named progesterone (31).

The discovery of androgens is ascribed to Arnold Berthold’s 1847 report that testes 

produced a circulating masculinizing substance: cock’s comb regression after 

castration was reversed by transplanting testes into the abdominal cavity (32). This 

report was overshadowed by Brown-Sequard’s 1889 infamous claim that aqueous 

testicular extracts rejuvenated him (steroids are poorly water-soluble) (33). The first

naturally occurring androgen, androsterone, was isolated from policemen’s urine by

Butenandt and Tscherning in 1931, the second—dehydroepiandrosterone (DHEA)--

was isolated similarly by the same group  in 1934 (25). Testosterone was isolated 

the following year from bull testes by Ernst Laqueur and associates (funded by 

Organon pharmaceuticals) (34). Within the year, testosterone was chemically 

synthesized from cholesterol by Butenandt and Hanisch (Schering) and by Leopold 

Ruzicka and A. Wettstein (Organon) (35, 36). (Edward C Kendall’s group isolated 
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and identified cortisone as a steroid the same year) (37).) Formation of testosterone

and androstenedione from 3H-17-hydroxyprogesterone and 14C-progesterone by a 

normal human ovary homogenate was documented in 1961 by Ralph Dorfman, 

PhD’s group (38), and secretion of androgens by the ovary was documented in 1966

when specific assays for androgens in blood were developed, as reviewed below.

The Nobel Prize in Physiology or Medicine was awarded to Doisy in 1943, not for his 

discovery of estrone or estradiol, but for his “discovery of the chemical nature of 

vitamin K”. Butenandt and Ruzicka were awarded the 1939 Nobel Prize in Chemistry

for the synthesis of testosterone but prevented from accepting it by the German 

Nazi government (39), though Ruzicka, who did not participate in the Nazi war 

effort, gave his Nobel lecture after World War II (5).

The necessity of the anterior pituitary gland for gonadal, adrenocortical and thyroid 

development was demonstrated in 1926 by Philip E. Smith by means of 

transsphenoidal ablation and transplantation of the pituitary of the rat (40, 41). Just 

five years later, the first definite evidence that two pituitary gonadotropins are 

required for ovarian development was obtained by Frederick Hisaw and H.L. Fevold: 

they prepared one purified anterior pituitary fraction that stimulated ovarian 

follicular growth and another that luteinized the follicles (42). In 1941 they 

demonstrated that the two sheep gonadotropins were synergistic in stimulating 

ovarian estrogen secretion (43), and in 1942 Roy Greep and colleagues reported 

that while swine FSH stimulated follicular growth in hypophysectomized rats, it did 

not stimulate estrogen secretion until highly purified swine LH, which alone 

stimulated growth of theca cells but did not stimulate estrogen secretion, was 
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added (44). Replication of these findings required highly purified gonadotropin 

preparations (45),

The first evidence for a two-cell theory for follicular estrogen production was 

obtained by Falck in 1959 when, using an ocular explant bioassay system, he 

reported that rat follicle estrogen biosynthesis required both granulosa and theca-

interstitial cell aggregates (46). He later reported, using a similar bioassay system, 

that theca-interstitial cells produced only androgen (47).

Drs Irving Stein and Michael Leventhal in 1935 were the first to report a series of 

cases (n=7) with the triad of polycystic ovaries (Fig. 4), amenorrhea, and hirsutism

(48, 49). But the usual occurrence of hirsutism (n=4), acne (n=1), and/or obesity 

(n=3, 1 of whom was hirsute) were not emphasized. Awareness of the Stein-

Leventhal syndrome was probably stimulated greatly by their claim of uniform 

restoration of menses following wedge resection. The terminology for the syndrome 

gradually changed in favor of “PCOS” in the late 1970’s (49). Though Stein and 

Leventhal initially suspected an unspecified “hormonal” cause for their syndrome, 

they did not consider the available hormonal data to be convincing for over two 

decades (50). In 1958 Janet McArthur and colleagues reported that urinary 

interstitial cell-stimulating hormone (LH) measured by a prostate and testicular 

weight bioassay was elevated in the four Stein-Leventhal patients studied (51). 

Estrogen-progestin combination oral contraceptive pills are so integral to the 

medical management of PCOS because of their ability to correct the 

hyperandrogenism and menstrual irregularity and the story of their development 
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was so sociologically important that it seems appropriate to review it here. Their 

development began in the mid-1950s when Syntex and Searle lost the race to 

commercially produce cortisol to Upjohn (52). Syntex continued to provide Upjohn 

with substrate progesterone that they synthesized from diosgenin extracted from 

Mexican Dioscorea yams (5), so progestin research was a natural direction. Syntex’s

Carl Djerassi built on an earlier discovery that removing progesterone’s C19 carbon 

increased its potency and enhanced oral efficacy and synthesized the progestin 

norethindrone (alternatively termed norethisterone), the first of the “19-nor” 

progestins to be patented (1951). Searle’s Charles Colton then embarked on a 

systemic program to create a series of 19-nor progestins, culminating in a 1953 

patent for the related drug, norethynodrel. This they supplied to Gregory Pincus 

along with research funding (Fig. 5).

Gregory Pincus, PhD (1903-1967), who is remembered as “the Father of the Pill”, 

was “a scientist-statesman of the world who engaged productively in the major 

endocrinology issues of his time” (53). After their perfused bovine adrenal gland 

system proved impractical for Searle’s commercial production of cortisol, Oscar 

Hechter and he used the system  to elucidate the steps in the biogenesis of 

corticosteroids and the site of action of ACTH (52, 54). 

However, Pincus’ major interest was in reproductive endocrinology. He had 

embarked on studies of fertility in the 1930s that included diverse studies of 

parthenogenesis (55), the estrogenic properties of phenanthrenes (56) and the 

sterility of rabbits produced by very high doses of estrogen (57). These studies 

caught the attention of Margaret Sanger (1879-1966), a pioneer of the women’s 
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rights movement and founder (1920) of the American Birth Control League, the 

forerunner of the Planned Parenthood Foundation (1942). In 1951 she arranged with

the Medical Director of the Foundation to meet Pincus to impress him with the 

urgent need for an effective means of contraception (52). A hormonal pill was 

advocated as the ideal contraceptive: harmless, reliable, easy, aesthetic, and 

separate from coitus. Pincus readily agreed. The Foundation provided the seed 

money, but the major financial supporter quickly became Sanger’s friend and 

patron, the heiress Katherine Dexter McCormick (1865-1967). She was a prominent 

early women’s suffragette who held a degree in biology from Massachusetts 

Institute of Technology and provided close scientific monitoring of her grants.

Pincus assembled a contraceptive research team that included his collaborator Min-

Chueh Chang, PhD to head screening for potent antifertility agents, the 

distinguished infertility clinician-investigator Dr John Rock, to direct human 

contraceptive studies, and Dr Celso-Ramon Garcia to supervise the clinical trials. In 

1956 they reported that the 19-nor progestins norethindrone, norethynodrel, and 

norethandrolone were orally active, potent ovulation inhibitors in animals and in 

women (Fig. 5) (58, 59). When the 1-2% of estrogen recognized to be 

contaminating norethynodrel was removed, higher rates of bleeding were 

encountered (52). So Pincus reintroduced mestranol (the 3-methyl ester of ethinyl 

estradiol) 0.15 mg with 9.85 mg of norethyndrel to form Searle’s Enovid (Fig. 5)

(60), thus producing the first of the estrogen-progestin combination oral 

contraceptives that are the predominant contraceptives today. As their clinical trials

progressed, they reduced the dosage of norethynodrel by three-quarters and 

mestranol by one-third to counter side effects while maintaining efficacy. In 1957 

14

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317



these three drugs—norethynodrel-mestranol (Enovid, Searle), norethindrone 

(Norlutin, Syntex), and norethandrolone (Nilevar, Searle)—were shown to inhibit 

ovulation and cause endometrial hypoplasia (61) and were approved for the 

treatment of menstrual disorders in women (52).

For contraceptive trials, Pincus chose Enovid majnly because of its high potency and

its lack of the mild androgenic effects of the high doses of norethindrone in use at 

the time, but also partly because of his relationship with Searle (52). In 1956, after a

series of false starts due to cultural, religious, and legal barriers, Pincus’ team 

began quickly recruiting for contraceptive clinical trials in Puerto Rico, where well-

established birth control clinics were legally run primarily under the auspices of the 

island’s Family Planning Association, and later in Haiti, In 1957 an independent 

Enovid contraceptive clinical trial was begun in a Puerto Rican local family planning 

clinic run by a Quaker missionary hospital physician Adeline Satterthwaite and Dr 

Charles Gamble, an early leader of U.S. birth control movement (62). In 1959 Pincus

reported the data on 830 women on Enovid (63, 64). Enovid was approved by the 

Food and Drug Administration for contraceptive use in 1960. Syntex licensed 

norethindrone to Ortho Research foundation whose formulation Ortho-Novum was 

approved in 1962. The final hurdle to widespread adoption of these drugs was 

overcome when the U.S. Supreme Court, in Girswald vs Connecticut (1965), 

overturned the Connecticut “Comstock law” that had prohibited medical means of 

contraception as unconstitutional on the grounds of privacy.

3 Early mechanistic research on hyperandrogenic disorders:1965-1972

3.1 Developing assays for androgens in blood
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Endocrine research in 1965 was very different from what it is today. The National 

Institute of Child Health and Human Development, which was to become the major 

source of extramural funding for both general pediatric and reproductive 

endocrinology research, had only been established 3 years earlier by President John

F Kennedy. The discovery of steroid hormone receptors and dihydrotestosterone as 

the major target cell mediator of testosterone action were 1-3 years in the future

(65-67). Androgens were measured for clinical purposes as 17-KS in 24-hr urine 

collections by a colorimetric reaction (9, 68), and steroid laboratories smelled of 

urine and such organic solvents as benzene used in column, paper, or thin-layer 

chromatography. Rosalyn Yalow, PhD and Soloman A Berson, MD had only recently 

described the radioimmunoassay for plasma insulin (69), for which Yalow would 

share the 1977 Nobel Prize in Physiology and Medicine. Otherwise, hormones were 

measured only by labor-intensive methods: whole-animal bioassays for peptide 

hormones and gas-liquid chromatography and double isotope derivative dilution for 

specific steroids (70), with the latter showing promise for measuring testosterone in 

the plasma of women (71). Although the methodology for raising antisera to steroid 

hormones had been described, radioimmunoassays for them in biological specimens

were not yet available (72). The internet did not exist, so literature searches meant 

methodically paging through the library’s Index Medicus, so relevant publications 

were easily overlooked. Manuscripts were prepared on manual typewriters and 

corrected with white-out and literal cutting-and-pasting; Xerox® copiers were not 

yet generally available. The Stein-Leventhal syndrome was considered to be in the 

purview of obstetrics and gynecology specialists, and there was no clear 

understanding of the nature of its likely endocrine cause (73). Only 66 publications 

on PCOS were cited by PubMed in 1965 (Fig. 6). 
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 1965 was the year I began training in Pediatric Endocrinology at The Children’s 

Hospital of Philadelphia (CHOP) in the program of Alfred Bongiovanni, MD and 

Walter Eberlein, MD. That I would embark on a clinical investigational career was 

unlikely. I had entered medical school as a reluctantly dutiful son of Jewish parents 

who expected no less from their scholastic bookworm of an oldest child. My father 

was a Ukrainian immigrant, my mother was American-born of Polish immigrants; 

they had had established a small-town retail clothing business in central Illinois. 

None of us knew anything about Medicine. For them it was a matter of family 

prestige, for me anxiety. I hedged my career options by majoring in English 

literature (Northwestern University, 1956), thinking I would fall back on teaching it if

I were deterred by the challenge of anatomy cadavers. But with my first courses in 

Pathology, I grew to love clinical medicine and find it endlessly interesting. I spent 

one summer in a surgical research laboratory where it seemed that no dog survived

cardiac surgery. Otherwise, I had no specific research training. I endeavored to 

master clinical medicine, and after receiving my MD degree (Northwestern, 1960), I 

entered a rotating internship (Philadelphia General Hospital 1960-61), 

procrastinating before deciding on specializing in pediatrics. During residency at 

CHOP (1961-63), I was befriended by the pediatric endocrine fellows, with whom I 

published by first scientific paper, a case report about two infants with autosomal 

trisomies, entities only recently discovered (74). I then fulfilled a deferred, 2-year 

military draft obligation as a US Army pediatrician/general medical officer. I 

returned to CHOP for pediatric endocrine training. My initial goal was to prepare 

myself to develop a teaching clinic, and I viewed the 2 years of research training in 

the 3-year CHOP program as a means of best understanding the field. However, it 
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enabled me to pursue a career as a perpetual student with the intellectual tools to 

find answers to clinical questions for which textbooks did not provide a satisfactory 

answer, i.e., a career in clinical investigation.  

Bongiovanni and Eberlein had received the 1957 E Mead Johnson Award of the 

Society for Pediatric Research for their seminal research in elucidating the causes of

virilizing CAH, work begun while in Lawson Wilkins’ laboratory at Johns Hopkins 

University (5, 75). Allen Root, MD had just joined their faculty and was establishing 

a growth hormone radioimmunoassay, which introduced radioiodine to the 

laboratory. Bongiovanni would try one new project after another and quickly 

abandon those that did not pan out, and Eberlein would perseverate on a project to 

the point of regret, so they were very productive as a team; and Root was 

meticulous. I tried to channel the best traits of these men throughout my career.

Dr. Jeremy Winter, one year ahead of me in pediatric endocrine training, had been 

advised by the preceding fellows to pursue the steroid research in which the chiefs 

excelled. This work was intriguing because I had been promptly introduced to the 

diagnostic difficulty in clinically distinguishing benign premature pubarche from 

virilizing CAH, which at the time required sending these children home for 24-hr 

urine collections to measure 17-KS and pregnanetriol (a specific metabolite of 17-

hydroxyprogesterone) to begin ruling out virilizing disorders. I embarked in late 

1965 on my initial laboratory research project under the guidance of Walter Eberlein

and his research associate, the steroid chemist Anne Patti, to develop the 

preparatory chemical and chromatographic methods for Eberlein to assay children’s

plasma 17-KS by gas-liquid chromatography. Dr Claude Migeon, then in the Wilkins 
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laboratory (76, 77), had identified them as DHEA sulfate (DHEAS) and androsterone 

sulfate and quantitated them in adult plasma in 1955-56, using sulfuric acid 

hydrolysis, paper chromatography and colorimetric methods (78, 79). In 1965, 

Baulieu reported the results of a series of studies that demonstrated that DHEAS, 

unexpectedly, was not only a DHEA metabolite, it was secreted by the adrenal 

gland (80).  Our data documenting the rise in plasma DHEAS and androsterone 

sulfate from childhood during pubertal maturation appeared in 1969 (81). 

When my plasma 17-KS project was well along in late Fall of 1966, Dr, Bongiovanni 

asked me to set up the urinary aldosterone assay of Dr Ralph E Peterson (82), a 

double isotope derivative dilution method that had frustrated Bongiovanni’s long-

time research assistant. , I agreed to establish the aldosterone assay, with the 

understanding that I would then turn the experience gained towards assaying 

plasma testosterone. By then the literature showed that most androgenic steroid 

metabolites in urine were not unique products of secreted steroids (70, 83), so I was

convinced that we should be measuring the most potent known androgen, 

testosterone, in its secreted form in blood, i.e., plasma testosterone rather than 

urinary testosterone glucuronide. 

By the Spring of 1967, I had established the aldosterone method and was ready to 

begin my testosterone project. In1965 Dr Richard Horton, J Shinsako, Peter H 

Forsham (84) reported that plasma testosterone in normal women could be reliably 

quantitated using double isotope derivative dilution methodology. This had been 

closely followed by similar assays and extension to testosterone precursors from 

several other laboratories (84-90). These investigators performed elaborate 
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determinations of metabolic clearance  rates and precursor-product interconversion 

rates that indicated androstenedione to be the predominant androgenic steroid 

secreted by the ovary and approximately half of women’s plasma testosterone to 

arise from androstenedione in the peripheral circulation (91). This peripheral 

conversion primarily occurred outside the splanchnic system in such sites as skin 

and lungs. In 1966 Horton reported with a reliable method for the first time that a 

small amount of testosterone was secreted by normal ovaries (92).

These double isotope methods required 25 mL of plasma in women, far too 

insensitive to be used for pediatric investigations. This was about to change. Dr. 

Winter returned from the Spring 1967 FASEB meeting with the news that Horton 

had reported that testosterone could be measured quickly and directly in 4 mL male

plasma using the newly available competitive protein binding (CPB) technique, and 

Horton soon published this (93). (CPB was a forerunner of radioimmunoassay that 

used pregnancy plasma as the source of the recently described testosterone-

estradiol (sex hormone) binding globulin (SHBG) instead of a specific antibody (91).)

Horton’s method grossly overestimated the lower plasma testosterone 

concentrations of women. Upon learning this, I immediately realized that women’s 

samples would require preliminary preparatory chromatography—my recently 

acquired skill--because other circulating steroids (“17ß-hydroxysteroids”) were 

competing with testosterone for SHBG binding sites. 

