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ABSTRACT OF THE DISSERTATION

Rapid Thermal and Electrochemical Characterization with Low Measurement Uncertainty

by

Yuan Hu

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2021

Professor Timothy S. Fisher, Chair

Spectroscopy methods are widely used for system characterization. Typically a perturbation

signal is introduced to the system, and corresponding outputs are detected. The underlying

properties of a system can be determined by comparing the output to the input. This

work employs advanced statistical methods to improve overall performance of such methods

applied to energy transport and storage, in terms of accuracy, time efficiency and cost for

spectroscopy methods to characterize thermal and electrochemical systems.

The first part of this work reports a custom spectroscopy system that employs periodic

heating to characterize thermal diffusivity under ambient conditions; the technique is also

known as Ångström’s method. We employ forced convection to reduce variation in convec-

tive heat transfer losses along the heat propagation direction to enable the experiment to

be conducted outside vacuum. We employ IR thermography to for data-rich temperature

detection and further introduce a Bayesian framework for uncertainty quantification and

uncertainty reduction with increased data. We demonstrate accurate results (< 5% error)

for multiple short metal strips.

In the second part we extend the room temperature spectroscopy approach to high tem-

peratures. For high-temperature characterization, the testing environment is difficult to

control precisely; therefore, additional unknowns exist in the physical model as compared to
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low-temperature measurements. In addition, nonlinear radiation loss are present, and the

transient heat transfer process must be modeled numerically. Solving the inverse problem

using conventional regression approaches is challenging because the solutions are not unique

and lack uncertainty estimates. Therefore, we develop a Bayesian framework to solve the

inverse problem. The main challenges overcome are: (1) probing the posterior distribution

given a computationally expensive forward model and (2) achieving convergence in the sam-

pling process for a model with a relatively high number of unknowns. In this study we report

a computationally efficient parametric surrogate model to accelerate the Bayesian analysis

and employ a No-U-Turn sampler to achieve good convergence in the sampling process. The

custom instrument exhibits high accuracy (approx. 5% error) and requires only 10 min. ob-

tain steady high-temperature results, compared to several hours using conventional methods

and commercial instruments.

Lastly we demonstrate a broadband spectroscopy instrument for electrochemical impedance

spectroscopy (EIS) measurements for supercapacitors. Measuring EIS is challenging because

(1) low-frequency scans are time consuming and (2) impedance of supercapacitors typically

changes by several orders of magnitude across a wide frequency band. The custom in-

strument employs a broadband exponential chirp signal for rapid frequency scanning. To

account for large impedance variations, we report a custom circuit for automatically adapt-

able impedance matching during measurements. The custom instrument is accurate and

exhibits four times measurement time reduction and ten times cost reduction compared to

leading commercial instruments.
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A Appendix for room temperature Ångström’s method study . . . . . . . . 123

B Appendix for electrochemical impedance spectroscopy characterization us-

ing exponential chirp signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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CHAPTER 1

Introduction

Spectroscopy methods are powerful tools to characterize thermal and electrochemical system

because of their simplicity and robustness. However, current spectroscopy techniques are

time-consuming, expensive and lack systematic uncertainty quantification. Therefore, this

dissertation is written to develop novel spectroscopy methods with faster measurement speed,

lower cost and systematic framework for uncertainty quantification.

This chapter identifies the need for enhanced spectroscopy method and outlines the objec-

tives of the current study. Section 1.1 briefly discuss the advantage of spectroscopy methods

to characterize thermal diffusivity and existing studies. We also briefly review the constrains

of existing techniques for both room temperature and high temperature characterizations

and present our solutions. Section 1.2 briefly discuss the significance of electrochemical

impedance spectroscopy (EIS) techniques are existing studies. We also discuss the limita-

tions of current studies and our improvements. Section 1.3 overviews this dissertation by

chapter and summarize the main contributions of this work.

1.1 Spectroscopy method for thermal diffusivity characterization

In this study, we discuss spectroscopy methods for thermal diffusivity characterization at

ambient condition and at high temperature respectively.
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1.1.1 Ambient condition thermal diffusivity characterization

Thin-film foil-like materials are commonly used as heat spreader in electronic packaging

for thermal management [86][22]. Precise understanding of thermal properties of the heat

spreader are crucial to accurately model the temperature of the chip in real time. For

such materials, established thermal diffusivity measurements typically employ transient ap-

proaches, such as 3ω [36] and laser flash [95] methods. 3ω methods require a layer of metallic

coating on the sample. This layer often involves cleanroom processes and deposition in

vacuum at elevated temperatures [137], which can potentially alter the sample. Laser flash

is another established transient technique; however it suffers heat loss from sample to the

holder for less thermally conductive materials [94]. Steady-state approaches, such as Joule

heating methods, are also commonly used for thermal conductivity measurements of bulk

materials and for thermal interfacial resistance [130][59]. However, the setups typically in-

volve vacuum to eliminate convection losses and long times to reach steady state. Meanwhile,

contact resistance between the instrument and the sample also contributes to measurement

error, which is difficult to quantify.

Ångström’s method was initially developed in 1863 [20] and is another effective approach

for one-dimensional thermal diffusivity measurements. As compared to 3ω and laser flash

methods, Ångström’s method involves less sample preparation and does not require mini-

mization of heat loss to surroundings. As compared to steady-state methods, Ångström’s

method is much faster and does not require accurate quantification of Joule heating into

the sample, thermal resistance between the instrument and the sample, and heat loss to the

surroundings. A limitation of the original Ångström’s method is its semi-infinite assumption,

such that long samples (>150 mm) are typically required [140][97][88]. To enable thermal

diffusivity measurements on short samples, a modified Ångström’s method was developed by

Lopez-Baeza et al. [77] based on a transient fin model of a cylindrical rod, and temperatures

were measured using thermocouples in vacuum. However, this setup is not appropriate for

temperature measurements in thin films because of heat loss to the temperature sensors.

This work is based on Lopze-Baeza et al.’s physical model, but employs IR thermography
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for non-contact temperature measurements. For IR thermography, accurately measuring

temperature of samples placed in vacuum is challenging because infrared radiation would

be measured through a specialized window. Therefore in this work, IR thermography is

performed at ambient conditions, in which temperature measurements are much noisier

as compared to those performed in vacuum. In order to quantify and reduce experimental

uncertainty, this work reports a Bayesian framework that benefits from the increased number

of temperature measurements in IR thermography to reduce parameter uncertainties.

1.1.2 High temperature thermal diffusivity characterization

Accurate thermal diffusivity characterization at high temperatures is very important for

aerospace [93][27][108] and energy industries [138][117][100]. Currently, the laser-flash [95,

41, 40], transient plane source [55], hot wire [61] and Ångström’s [20][106] methods are

commonly used for such characterization. Compared to other methods, Ångström’s method

is robust and simple to realize. Typically a portion of a sample is periodically heated,

and thermal diffusivity is extracted by analyzing amplitude and phase differences between

temperature profiles along the heat conduction direction. The method typically does not

require knowledge or precise control of (1) contact resistance between the sample and the

heater, (2) heat input to the sample, and (3) sample heat loss to the surroundings.

Ångström’s method has been previously used for thermal diffusivity characterization at

high temperatures. Prior studies can be categorized into in-plane and cross-plane measure-

ments. For in-plane measurements, the sample is typically heated periodically at an outer

surface, whereas top and bottom surfaces are thermally insulated. Two thermocouples are

placed at different radii to measure oscillatory temperature profiles, and thermal diffusivity

is computed from temperature amplitude decay, phase shift or both. Katsura[69] used such

a technique on silica glass up to 9 GPa and 1200 K with approx. 3% accuracy. Xu et al.[132]

used a similar apparatus and measured olivine, wadsleyite and ringwoodite up to 1373 K

with 12% accuracy. For thin sheets or foils, Hatta et al.[60] used a mask to cover part of

a strip sample and irradiated both the sample and the mask using a lamp with periodic
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intensity. Thermal diffusivity was calculated by measuring the decay of temperature oscilla-

tion at multiple locations within the masked region. This method achieved 5% accuracy for

in-plane thermal diffusivity of nickel foil up to 500 ◦C.

For cross-plane measurements, a cylindrical sample can be periodically heated at either

a top or bottom surface. Typically two or three thermocouples are placed at different axial

locations to measure temperature oscillations, and thermal diffusivity is extracted based on

amplitude decay and phase shift. Sidles and Danielson[106] developed an apparatus and

measured copper and nickel rods (>50 cm) up to 500 ◦C. Abeles et al. [13] reported an ap-

paratus that measures thermal diffusivity of cylindrical solids (Armco iron and germanium)

up to 1000 ◦C with an accuracy of approx. 2%. Vandersande and Pohl[119] reported an

instrument that is more convenient to assemble and is capable of measuring thermal diffu-

sivity between 80-500 K with ±3% - ±7% accuracy. An alternative technique for cross-plane

thermal diffusivity measurements was developed by Cowan[42]. The method is similar to the

laser flash method and is suitable for electrically conductive thin disks. In Cowan’s method,

a high-intensity electron gun with uniform intensity distribution bombards the front side

of the disk periodically. The temperature phase difference between the front and the back

surfaces of the disk is used to determine thermal diffusivity. Wheeler[125] used this approach

and measured refractory metals up to 3000 K with 5% accuracy. Tanaka and Suzuki[115]

employed a similar technique on pyrolytic graphite up to 1900 K with 5% accuracy.

The foregoing methods (except Cowan’s) require a heat source external to the sample to

heat it and the surroundings to high temperature prior to periodic heating. This process is

typically lengthy, requiring hours to reach steady, elevated temperature. To mitigate heat

loss, radiation shields are often used that preclude the use of non-contact, non-intrusive tem-

perature detection. Thermocouples are commonly used, and drilling or welding is typically

involved to attach thermocouples to the sample, introducing heat losses and potentially al-

tering the sample’s structure. In addition, temperature measurements are limited by the

number of thermocouples, leading to unreliable results if defects are present between the

thermocouples[58].
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In this work and in contrast to methods that heat samples from surroundings, we employ

a concentrated light source to directly heat samples (3.5” OD thin disks) to high tempera-

tures. Upon reaching a steady target temperature (typically under 10 mins), we modulate

the light source’s heat flux periodically. This approach significantly decreases the total time

for characterization and increases testing throughput. Similar to Hatta et al.’s approach[60],

we partially block the light source such that only the center of the sample is heated. However,

several key difference exist. First, in Hatta’s work samples were heated to high tempera-

tures (up to 500 ◦C) from the surroundings. Second, in Hatta et al.’s work the radiation

losses were linearized, whereas in our case temperature gradients along the direction of heat

conduction exist even under steady heating, and nonlinear radiation losses are included in

the model. Thirdly, in Hatta’s work amplitude decay was calculated by comparing two

temperature profiles, one from the unmasked region and the other from the masked region.

This approach requires the light source to be highly uniform. In our approach, amplitude

decay and phase shift are calculated only from masked region. This approach is more robust

against uncertainties and variations in the intensity distribution of the light source, as later

demonstrated in our sensitivity analysis. Fourthly, Hatta’s work requires thermocouples for

temperature detection. In our study, an IR camera calibrated up to 2000 ◦C is employed

for non-contact and non-intrusive temperature detection. Moreover, IR thermography offers

data-rich temperature profiles that increase measurement reliability[58] and decrease uncer-

tainties for parameters of interest [67]. Here, we employ a Bayesian framework that benefits

from the data-rich IR thermography to quantify uncertainty rigorously for the parameters

of interest.

In our study we employ a concentrated light source to directly heat the sample to

steady high temperatures rapidly. However, this introduces significant temperature gra-

dient along the heat conduction direction. As a result, radiation losses cannot be linearized

and temperature-dependent properties are required to evaluate the physical model numer-

ically. This create several difficulties for parameter estimation. First, applying regression

approaches suffer solution uniqueness issue because of large number of local minima for the
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nonlinear models. Instead of seeking specific parameters that best fit the model, we employ

a Bayesian framework and treat parameters as random variables with statistical distribu-

tions. In addition, Bayesian framework does not require linearing the model for uncertainty

quantification as compared to the covariance matrix approach [21]. Furthermore, Bayesian

framework allows incorporating prior knowledge for the parameter of interest using a prior

distribution, which also serves as a regularization mechanism for the inverse problem [122].

The disadvantage of the Bayesian framework is that it probes a probability distribution

using Markov chain Monte Carlo (MCMC) methods, which require to evaluate the physical

model extensively and becomes impractical when the physical model is computationally

expensive. To accelerate the Bayesian analysis, previous studies from other fields employ

surrogate models or reduced order models to replace the original model [23][101][114]. In

this study, we develop an accurate parametric surrogate model in the form of polynomial

chaos and achieve nearly four orders of magnitude of speed improvement.

Having obtained an efficient surrogate model, we discuss another challenge in the sam-

pling process. Conventional sampling techniques typically employ random walk to explore

the parameter space. However, this becomes inefficient as the number of unknowns increase

and suffers poor convergence in the sampling process. We employ a No-U-Turn sampler

which explores the posterior distribution more thoroughly and demonstrates satisfactory

convergence for the sampling process.

1.2 Spectroscopy method for electrochemical characterization

Supercapacitors (or electrochemical capacitors) with high power densities, short charging

times and long cycle lifetimes are being widely used in energy management applications,

such as hybrid vehicles, energy harvesting processes, consumer electronics and bulk energy

storage from the utility grid [70][128]. Research and development in the field of superca-

pacitors is becoming increasingly important as the market grows [37][39]. Electrochemical

impedance spectroscopy (EIS) is one of the most common techniques to assess the electro-
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chemical performance of supercapacitors [113][17]. It measures impedance over a relevant

frequency band and is often performed under DC bias voltage. EIS provides fundamental

performance indicators, such as capacitance, equivalent series resistance (ESR) and response

to arbitrary input signals in the time domain [33]. This work focuses on supercapacitors

with relative lower nominal voltages (about 2 V). These supercapacitors are typically assem-

bled in series and parallel configurations to achieve higher nominal voltage and capacitance

for energy storage applications [66]. For such supercapacitors, EIS are typically performed

under nominal bias voltages [105] to characterize their in-operando performance. For EIS

measurements, the majority of prior electrochemical studies have used commercially avail-

able instruments. Such instruments typically perform multiple measurements each at a single

frequency using steady-state response to sinusoidal input, and scan the entire frequency band

sequentially. The main drawback of this approach is its lengthy measurement time at low

frequencies[96]. In contrast, broadband excitation that reduces measurement time can be

achieved by using exponential chirp signals, for which the frequency sweep rate is exponen-

tial [43][134]. By using these chirp signals, more time is spent exciting the supercapacitor at

lower frequencies. The expression for a generic exponential chirp voltage signal as a function

of time t is given in Eq. 1.1:

v(t) = A sin

{
φ0 + 2πf0

(
kt − 1

ln k

)}
, k =

(
f1

f0

)1/T

(1.1)

where A is the voltage amplitude, φ0 is the initial phase, f0 is the starting frequency, f1

is the ending frequency, and T is the time required to scan from f0 to f1. Fig. 1.1A shows an

exponential chirp signal with initial frequency f0= 10 mHz, final frequency f1= 10 Hz and

the total sweep time T to scan from f0 to f1 (T=150 s). Figs. 1.1B and C show exponentially

varied frequency with respect to time for chirp signals, and illustrate the proportion of time

spent in different frequency bands on logarithm and linear frequency scales respectively.
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Figure 1.1: (A) A chirp signal with initial frequency f0 = 10 mHz, final frequency f1 = 10

Hz, and T = 150 s. (B) The frequency as a function of time for the chirp signal shown in (A)

on a logarithm frequency scale. The time required to scan each frequency decade is 50 s. (C)

The frequency with respect to time for the chirp signal shown in (A) on a linear frequency

scale.

A previously study using chirp signals was able to obtain accurate EIS results from 1

Hz to 2 kHz for a Randles equivalent circuit composed of resistors and capacitors with

known values [43]. However, real supercapacitors typically require a broader frequency band
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from a few millihertz to a few kilohertz to characterize important performance parameters

[133][112][129][73], such as self-discharge rate, ionic transfer resistance, ESR and capacitance

[98]. Therefore, obtaining EIS information for supercapacitors over such broad frequency

band under a bias voltage is critical for electrochemical research as well as manufacturing

quality control. Here, we report a new technique that employs automatically selectable shunt

resistances and different chirp signals tuned to frequency subbands adaptively. As a result,

accurate EIS measurements are achieved over a broad frequency band (10 mHz to 2 kHz)

for multiple commercial and laboratory-fabricated supercapacitor samples.

1.3 Overview of the dissertation

In this dissertation, Chapter 2 presents a custom thermal diffusivity instrument using a

spectroscopy technique, also known as Ångström’s method to accurately measure foil-like

materials. The highlights of this study is summarized below:

1. Conventional Ångström’s methods are performed in vacuum. However, this is inconve-

nient and some samples are inappropriate to test under vacuum. We introduce forced

convection using a uniform air nozzle to ensure “uniform” convective heat transfer

coefficient along heat propagation direction. This enables the experiment to be conve-

niently performed in regular ambient conditions.

2. Conventional Ångström’s method requires semi-infinite medium assumption and exist-

ing studies typically uses long samples (> 150mm) to satisfy this condition. We employ

an analytical solution with adiabatic tip condition which enables characterizing short

samples (25 mm).

3. Previous studies employ regression techniques to solve inverse heat transfer problems.

However, this approach does not produce unique solution and lacks rigorous uncer-

tainty quantification. In this study we present a Bayesian framework for uncertainty
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quantification.

Chapter 3 extends the spectroscopy technique to characterize more challenging high tem-

perature thermal diffusivities. We present a custom instrument that periodically heats a disk

sample under vacuum with a concentrated light source directly. The highlights of this study

are:

• Previous studies and commercial instruments heat samples indirectly from the sur-

roundings to reach high temperatures. This process is time-consuming and typically

requiring hours to reach stable temperatures. In this work samples are heated directly

by a concentrated light source and are able to reach high steady-periodic temperatures

in approx. 10 mins.

• Existing Ångström’s methods for high temperature characterizations use thermocou-

ples for temperature detection that are commonly attached to samples via drilling and

welding, which are destructive to samples and introduce thermal anomalies. In ad-

dition, thermocouples detect temperature at point locations. In this work we use an

infrared camera calibrated to 2000 ◦C for non-contact, non-destructive and data-rich

temperature measurements. We present an image analysis approach to process the IR

data that significantly reduces random noise in temperature measurements. We ex-

tract amplitude and phase from processed temperature profiles and demonstrate that

these metrics are insensitive to uncertainty in emissivity.

Chapter 4 reports the data science framework we develop to solve the inverse problem

for the high temperature thermal diffusivity instrument presented in Chapter 3. We present

a Bayesian framework to solve the inverse problem involving the numerical transient heat

transfer model with radiation and temperature-dependent properties. The highlights of this

study are:

1. In previous studies, regression techniques are used to solve inverse problems and deter-

mine thermal diffusivity by minimizing the residual between measurement results and

10



model simulation. This approach lacks uncertainty quantification and does not allow to

incorporate prior knowledge. Adopting a Bayesian framework addresses these issues,

however, probing the posterior distribution is prohibitively expensive using Markov

chain Monte Carlo (MCMC) methods, especially when the forward model must be

evaluated numerically. This work reports a Bayesian framework for a custom high

temperature characterization system using a modified Ångström’s method. This study

employs a parametric surrogate model in the form of polynomial chaos to accelerate

the numerical physical model by several orders of magnitude to enable Bayesian anal-

ysis.

2. Previous studies commonly employ random walk to propose new parameters in the

MCMC sampling process. Such an approach suffers poor convergence and high auto-

correlation with increased number of parameters. To overcome the poor convergence of

random walk based sampling approach, this study employs a No-U-Turn sampler which

explore the posterior distribution more thoroughly and exhibits better convergence.

Chapter 5 presents the custom electrochemical impedance spectroscopy (EIS) analyzer

capable of rapid and accurate frequency scan for supercapacitor pouch cells. Conventionally,

EIS is measured via sinusoidal perturbations; however, such an approach suffers from lengthy

measurement time. Chirp signals have been shown previously to reduce EIS measurement

time for supercapacitors for relative narrow frequency bands (1 Hz to 2 kHz). However, to

characterize supercapacitors comprehensively, much broader frequency bands are required.

In chapter 5, we present a custom instrument with an adaptive measurement algorithm for

performing EIS measurements in a wide frequency range of 10 mHz to 2 kHz with low mea-

surement uncertainties. The results obtained using this new technique has been validated

here with a commercial instrument on several types of supercapacitors. Furthermore, mea-

surement time on average decreases from 1500 s to less than 400 s. The overall cost of the

custom instrument is 90% lower as compared to the commercial instrument.

Chapter 6 presents our recommended metric for reporting supercapacitor research. For
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supercapacitors, power density and energy density are the most significant metrics. However

currently no dominant, established standard exists, and research papers often report these

two metrics differently. A standard for reporting power and energy density is proposed in

chapter 6 for objective comparison. This chapter also discusses a common flaw in current

supercapacitor power density calculations.

Chapter 7 presents our collaborations with other research groups for thermal system

characterizations. In section 7.1 we present an energy balance method to characterize laser

to heat conversion for gold nanostars. In section 7.2 we present a transient plane source

method to characterize thermally insulating aerogel. In section 7.3 we employ the room

temperature Ångström’s method to characterize PDMS enhanced with silver and copper

nanowire.
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CHAPTER 2

Accurate Thermal Diffusivity Measurements using a

Modified Ångström’s Method with Bayesian Statistics

2.1 Introduction

For thin-film foil-like materials, established thermal diffusivity measurements typically em-

ploy transient approaches, such as 3ω [36] and laser flash [95] methods. 3ω methods require

a layer of metallic coating on the sample. This layer often involves cleanroom processes and

deposition in vacuum at elevated temperatures [137], which can potentially alter the sam-

ple. Laser flash is another established transient technique; however it suffers heat loss from

sample to the holder for less thermally conductive materials [94]. Steady-state approaches,

such as Joule heating methods, are also commonly used for thermal conductivity measure-

ments of bulk materials and for thermal interfacial resistance [130][59]. However, the setups

typically involve vacuum to eliminate convection losses and long times to reach steady state.

Meanwhile, contact resistance between the instrument and the sample also contributes to

measurement error, which is difficult to quantify.

Ångström’s method was initially developed in 1863 [20] and is another effective approach

for one-dimensional thermal diffusivity measurements. As compared to 3ω and laser flash

methods, Ångström’s method involves less sample preparation and does not require mini-

mization of heat loss to surroundings. As compared to steady-state methods, Ångström’s

method is much faster and does not require accurate quantification of Joule heating into

the sample, thermal resistance between the instrument and the sample, and heat loss to the

surroundings. A limitation of the original Ångström’s method is its semi-infinite assumption,
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such that long samples (>150 mm) are typically required [140][97][88]. To enable thermal

diffusivity measurements on short samples, a modified Ångström’s method was developed by

Lopez-Baeza et al. [77] based on a transient fin model of a cylindrical rod, and temperatures

were measured using thermocouples in vacuum. However, this setup is not appropriate for

temperature measurements in thin films because of heat loss to the temperature sensors.

