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A barrier in the diagnosis of mild traumatic brain injury (mTBI) stems from the lack of measures that are
adequately sensitive in detectingmild head injuries. MRI and CT are typically negative inmTBI patients with per-
sistent symptoms of post-concussive syndrome (PCS), and characteristic difficulties in sustaining attention often
go undetected on neuropsychological testing, which can be insensitive to momentary lapses in concentration.
Conversely, visual tracking strongly depends on sustained attention over time and is impaired in chronic mTBI
patients, especiallywhen tracking an occluded target. Thisfinding suggests deficient internal anticipatory control
in mTBI, the neural underpinnings of which are poorly understood. The present study investigated the neuronal
bases for deficient anticipatory control during visual tracking in 25 chronic mTBI patients with persistent PCS
symptoms and 25 healthy control subjects. The taskwas performedwhile undergoingmagnetoencephalography
(MEG), which allowed us to examine whether neural dysfunction associated with anticipatory control deficits
was due to altered alpha, beta, and/or gamma activity. Neuropsychological examinations characterized cognition
in both groups. DuringMEG recordings, subjects tracked a predictablymoving target that was either continuous-
ly visible or randomly occluded (gap condition). MEG source-imaging analyses tested for group differences in
alpha, beta, and gamma frequency bands. The results showed executive functioning, information processing
speed, and verbal memory deficits in the mTBI group. Visual tracking was impaired in the mTBI group only in
the gap condition. Patients showed greater error than controls before and during target occlusion, and were
slower to resynchronizewith the targetwhen it reappeared. Impaired tracking concurredwith abnormal beta ac-
tivity, whichwas suppressed in the parietal cortex, especially the right hemisphere, and enhanced in left caudate
and frontal–temporal areas. Regional beta-amplitude demonstrated high classification accuracy (92%) compared
to eye-tracking (65%) and neuropsychological variables (80%). These findings show that deficient internal antic-
ipatory control inmTBI is associatedwith altered beta activity, which is remarkably sensitive given the heteroge-
neity of injuries.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traumatic brain injury (TBI) is the leading cause of disability and
death in people under the age of 45 in the United States (Bruns, Jr.
oratory, University of California
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and Hauser, 2003), with approximately 5.3 million Americans living
with TBI-related disabilities (Thurman et al., 1999; Langlois et al.,
2006). Individuals with mild TBI (mTBI) report a host of somatic
(e.g., headache, visual disturbances, dizziness), emotional (irritability,
anxiety, depression), and cognitive (memory, attention, processing
speed) symptoms that can persist years after injury, leading to long-
term disability (Shenton et al., 2012). A major barrier in the diagnosis
of TBI stems from the lack of measures that are adequately sensitive in
detecting mild head injuries. Between 84% and 96% of mTBI patients
with a Glasgow Coma Scale (GCS) of 14 or 15 at time of injury have
no abnormal findings on MRI or CT (Culotta et al., 1996). MRI and CT
are also typically negative in mTBI patients with persistent symptoms
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Demographic characteristics, behavioral symptoms, and neuropsychological test perfor-
mance in the control and mTBI groups.

Control
group

mTBI group

Mean SD Mean SD p-Value Partial eta2

Age 31.8 10.6 32.7 11.2 0.79 .002
Years of education 15.2 1.5 14.7 1.4 0.25 .032
WTAR premorbid IQ 113.9 4.9 110.8 6.9 0.08 .063
CAARS-S:S (ADHD) 19.0 11.1 20.3 11.4 0.69 .003
CESD (depression)a 6.7 6.5 9.2 8.4 0.26 .027
PCL-C (stress) 21.9 7.0 26.8 9.1 0.037 .087
Gender (% males) 68% 84% 0.32

Attention (ANT)b

Alerting 34.2 20.6 29.4 23.5 0.44 .013
Orienting 35.4 17.1 39.4 23.4 0.49 .010
Conflict 130.2 31.7 130.3 41.2 0.99 .000
Overall reaction time 549.1 57.8 596.9 67.3 0.01 .131

Executive function (COWAT)c

Letter Fluency (FAS) 12.0 2.4 10.6 2.5 0.045 .081
Animal Fluency 12.3 1.9 11.0 2.3 0.03 .094

Verbal memory (CVLT-II)d

Immediate Recall 58.3 8.3 52.0 7.2 0.006 .149
Short Delay Recall 0.56 1.0 −0.26 1.1 0.008 .138
Short Delay Cued Recall 0.46 0.9 −0.40 1.1 0.013 .164
Long Delay Recall 0.48 0.9 −0.52 1.1 0.001 .214
Long Delay Cued Recall 0.38 0.9 −0.54 1.0 0.002 .185

Spatial working memorye

Forward Span 10.16 2.7 9.24 3.0 0.26 .027
Backward Span 9.60 2.3 8.76 2.5 0.22 .032

Information processing speedf

SDMT 13.0 2.7 10.92 2.5 0.008 .147

Psychomotor speedg

Finger Tapping 51.2 11.8 48.5 13.3 0.46 .011

Group differences on the measures reported in the table were tested using independent
t-tests, except for gender (chi-square test). WTAR = Wechsler Test of Adult Reading;
CAARS = Conners3 Adult ADHD Rating Scale; CESD = Center for Epidemiologic Studies
Depression scale (total score); PCL-C = Post-traumatic checklist (civilian version; total
raw score).

a
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of post-concussive syndrome (PCS) (Rugg-Gunn et al., 2001; Arfanakis
et al., 2002; Schrader et al., 2009; Konrad et al., 2011). Insidious changes
in cognition can also go undetected on clinical neuropsychological test-
ing (Belanger et al., 2005; Dikmen et al., 2009; Ivins et al., 2009; Bigler,
2013).

Patients with mTBI frequently experience difficulties in focusing and
sustaining attention (Stuss et al., 1989; Binder et al., 1997), yet neuropsy-
chologicalmeasures can be insensitive tomomentary lapses in concentra-
tion because they test attention to discrete events (Belanger et al., 2005;
Ivins et al., 2009). Conversely, visual tracking strongly depends on
sustained attention over time and can be impaired in chronic mTBI pa-
tients (Heitger et al., 2009; Maruta et al., 2010b), independent of general
oculomotor deficits. Visual tracking is supported by retinal and
extraretinal processing networks, which also subserve attention
(Corbetta et al., 1998), including the frontal eye fields, the prefrontal cor-
tex, the parietal cortex, the cerebellum and the basal ganglia (O3Driscoll
et al., 2000; Burke and Barnes, 2008; Nagel et al., 2008). Hence, visual
trackingmay be particularly sensitive to disconnection among distributed
brain networks from diffuse axonal injury (DAI) in mTBI (Povlishock and
Coburn, 1989; Shenton et al., 2012), which disrupts communication in
cortico-cortical and cortical–subcortical networks that regulate attention
(Kraus et al., 2007). Importantly, deficits in TBI patients are accentuated
when tracking a target that is occluded for varying periods of time (Suh
et al., 2006), owing to the greater emphasis on internal (extraretinal) pre-
dictive or anticipatorymechanisms (Lencer et al., 2004; Nagel et al., 2006;
Barnes, 2008; Lencer and Trillenberg, 2008). Hence, visual tracking when
a target is periodically occluded may be particularly sensitive to deficient
anticipatory control, secondary to fluctuations in attention (Maruta et al.,
2010a). Likewise, tracking under this conditionmay be an effective probe
for neuronal sources of deficient anticipatory control in chronic mTBI,
which are poorly understood.

In the present study,we investigated the neuronal bases for deficient
anticipatory control during visual tracking in chronic mTBI patients
with persistent PCS symptoms and healthy control subjects as they
tracked a predictablymoving target that was either continuously visible
or occluded at random locations for varying periods of time (gap con-
dition). The task was performed while undergoing magnetoencepha-
lography (MEG), which measures the magnetic signal generated by
neuronal activity. Emerging research suggests that functional neuroim-
aging measures such as MEG may aid in the diagnosis of mTBI and elu-
cidate mechanisms of the disease process (Huang et al., 2012; Huang
et al., 2014b). MEG localizes sources of activity with high spatial
(2–3 mm) and high temporal resolution (b1 ms), thereby enabling
measurement of brain activity at specific frequency bands to better
characterize the nature of neuronal dysfunction (Huang et al.,
2009; Huang et al., 2012). This approach allowed us to examine
whether neural dysfunction associated with anticipatory control
deficits was due to altered alpha, beta, and/or gamma activity. We
were also able to isolate brain activity that was associated with
predictive control before, during and immediately after target occlu-
sion. We hypothesized that deficits in mTBI would be more promi-
nent in the gap condition, especially in frontoparietal regions,
which are vulnerable to disconnection from DAI (Bendlin et al.,
2008) and are more engaged during maintenance of visual tracking
when a target is occluded (Kawawaki et al., 2006; Nagel et al., 2006;
Nagel et al., 2008; Ding et al., 2009). We also evaluated the classifi-
cation accuracy of abnormal MEG frequency band activity, visual
tracking, and neuropsychological measures.
The range of CES-D scores was 0–25 in the control group and 0–42 in themTBI group.
Three subjects in each group had scores ≥16 (control group values: 16, 22, 25;mTBI group:
17, 22, 42).

b Values for the Attention Network Task (ANT) are in milliseconds.
c Controlled Oral Word Association Task (COWAT) standard scores.
d California Verbal Learning Test (CVLT-II) t-scores (Immediate Recall) and standard

scores (all other subtests).
e Wechsler Memory-III Spatial Span scaled scores.
f Symbol digit modalities test (SDMT) scaled scores.
g Finger Tapping Speed t-scores for dominant hand.
2. Methods

Study procedures were approved by the University of California San
Diego (UCSD) Human Research Protections Program and performed in
accordance with ethical guidelines in the Declaration of Helsinki (sixth
revision, 2008).
2.1. Subjects

Participants included 25 chronic mTBI patients with persistent PCS
symptoms and 25 healthy controls of a similar age, educational level,
gender, and estimated premorbid IQ (Wechsler Test of Adult Reading)
(Table 1). Most mTBI participants were recruited from TBI clinics at
UCSD, referrals from neurologists, and other mTBI studies conducted
at UCSD. Some patients were recruited from community advertise-
ments. Healthy adult controls were recruited from other studies con-
ducted at UCSD and from community advertisements. Subjects were
right handed, with the exception of two control subjects who were
left handed. Scores on the Edinburgh Handedness Inventory did not dif-
fer between the groups (Table 1). Inclusion criteria for mTBI patients
were: 1) a single TBI with or without loss of consciousness within
3 months to 5.5 years prior to testing, 2) any persistent PCS symptoms,
3) a normal CT or MRI for patients who went to the emergency room,
and 4) a Glasgow Coma Scale (GCS) of 13–15 at time of injury, if
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available. GCS was not available for most patients and therefore not re-
ported. Patients were excluded if theywere hospitalized for their injury,
were intubated, hadmultiple TBIs, had loss of job due to the injury, con-
firmed use of psychotropic or cognitive enhancing medication, or
showed evidence of malingering on the Test of Memory Malingering
(i.e., cutoff score below 45 on trial 2) (Teichner andWagner, 2004). Ex-
clusion criteria for all subjects included neurological diagnosis other
thanmTBI, history of post-traumatic stress disorder, neurological disor-
ders other than TBI (e.g., seizure disorder), pre-morbid major psychiat-
ric disorders (e.g., major depressive disorder), alcoholism or substance
abuse, and attention deficit hyperactivity disorder (ADHD).

The mean number of months post-injury was 31.8 (SD = 18.3,
range = 3 to 65). Only 4 patients (20%) were 3–9 months post-injury;
80% of mTBI patients were more than 1 year post-injury. Causes of inju-
ries included motor vehicle accidents (n = 4), sport related injuries
(n = 13), falls (n = 5), and blows to the head (n = 3). Most mTBI
patients (96%) reported post-traumatic amnesia and 64% reported loss
of consciousness. Table 2 shows the percent of mTBI patients who en-
dorsed various symptoms on the modified Head Injury Symptom
Checklist. The most frequently endorsed symptoms were headaches
(88%), memory difficulties (88%), trouble concentrating (80%), fa-
tigue (68%), dizziness (60%) and sleeping problems (60%). On the
average, mTBI subjects reported 6.3 (SD = 3.2; range = 1–14)
new symptoms post-injury and endorsed 3.2 (SD = 1.9; range =
1–8) PCS symptoms.
2.2. Behavioral and cognitive assessments

All subjects completed the Center for Epidemiologic Studies Depres-
sion (CES-D) scale, which assessed the frequency of various symptoms
of depression during the last week. The Post-traumatic stress disorder
Checklist (Civilian version; PCL-C, National Center for PTSD) assessed
howdisturbed individuals were in the pastmonth by stressful life expe-
riences. The Conners3Adult ADHDRating Scale— Self-Report: Short Ver-
sion (CAARS-S: S, Pearson, SanAntonio, TX) assessed symptoms of adult
ADHD.