By early 1968 I had succeeded in developing a highly specific plasma testosterone 

CPB method, far more sensitive and rapid than any published testosterone assay. I 

was hooked on a research career of discovery. My manuscript was submitted in 
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September 1968, by which time I had just begun at the University of Chicago where 

I was scrambling to establish my new laboratory and Pediatric Endocrinology 

division. However, I was scooped in August 1968 by Darrel Mayes, PhD, working in 

the laboratory of Charles A Nugent, MD: they published the first CPB assay specific 

for plasma testosterone, from which I borrowed their method of using a small 

amount of 3H-testosterone to correct for procedural losses (94) (Mayes soon after 

established Endocrine Sciences (later renamed Esoterix) Laboratories, the first 

commercial steroid assay specialty laboratory). My simpler method, requiring one 

thin-layer chromatographic preparatory step and separating free from bound 

testosterone by a rapid charcoal adsorption method, was published 10 months later

(95) and was sufficiently sensitive to measure testosterone in 5 mL plasma from 

individual prepubertal children (81). This was about 5 years before 

radioimmunoassays for plasma testosterone and related steroids, which were about

10-fold more sensitive, were introduced by Dr Guy Abraham (96).

3.2 Premature adrenarche: changing adrenal androgenic response to 

ACTH

Albert Dorfman, MD, PhD, Chairman of Pediatrics at the University of , had recruited

me beginning in 1968 at 34 years of age to establish a Pediatric Endocrine Section 

and had provided me with my own research laboratory on the 5th floor of the new 

Wyler Children’s Hospital and a laboratory technician. My research plan was to 

develop similar assays of high accuracy, specificity, sensitivity, and precision for 

testosterone precursors in blood for the study of children with hyperandrogenic 

disorders. Dr Dorfman helped me formulate these ideas into research grants (my 

first exposure to strict hypothesis-oriented research!). 
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For some time, I had more students and residents than patients in my new Pediatric

Endocrine Clinic on Wyler’s 1st floor! My fledgling clinical practice gave me time to 

establish these new CPB assays for androstenedione, DHEA, and DHEAS (97, 98) 

while soon yielding several girls with premature pubarche to settle the Talbot-

Wilkins dispute, ie, test the hypothesis that this was usually due to premature onset

of the secretion of adrenal androgens (premature adrenarche) rather than end-

organ hypersensitivity to the small normal childhood androgen levels. In 1971 we 

demonstrated that girls with premature development of pubic hair usually had 

elevation of plasma DHEAS and DHEA, which indicated premature adrenarche (99) 

and which differed from the androstenedione-predominant responses of young 

children to protracted ACTH stimulation (100). These data led me to postulate that 

adrenarche results from a changing pattern of the adrenal biosynthetic response to 

ACTH.  In 1976, Dr Maria New’s group confirmed my steroid findings  in a larger 

series of children using newly available rapid radioimmunoassays (101); they also 

showed that DHEAS was low in panhypopituitary patients (102). Others held to the 

view that adrenarche resulted from increasing production of an adrenal androgen-

stimulating hormone of pituitary origin (5, 103). 

In 1982, having upgraded from CPB to radioimmunoassays, we published evidence 

directly supporting our concept: DHEA and 17-hydroxypregnenolone responsiveness

to ACTH of children with premature adrenarche were intermediate between those of

preschool children and adults. The steroidogenic pattern of precursor/product ratios 

suggested increased 17, 20-lyase efficiency, decreased 3ß-hydroxysteroid 
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dehydrogenase (3ßHSD) efficiency, and increased sulfotransferase efficiency during 

adrenarche (104). 

D. Lynn Loriaux, MD, PhD, Dr Gordon Cutler, and their NICHD colleagues obtained 

complementary data at about the same time. DHEA and DHEAS were stimulated by 

48 hr ACTH infusions in normal adults, though not by 6-hr infusions in 4-6 yr old 

children, and ACTH deficiency resulted in more profound suppression of these than 

of cortisol (105). A later study by this group showed an increase of adrenal 

microsomal 17-hydroxylase and 17, 20-lyase activities across adrenarche (106). In 

1985 Dr Jeremy Winter’s group described decreased adrenal 3ßHSD activity in 

adrenal microsomes across adrenarche into adulthood (107).

Meanwhile, in 1973, Dr Georg Dhom demonstrated that focal development of the 

ZR begins at 5 yr; its development as a continuous zone is increasingly found from 

6 yr onwards and is compete by 15 yr (108). He associated this with adrenarche and

increasing production of DHEA and DHEAS. Melvin M Grumbach, MD called’ 

attention to these histologic data with an influential graphic of the parallel rise re 

age of his data on serum DHEAS levels  with Dhom’s data on percent of cases with 

continuous ZR development (103). 

In an elegant and technically challenging series of papers commencing nearly 20 

years later, William F Rainey, PhD, Takashi Suzuki, and collaborators demonstrated 

conclusively that adrenarche is associated with a specific pattern of ZR gene 

expression (109, 110) that explains earlier predictions (111): increased expression 

of cytochrome b5 (which encodes an electron transport protein that promotes 
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17,20-lyase activity of P450c17 (112)), decreased HSD3B2 expression (3ßHSD2), 

and increased expression of sulfotransferase 2A1 ((Fig. 7) (1).

 Rainey, Richard Auchus, and their University of Michigan group in 2013 used 

advanced liquid chromatography tandem mass spectrometry methodology to 

examine the adrenal effluent and its response to ACTH (113). Thus, they discovered

that 11ß-hydroxyandrostenedione, and to a much lesser extent, 11ß-

hydroxytestosterone and 11-ketoandrostenedione, are secretory products of the 

adrenal cortex (Fig. 7) (114), not peripheral metabolites of cortisol and 

corticosterone as had been assumed for decades (Hechter’s early finding of 11-

ketoandrostenedione—“adrenosterone”-- in the bovine adrenal effluent (54) was 

overlooked to this day!). Furthermore, they demonstrated that 11ß-

hydroxytestosterone together with its more potent peripheral metabolite 11-

ketotestosterone rival testosterone in biopotency (1, 113): thus, these are the true 

adrenal androgens. They then showed that the ZR expresses 11ß-hydroxylase type 

1 and 17ß-hydroxysteroid dehydrogenase type 5 (17ßHSD5), which converts 

androstenedione to testosterone, demonstrating that the ZR is the major source of 

adrenal androgens (110). Meanwhile, Karl-Heinz Storbeck and associates 

independently discovered that a castration-resistant prostate cancer cell line 

converts 11-oxyandrostenediones to 11-oxytestosterones and on to 11ß-

hydroxydihydrotestosterone and 11-ketodihydrotestosterone, which are androgen 

receptor agonists with respectively 47% and 96% the potency of 

dihydrotestosterone (115). 
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In 2018 11-ketotestosterone was found to be the main circulating androgen in 

normal and premature adrenarche by the University of Michigan group, exceeding 

serumtestosterone levels by averages of 2- and 3-fold, respectively (116). 

Understanding of the developmental basis for adrenarchal ZR development is 

currently unclear (1). Understanding ZR function is important for understanding the 

functional adrenal hyperandrogenism of PCOS, discussed below.  

3.3 Plasma free androgen elevation in hirsutism 

Soon after arriving at the University of Chicago as the sole pediatric endocrinologist,

I began attending the well-established Internal Medicine Endocrine Division’s 

Endocrine Grand Rounds. “Endorama”, as it was known to generations of University 

of Chicago trainees, was then held in the foyer of the General Clinical Research 

Center. Patients undergoing study were presented in person, and virtually every 

week we saw hirsute, obese women undergoing urine collections for fractionated 

17-hydroxycorticoids and 17-ketoseroids to detect possible Cushing’s disease or 

virilization, investigations that usually yielded no satisfactory answer. These 

Medicine colleagues gladly sent blood samples to my laboratory for the newly 

available testosterone determination in the hope of getting answers to the 

mystifying problem of these patients’ hirsutism. Serum testosterone proved to be of

only slight added value to urine 17KS, not surprisingly (87). Nevertheless, plasma 

testosterone and related steroid intermediate assays were of sufficient utility 

clinically that my laboratory was expanded into a branch of the University Hospital 

Laboratories, affording me familiarity with all androgen-related clinical problem 

cases in our university medical center.
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In 1969, Samuel Refetoff, MD was recruited and established a Thyroid Laboratory 

that assayed thyroxine and a free thyroxine index by CPB methodology. It was soon 

clear that the serum free thyroxine index was superior diagnostically to the total 

thyroxine, in keeping with the accruing evidence that the free (unbound) fraction of 

plasma hormones was the active moiety and that thyroxine binding globulin was a 

major determinant of the serum free thyroxine concentration. 

Because of the parallel of testosterone plasma binding to that of thyroxine, it 

seemed likely that a plasma free testosterone index would prove to superior to the 

plasma total testosterone level in detecting androgen excess in hirsute women. To 

test this concept, with Refetoff’s advice, I proceeded to modify my testosterone CPB

assay to measure plasma SHBG binding capacity and indexes of the plasma free 

testosterone and free17ß-hydroxysteroid concentration. Indeed, the plasma free 

testosterone index proved to be elevated 50% more often than the total 

testosterone in hirsute women, in part because their SHBG binding capacity was 

significantly decreased compared to non-hirsute women; also the free 17ß-

hydroxysteroid index was often elevated when free testosterone was not (117). 

These studies provided the first evidence that hirsutism was usually due to 

hyperandrogenism. (Several years later, George W Moll, Jr, when an MD, PhD 

student in our laboratory, demonstrated that the percent of testosterone binding to 

SHBG determined by our rapid charcoal adsorption method correlated highly with 

percent free testosterone binding determined in whole serum under physiologic 

conditions (118). This put our free testosterone assay on a firm physical-chemical 

footing, and these free testosterone concentration results were consistent with 

other estimates that appeared approximately concurrently. 
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At a site visit to referee my NICHD career development award application (granted 

1972), Claude Migeon asked how we would quantify hirsutism. Ferriman and 

Gallwey had previously published UK normative data on a consecutive series of 

women attending a general outpatient clinic; they devised a semi-quantitative 

scoring method for hirsutism; they considered the forearms and legs to indicate an 

“indifferent” score, the nine other nine sites a “hormonal” score (119). Dr. Migeon’s 

question stimulated me to have a cartoon drawn of the Ferriman-Gallwey hormonal 

scoring system to facilitate clinical usage. When we eventually published the figure, 

considering their norms applicable to the general American population (120), it was 

widely adapted and emulated (121).

One of my lines of investigation was to search for plasma unconjugated 17ß-

hydroxysteroids other than testosterone. I started by looking for 5-androstenediol, 

which had been reported to circulate as a sulfate in human plasma by Reijo Vihko, 

MD, PhD (122). Women’s plasma concentration of unconjugated 5-androstenediol 

proved to be greater than that of testosterone (123). (However, our subsequent 

data indicated that measurement of 5-androstenediol, as well as 5-alpha-

dihydrotestosterone, added very little to the evaluation of hirsute women (124, 

125).) Though I had evaluated the SHBG-binding of 11ß-hydroxyandrostenedione 

(miniscule) (95), I had concluded that most of the apparent 17ß-hydroxysteroid 

concentration was due to low-affinity binding of steroids with low inherent 

androgenicity, e.g., DHEA. However, my plasma 17ß-hydroxysteroid assay 

undoubtedly included the androgenic 11-oxy-testosterones of adrenal origin that 

were unknown until 2013, as discussed above. 
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My other main line of research was determining the source of hirsute women’s 

androgen excess. Thus, I unknowingly began to study PCOS. 

4 PCOS research

4.1 Mainstream PCOS research, 1965-1990

Gonadotropins.  Human gonadotropin radioimmunoassays were developed by Dr 

Rees Midgley and colleagues in 1966-67 (126, 127). Midgley took advantage of the 

recently recognized high cross-reactivity of antibodies to LH and hCG for his LH/hCG

assay (a prelude to the recognition of the structural similarities of the 

gonadotropins, particularly of LH and hCG (128)) and advances in pituitary 

gonadotropin preparation by Leo E Reichert for his FSH immunoassay. These 

radioimmunoassays greatly facilitated reproductive endocrinology research. 

The hypothalamic gonadotropin-releasing hormone (GnRH) was identified and 

synthesized in the early 1970s by the laboratories of Roger Guillemin and Andrew V 

Schally, for which these men shared the 1977 Nobel Prize in Physiology and 

Medicine with Yalow (129-131). On the heels of these discoveries, Ernst Knobil and 

associates demonstrated in rhesus monkeys that pulsatile administration of GnRH 

was required for normal gonadotropin secretion and that estradiol not only exerted 

negative feedback effects on gonadotropins but also induced positive feedback on 

gonadotropin release in women when estradiol exceeded a threshold value over a 

critical period of time (132, 133). These principles were soon shown to apply to 

women (134-138). Conversely, constant, prolonged administration of GnRH 

paradoxically down-regulated gonadotropin release, a phenomenon that Dr William 

28

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665



F Crowley, Jr and Loriaux,  later exploited to develop the first specific treatment for 

central precocious puberty (139, 140).  

Meanwhile, Dr. Samuel Yen and colleagues quickly applied the newly available 

radioimmunoassays to explore Janet McArthur’s1958 observation of elevated 

urinary bioassayable LH in Stein-Leventhal syndrome (51). Yen’s group reported in 

1970 that mean serum radioimmunoassayable LH was consistently and significantly

higher, and FSH significantly lower, in women with PCOS than in eumenorrheic, 

follicular phase women (141). They postulated that a disturbance in the 

hypothalamic regulation of gonadotropins was causally related to the ovarian 

dysfunction.

As soon as GnRH became available, Yen’s group (1976) used it to demonstrate 

increased LH responsiveness to GnRH in women with PCOS (142). They proposed 

that the disturbance in gonadotropin regulation resulted from positive feedback by 

the excessive acyclic estrone production that arose from peripheral conversion of 

androstenedione in  adipose tissue (142, 143), citing the findings of Pentti Siiteri 

and Dr Paul C MacDonald who demonstrated that peripheral formation of estrone 

from androstenedione was increased in obese women (144, 145). Yen’s postulate 

became known as “the estrone hypothesis” (Fig. 8) (143). This concept profoundly 

influenced most diagnostic and research thinking into the 1990s and beyond (19, 

146). 

Elevated LH or LH/FSH ratio was widely adopted as a diagnostic alternative to 

demonstration of polycystic ovaries for the diagnosis of PCOS, though discrepancies
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between gonadotropin and polycystic ovary criteria soon began to bedevil the field

(147). Research in PCOS was dominated by attempts to understand the differential 

regulation of the two gonadotropins in response to one releasing hormone and 

gonadotropin pulse abnormalities, typified by studies by the prominent 

neuroendocrine groups led by John Marshall, MD, PhD (148) and Crowley (149).

However, we were skeptical of the estrone hypothesis as an explanation for PCOS 

pathophysiology (150). Among other reasons, isolated moderately increased 

androgen levels had been associated with increased LH levels by Dr James Givens 

and colleagues (151) and Dr Andrea Dunaif while in training with the Crowley group

(152). Dr Jeffrey Chang and colleagues and Dr RB Billiar and an international 

collaborative group had also shown that manipulating serum estrone levels in 

women and monkeys did not alter serum LH levels (153, 154). Also studies we 

began with my colleague Dr Anne Lucky demonstrated that LH radioimmunoassays 

were plagued by non-specificity for bioactive LH due to molecular heterogeneity in 

circulating LH isoforms (155-157).

Ovaries. The biochemical basis of the two-cell, two-gonadotropin model ;of ovarian 

estradiol secretion was formulated in the 1970s (Fig. 9) (158). Ovarian androgen 

secretion was first directly demonstrated to require LH by David Armstrong in 1976,

using hypophysectomized rats in induced and synchronized proestrus (159). 

Armstrong then used established cell culture techniques (160) to demonstrate that 

ovarian androgen arose from theca cells, which responded to LH (161), while 

granulosa cells secreted estradiol in response to FSH when supplied with 

testosterone as substrate (162). Dr Ken McNatty and Anastasia Makris in Dr 
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Kenneth Ryan’s laboratory reported in 1980 that human theca and granulosa cells 

from healthy large (≥8mm) follicles only secreted substantial estradiol when 

recombined in culture and stimulated with LH and FSH (163).

Meanwhile, LH and FSH receptor binding to the respective theca-interstitial and 

granulosa cell compartments of antral follicles during the estrus cycle of the rat 

were first identified by Rees Midgley in 1973 (164) and later confirmed by binding 

studies (165). Midgley then examined the basis for the increased LH binding of 

granulosa cells as follicles enlarge and mature: he showed, in collaboration with 

Anthony Zeleznick and Reichert, that FSH administered in vivo induced LH receptor 

binding in granulosa cells (166). In 1979 Greg Erickson and colleagues directly 

demonstrated FSH induction of LH receptors in cultured granulosa cells, the first 

biochemical step in follicle luteinization (167). Thus, as follicles enlarge before 

becoming preovulatory, granulosa cells normally become responsive to LH/hCG. 

Histochemical and molecular genetic studies then showed that granulosa cells 

express too little P450c17 to form androgen, while theca cells express too little 

P450aromatase to form estradiol (168-170). Dr Walter Miller’s laboratory 

demonstrated that even the luteinized granulosa cells of periovulatory follicles form 

no androgen in response to LH or hCG although they form progesterone and 

estradiol (168). 

Desensitization to LH was first noted in ovarian preovulatory follicles by Hans 

Lindner’s group in the early 1970s (171). Dufau and Catt showed that this 

“homologous” desensitization in testes is characterized by a loss of LH receptors 
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and a simultaneous down-regulation of steroidogenesis, particularly at the level of 

17,20-lyase activity (172). The phenomenon was soon demonstrated in men (173, 

174). Homologous desensitization to LH of theca cells was not described until we 

stumbled across it in 1990 while studying insulin effects (175).