This work is based on Lopze-Baeza et al.’s physical model, but employs IR thermography

for non-contact temperature measurements. For IR thermography, accurately measuring

temperature of samples placed in vacuum is challenging because infrared radiation would

be measured through a specialized window. Therefore in this work, IR thermography is

performed at ambient conditions, in which temperature measurements are much noisier

as compared to those performed in vacuum. In order to quantify and reduce experimental

uncertainty, this work reports a Bayesian framework that benefits from the increased number

of temperature measurements in IR thermography to reduce parameter uncertainties.

2.2 Theory

This is the edited content based on review comments We begin with governing equations

for the transient fin model. The length, width and the thickness of the fin are l, w, and tf

respectively. The cross-section area of the fin is AC , and the perimeter is P . The thermal

conductivity and diffusivity of the fin are k and α, respectively. The base of the fin is

periodically heated (frequency ω, rad/s), and the fin tip is assumed to be thermally insulated.

The fin is exposed to an environment with convective heat transfer coefficient h:


1
α
∂T
∂t

+m2T = ∂2T
∂x2

,m = hP
kAC

∂T
∂x

∣∣
x=l

= 0

T (x, t)|x=0 = T0 exp(iωt)

(2.1)

where all parameters are assumed to be constant and uniform. A schematic for the

transient fin problem is shown in Fig. 2.1A.
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B

Figure 2.1: (A) Schematic of the transient fin problem. (B) Oscillatory temperature profile

at three locations: base, x1 and x2 in (A).

The solution to the governing equations derived by Lopez-Baeza et al. [77] follows:

T = T0 exp(iωt)
cos(γ(l − x))

cos(γl)
= T0 exp(iωt)g(γ, x) (2.2)

g(γ, x) =
cos(γ(l − x))

cos(γl)
(2.3)

where γ is the wave vector defined as:

γ =

{
− h

rk
+

[(
h

rk

)2

+
( ω

2α

)2
]}1/2

− i

{
h

rk
+

[(
h

rk

)2

+
( ω

2α

)2
]}1/2

(2.4)

Considering the temperature profiles at x1 and x2 as shown in Fig. 2.1B, the ratios of tem-

perature amplitudes and phase differences can be computed using |g (γ, x2 − x1)| = A2/A1 = ∆A

∠ (g (γ, x2 − x1)) = φ2 − φ1 = ∆φ
(2.5)

This work employs IR thermography to obtain temperature amplitude ratios and phase

differences at multiple locations on a periodically heated sample. A Bayesian framework

is then employed to compute thermal diffusivity from amplitude and phase results and to

quantify uncertainties.
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2.3 Model sensitivity analysis

Ångström’s method computes thermal diffusivity (α) using temperature amplitude ratio and

phase shift. However, these quantities are also affected by the convective heat transfer co-

efficient h. In this work, temperature measurements were performed in ambient conditions;

therefore, h was difficult to estimate precisely. To enable accurate thermal diffusivity mea-

surements without precise estimation of h, temperature amplitude ratio and phase shift must

be more sensitive to α than h. We employed a Monte Carlo [109] method to determine the

optimal heating frequency, such that the physical model exhibits high sensitivity to α and

low sensitivity to h.

The sample under investigation is a copper foil (ESPI metal, 99.9% purity) of dimension

25.0 mm × 7.0 mm × 76.5µm. We allowed α to vary over a relatively narrow range [1.0 −

1.2] × 10−4 m2/s but allowed h to vary over a much wider range [2 − 20] W/m2K. Then we

computed the amplitude ratio and phase shift at the middle of the sample. The analysis was

repeated for several different heating frequencies from 0.01 Hz to 1.0 Hz, and the results are

shown in Table 2.1.

Table 2.1: Parameter sensitivity at different heating frequencies for copper

Heating frequency (Hz) amplitude sensitivity(α)
amplitude sensitivity(h)

phase sensitivity(α)
phase sensitivity(h)

0.01 0.01 0.32

0.05 0.13 0.32

0.1 1.27 0.34

0.5 19.84 15.30

1.0 65.96 73.78

We note that amplitude ratio and phase shift are more sensitive to α than h at higher

periodic heating frequencies. However, at high periodic heating frequencies, thermal pene-

tration depths become small, and the oscillatory temperature profiles are more difficult to

measure experimentally. Therefore, in this study, we choose 1.0 Hz as the periodic heating

frequency. We plot in Fig. 2.2 the theoretical amplitude ratio and phase shift along the sam-
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ple at 1.0 Hz heating frequency for four different combinations of α and h. As demonstrated

in Fig. 2.2, amplitude ratio and phase shift are sensitive to α but are insensitive to h.

Figure 2.2: Amplitude ratio and phase shift for four extreme cases at 1.0 Hz heating fre-

quency.

2.4 Experimental setup

2.4.1 IR thermography

In this work, the sample under test is a copper foil (ESPI metal, 99.9% purity) of dimension

25.0 mm × 7.0 mm × 76.5 µm. A periodic current of 0.5 Hz was supplied through two

resistive heating wires (Pelican, 2B2N80ML), creating a 1.0 Hz Joule heating source. One

tip of the sample was sandwiched between two heating wires, and the other tip of the sample

was sandwiched between two thermally insulating foam strips, as shown in Fig. 2.3A and

B. Sample temperatures were recorded with an infrared (IR) camera (Flir A655sc, close-up

lens with 25 µm resolution) shown in Fig. 2.3B. A thin layer of flat black paint (carbon

black, approx 12 µm thick) was applied on the sample to enhance and normalize surface

radiative emissivity for accurate temperature measurements. The emissivity of the paint

was calibrated using a precision thermistor (Amphenol: SC30Y103WN, accuracy 100 mK);

calibration processes were performed at multiple temperatures between 25 and 50 ◦C, and

the emissivity was approximately constant (0.94) within this temperature range.
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Fig. 2.3C includes an IR image of the sample, with the direction of heat propagation

indicated by x and the direction perpendicular to x indicated by y. Temperatures were

measured where flat black paint was applied. Line A indicates a representative isotherm

that is one pixel wide, with the average temperature of all pixels along the line used to

represent the temperature at location x. A typical temperature profile on Line A is shown

in Fig. 2.3C.

Figure 2.3: (A) Front view of the sample with heating wires, insulated tip and an air nozzle

below the sample. (B) Side view of the setup .(C) Infrared image of the sample and an

oscillatory temperature profile on a representative isotherm (Line A).

2.4.2 Forced convection on the sample surface

Initially, the sample was exposed to ambient conditions without forced convection. For

temperature along Line A shown in Fig. 2.3C, because of ambient temperature fluctuations,

relatively strong drift was observed, as shown in Fig. 2.4A. Also, for natural convection,

the convective heat transfer coefficient h depends on surface temperature. Therefore, h

exhibits relatively large variation along the x direction. We estimate the average convective

heat transfer coefficient hy along the x-axis using a correlation for natural convection on an
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isothermal plate [91]:

hy =
kNuy
w

=
4

3

(
Grw

4

) 1
4 kair

w

0.75Pr1/2

(0.609 + 1.221Pr1/2 + 1.238Pr)
1
4

(2.6)

where w indicates the sample width. Grw is the Grashof number calculated using character-

istic length w and the mean temperature along the y-axis. Pr is the Prandtl number of air,

kair is the thermal conductivity of air. The results for hy are shown in in Fig. 2.4B, with the

blue band indicating the range of variability of hy.

To reduce ambient temperature fluctuations and minimize the variation of h along x-axis,

we employed forced convection using a flat air nozzle (Misumi, AFTC7) below the sample

such that the air flow was perpendicular to the direction of heat conduction, as shown in

Fig. 2.3A and 2.3B. The air temperature was stabilized using a heat exchanger that coils

the air inlet tube on a stainless steel rod with large thermal mass. We estimate the average

convective heat transfer coefficient (hy) along the x-axis using a correlation for external flow

over an isothermal plate [64]:

hy =
Nuykair

w
=

0.664Re
1
2Pr

1
3kair

w
(2.7)

where Re indicates the Reynolds number based on the characteristic length of w. Under

forced convection, temperature drift was significantly reduced, as shown in Fig. 2.4A. In

addition, hy exhibits minimal variation as compared to that under natural convection, as

shown in Fig. 2.4B.

Forced convection reduces the variation of h in x direction. However, along the y-axis

h is non-uniform because of the growth of thermal boundary layer. We estimated the local

convective heat transfer coefficient hy using a correlation for laminar flow over an isothermal

plate [64].

hy =
Nuykair

y
=

0.332Re
1
2Pr

1
3kair

y
(2.8)

The result is shown in Fig. 2.4C and significant variation of h exists near the leading edge.

However, for thermally conductive metal films used in this study, the effect of variation in

hy was limited, as temperature measured at different y locations do not exhibit significant

differences. More details are provided in the Supplemental Materials.
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Figure 2.4: (A) Oscillatory temperature profiles for the isotherm shown in Fig 2.3C, with and

without forced convection. (B) Average convective heat transfer coefficient hy at different

locations along the direction of heat propagation, with and without forced convection. The

blue band indicates the range of variation in h. (C) h in the y direction.

2.4.3 IR temperature measurement processing

After obtaining oscillatory temperature profiles on the sample, the next step is to extract

amplitudes and phases at different locations to calculate thermal diffusivity (see Eq. 2.5). As

shown in previous section, temperature drift can be reduced using forced convection, and

Fig. 2.5A includes an oscillatory temperature profile under forced convection. To accurately

extract amplitudes and phases from such temperature profile, additional processing are re-

quired to minimize the effect of baseline drift. Typically the frequency of the baseline drift

is much lower than the periodic heating frequency. Therefore, to mitigate drift, a fifth-order

Butterworth high-pass filter [35] with cutoff frequency fC = 1/2fheating was applied, where

fheating is the Joule heating frequency. The temperature profile after filtering is shown in

Fig. 2.5B.
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Figure 2.5: (A) A oscillatory temperature profile without filtering under forced convection.

(B) The oscillatory temperature profile in (A) after applying a fifth-order Butterworth high-

-pass filter. (C) Phase differences and amplitude ratios for the region of analysis.

A Fourier transform developed in a previous study [65] was employed to transform the

filtered temperature profile to extract the phases φ(x, t) and amplitudes A(x, t) at location

x. The same process was performed for N equally spaced isotherms to obtain amplitudes

and phases at those locations. The amplitudes of the temperature profiles were normalized

with the amplitude at line 1, which is the isotherm closest to the heat source. Similarly, the

phases of the temperature profiles at these locations were subtracted from the phase at line

1 to obtain relative phase differences. The process was repeated for different equally spaced

isotherms, and the resulting phase differences and amplitude ratios are shown in Fig. 2.5C.

A detailed description of this process is provided in the Supplemental Materials.

2.4.4 Temperature measurement error analysis

We calibrated the sample’s emissivity using a thermistor (accuracy 100 mK). As a result, the

accuracy of absolute temperature measurement is approximately the same,100 mK. Here, we

work with relative temperature changes instead of absolute temperatures, and the changes are

relatively insensitive to emissivity [58]. We assume that the true emissivity of the surface is ε

while the true temperature change due to periodic heating is ∆T . For an estimated emissivity
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ε
′
, the relative temperature change ∆T

′
that the IR camera measures is approximately [121]:

∆T
′
= (

ε

ε′
)1/4∆T (2.9)

Consequently, errors in emissivity have only small effects on the apparent temperature

oscillation amplitude. To demonstrate this assertion experimentally, we obtained a tempera-

ture profile on a periodically heated copper strip (Fig. 2.3C line A). The true emissivity of the

sample surface is approximately 0.94. However, we assumed the experimentally measured

thermal diffusivity emissivity is 0.75 (an exaggerated value) and obtained the correspond-

ing temperature profile for line A. The temperature profiles for the true emissivity and the

incorrect emissivity are shown in Fig. 2.6A:

Figure 2.6: (A) Temperature along line A for two different emissivities. (B) Amplitude ratio

at different locations on the sample for two different emissivities. (C) Phase shift at different

locations on the sample for two different emissivities.

As observed in Fig. 2.6A, the absolute temperature is incorrect due to inaccurate emissivity.

However, the amplitude of the oscillation and phase do not exhibit significant changes for

different emissivities. We then computed the amplitude ratios and phase shifts in the region
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of analysis shown in Fig. 2.3C (yellow rectangle), and the results are shown in Figs. 2.6B

and C. As observed, inaccurate emissivity affects amplitude ratio and phase shift results

insignificantly.

To conclude, we used a 100 mK thermistor to calibrate emissivity, but the oscillation

amplitude and phase shift are insensitive to emissivity. For the IR camera, according to

the manufacturer’s specification, the thermal sensitivity is 30 mK, which indicates that the

minimum detectable temperature change and is much lower than the oscillation amplitude

observed in experiments. Therefore, we assume that instrumentation errors do not contribute

to errors in amplitude ratio and phase shift results; the errors arise from other random effects,

such as temperature drift in ambient environments.

2.5 Uncertainty quantification

Conventional parameter estimation methods often seek to minimize the square error between

the physical model and measurement results. However, such approaches do not produce un-

certainties for the parameters, and they do not account for prior knowledge of the parameters

to reduce uncertainties [46]. In this work, we analyzed uncertainties in thermal diffusivi-

ties given measurement results using a Bayesian framework, which incorporates likelihood

functions and prior knowledge to produce a complete statistical distribution of parameters.

Previous studies have demonstrated the effectiveness of Bayesian framework in inverse heat

transfer problems [122][131]. The framework is based on Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(2.10)

where θ indicates parameters andD is measurement data. p(θ|D) is the posterior distribution

and indicates updated knowledge of θ after observing D. The posterior is proportional to the

prior p(θ) and the likelihood function p(D|θ). The prior is the state of knowledge of θ before

experiments, and the likelihood function is a description of the measurement process and

indicates the probability of obtaining the measurement results D given a set of parameters

θ. In this work, the noisy phase and amplitude measurement processes are modeled as
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bivariate normal distributions with mean µ and covariance matrix Σ. The mean µ is a

matrix of theoretical amplitude ratios and phase differences obtained using Eq. 2.5 for a

given set of parameters α and h. The covariance matrix is defined as:

Σ =

 σ2
∆A ρσ∆Aσ∆φ

ρσ∆Aσ∆φ σ2
∆φ

 (2.11)

where σ∆A and σ∆φ indicate the standard deviation of amplitude ratio and phase difference

measurements, and ρ indicates their correlation coefficient. Considering a temperature ratio

and phase difference measurement at xi, the likelihood function can be expressed as:

P (∆A∗i ,∆φ
∗
i | α, h, σ∆A, σ∆φ, ρ, xi)

∼ N

µ =

 |g (xi, α, h)|

∠ (g (xi, α, h))

 ,Σ =

 σ2
∆A ρσ∆Aσ∆φ

ρσ∆Aσ∆φ σ2
∆φ

 (2.12)

where variables with asterisks indicate measurement results. Because σ∆A, σ∆φ and ρ are

difficult to calculate directly from temperature profiles, they are treated as parameters and

are estimated using the Bayesian framework. Here we assume that specific heat and density

of the material are known before the experiment; they are treated here as constants without

uncertainties.

Once we define the likelihood function for a measurement at xi, we then consider all

measurements (∆A1 · · ·∆AN , ∆φ1 · · ·∆φN) for all locations on the sample. Assuming all

measurements are independent, the likelihood function is expressed as:

p(∆A∗,∆φ∗|α, h, σ∆A, σ∆φ, ρ) =
N∏
i=1

p(∆A∗i ,∆φ
∗
i |α, h, σ∆A, σ∆φ, ρ, xi) (2.13)

Having defined the likelihood function, we next consider the prior distributions for the

parameters. The sample under test is copper 110, and α is positive and generally less than

10−3 m2/s for common metals. To remove the positive constraint for α, we normalize α with

unity value and work with log10 α instead of α. For log10 α, its distribution is assumed to be

Gaussian, centered at -4 with standard deviation of 1. The prior distribution is designed to

be wide enough to cover the true values. Similarly, log10 h with h normalized by 1 W/(m2)K
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is used, and its prior distribution is assumed to be Gaussian centered at 1 with standard

deviation 1, which is reasonable for common natural and forced convection in air. The prior

for log10 σ∆α and log10 σ∆φ are both Gaussian centered at -2 with standard deviation 1. The

correlation coefficient ρ is bounded between [-1,1]. In this work, a Fisher transformation [50]

is used to transform ρ into an unbounded parameter z. No prior distribution is assigned for

ρ.

Based on the likelihood function and the prior distributions, the posterior distribution

for parameters is expressed according to Eq. 2.10. Note that parameters α, h ,σ∆A, σ∆φ, ρ

are assumed to be independent:

p(α, h, σ∆A, σ∆φ, ρ|∆A∗,∆φ∗) =
p(α, h, σ∆A, σ∆φ, ρ)

∏N
i=1 p(∆A

∗
i ,∆φ

∗
i |α, h, σ∆A, σ∆φ, ρ, xi)

p(∆A∗,∆φ∗)

∼ p(α, h, σ∆A, σ∆φ, ρ)
N∏
i=1

p(∆A∗i ,∆φ
∗
i |α, h, σ∆A, σ∆φ, ρ, xi)

∼ p(α)p(h)p(σ∆A)p(σ∆φ)p(ρ)
N∏
i=1

p(∆A∗i ,∆φ
∗
i |α, h, σ∆A, σ∆φ, ρ, xi)

(2.14)

The main difficulty associated with the Bayesian approach involves obtaining random

samples from the posterior distribution. To address this issue, Metropolis et al. [81] de-

veloped a Markov chain Monte Carlo method to obtain random samples from an arbitrary

distribution up to a normalizing constant. However, the algorithm is computationally expen-

sive and was not widely used until the early 2000s, when computational power significantly

increased. In this work, a Metropolis algorithm is employed to sample the unnormalized pos-

terior distribution in Eq. 2.14. To account for reparametrization of the parameters, Jacobians

are also included. The pseudo-code for our Metropolis algorithm is shown in Fig. 2.7.
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Figure 2.7: The Metropolis algorithm for posterior sampling of the modified Ångström’s

method.

The Metropolis algorithm was executed in parallel with four Markov chains. The total

number of accepted samples in each chain was set to 10000. The total run time of the code

was about four hours for each experiment. In each chain, the first 200 samples were dis-

carded, and the rest of the accepted random samples were stored to represent the probability

distribution of parameters. Details regarding the diagnostics of the results obtained by our

Metropolis algorithm are provided in the Supplemental Materials.

2.6 Results

2.6.1 Thermal Diffusivity Results for Copper 110 Foil

In this work, the Joule heating frequency was 1.0 Hz for all experiments. The pressure of

the flat air nozzle was 0.3 psig (2.07 kPa, gauge), and the air velocity was approximately 3.3

m/s [9]. The density of the sample is 8960 kg/m3, and the specific heat of the sample is 385

J/(kg ·K) according to the manufacturer’s specifications [4]. All experiments were conducted
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in a room temperature environment. The number of isothermal lines used here is N = 135,

and random samples of α and h obtained from the posterior probability distribution function

(PPDF) are shown in Fig. 2.8. The PPDF of each parameter indicates the updated state of

knowledge based on the prior knowledge of the parameters, measurement processes, and the

physical model.

Figure 2.8: (A): Histogram for random samples obtained from the PPDF for thermal dif-

fusivity α. (B) Histogram for random samples obtained from the PPDF for convective

heat transfer coefficient h. (C) Experimental measurements (circles) and theoretical model

plotted using the posterior mean of α and h (line).

Fig. 2.8A shows the PPDF for thermal diffusivity. The 95% confidence interval (CI)

is α = 1.15 ± 0.01 × 10−4 m2/s. Our results match with Siddles and Danielson’s work

(1.157 ± 0.014 × 10−4 m2/s) [106], which employed Ångström’s method to measure thermal

diffusivity for a copper rod (1/8 inch in diameter, 500 mm long) under vacuum. Our results

also agree with a more recent study (1.147 × 10−4 m2/s, 2 − 5% uncertainty level) using

Ångström’s method for a copper strip (20 mm wide, 300 mm long) under vacuum [140]. In

our study, we achieve comparable accuracy and precision for thermal diffusivity of copper in

ambient conditions, and the sample length in this work was much shorter than those used in

previous studies. We also compare our results to other commonly used thermal diffusivity

measurement methods. The most widely used approach is laser flash. In Parker’s work [95],

the uncertainty for copper is ±5%. For a relatively recent work using laser flash method

for copper [83], ±3% uncertainty has been obtained. However, laser flash typically requires
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tightly controlled environments to minimize heat loss that are not required in our approach.

Another common approach for thermal diffusivity measurement is the transient plane source

method [56]. In Gustavsson’s work [57], they obtained 0.5% uncertainty for copper. However,

their approach makes the semi-infinite heat conduction assumption. As a result, much larger

sample size is required for characterization (diameter 60 mm, thickness 2 - 4 mm).

For the convective heat transfer coefficient h, the PPDF is shown in Fig. 2.8B, and the

estimated 95% CI is h = 52 ± 5 W/m2K. Based on the experimental conditions (U∞ =

3.3 m/s), the estimated average h along the y-axis using Eq. 2.7 is hy = 85 W/(m2/K). The

posterior results obtained for h are slightly less than our expectation from the external flow

correlation (see Fig. 2.10B), possibly because the actual flat nozzle velocity profiles were non-

uniform near the edge of the nozzle [9]. The theoretical model fits well to the experimental

results using the posterior mean of α and h, as shown in Fig. 2.8C.

2.6.2 Uncertainty Reduction with Increased Measurements

In this work, the number of isothermal lines used to calculate the posterior distribution

is N = 135. Here we examine the effect of different N on parameter uncertainties. We

arbitrarily selected a certain number (N = 2, 15 and 45) of amplitude ratio and phase

difference measurements from the entire dataset (N = 135) and applied the same procedure to

compute the corresponding PPDFs, shown in Fig. 2.9 for α. As the number of measurements

increases from 2 to 135, the uncertainties in thermal diffusivity decrease.
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Figure 2.9: The PPDFs for thermal diffusivity for different number of amplitude and phase

measurements.

For N = 2, temperature amplitude ratios and phase differences were measured only at

two locations, yet updated knowledge of all five parameters (α, h, σ∆A, σ∆φ, ρ) was obtained.

This is a major advantage of Bayesian framework as compared to conventional regression

methods, such as Levenberg–Marquardt method, which requires the number of measurement

results to be greater than the number of estimated parameters in the model [110]. Mean-

while, conventional regression methods do not compute parameter uncertainties, whereas in

the Bayesian framework, we are able to reduce uncertainties by increasing the number of

measurements.

29



2.6.3 Effect of Convection on Thermal Diffusivity Measurements

By adjusting the pressure of the flat air nozzle, we repeated the same experiments under dif-

ferent convective conditions, and the results are shown in Fig. 2.10. Under forced convection

conditions (nozzle pressure = 0.3, 0.6 psig or 2.07, 4.14 kPa, gauge), the thermal diffusivity

measurement results show reasonable accuracy and robustness when the air nozzle pressure

changes significantly. Meanwhile, h obtained from the PPDFs qualitatively matches calcu-

lations using the external flow correlation given in Eq. 2.7. For natural convection, which

corresponds to zero nozzle pressure, h obtained from the PPDF qualitatively matches the

correlation for natural convection on a vertical isothermal plate in Eq. 2.6. However, the

thermal diffusivity obtained from the PPDF is about 4% less than previous studies, because

under natural convection, h is less uniform and constant on the sample, and temperature

drift is more significant.

