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Abstract
Humans learn that temporarily occluded objects continue to
exist within the first months of their lives. Deep learning mod-
els, on the other hand, struggle to generalize such concepts
from observations, due to missing proper inductive biases.
Here, we introduce the first self-supervised interpretable ma-
chine learning model that learns about object permanence di-
rectly from video data without supervision. We augment a slot-
based autoregressive deep learning system with the ability to
adaptively and selectively fuse latent imaginations with pixel-
based observations into consistent object-specific ‘what’ and
‘where’ encodings over time. We show that (i) Loci-Looped
tracks objects through occlusions and anticipates their reap-
pearance while outperforming state-of-the-art baseline models,
(ii) Loci-Looped shows signs of surprise when the principle of
object permanence is violated, and (iii) Loci-Looped’s internal
latent loop is key for learning object permanence.
Keywords: intuitive physics learning; machine learning;
object-centric cognition; compositional scene representation;
information fusion

Introduction
In infancy, humans develop an impressive intuitive under-
standing of the fundamental principles governing our phys-
ical world, manifested through expectations of how ob-
jects behave and interact (Aguiar & Baillargeon, 1996;
Y. Lin, Stavans, & Baillargeon, 2022; Summerfield & Egner,
2009). These expectations have been explicitly probed with
the Violation-of-Expectation (VoE) paradigm (Baillargeon,
Spelke, & Wasserman, 1985). In VoE experiments, infants
are presented with videos that either adhere to (e.g., an oc-
cluded object reappears) or violate (e.g., an occluded object
vanishes) a physical concept, while their gaze behavior is
monitored. If they look longer at physical violations com-
pared to similar plausibly unfolding scenes, we conclude that
they have developed an understanding of the physical con-
cept that was violated. By means of the VoE paradigm it
was demonstrated that infants as young as 2.5 months be-
come able to reason about hidden objects and their behavior
(Baillargeon & DeVos, 1991). The understanding of object
persistence, object inertia, and object solidity, is indeed be-
lieved to be part of a core knowledge system that is building
the foundations for more complex cognitive processes (Butz,
2021; Lake, Ullman, Tenenbaum, & Gershman, 2016; Spelke
& Kinzler, 2007; Spelke, Breinlinger, Macomber, & Jacob-
son, 1992; Y. Lin et al., 2022).

In comparison to human cognition, state-of-the-art ma-
chine learning (ML) models lack this understanding (Weihs

et al., 2022). Building on a long tradition (Munakata, Mc-
clelland, Johnson, & Siegler, 1997), there has been a recent
surge of interest in both benchmarking and constructing ML
systems that learn to develop intuitive physics (Weihs et al.,
2022; Piloto, Weinstein, Battaglia, & Botvinick, 2022; Smith
et al., 2019; Riochet et al., 2022). For example, Piloto et al.
(2022) recently trained a deep learning model on next-frame
prediction tasks using videos, and subsequently evaluated its
physical knowledge through the VoE paradigm. However, ap-
proaches like theirs, as well as those by Smith et al. (2019)
and Riochet et al. (2022), rely on supervised information that
includes object-respective ground truth masks, offering spe-
cific details about the location and identity of each object in
the scene. The challenge of learning object permanence was
thus partially side-stepped. Addressing the segregation prob-
lem (Greff et al., 2020), i.e., segmentation and tracking, while
simultaneously developing object permanence in one model
remains an open challenge.

In this work, we learn the concept of object permanence
with a recently introduced self-supervised segmentation and
tracking model named Loci-v1 (Traub, Otte, et al., 2023),
which incorporates cognitively inspired inductive biases. The
model design is motivated by the interplay of two cogni-
tive systems, which together enable the development of in-
tuitive physics in infants (Y. Lin et al., 2021). The Object
File System (OFS) constructs temporary representations of
the ‘where’ and ‘what’ of objects. The Physical Reasoning
System accesses the OFS to predict how object interactions
will unfold based on acquired physical knowledge. Simi-
larly, Loci-v1 represents a scene as a composition of objects
while disentangling the position and the appearance of each
object into expressive latent codes. The model then produces
next time step predictions by explicitly modeling per-object
dynamics using recurrent units, as well as inter-object inter-
actions using attention mechanisms. Learning signals are
computed from the next-frame prediction error resembling
the idea of predictive coding (Clark, 2013; Butz, Achimova,
Bilkey, & Knott, 2021; Butz, 2008; Den Ouden, Kok, &
De Lange, 2012; Lotter, Kreiman, & Cox, 2017).