Estradiol was the first sex hormone implicated in the mechanism by which 

homologous desensitization down-regulates steroidogenesis: Onoda and Hall 

demonstrated in purified pig testicular P450c17 that estradiol inhibited its activities

(176). Magoffin and Erickson extended these findings to the rat ovary where 

estrogens were shown to selectively inhibit thecal androgenic responses to LH at 

the level of 17-hydroxylase and 17,20-lyase activities (177). Estradiol also had a 

similar effect on the androgenic response to LH in immature or hypophysectomized 

rats (178). Dr Eli Adashi first showed that testosterone to inhibited its own secretion

by Leydig cells in response to hCG stimulation (179). Androgen receptor agonist 

treatment was then shown to exert this effect at the level of P450c17 (180) and to 

exert a similar effect on theca-interstitial cells in culture (181). 

Several peptide hormones were meanwhile identified as up-regulators of ovarian 

androgen secretion. Inhibins, members of the TGF.-ß superfamily, had been 

identified as the gonadal proteins specifically inhibiting FSH and purified by four 

laboratories in 1985 (182). It was quickly found to be a secretory product of 

granulosa cells under the primary control of FSH (183) and to augment LH-

stimulated androstenedione production by theca cells in culture (184). Insulin and 

insulin-like growth factor I (IGF-I) were shown in 1988 to also up-regulate theca cell 

androgen secretion (158), as discussed in the following section. Erickson and  also 

32

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765



identified prostaglandin E2 as a stimulus to thecal androgen production in 1976

(185). 

 

Insulin resistance. A case series of acanthosis nigricans with extreme insulin 

resistance was reported by Dr Ronald Kahn and associates in the mid-1970s; two of 

the six cases had PCOS, an association not discussed (186). Dr James Givens, whose

report of an earlier similar case with PCOS was cited by Kahn, then investigated the 

association of plasma insulin and androgen concentrations in obese control and 

more obese PCOS women, and his group reported a correlation in 1980 (187). 

Publications concerning PCOS began to rise thereafter (Fig. 6). In 1983 Dr Jeffrey 

Chang, in a reproductive endocrinology-pediatric endocrinology collaboration with 

Solomon Kaplan, MD, reported that serum insulin, but not glucose, was elevated in 

response to a glucose load in nonobese women with PCOS: this was the first 

evidence of insulin resistance independent of obesity (Fig. 10) (188). Dr Andrea 

Dunaif and colleagues definitively demonstrated that the peripheral resistance of 

glucose metabolism to insulin of PCOS averaged about 1 SD more than expected 

from obesity status in 1989 (189). This paper’s eye-catching title announced the 

launch of Andrea Dunaif’s career as an independent investigator. She was to 

become one of the most influential PCOS investigators of the era, starting at Mt 

Sinai School of Medicine and cycling through The University of Pennsylvania and 

Northwestern University, where she initiated collaborations with the reproductive 

endocrinologist-molecular biologist Jerome Strauss III, MD, PhD and biostatistician 

Margaret Urbanek; the cell and molecular physiologist Jan McAllister and the 

reproductive endocrinologist-geneticist Dr Richard Legro of Pennsylvania State 

University, all of whose contributions in various combinations figure prominently 
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throughout this narrative. Strauss has a long acquaintance with PCOS: he knew 

Irving Stein as his namesake grandfather’s close friend from Rush Medical College 

(class of 1912) through careers as Michael Reese Hospital staff physicians (190).   

In 1983, Drs Robert Barbieri and Ken Ryan recognized that the association of insulin

resistance and acanthosis nigricans with hyperandrogenism (hyperandrogenemia, 

hirsutism and/or menstrual abnormalities), which they termed HAIR-AN syndrome, 

to be relatively common and overlooked (191).  Barbieri, et al then reported that 

insulin alone or with LH consistently stimulated androgen release from polycystic 

ovary stromal mince incubations from 4 patients with PCOS, but had inconsistent 

effects in 4 non-hyperandrogenic women; they were the first to postulate. that 

hyperinsulinemia may be an important contributor to hyperandrogenism (192). In 

1984, Dr Jeffrey Flier’s laboratory demonstrated insulin receptors in PCOS ovarian 

stroma (193). In 1988, androgen responsiveness to insulin or IGF-I in synergy with 

hCG (194, 195) or hLH (196), was established by Dr Eli Adashi’s group and ours to 

be a normal property of rodent  theca cells in culture. The small responses to IGF-I 

or insulin alone were not significant. Furthermore, insulin was equipotent with IGF-I, 

suggesting that the effect was mediated through the thecal insulin receptor. We 

further demonstrated that IGF-I reversed the homologous desensitization of LH 

receptor sites by supraphysiologic LH doses (175).

Polycystic ovaries. In 1962 P.E. Hughesdon published a landmark morphological 

analysis of the ovaries from 17 Stein-Leventhal ovaries in comparison to autopsy 

controls (197). While the number of primordial stage follicles was normal, there 

were about double the normal amount of ripening follicles, predominantly 2-4 mm 
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in size. These were found primarily in the outer cortex where primordial and primary

follicles arise, but subcortical dislocation of small follicles was more frequent than 

normal in polycystic ovaries.  The increased number of subsequent atretic follicles 

gave rise to increased stroma, moreso in the medulla than in the cortex. The tunica 

was heavily collagenized and thickened by 50%. “Usually much over 10” “cysts”, 

i.e., grossly visible follicles, i.e., at least 2 mm diameter, were found in Stein-

Leventhal ovaries. Foci of stromal luteinization were seen in about 80% of cases; 

theca luteinization was occasional. Corpora lutea were noted in 30% of the ovaries, 

indicative of past ovulation.

 In 1985-86 the ultrasonographer Judith Adams, DMU in Dr Stephen Franks’ research

group  utilized the recently available real-time ultrasonography technique to non-

invasively define polycystic ovary morphology (PCOM) as ≥10 cysts 2-8 mm 

diameter associated with an increased amount of stroma (198, 199).  Among 158 

women who considered themselves normal and were not taking oral contraceptives,

PCOM was found in 23%. However, three-quarters of this PCOM group had irregular 

menstrual cycles, suggesting a relationship to PCOS (200). PCOM by ultrasound was

soon validated to correspond to anatomic and histologic evidence of polycystic 

ovaries in women requiring oophorectomy for diverse reasons (201). Later, Franks’ 

group confirmed the PCOS-type abnormality in the ratio of growing to primordial 

follicles (197) in cortical biopsies from ovaries identified a priori by ultrasonography 

as having PCOM in ovulatory as well as anovulatory women (202)

Stephen Franks' group documented the entity of “ovulatory PCOS” in their initial 

paper (198), heralding Franks career of elucidating the significance of polycystic 
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ovaries and the regulation of folliculogenesis. In a subsequent series of papers, 

Franks’ group further described this entity. Notably, many had hirsutism with 

regular menstrual periods, but a low rate of ovulation (198) and significantly 

increased serum testosterone (199).

In 1986, Dr. Walter Futterweit reported that virilizing testosterone treatment of 

women for transgender management was associated with polycystic ovaries (203). 

This finding became important to our re-thinking of the pathophysiology of PCOS 

because it was the first indication that polycystic ovaries were the result, not the 

cause, of androgen excess. McNatty, et al showed a few years later that an atretic 

follicle is an androgenic follicle (204, 205), so the excess of atretic follicles (197) 

would be expected to increase follicular androgen formation. 

Familial clustering. Familial clustering of PCOS in a pattern suggesting autosomal 

dominant transmission with variable penetrance gradually increasingly emerged 

after Givens’ 1988 report of 3 families of multi-generational PCOS (206, 207). 

Franks’ and Dunaif’s groups were the first to systematically begin investigating 

families of PCOS probands for traits other than PCOS itself: PCOM (208) and serum 

testosterone (209) fit this pattern in females in whom the possibility of confounding 

hyperandrogenic states were eliminated. Early studies by British investigators also 

suggested male-pattern baldness developing prematurely in the 20s-30s to be the 

male equivalent of PCOM (208, 210, 211). 
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4.2 Elucidating the steroidogenic dysfunction in PCOS, 1972-1995

My studies into the source of androgen in hirsute women began in collaborations 

with my Medicine and Gynecology endocrinology colleagues Drs Ed Ehrlich and 

Robert Cleary. The first of these studies in 1972 showed that the elevated plasma 

free testosterone of amenorrheic hirsute women usually did not suppress normally 

after dexamethasone administration to suppress ACTH-dependent adrenocortical 

androgen production, whereas that of eumenorrheic hirsute women did (212). We 

ignored a small, significant post-hCG increase of urinary pregnanetriol in the 

amenorrheic group. Our findings suggested an ovarian source for the excess 

androgen of amenorrheic hirsute women and was the basis for our subsequent use 

of a dexamethasone androgen-suppression test to identify it. This study also led us 

to the realization that the serum androgen level of women was not under tight 

negative feedback regulation. 

After Cleary’s departure, I began to focus on the hyperandrogenism of 

oligomenorrheic women with my new gynecologic colleague Dr Moon Kim. An early 

finding was that hyperandrogenemia occurred without hirsutism in some 

oligomenorrheic women (213). This was the first indication that hirsutism, acne, and

pattern balding are variably expressed pilosebaceous manifestations of androgen 

excess. The acne aspect of this formulation owes recognition to Dr Anne Lucky. She 

was my first associate in pediatric endocrinology at the University of Chicago, but 

left after a few years to become an “endocrine dermatologist”. While in 

dermatology training at Yale she organized a collaboration to study androgens in 

adult women with moderately severe acne vulgaris. This showed elevated free 
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testosterone in 24% of these women irrespective of the coexistence of hirsutism or 

menstrual dysfunction (214). 

Two possible explanations have been proposed for this variable response to 

androgen. First are target cell events that alter androgen action at the androgen 

receptor level, such as variations in the metabolism of testosterone to 

dihydrotestosterone (215) or alterations in androgen receptor signaling (216-219). 

Second are post-receptor biologic factors in the target organ unrelated to androgen,

possibly related to those that determine whether the pilosebaceous unit responds to

androgen excess with hirsutism or acne or both (220, 221). 

Meanwhile, Moon Kim had taken the lead in demonstrating that the dexamethasone

androgen-suppression test findings identified oligomenorrheic women with similar 

hyperandrogenic ovarian dysfunction irrespective of the presence of laparoscopic 

biopsy-defined polycystic ovarian histology, except that those with polycystic 

ovaries had more severe hyperandrogenemia (222). Our diagnostic approach  via 

androgen levels was not widely adopted, however. To a great extent this was 

because reliable steroid assays would not become widely available commercially 

until after 2015 (223), and currently there is still not a standard for free 

testosterone determinations.

 

An ovarian source of androgen excess in hyperandrogenic women, often with an 

associated adrenal source, was indicated by a number of subsequent studies. Guy 

Abraham and colleagues performed an uncontrolled study that found “elevated” 

blood 17-hydroxyprogesterone (17OHP) at baseline and post-hCG in 90% of hirsute 
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women, irrespective of menstrual status; they interpreted this as indicating the 

ovary to be the main source of 17OHP in hirsute women but, like us regarding post-

hCG pregnanetriol, offered no explanation for this finding (224). Abraham’s group 

then suppressed adrenal function by dexamethasone administration in 32 hirsute 

women, two-thirds of whom had menstrual disorders: their data suggested an 

ovarian source for androgens in 56%, most in association with an adrenal source, 

and a sole adrenal source in the remainder (225). Ovarian and adrenal vein 

catheterization by Dr Marvin Kirschner and associates indicated that the ovaries 

were the source of androgen excess in most hirsute women (226). In 1983, Jeff 

Chang and colleagues selectively suppressed gonadotropins with a long-acting 

GnRH agonist and demonstrated suppression of serum androgens to castrate levels 

in typical PCOS patients, while DHEA and cortisol levels were spared, strongly 

indicating an ovarian origin for PCOS androgens (227).

The nature of the steroidogenic defect in PCOS had long been a subject of 

speculation. A 1961 report of an elevated ratio of androstenedione to estrogens in 

follicular fluid suggested the possibility of aromatase deficiency as the cause (228). 

According to the 2-cell, 2-gonadotropin model of ovarian steroidogenesis, it seemed

likely that the commonly used hCG test could not be relied upon to pinpoint the site 

of ovarian steroidogenic defects.

My early efforts to stimulate coordinated steroidogenesis by both ovarian follicular 

compartments with an infusion of natural GnRH had proven impractical (229). When

the potent GnRH agonist analogues were discovered (140), they struck me as the 

potential solution to this problem. When my grant proposal to NICHD for this 
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purpose was flatly rejected (one study section comment was, “Everybody knows the

cause of PCOS”. This came as a great surprise to me, but shows how pervasive the 

estrone hypothesis was), I turned to Jessie Goodpasture at Syntex Pharmaceuticals, 

with whom Lynn Loriaux had put me in touch, to participate in a research trial of 

their new long-acting GnRH agonist nafarelin for the treatment of children with 

central precocious puberty (CPP). Dr Goodpasture was able to garner support at 

Syntex for my investigator-initiated proposal to pilot-test the initial 24-hr of 

gonadotropin and steroid responses to nafarelin in children with CPP requiring this 

therapy. The responses of LH and FSH to a subcutaneous injection of GnRH agonist 

proved sufficiently great and prolonged to stimulate robust estradiol responses

(230).

Then Dr Randall Barnes, who had been recruited to the University of Chicago to 

work with me by Dr James Schreiber, our recently appointed gynecologic 

endocrinology section head, applied our new GnRH agonist test to patients with 

PCOS in comparison to healthy controls. Dr David Ehrmann, an Internal Medicine 

endocrinology colleague, was recruited to our research group to also compare the 

responses of men to those of women with PCOS. Eight patients with classic PCOS 

were studied by Dr Barnes, with and/or without concomitant adrenal suppression by

dexamethasone: all were hyperandogenemic with polycystic ovaries and 7/8 had a 

high LH/FSH ratio. The response to the LH-FSH rise induced by GnRH agonist of 

patients with classic PCOS was a previously undescribed pattern of sex steroid 

secretion (Fig. 11) (231): serum 17-hydroxypregnenolone responses were 

increased significantly compared to those of eumenorrheic women, 17OHP levels 

were above those of controls in 8/8 PCOS patients and androstenedione was above 
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control values in 6/8, while plasma estradiol and estrone rose to above average 

levels (231). These findings were not consistent with a steroidogenic block, the only 

known paradigm for functional hyperandrogenism. Rather, they suggested 

dysregulation of ovarian androgen formation, particularly evident at the level of 17-

hydroxylase and 17,20-lyase. These had recently been shown in man by Peter Hall 

and Walter Miller to be two activities of cytochrome P450c17, which was encoded 

by the same gene (CYP17A1) in gonads and adrenal glands (5, 232, 233). We 

proposed that in PCOS “the regulation of cytochrome P-450c17 is abnormal (and)…

this enzyme might be “abnormally stimulated by slightly excessive levels of 

luteinizing hormone or (be) incompletely down-regulated because of an intrinsic 

defect in thecal-interstitial cells” (231). 

Then David Ehrmann took the lead in our group’s evaluation of 17OHP 

hyperresponsiveness to the GnRH agonist test as a marker for PCOS in 40 

adolescent and adult females with otherwise unexplained hyperandrogenemia who 

presented to our medical center’s medical, gynecologic, and pediatric endocrine 

clinics with oligo-amenorrhea, hirsutism, or acne (234). Most (58%) of this diverse 

population of hyperandrogenic patients had this PCOS-type of functional ovarian 

hyperandrogenism (FOH), irrespective of the presence of LH excess or PCOM. Oligo-

amenorrhea was present in 87% of those with FOH, significantly different than in 

those without FOH (58%). There was 81% concordance between the outcome of the

GnRH agonist test and the peak plasma free testosterone response to a 

dexamethasone androgen-suppression test, additional evidence that this latter test 

was a valid alternative test for FOH. One or the other of these two tests were 

abnormal in 72% of this cohort of hyperandrogenic women that included a broad 
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spectrum of clinical presentations. Only about half the women with FOH had 

elevated serum LH or PCOM.

Fifty-eight percent of this hyperandrogenic cohort al also had 17-ketosteroid 

hyperresponsiveness to an ACTH (cosyntropin) test; in about half the cases this was

concordant with the typical type of PCOS response to GnRH agonist (234). We 

termed this “functional adrenal hyperandrogenism (FAH)”. Most of those with FAH 

had DHEA-predominant responses that were ≥3 SD above average for 

eumenorrheic healthy controls and so met criteria widely considered at the time to 

indicate nonclassic (partial) 3ßHSD deficiency; however, this interpretation was 

inconsistent with these women’s ovarian 17OHP responses to the GnRH agonist 

test, which were usually typical of PCOS (235), rarely suggesting 3ßHSD deficiency. 

(Sonja Pang, MD and collaborators later showed that only DHEA or 17-

hydroxypregnenolone responses >11 SD elevated indicated HSD3B2 mutations

(236)).  Indeed, these results led us to reject our previous alternate hypothesis of 

exaggerated adrenarche as the cause of the adrenal hyperandrogenism in women 

with hirsutism and acne (237). The most parsimonious explanation for our findings 

was that FAH was typically due to the same process that causes the FOH of PCOS

(158, 235). Although this conclusion was disputed by some (238), we have 

contended that the pattern of adrenal steroid responses differed from that of the 

ovary because of the constraints imposed by the differing enzyme expression 

pattern, particularly that of 3ßHSD2, of the adrenal ZR and the ovarian theca cell. 

The results of our ovarian function tests led us to hypothesize in 1989 that FOH was 

central to PCOS pathophysiology (150).In other words, the ovarian 
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hyperandrogenism, whatever the etiology, was postulated to cause the other key 

features of the syndrome, namely, the anovulation and the polycystic ovaries (Fig. 