Figure 2.10: (A) Thermal diffusivity α and 95% CI obtained from the PPDF under different

nozzle pressures. (B) Convective heat transfer coefficient h and 95% CI obtained from the

PPDF under different nozzle pressures.
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2.6.4 Effect of prior distribution and fitting residual examination

Here we investigate how the posterior distribution of thermal diffusivity is influenced by

the prior distribution of θ (all unknowns) using results obtained under a 0.2 Hz heating

frequency. We compute the posterior distribution using a wide (σlogθ = 2) and a narrow

(σlogθ = 1) prior distribution for logθ. The posterior distributions are shown in Fig.2.11.

Figure 2.11: Posterior distributions for thermal diffusivity with different prior distributions

As observed, the posterior distributions remain unchanged for different prior distri-

butions. This is expected when the measurement is informative with abundant obser-

vations [122][101]. However, prior distributions are not completely unimportant for the

Bayesian framework, as they typically serve as regularization for ill-posed inverse prob-

lems [122].

In this study we assume that measurements at multiple locations on the sample are

independent. We examine this assumption by checking the fitting residuals for amplitude

decay and phse shift, as shown in Fig. 2.12.
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Figure 2.12: Top row: fitting residuals for amplitude decay and phase shift. Bottom row:

auto-correlation for the residuals of amplitude decay and phase shift

As observed from the top row in Fig. 2.12, the residual oscillate near zero, which indicates

that the analytical solution is accurate to model the underlying physics. The second row

shows the auto-correlation for the residual of amplitude decay and phase shift respectively.

We observe that majority of the fitting residuals do not exhibit high auto-correlations, and

the independent assumption is reasonable to model the measurement process.

2.6.5 Applicability for poor thermal conductors

We have further explored physical limitations of this method for thermal diffusivity measure-

ment by calculating the sensitivity ratio for different ranges of α. We considered a relatively

poor thermal conductor (quartz) with the same dimension as the copper strip. We allowed

α to vary over a relatively narrow range [1.3− 1.5]× 10−6 m2/s but allowed h to vary over a

much wider range [2− 20] W/m2K; then we repeated the previous analysis, and the results
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are shown in Table 2.2.

Table 2.2: Parameter sensitivity at different heating frequencies for quartz

Heating frequency (Hz) amplitude sensitivity(α)
amplitude sensitivity(h)

phase sensitivity(α)
phase sensitivity(h)

0.1 0.12 0.13

0.5 2.97 2.92

1.0 11.97 11.54

We note that with 0.5 Hz heating frequency, amplitude ratio and phase shift are more

sensitive to α than h within the defined range. The thermal penetration depth under this

heating frequency is [140]:

L =

√
α

ω
=

√
1.4× 10−6m2/s

0.5 Hz
= 1.7 mm (2.15)

The temperature profiles within the thermal penetration depth can be resolved using a close-

up lens (25µm resolution, 1.7 mm corresponds to 68 pixels).

Next, we considered an even more thermally insulating material, PTFE, with α = 1.24×

10−7m2/s. We allowed α to vary over a relatively narrow range [1.1 − 1.3] × 10−7 m2/s but

allowed h to vary over a much wider range [2− 20] W/m2K; then we repeated the previous

analysis and the results are given in Table 2.3.

Table 2.3: Parameter sensitivity at different heating frequencies for PTFE

Heating frequency (Hz) amplitude sensitivity(α)
amplitude sensitivity(h)

phase sensitivity(α)
phase sensitivity(h)

0.01 0.01 0.01

0.1 0.24 0.24

0.5 5.64 5.62

We note that with 0.5 Hz heating frequency, satisfactory sensitivities can be achieved. How-

ever, the thermal penetration depth under this heating frequency is:

L =

√
α

ω
=

√
1.24× 10−7m2/s

0.5Hz
= 0.5 mm (2.16)
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The temperature profiles within the thermal penetration depth are difficult to resolve us-

ing the close-up lens. Therefore, lower heating frequency must be used to obtain reliable

temperature ratios and phase shifts. As a result, in order to increase the sensitivity in α,

h must be tightly controlled (e.g., under vacuum). Therefore, the lowest thermal diffusivity

that can be determined using the reported system should be higher than 10−7 m2/s.

2.6.6 Effect of film thickness

The theoretical model assumes that temperature is uniform in the through-thickness direc-

tion (i.e., the fin approximation). For the copper strip sample used in this study, the fin

approximation is valid (approx. 0.2% error compared to the true solution) when the Biot

number satisfies the following condition [72],

Bi =
hLc
k

< 0.01 (2.17)

where Lc indicates sample thickness. This condition can be satisfied if the sample is thin.

For the highest h we obtained using forced convection (approx. 110 W/m2K), the maximum

thickness is Lc = 26 mm and is much greater than the sample thickness.

No theoretical lower limit exists for sample thickness, but the particular experimental

setup may introduce some constraints. First, in this study the sample under test was copper,

which has a reflective surface with low emissivity. Therefore, a thin layer of flat black paint

must be applied to the sample’s surface so that temperature can be measured using an

infrared camera. In the theoretical model this layer is not considered, and as a result,

if the thickness of the sample is comparable to that of the paint (approx. 12 µm), the

theoretical model is no longer valid. However, if the material has relatively high emissivity

(∼ 0.75), such high emissivity paint is not required. As demonstrated in the foregoing

sections, amplitude ratio and phase shift can be accurately detected even if the emissivity

is not known precisely. Second, the one-dimensional heat conduction assumption requires

the sample to remain straight during measurements. For thin samples, stretching might

be required so that the sample does not bend. However, this might introduce unexpected
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deformation in the sample and lead to different thermal diffusivity results [75].

To conclude, we believe this approach is feasible for thin samples with relatively high

emissivity. However, extra caution should be taken during experiments such that samples

do not deform significantly.

2.7 Conclusion

In this work we report a modified Ångström’s method for in-plane thermal diffusivity mea-

surements of short, thin-film samples. As compared to previous studies performed under

vacuum conditions, temperatures were measured in noisy ambient conditions to demon-

strate the robustness and convenience of the method. To quantify and reduce uncertainties

caused by temperature fluctuations, we employed a Bayesian framework with a Metropolis

algorithm for data analysis. We verified the accuracy of the system using a short copper

110 thin film (25.0 mm× 7.0 mm× 76.5 µm), and demonstrated uncertainty reduction with

increased number of measurements. The application of Bayesian inference in this work pro-

vides rigorous uncertainty quantification with demonstrated low uncertainty for Ångström’s

method. We expect that this general approach will be applicable to other situations, such

as at high-temperature environments [14], in which the realization of a tightly controlled

thermal environment for property evaluation is impractical.
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CHAPTER 3

High-temperature thermal diffusivity characterizations

using a modified Ångström’s method with transient

infrared thermography

3.1 Physical system modeling

Existing Ångström’s methods for high temperature characterization employ linearized radia-

tion loss models[106][13][42][60]. These methods can be accurate if the sample’s temperature

T remains uniform along the direction of heat conduction and if the temperature oscillation

amplitude is negligible compare to T . In this work, a thin disk sample (88.50 mm OD)

is partially heated using a concentrated light source and relatively significant temperature

gradient exists along the heat conduction direction. Therefore, radiation losses can not be

linearized, and we instead develop a numerical solution to account for non-linear radiation

loss.

The schematic of our system is shown in Fig. 3.2A. The concentrated light source is a

10 kW Xenon short arc lamp with Lorentzian intensity distribution[53][14]. The power of

the concentrated light source is controlled using a 0-10 V external control voltage. The heat

flux of the light source is given as:

q”
s(r, V ) =

A(V )

π

σsolar
σ2
solar + r2

(3.1)

where A(V ) is nominal peak heat flux and is determined by the control voltage V , and σsolar

indicates the width of the distribution and is determined by the reflector of the light source

and is relatively independent of V ; r is the radius on the sample. We use a function generator
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to produce sinusoidal voltage signals to control the light source to output periodic heat flux.

Details for characterizing and modeling the light source are provided in the Supplemental

Materials S1.

In our study the concentrated light source is partially blocked by three annular tungsten

rings (referred to as light blockers) so that only the center of the sample is exposed to the light

source. A custom tray tracing code[14] was employed to evaluate the intensity distribution

of the concentrated light source as truncated by the light blockers. The simulated intensities

with and without truncation are shown in Fig. 3.1B. A window function, defined by the

ratio of intensities with and without light blocker are shown in Fig. 3.1C. As shown by the

the window function, the light blockers only affect the intensity distribution near the inner

edge of the light blocker. The window function in Fig. 3.1C shows the simulated truncated

intensity distribution with the light blockers.

Figure 3.1: (A) Schematic of the experimental system for thermal diffusivity characterization.

(B) Ray tracing study for intensity distribution of the concentrated light source with and

without light blockers. (C) A window function to model the truncated Lorentzian intensity

distribution.

Having introduced the concentrated light source, we present a finite difference solver for

the transient heating process, under the following assumptions to simplify the analysis:

1. Fin approximation for the thin disk samples.

2. All surfaces are gray and diffuse.
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3. Thermal expansion of the sample is not considered.

4. Heat loss via conduction and convection are neglected.

5. To facilitate IR thermography, a thin layer of high-emissivity coating was applied to

the back side of the sample. This layer contributes approx. 2% to the total sample

mass and is not considered in the model.

6. We use the following expression[104][82][12] for temperature-dependent thermal diffu-

sivity:

α(T ) =
1

Aα × T +Bα

(3.2)

A schematic of the finite difference network is shown in Fig. 3.2A along with a control

volume (dashed green box) for a node m at time step p.

Figure 3.2: Finite difference scheme for the transient heating process with the radiation

network. The green dashed rectangular box indicates a control volume for node m on the

sample at time step p.

Applying conservation of energy to the control volume shown in Fig. 3.2A we obtain:

qr − qr+dr + qsolar + qlb,net − qe,back + qsurr,back = Ė (3.3)
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where qr and qr+dr indicate heat transfer via conduction, expressed as:

qr = r dθ dz q”
r ,where q”

r = −k∂T
∂r

(3.4)

qr+dr = qr +
∂qr
∂r

dr = qr −
∂(r dθ dz k ∂T

∂r
)

∂r
dr (3.5)

qsolar indicates energy absorbed from the concentrate light source:

qsolar = η q”
s dθ r dr (3.6)

where η indicates sample absorptivity from the concentrated light source, and q”
s is given in

Eq. 3.1.

The net heat flow between the light blocker and the sample, qlb,net, is calculated using a

radiation network as shown in Fig. 3.2A. Based on experimental observations (see Supple-

mental Materials S3 for light blocker temperature measurements), the temperature gradient

of the light blocker along the radial direction is typically low (approx. 50K). Therefore, we

use three discrete constant temperatures to approximate the light blocker temperature distri-

bution in different regions as shown in Fig. 3.2B. We assign Tlb,1 as the temperature between

radius Rlb,H and Rlb/3, where Rlb,H is the radius of the light blocker’s hole and Rlb is the

radius of the light blocker. Similarly we assign Tlb,2, Tlb,3 and Tlb,H for the region bounded

by Rlb/3 to 2Rlb/3, 2Rlb/3 to Rlb and 0 to Rlb,H , respectively. qlb,net is expressed as:

qlb,net =
σT p4lb1 − T p4m

1−εs
εs Am

+ 1
Alb1 Flb1−m

+ 1−εlb
εlbAlb1

+
σT p4lb2 − T p4m

1−εs
εs Am

+ 1
Alb2 Flb2−m

+ 1−εlb
εlb Alb2

+
σT p4lb3 − T p4m

1−εs
εs Am

+ 1
Alb3 Flb3−m

+ 1−εlb
εlb Alb3

+
σT p4lbH − T p4m

1−εs
εs Am

+ 1
AlbH FlbH−m

+ 1−εlb
εlb AlbH

= qm,lb − Cm,lb σ T p4m

(3.7)

where σ is the Stefan-Boltzmann constant; εlb is the emissivity of the light blocker; and εfront

is the emissivity of the front side of the sample. AlbH , Alb1, Alb2 and Alb3 are the light blocker

areas corresponding to discrete temperatures TlbH , Tlb1, Tlb2 and Tlb3 respectively. FlbH−m,

Flb1−m, Flb2−m, Flb3−m are view factors from AlbH , Alb1, Alb2 and Alb3 to the differential ring
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element at node m. Cm,lb and qm,lb are expressed as:

Clb,m =
1

1−εs
εs Am

+ 1
Alb1 Flb1−m

+ 1−εlb
εlbAlb1

+
1

1−εs
εs Am

+ 1
Alb2 Flb2−m

+ 1−εlb
εlb Alb2

+
1

1−εs
εs Am

+ 1
Alb3 Flb3−m

+ 1−εlb
εlb Alb3

+
1

1−εs
εs Am

+ 1
AlbH FlbH−m

+ 1−εlb
εlb AlbH

(3.8)

qlb,m =
σ T p4lb1

1−εs
εs Am

+ 1
Alb1 Flb1−m

+ 1−εlb
εlbAlb1

+
σ T p4lb2

1−εs
εs Am

+ 1
Alb2 Flb2−m

+ 1−εlb
εlb Alb2

+
σ T p4lb3

1−εs
εs Am

+ 1
Alb3 Flb3−m

+ 1−εlb
εlb Alb3

+
σ T p4lb4

1−εs
εs Am

+ 1
AlbH FlbH−m

+ 1−εlb
εlb AlbH

(3.9)

qe,back indicates radiation loss at the back side of the sample:

qe,back = εback σ T
4 dθ r dr (3.10)

where εback is the emissivity of the back side of the sample.

qsurr,back indicates the rate of radiation absorbed by the back side of the sample. We

assume the surrounding temperature in the vacuum chamber at the back side of the sample

is constant. Therefore, qsurr,back is also a constant. More details for calculating qsurr,back are

provided in the supplemental material S1.

The energy accumulation term Ė is expressed as:

Ė = dθ r dr dz ρ cp
∂T

∂t
(3.11)

Substitution of Eqs. 3.4-3.11 into the governing equation Eq. 3.3 yields:

∂

∂r

(
k
∂T

∂r

)
+

1

r

(
k
∂T

∂r

)
+
q”
s

dz
− (εback + Clb,m/(dθ r dr))σ T

4

dz
+
qlb,m + qsurr,back
r dr dθ dz

= ρ cp
∂T

∂t
(3.12)

The initial (IC) and the boundary (BC) conditions are:



IC: t = 0, T (x, 0) = Ti

BC: r = R, −k∂T
∂r

= σ(εT 4 − η T 4
W )

has to satisfy:
∂T

∂r
|r=0 = 0

(3.13a)

(3.13b)

(3.13c)
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where TW indicates the temperature of the vacuum chamber wall. Eq. 3.12 is discretized

using a central-difference implicit finite difference scheme. A detailed discussion of the finite

difference scheme and the implicit Newton-Raphson solver are given in the supplemental

material S2. A mesh independence analysis has been performed to ensure the convergence

of the numerical solution (see Supplemental Materials S2). The total number of nodes along

the radial direction is 220, and the model form error is neglected in this study.

Having obtained the simulated temperature profiles, we next extract amplitude and phase

from the simulation results. First, we choose a reference radius R0 that is close to the inner

diameter of the light blocker but not irradiated by the concentrated light source. We also

choose a region of analysis bounded by the reference radius R0 and an outer bound RN , in

which significant amplitude decay is observed. Our code automatically detects quasi steady-

state oscillation when the maximum mean temperature rise within one cycle is less than 0.1%

compared to the oscillation amplitude, as shown in Fig. 3.3A. Amplitude decay and phase

shift for all nodes are calculated with respect to the temperature profile at the reference

radius. Representative amplitude decay and phase shift plots are shown in Fig. 3.3B and

3.3C respectively.

Figure 3.3: (A) Simulated temperature profile at the reference radius and the boundary of

the region of analysis. (B) Amplitude decay of temperature profiles within the region of

analysis. (C) Phase shift of temperature profiles within the region of analysis.
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3.2 Experimental techniques

3.2.1 Experimental setup

In this work, the samples under test are thin disks (graphite: 0.92 mm, copper: 0.79 mm)

with 88.50 mm outer diameter. Measurements were conducted under vacuum, and the

vacuum level was approx. 0.05 Torr. The heat source is a 10 kW Xenon short arc lamp

(Superior: SQP-SX10000FXT), and an electroformed parabolic reflector (Optiforms, Ag

coated) concentrates the light. The inner diameter of the light blockers is 20.0 mm, and

the distance between neighboring light blockers is 0.90 mm. A sample holder is designed to

hold the light blockers and the sample concentrically as shown in Fig. 3.4A. The sample is

fixed to the sample holder using four pairs of small thermally insulating ceramic washers to

minimize heat losses via conduction. The distance between the sample and the neighboring

light blocker is 1.60 mm. We use three light blockers so that temperature oscillation on

the last light blocker is minimal. The last light blocker facing the sample is coated with a

thin layer of high-emissivity coating (Aremco 840CMX) to reduce radiative reflection from

the sample and enable temperature measurements using IR themography. We use an IR

camera (Flir A655sc, calibrated to 2000 °C) for temperature measurements. A schematic of

the system is shown in Fig. 3.4B, and a photograph of the system is shown in Fig. 3.4C.

Figure 3.4: (A) Tungsten light blockers and the sample holder for measurements. (B)

Schematic of the system. (C) a photograph of the system.
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The concentrated light source is powered by a 3-phase power supply with fixed 110 V

with programmable current ranging from 100 to 200 A. The operating current is controlled

externally using a 0-10 V function generator. Within the range of operation, the concentrated

light source exhibits a linear relationship between external control voltage and the operating

current. To heat the sample to high temperatures, we first control the solar simulator

to produce steady heat flux. Upon reaching steady temperature (typically in 10 min), we

modulate the function generator to output biased sinusoidal control voltage signals. Because

of the linear relationship between external control voltage and the operating current, the

concentrated light source also outputs biased sinusoidal heat flux. When the system reaches

quasi steady-state oscillation (approx.1 min after introducing the oscillating heat flux), we

start recording the temperature profiles using the IR camera.

3.2.2 IR thermography and processing

To facilitate IR thermography, the back side of the sample is coated with a thin layer of high-

emissivity coating (Aremco, 840MX). Our IR camera uses uncooled microbolometer detector

with spectral range between 7.5-14 µm. From the spectral emissivity of the coating between

7.5-14 µm[2], we estimated the total emissivity in the IR camera’s range is between 0.88 and

0.92. Because the coating’s spectral emissivity is relatively independent of temperature, we

measured its emissivity using a thermocouple (type K, ±0.75% accuracy) and the IR camera

at relatively lower temperatures (370 °C), and the emissivity was 0.92. Therefore, we use

0.92 as the sample’s emissivity for IR measurement. The temperature measurement error

for the IR camera is approx. ±2%[5].

Because of symmetry, the isothermal lines in the IR image are concentric circles, as

shown in Fig. 3.5A. At steady state, temperature measured for a pixel located at R0 exhibits

much stronger noise in a high temperature environment as compared to a room temperature

condition, as illustrated in Fig. 3.5B. To reduce high random noise, we developed a computa-

tionally efficient method using bi-linear interpolation to obtain the average temperature at a

given radius. The averaged temperature profiles at two representative locations R0 and RN
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are shown in Fig. 3.5C. Details of the IR image processing are available in the supplemental

material S4. We employ a parallel approach to average all the IR images in a recorded video,

and the time required to fully process an IR recording consists of 500 images is less than one

minute.

Figure 3.5: (A) Temperature contour plot of a sample. The area exposed to the concentrated

light source is indicated by the yellow circle. (B) Steady temperature profile at pixel R0 at

room and high temperatures. (C) Averaged temperature profile at two representative radii

R0 and RN .

Having obtained averaged temperature profiles at different radii, we extract amplitude

decay and phase shift with respect to the reference radius R0. We employ a Fourier transform

to calculate amplitude decay and phase shift for two sinusoidal temperature signals[65]. The

main benefit of working with amplitude decay and phase shift instead of absolute temperature

is the robustness against emissivity[120][58][67]. For the high-emissivity coating, a slight

variation of the emissivity setting in the IR camera from 0.92 to 0.88 causes approx. 20 K

difference in absolute temperature, as shown in Fig. 3.6A. Because emissivity affects only

absolute temperature and does not change the shape of the oscillating temperature profiles,

intuitively, the phase of a sinusoidal temperature profile is not affected by the emissivity

setting in the IR camera. Therefore, phase difference can be accurately measured even if

emissivity is not known precisely, as shown in Fig. 3.6B.
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Figure 3.6: (A) Temperature profiles measured at R0 and RN using different emissivity

settings. (B) Phase difference calculated using temperature profiles between R0 and RN un-

der different emissivity settings. (C) Amplitude decay calculated using temperature profiles

between R0 and RN under different emissivity settings.

For amplitude decay, we consider arbitrary locations Rx on the sample. If we neglect the

effect of the surroundings, the radiation measured by the IR camera is proportional to the

radiation emission at Rx. We denote the true emissivity at Rx as ε and true temperature

as Tx, whereas the emissivity setting in the IR camera is ε
′

and the corresponding measured

temperature is T
′
x. The following equation assumes that the IR camera measures radiance

correctly:

σε
′
T
′4
x = σεT 4

x (3.14)

Because of oscillating heat flux, the true peak-to-valley temperature change is ∆T , and the

temperature change observed in the IR camera is ∆T
′
. Considering two locations on the

sample R0 and Rx, and based on Eq. 3.14, we obtain the following relationships:

σε
′
(T
′

0 + ∆T
′

0)4 = σε(T0 + ∆T0)4

σε
′
(T
′

x + ∆T
′

x)
4 = σε(Tx + ∆Tx)

4

(3.15a)

(3.15b)

The amplitude decay can be expressed as:

∆T
′
x

∆T
′
0

=
γ(Tx + ∆Tx)− T

′
x

γ(T0 + ∆T0)− T ′0
(3.16)
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where γ = (ε/ε
′
)1/4. Based on Eq. 3.14, we also have:

σε
′
(T
′

0)4 = σε(T0)4, T
′

0 = γT0 (3.17)

As a result, γ cancels, and the ratio of oscillation amplitude shows no dependence on emis-

sivity. Fig. 3.6C shows that amplitude decay extracted from temperature profiles does not

depend on emissivity.
∆T

′
x

∆T
′
0

=
∆Tx
∆T0

(3.18)

To summarize, the averaging of the IR image over the radius significantly reduces random

noise in the high-temperature environment. The averaging approach is computationally

efficient and requires less than 1 min to process an IR recording typically consisting of 500

IR images. We demonstrate that amplitude decay and phase shift extracted from measured

temperature profiles are not affected by errors in emissivity, and therefore we work with

amplitude decay and phase shift instead of absolute temperature profiles.

3.3 Model sensitivity analysis

In this study, we employ a full factorial design of experiments at two levels[85] to investigate

the sensitivity of the physical model output (amplitude decay and phase shift) to the param-

eter of interest (thermal diffusivity). Here we use graphite’s properties for demonstration.

In addition to the parameter of interest, we are uncertain about several others. First, the

intensity distribution of the concentrated light source is difficult to characterize precisely.