The Wechsler Test of Adult Reading (WTAR) was used to estimate
premorbid IQ (Green et al., 2008). A battery of neuropsychological
tests was administered to evaluate: 1) attention, including alerting,
orienting, and conflict control (Attention Network Test; ANT) (Fan
Table 2
Percent of mTBI patients who endorsed various symptoms from
the Head Injury Symptom Checklist.

Symptoms Percent

Headachesa 88
Memory 88
Concentration 80
Fatiguea 68
Dizzinessa 60
Sleepa 60
Bothered by light 48
Irritabilitya 48
Anxietya 44
Balance 40
Coordination 36
Bothered by noise 32
Blurred vision 24
Apathya 20
Loss of temper 16
Depressiona 16
Sexual difficulties 16
Personality changesa 8
Smell 4
Taste 0

a Items used for the calculation of total PCS symptoms.
et al., 2002); 2) verbal fluency (Controlled Oral Word Association
Task; COWAT) (Loonstra et al., 2001); 3) short- and long-termmemory
(California Verbal Learning Test (CVLT)) (Delis et al., 1987); 4) informa-
tion processing speed (Symbol Digit Modalities Test (SDMT) (Smith,
1995); 5) psychomotor speed (Finger Tapping); and 6) nonverbal
working memory (Spatial Span) (Wechsler, 1997).
2.3. Visual tracking task

Eye movement data were collected during MEG recording using the
SR Research Eyelink 1000 system (Ontario, Canada). Subjects were
seated 126.4 cm (eye to screen distance) from a display projected
with a digital light processing projector. The visual tracking task in-
volved tracking a red disk-shaped target (diameter of 0.9 visual angle
degrees) that moved clockwise in a circle (radius of 10 visual angle de-
grees at 0.4 Hz) on a black background (Fig. 1). Time-stamped eye posi-
tionwas recordedmonocularly for three blocks, each consisting of three
tracking conditions (continuous, gap, and distractor). Each condition
consisted of 10 trials (2.5 s per trial, 25 s total) or revolutions of the tar-
get. In the continuous tracking condition, the targetwas visible through-
out the period of tracking. In the gap condition, the targetwas visible for
a random interval of 1250–3250 ms and then disappeared for 30°
(208 ms), 45° (312 ms), or 60° (416 ms) before reappearing. The
order of the gap periods was random. Subjects were instructed to con-
tinue tracking by predicting the target movement. Each subject com-
pleted a single practice block prior to the test blocks. The results from
the distractor condition were not analyzed in this study and will not
be reported in this paper. Subjects were informed of the tracking condi-
tion prior to recording. The order of the tracking conditions was
counterbalanced across subjects and blocks.
2.4. Analysis of visual tracking data

Eye movement data were initially preprocessed to detect blinks and
saccades. Blinks were identified by the Eyelink camera. Saccades were
identified duringpost-processing as eyemovements surpassing velocity
and acceleration thresholds of 100°/s and 1500°/s2. Saccades and blinks
were removed prior to computing averagedmeasures, but not removed
for analyses of dynamics. The data were also adjusted for the combined
video display lag of the display computer, video card, and projector,
which was a constant delay of 35 ms. Data associated with the first
and last revolutions of the target per trial were also discarded before
processing. Several time-averaged metrics of eye position variability
during the continuous and gap conditions were computed to compare
the two groups. For the continuous condition, average radius of the
gaze trajectory, average phase error, variability of tangential error, var-
iability of radial error, and saccade frequency (Maruta et al., 2010b)
were computed and averaged over all three blocks. Average radius
was expressed in units of degrees of visual angle. Average phasewas de-
fined as the angle subtended by the subject3s gaze and the target3s posi-
tion per time point averaged over time, and expressed in units of
degrees of phase angle. Variability of tangential error was computed
as the standard deviation over time of the instantaneous gaze position
error in the direction tangential to the target trajectory in units of de-
grees of visual angle. Variability of radial error was computed as the
standard deviation over time of the instantaneous gaze positional
error in the direction perpendicular to the target trajectory in units of
degrees of visual angle. Saccade frequency was computed by dividing
the total time of saccades by the trial duration. For the gap condition,
the same five measures were computed during the following timewin-
dows: 1) target visible, 2) 208 ms prior to target disappearance (pre-
gap), 3) the first 208 ms of target disappearance (within gap), 4) the
first 208 ms after target reappearance (post-gap 1), and 5) the first
400 ms after target reappearance (post-gap 2).



Fig. 1. Illustration of the visual tracking task. Panel A illustrates the subject and screen positioning for viewing the visual tracking task. Panel B illustrates the target trajectory during the
continuous tracking condition, where the target was visible throughout the period of tracking. Panel C illustrates an example of the target disappearing (outlined arrow and target) and
then reappearing during the gap tracking condition.
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In addition to window-based measures, we examined differences in
visual tracking dynamics between the groups. For each subject, average
time-courses across trials of phase error and radiuswere constructed for
epochs associatedwith the 30, 45, and 60 degree gap conditions. The av-
erage time-courses were then compared between the control andmTBI
groups at each time point. To correct for multiple comparisons, we used
a nonparametric statistical test (Maris andOostenveld, 2007) to identify
clusters of time points with significant differences between the groups.
Clusters were defined as contiguous time points in which the group
t-statistic computed for a specific metric at each time point within the
cluster satisfied a threshold (p b 0.10). This threshold was chosen as it
provided the most robustly sized clusters for subsequent cluster-level
statistical analysis. A cluster-level test statistic was computed as the
sum of t-statistics in each cluster. A p-value for the cluster-level test
statistic was then calculated under a permutation distribution. This
distribution was constructed by collecting the maximum cluster-level
statistic of 2000 random partitions of the set of all of the individual er-
rors from both groups. A cluster with a corrected p-value of less than
0.05 under the permutation distribution was considered significant.
Thus, the uncorrected time point-by-time point test statistic was used
to define and identify clusters, whereas the cluster-level test statistic
was used to determine statistical significance. This method effectively
controls for type I error rate.

2.5. MEG acquisition and analysis

MEG data were acquired continuously for each tracking condition in
a magnetically shielded room (IMEDCO-AG, Switzerland) using an
Elekta/NeuromagTM whole-head MEG system (VectorView) equipped
with 204 gradiometers and 102 magnetometers. EOG electrodes were
used to detect eye movements and blinks. Data were recorded sponta-
neously at 1000 Hz from all 306 sensors, with no signal averaging.
Data were subsequently processed by MaxFilter to remove environ-
ment noise (Taulu et al., 2004a; Taulu et al., 2004b; Taulu and Simola,
2006; Song et al., 2008). The realistic boundary element method
(BEM) head model was used for MEG forward calculation (Mosher
et al., 1999; Huang et al., 2007). A BEMmesh of 5-mm size for the sub-
ject was generated from the inner-skull surface using a set of T1-
weighted MRI images taken on a 1.5 T MRI scanner. Co-registration of
MRI and MEG was performed using data obtained from the Polhemus
Isotrak system prior to MEG scanning. MEG data were then band-pass
filtered into the alpha (8–13 Hz), beta (15–30 Hz), and gamma
(30–100 Hz) bands using frequency-domain filtering with appropriate
Hanning windows. Delta (1–4 Hz) and theta (4–7 Hz) bands were not
analyzed due to the limited time samples in each recording and contam-
ination from eye movements. Source reconstruction of each condition
for each frequency band was performed on all sensors using the Fast-
Vestal MEG source imaging approach (Huang et al., 2014a), which is
capable of detecting activity from cortical and deep brain structures
such as the hippocampus and amygdala (Huang et al., 2014b; Huang
et al., 2014c). For analysis of the continuous tracking condition, epochs
containing a single target revolution (2500 ms) from all three blocks
were combined. Covariance matrices of these epochs were then
averaged prior to source reconstruction. For analysis of the gap tracking
condition, epochs containing 500 ms of data prior to and 1500 ms of
data after target disappearance (for all gap durations) were isolated.
This time window was chosen as it reflected brain activity during the
pre-gap, within-gap, and post-gap periods. This time window also
maximized epoch length and avoided overlap of gaps, allowing con-
struction of stable covariance matrices but only allowing analysis in a
single common time-window. Covariance matrices of these epochs
were then averaged and subsequently used for source reconstruction.
An evenly spaced grid (5 mm spacing) with ample coverage of the
brain volume was used to model the source-space. Root-mean-square
(RMS) amplitude per grid point was then computed for each recon-
struction and saved in a 3-D nifti format file. The RMS reconstructions
were then smoothed (Gaussian kernel, 10 mm FWHM, corresponding
to a voxel size of 5mm × 5mm × 5mm) and averaged within condition
for each subject.

2.6. Group analysis of MEG data

Averaged RMS amplitude reconstructions per condition were trans-
formed to MNI 152 space using FLIRT registration (FSL). A square-root
transformation was applied to all data and group differences in the
alpha, beta, and gamma bands were then examined for the following
conditions: 1) continuous tracking (main effect), 2) gap tracking (main
effect), and 3) gap minus continuous tracking (interaction effect). The
randomize routine in FSL (2000 iterations) was applied to generate un-
corrected p-values for group tests using age as a covariate. Age was
used as covariate to directly test for group differences in the MEG mea-
sures, independent of age, and to conduct separate analyses in the mTBI
and control groups that adjusted for normal aging effects on the correla-
tions among various measures. Next, cluster analysis was performed to
correct for family-wise error across voxels in which mass clustering at a
threshold voxel-wise t-statistic of 2.0 was employed to correct for
multiple-comparisons. Large clusters surviving multiple comparisons
(cluster-level p-value b 0.05) were further subdivided into regions of in-
terest (ROIs) by using the t-statistic profile as a guide.

2.7. Classification analyses

To determine the accuracy of the behavioral and neuroimagingmea-
sures in classifying subjects into their respective groups, the support
vector machine (SVM) learning algorithm (implemented in the Ma-
chineLearningMATLAB toolbox)was separately applied to 1)neuropsy-
chological variables that were sensitive to cognitive impairment in the
mTBI group; 2) visual-tracking parameters that were sensitive to mTBI
deficits and 3) measures from ROI showing abnormal frequency-band
amplitude in the mTBI group. SVMs function by building models to

Image of Fig. 1
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classify samples into two distinct categories in a non-probabilistic geo-
metric fashion. Each sample occupies a specific position in space deter-
mined by its set of variables (i.e., neuropsychological, eye tracking, and
MEG). The samples are then separated by the best-fitting hyperplane as
determined by the SVM. The general SVM analysis procedure for this
dataset was as follows: Classifiers were generated to determine group
separability for each of the three variable sets described above. A linear
kernel function was used with SVM to classify data, owing to its ease of
interpretation and its better performance than other kernel functions
(e.g., Gaussian, nonlinear) for the current datasets. Leave-one-out
cross validationwas conducted for each SVMclassification. A signed dis-
tance score and a classification outcome were assigned to each of the
subjects in the cross-validations to compute classification accuracy for
each set of variables. In addition, an index of the contribution of a vari-
able was obtained for each analysis.

We took the analysis one step further by performing SVM opti-
mization. After conducting SVM leave-one-out cross validation by
including all variables in a dataset and computing classification ac-
curacy, we then removed the least contributing variable one-by-
one and computed classification accuracy at each step. This proce-
dure generated a curve for classification accuracy and number of
variables used in the SVM. Choosing the highest point on this
curve gave the best SVM classification and a list of the most important
variables. To examine if any further improvement in the classification
could be achieved, a fourth SVM optimization and classification analysis
combined the top ranked ROIs and top ranked neuropsychological vari-
ables from the above analyses.
Fig. 2. Group differences in average radius (AR) and average phase (AP) error before, dur-
ing, and after target occlusion. Graphs A and B display AR for the control andmTBI groups
208 ms before (Pre-Gap) and 208 ms during (within Gap) target occlusion. The mTBI pa-
tients showed significantly greater AR than the control group during both periods. Graphs
C andDdisplayAP for the control andmTBI groups 208ms (Post-Gap 1) and 400ms (Post-
Gap 2) after the target reappeared. The mTBI group lagged behind the target during both
post-gap periods (i.e., more negative values), whereas the control group tracked more
closely to the target.
2.8. Optimized SVM functions and behavioral measures

Partial correlations (age adjusted) were conducted to examine the
association between the optimized SVM function for the ROI amplitude
and the visual trackingmeasures that were impaired in themTBI group.
These analyses were conducted separately for the mTBI and control
groups. Owing to our a priori interest in the relationship between
these specific abnormal eye movement measures and the expression
of the SVM function, partial correlations with uncorrected p-values
were reported. Partial correlations were also conducted to explore the
association of the optimized SVM functions that best distinguished be-
tween the two groups with 1) clinical symptoms, 2) months post-
injury, and 3) the neuropsychological measures that showed significant
impairment in the mTBI group. To adjust for the multiple analyses, un-
corrected p-values were FDR corrected (p b .05, corrected).