12) (158) . 

As increasing data accrued, we concluded that the testosterone overproduction in 

PCOS required generalized overactivity of thecal steroidogenesis proximal to 

P450c17, with the disproportionate 17OHP elevation resulting from the 17,20-lyase 

activity of this enzyme being the rate-limiting step in androgen formation (158, 239,

240). This required a flaw in the normal process of homologous desensitization and 

the accompanying steroidogenic down-regulation of P450c17 activity that normally 

limits the androgenic response to LH excess (175, 181). We also noted an 

apparently abnormally steep dose-response relationship between LH and 17OHP

(158), which suggested that factors other than LH excess contribute to the 

steroidogenic dysregulation. These considerations suggested that dysregulation of 

cytochrome P450c17 activity (241) was a manifestation of a general dysregulation 

of the entire steroidogenic cascade that eventuates in androgen secretion (Fig. 12)

(158). 

At that time several factors were already known to alter the androgenic response to

LH. We proposed that these modulated androgen production by theca cells and 

estrogen production by granulosa cells so as to coordinate them and prevent 

overproduction of either hormone in order to optimize production of healthy oocytes

(158, 234). We postulated that dysregulation of thecal P450c17 activities could 

result from diverse disturbances that disrupt this normal balance: excess LH 

stimulation, an inherent dysregulation defect, or intra-ovarian (e.g., estrogen, 
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androgen, inhibin IGF-I) or extra-ovarian (e.g., insulin, IGF-I) disturbances (Fig. 9)

(Fig. 12) (158, 234). The cytokine TNFalpha was known at this time to affect 

steroidogenesis (158); its effect on ovarian androgen synthesis proved to be 

inhibitory (242). The discovery of the stimulatory effects of diverse obesity-related 

proinflammatory cytokines was in the future.  

4.3 Development of specific criteria for PCOS diagnosis

Shortly after our 1989 report of dysregulation of androgen secretion in PCOS, Drs. 

Andrea Dunaif, Jim Givens (who had begun to show signs of the early-onset 

Parkinsonism that would curtail his career), Florence Hazeltine, and George Merriam

began organizing an NIH-NICHD Conference on PCOS to which basic science and 

clinical investigators in the field were invited to contribute; it was held in April 1990 

and the proceedings published in 1992 (243).   Presentations covered the status of 

PCOS research, including a report on the status of our ongoing evaluation of 

hyperandrogenic women by GnRH agonist testing (244). Before closing, a 

participant survey was taken to facilitate the development of research diagnostic 

criteria for the syndrome. The general agreement of conferees was that definite or 

probable criteria for PCOS diagnosis should be: 1) hyperandrogenism, clinical (e.g., 

hirsutism; 48% of respondents) or biochemical (64%), 2) menstrual dysfunction 

(52%), and 3) exclusion of other known hyperandrogenic disorders (60%) (245). 

(The “clinical hyperandrogenism” criterion received such broad support because of 

the poor state of commercial steroid assays (223).) These “NIH criteria”, as they 

became known, were the first internationally accepted criteria for the diagnosis of 

PCOS. The adoption of these criteria ended the usage of LH or LH/FSH ratio as 

diagnostic criteria.
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By 2003 European and American reproductive endocrinologists had become 

increasingly aware that the clinical expression of PCOS in the infertility population 

was broader than defined by the NIH criteria, and they organized a workshop in 

Rotterdam, The Netherlands to address this. They concluded that PCOM was an 

important alternative manifestation of PCOS (246). The “Rotterdam criteria” 

broadened the PCOS diagnostic criteria to include individuals who had 2 of 3 of the 

following features: otherwise unexplained 1) clinical and/or biochemical signs of 

hyperandrogenism, 2) oligo- or anovulation, 3) PCOM. This yielded four PCOS 

phenotypes, A-D, ranging from phenotype A (the full-blown Stein-Leventhal 

syndrome with PCOM) to phenotype D (the non-hyperandrogenic phenotype) (Table

3). The Rotterdam workshop also recognized that these diagnostic criteria do not 

encompass the entire clinical and endocrinological spectrum of PCOS.

The severity of hyperandrogenism is much alike in phenotypes A and B and then 

decreases across these successive phenotypes, as does, in most populations, the 

severity of insulin resistance, obesity, and LH elevation (247); and diagnostic 

specificity of the milder phenotypes is successively less (247). The Androgen 

Excess-PCOS Society initially argued against the inclusion of the non-

hyperandrogenic phenotype (248). However, the genetic architecture of the four 

phenotypes has proved to be similar (249). 

Although it has become apparent that normal ovarian volume falls from mid-

puberty through early adulthood until menopause (250, 251)) and that normal 

antral follicle counts are greater with current generation, high-resolution ultrasound 
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equipment per vagina or magnetic resonance imaging (252-254). Only recently has 

there been consensus that the Rotterdam criteria be updated to define PCOM in 

adults on the basis of at least a single ovary with follicle number ≥20 with current 

technology, or, if technically unfeasible, follicle number per (maximal) ovary section

≥10 or ovary volume ≥10 ml (Fig. 13) (255). 

Because adult diagnostic criteria for PCOS began to be inappropriately applied to 

adolescents, I petitioned The Pediatric Endocrine Society to sponsor an international

workgroup of stakeholder organizations in adolescent medicine to develop 

consensus on specific criteria for the diagnosis of PCOS during adolescence. Peter 

Lee, MD, PhD, Secretary of the PES Board of Directors, shepherded this project, and 

Selma Witchel, MD became the lead author of the 2015 publication (251). The 

resultant diagnostic criteria are essentially NIH criteria modified to require 

persistent evidence of otherwise unexplained hyperandrogenic anovulation, 

according to age- and stage-appropriate standards. Helena Teede, MBBS, PhD led a 

later PCOS network in developing international guidelines that included updated 

criteria for assessing adolescent menstrual criteria (256). Other minor modifications 

and recommendations for diagnostic work-up and therapy were made by this and 

other international groups (257). There remains no consensus on criteria to define 

PCOM in adolescence, although it is clear that pubertal ovaries are on average 

larger and have higher antral follicle counts than those of adults (250, 258).
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4.4 Convergence and elaboration: mainstream PCOS research, ca. 1990-

2015

Ovarian function in women with PCOS or polycystic ovaries. During the 1990s, other

centers verified and extended our ovarian function findings in women with PCOS. 

Notably, Lourdes Ibañez, MD, PhD collaborated with Dr Janet Hall and colleagues to 

report similarly elevated 17OHP responses to leuprolide acetate and hCG in PCOS in

comparison to controls (259). Their data provided direct evidence of ovarian 

androgenic hyper-responsiveness to stimulation by LH. While hCG stimulated 

estradiol secretion in the early follicular phase of their eumenorrheic controls (259), 

as we also found (260), we later conducted a small study using a half-maximal hCG 

test dose and found that it did not stimulate estradiol secretion in controls, only in 

those with functionally typical PCOS (261); this is consistent with the 2-cell, 2-

gonadotropin model, with premature luteinization of follicles in PCOS, as discussed 

below).

To directly examine androgen production by polycystic ovaries from both 

anovulatory (PCOS) and ovulatory women, Stephen Franks’ group examined the 

steroid output of theca cells during 48 hr of culture from the ovaries of women 

requiring surgery for nonovarian gynecologic disease (262, 263). Franks’ research 

group was attached to a gynecologic surgical unit and was unique in having 

abundant access to ovaries classified by polycystic ovary histologic status in 

addition to ultrasonographic PCOM status. Theca cells from small follicles of 

polycystic ovaries--independent of ovulatory status--produced significantly more 

progesterone, 17OHP, and, especially, androstenedione than theca cells from 
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histologically normal ovaries at baseline and in response to LH stimulation. DHEA 

and estradiol production did not differ significantly..

 Franks group then tested the hypothesis of an intrinsic abnormality of ovarian 

androgen production in women with PCOS and PCOM by performing hCG tests 

before and after administration of long-acting GnRH agonist for 1 mo to suppress 

endogenous gonadotropin levels (264). Compared to controls, their PCOS and PCOM

groups manifested significant 17OHP hyper-responsiveness to hCG both before and 

after GnRH agonist; only the PCOS group also displayed significant androstenedione

hyper-responses both before and after. These studies suggested that polycystic 

ovaries have an inherent theca cell defect in steroidogenesis that is more severe in 

PCOS. We were concerned that their gonadotropin suppression was too short-term 

to “rest” the ovary from long-term gonadotropin excess. Therefore, we performed a 

modification of their protocol (261), lengthening the period of gonadotropin 

suppression to 3 mo and reducing the hCG test dose to half-maximal. Our data 

indicated  that the steroidogenic dysregulation pattern of typical PCOS is an 

inherent defect.   

Judith Adams was recruited from London to MGH in the early 2000s by Drs Janet Hall

and Bill Crowley for a thorough and definitive study of the biochemical features of 

PCOM in normal women. They studied former control women who had been found to

have well-defined, regular normal ovulatory cycles and no clinical evidence of 

hyperandrogenism in order to compare those with and without PCOM (265). In 

2004, they reported that the ovulatory PCOM group had a normal gonadotropin 

secretory pattern, but significantly increased baseline total and free testosterone 
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and DHEAS levels as well as 17OHP and testosterone responses to hCG; they also 

had significant evidence of insulin resistance. Dr Roger Lobo and collaborators 

reported that ovulatory women with PCOM also had increased LH responses to 

GnRH (266).

The MGH group subsequently reported a follow-up of 40 such normal volunteers 

after an average of 8 years when they averaged 39 years old to determine whether 

PCOM predicted PCOS (267). Eighty percent of these women had experienced 

spontaneous pregnancy. Volunteers with PCOM still had significantly higher serum 

testosterone, but the prevalence of PCOM had fallen by half and none had PCOS. 

Thus, PCOM in women with ovulatory cycles does not ordinarily predispose to PCOS.

In the early 2000s we began phenotyping adolescent and adult PCOS with the 

hyperandrogenemic oligo-amenorrheic phenotype (A+B) in comparison to 

eumenorrheic controls to characterize the relationship among the heterogeneous 

clinical variables that constitute PCOS (90% of cycles in eumenorrheic women are 

expected to be normal ovulatory cycles (268)). But first we needed to consider re-

defining ovarian function in normal women: the Adams/Franks’ data indicated that 

some clinically normal, eumenorrheic women have subclinically ovulatory PCOS 

(phenotype C). We used a 36-hr protocol to determine relationships among baseline

hormone levels, glucose tolerance with insulin levels, PCOM, and responses to a 

rapid dexamethasone-suppression test, a low-dose ACTH test, and a GnRH agonist 

test (269). By this time GnRH agonist testing was performed with leuprolide acetate

after the sale of Syntex led to cessation of parenteral nafarelin production (270). 
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The first of these data were reported in 2009 and the analysis focused on ovarian 

function of clinically normal volunteers in relation to PCOM (269). Post-menarchal 

adolescent and adult data were pooled after finding no significant baseline 

differences in hormone levels or PCOM prevalence. We found that the distribution of

17OHP responses of non-hirsute eumenorrheic volunteers with PCOM (V-PCOM) 

formed a distinct population intermediate between those of eumenorrheic 

volunteers with normal ovarian morphology (V-NOM) and PCOS patients. However, 

V-PCOM were a heterogeneous population: 53% were functionally normal, with 

17OHP responses and free testosterone levels like V-NOM; 25% had mildly elevated 

free testosterone, thus meeting Rotterdam criteria for PCOS phenotype C (one-third 

of these had 17OHP hyperresponsiveness to GnRHag testing); and the remaining 

22% had 17OHP hyper-responsiveness to GnRHag though normal baseline free 

testosterone levels. Thus, although we had initially considered PCOM to represent a 

normal variant, our data were consistent with Franks-Adams’ data and a more 

nuanced concept: eumenorrheic women with PCOM fall on a functional spectrum 

between unequivocal normal and unequivocal PCOS and that amid this spectrum 

were some with disturbed ovarian function including sporadic anovulation and 

ovulatory PCOS. At the conclusion of our studies, 31% of our 67 clinically normal, 

eumenorrheic volunteers had PCOM (258, 271). An updated analysis of this latter 

group of eumenorrheic V-PCOM showed that 16% had subclinical 

hyperandrogenemia and these subjects all had FOH by either GnRH agonist test or 

dexamethasone-suppression test criteria (Fig. 14) (271) . 

In 2010 Dr Marcelle Cedars’ group studied a large group of regularly cycling 

ovulatory women and reported that nearly a third had PCOM (272). Testosterone 
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was significantly elevated, adding to the consensus that asymptomatic ovulatory 

PCOM are a hyperandrogenic group. Their cohort also had elevated blood anti-

Müllerian hormone (AMH) levels, which by this time was known to be elevated in 

PCOS (273) and had been proposed as a surrogate for ultrasonographic antral 

follicle counts in PCOS (274) (see Folliculogenesis, below).

We added AMH determinations to our evaluation of our study population with frozen

serum remaining and reported in 2011 that AMH levels were independently related 

to polycystic ovaries and ovarian hyperandrogenism (275). AMH levels were 

modestly increased in V-PCOM, but markedly increased in the presence of ovarian 

hyperandrogenism (i.e., PCOS) with PCOM. This was consistent with the evidence 

discussed in the Folliculogenesis section and extended it. Our collective experience 

from testing ovarian function in eumenorrheic volunteers with PCOM is summarized 

in Fig. 15,A): 50% had normal ovarian function in comparison to eumenorrheic 

volunteers with normal ovarian morphology, 10% had isolated elevation of serum 

AMH; the other 40% had diverse ovarian function abnormalities related to PCOS.

Returning now to our study of the steroidogenic phenotype of hyperandrogenic 

oligo-anovulatory PCOS. Our study included 99 consecutively consenting adolescent

and adult females with hyperandrogenemic anovulation (269). Eleven were 

unexpectedly unsuitable for analysis because they had nonclassic CAH (n=3) or had

been studied during ovulatory cycles (n=8). Sixty-nine percent had the typical FOH 

(T-FOH) of PCOS, with elevated 17OHP hyper-responsiveness to GnRHag in 

comparison to volunteers with normal ovarian morphology. These were termed 

“functionally typical PCOS”. 
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We then analyzed the nature of the ovarian steroidogenic dysfunction in the third of

adult PCOS (n=44) with “functionally atypical PCOS” who lacked the typical type of 

FOH (261) (Fig. 15,B). Functionally atypical PCOS differed from functionally typical 

PCOS in being significantly more obese (mean body mass index 44 vs 33 kg/m2), yet

indexes of insulin sensitivity were similar. Baseline testing showed significantly 

lower ovarian volume and lower LH, total testosterone, androstenedione, and SHBG 

levels, yet similar free testosterone levels. GnRH agonist testing yielded responses 

similar to controls except for low FSH like typical PCOS. Subgroups of 5-8 were then 

challenged with half-maximal hCG and FSH doses while on dexamethasone to 

suppress adrenal androgens: this “gonadotropin sensitivity test” (GST) provided no 

evidence that the steroid excess occurred in response to gonadotropin. Indeed, the 

steroid levels of functionally atypical PCOS were relatively insensitive to the GST: 

their steroid responses were similar to those of controls except they lacked controls’

significant 17OHP response to hCG and its enhancement by FSH, and the estradiol 

response to hCG+FSH was less than controls. On the other hand, unlike controls 

they exhibited inhibin-B hyper-responsiveness to hCG, a typical PCOS-like trait, 

though less marked, and consistent with an androgen effect. 

:We then repeated the GST of PCOS subtypes after long-term gonadotropin 

suppression by GnRH agonist treatment. Functionally atypical PCOS differed from 

functionally typical PCOS in that the serum testosterone fall was not significant, 

although 17OHP, androstenedione, and estradiol fell did (261). They were also hypo-

responsive to the GST. Inhibin-B responsiveness to hCG did not persist after 

gonadotropin suppression. 
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Responses to low-dose ACTH following short-term dexamethasone were then 

analyzed in detail in larger age-matched cohorts (n=60) of these groups, including 

adolescents and preserving the original 2:1 ratio of functionally typical to atypical 

PCOS (276). The baseline free testosterone of this atypical FOH cohort was 

significantly lower than that of the typical FOH cohort. Low-dose ACTH led to a lower

prevalence of DHEA hyper-responses than found using standard higher doses and a 

narrower spectrum of steroid secretion, with DHEA the sole hyper-responding 17KS. 

Dexamethasone suppression test criteria indicated that, despite lacking 17OHP 

hyper-responsiveness, 60% (12/20) of the functionally atypical PCOS had atypical 

FOH (A-FOH), i.e., serum testosterone did not suppress to a normal level. Functional

adrenal hyperandrogenism (FAH) was found in a similar proportion of A-FOH (3/12) 

as T-FOH (11/40), 3. FAH alone appeared to be the only source of androgen in 3/20 

with functionally atypical PCOS. Five of 20 with functionally atypical PCOS had no 

detectable ovarian or adrenal source for their hyperandrogenism; this idiopathic 

subgroup had the mildest hyperandrogenemia (total testosterone, LH, and ovarian 

volume tended to be normal): excess adiposity itself was the only apparent source 

for androgen excess. The sources of the hyperandrogenism in this entire age-

matched PCOS cohort are summarized in Fig. 15,B.