Based on a previous study for a similar concentrated light source[14] and our preliminary in-

vestigation using a calorimetry method, the estimated intensity distribution width (σsolar) is

0.01 m. We assume a ±30% variation associated with σsolar. Secondly, in our study the light

blocker temperature T0 is difficult to measure precisely. We assume a ±5% variation associ-

ated with T0 and assume the light blocker temperature is uniform and constant for sensitivity

analysis. Lastly, we treat thermal diffusivity as a temperature-independent parameter for

sensitivity analysis. For a typical graphite sample the estimated thermal diffusivity α at

1000 K is 2.2 × 10−5 m2/s. We assigned a relatively low range of variation (±5%) for α.
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Table 3.1 shows a summary of these parameters and the corresponding range of variations.

Table 3.1: Parameters for a two level full factorial design of experiment

Parameter Definition Range

α Thermal diffusivity (2.09,2.31) ×10−5m2/s, 5% variation

σsolar Light source intensity distribution (0.7,1.3)×10−2 m, 30% variation

T0 Light blocker temperature (950, 1050) K, 5% variation

We employ a main effect approach [85] to quantify model output sensitivity to an input

parameter θ. For a two-level design, the main effect ME(θ) is expressed as:

ME(θ) =
1

2
(f(θ+)− f(θ−)) (3.19)

where f indicates the model, and θ+ and θ− indicate the model at ’high’ and ’low’ parameter

values. We evaluate the main effect of parameters defined in Table 3.1 to understand how

model outputs (amplitude decay and phase shift) are influenced by input parameter changes.

We choose an area (R0 = 60 pixels with 12 pixels span) that is not irradiated by the

concentrated light for amplitude and phase calculations. This area is chosen because of high

signal-to-noise ratio based on experimental observation. A prior study showed that increased

heating frequency is beneficial to enhance sensitivity in thermal diffusivity[67].

In this study, the concentrated light source is modulated sinusoidally to apply periodic

heating to samples. We limit the periodic heating frequency to 0.15 Hz due to safety and

operational stability of the Xenon light bulb[11]. The lower limit of the heating frequency

is 0.02 Hz because of the lengthy measurement time at low heating frequencies. The main

effect results for amplitude decay of selected input parameters are shown in Fig. 3.7 (top

row). Similar to a prior study[67], sensitivity in thermal diffusivity increases with the heating

frequency. For relatively fast heating frequencies (fheating ≥ 0.08 Hz), emissivity and light

blocker temperature exhibit low sensitivity. We also observe that the intensity distribution

width σsolar contributes little to the main effect. This finding is advantageous compared

to Hatta et al.’s approach[60], Cowan’s approach[42] and the laser flash method[95], each
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of which are sensitive to the intensity distribution of the light source. The main effect

results calculated using phase shift are shown in Fig. 3.7 (bottom row). Similarly, faster

heating frequencies are advantageous for thermal diffusivity detection, and σsolar makes an

insignificant contribution to the main effect.

Figure 3.7: Top row: percentage main effect for amplitude ratio of different parameters

at several heating frequencies. Bottom row: percentage main effect for phase difference of

different parameters at several heating frequencies

The foregoing results indicate that high sensitivity for thermal diffusivity can be achieved

with fheating ≥ 0.08 Hz for a graphite sample. The results also indicate that amplitude and

phase are insensitive to the intensity distribution of the light source σsolar.
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3.4 Uncertainty quantification and results

3.4.1 Uncertainty quantification using a Bayesian framework

In this study we estimate thermal diffusivity using amplitude decay and phase shift mea-

surements. Conventional parameter estimation methods convert an inverse problem to an

optimization problem by minimizing residuals between measurement results and the physical

model. In this case the inverse problem is ill-posed, and the solution is not unique. Also such

methods lack rigorous uncertainty estimates for parameters. This study employs a Bayesian

framework that incorporates prior knowledge of parameters and measurement processes to

produce a complete statistical description of the parameters. Growing interest exists in ap-

plying the Bayesian framework to inverse heat transfer problems, and several studies have

demonstrated its benefits[67][122][101][131].

The Bayesian framework is based on the Bayes’ theorem. Consider a set of parameters θ

and measurement results D; the posterior distribution for θ after observing D is expressed

using Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(3.20)

In this work, D consists of amplitude, phase measurements within a region of analysis and

average temperature profiles at inner (R0) and outer bounds (RN) of the region. θ consists

of four parameters: Aα, Bα, σsolar and Tbias. Aα and Bα are the coefficients for temperature-

dependent thermal diffusivity and are defined in Eq. 3.2. In our study, the intensity dis-

tribution of the concentrated light source is difficult to characterize precisely. Therefore,

we treat σsolar as a unknown parameter and update our state of knowledge for σsolar us-

ing the Bayesian framework. Lastly, the light blocker temperature measured using the IR

camera (see Supplemental Materials S3 for details) also suffers slight system error because

the measurement process differs from real experiments. Therefore, we introduce another pa-

rameter Tbias to augment the measured light blocker temperature to model the light blocker

temperature under real measurement conditions.

The posterior distribution is proportional to the likelihood function p(D|θ) and the prior
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distribution p(θ). The likelihood function p(D|θ) models the measurement process and

indicates the probability of observing data D given parameter θ and measurement noise σD.

First we consider amplitude decay measurements. We denote measured amplitude decay at

radius Ri as ∆Ai and assume that it follows a Gaussian distribution with mean A[f(θ)] and

standard deviation σ∆A,i. A[f(θ)] indicates the amplitude decay from the physical model f

evaluated using parameter θ. For amplitude decay at Ri, the likelihood function is given by.

p(∆Ai|θ) ∼ N (µ = ∆Ai − A[f(θ)]i,Σ = σ∆A,i) (3.21)

Assuming amplitude measurements at different radii are independent, then for all amplitude

decay measurements ∆A within the region of analysis, the likelihood function is:

p(∆A|θ) ∼
N∏
i=1

N (µ = ∆Ai − A[f(θ)]i,Σ = σ∆A,i) (3.22)

The likelihood functions for all phase shift measurements ∆φ within the region of analysis

are derived similarly. φ[f(θ)] indicates the phase shift from the physical model f evaluated

using parameter θ:

p(∆φ|θ) ∼
N∏
i=1

N (µ = ∆φi − φ[f(θ)]i,Σ = σ∆φ,i) (3.23)

In addition, the likelihood functions for the mean temperature profiles at the inner (Tmean,R0)

and outer (Tmean,RN) bounds of the region of analysis are treated as follows. Tm([f(θ)]) indi-

cates the mean temperature obtained from the physical model f evaluated using parameter

θ. σT indicates the standard deviation in mean temperature measurements. Unlike ampli-

tude and phase measurements, we manually choose σT = 2 K to ensure the mean simulated

temperatures within the region of analysis match experimental measurements. Because we

use temperature-dependent properties in this study, matching simulated and experimentally

measured mean temperatures is important. The likelihood function becomes:

p(Tmean|θ) = N (µ = Tmean,R0 − Tm([f(θ)])0,Σ = σT )

×N (µ = Tmean,RN − Tm([f(θ)])N ,Σ = σT )
(3.24)
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By further assuming that ∆A, ∆φ, Tmean,R0 and Tmean,RN are statistically independent,

the simplified likelihood function becomes:

p(D|θ) = p(∆A,∆φ, Tmean,R0, Tmean,RN |θ) = p(∆A|θ)p(∆φ|θ)p(Tmean,R0|θ)p(Tmean,RN |θ)

(3.25)

The prior distribution p(θ) represents the prior knowledge for θ. We assume Aα, Bα, σsolar

and Tbias are statistically independent. Therefore, p(θ) is expressed as:

p(θ) = p(Aα)p(Bα)p(σsolar)p(Tbias) (3.26)

Substituting the likelihood function (Eq. 3.25) and the prior distribution (Eq. 3.26) into the

Bayes posterior defined in Eq. 3.20, the posterior distribution is expressed as:

p(θ|D) = p(Aα, Bα, σsolar, Tbias|∆A,∆φ, Tmean,R0, Tmean,RN)

=
p(∆A,∆φ, Tmean,R0, Tmean,RN |Aα, Bα, σsolar, Tbias)p(Aα, Bα, σsolar, Tbias)

p(∆A,∆φ, Tmean,R0, Tmean,RN)

∼
N∏
i=1

N (µ = ∆Ai − A[f(θ)]i,Σ = σ∆A,i)N (µ = ∆φi − φ[f(θ)]i,Σ = σ∆φ,i)

×N (µ = Tmean,R0 − Tm([f(θ)])0,Σ = σT )N (µ = Tmean,R0 − Tm([f(θ)])N ,Σ = σT )

× p(Aα)p(Bα)p(σsolar)p(Tbias)

(3.27)

For an arbitrary distribution with unknown normalization constant, the Markov chain Monte

Carlo (MCMC) method is typically used to obtain random samples to reconstruct such a

distribution. The most commonly used MCMC algorithm is random walk Metropolis[81]

because of its simplicity[122][101][67]. However, this algorithm suffers poor convergence and

low efficiency for problems with large parameter spaces[32]. To expand the exploration of the

parameter space and to improve convergence of the Markov chain, our work employs a No-U-

Turn(NUT) sampler[63]. In addition, MCMC requires frequent evaluations of the physical

model to calculate the likelihood function. This becomes infeasible for numerical models

that require lengthy execution times. A previous study[101] demonstrated significant time

efficiency improvement using polynomial chaos for an inverse heat transfer problem. In this
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study, we develop a non-intrusive polynomial chaos (order 4) surrogate model using a python

module “chaospy”[48] to accelerate the original finite difference model. The surrogate model

exhibits high accuracy (maximum 0.5% error) for steady temperature profiles, amplitude

decay, and phase shift predictions, yet the execution time is reduced to a few milliseconds

from several minutes. The error in the surrogate model is neglected in this study. We

employ the python module pymc3 [103] with custom modifications[7] to implement the NUT

sampler.

3.4.2 NUT sampler’s results using a graphite sample

To demonstrate the Bayesian framework and NUT sampler, we first tested an isotropic

graphite sample (manufacturer:Entegris, grade:TM). The sample’s thickness is 0.92 mm with

outer diameter 88.50 mm. The density of the graphite sample is 1740 kg/m3. We used a

polynomial fit for specific heat [3] as:

cp(T ) = 2245 + 4.56× 10−2T − 5.61× 105/T + 2.77× 107/T 2 (3.28)

The gray emissivity of the graphite is 0.77, and we coated a layer of thin layer of diffuse high-

emissivity (0.88) material on the back side of the sample to facilitate IR thermography. We

modulated the light source using a 0.1 Hz voltage signal to achieve relatively high sensitivity

in thermal diffusivity. We heated the sample from room temperature to high temperature

with 119 A solar simulator current. Steady temperatures were obtained after 10 min, and

then a 0.1 Hz oscillation current signal with amplitude 22 A was superimposed on the 110 A

bias current. We started the IR recording after approx. one to two minutes when the sample

exhibited quasi-steady-state oscillations.

Here we analyze a region on the IR image bounded by R0 = 61 and RN = 73 pixels

to obtain temperature profiles and corresponding amplitude decay and phase shift. This

region is chosen for high signal-to-noise ratio in both amplitude ratio and phase shift. In

addition, the region is chosen to be relatively narrow to keep the temperature difference low

(approx. 40 K), such that Eq. 3.2 remains valid to model thermal diffusivity as a function of
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temperature.

The results obtained using the NUT sampler are shown in Fig. 3.8. The top row of

subfigures contains the trace plots for four unknown parameters. A trace plot shows the se-

quential value of a parameter obtained from the NUT sampler. The trace plots exhibit good

mixing, and different chains for each parameter oscillate around nearly the same constant

value, indicating convergence of the sampling process. The middle row contains histograms

obtained from the trace plots of corresponding parameters. The normalized histograms rep-

resent the posterior distribution of parameters and indicate the updated state of knowledge

given the prior knowledge and the measurement process. The bottom row contains the auto-

correlation of the corresponding trace plots in the top row. The auto-correlation decreases

rapidly to zero for all parameters, indicating high sampling efficiency.
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Figure 3.8: Top row: Trace plots of parameters. (A1) Intensity distribution width for

the concentrated light source σsolar. (B1) and (C1) Parameters for temperature-dependent

thermal diffusivity Aα and Bα. (D1) Bias temperature of the light blocker Tbias. Middle

row: Histograms of the trace plots in the top row. Bottom row: auto-correlation of the trace

plots in the top row.

Given the posterior distributions of Aα and Bα, the temperature-dependent thermal

diffusivity within the region of analysis (ROA) is shown in Fig. 3.9. The mean temperatures

of the inner and the outer boundary of the ROA are approx. 960 K and 1000 K respectively.

The solid line indicate the posterior mean for thermal diffusivity, and the blue band indicates

corresponding uncertainty. The same grade graphite samples have been measured using the

laser flash method by the manufacturer[3] and are shown as green lines. Good agreement

between the posterior results and reference values[3] is observed for the entire temperature

range within the ROA.
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Figure 3.9: Thermal diffusivity as a function of temperature evaluated using Aα and Bα

(solid black line) and corresponding uncertainties (blue shade) and reference values [3].

The fitted amplitude (Fig. 3.10A), phase (Fig. 3.10B) and temperatures (Fig. 3.10C)

are plotted using the parameters’ posterior means, and they match well with experimental

measurements.

Figure 3.10: Fitted amplitude decay (A), phase shift (B) and temperature profiles at inner

and outer boundary of the ROA (C) using the posterior means of parameters from Fig. 3.8C

3.4.3 Results for graphite at different frequencies and bias voltages

We fixed the bias current of the solar simulator at 119 A and measured multiple graphite

samples at different frequencies. Here the tested frequency range is from 0.08 Hz to 0.14

55



Hz to achieve relatively high sensitivity in thermal diffusivity. We analyze amplitude decay

and phase shift within R0 = 61 and RN = 73 pixels, and the results are shown in Fig. 3.11

in which thermal diffusivity values exhibit good consistency among the different frequencies

and multiple samples.

Figure 3.11: Thermal diffusivity measured at different frequencies for multiple graphite

samples compared to reference values[3].

Next, we fixed heating frequency at 0.1 Hz and changed the bias current. Here we

choose 119, 152 and 179 A as bias current for the solar simulator and 22 A as the oscillation

amplitude. We also explore different region of analysis on the sample. In addition to the

region bounded by R0 = 61 and RN = 73 pixels used in previous sections, we analyze

another region bounded by R0 = 73 and RN = 85 pixels shown as region 2 in Fig. 3.12A.

This region exhibits lower signal-to-noise ratio compared to region 1, but it also experiences

lower temperatures and can extend the temperature measurement range for each test. The

results for different currents and different regions are shown in Fig. 3.12B. We achieve thermal

diffusivity measurements over a broader temperature range (220 K) using a wider range of

bias currents. The results obtained under different bias currents exhibit good agreement

with the reference values[3] over 900 - 1120 K.
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Figure 3.12: (A) Region of analysis in an IR image. Region 1 bounded by R0 = 61 and

RN = 73 pixels. Region 2 bounded by R0 = 73 and RN = 85 pixels. (B) Thermal diffu-

sivity measured under different bias currents and in different regions, compared to reference

values[3].

3.4.4 Results for a copper sample

We also tested a copper sample (certified copper 110, 99.9% purity). The sample’s thickness is

0.79 mm with outer diameter 88.50 mm. We use a polynomial fit for temperature-dependent

specific heat [126]. The copper sample’s front and back surfaces were coated with a thin layer

of diffuse high-emissivity (0.88) coating (Aremeco, 840MX). The weight contribution of the

coating is less than 2% of the sample’s total weight and is neglected. The copper sample

was measured using 119 A bias current under several different frequencies. The results are

shown in Fig. 3.13, and good agreement with reference values[118] is observed.
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Figure 3.13: Thermal diffusivity of copper measured at different heating frequencies.

3.5 Conclusions

In this work, we present a custom instrument for characterizing thermal diffusivity at high

temperatures using a modified Ångström’s method. The sample under test is heated directly

using a concentrated light source and reaches steady high temperatures rapidly (approx. 10

mins). This is advantageous compared to existing methods that heat samples from surround-

ings and typically require hours to reach steady high temperatures. We employ non-contact,

non-destructive and data-rich IR thermography to measure quasi steady-state oscillating

temperature profiles, and an efficient averaging method to process the noisy IR images and

obtain temperature profiles with low noise. Amplitude and phase results extracted from

such temperature profiles are robust against errors in emissivity. For uncertainty quantifi-

cation, a surrogate-accelerated Bayesian framework and a NUT sampler are developed to

obtain statistical distributions for parameters of interest. For several graphite and copper

samples under test, we observe good agreement with reference values under different heat-

ing frequencies. We also measure different temperature ranges by adjusting solar simulator

current. In general, the results obtained using the custom instrument exhibit approx. 5%
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difference compared to reference values obtained using the laser flash method. The custom

instrument’s time efficiency, accuracy, inherent ability to quantify uncertainty rigorously,

and relatively low overall cost are expected to benefit researchers for characterizing thermal

diffusivity at high temperatures.
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CHAPTER 4

Surrogate-accelerated Bayesian framework for

high-temperature thermal diffusivity characterization

4.1 Bayesian framework for uncertainty quantification

With the rapid performance improvement of computational resources the Bayesian frame-

work is becoming increasingly popular in solving inverse heat transfer problems. Early

works demonstrated the effectiveness of the Bayesian framework for identifying unknown

heat sources in conduction[122] and radiation[124] for hypothetical problems. Recently, the

Bayesian framework has been adopted in thermophysical property metrology applications,

especially for the laser flash method[19][101][71], and we have previously reported a Bayesian

framework for Ångström’s method under ambient conditions[67]. For high-temperature con-

ditions with strong nonlinear radiation losses, Bayesian analysis has not yet been reported.

The challenges involve probing the posterior distribution using computationally expensive

numerical modeling and achieving convergence in the MCMC sampling process for nonlinear

problems with many unknowns. In the following section, we employ a parametric surro-

gate model using polynomial chaos to accelerate the original model. Then, we outline the

configuration of our Bayesian framework and employ a No-U-Turn sampler to enhance the

convergence of the sampling process.

4.1.1 Physical model acceleration

In our study, evaluating the original finite difference model requires approx. 40 s. Therefore,

probing the posterior distribution using the original model is infeasible because MCMC
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requires numerous and successive model evaluations. Merely 1000 such evaluation requires

approx. 10 hours. As a result, computational speed must be significantly increased to enable

the Bayesian analysis for practical use.

Generally, two approaches are used to accelerate the computational speed of a physical

model. The first approach is model order reduction (MOR), and commonly used techniques

include proper orthogonal decomposition (POD)[78], Krylov-subspace methods[49] and bal-

anced truncation[87]. Krylov-subspace methods and balanced truncation are applicable in

linear systems. POD is applicable to nonlinear systems[26] in which a large system of equa-

tions are projected to a reduced subspace. The model is solved efficiently in the reduced

subspace and the solution is transformed back to the original space. In our study the total

number of nodes is approx. 200, which is rather low compared to existing studies using

POD. Therefore, the original model space is difficult to be reduced significantly to achieve

dramatic computational improvement.

The second approach is to approximate the original physical model using a computa-

tionally efficient surrogate model. Commonly used surrogate models include the Gaussian

process (GP) and polynomial chaos (PC) expansion[26][92]. In general, both approaches can

produce excellent approximation to the original physical model. An thorough comparison

between these two approaches is given in [92]. In this study we employ PC because of its

simplicity and faster online execution performance compared to GP and POD. PC can be

further categorized into intrusive and non-intrusive approach. The intrusive approach is gen-

erally more computationally efficient but requires significant work to derive the system of

equations for the PC coefficients from the governing equations. The non-intrusive approach

treats the physical model as a black-box and computes PC coefficients by evaluating the

physical model at quadrature points, which is much more convenient. Therefore, we employ

a non-intrusive approach to construct the parametric surrogate model as discussed below.

In this work, four parameters in the physical model are treated as random variables.

The first two parameters are Aα and Bα that define the temperature-dependent thermal

diffusivity (Eq. 3.2). The third parameter is the intensity distribution of the solar simulator
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σsolar(Eq. 3.1). The fourth parameter is Tbias, which models the system error introduced

when measuring the light blocker temperature. We assume the prior distributions for all

parameters follow uniform distributions. That is,

Aα ∼ U(Aα,lower, Aα,upper) (4.1)

Bα ∼ U(Bα,lower, Bα,upper) (4.2)

σsolar ∼ U(σsolar,lower, σsolar,upper) (4.3)

Tbias ∼ U(Tbias,lower, Tbias,upper) (4.4)

We further assume that these parameters are statistically independent, and we denote θ =

{Aα, Bα, σsolar, Tbias}.

We denote the parametric surrogate model as f̂(r, t, θ), where r indicates sample radius

and t indicates time. By definition,

f̂(r, t, θ) =
M∑
i=0

Ci(r, t)Ψi(θ) (4.5)

where Ci(r, t) are PC coefficients (also known as Fourier coefficients). Ψi(θ) are orthogonal

polynomials with respect to the joint probability density function (PDF) of θ:

< Ψi(θ),Ψj(θ) >=

∫
Ψi(θ)Ψj(θ)p(θ)dθ = δij , for i, j = 0, · · · ,M (4.6)

The orthogonal polynomials are determined here using a python module “chaospy”[48], and

we employ the Askey-Wilson scheme to construct such polynomials given the joint PDF of

θ. The infinite PC series is truncated to finite M + 1 terms as determined by the number of

unknown parameters Nθ and the PC order(NP ):

M + 1 =
(Nθ +NP )!

Nθ!NP !
(4.7)

PC coefficients are calculated using the spectral projection approach[54] from f(r, t, θ), which

indicates the original physical model:

Ci(r, t) =< f(r, t, θ),Ψi(θ) >=

∫
Ψi(θ)f(r, t, θ)p(θ)dθ , for i = 0, · · · ,M (4.8)
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Integrating Eq. 4.8 analytically is impractical. In this work, we use Gaussian quadrature

and “chaospy”[48] to evaluate the integral numerically.

Ci(r, t) =

∫
Ψi(θ)f(r, t, θ)p(θ)dθ ≈

K∑
k=1

f(r, t, θk)Ψi(θk)wk , for i = 0, · · · ,M (4.9)

where θk (k = 1 to K) indicates quadrature points, and wk are the corresponding quadrature

weights.

After calculating all PC coefficients, the surrogate models can rapidly and accurately

predict model outputs for any θ within the joint prior probability distribution p(θ). In this

study, we develop three PC surrogate models to simulate quasi-steady state temperature

profiles, amplitude decay and phase shift within a region of analysis (ROA) on a sample.

The model form error for the finite difference solver and the error in the surrogate models

are not considered in this study.

4.1.2 Bayesian inverse problem and the No-U-Turn sampler

In this study we aim to estimate the temperature-dependent thermal diffusivity from am-

plitude decay and phase shift measurements obtained with our custom instrument. Specif-

ically, we modulated the concentrated light source using a 0.12 Hz control voltage signal

and measured the temperature response of a thin isotropic graphite disk (POCO graphite,

manufacturer: Entegris, grade TM)[3] at approx.1000 K. The data D consist of temperature

profiles at quasi-steady state and corresponding amplitude decay phase shift extracted from

these temperature profiles. We mostly rely on amplitude decay and phase shift because they

are robust against uncertainty in emissivity of the sample’s surface[67].

The Bayesian approach to formulate the inverse problem is to construct the posterior

distribution p(θ|D) using Bayes theorem given the prior distribution p(θ) and the likelihood

function p(D|θ).

p(θ|D) =
p(D|θ)p(θ)
p(D)

(4.10)

The prior distribution reflects our knowledge of the parameters before observing measure-

ment results. It also serve as a mechanism of regularization for the inverse problem[47][122].
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The likelihood function describes the measurement process. In the following sections, we

illustrate the prior distribution, the formulation of the likelihood function and the posterior

distribution.