Concretely, we hypothesize that object permanence may
emerge from building a strong latent world model that con-
tinually generates predictions about next world states, while
only making sparse use of sensory observations. Key to this is
an efficient and adaptive information fusion process of obser-

3287
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



vations and predictions. We test our hypothesis by augment-
ing Loci-v1 with the ability to fuse latent temporal imagina-
tions with pixel-space observations into consistent composi-
tional scene percepts. While an outer sensory loop allows our
augmented model, named Loci-Looped, to build and update
representations of visible objects, the novel inner-loop allows
to imagine object-centric latent state dynamics—much like
the dreamer architecture (Hafner, Lillicrap, Ba, & Norouzi,
2020; P. Wu, Escontrela, Hafner, Abbeel, & Goldberg, 2023),
but on an explicit object-oriented level. We show that the
inner-loop enables Loci-Looped to simulate the state of tem-
porarily hidden objects over time. Importantly, Loci-Looped
learns without supervision to adaptively fuse external, sen-
sory information with internal, anticipated information for
each object individually via a parameterized percept gate.
As a result, we show in our experiments that Loci-Looped
learns to imagine the trajectory of temporarily hidden ob-
jects, thereby developing the principles of object permanence
and directional inertia. Our ablation studies confirm that the
inner-loop and the flexible control of it are key for learning
this behavior.

Method
We give a brief introduction to Loci-v1 (Traub, Otte, et al.,
2023) including its formalization. We then introduce our
novel developments defining Loci-Looped.

Loci-v1
Loci-v1 consists of three main components: an encoder mod-
ule that parses visual information into object representations,
a transition module that projects these representations into the
future, and a decoder module that reconstructs a visual scene
from this prediction. Each of the three components comprises
k slots that share their weights. Each slot is dedicated to pro-
cess one object. It may stay empty when more slots than ob-
jects are available.

The ResNet-based, slotted encoder module receives the
current frame It , the previous prediction error Et , a back-
ground mask M̂t

bg as well as slot-specific predictions of posi-
tion Q̂t

k, visibility mask M̂t,v
k , RGB object reconstruction R̂t

k,
and the summed visibility mask of the remaining slots M̂t,s

k .
Positions are encoded as isotropic Gaussians in pixel space,
masks as grayscale images. The encoder produces gestalt
codes G̃t

k and positional codes P̃t
k as output. Gestalt codes

encode shape and surface patterns, while positional codes in-
clude object location (xk,yk), size (σk), and priority (ρk).

The transition module predicts the encodings at the next
timestep, namely Ĝt+1

k and P̂t+1
k . It implements a combina-

tion of slot-wise recurrent layers to model object dynamics
and across-slot attention layers to model object interactions.
In contrast to the PLATO model (Piloto et al., 2022), the re-
current layers do not receive a history of object states depict-
ing previous object dynamics. Following the transition mod-
ule, the gestalt codes are binarized, creating an information
bottleneck that biases the slots to develop factorized compo-

sitional encodings of entities.
The decoder module then reconstructs the predicted scene

from Ĝt+1
k and P̂t+1

k and a provided image of the scene back-
ground, which marks the only supervised model input. For
each slot, a ResNet architecture produces the predicted RGB
object reconstruction R̂t+1

k , visibility mask M̂t+1,v
k , and posi-

tion Q̂t
k. All slot outputs are unified in the prediction R̂t+1 by

taking the sum over the RGB object reconstructions weighted
by the visibility masks and the background mask. Along with
the next input frame It+1 the prediction serves to generate
prediction error Et+1. This process repeats in each timestep.