Thus, while two-thirds of PCOS have the typical type of FOH, sometimes with FAH, 

the other third of hyperandrogenemic oligo-anovulatory (phenotype A-B) PCOS have

functionally atypical PCOS and demonstrate considerable functional heterogeneity

(261, 269, 276).  The atypical group is significantly more obese than those with 

functionally typical PCOS, half morbidly so. However, their indexes of insulin 
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resistance were similar to the typical group. Notably, their nearly comparable 

ovarian androgenic function is maintained in the presence of suppressed LH levels. 

What might be driving the androgen production of this atypical type of FOH? While 

insulin resistance surely plays a role, it is no greater than that of typical PCOS and 

would seem insufficient to maintain a nearly comparable degree of 

hyperandrogenism in the presence of lower LH levels. Cytokine excess, acting in 

concert with this group’s hyperinsulinism, would seem to be the other stimulus: an 

increasing number of pro-inflammatory cytokines have recently emerged as 

steroidogenesis stimulators in the context of obesity, as discussed below, and these

would seem to be prime candidates to drive the atypical FOH in concert with this 

group’s hyperinsulinism and normal LH levels (Fig. 9). In addition, the enlarged 

adipose tissue mass itself plausibly directly contributes by producing testosterone 

from circulating precursor androstenedione, as discussed below. 

Folliculogenesis. Endocrinologic evidence of premature luteinization of follicles from 

women with PCOS was obtained by Debbie Willis and Helen Mason in the Stephen 

Franks group (277). Whereas follicles from normal ovaries do not secrete estradiol 

or progesterone in response to LH until they reach 9.5-10mm, those from 

anovulatory PCOS respond at 4 mm. Polycystic ovaries from ovulatory women, 

which morphologically do not differ from PCOS polycystic ovaries (202), responded 

normally. Premature luteinization appears to result from insulin (278) and androgen 

excess (278, 279), enhancing the induction of granulosa cell LH receptors by FSH

(167). Premature luteinization seems likely to be the major factor disrupting 

selection of a dominant follicle and thereby causing anovulation.
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Hyperandrogenemia induced in rhesus monkeys was shown to up-regulate FSH 

receptors in primary follicles by Carolyn Bondy’s group (280). Hyperandrogenemia’s

amplification of FSH action would be expected to aggravate premature luteinization.

It may also partially explain the enhanced responsiveness to gonadotropin 

stimulation of PCOS women (280).

In the same model system, Bondy’s group also showed, that androgen excess 

stimulates recruitment of resting primordial follicles into the pool of growing follicles

(281). Thus, hyperandrogenism directly causes the increased number of small 

follicles that constitute the polycystic ovary, supporting Futterweit’s earlier finding.

A “Müllerian inhibiting substance” was originally hypothesized by Alfred Jost, to 

explain his findings in rabbits undergoing early fetal castration, as the testicular 

factor distinct from androgen responsible for inhibiting development of the fetal 

Müllerian ductal system (282). It was isolated and purified from calf testes and then 

biosynthesized 1976-78 by Dr Natalie Josso as anti-Müllerian hormone (AMH) (283). 

In 1999 Alexandra Durlinger and colleages reported it to play an important role in 

folliculogenesis by inhibiting primordial follicle recruitment (284). AMH is first 

expressed in primary follicles, output per follicle peaks in preantral and small antral 

follicles, and it is no longer expressed in follicles >9mm (285). Serum AMH, thus, 

indexes the size of the growing pool of follicles (286). Hyperandrogenism stimulates

the recruitment of primordial follicles into the growth phase (281)

In 2003-2004 Dr Didier Dewailly and colleagues proposed that the androgen-

induced increase in small follicle number was responsible the increased serum AMH 
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in PCOS (287, 288), but whether androgen excess accounts for the increased AMH 

secretion per cell of PCOS is not established (289). Further studies indicated that 

AMH elevation contributes to follicle maturation arrest by inhibiting estradiol 

secretion via FSH-stimulated aromatase expression and by inhibiting P450c17 

expression, while estradiol in turn inhibits AMH secretion (289-291). These relations 

are illustrated in Fig. 16. Recently AMH was found to stimulate GnRH pulsatile 

secretion in mice, possibly via acting on the AMH receptor found in a subset of 

GnRH neurons (292).

Dunaif, Urbanek, and colleagues, recently reported that heterozygous AMH or AMH 

receptor variants with dominant negative signaling activity appeared to cause PCOS

in 6.7% of their patients (293, 294). Signaling of two of these variants was recently 

shown to be reduced approximately 90% due to disruption of normal cell processing

of AMH (295).     

Insulin resistance. In 1993, Franks’ group examined the role of insulin resistance in 

the menstrual irregularity of PCOS. They performed insulin tolerance tests in two 

groups of PCOS patients with PCOM, one group with oligomenorrhea and a smaller 

one with regular menstrual cycles (296). Insulin resistance was only found in the 

oligomenorrheic group. They concluded that insulin resistance is independent of 

PCOS and that its presence is related to menstrual regularity.

In 1996 Drs. John Nestler and Daniela Jakubowicz reported the results of a placebo-

controlled study to determine whether lowering serum insulin by administering 

metformin affected apparent ovarian P450c17 activity (297). Metformin, but not 
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placebo, administration to obese women with PCOS significantly lowered baseline 

serum free testosterone and serum 17OHP and LH at baseline and in response to 

GnRH agonist challenge. They concluded that decreasing serum insulin ameliorates 

hyperandrogenism by reducing ovarian P450c17 activity. This demonstration that 

the hyperinsulinemia of insulin resistance seemed capable of causing the apparent 

dysregulation of P450c17 and that it was ameliorated by metformin was influential 

and popularized the use of metformin for the treatment of PCOS. While the 

conclusion was sound, David Ehrmann demonstrated that metformin was only 

effective to the extent that it brought about weight loss (298), and metformin 

efficacy has always been problematic in our hands. Also it was clear to us that 

hyperinsulinism was not the sole cause of P450c17 overactivity because insulin 

resistance in relation to obesity status was present in only about half of women with

PCOS (189, 299, 300).

Andrea Dunaif in the early 1990s assembled a group that began addressing the 

paradox of hyperinsulinemia amplifying androgen excess in the presence of 

resistance to insulin stimulation of glucose uptake in skeletal muscle and fat of 

PCOS women (301). In PCOS they found, in relation to age- and weight-matched 

controls, a distinctive abnormality of decreased responsiveness to insulin of in vivo 

glucose uptake, indexing primarily skeletal muscle insulin action, while PCOS’ 

insensitivity to the insulin suppression of hepatic glucose production was shared 

with obese controls. Subsequently, Bock and Dunaif reported that cultured skin 

fibroblasts from PCOS women are intrinsically resistant to the metabolic, but not the

mitogenic, effects of insulin (302). 
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The molecular mechanisms for PCOS’ preservation of mitogenic signaling in the 

presence of intrinsic resistance to the metabolic effects of insulin was then 

addressed. In 2002 by Dunaif’s group reported, using fibroblasts from PCOS women,

that insulin resistance usually results from serine-kinase phophosphorylation of the 

insulin receptor and insulin receptor substrate-1 (303, 304). Walter Miller noted that

serine phosphorylation, in contrast to down-regulating Insulin receptor signaling, 

up-regulated the 17,20-lyase activity of P450c17 and proposed that this might 

explain the association of insulin resistance with PCOS (305). As attractive as was 

this hypothesis, their subsequent enzymatic and molecular genetic studies led them

to conclude that the main kinase that enhances the 17,20-lyase activity of P450c17 

is P38alpha (mitogen-activated protein kinase 14) rather than those kinases 

implicated in the insulin resistance of PCOS (112, 306). On the other hand, skeletal 

muscle myotubules have a pattern of insulin resistance that is not attributable to 

specific signaling pathways according to a study by Theodore Ciaraldi and 

associates (307).

The question of whether insulin directly acts through its own receptor was 

addressed by Nestler in 1998. Using highly specific antibodies to the insulin and 

IGF-1 receptor, his group concluded that insulin acted via its specific receptor (308).

However, the physiologic relevance of their observations was suspect because very 

high insulin doses (>2 µg/ml) were required. It was 2014 before convincing direct 

evidence was developed that insulin acts through its own receptor to stimulate 

ovarian steroidogenesis: Sheng Wu, PhD and Sara Divall, MD in the laboratories of 

my former associates Andrew Wolfe, Drs Sally Radovick, and Fred Wondisford used 

insulin-receptor knockout mice to demonstrate that obesity-induced 
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hyperinsulinemic hyperandrogenic anovulation is mediated by the theca cell insulin 

receptor (309).

Adipose tissue. The insulin resistance of adipose tissue is attributable to androgens, 

rather than being intrinsic like that of skeletal muscle and liver. In 2007, Dr Anne 

Corbould and Dunaif demonstrated that PCOS subcutaneous preadipocytes in 

culture had no intrinsic defect in insuIin action (310). Corbould then reported that 

after differentiating these preadipocytes in culture, androgen treatment blunted 

their glucose uptake and maximal response to insulin (311). The mechanism was 

mediated by insulin-stimulated phosphorylation of protein kinase C. Meanwhile, Dr. 

Peter Arner and colleagues showed that androgens stimulate lipolysis, thus 

antagonizing a fundamental insulin action (312).

Bruce Spiegelman’s group demonstrated in mice (1993) that obesity is a chronic, 

low-grade inflammatory state in which adipose tissue secretes tumor necrosis 

factor-alpha (TNFalpha),and that this causes insulin resistance (313). In 2003 it 

became clear that this and other inflammatory cytokines like interleukin (IL)-6 

originate in macrophages that infiltrate the adipose tissue of obese individuals (314)

(315) and form pro-inflammatory crown-like structures (Fig. 17) (316). This process

is exaggerated independently of global obesity in  PCOS (316). Serum IL-6 levels 

have since been shown to be elevated in PCOS (317). 

Dr Frank Gonzalez’ studies commencing in 1999 showed that TNFalpha is elevated 

in PCOS even in the absence of obesity, which suggests that hyperandrogenism 

independently plays a role in provoking chronic inflammation (318, 319). He then 
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built on then-recent research that indicated that the proinflammatory states of 

obesity, type 2 diabetes mellitus (T2DM), and PCOS are responsible for an abnormal

gut microbiome and gut permeability (320, 321). The latter permits increased 

serum lipopolysaccharide, while serum IL-22, which is anti-inflammatory, declines 

(though there is contradictory evidence on this point (317)) due to dysregulated 

intestinal monocyte function: these changes directly exacerbate both androgen 

production and insulin resistance. Gonzalez’ group then showed that glucose or 

saturated fat ingestion triggers increased serum levels of lipopolysaccharide and 

other pro-inflammatory factors, as well as anti-inflammatory factors, often moreso 

in PCOS than in obesity (320, 322). 

Although TNFalpha inhibits P450c17 activities (242), Dr Antoni Duleba’s group 

demonstrated in rat thecal cells that lipopolysaccharide and interleukin-1ß up-

regulate key genes in androgen biosynthesis, including, that encoding the rate-

limiting step in cholesterol biosynthesis (Hmgcr; hydroxymethylglutaryl-coenzyme  

A reductase), Cyp11a1, Hsd3b, and Cyp17a1 (323). They further showed that the 

nonsteroidal anti-inflammatory drug ibuprofen, an inhibitor of prostaglandin E2 

formation, reversed these effects (324) and significantly reduced serum 

testosterone in PCOS (325); how the responses to ibuprofen are related to 

phenotype and obesity status remain to be clarified.

Dr Paul Stewart’s group identified adipose tissue as an important site of androgen 

production in 2004. 17ßHSD5, which forms testosterone from androstenedione, is 

expressed in subcutaneous fat, where it correlated with an obesity index and 

increased during adipocyte differentiation (326). Dr Kenan Qin in our group had 
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identified this enzyme as the major testosterone-forming enzyme of the ovary in 

2000 (327) (see next section). In 2009 he and Xiaofei Du then demonstrated that 

17ßHSD5 is up-regulated by insulin in both fat and steroidogenic cells (328). Thus, 

insulin stimulates fat accumulation by preadipocytes and steroidogenesis via the 

same transcription factor, Kruppel-like factor 15, mechanistically linking androgen 

secretion and fat 

Although the low SHBG in obese individuals was initially attributed to 

hyperinsulinemia (329), subsequent evidence suggested that excess glucose and 

fructose intake themselves together with cytokines mediate the SHBG reduction in 

patients with obesity. David Selva, initially working in Geoffrey Hammond’s 

laboratory, reported in 2007 that glucose and fructose reduce human SHBG 

production by hepatocytes in culture (330). This was mediated by a 

monosaccharide-induced increase in lipogenesis that reduced hepatic nuclear 

factor-4alpha levels, which in turn attenuated SHBG expression. Selva’s group later 

showed that the proinflammatory cytokines TNFalpha (331) and interleukin-1ß 

promote this process, and adiponectin, an adipose anti-inflammatory cytokine that 

counters insulin resistance, has the opposite effect (332). SHBG serum levels in 

women also have been shown to have a hereditary component (333).

Diabetes mellitus. In the early 1990s we realized that not only was insulin 

resistance common in women with PCOS, but T2DM also is common in both patients

and their parents. Two of our Medicine Endocrdine fellows, Drs.Niall O’Meara and 

John Blackman, were sufficiently impressed with our preliminary presentations to 

our joint endocrine conferences that they included some of our women with PCOS in
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their ongoing studies of T2DM insulin secretion: they showed that our FOH/PCOS 

patients had insulin secretory defects characteristic of T2DM (334). From then on Dr

Ehrmann took the lead in designing and implementing a series of studies of insulin 

secretory dynamics in women with FOH. First, he evaluated pancreatic beta cell 

function during a frequently sampled intravenous glucose tolerance test and 

showed subnormal insulin release in response to glucose relative to insulin 

sensitivity in normoglycemic, overweight/obese FOH patients who had a positive 

family history of T2DM (299). Beta-cell dysfunction in women with PCOS was quickly

confirmed by Dunaif and Finegood, who extended the finding to nonobese women 

with PCOS (335). Next, Dr Ehrmann found that young women with PCOS and T2DM 

differed from those with PCOS and normal glucose tolerance in having a significant 

(2.6-fold) higher prevalence of first-degree relatives with T2DM (336). Glucose 

tolerance was impaired in 45% of 122 young women with PCOS, of whom 10% had 

T2DM; this was a substantially higher prevalence of abnormal glucose tolerance 

than expected when compared with age- and weight-matched populations of 

women without PCOS. After a mean follow-up of 2.4 ± 0.3 years, a subset of these 

women was found to have a significantly higher 2-hr glucose during oral glucose 

tolerance testing than during the first test. In a later definitive study of insulin 

secretory dynamics in women with PCOS and their primary family members, Dr 

Ehrmann showed that heritability of beta-cell dysfunction is a significant factor in 

PCOS women’s predisposition to type 2 diabetes mellitus (337). These data suggest 

that T2DM is not intrinsic to PCOS, but occurs at a young age in those with insulin 

resistance.
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Gonadotropin regulation in PCOS. Research in the late 1990s suggested that the 

increased serum LH of PCOS is the result of abnormal sex steroid feedback rather 

than the cause of androgen excess. In 1997 Dr Sarah Berga reported that serum LH 

level and pulse frequency of PCOS were subnormally sensitive to negative feedback

by combined estrogen-progestin administration (338). In a subsequent elegant 

series of studies, John Marshall’s group confirmed these findings and demonstrated 

that higher concentrations of progesterone are required to suppress LH pulse 

frequency in the presence of luteal phase estradiol levels in adult women with PCOS

than in controls (339). Marshall then took his group further and demonstrated that 

sensitivity to estrogen-progestin negative feedback was conferred in PCOS by anti-

androgen treatment (340). These data indicate that androgen excess interferes with

the hypothalamic inhibitory feedback of female hormones. The resistance to 

estrogen-progestin negative feedback of hyperandrogenemia, while significant, is 

less consistent in adolescents than in adults (341).  This discrepancy between 

adolescents and adults suggests that resistance to negative feedback is not 

inherent to PCOS.  Rather, it suggests that resistance only becomes apparent as the

high sensitivity to sex steroid negative feedback of pubertal maturation develops 

during puberty. 

In the late 1990s, LH levels and pulse amplitude in women with PCOS were found to 

be negatively related to adiposity (342, 343). Further studies by Janet Hall, MD and 

colleagues (344) and Dr. Leif Wide and colleagues (345) indicated that this was at 

least in part due to obesity-related accelerated gonadotropin metabolism (111).
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Our current understanding of the pathophysiology of the essential features of PCOS,

is based on the above body of knowledge: it is depicted in Fig. 18: Any disorder 

that causes ovarian hyperandrogenism suffices to explain the pilosebaceous and 

anovulatory manifestations. The hyperinsulinemic insulin resistance found in 

approximately half the cases aggravates all the clinical and laboratory features of 

the syndrome: premature luteinization causes the anovulatory symptoms and PCOM

frequency to worsen. It appears that two-thirds of the hyperandrogenic oligo-

anovulatory forms of PCOS (phenotypes A-B) have functionally typical PCOS indexed

by 17OHP hyper-responsiveness to LH, which indicates overactivity of theca cell 

steroidogenesis through P450c17. Commencing in 1999, the inherent nature of 

functionally typical PCOS was discovered and much has since been learned about 

its molecular genetic basis, as discussed below. The remaining one-third of cases 

have functionally atypical PCOS, the cause of which is less clear. However, the data 

suggest that obesity is the biggest culprit in most of this latter group: the 

androgenic dysfunction is milder and is hypothesized to be mediated through insulin

resistant hyperinsulinism and pro-inflammatory cytokine excess. 17ßHSD5 in the 

large adipose tissue depot also excessively forms testosterone from circulating 

androstenedione, with the hyperinsulinism also promoting this effect. 