3. Results

3.1. Behavioral symptoms and neuropsychological test performance

Table 1 details behavioral symptoms and neuropsychological test
performances in the groups. The groups did not differ in the extent to
which they endorsed symptoms associated with ADHD (CAARS-S:
S) and depression (CES-D). The range of CES-D scores was 0–25 in the
control group and 0–42 in the mTBI group. Three subjects in each
group had scores ≥16 (control group values = 16, 22, and 25; mTBI
group values = 17, 22, 42), possibly signifying a risk for depression.
However, there was a significantly higher level of post-traumatic stress
in the mTBI group than in the control group (PCL-C). No group differ-
ences were found in attentional control (ANT), although the overall re-
action time of the mTBI group was slower than the control group. The
groups performed comparably on tests of spatial working memory
and psychomotor speed. The mTBI group was impaired relative to con-
trols on executive function tests (COWAT Letter Fluency and Animal
Fluency), information processing speed (SDMT), and verbal memory
(CVLT-II). Months post-injury did not correlate with any of the neuro-
psychological tests that were impaired in the mTBI group.
3.2. Visual-tracking performance

In the continuous tracking condition, the mTBI group performed
comparably to the control group on all measures (Supplementary
Table 1). In the gap condition, however, significant group differences
were found. Fig. 2A andB show that themTBI grouphad a larger average
radius than the control group during the pre-gap (p = 0.01) and the
within-gap (p = 0.02) time windows. Fig. 2C and D also show that the
mTBI group exhibited greater negative average phase during the post-
gap 1 (p=0.05) and post-gap 2 (p=0.02) timewindows. This finding
demonstrates that the gazes of mTBI patients lagged behind the target
after its reappearance (i.e., more negative values), whereas the control
subjects tracked more closely to the target, anticipating its speed and
continuous changes in direction. There were no significant group differ-
ences in other tracking measures in the gap condition (Supplementary
Table 2). Fewer months post-injury correlated with a larger within-
gap average radius (rage = −0.517, p b .05, FDR corrected), but not
with other eye tracking variables that were impaired in themTBI group.

The group difference in average-phase was consistent with the dy-
namics of target tracking in the gap condition between the two groups.
Fig. 3 shows the average phase error for both groups over a time course
extending from 250ms before target disappearance to 500ms after the
target reappears. In the 30 degree gap condition (Fig. 3A), phase lag is
statistically similar for both groups until approximately 100 ms after
the disappearance of the target, at which point lag increases for both
groups. However, as the target reappeared at 208 ms, the control
group showed a marked improvement in phase lag and was able to
synchronize with the target and return to baseline tracking. In contrast,
the TBI group took much longer to respond to the target reappearance
and return to baseline tracking. This difference was verified by the
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statistically significant (p b 0.05) cluster of time-points beginning at
25 ms after target reappearance. Similar behavior was noted for the
45 degree gap condition (Fig. 3B). Here, control subjects began to return
to baseline at approximately 200 ms after the target disappeared, and
the cluster of time points that differed significantly from the mTBI
group (p b 0.05) started before the time of target reappearance at
312ms. Though similar trends were observed in the 60 degree gap con-
dition (Fig. 3C), none of the clusters survived the cluster-level statistical
test, suggesting that the larger gap rendered the task too challenging for
many of the control subjects. Cluster analysis of tracking in the radial di-
rection showed no significant group differences, irrespective of the gap
degree. Analyses of saccade frequency,whichwas directly related to the
subject3s execution of catch-up saccades, showed no statistically signif-
icant difference between control andmTBI subjects (see Supplementary
Table 2). This suggested that differences in saccade execution did not
play a major role in these findings.

3.3. MEG results

No significant differences in brain activity were found between the
control and the mTBI groups (i.e., main effect test) for the continuous
or gap conditions, irrespective of frequency band (alpha, beta, and
gamma). To adjust for individual differences in baseline performance
during continuous tracking and examine the interaction of group and
tracking condition, we tested for group differences in brain activity for
the gap minus continuous tracking conditions (interaction test).
Group differences in the alpha and gamma bands were not significant
for this contrast. However, significant group differences were found
for this interaction in the beta band for ten regions (Table 3; Fig. 4).
These regions included the right superior parietal lobe (SPL) (1), left
SPL (2), bilateral precuneus (3), right angular gyrus (4), right
supramarginal gyrus (SMG) (5), right temporal–parietal junction (TPJ)
(6), left caudate nucleus (7), left frontal pole (8), left amygdala (9),
and left temporal pole (10). Fig. 5 displays the mean differences in
beta amplitude for the gap minus continuous tracking contrast in each
of these significant regions. For regions 1 to 6,whichwere in the parietal
cortex, beta amplitudewas increased in the gap condition relative to the
continuous condition in the control group, and decreased in the mTBI
group. For regions 7 to 10, the relationship was reversed. To test for sig-
nificance of the differences in beta amplitude between the gap and con-
tinuous conditions within each group, follow-up paired t-tests were
conducted. The mTBI group showed lower beta amplitude in the gap
condition than the continuous tracking condition for regions 1 to 6,
whereas the control group showed greater beta amplitude for regions
1, 2, 5, and 6. The mTBI group showed greater beta amplitude in the
gap condition than the continuous tracking condition for regions 9
and 10, whereas the control group showed lower beta amplitude for re-
gions 7 to 10. Months post-injury did not correlate with beta amplitude
in these regions, except for the right SMG wherein decreased beta am-
plitude in the gap condition relative to the continuous condition was
greater for patients with fewer months post-injury (rage = 0.55, p =
.005, FDR corrected).

3.4. Classification analyses

Next, we analyzed the accuracy of the behavioral and neuroimaging
measures in classifying subjects into their respective groups. The SVM
Fig. 3. Phase error dynamics for 30° (A), 45° (B), and 60° (C) gap tracking conditions.
Clusters of time points in blue survived multiple-comparisons, indicating significant
differences in visual tracking between the control andmTBI groups. Clusters of time points
in brown were significant uncorrected for multiple comparisons, but were not significant
after correction for multiple-comparisons. White regions between the mTBI and control
group time-courses failed to cluster and therefore, indicate no statistical difference
between the groups. In the 30° and 45° gap conditions, the mTBI group exhibited signifi-
cantly more phase lag than the control group after re-appearance of the target. Traces for
periods between 250 ms before target disappearance and 500 ms after target reappear-
ance are shown.
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Table 4
Results from the optimized SVM analyses of the MEG. ROIs, eye tracking
measures and neuropsychological variables.

SVM weight

MEG regions
Right superior parietal lobe 5.92
Bilateral precuneus 4.96
Left temporal pole 4.10
R supramarginal gyrus 2.92
Right angular gyrus 1.98
Left caudate 1.12

Visual tracking measures
Average phase post-gap 2 3.00
Average phase post-gap 1 1.86
Average radius within gap 1.14

Neuropsychological variables
CVLT-II: Short Delay Free Recall 7.78
CVLT-II: Long Delay Free Recall 6.78
SDMT 6.36
CVLT-II: Short Delay Cued Recall 4.96
CVLT-II: Immediate Free Recall 3.74
ANT RT 3.20
CVLT-II: Long Delay Cued Recall 2.12
COWAT: Animal Fluency 1.60

MEG regions & neuropsychological variables
Right superior parietal cortex 7.98
Left temporal pole 6.80
Right supramarginal gyrus 6.02
Right angular gyrus 4.70
CVLT-II: Short Delay Cued Recall 4.44
COWAT: Animal Fluency 2.92
Bilateral precuneus 2.06
ANT RT 1.08
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algorithm was separately applied to four sets of features or variables:
1) the nine neuropsychological variables that showed impairment in
the mTBI group (Table 1); 2) the four visual tracking parameters that
were impaired in mTBI deficits during gap tracking (average radius for
the pre-gap and gap periods; average phase for post-gap periods 1
and 2); 3) the MEG-beta amplitude differences in the ten ROI showing
abnormality in themTBI group (Table 3); and 4) the ROI and neuropsy-
chological measures that were identified by the optimized SVM analy-
ses of these datasets. Table 4 lists the variables that contributed to the
classification for each analysis and the relative importance of a variable
asmeasured by the SVMweight. Fig. 6 displays the distance of each sub-
ject from the hyperplane that best separated the two groups, which is a
measure of the strength of classification. The graphs plot the classifica-
tion weights (y axis) for each subject (x axis; subject number 1–25 are
controls and 26–50 are mTBI patients). Positively and negatively
weighted values respectively designate whether subjects were classi-
fied into the control or mTBI group.

3.4.1. MEG beta amplitude in ROIs
Measures from six of the 10 ROIs maximized the classification accu-

racy of all subjects (Table 4). Measures from the right SPL, bilateral
precuneus, and left temporal pole were decisive classification variables,
as indicated by their weights. Total classification accuracy was high
(92%). The weighted combination of beta amplitude for the 6 ROIs cor-
rectly classified 92% of the controls and 92% of the mTBI patients
(Fig. 6A), with only two misclassified subjects in each group.

One visual tracking measure that was abnormal in the mTBI group,
average phase, correlated with the expression of the SVM ROI function
in the control group, but not in the mTBI group (Fig. 7). There was a
trend for a partial correlation (age adjusted) between post-gap 1 aver-
age phase with the SVM ROI function (rage = .39, p= .06) and a signif-
icant partial correlation between post-gap 2 average phase and the SVM
ROI function (rage = .41, p = .047). In the control group, better
anticipation during the post-gap periods (more positive values) was
associated with greater separation of a subject from the mTBI group
(i.e., higher positive weight), presumably due to better neuronal
functioning. Average radius did not correlate with the SVM function
for MEG measures in either group. Measures of symptom severity
(e.g., PTSD checklist, ADHD, frequency of depression symptoms on
the CESD scale), PCS symptom counts, months post-injury, and
Table 3
Group differences in regional MEG beta-band amplitude for the gap minus continuous
condition comparison.

Regions ml X Y Z

Controls: Gap ≥ continuous tracking 1

[1] R superior parietal lobe 4.75 20.9 −55.2 60.2
[2] L superior parietal lobe 1.10 −8.49 −56.1 58.1
[3] Bilateral precuneusa 0.34 1.37 −41.9 52.1
[4] R angular gyrusa 0.48 41.2 −54.4 42.6
[5] R supramarginal gyrus 0.93 62.7 −43.6 22
[6] R temporal–parietal junction 1.56 55.6 −60.2 13.8

mTBI: Gap ≥ continuous tracking 2

[7] L caudateb 0.75 −19.3 22.3 4.6
[8] L frontal poleb 0.30 −20 38.1 −18.9
[9] L amygdala 3.57 −30 3.5 −24.9
[10] L temporal pole 1.64 −40.2 15.1 −30.8

Talairach coordinates (X, Y, Z) were used to map the location of regions. For each group,
follow-up t-tests were performed to test for significant differences in beta amplitude be-
tween the gap and continuous tracking conditions. L and R = left and right hemisphere.

1 In the control group, beta amplitude in the gap condition was greater than or equal to
(designate by a) the continuous condition. In the mTBI group, all 6 regions showed lower
beta amplitude in the gap condition than in the continuous condition.

2 In the mTBI group, beta amplitude in the gap condition was greater than or equal to
(designated by b) the continuous condition. In the control group, all 4 regions showed low-
er beta amplitude in the gap condition than in the continuous condition.
neuropsychological test performances also did not correlate with
the MEG SVM function.