4.1.2.1 Prior distribution

In section 4.1.1, we introduce the four unknown parameters in the model. We first consider

the intensity distribution parameter of the solar simulator σsolar. Based on a previous study

which characterize a similar concentrated light source[14], the estimated σsolar is 0.01 m. We

assign a wide uniform prior distribution to cover possible values for σsolar in Eq. 4.11.

p(σsolar) = U(0.004, 0.018) ,unit (m) (4.11)

Next we consider Tbias, which models the bias error for measuring the light blocker temper-

ature. Considering unknown reflections from the surroundings (approx. 20 K error), and

intrinsic error in the IR camera for high-temperature measurements (approx. 20 K), we

assign a wide uniform prior distribution for Tbias in Eq. 4.12.

p(Tbias) = U(−100, 100) ,unit (K) (4.12)

Lastly we consider the coefficients for temperature dependent thermal diffusivity Aα and

Bα. For isotropic graphite, we expect at 1000 K, thermal diffusivity must be positive and

must be less than commonly reported thermal diffusivity at room temperatures, which is

approx. 10−4 m2/s [18]. We also anticipate the thermal diffusivity of graphite to decrease

when temperature increases because of increased scattering. Therefore, Aα must be positive.

We constrained the minimum of Bα to be 1000 for numerical stability. We construct two

wide uniform prior distribution for Aα and Bα respective in Eq. 4.13 and Eq. 4.14.

p(Aα) = U(0, 100) ,unit (s/m2K) (4.13)

p(Bα) = U(1000, 40000) ,unit (s/m2) (4.14)
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We assume that these parameters are statistically independent and the simplified prior dis-

tribution p(θ) is expressed as:

p(θ) = p(Aα)p(Bα)p(σsolar)p(Tbias) (4.15)

4.1.2.2 Likelihood function

The likelihood function p(D|θ) models the measurement process subject to additive noise.

Fig. 4.1A shows an IR image of a graphite sample, and Fig. 4.1B shows the corresponding

temperature contour plot. The region exposed to the concentrated light source is shown

by the yellow circle in Fig. 4.1B. We extract amplitude decay and phase shift from a ROA

bounded by the green annulus shown in Fig. 4.1B. The extracted amplitude decay and phase

shift are shown in Fig. 4.1C and Fig. 4.1D respectively. Different series indicate amplitude

and phase extracted from regions bounded by different angles indicated by the blue dashed

lines in Fig. 4.1B.

Figure 4.1: (A) An IR image of a graphite sample. (B) Temperature contour plot of (A).

(C) Amplitude decay results as a function of radius at multiple regions (shown as different

data series) bounded by different angles shown in (B). (D) Phase shift results as a function

of radius at multiple regions bounded by different angles shown in (B)

To develop the likelihood function, we first consider the amplitude decay results. Fig. 4.1C

shows amplitude decay measurements at different radial locations from R0 to RN . For a given

radius Ri, we assume that the amplitude decay follows a Gaussian distribution with mean

∆Ai and standard deviation σ∆Ai . Therefore, the probability of observing ∆Ai given the
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parameter θ and the surrogate model f̂(t, r, θ) is expressed as:

p(∆Ai|θ) = N
(

∆Ai|µ = ∆A[f̂(θ, r, t)],Σ = σ∆A,i

)
(4.16)

where ∆A[f̂(θ, Ri, t)] indicates amplitude decay computed using the surrogate model at

Ri. We assume amplitude decay results are independent at different radii. Therefore, the

likelihood function for amplitude decay for all radii within the ROA is expressed as:

p(∆A|θ) =
N∏
i=1

N
(

∆Ai|µ = ∆A[f̂(θ, Ri, t)],Σ = σ∆A,i

)
(4.17)

For phase shift measurements ∆φ shown in Fig. 4.1D, the likelihood function is similarly

expressed in Eq. 4.18.

p(∆φ|θ) =
N∏
i=1

N
(

∆φi|µ = ∆φ[f̂(θ, Ri, t)],Σ = σ∆φ,i

)
(4.18)

Lastly, we consider the mean temperatures at the inner and outer boundaries of the

ROA, Tm,R0 and Tm,RN . In this study, thermal properties such as specific heat and thermal

diffusivity are temperature-dependent. Therefore, matching simulated and experimentally

measured mean temperatures within the ROA is important. Similar to amplitude decay

and phase shift, we model the likelihood function of mean temperature using Gaussian

distributions. However, we manually choose a low standard deviation σTm = 2 K to enforce

simulated temperatures to match experimental measurements. The likelihood function for

mean temperature is given in Eq. 4.19, where Tm[f̂(θ, Ri, t)] indicates mean temperature

computed using the surrogate model at Ri.

p(Tm|θ) = N
(
Tm,R0|µ = Tm([f̂(θ, R0, t)]),Σ = σTm

)
×N

(
Tm,RN |µ = [Tm(f̂(θ, RN , t),Σ = σTm

) (4.19)

We further assume that amplitude decay, phase shift and mean temperatures are indepen-

dent; the likelihood function is simplified as:

p(D|θ) = p(∆A,∆φ, Tm,R0, Tm,RN |θ) = p(∆A|θ)p(∆φ|θ)p(Tm,R0|θ)p(Tm,RN |θ) (4.20)
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We substitute Eq. 4.17-4.19 into Eq. 4.20 to obtain the expression for the likelihood function:

p(D|θ) =
N∏
i=1

N
(

∆Ai|µ = ∆A[f̂(θ, Ri, t)],Σ = σ∆A,i

)
N
(

∆φi|µ = ∆φ[f̂(θ, Ri, t)],Σ = σ∆φ,i

)
×N

(
Tm,R0|µ = Tm([f̂(θ, R0, t)]),Σ = σTm

)
N
(
Tm,RN |µ = [Tm(f̂(θ, RN , t),Σ = σTm

)
(4.21)

4.1.3 Posterior distribution and the No-U-Turn sampler

The posterior distribution defined in Eq. 4.10 is expressed using the prior distribution in

Eq. 4.15 and the likelihood function in Eq. 4.21:

p(θ|D) =
p(D|θ)p(θ)
p(D)

=
N∏
i=1

N
(

∆Ai|µ = ∆A[f̂(θ, Ri, t)],Σ = σ∆A,i

)
×N

(
∆φi|µ = ∆φ[f̂(θ, Ri, t)],Σ = σ∆A,i

)
×N

(
Tm,R0|µ = Tm([f̂(θ, R0, t)]),Σ = σTm

)
×N

(
Tm,RNµ = [Tm(f̂(θ, RN , t),Σ = σTm

)
× p(Aα)p(Bα)p(σsolar)p(Tbias)/p(D)

(4.22)

Here p(D) is a normalizing constant. MCMC is commonly used to draw random samples

from an arbitrary distribution up to a normalizing constant. The most commonly used

MCMC approach, random walk Metropolis-Hasting, has produced satisfactory results for

inverse heat transfer problems[123][19][101][16][67]. However, random walk becomes ineffi-

cient because the volume of the parameter space increases dramatically with a huge number

of parameters[32][25]. For example, if large step size is used to propose new parameters,

then the proposed state is strongly biased towards the space outside the target distribution,

causing high rejection in the sampling process. Conversely if the proposal step size is kept

low to reduce rejection in the sampling process, the resulting accepted states will concentrate

tightly around the current state, which leads to poor exploration of the target distribution

and high auto-correlation in accepted samples. Hamiltonian Monte Carlo (HMC)[45] is a

more efficient sampling approach that models the target distribution using a Hamiltonian

potential and explores the parameter space using Hamiltonian dynamics. An thorough in-
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troduction to HMC is given in [25]. Instead of randomly exploring the target distribution,

HMC introduces an auxiliary variable and decouples the sampling process into two phases:

stochastic exploration of different levels of the Hamiltonian and deterministic exploration

within a fixed Hamiltonian. This enables the sampling process to move away from the cur-

rent state efficiently to unexplored region of the target distribution. In practice however,

HMC is not widely used for two reasons. First, HMC requires significant hyperpameter tun-

ing to achieve efficient sampling. Second, after a finite number of steps, HMC can travel back

to its starting point, also known as U-turn behavior. The No-U-Turn (NUT) sampler[63]

is based on HMC and addresses these two inherent flaws. In this work, we employ a NUT

sampler to sample the posterior distribution defined in Eq. 4.22, and we employ a python

module “pymc3” [103] to construct the NUT sampler. Currently, “pymc3” is only compati-

ble with Theano-based functions, and we use [7] to construct the custom likelihood function

to be compatible with our PC surrogate models. We have developed an open-source python

module “pyangstromHT”[68] for experimental data extraction, surrogate model development

and posterior distribution sampling.

4.2 Results

4.2.1 Conventional optimization approach

First, we solve the inverse problem using the classical nonlinear regression approach, in which

the inverse problem is converted to an optimization problem and the unknown parameters are

determined by minimizing regression residual[79][28][139]. The residual function is defined

in Eq. 4.23, which takes similar form as the likelihood function defined in Eq. 4.21.

L(θ) =
N∑
i=0

{(
∆A[f(θ, Ri, t)]−∆Ai

σ∆Ai

)2

+

(
∆φ[f(θ, Ri, t)]−∆φi

σ∆φi

)2
}

+

(
Tm[f(θ, R0, t)]− Tm(R0)

σTm

)2

+

(
Tm[f(θ, RN , t)]− Tm(RN)

σTm

)2
(4.23)

Similarly, ∆A[f(θ, Ri, t)],∆φ[f(θ, Ri, t)] and Tm[f(θ, Ri, t)] indicate computing amplitude de-

cay, phase shift and mean temperature at radius Ri with the original physical model using
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parameter θ. ∆Ai and ∆φi indicate experimentally measured amplitude decay and phase

shift at radius Ri. Tm(R0) and Tm(RN) indicate experimentally measured mean temperatures

at the inner and the outer radius of the ROA. σ∆Ai and σ∆φi indicate standard deviation of

amplitude decay and phase shift measurement at Ri. σTm is chosen manually here as 2 K to

enforce the simulated mean temperatures to match experimental measurements.

Nonlinear regression Levenberg–Marquardt algorithm is used here, and we employed a

python module “lmfit”[90] to obtain the regression results. Here we examine five different

initial values for θ and the corresponding final regression results are given in Table 4.1.

We note that the regression results are not unique given different initial values for each

parameter. The amplitude and phase fitting results are shown in Fig. 4.2, each column

Table 4.1: Initial parameter values and corresponding regression results

Initial values Regression results

Regression

#

σsolar

(m)

Aα

(s/m2K)

Bα

(s/m2)

Tbias

(K)

σsolar

(m)

Aα

(s/m2K)

Bα

(s/m2)

Tbias

(K)

1 0.0077 25 -488 20 0.0103 43.8 1081 8.5

2 0.0099 36.4 11900 10 0.0105 41.1 9961 13.8

3 0.0174 42.7 9750 0 0.0148 44.0 9616.4 54.9

4 0.0126 30.0 4000 15 0.0120 42.2 6372.3 7.6

5 0.0080 28.1 20000.0 -10.0 0.0101 31.8 18423.9 -6.0

corresponds to a specific initial condition indicated in table 4.1.
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Figure 4.2: (A1-A4) Fitted amplitude decay vs experimental measurements. (B1-B4) Fitted

phase shift simulation results with fitted parameter values vs experimental measurements.

To summarize, the solutions obtained via nonlinear regression are not unique, which is

expected because for nonlinear problems multiple local minima exists. In addition, con-

ventional regression techniques do not provide an uncertainty estimate for each parameter.

Though a confidence interval for a parameter can be approximated using the covariance

matrix, this typically does not work well for nonlinear problems because computing the

covariance matrix requires linearing the physical model[26]. In the next section, we treat

the unknown parameters as random variables and employ a Bayesian approach to solve the

inverse problem.

4.2.2 Bayesian approach

4.2.2.1 PC surrogate model

In this study we employ PC as surrogate models to accelerate the Bayesian analysis. This

involves developing the parametric PC surrogate models in an offline process and then im-

plement the surrogate models in the “online” Bayesian analysis. Here we evaluate the online

performance of such surrogate models in terms of accuracy and speed enhancement. We first

examine their accuracy in the parameter space defined by the prior distributions in Eq. 4.15.
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Here we use Latin hypercube to randomly generate 100 parameters [θ1, ...θ100] within the

joint prior distribution in Eq. 4.15. For each randomly generated θi, we evaluate the follow-

ing quantities using both the surrogate model and the original model, and we calculate the

maximum absolute relative error:

1. Amplitude decay as a function of radius

2. Phase shift as a function of radius

3. Temperature profile at radius R0 as a function of time

4. Temperature profile at radius RN as a function of time

Take θ1 = {0.01 m, 35 s/m2K, 1000 s/m2, 10 K} for example. In Fig. 4.3 the top row shows

simulated amplitude decay, phase shift and temperature profiles using a fourth order PC

and the original physical model. The second row shows the relative absolute error and we

highlight the maximum relative error in red for each quantity.
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Figure 4.3: Top row: Simulated Amplitude decay (A1), phase shift (B1) and Temperature

profiles at radius R0 and RN (C1) using both the fourth order PC and the original finite

difference model. Bottom row: Relative error of amplitude decay (A2), phase shift (B2) and

temperature profiles at radius R0 and RN (C2).

After obtaining the maximum relative errors for randomly generated [θ1, ...θ100], we in-

vestigate these maximum relative errors by computing the mean, and global maximum for

different PC orders. The results are shown in Fig. 4.4A and B respectively.
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Figure 4.4: (A) Mean and (B) global maximum value for maximum relative errors as a

function of PC order obtained by simulating 100 random Latin hypercube design. (C) The

number of polynomials and the total number of Gaussian quadrature as a function of PC

order.

We note that on average, the maximum relative error decreases as the order of the PC

increases, as shown in Fig. 4.4A. For amplitude decay results, on average the maximum error

decrease significantly from 1.6% to 0.041% when the PC order increases from one to four,

and then decreases marginally to 0.035% if the PC order is increased to five. The global

maximum relative error also decrease significantly from 5% to 0.16% when the PC order

increases from one to four, and then decreases marginally to 0.13% if the PC order is further

increased to five. Similarly for other quantities, the maximum global errors are less than

0.5% for the fourth order PC. Further increasing the PC order only narrowly improve its

accuracy at the cost of significant increase in computational requirement. Fig. 4.4C indicates

the number of polynomials and the total number of quadrature required to calculate the PC

coefficients. For a model with Nθ parameters and approximated using PC with order NP ,

the total number of polynomials required is (Nθ+NP )!
Nθ!NP !

. If the order of quadrature is PQ to

compute the polynomial coefficients numerically, the total number of quadrature requires

is (PQ + 1)NP . Therefore, in this work we use the fourth order PC for high accuracy and

manageable total run time in the offline process.

On average, the time required to execute the original physical model is approx. 35 s,
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whereas evaluating the surrogate model takes only 3.75 ms. The speed improvement using the

surrogate model is more than 9,000 times. To conclude, given high accuracy over the entire

joint prior distribution p(θ) and significant speed improvement, we employ the fourth order

PC as the parametric surrogate model to accelerate the Bayesian analysis in the following

sections.

4.2.2.2 The random walk Metropolis-Hasting sampler

Having obtained computationally efficient surrogate models, first we employ the commonly

used random walk Metropolis-Hasting algorithm to sample the posterior distribution defined

in Eq. 4.22 with four chains. We optimized the random walk step size to reduce auto-

correlation between sequential samples while maintaining reasonable acceptance rate. The

optimized step size is σ = {2 × 10−4 m, 0.4 s/m2K, 160 s/m2, 0.8 K}, and the acceptance

rate for the sampling process is approx. 14%. The trace plot for all four parameters are

shown in Fig. 4.6A1-A4 and we removed 30% of the initial samples in each chain as burn-in.

Mixing for all parameters are relatively poor as observed from the trace plots, and high

auto-correlations are observed as shown in Fig. 4.6B1 and B4. We employ the Gelman-

Rubin criteria[51], which compares within-chain and between-chain variance, to check the

convergence of the sampling process. We employ a python module “chainconsumer”[62] to

implement the Gelman-Rubin criteria. All four parameters pass the convergence test. The R̂

value for parameters Aα, Bα, σsolar, Tbias are 1.008, 1.002, 1.002 and 1.007 respectively, with

R̂ ≈ 1 indicating convergence. The histograms of the random samples obtained from the

posterior distribution are shown in Fig. 4.6C1-C4, indicating the updated confidence interval

for these parameters given the prior knowledge and the measurement process.

74



Figure 4.5: Random walk Metropolis-Hasting sampling results. (A1-A4) Trace plots for

Aα, Bα, σsolar, Tbias for four different chains. (B1-B4) Auto-correlation of the trace plots in

(A1-A4). (C1-C4) Histogram plots for random samples for Aα, Bα, σsolar, Tbias respectively,

in (A1-A4).

Based on the posterior distribution of Aα and Bα, we plot the corresponding 99% con-

fidence interval for thermal diffusivity as a function of temperature, which is shown as the

blue band in Fig. 4.6A. The posterior distribution for thermal diffusivity matches well with

the reference thermal diffusivity values[3] obtained using the laser flash method. Using the

posterior mean for all four parameters, we obtain the simulated amplitude decay, phase shift

and temperature profiles at R0 and RN , as shown in Fig. 4.6B, C and D respectively, and

they all match excellently with experimental observations.

75



Figure 4.6: Random walk Metropolis-Hasting sampler results: (A) Estimated thermal diffu-

sivity as a function of temperature vs reference values[3]. (B) Simulated amplitude decay vs

experimental measurements. (C) Simulated phase shift vs experimental measurements. (D)

Simulated temperature profiles at R0 and RN vs experimental measurements.

Conventional random walk Metropolis-Hasting sampler produces acceptable results. How-

ever, relatively high auto-correlation still exist for all four parameters as shown in Fig. 4.5B1-

B4, and even after more than 500 accepted samples, high auto-correlation are observed. To

achieve better mixing and lower auto-correlation for all parameters, a different mechanism to

explore the posterior distribution other than locally constrained random walked is required.

In the next section, we demonstrate improved results using a NUT sampler.

4.2.2.3 The No-U-Turn sampler

We employ the python module “pymc3”[103] to construct the NUT sampler, and we cus-

tomize the code[7] to be compatible with the PC surrogate models. We use four different

chains to sample the posterior distribution in Eq. 4.22 and the trace plots are shown in

Fig. 4.7A1-A4. Better mixing for all four parameters are observed, and the corresponding

auto-correlation shown in Fig. 4.7B1-B4 are significantly lower compared to that obtained

with random walk (Fig. 4.5B1-B4). The histograms are given in Fig. 4.7C1-C4 respectively.

The Gelman-Rubin criteria is also employed here to examine the convergence of the sampling

process. The R̂ value for parameters σsolar, Aα, Bα, Tbias are 1.007, 1.001, 1.001 and 1.007

respectively, indicating good convergence.
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Figure 4.7: NUT sampling results. (A1-A4) Trace plots of Aα, Bα, σsolar, Tbias using four

chains. (B1-B4) Auto-correlation of the trace plots in (A1-A4). (C1-C4) Histogram plots of

the random samples shown in (A1-A4).

The posterior distribution for the temperature-dependent thermal diffusivity is compa-

rable to that obtained using the random walk Metropolis-Hasting method, and the result

also matches well with reference values of the graphite sample[3] as shown in Fig. 4.8A. The

simulated amplitude decay, phase shift and temperature profiles using the posterior means

of θ also match well with experimental measurements, as shown in Fig. 4.8 B-D.
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Figure 4.8: NUT sampler results: (A) Estimated thermal diffusivity as a function of temper-

ature vs reference values[3]. (B) Simulated amplitude decay vs experimental measurements.

(C) Simulated phase shift vs experimental measurements. (D) Simulated temperature pro-

files at R0 and RN vs experimental measurements.

We further examine the pairwise plot for all four parameters as shown in Fig. 4.9. We note

σsolar has relatively strong positive correlation with Tbias and is uncorrelated with Aα and

Bα. This matches with the physical intuition. With increased σsolar, less energy flows into

the sample from the light source, and Tbias must increase to irradiate more power from the

surroundings so that simulated temperature profiles match with experimental measurements.

Aα and Bα exhibit strong negative auto-correlation but show little dependence on σsolar and

Tbias. This is also expected from the model because according to Eq. 3.2, an increase in

the value of Aα must lead to the reduction of Bα for a specific thermal diffusivity value.

The pairwise plot provides insights to the physical model that are difficult to acquire from

conventional regression approaches[101].
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Figure 4.9: Pairwise plot for random samples obtained using the NUT sampler. The plots on

the diagonal are histograms for each parameter and the off-diagonal pairwise plots indicate

correlation between all pairs of unknown parameters.

4.3 Conclusion

In this study, we present several approaches to solve the inverse problem to characterize

thermal diffusivity at high temperatures using a modified Ångström’s method. Conven-

tional regression approach attempts to uncover the “true” underlying values of unknown

parameters. However, because of the nonlinear nature of the system, increased number of

unknown parameters and the existence of noise in the observed data, obtaining an unique

solution is impossible. Therefore, we treat the unknown parameters as random variables

and employ a Bayesian framework for uncertainty quantification. Two major challenges
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are addressed in this study. First, sampling the posterior distribution requires extensive

and successive evaluation of the physical model, which is infeasible if the physical model is

computationally expensive. We present a computationally cheap surrogate model using a

fourth order polynomial chaos, which offers both high accuracy (approx. 0.5% maximum

relative error) and nearly four orders of magnitude of speed improvement. Second, for com-

monly used random walk Metropolis-Hasting sampler, with increased number of unknown

parameters, exploring the posterior distribution using random walk becomes inefficient. We

employ a NUT sampler which explores the parameter space much more thoroughly and

does not require any hyperparameter tuning. Better mixing and significantly lower auto-

correlation are obtained compared to the random walk Metropolis-Hasting approach. The

posterior distribution of thermal diffusivity matches excellently with reference values. Mean-

while, simulated amplitude decay, phase shift and temperature profiles using the posterior

means fit well to experimental measurements. We created an open-source python module

“pyangstromHT”[68] for this project to benefit researchers with similar experimental setups

to analyze their results using the surrogate-accelerated Bayesian framework.
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CHAPTER 5

Rapid Analytical Instrumentation for Electrochemical

Impedance Spectroscopy Measurements

5.1 Experimental setup

This section presents the hardware with an adaptive shunt resistance and the correspond-

ing impedance measurement procedure that enables accurate EIS measurements over the

frequency band from 10 mHz to 2 kHz.

5.1.1 Experimental hardware

The impedance of a supercapacitor is commonly measured using Ohm’s law with a four-

probe circuit, as shown in Fig. 5.1A. Here, the supercapacitor is connected in series with a

shunt resistor with known resistance RS. A voltage perturbation of amplitude V is applied

across the shunt resistor and the supercapacitor, and the impedance ZC is determined from

the voltage drop across the shunt resistor VS and the supercapacitor VC using Ohm’s Law:

ZC =
VC
IC

=
VC
VS
RS =

V − VS
VS

RS (5.1)

This method is accurate when both the voltage across the shunt resistor and the voltage

across the supercapacitor can be accurately measured. However, when the impedance of the

supercapacitor is significantly higher or lower than the shunt resistor, because the total am-

plitude V is fixed, then VS or VC becomes too low to measure accurately, given random noise

and quantization error in the circuit (see Fig. 5.1B). For a supercapacitor, its impedance

changes by orders of magnitude over a broad frequency band. Therefore, measuring EIS
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using a fixed shunt resistance is inappropriate over the entire frequency band.