4.5 Developmental aspects of PCOS

Adolescent PCOS. In reviewing PCOS case histories in 1980, Sam Yen had suggested

that the endocrine aberrations of PCOS commonly begin before menarche (143). His

patients were often ‘overweight’ before menarche, their menstrual dysfunction 

commonly began as a continuation of post-menarchal menstrual irregularity, and 

hirsutism commonly began at about this this time. 
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The first series of adolescents with PCOS were described by Emans and colleagues 

in 1980 using gonadotropin criteria (346) and by us in 1983 using androgenic 

criteria (347). Drs Allen Root and Thomas Moshang in 1984 reported 2 teenagers in 

whom PCOS developed after central precocious puberty (CPP) and cited two 

previous similar case reports (348). However, a 2007 consensus conference of 

international experts on CPP found no clear evidence for this association (349). Dr 

Dan Apter later teamed with Yen’s group to detail adult-like LH dynamics and insulin

resistance in adolescents with  clinically typical PCOS (350, 351). Our cumulative 

experience with adolescents has been that we have never been able to detect 

hyperandrogenism before the peri-menarchal stage of development, but at that 

point FOH presents in its fully developed form, indistinguishable from that in adult 

PCOS (Fig. 14). This view is supported by the Sir-Peterman group’s recently 

published longitudinal follow-up to adulthood of daughters of women with PCOS, 

discussed below (352). 

The guidelines for the diagnosis of PCOS during adolescence emphasized 

persistence of symptoms as a precaution necessary to differentiate PCOS from 

“physiologic adolescent anovulation”. This is very appropriate for adolescents with 

menstrual disturbances who lack clinical evidence of hyperandrogenism, since 

about one-third develop hyperandrogenemia late in prolonged cycles according to 

pioneering studies from Drs Stefano Venturoli and Eleonora Porcu (353), and it can 

be anticipated that menses in over half of such girls will normalize (354), as does 

about 60% of adolescent menstrual disturbance (355). However, although I signed 

off on these guidelines, I have always thought the “persistence” criterion is too 
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widely applied. Some adolescents present during the perimenarchal stage with 

hirsutism or acanthosis nigricans, with or without a menstrual abnormality, and are 

found to be hyperandrogenemic. My last original scientific data publication was a 

follow-up study that included such adolescents in whom we had documented FOH 

by GnRH agonist test and/or dexamethasone androgen suppression test within two 

months of presentation (356). At an average of 7.2 years later, all had 

hyperandrogenic anovulation. This experience indicates that if hyperandrogenemia 

is accompanied by clinical evidence of hyperandrogenism or severe insulin 

resistance, it is likely to persist.     

Premature adrenarche and PCOS. In 1993 Ibañez and colleagues, following up on 

their premature pubarche cases after menarche, reported that 45% of them, 

particularly those with “pronounced” adrenarche, developed hirsutism, 

oligomenorrhea, and 17OHP hyper-responses to GnRH agonist testing (357). They 

then launched a series of studies that described the frequent association of 

premature pubarche and/or adrenarche with hyperinsulinemia (358), reduced fetal 

growth (359), late development (>3 years post-menarche) of oligo-anovulation

(360), and central adiposity (361). They proposed that low birth weight indexed a 

common fetal origin for these disorders (359, 362) and that when it is followed by 

early childhood central adiposity it may be linked through insulin resistance to 

cardiovascular risk, as well as PCOS (359, 363-365).

Subsequent studies in other populations have shown that premature pubarche or 

premature adrenarche are followed in early adulthood by a high (27-59%) 

prevalence of hirsutism, significant hyperandrogenemia and insulin resistance, but 
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not a significantly increased prevalence of oligo-amenorrhea (1, 366-368). Thus, 

while these latter studies rule out the A-B hyperandrogenic phenotypes, they have 

not definitively ruled out mild adult PCOS C-D phenotypes or determined whether 

the source of the hyperandrogenism is adrenal or ovarian, so the possibility of FOH/

PCOS cannot be ruled out. 

Yen had proposed as part of his estrone hypothesis that the PCOS began with 

exaggerated adrenarche (143). I suspect, rather, that premature adrenarche will 

prove in some girls to be the first sign of the dysregulation of steroidogenesis that 

later manifests as the FOH of PCOS.

Studies of PCOS families. In 2006, our group (369) and later Dunaif’s (370) 

identified metabolic syndrome (resulting from the combination of obesity and 

insulin resistance) as a paternal manifestation. Dysglycemia was more frequent in 

fathers than mothers in both PCOS study populations (369, 371). Premature male-

pattern balding was not significant in our study, contrary to earlier reports. 

However, severe androgenic alopecia in men appears to be a more accurate marker

(372).

In 2006, Dr. Teresa Sir-Peterman and colleagues began publishing data from a 

study of daughters of women with PCOS followed longitudinally in comparison with 

daughters of a control group. PCOS daughters had elevated AMH levels at 2-3 

months of age and early childhood, suggesting excessive ovarian follicular 

development, which is consistent with increased ovarian androgen production

(373). At 6.0 yr mean age, prepubertal PCOS daughters had higher 2-hr post-
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glucose insulin levels (374), and at 8.5 yr increased ovarian volume was 

documented; these differences persisted into puberty (375). Noteworthy is that no 

significant differences in testosterone levels emerged until pubertal stages 4-5, 

when 63% and 100%, respectively, of the PCOS daughter groups were post-

menarchal. At that point significantly decreased insulin sensitivity index and SHBG 

and increased fasting serum triglycerides, androstenedione, and free androgen 

index emerged, as did significantly increased LH and 17OHP responses to GnRH 

agonist testing (375). In 2019, when 21 of these PCOS daughters reached 

adulthood, 11 had hyperandrogenic oligo-amenorrhea and another 4 met 

Rotterdam criteria for nonhyperandrogenic PCOS (Table 3) (352).

Monogenic transmission of PCOS is extremely rare. Extreme or atypical features are

suggestive. Deleterious gene mutations causing severe insulin resistance are the 

most common risk factors for monogenic PCOS (376). Serum AMH levels are below 

average for PCOS in cases with deleterious AMH variants (295).

Prenatal virilization and PCOS. Our group noticed that post-menarcheal females with

congenital virilizing disorders often had hyperandrogenic oligo-amenorrhea in spite 

of good control of their adrenal hyperandrogenism. Therefore, we tested such 

women, most of whom had CAH, for PCOS by performing GnRH agonist tests 

coincident with adrenal-suppressive doses of dexamethasone for several days

(377). These women proved to have hyper-responsiveness of LH and 17OHP to 

GnRH agonist stimulation. These data suggested that congenital adrenal virilization 

programmed the hypothalamic-pituitary axis for hypersecretion of LH and ovarian 

hyperandrogenism at puberty (377). Ghizzoni and collaborators subsequently 
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obtained confirmatory findings in young women with classic virilizing CAH (378). 

After presenting our preliminary data at the Endocrine Society 1991 annual meeting

(379), David Abbott was intrigued since he had “inherited” a group of anovulatory, 

prenatally androgenized, rhesus monkeys upon joining the faculty at the Wisconsin 

Regional Primate Center. We discussed a possible collaboration using GnRH 

agonist ; however, this proved to be a poor stimulus to ovarian function in rhesus 

monkeys.

Abbott, Dr Daniel Dumesic and colleagues in 2002 reported that hCG testing 

demonstrated ovarian hyperandrogenism in prenatally androgenized monkeys

(380). Their further studies in rhesus monkeys showed that prenatal 

androgenization from mid-first to mid-second trimester or late-second to mid-third 

trimester reproduces the entire reproductive and metabolic spectrum of PCOS, 

including adrenal hyperandrogenism, obesity, insulin resistance, defective insulin 

secretion, and diabetes mellitus (247, 381-383). As they accrued a large study 

population of rhesus females, they documented naturally occurring 

hyperandrogenemic oligo-anovulation (i.e., PCOS) in 5% of them, with another 15% 

fulfilling Rotterdam criteria, very similar to the proportions of PCOS phenotypes 

among affected humans (381). These findings point to PCOS having an ancient 

evolutionary origin. However, whether the cause of the spontaneous rhesus PCOS-

like state is DENND1A-related like that in humans remains to be determined.

Prenatal androgenization has now been found to cause PCOS-like dysfunctions not 

only in rhesus monkeys, but in every species studied, beginning with sheep by 

Vasantha Padmanabhan’s group (384)(385). A novel technique was recently 
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introduced by Paolo Giacobini’s group; they performed prenatal androgenization of 

mice by inhibiting maternal ovarian and placental aromatase with AMH. This caused

PCOS-like features through three generations of offspring (386). Hypomethylation of

several genes associated with PCOS was found in these mice. Reversal of this 

epigenetic imprinting corrected LH, testosterone, and metabolic features, proving 

that epigenetic mechanisms underlie this model.   

The PCOS-like neuroendocrine dysfunction in rats prenatally treated with 

testosterone was found by Jon Levine’s group to be mediated by androgenic 

suppression of hypothalamic progesterone receptor expression and subsequent LH 

hypersecretion (387). Using a similar virilization protocol in mice, Rebecca Campbell

recently demonstrated that the abnormal reproductive cycling was restored by anti-

androgen treatment in adulthood (388). Pam Mellon’s group recently knocked out 

androgen receptor in kisspeptin neurons and showed that virtually all the PCOS-like 

reproductive features of the prenatal AMH model are mediated through the 

androgen receptor of hypothalamic kisspeptin cells (389). This seems to explain 

why targeted deletion of the brain androgen receptor in prenatally 

dihydrotestosterone-androgenized mice by Kristy Walter’s group corrected their 

reproductive dysfunction (390, 391). Taken together, these studies indicate that 

continued LH excess is required to maintain the PCOS-like reproductive features 

induced by prenatal androgenization. Thus, the mechanism for hyperandrogenism 

in this preclinical PCOS model differs from that of typical PCOS in man, which is due 

to an inherent defect in theca cells (392) that has genetic determinants, the non-

gonadal effecs of which remain to be determined, as discussed below.
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However, the prenatal administration of androgen in animal models would seem to 

directly program for the later development of PCOS-like metabolic disturbances in 

these models, which contrasts with the lack of consistent evidence for testosterone 

excess affecting metabolism postnatally (393, 394). The window during which this 

prenatal programming seems to occur is unusual in rhesus monkeys: throughout 

most of mid-pregnancy, unlike the late-first trimester critical period for the classical 

induction of genital differentiation by testicular hormones (282).  

The extent to which prenatal androgenization models of PCOS are relevant to 

human PCOS is currently unclear because there is neither obvious nor consistent 

evidence of prenatal andogenization in ordinary human PCOS (247). Furthermore, 

maternal transfer of testosterone to the fetus is hindered by the high aromatase 

activity of the placenta, and fetal ovarian follicle development does not begin until 

mid-gestation, after which the ovary is normally inactive until term (247). Of course,

the possibility exists that endogenous up-regulation of fetal ovarian steroidogenesis 

by the aberrant DENND1A splicing which underlies androgen excess in typical PCOS,

(395), discussed below, occurs mid-gestation. Another possibility would be that 

small molecules, e.g., prostaglandin-E2, that mimic or mediate testosterone action 

cross from the maternal to the fetal side of the placenta and act via an epigenetic 

mechanism, as discussed below.  

Disturbed fetal nutrition. Ibanez’ proposal that low birth weight is a risk factor for 

PCOS growth (359) has been supported in some populations, not in others (247). In 

some studies, high birth weight has been associated with PCOM and PCOS (396, 
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397); it is possible that this is related to gestational diabetes, which is associated 

with obesity, insulin resistance, and diabetes in offspring (398, 399).

Obesity. Obesity is the major postnatal environmental factor in PCOS (247). Obesity 

emerged as a potential public health problem in the United States and the United 

Kingdom in the mid-1970s and as a worldwide problem in 1995 (400); it was 

characterized as an “obesity epidemic”, a term first cited in PubMed one year later. 

The rare childhood obesity syndromes of pseudo-Cushing’s syndrome and pseudo-

acromegaly that are due to severe insulin resistance herald the development of 

PCOS at puberty (401). Obesity in older children is a risk factor for obesity (402) and

thus for PCOS.

Clinically, most obesity seems to be behavioral in origin. However, obesity is itself a 

complex trait with heritable as well as environmental contributions (403). Whether 

the obesity of PCOS and their families (369, 370) is primarily behavioral or 

hereditary is unknown. Yee-Ming Chan, MD, PhD and associates recently used a 

novel approach to address this issue (372). They applied genetic risk factors for 

PCOS in women, as determined in the largest available genome-wide association 

study of that disorder, calculated individual polygenic risk scores for PCOS, and in 

the general male population found that increase of these risk scores was highly 

associated with increased odds for obesity. This paper provides convincing evidence

that the familial relationship of paternal obesity to PCOS has important genetic 

determinants.
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Weight-loss and bariatric surgery—like all other treatments that cause a reduction 

in serum insulin levels-- whether by administration of somatostatin, metformin, or 

insulin-sensitizing thiazolidinediones--significantly improve ovulation and 

hyperandrogenemia in PCOS (158, 297, 404-408). However, the weight loss 

achieved by medical treatment has been modest, averaging about 5 kg, so only 

about half of PCOS patients experience improvement in the PCOS symptoms when 

they lose weight, and patients with the least severe ovarian dysfunction are those 

most likely to benefit symptomatically from weight loss (409).  Anew era of 

treatment with potent glucagon-like peptide-1 agonists (410) carries the promise of 

learning more about the contribution of obesity to PCOS.  

Epigenetic factors in PCOS. Epigenetic factors have been shown to contribute to 

many of the intrauterine and postnatal environmental factors noted above to be 

related to PCOS. Giacobini’s prenatal androgenization mouse model of PCOS was 

reversed by correcting the abnormal methylation of these mice, demonstrating that 

epigenetic changes induced by androgen were responsible (386). This study also 

showed that that several genes found to be hypomethylated in the mice were also 

hypomethylated in women with PCOS. Sir-Peterman’s group found that prenatal 

dihydrotestosterone-treatment of mice led to transgenerational PCOS-like changes 

that were accompanied by transgenerational change in expression of several oocyte

genes that were the same as imprinted genes found in adipose tissue of PCOS 

patients and serum of their daughters (352), though different than the imprinted 

genes in Giacobini’s study.
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Prostaglandins have been demonstrated to mediate the epigenetic changes induced

by prenatal androgen in brain in a series of studies by Margaret McCarthy’s group of

the mechanism of masculinization of behavior (411, 412). There is also evidence 

that prostaglandins may mediate androgen effects on the prostate (413).

Disturbed fetal nutrition also has epigenetic-mediated consequences. Heijmans, et 

al demonstrated that periconceptual exposure to famine during the Dutch Hunger 

Winter of 1944-45 was associated with hypomethylation of the IGF2 gene (414). 

Maternal diabetes is associated with persistent epigenomic signatures in metabolic 

and developmental pathways (399)

 

Epigenomic alterations have additionally been indicated in PCOS granulosa cells by 

>100 differentially methylated sites affecting a wide variety of functions (415), 

including abnormal methylation of ovarian aromatase, AMH and its receptor, and 

genes involved in insulin/IGF signaling (416). Epigenomic alterations have been 

suspected as the cause of androgen receptor splice variants (216, 217).

4.6 From phenotype to the biological, biochemical, and molecular genetic 

basis of PCOS, 1999-ca. 2015

With the demonstration that “augmented androgen production is a stable 

steroidogenic phenotype of propagated theca cells from polycystic ovaries”, the 

biological basis of the PCOS phenotype A was revealed in 1999 by the laboratory of 

Jan McAllister  in collaboration with Jerome Strauss  and Richard Legro (392). The 

McAllister laboratory had succeeded in establishing theca cell lines from the follicles
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of control and PCOS patients with PCOM that could be stored frozen and studied 

after passaging 3-4 times in culture. The passaged theca cells from women with 

PCOS constitutively overexpressed all theca cell steroidogenic enzymes and their 

mRNAs from cholesterol (P450scc/CYP11A1) through androstenedione 

(P450c17/CYP17A1), and progesterone, 17OHP, and testosterone production per cell

was markedly increased. Forskolin, a cyclic AMP analogue used as an LH surrogate, 

stimulated pregnenolone and DHEA metabolism by these cells and augmented their

expression of CYP11A1 and CYP17A1 more than in normal theca cells. Further 

studies showed that forskolin-stimulated CYP17 promoter activity was increased in 

PCOS theca cells, but no such changes in steroidogenic acute regulatory protein 

activity were detected (417). This in vitro biochemical phenotype would seem to 

account for the in vivo secretory phenotype of typical PCOS. McAllister’s findings 

indicate that the theca cell defect in PCOS is constitutive and, hence, inherent.

In 2000, the gene for the testosterone-forming enzyme 17ß-HSD type 5, structurally

aldo-ketoreductase 1C3, encoded by HSD17B5/AKR1C3, was identified in a human 

ovary library by Dr Kenan Qin in our laboratory (327). Subsequently, in collaboration

with McAllister and colleagues, we demonstrated it to be localized to the theca cells 

of the ovary (418). Their concurrent biochemical studies indicated that the primary 

factor driving increased testosterone production by PCOS theca cells passaged in 

long-term culture was increased production of precursors by increased 3ßHSD and 

P450c17 activities, not increased 17ßHSD activity (Fig. 19).  