3.4.2. Visual tracking measures
Of the four eye movement measures, three maximized total classifi-

cation accuracy, includingwithin-gap average radius and average phase
during the post-gap periods 1 and 2 (Table 4). Average phase during the
post-gap period 2 (400ms after target reappearance) was especially in-
fluential in the classification. Still, total classification accuracy was poor
(64%). Only 60% of the controls and 68% of the mTBI patients were
correctly classified (Fig. 6B), with 10 controls and 7 mTBI patients
misclassified. Symptom severity (e.g., PTSD checklist, ADHD, frequency
of depression symptoms on the CESD scale), PCS symptom counts,
months post-injury, and neuropsychological performances did not cor-
relate with the eye movement SVM function.

3.4.3. Neuropsychological variables
Of the 9 neuropsychological measures, 8 maximized total classifica-

tion accuracy (Table 4), which was moderate (80%). Letter Fluency was
the only measure that did not add to the classification. Decisive
variables were CVLT-II measures and the SDMT. The optimized SVM
function correctly classified 84% of the controls and 76% of the mTBI pa-
tients (Fig. 6C),with 4 controls and 5mTBI patientsmisclassified. Symp-
tom severity (e.g., PTSD checklist, ADHD, frequency of depression
symptoms on the CESD scale), PCS symptom counts, frequency of de-
pression symptoms on the CESD scale, and months post-injury did not
correlate with the neuropsychological SVM function.

3.4.4. Optimized MEG ROIs and neuropsychological variables
The 6 MEG beta amplitude ROIs and 8 neuropsychological variables

identified by the optimized SVM analyses were combined into another
SVM analysis. Of the 14 variables in this analysis, 8 variables (beta



Fig. 4.Regions showing group differences inMEG beta-band amplitude for the gapminus continuous condition comparison. Displayed regions are those that showed a significant group X
tracking condition interaction. Numbers correspond to the regions that are detailed in Table 3. Images are display in radiological view. A) For regions 1 to 6, control subjects showed greater
beta amplitude in the gap than the continuous condition,whereas themTBI group showed lower beta amplitude in the gap than the continuous condition. B) For regions 7 to 10, themTBI
group showed greater beta amplitude in the gap than the continuous condition and control subjects showed lower beta amplitude in the gap than the continuous condition. C) Underlying
gapminus continuous source activities for control subjects. D) Underlying gapminus continuous source activities formTBI subjects. For panels C and D, hotter colors (red) indicate regions
where gap tracking activitywas greater than continuous tracking activity and cooler colors (blue) indicate regionswhere gap tracking activitywas less than continuous tracking. ROIs from
A and B are depicted in bright green and are overlaid onto activation in C and D.
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amplitude differences in 5 ROIs and 3 neuropsychological measures)
maximized classification accuracy (Table 4). The most influential
variables were beta amplitude differences in the right SPL, SMG, angular
gyrus, and the left temporal pole, and short delay cued recall (CVLT-II).
The linear combination of these 8 variables improved total classification
accuracy to 94%, owing to the correct classification of one additional
control subject, who was misclassified in the ROI SVM analyses.
Fig. 6D shows that 96% of the controls and 92% of the mTBI patients
were correctly classified, with one control and 2 mTBI patients
misclassified.
Fig. 5. Regional differences in MEG beta-amplitude between the gap minus continuous conditi
bars) groups were found for the gap minus continuous condition contrast in ten regions (see T
conditions contrast differed significantly from zero (p = 0.05). R and L = right and left hemis
parietal lobule; Temp Pole = temporal pole; TPJ = temporal–parietal junction.
4. Discussion

In the present study, chronic mTBI patients exhibited striking defi-
cits when tracking a predictably movement target that was occluded
from vision at random locations and time periods. Deficits were more
pronounced than those found in a study that utilized target occlusion
at a fixed location (Suh et al., 2006). Our findings provide the first de-
tailed analysis of the time course of phase error in mTBI patients prior
to, during, and immediately after target occlusion. The results suggest
that the internal anticipatory control is disrupted in chronic mTBI
on comparison. Significant differences between the control (brown bars) and mTBI (blue
able 3 and Fig. 3 for details). *Beta amplitude within a group for the gap minus continuous
pheres; B = bilateral; AG = angular gyrus; SMG = supramarginal gyrus; SPL = superior
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patients with persistent PCS symptoms. Deficits in visual tracking were
found only in the gap condition, but even when the target was visible.
Thus, the mere expectation of target blanking appeared to gate the out-
put of an internally-generated anticipatory response (Barnes, 2008).
Both groups began to lag further behind the target at the onset of the
gap, consistentwith the normal decay of internal representations of tar-
get motion within 100 ms after target disappearance (Orban de Xivry
et al., 2008). However, upon the reappearance of the target, patients
were slower at re-synchronizing their gaze with the target. This result
suggests a degraded ability to maintain an internal model of motion.
An alternative explanation is that significant average phase differences
were a result of distraction during the gap condition, possibly owing
to poor concentration. This explanation, however, cannot account for
the average phase data wherein mTBI patients failed to catch up to the
30 and 45 degree targets, yet did not differ from controls in the 60
degree condition, which was specifically designed to push the limits of
anticipatory control. Moreover, the absence of group differences in av-
erage phase for the pre-gap period further suggests that this measure
is more related to anticipation. Though baseline group differences in
average radius during the pre-gap and within-gap time windows
might signify a more general disruption in concentration, we believe
that diminished representation of the expected target location is a
more parsimonious interpretation of the mTBI results. It is also possible
that deficient reorienting of attention to the reappearance of the target
adversely affected tracking in the gap condition. Acute mTBI patients
exhibit deficits in orienting attention on the ANT (Halterman et al.,
2006) and an auditory task (Mayer et al., 2009), slowed saccadic RTs
during a gap saccade task that normally allows for disengagement of
attention from a fixation target (Drew et al., 2007), and impaired
reorienting on attention tasks (Halterman et al., 2006; Mayer et al.,
2009). However, these problems resolve by 1 month post-injury
(Halterman et al., 2006; Drew et al., 2007), consistent with our finding
of normalized attentional control on the ANT. Thus, the present results
support a more fundamental deficit in internal anticipatory control. Al-
though abnormal visual tracking has been reported in chronic mTBI pa-
tients when tracking a continuously visible target, discrepant findings
may relate to the inclusion of patients with more significant brain inju-
ries (i.e., positive neuroradiological findings) (Maruta et al., 2010b) or
more acute injury (within the past 6 months) (Heitger et al., 2009)
than in our study.
4.1. Neural mechanisms of impaired tracking

Disturbances in visual tracking performance were accompanied by
differences in beta activity in a number of regions. In the mTBI group,
beta activity in parietal regions (precuneus, SPL, SMG, angular gyrus,
TPJ), especially in the right hemisphere, was suppressed in the gap con-
dition compared to the continuous tracking condition. Conversely, in
the control group beta activity in these regions was enhanced or
sustained at a similar level in the gap condition as in the continuous
tracking condition. These findings comport with EEG and fMRI studies
of healthy adults demonstrating that parietal areas (SMG and SPL) reg-
ulate the maintenance of eye motion information during target occlu-
sion (Lencer et al., 2004; Nagel et al., 2006; Burke and Barnes, 2008;
Makin et al., 2009), possibly by synthesizing relational metrics
(Genovesio et al., 2014), such as time, velocity and spatial information
(Harrington et al., 1998; Assmus et al., 2003; Merchant et al., 2013),
which are critical for predictive control. The TPJ also modulates predic-
tive control, particularly in the face of uncertainty (Jakobs et al., 2009) or
when reorienting attention to unexpected stimuli (Corbetta and
Shulman, 2002). These factors may come into play during gap tracking,
especially when target occlusion and its reappearance are unpredict-
able. The failure of mTBI patients to modulate parietal cortex activity
in accord with the predictive and attentional demands of gap tracking
may be associated with damage to white matter tracts that disrupt
communication between frontal cognitive-control centers and the pari-
etal cortex (Niogi et al., 2008; Niogi and Mukherjee, 2010).

Although damage to white matter tracts underlying the frontal cor-
tex is common (Niogi et al., 2008), we did not find abnormal beta,
gamma, or alpha activities in the mTBI group in frontal centers that
modulate visual tracking, namely the frontal eye fields or the dorsolat-
eral prefrontal cortex (Lencer et al., 2004; Ding et al., 2009). Frontal ac-
tivities may have been maintained through compensation by other
areas of the brain. Specifically, in mTBI patients beta amplitude in the
caudate, the amygdala, and the temporal and frontal poles of the left
hemispherewas enhanced or sustained at the same level in the gap con-
dition as in the continuous tracking condition, whereas in the control
groupbetawas suppressed in these same regions. The basal ganglia nor-
mally modulate visual tracking (O3Driscoll et al., 2000; Lencer et al.,
2004) and planning (Elsinger et al., 2006;Monchi et al., 2006), and com-
pensatory activity may improve target encoding and prediction via the
basal ganglia3s dense connectivity with frontal areas. Likewise, compen-
satory activity in the frontal pole, which facilitates internallymaintained
attention (Burgess et al., 2007), and the temporal pole, which synthe-
sizes segregated sensory inputs into this region (Pascual et al., 2015),
may also assist in anticipatory control during visual tracking.

Importantly, disturbances in neuronal activity were specific to the
MEG beta band. It has long been observed that cortical activity exists
in distinct frequency bands that have different patterns of activation.
Electrophysiological studies of the rat hippocampus show that the
beta rhythm allows neuronal synchrony at large time delays, while
the gamma band allows such synchrony at short delays. Anatomically,
this suggests that beta synchrony is used for communication involving
remote structures, whereas gamma synchrony is used for local compu-
tations (Singer, 1999; Kopell et al., 2000). Interestingly, investigations
into MEG correlates of fMRI resting-state networks demonstrate that
power fluctuations in the beta band produce the most robustly similar
spatial networks to fMRI resting-state networks (Brookes et al., 2011a;
Brookes et al., 2011b). This relationship also suggests that beta-band ac-
tivity is used for the type of communication required in long-range net-
works. Since white matter tracts are integral for synchrony of distant
cortical regions and white matter changes from DAI are common in
mTBI (Miles et al., 2008; Rutgers et al., 2008; Mayer et al., 2010; Niogi
and Mukherjee, 2010; Smits et al., 2011; Ling et al., 2012), the present
resultsmay suggest that the injuries sustained by ourmTBI patients dis-
rupt long-range beta-band communication in networks important for
internal predictive control. It is noteworthy, however, that low-
frequency brain rhythms, which were not analyzed in the current
study (i.e., delta and theta), have also been associatedwith interregional
communication (Mizuki et al., 1980;Mizuki et al., 1992; Takahashi et al.,
1997; Niedermeyer and Lopes da Silva, 2005) and are typically in-
creased in neurological disorders including TBI (Lewine and Orrison,
Jr., 1995; Vieth et al., 1996; Lewine et al., 1999; Baayen et al., 2003; de
et al., 2003; Huang et al., 2009; Huang et al., 2012; Huang et al.,
2014b). Thus, potential alterations in delta and theta bands might also
be associated with the changes that we observed in long range commu-
nications in mTBI.
4.2. Classification accuracy of MEG and behavioral measures

The present study also demonstrated that group differences in re-
gional MEG-beta amplitude associated with target visibility changes
showed high accuracy (92%) in classifying mTBI and control subjects,
in contrast to visual tracking (64%) and neuropsychological measures
(80%), wherein accuracywas poor tomoderate. Importantly, in the con-
trol group greater expression of the MEG SVM function was associated
with better anticipation of the target motion once it reappeared after
the target occlusion, thereby validating the behavioral significance of
the classification function. This relationship was absent in the mTBI
group, who were impaired in recovering gaze-target synchronization



Fig. 6. SVM classification accuracy of regional MEG beta-amplitude, visual tracking and neuropsychological measures. The graphs display the distance of each subject from the hyperplane
that that best separated the two groups, which is a measure of the strength of classification. The graphs plot the classification weights (y axis) from the optimized SVM analysis for each
subject in the control (brown circles) andmTBI groups (blue circles). Positively and negativelyweighted values respectively designatewhether subjects were classified into the control or
mTBI group. The variables that contributed to the optimized SVM classification are listed in Table 4. A: Total classification accuracy using MEG beta-amplitude from 6 ROI was 92%. Two
subjects in each group were incorrectly classified. B: Total classification accuracy using 3 visual tracking measures was 64%. Ten controls and 7 mTBI patients were incorrectly classified.
C: Total classification accuracy using 8 neuropsychological measures was 80%. Four of the controls and 5 of the mTBI patients were incorrectly classified. D: Total classification accuracy
using beta amplitude from 5 ROI and 3 neuropsychological measures was 94%. One control subject and 2 mTBI patients were incorrectly classified.
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once the target reappeared. Clinical profiles of the patientswere also not
associated with abnormal neural functioning, as months post-injury,
PCS symptom counts, depression, post-traumatic trauma, and neuro-
psychological test performances did not correlate with the MEG SVM
function. This finding underscores the limitations of clinical measures
in characterizing outcomes in chronic mTBI patients (Bigler, 2013).
Though MEG is more time and resource intensive to analyze than neu-
ropsychological testing, it greatly improves detection of subtle injuries
caused by mTBI, which could aid clinical diagnosis and treatment
management.