Loci-Looped
Object mask Visibility masks outputted by most composi-
tional scene representation models exclusively depict visible
components of objects. To enable a holistic scene understand-
ing, we introduce an extra mask that is designed to encode en-
tire object shapes, which serves as an additional input to the
encoder of Loci-Looped. To compute this mask, we assume
that only slot-object k is in the scene, ignoring the remain-
ing slots. Consequently, in the decoding process slot k only
competes with the background for visibility yielding object
mask

Mt,o
k =

exp(Mt
k)

exp(Mt
k)+ exp(Mt

bg)
, (1)

where M is generated by the decoder. Figure 1 illustrates the
difference between the visibility mask and the object mask.
The latter encodes the complete 2D object shape, while the
former only depicts those parts that are currently visible.

Figure 1: The object and visibility mask enable an inter-
pretable holistic scene understanding in Loci-Looped. From
left to right: Current video frame, reconstructed RGB object,
object mask and visibility mask of slot k depicting the blue
object.

Occlusion state The introduction of the object mask en-
ables Loci-Looped to determine the degree of occlusion for
each object. We calculate the occlusion state Ot

k as follows:

Ot
k = 1−

∑i, j[M
t,v
k (i, j)> θ]

∑i, j[M
t,o
k (i, j)> θ]+ c

, (2)

where θ is a threshold value, which we set to 0.8, and c is a
small constant. By counting the number of pixels larger than
threshold θ, the denominator determines the total area of the
object, while the numerator determines the visible area of the
object. The occlusion state ranges from 0 (fully visible) to
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Figure 2: The slot-wise processing architecture of Loci-Looped. Predictions are made available on two routes. First, through
an outer-loop in pixel-space enabling consistent object tracking over time. Second, through an inner-loop allowing for latent
imaginations.

1 (fully occluded), allowing Loci-Looped to explicitly rep-
resent the state of occlusion, increasing interpretability and
serving as input to the percept gate controller.

Percept gate Loci-v1’s object tracking approach draws in-
spiration from Kalman filtering, which iteratively predicts
object state changes and then adaptively fuses these predic-
tions with current observations (Kalman, 1960). Accord-
ingly, Loci-v1 predicts the next object states, decodes them
into pixel space and then uses these predictions along with
the current frame to produce new object states (see Figure 2;
outer-loop). While the Kalman filter separates the steps of ob-
servation and information fusion, Loci-v1 observes and fuses
jointly and implicitly during the encoding process. This is ad-
vantageous when fusing pixel-based information (e.g., com-
bining hidden and visible object parts). However, when the
model needs to fully maintain its own predictions because
the current frame does not provide new information (e.g.,
during full occlusion), the encoding process via the outer-
loop becomes disruptive. As an alternative, recent work from
model-based reinforcement learning advocates the efficiency
and precision of predicting directly in latent space (Hafner
et al., 2019, 2020; Ha & Schmidhuber, 2018). Latent world
models can be used to imagine how a scene will unfold while
not being provided with new observations, which is the case
during temporary occlusions or blackouts. Therefore, we in-
troduce an inner processing loop in Loci-Looped, which en-
ables the model to propagate internal imaginations over time
in latent space (see Figure 2; inner-loop).

Similar to the Kalman filter, we equip the model with the
ability to linearly interpolate between the current observa-
tions and the last predictions. Formally, the current object
states Gt

k, Pt
k become a linear blend of the observed object

states G̃t
k, P̃t

k and the predicted object states Ĝt
k, P̂t

k:

Gt
k = α

t,G
k G̃t

k +(1−α
t,G
k )Ĝt

k (3)

Pt
k = α

t,P
k P̃t

k +(1−α
t,P
k )P̂t

k (4)

The weighting α is specific for each gestalt and position code

in each slot k. Importantly, Loci-Looped learns to regulate
the two percept gates on its own in a fully self-supervised
manner. It learns an update function gθ, which takes as in-
put the observed state S̃t

k, the predicted state Ŝt
k, and the last

positional encoding Pt−1
k :

(zt,G
k ,zt,P

k ) = gθ(S̃t
k, Ŝ

t
k,P

t−1
k )+ ε, (5)

where a state comprises the gestalt encoding, the positional
encoding, and the occlusion state. By adding noise ε sampled
from a Gaussian with a fixed standard deviation to the func-
tion gθ, the gates tend to be either close or open, rather than
remaining partially open (Gumbsch, Butz, & Martius, 2022).
We model gθ with a feed-forward neural network. To be able
to fully rely on its own predictions, Loci-Looped needs to be
able to fully close the gate by setting α exactly to zero. We
therefore use a rectified hyperbolic tangent to compute α:

(αt,G
k ,αt,P

k ) = max(0, tanh((zt,G
k ,zt,P

k ))). (6)

To encourage robust world models without the reliance on
continuous external updates, we impose an L0 loss on gate
openings encouraging the sparse use of observations. The in-
troduction of the percept gate enables Loci-Looped to control
its perception flexibly fusing predictions with observations,
essentially estimating their relative information values.