This McAllister paper indicated that molecular genetic studies would be necessary 

to reveal the cause of PCOS. Thereafter, the pace of research into the disorder 
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began accelerating (Fig. 6). Multiple plausible candidate genes were evaluated, but

results could usually not be replicated (419). As a consequence of the frustration 

with this approach, a consensus emerged in the PCOS research community that 

large scale genome-wide association studies (GWAS) would be required to solve the

problem. I was skeptical of the quality of the data going into such databases, 

particularly about the fuzziness in the inclusion of “clinical hyperandrogenism” in 

the diagnostic criteria and the inclusion of the non-hyperandrogenic D phenotype; it

turned out that my skepticism was unwarranted because of the large size of the 

databases that were developed.

The first large-scale collaborative GWAS was conducted by Zi-Jiang Chen and 

Yongyong Shi in Han Chinese populations in 2011-2012 and yielded several 

previously unsuspected genetic loci (420, 421). The strongest linkage in Han 

Chinese was replicated in European populations and was associated with an intronic

9q22.32 locus within the DENND1A (differentially expressed in normal and 

neoplastic development, isoform 1A) gene (422, 423). 

The DENND1A linkage led McAllister and colleagues to the discovery of a previously 

unknown steroidogenic regulatory pathway. They reported in 2014 that DENND1A is

normally expressed in passaged theca cells predominantly as the DENND1A.V1 

isoform, but a normally less abundant splice variant, DENND1A.V2, is constitutively 

overexpressed in passaged theca cells from the polycystic ovaries of women with 

PCOS (395). Critically, they further demonstrated that experimental manipulations 

of the expression of this V2 isoform account for the biochemical phenotype of these 

PCOS theca cells. Thus, dysregulated DENND1A.V2 expression appears to account 
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for the functionally typical type of PCOS we had defined by GnRH agonist testing 25 

years prior.  DENND1A is a member of the connecdenn family of proteins, which are

clathrin-associated, adjacent to the inner cytoplasmic membrane, and involved in 

protein trafficking, endocytotic processes, and receptor recycling (424). Thus, 

DENND1A is positioned to affect LH receptor signaling, 

McAllister’s laboratory subsequently reported that DENND1A.V2 is also expressed in

adrenal ZR and human virilizing adrenal carcinoma cells (424, 425). Its forced 

expression in transgenic mice drives CYP17A1 expression and androgen production 

in mouse ovaries and adrenals (426). They also demonstrated that DENND1A.V2 

accumulates in theca cell nuclei after gonadotropin stimulation, suggesting that it 

may act directly on gene transcription (427).

 Matthew Dapas, Geoffrey Hayes, Margaret Urbanek, Andrea Dunaif and associates 

in 2019 analyzed whole-genome screening data for DENND1A variants in 261 

individuals from 62 families. They found that half these PCOS families had one or 

more of 32 different DENND1A variants, most of which altered DENND1A affinities 

for transcription factors or RNA binding proteins  (428). They proposed that these 

variants plausibly drive DENND1A.V2 overexpression via posttranscriptional 

regulation.

Dapas, Dunaif, et al in 2020 then reported an examination of an international GWAS

database of variously defined PCOS cases to identify the relationship of clinical 

subtypes to deleterious DENND1A variants (429). Their preliminary analysis showed 

that the genetic architecture was similar in Rotterdam phenotypes A-B and 
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phenotypes C-D or by self-report for 13 of 14 susceptibility loci. A PCOS trait 

analysis showed that ovulatory dysfunction and PCOM were genetically similar for 7 

of 8 gene susceptibility loci. They then performed an unsupervised cluster analysis 

in a cohort of 73 families in which the women were completely genotyped among 

the 893 United States and European PCOS cases with phenotypes A-B that had 

complete data for key traits. This analysis identified a “reproductive” subtype that 

was characterized by higher LH and SHBG with relatively low BMI and insulin levels 

than the opposite cluster, the “metabolic” subtype. Between these was an 

“intermediate” subtype with indeterminant results. DENND1A variants were found 

in 65% of the 17 families with the reproductive subtype, which was significantly 

more than in the other subtypes: there DENND1A variants were found in 27% of 22 

families with the metabolic subtype and 35% of the 34 families with the 

intermediate subtype. 

Meanwhile, painstaking research by the McAllister laboratory revealed a network of 

factors that modulates the expression of DENND1A.V2--and, thus, ultimately 

CYP17A1 expression and P450c17 activity, some of them directly (430, 431). This 

DENND1A regulatory network includes several proteins and nuclides that had 

themselves been significantly linked by GWAS to PCOS: those for the LH receptor 

(LHCGR), the zinc finger transcription factor ZNF217, the micro-RNA miR-130b-3p, 

and Ras-related protein RAB5B. This network interacts with mitogen-activated 

protein kinase (MAPK) and extracellular regulated kinase signaling to increase 

androgen secretion  (430, 432) and links via MAPK to the insulin mitogenic signaling

pathway (430). 
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More recently, McAllister and Strauss identified more candidate genes by plumbing 

their trove of passaged theca cells. With H Alan Harris and others (433) they used 

whole exome sequencing to identify a chromosome 12q13.2 haplotype containing 

single-nucleotide variants of the RAB5B, ERBB3 (erb-b2 receptor tyrosine kinase 3), and 

PAG4 (prostate-associated gene 4) genes that were significantly associated with 

androgen production by these cells; PAG4 was differentially expressed although it 

had not been previously identified as PCOS-associated. PAG4, like ERBB3, is a target

of ZNF217, and so these studies extend the scope of the DENND1A regulatory 

network. With Harris, McAllister and Strauss also demonstrated, using RNA 

sequencing of single theca cells, that over a hundred genes involved in androgen 

formation, from cholesterol acquisition to enhancement of CYP17A1 and its 17,20-

lyase activity, were differentially expressed in PCOS, and this appeared to be driven 

by increased levels or activity of the transcription factors SREBF1 (sterol regulatory 

element binding transcription factor) and GATA6 (GATA binding protein 6) (433). 

This conclusively demonstrates that dysregulation of P450c17 is the end-point of a 

generalized dysregulation of theca cell steroidogenesis; notably, the data were 

compatible with heterogeneity in DENND1A-dependence.

  

5.Conclusions and a look forward to research opportunities

It is now possible to place past research on the PCOS clinical phenotypes in 

relationship to recent developments in molecular genetic PCOS research. Our 

studies of ovarian and adrenal androgenic secretory function have shown that two-

thirds of women with PCOS phenotypes A-B have a functionally typical FOH/PCOS 

indexed by 170HP hyper-response to LH that indicates generalized overactivity of 
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theca cell steroidogenesis (Fig. 15,B). The studies of McAllister and colleagues 

indicate that overexpression of the DENND1A.V2 splice variant found in patients 

with phenotype A causes a theca cell steroidogenic phenotype similar to the 

steroidogenic secretory pattern of the FOH found in PCOS phenotypes A and B (392,

395).  The 2020 GWAS database analysis by the Dapas, Dunaif and collaborators 

suggests that two-thirds of PCOS phenotypes A-B constitute a “reproductive” 

subtype that is related to expression of relatively common intronic deleterious 

DENND1A gene variants (428). The discovery of a DENND1A regulatory network in 

which factors as diverse as microRNA-130b-3p and ZNF17 transcription factor were 

differentially expressed in PCOS was just then beginning to emerge (430, 431). 

These latter molecules jointly repress transcription of the DENND1A.V2 isoform, 

Deleterious variants of other genes associated with PCOS have recently been 

identified (434), so the extent to which PCOS phenotypes A-B are due to adverse 

variants within the DENND1A regulatory network or in other adverse variants is 

unexplored.

What, then, is the cause of the one-third of PCOS phenotype A-B cases with 

functionally atypical FOH (261, 275, 276) (Fig. 15,B), which are on average slightly 

milder than those due to the functionally typical type? Recent data sheds light on 

this, too. For one, the functionally atypical PCOS group shares several of the 

characteristics of the Dapas-Dunaif “metabolic” PCOS subtype that has a 

significantly lesser relationship to adverse DENND1A variants (435): functionally 

atypical PCOS are more obese and have lower SHBG and less significant LH 

elevation than functionally typical PCOS. In addition, like the Dapas-Dunaif 

“intermediate” PCOS subtype that has features which overlap both their 
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“reproductive” and “metabolic” subtypes, the atypical FOH group has some 

features of functionally typical PCOS: significantly increased indexes of insulin 

resistance, lower FSH levels, and increased inhibin-B responsiveness to FSH 

compared to controls (although a significantly lesser one than the functionally 

typical group); a few also had the typical PCOS type of FAH. 

Consequently, it is plausible that obesity plays an important causative role in the 

functionally atypical FOH that is responsible for one-third of PCOS phenotypes A-B. 

Obesity can cause ovarian androgen excess via a combination of insulin-resistant 

hyperinsulinism amplifying the effect of normal levels of LH and of proinflammatory 

cytokine excess stimulating generalized theca cell steroidogenesis. Whether obesity

alone is sufficient to explain the degree of hyperandrogenemia manifest in these 

patients remains to be determined.

In view of the fairly common prevalence of adverse DENND1A variamts, a plausible 

hypothesis would be that the severity of PCOS manifestations—along a spectrum 

from isolated PCOM to severe PCOS phenotype A--depends on a combination of the 

“dosage” (a large dose of weakly active variants or a small dose of potent variants) 

of common deleterious DENND1A gene variants or rare other gene variants, e.g., in 

the DENND1A regulatory network or AMH-related, interacting with a spectrum of 

excess adiposity (Fig. 20). A second reasonable hypothesis would be that obesity 

and insulin resistance are common in PCOS because the signaling pathways of 

these PCOS-related gene variants intersect with the genetic determinants of obesity

and insulin action, ie, if it were not for these gene variants, the association of PCOS 

with excess adiposity and insulin resistance would be simply a matter of chance.
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Research will of course be necessary to test the above hypotheses. Many other 

questions about the pathophysiology of PCOS remain to be addressed other than 

these. For example, what is the explanation for elevated AMH levels in 

normoandrogenic women with PCOM? Is this an indicator of ovarian androgen 

excess too small to be reflected in peripheral blood and/or an indicator of 

independent factors determining the inborn size of the oocyte pool? Are there 

specific gene variants that label an individual’s PCOS carrier status? 

Other important overlooked areas of clinical hyperandrogenism research that 

warrant scrutiny have been largely ignored because of endocrinologists’ 

preoccupation with oligo-anovulatory PCOS. We still are faced with the enigma of 

“idiopathic hirsutism”. The murky understanding of this problem is indicated by the 

differences of opinion about its definition. The term has historically been variously 

applied to eumenorrheic hirsute women without a polycystic ovary or those with 

documented normal ovulation (436). For the hirsutism task force of the Endocrine 

Society, idiopathic hirsutism was defined as “hirsutism without hyperandrogenemia 

or other signs or symptoms of an a hyperandrogenic endocrine disorder” (437) , 

which reflects the evidence that it arises either from an alteration in the mechanism

of androgen action or in the post-receptor biological response to androgen within 

the hair follicle (215, 221). The invocation of ovulation and PCOM as criteria for 

diagnosing whether hirsutism is due to androgen excess tells us about the 

limitations of our current diagnostic tools. Similarly, it is archaic that hirsutism is still

used as a surrogate for androgen excess. The application of high-quality, liquid 

chromatography-tandem mass spectrometry assays for testosterone and 11-
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oxytestosterones (438) along with reproducible methods for measuring their binding

to serum SHBG would be expected to discriminate those whose “idiopathic 

hirsutism” is due to elevated levels of historically unmeasured androgens from 

those who are truly normoandrogenemic..

A related clinical problem that has been overlooked is that of determining the 

source of androgen excess in women with eumenorrheic hyperandrogenic hirsutism 

or acne vulgaris.  These clinical problems, like idiopathic hirsutism, have typically 

been the purview of dermatologists. But the endocrinologic basis for these begs to 

be reexamined closely. Most probably have androgen excess of adrenal origin (212)

due to the type of functional adrenal hyperandrogenism that now seems to be 

related to PCOS (237), but the FOH typical of PCOS is probably present in about 

15%  in spite of eumenorrhea (234).

We are also still uncertain about the etiology of premature adrenarche. Knowledge 

about the

factors determining the apparent premature maturation of the adrenal ZR remains 

as meager as

our understanding of the normal development of this adrenal zone (1), and the 

possible relationship to PCOS remains to be elucidated. There are interesting roads 

for exploration ahead.
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Table 1. Major Milestones in Premature Adrenarche Pathogenesis Research through 
2015

Publicatio

n year

Milestone Project 

leader
1888 Description of the adrenocortical zona reticularis Arnold

1942 Pubic hair onset independent of gonadal function termed 

“adrenarche” and ascribed to adrenal androgen-like 

hormone

Albright

1952 Isolated premature pubic hair development attributed to 

increased 17-KS output and termed “premature 

adrenarche” 

Talbot

1955 DHEAS found to be the major plasma 17-ketosteroid Migeon

1960-65 DHEAS discovered to be a secreted adrenal steroid Baulieu

1971 Plasma DHEAS & DHEA found to be disproportionately 

elevated in premature adrenarche, which differs from the 

androstenedione predominance in children post-ACTH

Rosenfield

1973 Development of continuous zona reticularis attributed to 

adrenarche

Dhom

1981 Increasing DHEA response to ACTH found across 

adrenarche

Rosenfield

1981 Increased adrenal microsomal 17-hydroxylase and 17,20-

lyase activity found across adrenarche

Loriaux

1985 Decreasing adrenal 3ß-hydroxysteroid dehydrogenase 

activity described from adrenarche into adulthood

Winter

2000 Discovery of the zona reticularis-specific enzyme 

expression pattern that underlies adrenarchal steroid 

secretion

Suzuki,

Rainey

2013
Discovery of adrenal 11ß-hydroxyandrogen secretion

Rainey

2013 Discovery of high bioactivity of 11ß-hydroxy- and 11-keto-

testosterone and dihydrotestosterone Rainey,

Storbeck
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Table 2. Major Milestones in PCOS Pathogenesis Research through 2015

Publicatio

n year

Milestone Project

leader

1935
Stein and Leventhal describe 7 patients with amenorrhea 

and polycystic ovaries ± hirsutism or acne ± obesity

Stein & 

Leventhal

1958 Elevated urinary LH by bioassay in Stein-Leventhal syndrome McArthur

1966 Testosterone secretion reported by normal human ovaries Horton
1970 Elevated serum LH and LH/FSH ratio by radioimmunoassay 

in PCOS

Yen

1971
Free testosterone index elevated in most hirsute women

Rosenfield

1976 Association of acanthosis nigricans with extreme insulin 

resistance; two of six cases had hirsutism and polycystic 

ovaries

Kahn

1980 Blood insulin and androgen levels correlate across obese 

control and PCOS women

 

Givens & 

Kitabshi

1983 Insulin resistance in nonobese PCOS Chang
1983 Acanthosis nigricans, insulin, hyperandrogenism association 

reported to be common in PCOS

Barbieri & 

Ryan

1985 Polycystic ovary morphology (PCOM) is defined by 

ultrasonography and reported in both anovulatory and 

ovulatory women

Adams &

Franks

1986 Insulin stimulates androgen secretion by PCOS stroma Barbieri

1986 Polycystic ovaries found in testosterone-treated transsexuals Futterweit
1989 Dysregulation of ovarian P450c17 described in classic PCOS Barnes & 

Rosenfield
1992 PCOS-like functional ovarian hyperandrogenism ± functional Ehrmann & 1992 First expert conference-generated PCOS diagnostic criteria 

for research ("NIH criteria")

Dunaif

1994 Congenital virilization reported to cause LH excess and 

PCOS-like ovarian dysfunction 

Rosenfield

1995 Type 2 diabetic secretory defects reported in PCOS who 

have diabetic primary relatives

Ehrmann

1997 PCOS women found to have neuroendocrine resistance to 

negative feedback by estrogen-progestin

Berga

1998 Androgens stimulate growth of preantral and small follicles Bondy

86



1998 Granulosa cells prematurely luteinize in anovulatory PCOS

Willis, 

Mason, 

& Franks
1999,

2001

PCOS theca cells constitutively over-express most 

steroidogenic enzymes, especially P450scc and P450c17

McAllister

2000 17ß-hydroxysteroid dehydrogenase type 5 (HSD17B5, 

AKR1C3) found to be the ovarian testosterone-forming 

enzyme

Qin & 

Rosenfield

2000 Anti-androgen reported to reverse neuroendocrine 

resistance to negative feedback by estrogen-progestin 

Marshall

2003 AMH elevation in PCOS linked to excess small follicle number Dewailly
2004 17ß-HSD5 expression found to be increased in subcutaneous

adipocytes in obesity 

Stewart

2004 Rotterdam diagnostic criteria for PCOS by international 

reproductive endocrinology workshop expanded the 

phenotype to include PCOM as evidence of the disorder

 

Fauser

2009
Delineation of a functionally atypical biochemical PCOS 

phenotype

in one-third of hyperandrogenic oligo-anovulatory PCOS

Rosenfield

2011,

2012

Genome-wide association screening identified DENND1A and

other unsuspected PCOS susceptibility loci in Han Chinese

Chen & Shi

2014 DENND1A splice variant (V2) discovered to account for theca

cell phenotype in hyperandrogenic oligo-anovulatory PCOS 

with PCOM

McAllister

2015 International pediatric endocrinology consensus criteria 

developed for diagnosis of adolescent PCOS

Witchel

Table 3. PCOS Diagnostic Criteria (see text).