Our results are consistentwith reports that eyemovementmeasures
alone show poor accuracy (62.5%) in classifying chronic mTBI patients
(3 months post-injury) when cross-validation methods are employed
in the statistical analyses (Heitger et al., 2008). This study also reported
that neuropsychologicalmeasures demonstrated poor accuracy (62.5%),
which contrasts with our results, wherein we obtainedmodest levels of
classification accuracy. However, MEG beta-band activity in five ROI
from the optimized SVM function, combined with three neuropsycho-
logical measures (short delay cued recall, verbal fluency, and reaction
time), improved classification only slightly (94%) by correctly classify-
ing all but one control subject. This indicates that performance in certain
domains of cognition may add independent information that aids in
distinguishing healthy individuals from mTBI patients, a prospect that
warrants further study in the future. Nonetheless, beta-band activity ap-
pears to be a better intermediate marker of residual pathophysiological
changes in chronic mTBI than neuropsychological and visual tracking
measures. Certainly the relative accuracy of neuropsychological mea-
sures over imagingmeasures maywell depend on the activation probes
for neural functioning (e.g., task difficulty and reliability) and the ana-
lytic methods used to characterize neural activity. For example, our re-
sults and those of others (Suh et al., 2006; Maruta et al., 2010a)
reliability demonstrate that visual tracking of a periodically occluded
target is sensitive to deficient anticipatory control, presumably second-
ary to momentary lapses in attention. Although our neuropsychological
tests did not assess anticipatory control, standardized measures of at-
tentional control (i.e., ANT) and processes that significantly engage at-
tention (i.e., spatial working memory) to discrete events were not
impaired in our chronicmTBI group. Thus, visual tracking of an occluded
target may be an effective probe for aberrant neuronal functioning be-
cause it demands a greater degree of continuous attentional control
than classic neuropsychological tests of attention. A caveat is that eye
movement and neuropsychological measures may demonstrate greater
sensitivity and/or specificity in distinguishing acute mTBI patients with
PCS (Heitger et al., 2008), owing to the effects of edema, inflammation,
and other physiological processes on the brain. At the same time, MEG
and other functional imaging measures may be inherently more sensi-
tive to changes in neuronal functioning than traditional clinical neuro-
psychological or behavioral assessments (Bigler, 2013).

We are not aware of any studies that have directly compared the
relative accuracy of neuroimaging and neuropsychological measures
in distinguishing acute or chronic mTBI patients without positive radio-
logical findings from healthy controls. However, in semi-acute mTBI,
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Fig. 7. Scatter plots showing the relationship between average phase (AP) after the target reappeared and the expression of the optimized SVM function for MEG beta-amplitude in 6 ROI.
The Post-Gap 1 and Post-Gap 2 periods were defined as 208 and 400ms after the target reappeared, respectively. Negative and positive AP values (y axis) respectively signify lagging be-
hind and tracking ahead of the target. Positively and negativelyweighted values respectively designatewhether subjects aremore likely to classify into the control ormTBI group. Panels A
and C: in the control group,more positive AP values during both post-gap periods (better anticipation of the target) were associatedwith higher SVM values (better neuronal functioning)
(Post-Gap 1: rage = .39, p = .06; Post-Gap 2: rage = .41, p = .047). Panels B and D: in the mTBI group, no relationship was found between AP and SVM values.
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fractional anisotropy in commonly injured white matter tracts (genu of
corpus callosum, corona radiata, and superior corona radiata) slightly
improved total classification accuracy (71%) beyond estimated pre-
morbid intelligence (65% total accuracy) (Ling et al., 2012). Resting-
state functional connectivity measured from BOLD fMRI also improved
total classification (84%) of semi-acute mTBI patients beyond estimated
premorbid intelligence (65% total accuracy) (Mayer et al., 2011). How-
ever, these modest levels of accuracy must be cautiously interpreted as
they are likely lower since cross-validation analyses were not reported
in either study.

5. Conclusions

Our results show for the first time that MEG beta-band activity asso-
ciated with a task that required internal anticipatory control is sensitive
in identifying abnormal neuronal functioning in chronic mTBI patients.
The accuracy of classification was surprisingly high given the heteroge-
neity of injuries inmTBI (Huang et al., 2009; Huang et al., 2012) and the
absence of positive findings on conventional MRI. We believe that the
high accuracy is due to MEG3s capacity to analyze different frequency
bands separately, owing to its high temporal resolution. Another impor-
tant factor was our MEG source analysis method, Fast-VESTAL, which
provides high-resolution source images for complicated signals that
contain many sources, without the need for intervention from the
data analyst (Huang et al., 2014a). Fast-VESTAL faithfully reconstructs
the source time-courses even in data containing highly correlated
sources, which many conventional MEG source-analysis methods
(e.g., beamformer) have difficulty handling (Van Veen et al., 1997;
Gross and Ioannides, 1999; Sekihara et al., 2001). Fast-VESTAL is also ro-
bust to high levels of sensor, environment, and brain noise. For example,
in our visual tracking task, the number of localized neural sources was
large and regional activities were likely highly correlated. Moreover, the
signal-to-noise ratio was relatively low, due to the limited number of vi-
sual tracking trials. Despite these factors, Fast-VESTAL proved to be a ro-
bust method for identifying neural dysfunction in mTBI patients.

Though the current results require further validation in a different and
larger sample of mTBI patients and healthy adults, our findings hold
promise for identifying neuronal sources of dysfunction in PCS patients,
many of whom have subtle, but lingering cognitive problems that affect
functioning in daily life and the quality of life. In this regard, it is notable
that neuropsychological measures of cognition have been unsatisfactory
in gauging recovery from acute mTBI (Carroll et al., 2004; Heitger et al.,
2004; Heitger et al., 2006; Heitger et al., 2007; Bigler, 2013). The need
for markers of abnormal neuronal functioning has become increasingly
important for predicting outcomes in TBI patients and for assessing
therapies that may facilitate recovery, even in chronic TBI patients.
Longitudinal studies will be needed to ascertain the prognostic
value of neuroimaging measures, such as MEG, in predicting out-
comes. Any functional imaging marker will likely be used in combi-
nation with other markers, since together they may better gauge the
degree of neural dysfunction, predict the recovery rate of functions,
and unravel individual differences in the evolution of recovery. This
includes biomarkers of white-matter integrity, which are related to
cognitive functioning in mTBI (Kraus et al., 2007; Miles et al., 2008;
Niogi et al., 2008), and blood and cerebrospinal fluid markers (Di
Battista et al., 2013; Zetterberg et al., 2013).

Image of Fig. 7


221M. Diwakar et al. / NeuroImage: Clinical 8 (2015) 210–223
Funding

This work was supported by grants from the McDonnell Foundation
(220020185 to JG) and the Department of Veterans Affairs (NURC-022-
10F to MXH; CX000146-05A1 to DLH).

Acknowledgments

Wewould like to express our gratitude to Ashley Swan, AnneMarie
Angeles, Gabriel Castillo and Aileen Ung Diwakar for their research
assistance and technical support of this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2015.04.011.

References

Arfanakis, K., Haughton, V.M., Carew, J.D., Rogers, B.P., Dempsey, R.J., Meyerand, M.E., 2002.
Diffusion tensor MR imaging in diffuse axonal injury. A.J.N.R. Am. J. Neuroradiol. 23
(5), 794–80212006280.

Assmus, A., Marshall, J.C., Ritzl, A., Noth, J., Zilles, K., Fink, G.R., 2003. Left inferior parietal
cortex integrates time and space during collision judgments. Neuroimage 20 (Suppl.
1)), S82–S88. http://dx.doi.org/10.1016/j.neuroimage.2003.09.02514597300.

Baayen, J.C., de Jongh, A., Stam, C.J., De Munck, J.C., Jonkman, J.J., Trenité, D.G., Berendse,
H.W., van Walsum, A.M., Heimans, J.J., Puligheddu, M., Castelijns, J.A., Vandertop,
W.P., 2003. Localization of slow wave activity in patients with tumor-associated epi-
lepsy. Brain Topogr. 16 (2), 85–93. http://dx.doi.org/10.1023/B:BRAT.0000006332.
71345.b714977201.

Barnes, G.R., 2008. Cognitive processes involved in smooth pursuit eye movements. Brain
Cogn. 68 (3), 309–326. http://dx.doi.org/10.1016/j.bandc.2008.08.02018848744.

Belanger, H.G., Curtiss, G., Demery, J.A., Lebowitz, B.K., Vanderploeg, R.D., 2005. Factors
moderating neuropsychological outcomes following mild traumatic brain injury:
a meta-analysis. J. Int. Neuropsychol. Soc. 11 (3), 215–227. http://dx.doi.org/10.
1017/S135561770505027715892898.

Bendlin, B.B., Ries, M.L., Lazar, M., Alexander, A.L., Dempsey, R.J., Rowley, H.A., Sherman,
J.E., Johnson, S.C., 2008. Longitudinal changes in patients with traumatic brain injury
assessedwith diffusion-tensor and volumetric imaging. Neuroimage 42 (2), 503–514.
http://dx.doi.org/10.1016/j.neuroimage.2008.04.25418556217.

Bigler, E.D., 2013. Neuroimaging biomarkers in mild traumatic brain injury (mTBI).
Neuropsychol. Rev. 23 (3), 169–209. http://dx.doi.org/10.1007/s11065-013-9237-
223974873.

Binder, L.M., Rohling, M.L., Larrabee, G.J., 1997. A review of mild head trauma. Part I:
meta-analytic review of neuropsychological studies. J. Clin. Exp. Neuropsychol. 19
(3), 421–431. http://dx.doi.org/10.1080/016886397084038709268816.

Brookes, M.J., Hale, J.R., Zumer, J.M., Stevenson, C.M., Francis, S.T., Barnes, G.R., Owen, J.P.,
Morris, P.G., Nagarajan, S.S., 2011a. Measuring functional connectivity using MEG:
methodology and comparison with fcMRI. Neuroimage 56 (3), 1082–1104. http://
dx.doi.org/10.1016/j.neuroimage.2011.02.05421352925.

Brookes, M.J., Woolrich, M., Luckhoo, H., Price, D., Hale, J.R., Stephenson, M.C., Barnes, G.R.,
Smith, S.M., Morris, P.G., 2011b. Investigating the electrophysiological basis of resting
state networks using magnetoencephalography. Proc. Natl. Acad. Sci. U. S. A 108 (40),
16783–16788. http://dx.doi.org/10.1073/pnas.111268510821930901.

Bruns Jr., J., Hauser, W.A., 2003. The epidemiology of traumatic brain injury: a review.
Epilepsia 44 (Suppl. 10), 2–10. http://dx.doi.org/10.1046/j.1528-1157.44.s10.3.
x14511388.

Burgess, P.W., Gilbert, S.J., Dumontheil, I., 2007. Function and localization within rostral
prefrontal cortex (area 10). Philos. Trans. R. Soc. Lond. B Biol. Sci. 362 (1481),
887–899. http://dx.doi.org/10.1098/rstb.2007.209517403644.

Burke, M.R., Barnes, G.R., 2008. Brain and behavior: a task-dependent eye movement
study. Cereb. Cortex 18 (1), 126–135. http://dx.doi.org/10.1093/cercor/
bhm03817470446.

Carroll, L.J., Cassidy, J.D., Peloso, P.M., Borg, J., von Holst, H., Holm, L., Paniak, C., Pépin, M.,
WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury, 2004. Progno-
sis for mild traumatic brain injury: results of the WHO Collaborating Centre Task
Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 84–105 http://dx.doi.org/10.
1080/1650196041002385915083873.

Corbetta, M., Akbudak, E., Conturo, T.E., Snyder, A.Z., Ollinger, J.M., Drury, H.A.,
Linenweber, M.R., Petersen, S.E., Raichle, M.E., Van Essen, D.C., Shulman, G.L., 1998.
A common network of functional areas for attention and eye movements. Neuron
21 (4), 761–773. http://dx.doi.org/10.1016/S0896-6273(00)80593-09808463.

Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and stimulus-driven
attention in the brain. Nat. Rev. Neurosci. 3 (3), 201–215. http://dx.doi.org/10.
1038/nrn75511994752.

Culotta, V.P., Sementilli, M.E., Gerold, K., Watts, C.C., 1996. Clinicopathological heterogene-
ity in the classification of mild head injury. Neurosurgery 38 (2), 245–250. http://dx.
doi.org/10.1097/00006123-199602000-000028869050.

Delis, D.C., Kramer, J.H., Kaplan, E., Ober, B.A., 1987. California Verbal Learning Test
(Research Ed.). The Psychological Corporation, San Antonio, TX.
Di Battista, A.P., Rhind, S.G., Baker, A.J., 2013. Application of blood-based biomarkers in
human mild traumatic brain injury. Front. Neurol. 4, 44. http://dx.doi.org/10.3389/
fneur.2013.0004423641234.

Dikmen, S.S., Corrigan, J.D., Levin, H.S., Machamer, J., Stiers, W., Weisskopf, M.G., 2009.
Cognitive outcome following traumatic brain injury. J. Head Trauma Rehabil. 24 (6),
430–438. http://dx.doi.org/10.1097/HTR.0b013e3181c133e919940676.

Ding, J., Powell, D., Jiang, Y., 2009. Dissociable frontal controls during visible and memory-
guided eye-tracking ofmoving targets. Hum. BrainMapp. 30 (11), 3541–3552. http://
dx.doi.org/10.1002/hbm.2077719434603.

Drew, A.S., Langan, J., Halterman, C., Osternig, L.R., Chou, L.S., van Donkelaar, P., 2007.
Attentional disengagement dysfunction following mTBI assessed with the gap sac-
cade task. Neurosci. Lett. 417 (1), 61–65. http://dx.doi.org/10.1016/j.neulet.2007.02.
03817363165.

Elsinger, C.L., Harrington, D.L., Rao, S.M., 2006. From preparation to online control:
reappraisal of neural circuitry mediating internally generated and externally
guided actions. Neuroimage 31 (3), 1177–1187. http://dx.doi.org/10.1016/j.
neuroimage.2006.01.04116540347.

Fan, J., McCandliss, B.D., Sommer, T., Raz, A., Posner, M.I., 2002. Testing the efficiency and
independence of attentional networks. J. Cogn. Neurosci. 14 (3), 340–347. http://dx.
doi.org/10.1162/08989290231736188611970796.

Genovesio, A., Wise, S.P., Passingham, R.E., 2014. Prefrontal-parietal function: from forag-
ing to foresight. Trends Cogn. Sci. 18 (2), 72–81. http://dx.doi.org/10.1016/j.tics.2013.
11.00724378542.

Green, R.E., Melo, B., Christensen, B., Ngo, L.A., Monette, G., Bradbury, C., 2008. Measuring
premorbid IQ in traumatic brain injury: an examination of the validity of the
Wechsler test of adult reading (WTAR). J. Clin. Exp. Neuropsychol. 30 (2), 163–172.
http://dx.doi.org/10.1080/1380339070130052418213530.

Gross, J., Ioannides, A.A., 1999. Linear transformations of data space in MEG. Phys. Med.
Biol. 44 (8), 2081–2097. http://dx.doi.org/10.1088/0031-9155/44/8/31710473216.

Halterman, C.I., Langan, J., Drew, A., Rodriguez, E., Osternig, L.R., Chou, L.S., van
Donkelaar, P., 2006. Tracking the recovery of visuospatial attention deficits in
mild traumatic brain injury. Brain 129 (3), 747–753. http://dx.doi.org/10.1093/
brain/awh70516330498.

Harrington, D.L., Haaland, K.Y., Knight, R.T., 1998. Cortical networks underlying mecha-
nisms of time perception. J. Neurosci. 18 (3), 1085–10959437028.

Heitger, M.H., Anderson, T.J., Jones, R.D., Dalrymple-Alford, J.C., Frampton, C.M., Ardagh,
M.W., 2004. Eye movement and visuomotor arm movement deficits following mild
closed head injury. Brain 127 (3), 575–590. http://dx.doi.org/10.1093/brain/
awh06614736751.

Heitger, M.H., Jones, R.D., Anderson, T.J., 2008. A new approach to predicting
postconcussion syndrome after mild traumatic brain injury based upon eye move-
ment function. conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 3570–3573.

Heitger, M.H., Jones, R.D., Dalrymple-Alford, J.C., Frampton, C.M., Ardagh, M.W.,
Anderson, T.J., 2006. Motor deficits and recovery during the first year following
mild closed head injury. Brain Inj. 20 (8), 807–824. http://dx.doi.org/10.1080/
0269905060067635417060148.

Heitger, M.H., Jones, R.D., Dalrymple-Alford, J.C., Frampton, C.M., Ardagh, M.W., Anderson,
T.J., 2007. Mild head injury — a close relationship between motor function at 1 week
post-injury and overall recovery at 3 and 6 months. J. Neurol. Sci. 253 (1–2), 34–47.
http://dx.doi.org/10.1016/j.jns.2006.11.00717207818.

Heitger, M.H., Jones, R.D., Macleod, A.D., Snell, D.L., Frampton, C.M., Anderson, T.J., 2009.
Impaired eye movements in post-concussion syndrome indicate suboptimal brain
function beyond the influence of depression, malingering or intellectual ability.
Brain 132 (10), 2850–2870. http://dx.doi.org/10.1093/brain/awp18119617197.

Huang, M.X., Huang, C.W., Robb, A., Angeles, A., Nichols, S.L., Baker, D.G., Song, T.,
Harrington, D.L., Theilmann, R.J., Srinivasan, R., Heister, D., Diwakar, M., Canive, J.M.,
Edgar, J.C., Chen, Y.H., Ji, Z., Shen, M., El-Gabalawy, F., Levy, M., McLay, R., Webb-
Murphy, J., Liu, T.T., Drake, A., Lee, R.R., 2014a. MEG source imaging method using
fast L1 minimum-norm and its applications to signals with brain noise and human
resting-state source amplitude images. Neuroimage 84, 585–604. http://dx.doi.org/
10.1016/j.neuroimage.2013.09.02224055704.

Huang, M.X., Nichols, S., Baker, D.G., Robb, A., Angeles, A., Yurgil, K.A., Drake, A., Levy,
M., Song, T., McLay, R., Theilmann, R.J., Diwakar, M., Risbrough, V.B., Ji, Z., Huang,
C.W., Chang, D.G., Harrington, D.L., Muzzatti, L., Canive, J.M., Christopher Edgar,
J., Chen, Y.H., Lee, R.R., 2014b. Single-subject-based whole-brain MEG slow-
wave imaging approach for detecting abnormality in patients with mild trau-
matic brain injury. Neuroimage Clin. 5, 109–119. http://dx.doi.org/10.1016/j.
nicl.2014.06.00425009772.

Huang, M.X., Nichols, S., Robb, A., Angeles, A., Drake, A., Holland, M., Asmussen, S.,
D3Andrea, J., Chun, W., Levy, M., Cui, L., Song, T., Baker, D.G., Hammer, P., McLay, R.,
Theilmann, R.J., Coimbra, R., Diwakar, M., Boyd, C., Neff, J., Liu, T.T., Webb-Murphy,
J., Farinpour, R., Cheung, C., Harrington, D.L., Heister, D., Lee, R.R., 2012. An automatic
MEG low-frequency source imaging approach for detecting injuries inmild andmod-
erate TBI patients with blast and non-blast causes. Neuroimage 61 (4), 1067–1082.
http://dx.doi.org/10.1016/j.neuroimage.2012.04.02922542638.

Huang, M.X., Song, T., Hagler Jr., D.J., Podgorny, I., Jousmaki, V., Cui, L., Gaa, K., Harrington,
D.L., Dale, A.M., Lee, R.R., Elman, J., Halgren, E., 2007. A novel integrated MEG and EEG
analysis method for dipolar sources. Neuroimage 37 (3), 731–748. http://dx.doi.org/
10.1016/j.neuroimage.2007.06.00217658272.

Huang, M.X., Theilmann, R.J., Robb, A., Angeles, A., Nichols, S., Drake, A., D3Andrea, J., Levy,
M., Holland, M., Song, T., Ge, S., Hwang, E., Yoo, K., Cui, L., Baker, D.G., Trauner, D.,
Coimbra, R., Lee, R.R., 2009. Integrated imaging approach with MEG and DTI to detect
mild traumatic brain injury in military and civilian patients. J. Neurotrauma 26 (8),
1213–1226. http://dx.doi.org/10.1089/neu.2008.067219385722.

Huang, M.X., Yurgil, K.A., Robb, A., Angeles, A., Diwakar, M., Risbrough, V.B., Nichols, S.L.,
McLay, R., Theilmann, R.J., Song, T., Huang, C.W., Lee, R.R., Baker, D.G., 2014c. Voxel-

http://dx.doi.org/10.1016/j.nicl.2015.04.011
http://dx.doi.org/10.1016/j.nicl.2015.04.011
http://www.ncbi.nlm.nih.gov/pubmed/12006280
http://www.ncbi.nlm.nih.gov/pubmed/14597300
http://dx.doi.org/10.1023/B:BRAT.0000006332.71345.b7
http://www.ncbi.nlm.nih.gov/pubmed/14977201
http://www.ncbi.nlm.nih.gov/pubmed/18848744
http://dx.doi.org/10.1017/S1355617705050277
http://www.ncbi.nlm.nih.gov/pubmed/15892898
http://www.ncbi.nlm.nih.gov/pubmed/18556217
http://dx.doi.org/10.1007/s11065-013-9237-2
http://www.ncbi.nlm.nih.gov/pubmed/23974873
http://www.ncbi.nlm.nih.gov/pubmed/9268816
http://www.ncbi.nlm.nih.gov/pubmed/21352925
http://www.ncbi.nlm.nih.gov/pubmed/21930901
http://dx.doi.org/10.1046/j.1528-1157.44.s10.3.x
http://www.ncbi.nlm.nih.gov/pubmed/14511388
http://www.ncbi.nlm.nih.gov/pubmed/17403644
http://dx.doi.org/10.1093/cercor/bhm038
http://www.ncbi.nlm.nih.gov/pubmed/17470446
http://dx.doi.org/10.1080/16501960410023859
http://www.ncbi.nlm.nih.gov/pubmed/15083873
http://www.ncbi.nlm.nih.gov/pubmed/9808463
http://dx.doi.org/10.1038/nrn755
http://www.ncbi.nlm.nih.gov/pubmed/11994752
http://www.ncbi.nlm.nih.gov/pubmed/8869050
http://refhub.elsevier.com/S2213-1582(15)00078-9/bb40
http://refhub.elsevier.com/S2213-1582(15)00078-9/bb40
http://dx.doi.org/10.3389/fneur.2013.00044
http://www.ncbi.nlm.nih.gov/pubmed/23641234
http://www.ncbi.nlm.nih.gov/pubmed/19940676
http://www.ncbi.nlm.nih.gov/pubmed/19434603
http://dx.doi.org/10.1016/j.neulet.2007.02.038
http://www.ncbi.nlm.nih.gov/pubmed/17363165
http://dx.doi.org/10.1016/j.neuroimage.2006.01.041
http://www.ncbi.nlm.nih.gov/pubmed/16540347
http://www.ncbi.nlm.nih.gov/pubmed/11970796
http://dx.doi.org/10.1016/j.tics.2013.11.007
http://www.ncbi.nlm.nih.gov/pubmed/24378542
http://www.ncbi.nlm.nih.gov/pubmed/18213530
http://www.ncbi.nlm.nih.gov/pubmed/10473216
http://dx.doi.org/10.1093/brain/awh705
http://www.ncbi.nlm.nih.gov/pubmed/16330498
http://www.ncbi.nlm.nih.gov/pubmed/9437028
http://dx.doi.org/10.1093/brain/awh066
http://www.ncbi.nlm.nih.gov/pubmed/14736751
http://refhub.elsevier.com/S2213-1582(15)00078-9/subref87
http://refhub.elsevier.com/S2213-1582(15)00078-9/subref87
http://refhub.elsevier.com/S2213-1582(15)00078-9/subref87
http://dx.doi.org/10.1080/02699050600676354
http://www.ncbi.nlm.nih.gov/pubmed/17060148
http://www.ncbi.nlm.nih.gov/pubmed/17207818
http://www.ncbi.nlm.nih.gov/pubmed/19617197
http://www.ncbi.nlm.nih.gov/pubmed/24055704
http://dx.doi.org/10.1016/j.nicl.2014.06.004
http://www.ncbi.nlm.nih.gov/pubmed/25009772
http://www.ncbi.nlm.nih.gov/pubmed/22542638
http://www.ncbi.nlm.nih.gov/pubmed/17658272
http://www.ncbi.nlm.nih.gov/pubmed/19385722


222 M. Diwakar et al. / NeuroImage: Clinical 8 (2015) 210–223
wise resting-state MEG source magnitude imaging study reveals neurocircuitry abnor-
mality in active-duty service members and veterans with PTSD. Neuroimage Clin. 5,
408–419. http://dx.doi.org/10.1016/j.nicl.2014.08.00425180160.