Table 1: Training objectives used by Loci-v1 and Loci-
Looped.

Name Type Loci-v1 Loci-Looped

Next-Frame Prediction Loss ✓ ✓
Input-Frame Reconstruction Loss - ✓
Gestalt Change Reg ✓ ✓
Position Change Reg ✓ ✓
Perceptgate Openings Reg - ✓
Object Permanence Reg ✓ -
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Loss functions

A complete list of the training losses used is presented in Ta-
ble 1. Compared to Loci-v1, we dispense the use of an ob-
ject permanence loss, which explicitly facilitated the main-
tenance of object representations in case of occlusions. In-
stead, Loci-Looped learns the concept of object permanence
autonomously. Furthermore, it is worth noting that the per-
cept gates do not only control the forward information flow,
but also the backward flow of gradients. When the percept
gates are closed, the error signal is only backpropagated to
the transition module but not to the encoder module, which
could lead to its degeneration. To avoid this, we addition-
ally compute a reconstruction loss in Loci-Looped, which is
directly derived from the current observations.

Training

We adopt the training procedure of Loci-v1. Loci-Looped
is trained in a fully unsupervised manner, except that the
background of each scene is provided. The model is trained
end-to-end, utilizing the rectified Adam optimizer (Liu et al.,
2021) with a learning rate of 0.0001 in conjunction with trun-
cated backpropagation through time. The model was trained
for 1150k updates at a resolution of 480×320.

Experiments and results
In this section, we evaluate Loci-Looped in a VoE experi-
ment, demonstrating that it learns (i) to reliably track objects
through occlusion and (ii) the concept of object permanence
by anticipating the reappearance of occluded objects. In ad-
dition, (iii) we provide ablation studies examining the role of
the percept gate for learning object permanence.

Baselines We compare Loci-Looped against three compo-
sitional scene representation models. SAVi (Kipf et al., 2022)
is state-of-the-art in self-supervised scene segmentation and
also makes use of a slot-wise encoder-transition-decoder ar-
chitecture. The base model Loci-v1 is state-of-the-art in the
CATER benchmark (Girdhar & Ramanan, 2019). G-SWM
(Z. Lin et al., 2020) learns an object-centric world model and
is state-of-the-art in the task of video prediction.

Tracking objects through occlusions
Trainingset We train on the ADEPT (Smith et al., 2019)
dataset. The training set contains 1000 synthetic videos dis-
playing up to 7 solid objects traversing the scene with con-
stant speed and direction. It shows physically plausible dy-
namics including partial and full object occlusions, while ex-
cluding any other object interactions (e.g., collisions).

Figure 3: Loci-Looped maintains stable object percepts of the occluded objects. Control Condition: Two objects traverse the
scene and both objects reappear. Surprise Condition: Two objects traverse the scene, the blue object reappears while the green
object vanishes. Next-frame Imagination: The model’s perception on how the scene unfolds behind the occluder, generated by
applying layer summation without the occluder slot. The colored dots show the GT positions of the objects.
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Table 2: Tracking results.
Mean Successful MOTA

Model Tracking Error Trackings (%)

Loci-Looped 2.6 ± 2.7 96.6 0.84
Loci-Visibility 7.7 ± 10.6 43.6 0.64
Loci-Unlooped 12.4 ± 14.8 7.4 0.76
Loci-v1 12.5 ± 10.3 38.4 -1.34
G-SWM 26.8 ± 14.5 7.1 0.23
SAVi 26.7 ± 12.6 3.2 -0.67

Testset We use 35 videos of the ADEPT vanish scenario
as test set. This scenario starts with a large screen placed in
the center of the scene. Then one or two objects enter the
scene from opposite directions, disappear behind the screen,
traverse the area behind the screen while hidden, reappear on
the other side of the screen, and finally exit the scene. The
traversing objects are not visible for 10.3 frames on average
which equals 25.0% of their total time being present.