Diagnostic

Parameter

(Otherwise

Unexplained):

Adult

Rotterdam

Phenotype

A (Classic)

Adult

Rotterdam

Phenotype

B (NIH

criteria)

    Adult
Rotterdam 

Phenotype C 

(Ovulatory) 

    Adult 

Rotterdam 

Phenotype D

(Non-hyper-

androgenic)

Adolescent

Hyperandrogenism †           X           X           X           X
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Oligo-amenorrhea           X           X           X           X*

Polycystic ovary            X            X            X

† Clinical or biochemical evidence

* Age- and stage-adjusted; persistent
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Legends

Figure 1. The reticulum of the adrenocortical zones. ZG: zona glomerulosa, 

merging into zona fasciculata. ZF: zona fasciculata. ZR: zona reticularis. Figure 

lettering: S is large septum running from the capsule to the ZR, other lettering 

delineates space occupied by zona glomeruosa column and cells. Submitted at 

original size.

Reproduced from: Flint JM. The blood vessels, angiogenesis, organogenesis, 

reticulum, and histology of the adrenal. The John’s Hopkins Hospital Reports 

1900;9:153-230

Figure 2. The anatomy of the female reproductive system drawn by Andreas 

Vesalius, 1553. Reproduced from Andreas Vasalius, De Humani Corporis 

Fabrica,Sextus.

Figure 3. Major steroid hormones produced by the adult adrenal cortices and the 

ovaries. Layout is according to the general biosynthetic pathway from cholesterol. 

Enzyme expression patterns are specific to each adrenocortical zone and to the 

ovarian theca and granulosa cells, as discussed in text. Conventional numbering of 

carbon atoms and lettering of steroid rings illustrated for cholesterol. The top row is 

the pathway to progesterone and mineralocorticoids, the second row to 

glucocorticoids, the third row to 17-ketosteroids, the fourth row to 17ß-

hydroxysteroids. The dotted 17,20-lyase pathways are probably minor. The 
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steroidogenic enzymes are italicized. Designations and abbreviations for enzymes 

according to Miller and Auchus are indicated in the side panel in approximate order 

of appearance. Modified from Rosenfield RL, Lucky AW, Allen TD (1980). The 

diagnosis and management of intersex. Curr Prob in Pediatr 10:1-66 according to 

Rosenfield RL and Ehrmann DA (2016). The pathogenesis of polycystic ovary 

syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism 

revisited. Endocrine Reviews 2016;37:467-520

Figure 4. A wedge section of a polycystic ovary “almost as large as fundus”, as 

published in 1935 by Stein and Leventhal. Bar added to indicate 5mm.

Reproduced and modified with permission from: Stein IF, Leventhal ML. Amenorrhea

associated with bilateral polycystic ovaries. American journal of obstetrics and 

gynecology 1935;29:181-9.

Figure 5. The structure of Searle’s and Syntex’s first generation of synthetic 

progestins and estrogens compared to the natural hormones progesterone and 

estradiol. The progestin norethynodrel and estrogen mestranol were the 

components of the first combined oral contraceptive, Enovid.

Figure 6. Annual PubMed citations of “polycystic ovary syndrome”, 1965-2022.
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Figure 7. Changes in adrenocortical steroidogenic gene expression during 

adrenarchal growth and development of the zona reticularis. The zona reticularis of 

the adrenal cortex is normally established as a distinct, continuous zone after 3 

years of age, is well established by 8 to 9 years of age, and continues to grow and 

develop until early adulthood. The characteristic changes in the level of expression 

of differentially expressed key genes in each of the adrenocortical zones is depicted

schematically, along with the major secretory product(s) of each zone. Larger and 

bold fonts indicate that relatively large quantities of the hormone are produced.

* Peripheral tissue 11β-HSD type 2 converts secreted 11β-hydroxyandrostenedione 

to 11-ketoandrostenedione, which is the precursor of most 11-ketotestosterone and,

via peripheral tissue 11β-HSD type 1 activity, 11β-hydroxytestosterone.

Reproduced and modified by permission from: Rosenfield RL. Normal and Premature

Adrenarche. Endocrine Rev. 2021; 42:783 and Auchus RJ, Rosenfield RL. In: Post TW,

ed. UpToDate. Waltham, MA: UpToDate, Inc.; 2022:http://www.uptodate.com

Figure 8. Estrone hypothesis. This hypothesis proposed that increased LH and 

LH/FSH ratio resulted from positive feedback on the neuroendocrine system by the 

excessive acyclic estrone production that arose in part from peripheral conversion 

of androstenedione in adipose tissue and in part from adrenal secretion due to 

“exaggerated adrenarche”. Based on concepts proposed by Sam Yen (143).

Figure 9. Two-cell, two-gonadotropin model of human ovarian sex steroid secretion

by the small antral follicle, as currently conceived. LH stimulates androgen 
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formation within theca cells via the steroidogenic pathway common to the gonads 

and adrenal glands. FSH regulates estradiol biosynthesis from androgen by 

granulosa cells. DENNDA1 is a regulatory protein, the V2 isoform of which was 

discovered in 2014 to amplify theca cell steroidogenesis. Androgen formation in 

response to LH appears to be modulated primarily by intraovarian feedback at the 

levels of 17-hydroxylase and 17, 20-lyase, both of which are successive P450c17 

activities. Serum androgen levels do not appear to be tightly regulated: long-loop 

negative feedback of estradiol on gonadotropin secretion does not readily suppress 

LH at physiologic levels of estradiol and stimulates LH under certain circumstances. 

Although androstenedione formation from 17OHP has been demonstrated in ovarian

tissue, human P450c17 activity is very low for this pathway. IL-6 is but one of many 

cytokines stimulatory to P450c17 activity. The granulosa cell expression of P450acc 

and 3ßHSD2 that underlies progesterone secretion by the luteinized follicle is 

negligible at this small follicle stage of development. Androgens and estradiol inhibit

(minus signs) and inhibin, insulin, and insulin-like growth factor-I (IGF) stimulate 

(plus signs) P450c17activities. Enzyme activities are italicized.

Reproduced and modifed from: Ehrmann DA, Barnes RB, Rosenfield RL. Polycystic 

ovary syndrome as a form of functional ovarian hyperandrogenism due to 

dysregulation of androgen secretion. Endocrine Rev 1995;16:322-353 and 

Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS):

the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. 

Endocrine reviews 2016;37:467-520. Copyright ©2007 and 2016 The Endocrine 

Society.
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Figure 10. Blood glucose and serum insulin in response to a standard glucose 

tolerance test in nonobese PCOS (PCO) and control women. Insulin was elevated 

before and in response to glucose (p<0.02), while blood glucose was at similar, 

indicating insulin resistance. Reproduced from Chang RJ, Nakamura RM, Judd HL, 

Kaplan SA. Insulin resistance in nonobese patients with polycystic ovary syndrome. J

Clin Endocrinol Metab 1983;57:356-9. Copyright 1983 The Endocrine Society.

Figure 11. GnRH agonist test results in women with classic PCOS (n=5) vs controls 

(n=9) during concomitant suppression of adrenal function with dexamethasone. In 

response to GnRH agonist at 0 hre, PCOS patients had significantly increased early 

LH responses, followed by a prolonged surge of both gonadotropins peaking at 3-8 

hr with FSH baseline and 24-hr area under the curve (AUC) significantly decreased. 

Ovarian steroid secretion followed with peak responses at 16-24 hr. 17-

Hydroxypregnenolone, 17-hydroxyprogesterone (17OHP), androstenedione, estrone,

and testosterone (not shown) baseline and maximal responses were significantly 

greater than those of controls, 17OHP peak responses in PCOS were consistely 

above those of controls. Thus, there was no evidence of a steroidogenic block, and 

the results were interpreted as indicating overactive dysregulation of P450c17 

activities. * indicates significant difference at time-point, † indicates significant 

difference in AUC.  Redrawn from data of Barnes RB, Rosenfield RL, Burstein S, 

Ehrmann DA. Pituitary-ovarian responses to nafarelin testing in the polycystic ovary 

syndrome. N Engl J Med 1989;320:559-65 and Ehrmann DA, Barnes RB, Rosenfield 

RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism 

due to dysregulation of androgen secretion. Endocrine reviews 1995;16:322-53.
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Figure 12. Model of mechanisms of functional ovarian hyperandrogenism (FOH) 

and PCOS, as currently conceived. Increased intraovarian androgen is responsible 

for hyperandrogenemia and follicular maturation arrest, which in turn cause the 

cardinal features of PCOS, hirsutism, oligo-anovulation, and polycystic ovaries. 

Follicular maturation arrest eventuates in follicular atresia, adding to the androgenic

environment of the ovaries. The cause of the vast majority is dysregulation of 

androgen secretion. Since 2014 it is known that abnormal regulation of DENND1A 

splicing to yield excess of the more active variant DENND1A.V2 causes the typical 

type of dysregulated ovarian androgen synthesis in the most severe PCOS 

phenotype (phenotype A) and probably accounts for most typical FOH. Obesity-

related elevation of serum insulin and more recently discovered proinflammatory 

cytokines also stimulate P450c17 activities seem to account for the FOH of most 

obesity. Rare cases of PCOS are secondary to primary virilizing adrenal or ovarian 

disorders, severe insulin resistance syndromes, and acromegaly, Primary LH excess 

seems to mediate the prenatal androgen programming of FOH.

Reproduced and modified with permission from Ehrmann DA, Barnes RB, Rosenfield 

RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism 

due to dysregulation of androgen secretion. Endocrine reviews 1995;16:322-53.

  

Figure 13. Transvaginal ultrasounds of an adult polycystic ovary and a normal 

ovary. A. PCOM in an adult with PCOS. B. Normal ovarian morphology in an adult. 

OV=ovary volume. FNPS=follicle number per section. Ultrasound images courtesy of

Dr. Maria Lujan. 
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Figure 14. Baseline serum free testosterone levels and ovarian androgenic function

test results in clinically normal, eumenorrheic post-monarchal adolescent (Adol) and

adult female volunteers with normal ovarian morphology in comparison to those 

with PCOM and PCOS. Adolescents, 1 yr post-menarcheal to 17.9 yr of age, were 

similar to 18-39 yr old adults in each group. Horizontal dotted lines show upper 

limits of norma for each test (95th percentiles). A. Baseline free testosterone plasma

levels in normal volunteers with normal ovarian morphology (V-NOM) in comparison 

to those with PCOM (V-PCOM) and PCOS. PCOM in adolescents has here been 

defined as mean ovarian volume >12.0 cc, consistent with 2015 data. V-PCOM had 

significantly higher free testosterone than pooled V-NOM (P=0.03). Elevated levels 

were found in 2/6 adolescent and 4/30 adult volunteers with PCOM. B. SDAST (short

dexamethasone androgen-suppression test) Dexamethasone 0.25 mg/m2 orally was 

administered at 1200 h, and testosterone was measured 4-hr later. C. GnRH agonist

test. Dexamethasone was followed by administration of leuprolide acetate 10 µg/kg 

subcutaneously; 17OHP was sampled 20-24-hr later, 4-hr after a repeat 1200-hr 

dexamethasone dose. Among the PCOS patients, SDAST was abnormal in 85% (73%

with abnormal GnRHag test), GnRHag test in 66% (92.5% with abnormal SDAST), 

Among volunteers with PCOM, 4/6 adolescents and 8/30 adults, including all with 

baseline elevation of free testosterone, had either an abnormal SDAST or GnRHag 

test result that is in the lower PCOS range.

Source: Modified with permission from: Rosenfield RL. The diagnosis of polycystic 

ovary syndrome in adolescents. Pediatrics 2015;136:1154-65.
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Figure 15. Pie charts showing the spectrum of ovarian functional abnormalities in 

age-matched adolescent and adult volunteer women with PCOM (A) and the 

spectrum of ovarian function in women with PCOS (B). A. Percent of eumenorrheic, 

clinically normal volunteers with PCOM (n=28 with full test panel) who had PCOS-

related elevated ovarian hormones. “17OHP” designates elevated 17OHP response 

to GnRH agonist test without associated hyperandrogenemia; 38% of this group had

AMH elevation. “Free testost” designates elevated baseline free testosterone 

(asymptomatic PCOS phenotype C); half of these women had AMH elevation, and all

had FOH by either GnRH agonist or dexamethasone suppression test criteria. Data 

from (269) (271) (275). B. The sources of androgen excess in PCOS (n=60), by 

percent arising from each, alone or in combination. Two-thirds of PCOS have typical 

functional ovarian hyperandrogenism (T-FOH), characterized by 17OHP hyper-

responsiveness to LH. The remainder have functionally atypical PCOS, characterized

by heterogeneous sources of androgen production: atypical functional ovarian 

hyperandrogenism evidence by elevated serum testosterone after adrenal 

suppression by dexamethasone (A-FOH), functional adrenal hyperandrogenism 

(FAH), and/or unexplained, in which group excessive adiposity was the only 

apparent source. Data from (261, 269, 276).  

Figure 16. Schematic depiction of AMH function. The transition from the resting 

primordial to the growing primary follicle stage (“recruitment”) is independent of 

serum gonadotropins and is stimulated by androgen. AMH secreted by the 

granulosa cells of small growing follicles inhibits recruitment. AMH secretion wanes 

as gonadotropin-dependence of follicles increases. AMH also inhibits P450c17 and 
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aromatase activities, which restrains both androgen and estrogen biosynthesis by 

larger antral follicles. As granulosa cells multiply in an increasingly gonadotropin-

dependent manner and follicles grow, estradiol inhibits AMH secretion, confining it 

to follicles under 9 mm. Increasing gonadotropin-dependence and waning AMH 

production by growing follicles permit emergence of the estrogen-predominant 

preovulatory follicle. Dashed arrows indicate key stages in follicular growth and 

development. Solid arrows with minus sign indicate inhibition by AMH and estradiol. 

Revised from Rosenfield RL. Current concepts of polycystic ovary syndrome 

pathogenesis. Curr Opin Pediatr 2020;32:698-706.

Figure 17. Photomicrographs of subcutaneous adipose tissue stained for the 

monocyte lineage marker CD68 showing a “crown-like structure” (CLS), 

macrophages surrounding a dying PCOS adipocyte. CLSs also stain for the specific 

anti-inflammatory marker CD11c. Women with PCOS had significantly higher density

of CLSs than control women. Reproduced from Huang ZH, Manickam B, Ryvkin V, et 

al. PCOS is associated with increased CD11c expression and crown-like structures in

adipose tissue and increased central abdominal fat depots independent of obesity. J 

Clin Endocrinol Metab 2013;98:E17-24. Copyright The Endocrine Society.

Figure 18. Model of the pathophysiology of hyperandrogenic anovulation in PCOS. 

Panel A. 1) FOH can account for all the cardinal clinical features of the syndrome: 

hyperandrogenemism, oligo-anovulation, and polycystic ovaries. Mature pituitary LH

secretion is necessary to sustain the ovarian androgen excess, but LH excess is not 

necessarily present or sufficient to cause it. Panel B. Insulin-resistant 
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hyperinsulinism and obesity are present in about half of PCOS and aggravate its 

manifestations. 2) Hyperinsulinism stimulates adipogenesis, exacerbate theca cell 

FOH, and prematurely luteinizes granulosa cells. 3) Increasing obesity, attributable 

in part to caloric excess, is associated with increased pro-inflammatory cytokines, 

many of which aggravate FOH, and also exacerbate insulin resistance. 4) Elevated 

androgen levels stimulate LH excess by interfering with estrogen-progestin negative

feedback. 5) The increased LH further aggravates theca cell androgen production, 

particularly in the presence of hyperinsulinism, which up-regulates theca cell LH 

receptors; LH becomes additive to FSH in stimulating estrogen-progesterone 

production by the luteinized granulosa cells. 6) The increased estrogen-

progesterone levels act together with androgen-stimulated inhibin production (not 

shown) to lower FSH levels. 

Source: Modified with permission from: Rosenfield RL and Ehrmann DA. The 

Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as 

Functional Ovarian Hyperandrogenism Revisited. Endocrinol Rev 2016; 37: 467–520.

Copyright ©2016 The Endocrine Society

Figure 19. Comparison of enzyme activities in PCOS and control theca cells 

passaged in long-term culture before and after forskolin stimulation. The two 

activities of P450c17 (17alpha-hydroxylase, A, and 17-20-lyase, B) and 3ß-HSD 

activity were significantly increased before (control) and after forskolin stimulation, 

whereas 17ß-HSD activity was not. Reproduced from Nelson, et al. The biochemical 

basis for increased testosterone production in theca cells propagated from patients 
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with polycystic ovary syndrome. J Clin Endocrinol Metab 2001;86:5925-33. 

Copyright: The Endocrine Society.

Figure 20. Hypothetical relationship of the polycystic morphology-PCOS spectrum 

to dosage of DENNDA1 or rare deleterious gene variants and to obesity. About one-

quarter of clinically normal women have PCOM, and about half of these have various

subclinical features of PCOS, including about 5% with subclinical evidence of FOH. 

Subtypes have been identified within the PCOS A and B phenotypes that have been 

related to the prevalence of apparently deleterious intronic DENND1A variants by 

Dapas, et al (2020). These subtypes correspond closely to the clinically defined 

functionally typical and atypical types of FOH (T-FOH and A-FOH) that we have 

identified as underlying PCOS phenotypes A-B. Other than DENND1A, gene variants 

associated with PCOS have more rarely been linked to the DENNDA1 regulatory 

network or AMH/AMH receptor. This figure incorporates the hypothesis that the 

same adverse gene variants that underlie PCOS also underlie much of PCOM when 

present in small number or potency. The manifestations of gene effects on PCOS 

phenotype are magnified by obesity on a spectrum of increasing adiposity. Obesity 

effects appear to be mediated by insulin and proinflammatory cytokine excess. 
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