Ivins, B.J., Kane, R., Schwab, K.A., 2009. Performance on the automated neuro-
psychological assessment metrics in a nonclinical sample of soldiers screened
for mild TBI after returning from Iraq and Afghanistan: a descriptive analysis.
J. Head Trauma Rehabil. 24 (1), 24–31. http://dx.doi.org/10.1097/HTR.
0b013e318195704219158593.

Jakobs, O., Wang, L.E., Dafotakis, M., Grefkes, C., Zilles, K., Eickhoff, S.B., 2009. Effects of
timing and movement uncertainty implicate the temporo-parietal junction in the
prediction of forthcoming motor actions. Neuroimage 47 (2), 667–677. http://dx.
doi.org/10.1016/j.neuroimage.2009.04.06519398017.

Kawawaki, D., Shibata, T., Goda, N., Doya, K., Kawato, M., 2006. Anterior and superior lat-
eral occipito-temporal cortex responsible for target motion prediction during overt
and covert visual pursuit. Neurosci. Res. 54 (2), 112–123. http://dx.doi.org/10.1016/
j.neures.2005.10.01516337706.

Konrad, C., Geburek, A.J., Rist, F., Blumenroth, H., Fischer, B., Husstedt, I., Arolt, V.,
Schiffbauer, H., Lohmann, H., 2011. Long-term cognitive and emotional consequences
of mild traumatic brain injury. Psychol. Med. 41 (6), 1197–1211. http://dx.doi.org/10.
1017/S003329171000172820860865.

Kopell, N., Ermentrout, G.B., Whittington, M.A., Traub, R.D., 2000. Gamma rhythms and
beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. U. S. A
97 (4), 1867–1872. http://dx.doi.org/10.1073/pnas.97.4.186710677548.

Kraus, M.F., Susmaras, T., Caughlin, B.P., Walker, C.J., Sweeney, J.A., Little, D.M., 2007.
White matter integrity and cognition in chronic traumatic brain injury: a diffusion
tensor imaging study. Brain 130 (10), 2508–2519. http://dx.doi.org/10.1093/brain/
awm21617872928.

Langlois, J.A., Rutland-Brown, W., Wald, M.M., 2006. The epidemiology and impact of
traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21 (5), 375–378.
http://dx.doi.org/10.1097/00001199-200609000-0000116983222.

Lencer, R., Nagel, M., Sprenger, A., Zapf, S., Erdmann, C., Heide, W., Binkofski, F., 2004. Cor-
tical mechanisms of smooth pursuit eye movements with target blanking. An fMRI
study. Eur. J. Neurosci. 19 (5), 1430–1436. http://dx.doi.org/10.1111/j.1460-9568.
2004.03229.x15016102.

Lencer, R., Trillenberg, P., 2008. Neurophysiology and neuroanatomy of smooth pursuit in
humans. Brain Cogn. 68 (3), 219–228. http://dx.doi.org/10.1016/j.bandc.2008.08.
01318835076.

Lewine, J.D., Davis, J.T., Sloan, J.H., Kodituwakku, P.W., Orrison Jr., W.W., 1999.
Neuromagnetic assessment of pathophysiologic brain activity induced by minor
head trauma. A.J.N.R. Am. J. Neuroradiol. 20 (5), 857–86610369357.

Lewine, J.D., Orrison Jr., W.W., 1995. Spike and slow wave localization by magnetoen-
cephalography. Neuroimaging Clin. N. Am. 5 (4), 575–5968564285.

Ling, J.M., Peña, A., Yeo, R.A., Merideth, F.L., Klimaj, S., Gasparovic, C., Mayer, A.R., 2012.
Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain inju-
ry: a longitudinal perspective. Brain 135 (4), 1281–1292. http://dx.doi.org/10.1093/
brain/aws07322505633.

Loonstra, A.S., Tarlow, A.R., Sellers, A.H., 2001. COWAT metanorms across age, education,
and gender. Appl. Neuropsychol. 8 (3), 161–166. http://dx.doi.org/10.1207/
S15324826AN0803_511686651.

Makin, A.D., Poliakoff, E., El-Deredy, W., 2009. Tracking visible and occluded targets: changes
in event related potentials during motion extrapolation. Neuropsychologia 47 (4),
1128–1137. http://dx.doi.org/10.1016/j.neuropsychologia.2009.01.01019350707.

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data.
J. Neurosci. Methods 164 (1), 177–190. http://dx.doi.org/10.1016/j.jneumeth.2007.
03.02417517438.

Maruta, J., Lee, S.W., Jacobs, E.F., Ghajar, J., 2010a. A unified science of concussion. Annals
of the New York Academy of Sciences 1208 (1), 58–66. http://dx.doi.org/10.1111/j.
1749-6632.2010.05695.x.

Maruta, J., Suh, M., Niogi, S.N., Mukherjee, P., Ghajar, J., 2010b. Visual tracking synchroni-
zation as a metric for concussion screening. J. Head Trauma Rehabil. 25 (4), 293–305.
http://dx.doi.org/10.1097/HTR.0b013e3181e6793620611047.

Mayer, A.R., Ling, J., Mannell, M.V., Gasparovic, C., Phillips, J.P., Doezema, D., Reichard,
R., Yeo, R.A., 2010. A prospective diffusion tensor imaging study in mild traumat-
ic brain injury. Neurology 74 (8), 643–650. http://dx.doi.org/10.1212/WNL.
0b013e3181d0ccdd20089939.

Mayer, A.R., Mannell, M.V., Ling, J., Elgie, R., Gasparovic, C., Phillips, J.P., Doezema, D., Yeo,
R.A., 2009. Auditory orienting and inhibition of return in mild traumatic brain injury:
a FMRI study. Hum. Brain Mapp. 30 (12), 4152–4166. http://dx.doi.org/10.1002/hbm.
2083619554558.

Mayer, A.R., Mannell, M.V., Ling, J., Gasparovic, C., Yeo, R.A., 2011. Functional connectivity
in mild traumatic brain injury. Hum. Brain Mapp. 32 (11), 1825–1835. http://dx.doi.
org/10.1002/hbm.2115121259381.

Merchant, H., Harrington, D.L., Meck, W.H., 2013. Neural basis of the perception and esti-
mation of time. Annu. Rev. Neurosci. 36, 313–336. http://dx.doi.org/10.1146/
annurev-neuro-062012-17034923725000.

Miles, L., Grossman, R.I., Johnson, G., Babb, J.S., Diller, L., Inglese, M., 2008. Short-term DTI
predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj. 22 (2),
115–122. http://dx.doi.org/10.1080/0269905080188881618240040.

Mizuki, Y., Kajimura, N., Kai, S., Suetsugi, M., Ushijima, I., Yamada,M., 1992. Differential re-
sponses to mental stress in high and low anxious normal humans assessed by frontal
midline theta activity. Int. J. Psychophysiol. 12 (2), 169–178. http://dx.doi.org/10.
1016/0167-8760(92)90008-Y1592670.

Mizuki, Y., Tanaka, M., Isozaki, H., Nishijima, H., Inanaga, K., 1980. Periodic appearance of
theta rhythm in the frontal midline area during performance of a mental task.
Electroencephalogr. Clin. Neurophysiol. 49 (3–4), 345–351. http://dx.doi.org/10.
1016/0013-4694(80)90229-16158411.
Monchi, O., Petrides, M., Strafella, A.P., Worsley, K.J., Doyon, J., 2006. Functional role of the
basal ganglia in the planning and execution of actions. Ann. Neurol. 59 (2), 257–264.
http://dx.doi.org/10.1002/ana.2074216437582.

Mosher, J.C., Leahy, R.M., Lewis, P.S., 1999. EEG and MEG: forward solutions for inverse
methods. I. E.E.E. Trans. Biomed. Eng. 46 (3), 245–259. http://dx.doi.org/10.1109/10.
74897810097460.

Nagel, M., Sprenger, A., Hohagen, F., Binkofski, F., Lencer, R., 2008. Cortical mechanisms of
retinal and extraretinal smooth pursuit eye movements to different target velocities.
Neuroimage 41 (2), 483–492. http://dx.doi.org/10.1016/j.neuroimage.2008.02.
05818420428.

Nagel, M., Sprenger, A., Zapf, S., Erdmann, C., Kömpf, D., Heide, W., Binkofski, F., Lencer, R.,
2006. Parametric modulation of cortical activation during smooth pursuit with and
without target blanking. an fMRI study. Neuroimage 29 (4), 1319–1325. http://dx.
doi.org/10.1016/j.neuroimage.2005.08.05016216531.

Niedermeyer, E., Lopes da Silva, F.H., 2005. Electroencephalography: Basic Principles, Clin-
ical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia.

Niogi, S.N., Mukherjee, P., 2010. Diffusion tensor imaging of mild traumatic brain injury.
J. Head Trauma Rehabil. 25 (4), 241–255. http://dx.doi.org/10.1097/HTR.
0b013e3181e52c2a20611043.

Niogi, S.N., Mukherjee, P., Ghajar, J., Johnson, C.E., Kolster, R., Lee, H., Suh, M., Zimmerman,
R.D., Manley, G.T., McCandliss, B.D., 2008. Structural dissociation of attentional con-
trol and memory in adults with and without mild traumatic brain injury. Brain 131
(12), 3209–3221. http://dx.doi.org/10.1093/brain/awn24718952679.

O3Driscoll, G.A., Wolff, A.L., Benkelfat, C., Florencio, P.S., Lal, S., Evans, A.C., 2000. Functional
neuroanatomy of smooth pursuit and predictive saccades. NeuroReport 11 (6),
1335–134010817617.

Orban de Xivry, J.J., Missal, M., Lefèvre, P., 2008. A dynamic representation of target mo-
tion drives predictive smooth pursuit during target blanking. J. Vis. 8 (15), 1–13.
http://dx.doi.org/10.1167/8.15.619146290.

Pascual, B., Masdeu, J.C., Hollenbeck, M., Makris, N., Insausti, R., Ding, S.L., Dickerson, B.C.,
2015. Large-scale brain networks of the human left temporal pole: a functional con-
nectivity MRI study. Cereb. Cortex 25 (3), 680–702. http://dx.doi.org/10.1093/cercor/
bht26024068551.

Povlishock, J.T., Coburn, T.H., 1989.Morphopathological change associatedwithmild head
injury. In: Levin, H.S., Eisenberg, H.M., Benton, A.L. (Eds.), Mild Head Injury. Oxford
University, New York, pp. 37–52.

Rugg-Gunn, F.J., Symms, M.R., Barker, G.J., Greenwood, R., Duncan, J.S., 2001. Diffusion im-
aging shows abnormalities after blunt head traumawhen conventional magnetic res-
onance imaging is normal. J. Neurol. Neurosurg. Psychiatry 70 (4), 530–533. http://
dx.doi.org/10.1136/jnnp.70.4.53011254782.

Rutgers, D.R., Toulgoat, F., Cazejust, J., Fillard, P., Lasjaunias, P., Ducreux, D., 2008. White
matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging
study. A.J.N.R. Am. J. Neuroradiol. 29 (3), 514–519. http://dx.doi.org/10.3174/ajnr.
A085618039754.

Schrader, H., Mickeviciene, D., Gleizniene, R., Jakstiene, S., Surkiene, D., Stovner, L.J.,
Obelieniene, D., 2009. Magnetic resonance imaging after most common form of
concussion. B.M.C. Med. Imaging 9, 11. http://dx.doi.org/10.1186/1471-2342-9-
1119534772.

Sekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., Miyashita, Y., 2001. Reconstructing
spatio-temporal activities of neural sources using an MEG vector beamformer tech-
nique. I. E.E.E. Trans. Biomed. Eng. 48 (7), 760–771. http://dx.doi.org/10.1109/10.
93090111442288.