Metric We evaluate the performance of the models with re-
spect to two key capabilities. First, we quantify how well
the models detect objects and identify them temporally con-
sistently using Multiple Object Tracking Accuracy (MOTA)
(Bernardin & Stiefelhagen, 2008). Second, we quantify the
model’s tracking error as the distance between estimated ob-
ject positions and the true object positions. The estimated
object positions can be extracted directly from Loci-Looped,
which represents positional information explicitly. To ex-
tract object positions from the SAVi model, we first calculate
object masks for each slot and then determine the center of
them. Importantly, temporarily occluded objects are included
in both metrics.

Results As shown in Figure 3, only Loci-Looped maintains
stable object representations throughout the occlusion phase
and precisely imagines the trajectory of the occluded objects.
The average tracking error and the MOTA are listed in Ta-
ble 2. Loci-Looped outperforms both baseline models by a
large margin. At this point, allow us to emphasize that this
precision is remarkable seeing that Loci-Looped was never
informed about the location or existence of neither visible
nor occluded objects. Importantly, 96.6% of slots that were
recruited before the occlusion phase achieved a final track-
ing error (i.e., the tracking error in the moment the objects
exit the scene) smaller than 10%, indicating that these slots
tracked their assigned objects successfully throughout the en-
tire scene.

Violation of expectation

Having seen that Loci-Looped tracks objects successfully
through occlusion, we now test whether it has also learned
to anticipate their reappearance.

Surprise scenario We focus on the ADEPT’s vanish sce-
nario that tests the concept of object permanence and direc-
tional inertia. The surprise condition (11 videos) features two
objects that again traverse the scene behind the occluder this
time, however, only one object reappears from behind the
screen whereas the other vanishes while behind the screen.
In the control condition both objects reappear. This scenario
is designed to test the model’s anticipation about the reap-
pearance of the occluded object.

Slot error We compute an object- and thus slot-specific slot
error as follows:

Et
k =

∑i, j
[
(It+1 − R̂t+1)⊙ M̂t,v

k

]2

∑i, j M̂t,v
k

, (7)

where the overall prediction error is simply masked by the
visibility mask of slot k. In addition, we divide the error by
the sum of the visibility mask values to make the error invari-
ant to the size of the object. For the following analysis we
only consider slots that represent non-occluder objects and
that achieved a final tracking error smaller than 10%.

Results The model’s response indicates a significantly
greater prediction error when hidden objects fail to reappear
showing a clear violation of expectation. Notably, this is
the case for both time points: when the object should reap-
pear after having slid past the occluder (around frame 20)
and when the occluder falls over (around frame 60) after hav-
ing not re-appeared before (cf., Figure 4a; t(75) = 1.69, p =
.047; t(75) = 3.68, p < .001; as well as error peaks in Fig-
ure 4b around frames 30 and 65). As shown in Figure 3,
Loci-Looped tends to park the object behind the occluder if
it did not reappear until the occluder falls over. Note that this
behavior is fully emergent, as Loci-Looped is never trained
on objects that permanently disappear behind occluders, and
shows the model’s strong bias to maintain stable, consistent
object representations.
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Percept gate facilitates object permanence learning
Ablation studies To further investigate the effect of the
percept gate we train a version of Loci-Looped that can
only make use of the outer-loop, labelling this variant Loci-
Unlooped. As shown in Figure 3, we find that this model does
not maintain stable object representations of occluded ob-
jects, suggesting that the inner-loop is crucial for this ability.
In addition, we ablated the parameterized update function gθ

controlling the percept gate by switching to the inner-loop di-
rectly proportionally to the perceived occlusion state of each
object (i.e. αt

k = 1−Ot
k) at test time using the Loci-Looped

model. Consequently, this model version utilizes the inner-
loop when objects are occluded and the outer-loop when ob-
jects are visible. As reported in Table 2, Loci-Visibility per-
forms worse than Loci-Looped indicating that the adaptive
fusion mechanism improves tracking performance.