Figure 5.1: (A) A typical four-probe circuit for measuring impedance of a capacitor (ZC)

via a shunt resistor (RS). (B) Random voltage noise across the shunt resistor vS(t) and the

fully charged (at 2 V) supercapacitor vC (t) before perturbation signals are applied to the

circuit.

To illustrate this effect with a chirp voltage signal as the perturbation signal, the impedance

of a commercial supercapacitor (manufacturer: Nichicon, capacitance: 1 mF) was measured

using the circuit shown in Fig. 5.1A with fixed shunt resistance of 99.9 Ω. First, we per-

formed EIS measurements at low frequencies from 10 mHz to 1 Hz. The details of signal

processing and EIS calculations using chirp signals are given in the Supplemental Materials

(section S1).

Here an exponential chirp perturbation (f0=10 mHz, f1=1 Hz, T=150 s) was chosen was

the input voltage v (t), and the voltages across the shunt resistor vS(t) and the supercapacitor

vC(t) were measured and are shown in Fig. 5.2A. The frequency of the chirp signal as
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a function of time is shown as a dashed blue line. For t < 80 s, which corresponds to

frequencies from 10 mHz to 0.1 Hz, the impedance of the supercapacitor is much higher

than the shunt resistance. Therefore, the voltage across the shunt resistor vS(t) is too low

to be measured accurately, as indicated by the shaded area in Fig. 5.2A. As a result, EIS

results calculated using vS(t) and vC (t) are also inaccurate, as shown in Fig. 5.2B, in which

measurement results obtained using the custom instrument significantly deviate from those

obtained by a commercial instrument (Gamry, interface 1010B).

Figure 5.2: EIS measurement for the commercial supercapacitor from 10 mHz to 1.0 Hz. (A)

Voltage across the shunt resistor vS(t), voltage across the supercapacitor vC (t) and frequency

of the chirp signal as functions of time. The shaded area indicates the low accuracy region, in

which vS(t) is too low to measure accurately. (B) Bode plots for impedance results measured

using the custom and commercial instruments; the shaded area indicates the frequency band

for the low accuracy region in (A).
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Similarly, we measured EIS at relative higher frequencies (1 Hz to 2 kHz) for the same

supercapacitor using the same shunt resistance. Here an exponential chirp perturbation

(f0 = 1 Hz, f1=2 kHz, T = 1 s) was applied to the circuit, and the measured vS (t) and

vC (t) are shown in Fig. 5.3A. Note for t > 0.55s, which corresponds to frequencies from 100

Hz to 2 kHz, the impedance of the supercapacitor is much lower than the shunt resistance.

As a result, vC (t) is too low to be measured accurately, as indicated by the shaded region

in Fig. 5.3. Consequently, the EIS results computed from vS (t) and vC (t) also deviate from

those obtained from the commercial instrument, as shown in the shaded region in Fig. 5.3B.
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Figure 5.3: EIS measurement for the commercial supercapacitor from 1 Hz to 2 kHz. (A)

Voltage across the shunt resistor vS(t), voltage across the supercapacitor vS(t) and frequency

of the chirp signal as functions of time. The shaded area indicates the low accuracy region, in

which vC(t) is too low to measure accurately. (B) Bode plots for impedance results measured

using the custom and commercial instruments, the shaded area indicates the frequency band

for the low accuracy region in (A).

As previously demonstrated, a four-probe circuit with fixed shunt resistance cannot

achieve accurate EIS results over broad frequency bands for supercapacitors. To overcome

this problem, different shunt resistances should be assigned for EIS measurements in differ-

ent frequency subbands. The shunt resistance should be comparable to the impedance of

the supercapacitor in each frequency subband, to ensure that voltages across both the shunt

resistor and the supercapacitor are much higher than the random noise in the circuit and

quantization error of the data acquisition system. Consequently, we implemented a resistor
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bank that consists of approximately logarithmically scaled resistances. The resistors are all

high-precision metal film resistors: 2.73 Ω, 10.10 Ω, 99.9 Ω, 998.5 Ω, 10.0 kΩ, 100 kΩ. Each

resistor is connected to a signal relay in series, and six such resistor-relay units are connected

in parallel. Assigning a shunt resistance to the circuit is achieved by switching on appro-

priate relays, which are controlled by a digital I/O module of the data acquisition (DAQ)

board (National Instruments, USB-6351). The relays are single pole single throw (SPST)

low signal relays (Omron, G6L-1P DC5) with very low contact resistance. A schematic of

the resulting circuit is shown in Fig. 5.4.

Figure 5.4: Schematic of the circuit for current measurement. The shaded area indicates

resistor bank, which connects an appropriate shunt resistor to the circuit via a signal relay.

To measure the impedance of a supercapacitor, it is connected in series with the resistor

bank as shown in Fig. 5.4. An exponential chirp voltage signal is applied across the resistor

bank and the supercapacitor using an analog voltage output channel of the DAQ board; the

voltages across the resistor bank and the supercapacitor are measured by two differential

analog voltage input channels of the DAQ board. To achieve reliable electrical connections,

the shunt resistors and signal relays are soldered onto a printed circuit board with screw ter-

minals to connect to the DAQ board. Previous studies demonstrate effective electrochemical

instrumentation using LabVIEW software [111]. In this work, the instrument is automat-

ically controlled via LabVIEW software and details of the software architecture and user

interface are presented in the Supplemental Materials (section S2).
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5.1.2 Adaptive measurement algorithm

This section presents details of an adaptive algorithm that works in concert with the custom

circuit board, i.e., to split a frequency band for EIS measurements into subbands and to

assign appropriate chirp signals and shunt resistances accordingly. In the software of the

custom instrument, a user is required to specify a frequency band [fmin, fmax], bias voltage

VDC for EIS measurements and estimated capacitance Ĉ of the supercapacitor (that need not

be accurate). The user-specified frequency band [fmin, fmax] is divided into subbands such

that adaptive shunt resistances and different chirp signals can be applied in each frequency

subband. In this work, each subband is two decades wide initially (e.g., the first frequency

subband is [fmin, 100 × fmin]), and measurements begin from the lowest frequency fmin and

end at the highest frequency fmax. To select a shunt resistor for the first frequency subband,

the resistance value is chosen according to the estimated impedance of the supercapacitor

based on the estimated capacitance Ĉ:

ẐC ≈
∣∣∣∣ 1

2πfĈ

∣∣∣∣ (5.2)

where f is the frequency. According to Eq. 5.2, the maximum impedance is obtained at

the lowest frequency in the frequency band. Therefore, based on user input, the estimated

maximum impedance in the first frequency subband is ẐC,max ≈
∣∣∣1/2πfminĈ∣∣∣. Based

on ẐC,max, the instrument selects a shunt resistance that is comparable to the maximum

impedance:

xs <
∣∣∣ẐC,max/RS

∣∣∣ < xb (5.3)

where RS is the shunt resistance, and xs and xb are lower and upper bounds and set to 1.5

and 15, respectively. These limits ensure that the maximum impedance is at least 1.5 times

larger than the shunt resistance but no more than 15 times larger within a given frequency

subband. The performance of the instrument is relatively insensitive to the specific values

of xs and xb. The choice of xs can be any value between 1 and 3; however, xb should satisfy

xb = 10xs to be compatible with the logarithmically scaled shunt resistances in the resistor

bank.
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Based on the estimated impedance of the supercapacitor using Eq. 5.2, the instrument

connects a shunt resistor (computed using Eq. 5.3) from the resistor bank to the circuit

using signal relays. The instrument then applies a chirp signal to the circuit (f0,= fmin,

f1 = 100× fmin, T = 3/(2fmin)) and simultaneously measures the voltage across the shunt

resistor vS (t) and the supercapacitor vC (t). The impedance spectrum is then calculated (see

Supplemental Materials section S1 for details) within this frequency subband. If the actual

measured maximum impedance ZC,max does not satisfy Eq. 5.3, possibly because of incorrect

estimation of the capacitance from the user input, the instrument selects a different shunt

resistor using Eq. 5.3 based on the updated EIS results ZC,max, and EIS measurements are

repeated for the same frequency subband. If ZC,max satisfies Eq. 5.3, the instrument checks

if impedances in the entire frequency subband are comparable to RS using the same criteria:

xs < |ZC(f)/RS| < xb (5.4)

Because the impedance of supercapacitors decreases when frequency increases, Eq. 5.4 may

not hold for the entire frequency subband. In this case, the software computes the frequency

f ∗ up to which the impedance of the supercapacitor is comparable to the shunt resistance:

|ZC(f ∗)/RS| ≈ xs (5.5)

EIS results from f0 to f ∗ are saved, and EIS results from f ∗ to f1 are discarded to guarantee

that the measured impedance is not significantly lower than the shunt resistance. The

instrument then continues EIS measurements from f ∗. First it selects an appropriate shunt

resistance for the new frequency subband (f0 = f ∗, f1 = 100 × f ∗) according to Eq. 5.4 to

account for reduced impedance with increased frequencies. Then the instrument waits until

bias voltage stabilizes at VDC and applies a chirp signal (f0 = f ∗, f1 = 100×f ∗, T = 3/(2f ∗))

for EIS measurements in the new frequency subband. The same procedure repeats until

the entire frequency band is scanned. The pseudo-code for the adaptive EIS measurement

algorithm and an example that demonstrates the algorithm step-by-step using a commercial

supercapacitor (manufacturer: Nichicon, 1mF) are presented in the Supplemental Materials

(section S3).
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5.2 Results and Discussions

5.2.1 Adaptive algorithm and EIS results for a commercial supercapacitor

The commercial supercapacitor (Manufacturer: Nichicon, capacitance 1 mF) was measured

using the adaptive algorithm. The frequency band of EIS measurements is from 10 mHz to

2 kHz under 2.0 V bias voltage, and the corresponding EIS results are shown in Figs. 5.5A

and B. The data from the custom instrument are shown as red circles, and the correspond-

ing uncertainties are shown as blue shaded bands. The details of computing measurement

uncertainties are presented in the Supplemental Materials (section S4). Fig. 5.5C indicates

the automatically selected shunt resistance used for impedance measurements in different

frequency subbands. To verify measurements obtained by the custom instrument, EIS were

also performed using the commercial instrument (Gamry interface 1010B) under identical

conditions, and the results are shown as solid black lines. Because of appropriate application

of shunt resistance in different frequency subbands, high signal-to-noise ratios for vS (t) and

vC (t) are obtained over the entire frequency band (10 mHz to 2 kHz). Therefore, EIS results

(impedance and phase results) match well with those obtained from the commercial instru-

ment. The detailed procedure to reproduce Figs. 5.5A and B using the adaptive algorithm

is provided in the Supplemental Materials (section S3).

89



Figure 5.5: EIS results for a commercial supercapacitor (manufacturer: Nichicon, capaci-

tance: 1 mF). Left panel): Impedance (A), phase (B) and shunt resistance (C) at different

frequencies for EIS conducted using adaptive shunt resistances. (Center panel): Impedance

(D), phase (E) and shunt resistance (F) at different frequencies for EIS conducted using fixed

99.9 Ω shunt resistance. (Right panel): Impedance (G), phase (H) and shunt resistance (I)

at different frequencies for EIS conducted using fixed 2.73 Ω shunt resistance.

To demonstrate the benefits of the adaptive shunt resistance, EIS measurements were

also conducted using a fixed shunt resistance of RS = 99.9Ω and RS = 2.73Ω respectively.

Note that these two resistances were applied in Fig. 5.5C, but only for a portion of the entire

frequency band. The results are shown in Figs. 5.5D, E and Figs. 5.5G, H, respectively.

Here the frequency band (10 mHz to 2 kHz) was scanned by 2 decades each time ([10 mHz

- 1 Hz], [1 Hz - 100 Hz], [100 Hz - 2 kHz]), but the shunt resistance remained the same. In

Figs. 5.5D and E, for a shunt resistance of 99.9Ω, the EIS results are accurate only when the

impedance of the supercapacitor is comparable to the shunt resistance, as indicated by the

region between the two dashed lines. Similarly, in Figs. 5.5G and H, for a shunt resistance

of 2.73Ω, the EIS results are accurate only at high frequencies where the supercapacitor
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impedance is low, as indicated by the region between two dashed lines.

To conclude, because supercapacitor impedance typically varies by several orders of mag-

nitude at different frequencies, EIS measurements using one shunt resistance yields satisfac-

tory results only at frequencies for which the impedance of the supercapacitor is comparable

to the shunt resistance. This illustrates the need for using adaptive shunt resistance in EIS

measurements over broad frequencies. In the following section, six laboratory-fabricated car-

bon nanotube (CNT) based supercapacitors were measured to further asses the effectiveness

of the custom instrument.

5.2.2 EIS Results for laboratory-fabricated CNT-based supercapacitor pouch

cells

To validate the performance of the custom instrument, EIS scans of six CNT-based superca-

pacitor cells fabricated at YTC America were performed. EIS scans for the pouch cells were

also performed by the commercial instrument (Gamry Interface 1010B) under identical con-

ditions for comparison. Detailed information regarding the pouch cells is available in previous

studies [135][29][30]. Among the six pouch cells, three used acetonitrile (ACN) electrolyte,

and the other three used propylene carbonate (PC) electrolyte. The ESR (impedances at

1 kHz) for ACN and PC cells were approximately 200 mΩ and 500 mΩ respectively. The

capacitances of ACN and PC cells were approximately 40 mF. The frequency band for the

EIS measurement was from 10 mHz to 2 kHz, ten data points were collected per frequency

decade, and the bias voltage was 2.0 V. The impedance and phase measurement results for

ACN and PC cells are shown in Figs. 5.6 and 5.7 respectively. The red circles indicate

EIS results obtained using the custom instrument, and the solid black lines indicate re-

sults obtained using the commercial instrument. Measurement uncertainties for the custom

instrument are shown as blue shaded bands. Magnified uncertainty interval is shown for

samples ACN #1 and PC #1.
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Figure 5.6: EIS measurement results for ACN samples: (A-B) Impedance and phase results

for ACN sample 1. (C-D) Impedance and phase results for ACN sample 2. (E-F) Impedance

and phase results for ACN sample 3.

Figure 5.7: EIS measurement results for PC samples: (A-B) Impedance and phase results

for PC sample 1. (C-D) Impedance and phase results for PC sample 2. (E-F) Impedance

and phase results for PC sample 3.

As indicated, EIS measurements for all six pouch cells exhibit good agreement with the

results from the commercial instrument, as well as low uncertainties over the entire frequency

92



band, as indicated by narrow blue shaded bands in Figs. 5.6 and 5.7.

5.2.3 Measurement time reduction

Compared to a sinusoidal sweep, measurement time is significantly reduced using the expo-

nential chirp signal for two reasons:

1. A chirp signal scans a broad band of frequencies, whereas the sinusoidal sweep scans

only one frequency at a time.

2. Multiple periods are typically required to obtain satisfactory results at one frequency

using sinusoidal sweep. In the chirp signal approach, satisfactory measurement results

can usually be achieved with a single scan. More scans are required in the presence of

measurement outliers. The instrument detects outliers by calculating the second-order

central difference of both impedance and phase results as a function of frequency, and

repeats the measurement should outliers are detected.

The cumulative time for EIS measurement for the commercial supercapacitor (see Figs. 5.5A,

B and C) is illustrated in Fig. 5.8A. EIS measurements start at low frequency and end at

high frequency, and the cumulative time indicates time required to scan from the initial to

current frequency f .
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Figure 5.8: (A) Cumulative EIS measurements over time for a commercial instrument (black

line) and the custom instrument (red line). EIS results were obtained using four chirp exci-

tations, and the frequency range for the EIS results are N1, 10 mHz to 0.1 Hz (green region);

N2, 0.1 Hz to 1 Hz (purple region); N3, 1 Hz to 10 Hz (yellow region); N4, 10 Hz to 2000 Hz

(gray region). (B) Chirp excitation signals applied to obtain EIS results in the corresponding

frequency region of (A). With each chirp excitation and response measurement, EIS results

are acquired over the range of frequencies in the corresponding chirp signal with a single

scan.

As shown in Fig. 5.8A, most of the measurement time for the sinusoidal scan is spent

at low frequencies (10 mHz to 0.1 Hz). EIS results in this frequency range (N1, highlighted

in green) can be covered using a chirp signal in a single scan. In an exponential chirp
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signal, the device is excited by voltage signals spanning a given frequency range, and the

corresponding impedance data are recorded. For example, the excitation chirp signal shown

in Fig. 9B (green region) was applied to the circuit with the response voltage measurements

on both the supercapacitor and the shunt resistor. Based on the response signals, EIS results

for this frequency range were calculated and shown in Fig. 5.8A in the green region. EIS

results in N2, N3 and N4 in Fig. 5.8A were similarly obtained, and the corresponding chirp

excitation signals are shown in Fig. 5.8B. Therefore, several step profiles are observed in the

cumulative time plot. The flat portion between chirp excitations indicate waiting period for

the instrument to reach steady state under dc bias before applying the next chirp excitation.

The overall measurement time for the chirp signal approach using the custom instrument

was 314 sec, as compare to 2231 sec for the sinusoidal sweep approach using the commercial

instrument in the same frequency range.

Similarly, EIS measurement times for the CNT-based supercapacitors (see Figs. 5.6 and

5.7) were reduced by 73 % on average compared to the measurement times of the commercial

instrument. A comparison of measurement times between the custom instrument and the

commercial instrument is shown in Fig. 5.9.

Figure 5.9: Measurement time for CNT-based supercapacitor samples.
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5.2.4 Other potential applications:

EIS characterizations are widely used in other electrochemical studies, such as Li-Ion batter-

ies, fuel cells, solar cells and gas sensing. Here, we briefly discuss how the custom instrument

could be potentially used in these applications.

Several recent Li-Ion battery studies measured EIS results from a few hertz to several

kilohertz [116][89]. The current densities were relatively low and can be accommodated using

the custom instrument. However, as compared to supercapacitors, the impedance of Li-Ion

batteries is typically lower. To enable precise low impedance measurements, several high-

precision shunt resistors with low resistance would be required in the resistor bank. Also,

higher resolution (18-24 bit) of the analog voltage inputs and outputs would be required to

acquire smaller voltage perturbations due to low impedance. With these modifications, the

custom instrument would be a reliable tool for EIS measurements for Li-Ion batteries.

Fuel cells are also an applicable field for the custom instrument. Typically, EIS scans are

measured from millihertz to kilohertz ranges [52][99]. Like supercapacitors, the impedance

of fuel cells changes significantly in different frequency ranges. Therefore, the custom in-

strument would potentially efficient for such measurements. However, for fuel cells, currents

are typically much higher (>1A) in EIS experiments. To increase the current capability, a

programmable power amplifier could be employed to work with the other hardware for this

application.

Solar cells are another promising research area for EIS diagnostics. Previous studies

have typically measured EIS over millihertz to kilohertz frequency ranges [38][76]. Like

supercapacitors, the impedance of solar cells changes significantly over different frequencies.

In addition, the current levels in EIS measurements are relatively low. Therefore, the custom

instrument could be potentially adapted for solar cell characterizations.

Another applicable field for the custom instrument is EIS gas sensing. A recent study

employing EIS techniques for ammonia sensing [80] measured impedance under bias voltage

from a few hertz to several MHz. The maximum sampling rate of the hardware of the present
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instrument is 1 MHz; therefore the maximum frequency signal for reliable EIS results is

approximately 100 kHz. However, the frequency band in which impedance is sensitive to gas

concentration typically ranges from approximately 10 Hz to 100 kHz. Therefore, the present

instrument would likely produce meaningful results.

5.3 Conclusion

In this work, an adaptive and versatile instrument has been developed to perform EIS mea-

surements. The instrument employs adaptively selected shunt resistors from a resistor bank

and different chirp signals to conduct EIS measurements over different frequency subbands,

enabling accurate impedance measurements for a broader frequency band (10 mHz to 2 kHz)

as compared to previous studies employing chirp signals. Accurate results were shown for six

laboratory-fabricated CNT-based supercapacitors and a typical commercial supercapacitor

under 2.0 V bias voltage. The frequency band scan strategy enables accurate EIS measure-

ments over a broad frequency band. Therefore, the approach is also likely to be suitable for

other electrochemical systems, such as Li-Ion batteries, solar cells, fuel cells and gas sensors.

However, in rare cases, when impedance oscillates significantly within a frequency subband,

the adaptive algorithm will require the splitting of frequency subbands significantly, resulting

in lower measurement efficiency. Another concern with this EIS approach is that the hard-

ware must have a sufficient number of digital output channels. This limitation may prevent

researchers from taking advantage of common hardware, such as oscilloscopes and function

generators. However, the overall cost of the instrument is about $1500, which is much more

affordable than regular commercial EIS instruments (typical cost > $15,000). And the cus-

tom instrument reduces measurement time by 70 % to 80 % as compared to a commercial

instrument under identical EIS measurement conditions. The custom instrument’s accu-

racy, time efficiency, customizability and low cost are expected to benefit electrochemical

researchers across wide application areas of electrochemical studies.
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CHAPTER 6

Suggested standards for reporting power and energy

density in supercapacitor research

6.1 Introduction

Supercapacitors, with high power and energy density, long cycle life, low minimum working

temperature, are widely used in hybrid vehicles, emergency electrical backup, and engine

starters for low temperature applications [34]. The growing supercapacitor market stimulates

researchers to develop robust and high surface area materials as electrodes that enable high

power density and energy density.

Based on Google scholar data, more than 20,000 papers have been published on su-

percapacitors since 2014, and continuously increasing power and energy density have been

reported. However, after scrutinizing published data, some inconsistencies are apparent be-

tween different papers. First, multiple methods exist for capacitance and equivalent series

resistance (ESR) measurements. The most widely used techniques are three-electrode mea-

surements for testing a single electrode sample and two-electrode techniques for sandwiched

electrodes. For the same sample, the three-electrode measurement yields twice the capaci-

tance and half the ESR compared to two-electrode measurements. Occasionally, the method

used is omitted from the reporting. Second, the basis upon which power and energy density

are computed are sometimes arbitrarily chosen [136]. The commonly used bases are: mass or

volume of active material; mass or volume of electrode. Different basis yield orders of mag-

nitude differences in power and energy density, yet it is not uncommon to omit the details of

the bases. Third, different researchers use different scan rates for capacitance measurement.
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Typically, lower scan rate yields higher capacitance and thereby higher energy density, es-

pecially for supercapacitors with pseudocapacitance. However, this should be avoided since

supercapacitors typically work at very high rate of charge and discharge, as pointed out in a

prior article of the field [107]. Therefore, a universal standard for reporting power and energy

density is required to compare research work fairly and reduce the confusion of calculations

and comparisons.