Shenton, M.E., Hamoda, H.M., Schneiderman, J.S., Bouix, S., Pasternak, O., Rathi, Y., Vu,
M.A., Purohit, M.P., Helmer, K., Koerte, I., Lin, A.P., Westin, C.F., Kikinis, R., Kubicki,
M., Stern, R.A., Zafonte, R., 2012. A review of magnetic resonance imaging and diffu-
sion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 6
(2), 137–192. http://dx.doi.org/10.1007/s11682-012-9156-522438191.

Singer, W., 1999. Neuronal synchrony: a versatile code for the definition of relations?
Neuron 24 (1), 49–65. http://dx.doi.org/10.1016/S0896-6273(00)80821-110677026.

Smith, M.B., 1995. About postmodernism: reply to Gergen and others. American Psychol-
ogist 50 (5), 393–394. http://dx.doi.org/10.1037/0003-066X.50.5.393.

Smits, M., Houston, G.C., Dippel, D.W., Wielopolski, P.A., Vernooij, M.W., Koudstaal, P.J.,
Hunink, M.G., van der Lugt, A., 2011. Microstructural brain injury in post-
concussion syndrome after minor head injury. Neuroradiol. 53 (8), 553–563. http://
dx.doi.org/10.1007/s00234-010-0774-620924757.

Song, T., Gaa, K., Cui, L., Feffer, L., Lee, R.R., Huang, M., 2008. Evaluation of signal space sep-
aration via simulation. Med. Biol. Eng. Comput. 46 (9), 923–932. http://dx.doi.org/10.
1007/s11517-007-0290-y18196307.

Stuss, D.T., Stethem, L.L., Hugenholtz, H., Picton, T., Pivik, J., Richard, M.T., 1989. Reaction
time after head injury: fatigue, divided and focused attention, and consistency of per-
formance. J. Neurol. Neurosurg. Psychiatry 52 (6), 742–748. http://dx.doi.org/10.
1136/jnnp.52.6.7422746267.

Suh, M., Basu, S., Kolster, R., Sarkar, R., McCandliss, B., Ghajar, J., Cognitive and
Neurobiological Research Consortium, 2006. Increased oculomotor deficits during
target blanking as an indicator of mild traumatic brain injury. Neurosci. Lett. 410
(3), 203–207. http://dx.doi.org/10.1016/j.neulet.2006.10.00117055156.

Takahashi, N., Shinomiya, S., Mori, D., Tachibana, S., 1997. Frontal midline theta rhythm in
young healthy adults. Clin. Electroencephalogr. 28 (1), 49–549013051.

Taulu, S., Kajola, M., Simola, J., 2004a. Suppression of interference and artifacts by the sig-
nal space separation method. Brain Topogr. 16 (4), 269–275. http://dx.doi.org/10.
1023/B:BRAT.0000032864.93890.f915379226.

Taulu, S., Simola, J., 2006. Spatiotemporal signal space separation method for rejecting
nearby interference in MEG measurements. Phys. Med. Biol. 51 (7), 1759–1768.
http://dx.doi.org/10.1088/0031-9155/51/7/00816552102.

Taulu, S., Simola, J., Kajola, M., 2004b. MEG recordings of DC fields using the signal space
separation method (SSS). Neurol. Clin. Neurophysiol. 2004, 3516012635.

http://www.ncbi.nlm.nih.gov/pubmed/25180160
http://dx.doi.org/10.1097/HTR.0b013e3181957042
http://www.ncbi.nlm.nih.gov/pubmed/19158593
http://www.ncbi.nlm.nih.gov/pubmed/19398017
http://dx.doi.org/10.1016/j.neures.2005.10.015
http://www.ncbi.nlm.nih.gov/pubmed/16337706
http://dx.doi.org/10.1017/S0033291710001728
http://www.ncbi.nlm.nih.gov/pubmed/20860865
http://www.ncbi.nlm.nih.gov/pubmed/10677548
http://dx.doi.org/10.1093/brain/awm216
http://www.ncbi.nlm.nih.gov/pubmed/17872928
http://www.ncbi.nlm.nih.gov/pubmed/16983222
http://dx.doi.org/10.1111/j.1460-9568.2004.03229.x
http://www.ncbi.nlm.nih.gov/pubmed/15016102
http://dx.doi.org/10.1016/j.bandc.2008.08.013
http://www.ncbi.nlm.nih.gov/pubmed/18835076
http://www.ncbi.nlm.nih.gov/pubmed/10369357
http://www.ncbi.nlm.nih.gov/pubmed/8564285
http://dx.doi.org/10.1093/brain/aws073
http://www.ncbi.nlm.nih.gov/pubmed/22505633
http://dx.doi.org/10.1207/S15324826AN0803_5
http://www.ncbi.nlm.nih.gov/pubmed/11686651
http://www.ncbi.nlm.nih.gov/pubmed/19350707
http://dx.doi.org/10.1016/j.jneumeth.2007.03.024
http://www.ncbi.nlm.nih.gov/pubmed/17517438
http://dx.doi.org/10.1111/j.1749-6632.2010.05695.x
http://dx.doi.org/10.1111/j.1749-6632.2010.05695.x
http://www.ncbi.nlm.nih.gov/pubmed/20611047
http://dx.doi.org/10.1212/WNL.0b013e3181d0ccdd
http://www.ncbi.nlm.nih.gov/pubmed/20089939
http://dx.doi.org/10.1002/hbm.20836
http://www.ncbi.nlm.nih.gov/pubmed/19554558
http://www.ncbi.nlm.nih.gov/pubmed/21259381
http://dx.doi.org/10.1146/annurev-neuro-062012-170349
http://www.ncbi.nlm.nih.gov/pubmed/23725000
http://www.ncbi.nlm.nih.gov/pubmed/18240040
http://dx.doi.org/10.1016/0167-8760(92)90008-Y
http://www.ncbi.nlm.nih.gov/pubmed/1592670
http://dx.doi.org/10.1016/0013-4694(80)90229-1
http://www.ncbi.nlm.nih.gov/pubmed/6158411
http://www.ncbi.nlm.nih.gov/pubmed/16437582
http://dx.doi.org/10.1109/10.748978
http://www.ncbi.nlm.nih.gov/pubmed/10097460
http://dx.doi.org/10.1016/j.neuroimage.2008.02.058
http://www.ncbi.nlm.nih.gov/pubmed/18420428
http://www.ncbi.nlm.nih.gov/pubmed/16216531
http://refhub.elsevier.com/S2213-1582(15)00078-9/bb81
http://refhub.elsevier.com/S2213-1582(15)00078-9/bb81
http://dx.doi.org/10.1097/HTR.0b013e3181e52c2a
http://www.ncbi.nlm.nih.gov/pubmed/20611043
http://www.ncbi.nlm.nih.gov/pubmed/18952679
http://www.ncbi.nlm.nih.gov/pubmed/10817617
http://www.ncbi.nlm.nih.gov/pubmed/19146290
http://dx.doi.org/10.1093/cercor/bht260
http://www.ncbi.nlm.nih.gov/pubmed/24068551
http://refhub.elsevier.com/S2213-1582(15)00078-9/subref22
http://refhub.elsevier.com/S2213-1582(15)00078-9/subref22
http://refhub.elsevier.com/S2213-1582(15)00078-9/subref22
http://www.ncbi.nlm.nih.gov/pubmed/11254782
http://dx.doi.org/10.3174/ajnr.A0856
http://www.ncbi.nlm.nih.gov/pubmed/18039754
http://dx.doi.org/10.1186/1471-2342-9-11
http://www.ncbi.nlm.nih.gov/pubmed/19534772
http://dx.doi.org/10.1109/10.930901
http://www.ncbi.nlm.nih.gov/pubmed/11442288
http://www.ncbi.nlm.nih.gov/pubmed/22438191
http://www.ncbi.nlm.nih.gov/pubmed/10677026
http://dx.doi.org/10.1037/0003-066X.50.5.393
http://www.ncbi.nlm.nih.gov/pubmed/20924757
http://dx.doi.org/10.1007/s11517-007-0290-y
http://www.ncbi.nlm.nih.gov/pubmed/18196307
http://dx.doi.org/10.1136/jnnp.52.6.742
http://www.ncbi.nlm.nih.gov/pubmed/2746267
http://www.ncbi.nlm.nih.gov/pubmed/17055156
http://www.ncbi.nlm.nih.gov/pubmed/9013051
http://dx.doi.org/10.1023/B:BRAT.0000032864.93890.f9
http://www.ncbi.nlm.nih.gov/pubmed/15379226
http://www.ncbi.nlm.nih.gov/pubmed/16552102
http://www.ncbi.nlm.nih.gov/pubmed/16012635


223M. Diwakar et al. / NeuroImage: Clinical 8 (2015) 210–223
Teichner, G., Wagner, M.T., 2004. The test of memory malingering (TOMM): normative
data from cognitively intact, cognitively impaired, and elderly patients with demen-
tia. Arch. Clin. Neuropsychol. 19 (3), 455–464. http://dx.doi.org/10.1016/S0887-
6177(03)00078-715033228.

de Jongh, A., Baayen, J.C., De Munck, J.C., Heethaar, R.M., Vandertop, W.P., Stam, C.J., 2003.
The influence of brain tumor treatment on pathological delta activity in MEG.
Neuroimage 20 (4), 2291–2301. http://dx.doi.org/10.1016/j.neuroimage.2003.07.
03014683730.

Thurman, D.J., Alverson, C., Dunn, K.A., Guerrero, J., Sniezek, J.E., 1999. Traumatic brain in-
jury in the United States: a public health perspective. J. Head Trauma Rehabil. 14 (6),
602–615. http://dx.doi.org/10.1097/00001199-199912000-0000910671706.
Van Veen, B.D., van Drongelen,W., Yuchtman, M., Suzuki, A., 1997. Localization of brain elec-
trical activity via linearly constrained minimum variance spatial filtering. I. E.E.E. Trans.
Biomed. Eng. 44 (9), 867–880. http://dx.doi.org/10.1109/10.6230569282479.

Vieth, J.B., Kober, H., Grummich, P., 1996. Sources of spontaneous slow waves associated
with brain lesions, localized by using the MEG. Brain Topogr. 8 (3), 215–221. http://
dx.doi.org/10.1007/BF011847728728406.

Wechsler, D., 1997. Wechsler Adult Intelligence Scale — III. psychological corporation,
New York.

Zetterberg, H., Smith, D.H., Blennow, K., 2013. Biomarkers of mild traumatic brain injury
in cerebrospinal fluid and blood. Nat. Rev. Neurol. 9 (4), 201–210. http://dx.doi.org/
10.1038/nrneurol.2013.923399646.

http://dx.doi.org/10.1016/S0887-6177(03)00078-7
http://www.ncbi.nlm.nih.gov/pubmed/15033228
http://dx.doi.org/10.1016/j.neuroimage.2003.07.030
http://www.ncbi.nlm.nih.gov/pubmed/14683730
http://www.ncbi.nlm.nih.gov/pubmed/10671706
http://www.ncbi.nlm.nih.gov/pubmed/9282479
http://www.ncbi.nlm.nih.gov/pubmed/8728406
http://refhub.elsevier.com/S2213-1582(15)00078-9/bb42
http://refhub.elsevier.com/S2213-1582(15)00078-9/bb42
http://www.ncbi.nlm.nih.gov/pubmed/23399646

	Filling in the gaps: Anticipatory control of eye movements in chronic mild traumatic brain injury
	1. Introduction
	2. Methods
	2.1. Subjects
	2.2. Behavioral and cognitive assessments
	2.3. Visual tracking task
	2.4. Analysis of visual tracking data
	2.5. MEG acquisition and analysis
	2.6. Group analysis of MEG data
	2.7. Classification analyses
	2.8. Optimized SVM functions and behavioral measures

	3. Results
	3.1. Behavioral symptoms and neuropsychological test performance
	3.2. Visual-tracking performance
	3.3. MEG results
	3.4. Classification analyses
	3.4.1. MEG beta amplitude in ROIs
	3.4.2. Visual tracking measures
	3.4.3. Neuropsychological variables
	3.4.4. Optimized MEG ROIs and neuropsychological variables


	4. Discussion
	4.1. Neural mechanisms of impaired tracking
	4.2. Classification accuracy of MEG and behavioral measures

	5. Conclusions
	Funding
	Acknowledgments
	Appendix A. Supplementary data
	References