Influence of percept gate regularization Our evaluation
shows that during object occlusions Loci-Looped learned to
rely on its inner-loop (mean inner-loop integration: 99.2%),
essentially switching to a latent imagination mode. When ob-
jects were visible, the model made only sparse usage of ob-
servations (mean inner-loop integration: 91.1%). This is due
to the percept gate opening regularization, which imposes the
inductive bias to predict the visible world while only glimps-
ing at it. As a result, the model trains itself on simulated oc-
clusions besides the encountered ones during training gener-
ating further error signals that encourage the learning of more
accurate latent temporally predictive models. This may have
enabled the model to easily generalise to extended occlusion
scenarios. To test this hypothesis, we ran another experi-
ment varying the strength of the percept gate regularization
(βGate). As illustrated in Figure 5, we indeed find that the
development of object permanence improves with higher per-
cept gate regularization suggesting that the model’s inductive
bias to anticipate the next latent perception and hereby build
a robust world model is key for learning object permanence.
However, this comes at the price of less accurate object per-
ception, as less information from the actual observation is in-
tegrated, leading to higher reconstruction errors.
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Figure 5: Reconstruction Loss and Successful Tracking rate
for different percept gate regularization βGate strengths.

Discussion
We have addressed the question how a temporally predictive,
autoregressive machine learning system may learn about in-
ertia and object permanence. Our fully unsupervised learning
system Loci-Looped can learn to track objects through occlu-
sions, showing surprise when objects do not reappear where
expected—just like the data from infant studies suggest.

Learning success depended on numerous design choices.
We relied on a temporally predictive model that encourages
visual segmentation into compressed, slot-based object en-
codings (Piloto et al., 2022; Traub et al., 2022). In contrast to
other slot-oriented processing architectures (Z. Wu, Dvornik,
Greff, Kipf, & Garg, 2023; Locatello et al., 2020; Yuan,
Chen, Li, & Xue, 2023; Weihs et al., 2022), our Loci-Looped
model processes visual information in a slot-oriented manner
starting directly from the pixel level. It integrates prediction
error information, thus following the predictive coding prin-
ciple (Rao & Ballard, 1999; Friston, 2009). Furthermore, as
indicated by our ablation studies and prior work with Loci-
v1 (Traub et al., 2022), modeling success relied on further
inductive learning and information processing biases. First,
the slots had to be informed bottom-up by the slot-respective
mask predictions about both the currently visible object parts
(relevant during occlusions) and the fully visible object. Sec-
ond, the system required an adaptive slot-specific object fu-
sion mechanism, which we termed a percept gate. This mech-
anism enables Loci-Looped to fully rely on its internal pre-
dictions when external information is not available. Third,
the mechanism had to be encouraged to prefer relying on its
internal predictions by penalizing the integration of external
information. Fourth, the experiences themselves had to in-
clude temporary occlusions with varying duration.

Currently, Loci-Looped relies on a static camera pose as
well as on a provided background image. Concurrent re-
search work (Traub, Becker, Sauter, Otte, & Butz, 2023)
has shown, though, that Loci-v1 is extendable to real-world
datasets and moving cameras. We are currently merging these
system abilities to enable Loci-Looped’s percept gate evalua-
tion in more diverse scenarios. Furthermore, we probe Loci-
Looped’s ability to learn about object continuity and object
solidity and enable it to generate probabilistic, generative pre-
dictions. Another current limitation is that Loci-Looped—as
all other slot-based processing systems for that matter—has
equal processing resources for each slot. We are currently im-
proving encoding efficiency by enabling the system to selec-
tively probe the visual information in a task-oriented, selec-
tive manner. Our aim is to develop a resource-rational system
that learns to distribute its visual processing resources opti-
mally given current task and context (Bhui, Lai, & Gershman,
2021; Butz, 2022; Heald, Lengyel, & Wolpert, 2023; Lieder
& Griffiths, 2020; Schwöbel, Marković, Smolka, & Kiebel,
2021). Overall, we hope that the presented model contributes
to advance both the development of more human-like, inter-
pretable artificial intelligence and our computational under-
standing of human cognitive development.
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