6.2 A proposed standard for reporting power and energy density

In contrast to laboratory devices, comparing power and energy density of commercial super-

capacitor modules is convenient, since most of them have the same output voltage (typically

16V for DC applications) and the dimension and weight of the supercapacitor modules are

available. Similarly, to make fair comparisons emerging laboratory prototypes, the power and

energy density of the final product (supercapacitor modules with the same output voltage)

should be evaluated. Typically, such a requirement is difficult to fulfill for research labo-

ratories that often lack final packaging and integration solutions. Therefore, this approach

suggested here ‘virtually’ performs the assembly process of supercapacitors and computes

the power and energy density of the ‘finished’ supercapacitor module.

The assembly process consists of three steps as shown in Fig.6.1. First a unit electrode

sample with known properties (ESR, capacitance, maximum voltage) is obtained. Multiple

such unit electrodes are connected to increase surface area to achieve lower ESR and higher

capacitance, as shown in Fig.6.1A [128] and 6.1B [1]. Second two electrodes from the first

step are sandwiched to form a supercapacitor device, as shown in Fig.6.1B. The last step

is to connect supercapacitors from step 2 in series as a supercapacitor module to achieve a

given output voltage, as demonstrated in Fig.6.1C [8].
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Figure 6.1: Supercapacitor module assembly process, reprinted with permission

6.2.1 Power and energy density for electrode samples measured with three-

electrode setups

6.2.1.1 Extend electrode surface area

We first assume that the properties of a unit electrode are measured using three-electrode

setup with equivalent series resistance R0, capacitance C0, and maximum working voltage

V0. The extensive property of the unit electrode, either mass or volume, is B0. Z0 is the

impedance of the unit electrode, ω is the angular frequency, and j is the imaginary unit

number. In this work, the supercapacitor is considered an ideal capacitor connected in

series with an equivalent series resistor. However, most double-layer supercapacitors are

represented very well by De Levie’s model [44], which is essentially an infinitely parallel

connection of units consisting of series connections of an ideal resistor and an ideal capacitor.

Therefore, the result derived in this section is also applicable to double-layer supercapacitor.

The first step is to create a larger electrode from the sample electrode to increase capaci-

tance as well as to reduce ESR. Assuming that the extensive property of this larger electrode

(subscript 1) is B1, the impedance is:

Z0 = R0 +
1

jC0ω
(6.1)

Z−1
1 =

B1

B0

Z−1
0 (6.2)
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Z1 =
B0

B1

Z−1
0 (6.3)

Therefore, the ESR is R0B0/B1 and the capacitance is C0B1/B0. The maximum voltage

does not change because it is determined by the electrolyte.

6.2.1.2 Extend electrode surface area

The second step is to construct a full cell supercapacitor device (subscript 2) using the

electrode obtained in step 1,

Z2 = Z1 + Z1 = 2Zz =
2B0

B1

R0 +
1

j(CB1/(2B0))ω
(6.4)

Therefore, the ESR is 2B0R0/B1, and the capacitance is C0B1/2B0, while the maximum

voltage remains the same. The extensive property is B2 = 2B1, because two individual

electrodes are required to build a full cell.

6.2.1.3 Assemble into modules

The last step is to assemble the supercapacitor device from step 2 and form a supercapacitor

module (subscript 3) to achieve the target voltage V3. To achieve this goal, the supercapacitor

devices must be connected in series, and the number of such device required is V3/V1.

Z3 =
B3

B2

Z2 =
B3

B2

R2 +
1

j(B2C2/B3)ω
=

4B3

B0

R0 +
1

j(B0C0/(4B3)ω
(6.5)

The power density of the supercapacitor module is:

P3

B3

=
V 2

3

4R3B3

=
V 2

3

44B3

B0
R0B3

=
V 2

0 B
2
3/B

2
0

16B2
3R0/B0

=
V 2

0

16R0B0

(6.6)

Similarly, for energy density:

E3

B3

=
C3V

2
3

2B3

=
B0C0

4B3
(V 2

0 B
2
3/B

2
0)

2B3

=
C0V

2
0

8B0

(6.7)

As shown in Eqs. 6.6 and 6.7 the power and energy density of the supercapacitor module

depends only on the properties of the unit electrode sample. Therefore, in addition to

reporting equivalent series resistance and capacitance of the sample (using a three-electrode

setup), the extensive property of the electrode (mass and volume) must also be reported.
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6.2.2 Power and energy density for electrode samples measured with two-

electrode setups

Some researchers prefer reporting the result of sandwiched electrodes using a two-electrode

setup. Here, we assume that ESR is Rf , capacitance is Cf and maximum working voltage

is Vf , and the extensive property of the device is Bf . The full device is assembled into a

supercapacitor module with output voltage of V3 and extensive property B3. Exactly the

same calculation steps yield the following results for energy and power density.

P3

B3

=
V 2
f

4RfBf

(6.8)

E3

B3

=
CfV

2
f

2Bf

(6.9)

6.2.3 Summary

To summarize, the power and energy density can be obtained using the expression below to

make objective comparisons.

P

B
=


V 2
0

16R0B0
, three − electrode setup

V 2
f

4RfBf
, two − electrode setup

(6.10)

E

B
=


C0V 2

0

8B0
, three − electrode setup

CfV
2
f

2Bf
, two − electrode setup

(6.11)

Both results depend only on the intrinsic properties of the unit electrode or unit supercapac-

itor cell. The results also em-phasize the importance of reporting the appropriate exten-sive

property of the unit electrode or the unit supercapacitor cell; preferably both mass and

volume should be reported.

Based on Eqs. 6.10 and 6.11, power and energy density of a few widely used commer-

cial supercapacitors [6],[8] from GreenCap, Maxwell Technologies and AVX are calculated.

Currently the unit cost for the listed supercapacitor is 1.5$, 8.38$ and 3.33$ respectively.

Some published results [128][74][102] where power and energy density are calculated based on
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device volume are also presented in Fig.6.2. As observed all the listed commercial superca-

pacitors exhibit higher energy density, and in general also possess higher power density. The

primary reason is lack of professional packaging and inte-gration solutions for laboratory pro-

totypes. Still, based on the comparison laboratory prototypes still need more improvement

on both power and energy density to compete with current commercial supercapacitors.

Figure 6.2: Ragone plot for commercial supercapacitors [6][8] as well as some published

results [128][74][102]. The power and energy densities are calculated based on Eqs. 6.10 and

6.11.

6.3 Discussion of a widely used power density calculation method

The generally accepted approach to calculate supercapacitor power is [70]:

P = V 2/4R (6.12)
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where R represents the equivalent series resistance. This approach computes the maximum

possible power distributed to the load, when the resistance of the load matches the ESR of

the supercapacitor. Another common approach in literature [128] [84][15] for power density

calculations uses the following equation:

P = E/∆t (6.13)

E = CV 2/2B (6.14)

Where V is the applied voltage, C is the capacitance of the supercapacitor, B is the extensive

property of the electrode, and ∆t is the discharge time under constant current.vThe flaw with

using this approach is that, because the supercapacitor is discharged using a galvanostatic

instrument, the discharge time does not always reflect the true current-carrying capability

of the supercapacitor being tested. For galvanostatic discharge, the discharge time is:

∆t =
V

I/C
(6.15)

where I is the galvanostatic discharge current. According to Eqs. 6.13 and 6.14:

P =
E

∆t
=

CV 2I

2BV C
=
V I

2B
(6.16)

The power density computed from this approach therefore depends on the current setting

of galvanostatic instrument. If the current is set to higher than the shorting current, the

power density obtained using Eq. 6.16 exceeds the maximum possible power output of the

supercapacitor, instead of its intrinsic capacitive performance. Therefore, power density

computed based on discharge in Eq. 6.13 should be avoided, and Eq. 6.12 should be used

whenever possible.

6.4 Conclusions

A method for reporting power and energy density for supercapacitor research is proposed,

such that objective comparisons can be made between different research studies as well as

commercial products. In addition to convention-ally reported metrics such as equivalent
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series resistance and capacitance, the extensive property (mass and volume) of the sample

is also required. Power and energy density using this new approach are calculated for some

widely used commercial supercapacitors, both results are found to be higher than some

recent publications in general. Therefore, for laboratory prototypes, higher capacitance and

lower ESR are needed to compete with commercial supercapacitors. Last, a commonly used

approach in literature for power density computing is discussed and shown to be potentially

erroneous under circumstances in which the arbitrarily chosen galvanostatic current exceeds

the intrinsic capabilities of the sample under test.
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CHAPTER 7

Characterizing other thermal systems

7.1 Gold nanostar laser energy heat conversion estimation

Gold nanostars (AuNSTs) have large surface areas, biocompatible and are ideal for bilogical

applications. Upon irradiation with near-infrared light, AuNSTs exhibit high efficiency for

light to heat conversion. Such localized heating can be controlled by laser light intensity and

flow conditions, and can further facilitate cell detachment from capillary walls. The AuNST

platform are potentially promising for chemical and biological sensing and drug delivery.

Therefore, precise characterize light to heat conversion is crucial to understand system’s

thermal response under different input conditions.

We employ conservation of energy to estimate the power converted from laser to heat.

Consider the control volume shown in Fig. 7.1A. Because the temperature rise (typically

less than 5◦C is relatively low; we neglect heat loss to the ambient air. In addition, because

the thermal conductivity of the capillary tube is low (1.2W/m K) we neglect heat losses

via capillary conduction. Therefore, the laser power converted to heat is approximately

represented by the temperature difference of water between the inlet and the outlet of the

control volume. Because the capillary wall is thin (0.070 mm thickness), we also neglect the

temperature difference between the inner and outer surface of the capillary; consequently,

the temperature of the water is approximated by the temperature of the outer surface of the

capillary. Capillary surface temperatures were recorded by an infrared (IR) camera (A655sc,

25 µm close-up lens), and an IR image for the capillary with water flow under laser heating

is shown in Figure 7.1B.
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Figure 7.1: A: Schematic of system. B: Thermal image showing capillary under irradiation

C: Temperature profiles at y-values from -40 to 70 pixels for determination of outlet.

Consider the control volume shown in Fig.7.1A. We denote the volumetric flow rate as

V̇ , and the temperature difference between the inlet and outlet as ∆T . At steady state, the

laser power converted into heat q can be estimated using Equation 1:

q = V̇ ρCp∆T (7.1)

where ρ indicates water density and Cp indicates water specific heat. V̇ was controlled by

the syringe pump, and ρ and Cp are both known constants. We need to measure ∆T to

estimate q and rely on IR thermography to determine the former quantity.

Fig. 7.1B shows a temperature field measured by the IR camera (x and y axis units in

pixels). We use y = 0 to indicate the plane exposed to the laser. Steady-state temperature

distributions at several y locations on the capillary surface are shown in Fig. 7.1C. Positive

y values indicate capillary positions downstream of the laser spot whereas negative y values

indicate upstream positions of the laser spot. To determine ∆T , we first determine the

inlet and outlet boundaries of the control volume (shown in Figure 7.1A), and corresponding

temperatures at these boundaries. Based on Fig. 7.1C, either y = -40 or y = -30 can be

used as the boundary for the flow inlet, because the temperatures at these y locations do

not vary significantly along the x direction. Similarly, y = 50, 60, or 70 can be used as

the boundary for the flow outlet. The stable temperature profiles at different y locations

indicate steady-state flow and also supports the assumption of neglecting heat loss because

temperature decreases little in the y direction within the capillary region.
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Figure 7.2: A: Mean temperature at the inlet and outlet. B: Isolation of steady-state tem-

peratures. C: Temperature difference of inlet and outlet.

We use the mean value along x-axis of the capillary to indicate the temperature at y

= -30 and y = 50 respectively (Fig. 7.2A). We extract the temperatures at steady state

as shown in Fig.7.2B, and the temperature difference between inlet and outlet is shown in

Fig. 7.2C. ∆T is calculated using the mean value of the temperature differences. Using the

foregoing analysis procedure, the laser power converted to heat under different water flow

rate and laser intensity setting is shown in Fig.7.3.
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Figure 7.3: Average power converted to heat at different laser power densities (maximum

laser power is 25 mW)

7.2 Transient plane source method for aerogel thermal diffusivity

characterization

The thermal diffusivity of insulating materials is often measured by one or more of several

methods, including transient plane source [56], laser flash [95] or 3-omega [36]. In this work,

the sample is highly porous hBNAGs with a roughly cuboidal overall shape. For the transient

plane source (TPS) method, the sensor is typically sandwiched by two identical samples.

Considering the weight and shape of the sample here, robust symmetric contact with the

sensor would be difficult to achieve in practice. As for the laser flash and 3-omega methods,

they typically perform well for thin samples (thicknesses < 100µm) and are therefore not

suitable for the present sample.

In this work, a variant of the TPS method is used in which the sample is suddenly but

gently lowered onto a copper surface with constant temperature. The sudden contact with

the copper surface simulates the process of applying constant temperature to the bottom the
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sample. Upon contacting the copper surface, heat flows vertically from the copper plate to the

sample; therefore heat conduction is reasonably approximated as 1D. Moreover, considering

a very short time period in which thermal penetration depth is much less than the dimension

of the sample, the sample size can be treated as infinite. Therefore in this work, semi-infinite

1D transient conduction theory is applied [24] to determine thermal diffusivity α.

7.2.1 Theory

For transient conduction into a semi-infinite plane with a constant surface temperature and

a uniform-temperature initial condition, the temperature at distance x from the surface and

time t is given by [24]:
T (x, t)− Ts
Ti − Ts

= erf
x

2
√
α t

(7.2)

where Ti is the initial temperature of the sample, Ts is the temperature of the hot copper

surface, α is the thermal diffusivity, t is time, and x is the distance from the hot copper

surface. In practice, a plane wall of a thickness 2L can be accurately approximated as a

semi-infinite solid if[24]:

Fo = αt/L2 ≤ 0.2 (7.3)

Because the length of the sample is finite, to satisfy the semi-infinite assumption the model

is valid up to t < tmax = 2 s; this assumption is checked for validity according to the

calculated α value.

7.2.2 Experimental setup

A large square copper plate was heated by a hot plate, and a copper bar was attached to

the square copper plate with thermal paste. The remainder of the square copper plate was

covered with styrofoam to impede heat flow to the surrounding air underneath the sample.

The top surface of the copper bar was the source of constant temperature Ts in Eq. 7.2, and

its temperature was recorded by a thermocouple reader (Omega™CL3515R). The ambient air

temperature around the sample was measured by a thermocouple reader (Omega™CL3515R).
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The sample was left in the air for at least 2 mins to reach the temperature of ambient air,

which serves as Ti in Eq. 7.3. In this work, constant temperature was applied to the bottom

of the sample by quickly lowering it to a hot copper surface. Because the sample was very

light, it did not fall by its own weight; therefore, a holder was designed to guide the sample

to drop to the hot copper surface. The sample holder was made of styrofoam with similar

thermal properties as the hBNAGs to minimize heat transfer between the sample and the

sample holder. The sample holder was inserted into a vertical guiding slot to fall (Fig. 7.4a

and b). The sample holder was designed such that the bottom surface of the sample remained

parallel to the copper surface during the descent to achieve good face-to-face contact (Fig.

7.4b), at t = 0 in Eq. 7.3. Because the thermal mass of the copper bar was much greater

than that of the sample, changes in the copper temperature as measured by the thermistor

were imperceptible. The average of the thermistor reading during the experiment was used

as Ts in Eq. 7.3.

Figure 7.4: Experimental setup for the semi-infinite plane transient heat conduction. (a)

The hBNAG is fixed in the middle of the sample holder, and the sample is lowered gently to

the copper surface via a slot. The sample’s vertical temperature profile was recorded using

an infrared camera mounted on a X-Y-Z linear stage to guarantee perpendicularity. (b)

hBNAG sample within the sample holder. (c) Illustration of different sides of sample when

it touches the copper surface, faces the infrared camera, as well as the direction of heat flow.

Prior to the experiment, the radiative emissivity of the sample was calibrated by heating

it to a known temperature measured by the thermistor. Because the heat conduction process

was 1D (see Fig. 7.4c) in the x direction, temperature was assumed to be identical in the
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plane perpendicular to x direction. Therefore, temperature on the side of the sample was

treated as the sample temperature at different x and was detected using an infrared camera

(Flir A655sc) with a closeup lens (25 µm resolution) as shown in Fig. 7.4. In the thermal

image, different lines on the sample’s side surface indicate different distances from the hot

copper surface, and the average temperature of all pixels along each line was treated as the

temperature at location x.

7.2.3 Uncertainty quantification

Given the temperature measurement results and corresponding mathematical model (Eq.

7.2), a commonly used approach to determine thermal diffusivity α is non-linear regression,

such as Levenberg-Marquardt method. Such an approach gives a best estimate of α but is

unable to estimate the probability distribution for α and does not consider uncertainties in

other parameters (such as Ti, Ts, x). Bayesian inference incorporates prior distributions and

likelihoods to give a complete statistical description of the unknown parameters (61) based

on Bayes’ formula:

p (θ|Y ) =
p (Y |θ) p(θ)

p(Y )
(7.4)

where θ is the unknown random variable and Y is the observed data. The marginal proba-

bility distribution function p(θ) is the prior, which reflects prior knowledge of the parameter

before experiment. The likelihood function is p (Y |θ), and the posterior probability density

function (PPDF) of θ after observing measurement data Y is p (θ|Y ). θ is typically estimated

using an estimator such as the posterior mean, and the uncertainty of θ is determined by

sampling the PPDF p (θ|Y ).

In this work, according to Eq. 7.2, θ = {α, Ti, Ts, x}. The first step is to assign a prior

distribution for all elements in θ. Before the experiment, prior knowledge was prescribed that

the thermal conductivity of hBNAGs were comparable to air, and the order of magnitude of

thermal diffusivity α was estimated using:

α = k/(ρ · Cp) (7.5)
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where k is thermal conductivity, ρ is mass density and Cp is the specific heat of hBNAGs.

According to Eq. 7.4, α was estimated to be of the order of magnitude of 10−6m2/s. A much

wider uniform distribution (10−8m2/s, 10−4m2/s) that covered 10−6 m2/s was used as the

prior distribution for α. For Ti and Ts, because they were obtained using a thermocouple

reader (Omega™CL3515R) that was accurate up to 0.5 K, the prior distribution for Ti and Ts

were uniform distribution within (Ti-0.5 K, Ti +0.5 K) and (Ts-0.5 K, Ts +0.5 K) respectively.

Temperature was measured at six evenly spaced locations (x) on the sample, indicated by

six evenly spaced lines in Fig. 7.5. The location for line i is:

xi = offset + i × 5pixels (7.6)

Figure 7.5: Thermal measurement of the hBNAG sample by IR imaging. Six evenly spaced

lines indicate locations where temperature is measured. The average temperature of an

individual line is obtained by averaging the temperature at all pixels along that line.

where offset is the distance between the hot plate surface and the nearest line (line 0);

five pixels represents the space between neighboring locations; and i={0, 1, 2, 3, 4, 5} indicates
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the index of a given line. Because the boundary of the hot plate was not perfectly clear, an

uncertainty of 3 pixels was assigned to offset. The software of the IR camera can accurately

obtain temperature along evenly spaced lines; therefore, no uncertainty was assigned to the

space between neighboring lines. According to Eq. 7.6, the prior distribution of the location

of line i is a uniform distribution within (offset + 5 pixels × i-3 pixels , offset + 5 pixels

×i+3 pixels ).

The second step is to build the likelihood p (Y |θ). In this work, the measured temperature

was assumed to be Gaussian with mean T (θ) and standard deviation vT . Therefore, p (Y |θ)

is defined as:

p(Y | θ) ∝ exp

{
−
(
(Y − T (θ))T (Y − T (θ))

2vT

}
(7.7)

The third step involves combining the prior and likelihood using Eq. 7.6 to obtain the

PPDF for thermal diffusivity. In this work, the PYMC3 python module [103] was used for

the posterior mean estimation and sampling PPDF. For each measurement, α was estimated

using the posterior mean according to the temperature profile at all six locations (xi) on

the sample, and the PPDF of α was obtained from numerical sampling. The temperature

measurement result, posterior mean and PPDF of α for one measurement is shown in Fig.

7.6. For each hBNAG sample, the temperature measurement was repeated five times. Each

measurement gives a posterior mean as well as a PPDF for α. Five PPDFs were combined

to derive the mean thermal diffusivity using:

ᾱ =
1

5

5∑
i=1

αi (7.8)

where ᾱ is the mean thermal diffusivity, and αi indicates a random sample drawn from ith

PPDF.
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Figure 7.6: Fitting for thermal diffusivity at 6 different locations of one measurement. (a)

Measured temperature at six evenly spaced locations on 10.1 mg/cm3 hBNAG (red open

circles) and temperature calculated using Eq. 7.2 and posterior mean estimation of thermal

diffusivity (solid blue line). (b) Posterior probability density function of thermal diffusivity

for one measurement. (c-d) Posterior probability density function of mean thermal diffusivity

ᾱ (combines PPDFs of 5 measurements) for hBNAGs of 10.1 mg/cm3 and 5.2 mg/cm3.

In this work, thermal diffusivity of hBNAGs of different densities were measured. For

example, using the foregoing Bayesian inference approach, mean thermal diffusivities for

5.2 mg/cm3 sample were 6.5× 10−6m2/s, and the probability distribution of corresponding

mean thermal diffusivity is shown in Fig. 7.6. According to the probability distribution,

the 95% confidence interval for mean thermal diffusivities for 5.2 mg/cm3 samples were

(6.27 × 10−6m2/s to 6.75 × 10−6m2/s). Because the experiment was performed at 40.1◦C
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according to Fig. 7.6, the specific heat of hBNAG is 630 J/(kg K). Using Eq. 7.5, thermal

conductivities for the hBNAG of 5.2 mg/cm3 are 21.3± 0.8 mW/m K.

7.3 PDMS thermal diffusivity characterization

We employ the custom thermal diffusivity instrument present in section 2.4 to characterize

nanowire impregnated Poly-dimethyl Siloxane (PDMS). The advantage of this method is

that it does not require the knowledge of exact heat input to the sample and is insensitive

to heat loss to the surrounding. This method assumes heat is conducted in-plane in one

dimension. For a stripe sample, this method requires imposition of periodic temperature

oscillations at one end, and measures the amplitude decay and phase shift of the oscillatory

temperature profiles at different locations along the sample. The experimental setup is shown

in Fig. 7.7(A). Here we applied periodic voltage signals to a Peltier device, two aluminum

angle brackets were used to conduct heat from the Peltier device to the PDMS sample.

Temperature was measured using a FLIR A655sc high resolution infrared camera and the

temperature profiles along the direction of heat conduction is shown in Fig. 7.7(B). For two

isothermal lines in the heat conduction path, the oscillatory temperature profiles are shown

in Fig. 7.7(C).
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Figure 7.7: (A) Experimental setup of thermal diffusivity measurements. (B) Representative

infrared image capture from the diffusivity experiment. (C) Representative plot of measured

data depicting phase delay of thermal wave.

The thermal diffusivity of the material can be determined based on amplitude decay and

phase shift from multiple locations along the heat conduction path on the sample. Results of

the thermal diffusivity experiment are provided in Fig. 7.8(A), with 95% confidence interval

error bars included.

Figure 7.8: (A) Measured thermal diffusivities of t-PDMS samples at 24.8 wt% and 33.1

wt%. (B) Computed thermal conductivities of t-PDMS samples. The dashed line depicts

the measured thermal conductivity of pure PDMS.
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The density of the pure PDMS sample was provided in the datasheet as 1106.7 kg/m3,

while the densities of the t-PDMS samples was calculated using the rule of mixtures and

assuming the density of the copper nanowires is equivalent to the density of bulk copper.

The computed thermal conductivities of the t-PDMS samples are shown in Fig. 7.8(B) as

functions of microwave time, as well as the thermal conductivity of pure PDMS, depicted as a

dashed line, measured in the same set of experiments. The data shows that the improvement

in thermal conductivity is minimal at both fill fractions, with a peak enhancement of 38.7%

for the 24.8 wt% t -PDMS at a microwave time of t = 70s.
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CHAPTER 8

Closure

In this study, we develop new spectroscopy techniques for rapid and accurate characterization

for thermal and electrochemical systems. In addition, we employ data science methods for

rigorous uncertainty quantification. Next, we summarize the main highlights and findings

for each research topic, as well as potential future works.

8.1 Room temperature thermal diffusivity characterization

For the room temperature thermal diffusivity characterization, we use forced convection

such that the averaged convective heat transfer coefficient along the heat conduction is

uniform and constant. This enables thermal diffusivity characterization outside vacuum for

high sample testing throughput. Secondly, we use IR thermography to precisely measure

amplitude decay and phase shift, and simultaneously characterize multiple regions on a

sample. Thirdly, we use an analytical solution developed by Lopze et al.[77] to eliminate the

semi-infinite medium assumption and enables characterization of relatively short samples.

Lastly, we develop a Bayesian framework for uncertainty quantification instead of using

classical regression approaches.

The limitations of our approach are: (1) samples must be thermally conducting, such

that forced convection does not introduce 2D effect. (2) A thin layer of high emissivity

coating material must be applied to facilitate IR thermography. The coating must be thin

and uniform. In addition, for thin film samples, the contribution of such coating materials

may not be neglected. We must either include their contribution in the model or use different

temperature detection methods [60].
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For potential future works, firstly we can use similar technique to characterize materi-

als with non-uniform thermal diffusivities. We’ve publish a python module to simplify this

process. Secondly, similar technique can be used to characterize thermal contact resistance,

and our preliminary findings indicate amplitude decay exhibit relatively high sensitivity in

thermal contact resistance. Thirdly, we can estimate the averaged convective heat transfer

coefficient from the physical model. Our result shows that without any optimization, the

averaged convective heat transfer coefficient estimated from amplitude and phase measure-

ments matches reasonably well compared to that obtained using the external flow correlation

over an isothermal plate. With certain optimization, convective heat transfer coefficient can

be determined much more precisely, and this can be further used to estimate fluid velocity.

8.2 High temperature thermal diffusivity characterization

For the high temperature study, we directly heat samples using a concentrated light source

which enables the samples to reach stable high temperatures rapidly (in 10 min) compared

to conventional surrounding heating approaches (several hours). Secondly, we use IR ther-

mography for non-contact, non-destructive and data-rich temperature detection. We further

demonstrate that amplitude decay and phase shift can be measured accurately, even if emis-

sivity is not known precisely. Thirdly, we use surrogate-accelerated Bayesian framework

and a No-U-Turn sampler for rigorous uncertainty quantification, compared to regression

approaches in previous studies for solving inverse heat transfer problems.

The main limitation of this study is that significant temperature gradients exist along the

heat conduction direction. This is inconvenient because (1) The light source must be char-

acterized accurately because temperature-dependent properties are required for modeling,

and thus energy input to the system must be characterized. For most Angstrom’s methods

quantifying energy input to the system is not required. (2) An analytical solution does not

exist because radiation losses cannot be linearized. In our study we use surrogate models to

accelerate the physical model. However, surrogate modeling suffers the curse of dimension-

ality and does not work if huge amount of unknowns exist. (3) Significant thermal stress are

120



observed during the transient heating process. This can be a severe issue for materials with

high thermal expansion coefficient and low thermal conductivity, and may cause sample to

bend and fail.

For future works, firstly we need to quantify model form error for the finite difference

model and also include the error in the surrogate model for the Bayesian analysis. Secondly,

the system can be modified to characterize characterize more complex samples. Cowan’s

method [42] can be employed to characterize smaller samples using peak solar intensity

to achieve higher temperatures. Thirdly, the system can be used to characterize other

properties. For instance, we obtained relatively consistent intensity distribution parameter

with different graphite samples and heating frequencies. However, we also observe that the

life span of the light bulb decrease dramatically with oscillating current, which is also not

recommended in the manual of the plasma light bulb. Therefore, modulating the intensity of

the light source may not be the best approach, and use periodic shutter for the light source

may be more practically preferable.

8.3 Electrochemical impedance spectroscopy

In this work, we use exponential chirp signals as broadband perturbations to accelerate

impedance measurements. We develop an adaptive procedure to apply different shunt re-

sistors and chirp signals for different frequency bands, such that EIS can be characterized

precisely over the entire frequency range. The custom instrument is accurate and is nearly

four times faster compared to commercial instruments that use the single frequency scan

approach.

The limitations of this study are (1) NI data acquisition systems are used for signal

generation and data acquisition. This can be replaced with custom circuitry to significantly

reduce cost. (2) Characterizing EIS beyond 10 kHz using the exponential chirp signal is

inefficient and the result tends to be noisy. The instrument can be designed into hybrid

mode, in which exponential chirp signals are used to characterize EIS up to 10 kHz frequency
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range, and use single frequency scan for higher frequencies.

The possible future works include (1) custom data acquisition system to replace and

NI hardware. (2) interpret EIS results using data science methods. For instance, use EIS

to derive equivalent circuits for electrochemical devices, or use EIS to understand state of

health and state of charege of electrochemical devices. Currently, data science techniques are

being widely used for such interpretations. With rapid EIS characterization speed and in-

depth analysis using data science, I believe more insights can be obtained for electrochemical

devices.

122



APPENDIX A

Appendix for room temperature Ångström’s method

study

A.1 Temperature variation along y-axis

The convective heat transfer coefficient h is non-uniform along the y-axis, as discussed in

section 4. Here we examine the effect of non-uniformity in h by showing the mean temper-

atures along four horizontal lines in Fig. A.1A. Air was supplied below the sample and the

velocity was approximately 3.3 m/s. For four different y locations on the sample, the mean

temperatures did not exhibit significant difference as shown in Fig. A.1B, possibly because

of good heat spreading properties of the sample under test. Therefore, variation of h along

the y-axis is insignificant in this work.

Figure A.1: (A) Four evenly spaced horizontal lines in an IR image. (B) Average tempera-

tures on the four lines shown in Fig. A.1A.
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A.2 Amplitude ratio and phase difference calculation in the region

of interest

For N evenly spaced isotherms shown in Fig. A.2A, we obtained phases and amplitudes

at these locations by fitting the temperature profiles to a sinusoidal function. Next we

normalized the amplitudes for these isotherms using the amplitude at Line 1 to obtain the

amplitude ratios. Similarly, we subtracted the phases using the phase at line 1 to calculate

the phase differences. The amplitude ratios and phase differences for these isotherms are

shown in Fig. A.2B.

To fully utilize temperature measurements in the region of analysis, the evenly spaced

isotherms in Fig. A.2A were shifted to the left by one pixel to obtain another N isotherms as

shown in Fig. A.2C. Then we extract the amplitude ratios and the phase differences for these

isotherms. The foregoing process was repeated several times to obtain amplitude ratios and

phase differences in the entire region of analysis, as shown in Fig. A.2D.
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Figure A.2: (A) Infrared (IR) imaging and the region of interest (dashed white rectangle) for

N equally spaced isotherms. (B) Phase differences and amplitude ratios for the isotherms

in (A). (C) Another N isothermal lines (yellow lines) by shifting the isothermal lines in (A)

to the left by one pixel. (D) Phase differences and amplitude ratios for the entire region of

analysis.

A.3 Trace plots of the Metropolis algorithm

Here we examine the random samples obtained from our Metropolis algorithm. The

trace plot for the first parameter α is shown in Fig. A.3A, and good mixing is observed. The

autocorrelation between samples is low, as indicated in Fig. A.3B. Then we examine the trace

plot for the second parameter h. Similarly good mixing is observed as shown in Fig. A.3C,

and the autocorrelation between samples is low, as indicated in Fig. A.3D. Furthermore,

good mixing and relative low autocorrelation between samples are observed for parameter

σ∆A and σ∆φ. Lastly we examine the fifth parameter ρ. Relatively strong autocorrelation

is observed (0.4 for lags = 40). Based on the trace plot, mixing is not as good as the other

parameters but still shows reasonable coverage of the space.
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Figure A.3: (A) Trace plot for α. (B) Autocorrelation function (ACF) for trace α. (C) Trace

plot for h. (D) ACF for trace h. (E) Trace plot for σ∆A. (F) ACF for σ∆A. (G) Trace plot

for σ∆P . (H) ACF for σ∆P . (I) Trace plot for ρ. (J) ACF for ρ.

To further examine the trace, we provide a pairwise scatter plot for all parameters.

Because of large amount of data, only 1 out of 10 sample is shown here. The plots on

the diagonal indicate probability distribution for each parameter. The contour plots below

the diagonal indicate joint distribution and the scatter plots above the diagonal show the

2D scatter plots between two parameters. No strong correlation between parameters are

observed according to the pairwise scatter plots, which indicate good identifiability for model

parameters.
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Figure A.4: Pairwise scatter plot for posteriors

A.4 Use of a Fisher transformation for parameter ρ

The initial proposal distribution used for parameter ρ was a uniform distribution defined

in Eq. A.1. However, the posterior showed poor mixing and strong autocorrelation, as shown

in Fig. A.5.

ρ
′
= U[max(−1, ρ− 0.01),min(1, ρ+ 0.01)] (A.1)
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Figure A.5: (A) Trace plot for ρ using uniform proposal. (B) ACF for ρ using uniform

proposal. The autocorrelation between samples is very strong, indicating poor mixing.

To mitigate this issue, we applied a Fisher transformation to convert ρ into an unbounded

variable z, and used a normal random walk to propose z. To account for the reparametriza-

tion, a Jacobian was added to the posterior. The results for the transformed variable are

shown in Fig. A.3I and J, and much better mixing and much lower autocorrelation are ob-

tained using transformed variable.
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APPENDIX B

Appendix for electrochemical impedance spectroscopy

characterization using exponential chirp signals

B.1 Computed EIS from chirp signals

In this work an exponential chirp signal is employed. It scans each frequency decade at the

same rate and is particular efficient for low frequency EIS measurements. The expression for

a generic exponential chirp voltage signal as a function of time t is given in Eq. B.1,

v(t) = A sin

{
φ0 + 2πf0

(
kt − 1

ln k

)}
, k =

(
f1

f0

)1/T

(B.1)

where A is the voltage amplitude, and is set as 25 mV in this work to promote system

linearity [33]. φ0 is the initial phase and is set as zero in this work. f0 is the starting

frequency, f1 is the ending frequency, and T is the time required to scan from f0 to f1.

In this work, each chirp signal starts at low frequency fC,0 = 0.5× f 0 and ends at high

frequency fC,1 = 1.2 × f1. The sampling frequency fS is selected to be 10 times of the

highest frequency f1, and the length of the chirp signal T is chosen as 3/(2f0), so that the

resolution in the frequency domain is approximately 2f0/3.
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Figure B.1: (A)The original chirp signal. (B) A Tukey window function. (C) The windowed

chirp signal. (D) The windowed chirp signal superimposed with bias DC voltage (100 mV).

Fig. B.1A shows a chirp signal with f0 = 10 mHz, f1 = 10 Hz and T = 150 s. To

avoid sharp transition at T = 0 and T = 150 s, a Tukey window α = 0.03 (Fig. B.1B)

is employed to smooth the original signal, and the windowed chirp signal is shown in Fig.

B.1C. In this work, α is chosen such that the chirp signal in the frequency band of interest

([f0, f1]) is not attenuated by the Tukey window. And lastly, a constant VDC is added to

the windowed signal to enable EIS characterization at bias voltage. The expression for the

windowed exponential chirp signal used in this work is defined below, where win indicates a

Tukey window function:

v(t) = VDC + win

[
A sin

{
φ0 + 2πf0

(
kt − 1

ln k

)}]
, k =

(
fC,1
fC,0

)1/T

(B.2)
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The quantization error for the 16-bit DAQ board is 0.3 mV [10], which is approximately 1.2%

of the perturbation amplitude (25 mV) and is therefore acceptable for EIS measurements.

The foregoing perturbation signal is generated and applied to the circuit in Fig. 5.4. The

voltages across the shunt resistor (VS) and the supercapacitor (VC) are measured by two

differential analog input channels, as shown in Fig.5.4. The current through the circuit (IC)

is calculated using the voltage across the shunt resistor:

is (t) = vs(t)/RS (B.3)

The impedance of the supercapacitor is derived using a discrete Fourier transform (DFT),

and because the DC bias voltage creates a constant current in the circuit (IDC), these DC

components must be subtracted before calculating impedance.

ZC =
DFT (vC (n∆)− vDC (n∆))

DFT (iC (n∆)− iDC (n∆))
(B.4)

where n∆ indicates discrete sample.

An example is shown below for EIS calculation. Here we used a 998.5 Ω shunt resistance

to measure EIS of a commercial supercapacitor (Manufacturer: Nichicon, capacitance 1 mF).

The frequency range of EIS measurement is 10 mHz to 1 Hz and bias DC voltage VDC is

2.0 V. For the chirp signal v (t) applied to the circuit, f0 = 10 mHz, f1 = 1 Hz, the length

of the chirp signal is T = 3
2f0

= 150 s. Sampling frequency is fs = 10f0 = 10 Hz. The

measured perturbation signal v(n∆) is shown in Fig. B.2A. The measured voltage sample

vC (n∆) and vS (n∆) are shown in Fig. B.2B and C respectively. Based on vS (n∆) and the

shunt resistance RS = 998.5Ω, the current in the circuit i(n∆) is determined and shown in

Fig. B.2D. Given vC (n∆) and i(n∆), EIS of the supercapacitor was computed using Eq.

B.4, and impedance and phase component of the EIS results are shown in Figs. B.2E and

F.
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Figure B.2: Demonstration of EIS measurement and calculation using a commercial superca-

pacitor from 10 mHz to 1 Hz under 2 V bias voltage. (A) Perturbation voltage signal applied

to the circuit v (n∆). (B) Voltage across the supercapacitor vS (n∆). (C) Voltage across

the shunt resistor vS (n∆). (D) Current in the circuit i (n∆). (E) Bode plot for calculated

impedance |ZC(f)|. (F) Bode plot for calculated phase ∠ZC(f).

B.2 Instrument software

The EIS measurement system requires advanced software architecture for signal genera-

tion, circuit control, and data acquisition. In a previous study [111], Stevic and Andjelkovic

and Antic employed a simple LabVIEW ‘while’ loop to accomplish signal generation and

data acquisition. Such a software architecture cannot easily implement complicated mea-

surement procedures as well as code upgrades. To improve versatility of the code, a classical

state machine [31] was used to implement the adaptive EIS algorithm shown in Fig. B.3. In

addition, an objected-oriented LabVIEW class is employed to enhance data encapsulation

in the code to simplify data management. The flow diagram of the instrument is shown in
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Fig. B.4.

Figure B.3: Adaptive procedure for EIS measurements using variable shunt resistance.
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Figure B.4: Flow chart of the instrument. The shaded region indicates the adaptive algo-

rithm shown in Fig. B.4.

The graphical user interface for the custom instrument is shown in Fig. B.5A. The

software is user- friendly and requires only three inputs: the frequency band of EIS measure-

ments, the bias DC voltage at which EIS is performed, and the estimated capacitance of the

supercapacitor (need not be accurate). The LabVIEW program executes impedance mea-

surements automatically, and real time impedance results can be visualized. The software

also saves all relevant data, including important process parameters, signal waveforms, and

EIS results to a local MySQL database. To visualize and compare historical measurements,

a web-based user interface was developed as shown in Fig. B.5B.

Figure B.5: (A) Instrument user interface. (B) A web-based interface for EIS data visual-

ization and management.
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B.3 Adaptive algorithm for EIS measurement

The algorithm for adaptive EIS measurement is shown as a pseudo-code in Fig. B.3.

We provide an example to demonstrate this algorithm step by step to reproduce EIS results

shown in Figs. B.6A and B.

Here, the frequency range of EIS is from 10 mHz to 2 kHz with 2 V constant DC bias volt-

age. According to the estimated capacitance of 1.1 mF, the estimated maximum impedance

is about 14.4 k Ω according to Eq. 5.2. Therefore, according to Eq. 5.3, the fourth resistor

in the resistor bank (RS = 998.5Ω) was connected to the circuit for EIS measurements from

10 mHz to 1 Hz. Then a chirp perturbation signal was applied (fC,0 = 0.5 × 10 = 5 mHz,

fC,1 = 1.2 × 1 = 1.2 Hz, T = 150 s), and the resulting voltage across across the shunt

resistor and the supercapacitor are shown in Fig. B.6A. The corresponding EIS results for

this frequency band are shown in Fig. B.6B.
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Figure B.6: (A) The voltage across the supercapacitor and the voltage across the shunt

resistor (RS = 998.5Ω) when the chirp perturbation signal was applied (fC,0 = 0.5× 10 = 5

mHz, fC,1 = 1.2×1 = 1.2 Hz, T = 150 s). (B) The Bode plot of impedance for the frequency

band from 5 mHz to 1.2 Hz. The right axis indicates the ratio between the impedance of the

supercapacitor Z and the shunt resistance RS. The green shaded region indicates accurate

EIS results.

First the algorithm computes EIS results within a given frequency subband (10 mHz - 1

Hz), and evaluates the ratio between Zmax (12062 Ω) and RS. Because 1.5 < 12062/RS <

15, the shunt resistance is comparable to the maximum impedance of the supercapacitor.

Therefore, Zmax measured with RS = 998.5 Ω is accurate. Next the algorithm checks if

Eq. 5.4 is satisfied for the entire frequency subband (10 mHz - 1 Hz). The ratio between
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impedance and shunt resistance is shown as a dashed blue curve in Fig. B.6B, and the highest

frequency such that Eq. 5.3 holds is f ∗ = 0.126 Hz. Therefore, impedance results from 0.01

Hz to 0.126 Hz were saved (shown as green shaded area). The measurement continued from

0.126 Hz. Based on the impedance at 0.126 Hz, the instrument automatically connected an

appropriate shunt resistance (RS = 99.9Ω) to the circuit to account for decreased impedance

with increased frequency. Next the instrument applied a different chirp excitation for the

new frequency subband (f0 = 0.126 Hz, f1 = 12.6 Hz) using an appropriate chirp signal

(fC,0 = 0.5 × 0.126 = 0.063 Hz, fC,1 = 1.2 × 12.6 = 15.1 Hz, T = 15.88 s). The voltages

across the supercapacitor and the shunt resistor are shown in Fig. B.7A, and corresponding

EIS results are shown in Fig. B.7B.
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Figure B.7: (A) The voltage across the supercapacitor and the voltage across the shunt resis-

tor (RS = 99.0Ω) when the chirp perturbation signal was applied (fC,0 = 0.5×0.126 = 0.063

Hz, fC,1 = 1.2×12.6 = 15.1 Hz, T = 15.88 s). (B) The Bode plot of impedance for frequency

band from 0.126 Hz to 12.6 Hz. The right axis indicates the ratio between the impedance

of the supercapacitor Z and the shunt resistance RS. The green shaded region indicates

accurate EIS results.

Similarly, based on the shunt resistance RS = 99.9Ω, the highest frequency such that

Eq. 5.5 holds is f ∗ = 1.259 Hz. Therefore, EIS results from 0.12 Hz to 1.259 Hz are

saved. Next, measurements continued from 1.25 Hz. Based on the impedance at 1.259 Hz,

an appropriate shunt resistance (RS = 10.10Ω) was connected to the circuit, and then the

instrument applied a chirp signal (fC,0 = 0.5× 1.259 = 0.63 Hz, fC,1 = 1.2× 125.9 = 151.1

138



Hz, T = 1.58 s) and measured vS (t) and vC (t), as shown in Fig. B.8A. The corresponding

EIS results are shown in Fig. B.8B.

Figure B.8: (A) The voltage across the supercapacitor and the voltage across the

shunt resistor (RS = 99.0Ω) when the chirp perturbation signal was applied

(fC,0 = 0.5 × 0.126 = 0.063 Hz, fC,1 = 1.2 × 12.6 = 15.1 Hz, T = 15.88s). (B) The

Bode plot of impedance for frequency band from 0.126 Hz to 12.6 Hz. The right axis indi-

cates the ratio between the impedance of the supercapacitor Z and the shunt resistance RS.

The green shaded region indicates accurate EIS results.

For EIS measurement using RS = 10.10Ω, the highest frequency such that Eq. 5.5 holds

is f ∗ = 10 Hz. Therefore, EIS results from 1.259 Hz to 10 Hz was stored, and measurement

continued from 10 Hz and scanned the rest of the frequency band using a smaller shunt
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resistance in the resistor band (RS = 2.73Ω). The measured voltage signals are shown in

Fig. B.8A and corresponding EIS results are shown in Fig. B.9B. Because RS = 2.73Ω

is the smallest shunt resistance, all results are saved even if Eq. 5.5 does not hold for this

frequency subband. The algorithm terminated once the entire frequency band was scanned,

the complete EIS results are shown in Fig. 5.5A in the main document.

Figure B.9: (A) The voltage across the supercapacitor and the voltage across the shunt

resistor (RS = 2.73Ω) when the chirp perturbation signal was applied (fC,0 = 0.5× 2 = 1.0

Hz, fC,1 = 1.2× 2000 = 2400Hz, T = 1.0 s). (B) The Bode plot of impedance for frequency

band from 10 Hz to 2 kHz. The right axis indicates the ratio between the impedance of the

supercapacitor Z and the shunt resistance RS. The green shaded region indicates accurate

EIS results.
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B.4 Uncertainty quantification

The primary source of error in the custom instrument is random noise in the circuit, as

shown in Fig. 5.1B. This leads to random noise in voltage measurements for both vS (t) and

vC (t). Take random noise across the shunt resistor for example, the histogram of the noise

signal is shown in Fig. B.10A and it exhibits bell shape. The corresponding auto-correlation

function is shown in Fig. B.10B and very low correlation is observed for lags N > 1.

Therefore, in this work random noise signals are modeled using Gaussian distributions. This

section presents an approach to quantify the uncertainty in EIS measurement due to random

noise in the circuit.
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Figure B.10: (A) The histogram of the amplitude of random noise across the shunt resistor.

(B) Autocorrelation plot of the noise signal in vS (t) measurement. (C) For a specific time

t, the distribution of vS (t) given Gaussian noise in the circuit.

Because we cannot separate random noise from voltage signals during EIS measurements.

142



We measure the noise signals across the shunt resistor and the supercapacitor before EIS

measurements. Based on the voltage noise samples vS,noise (n∆) and vC,noise (n∆), the corre-

sponding standard deviations σS and σC are calculated. Typically, σS and σC fall between

0.1 - 0.2 mV.

In this work, a Monte Carlo method [127] is employed to quantify uncertainties in EIS

results in the presence of random noise. To simulate random noise in vS (t) and vC (t)

when chirp voltage perturbation is applied, we generate two arrays of Gaussian white noise

with standard deviations σS and σC , and add these white noise to measured vS (n∆) and

vC (n∆) respectively. We then compute EIS results using the measured signals with added

noise. The same procedure is repeated one thousand times, and the 2.5 and 97.5 percentiles

of the impedance and phase in the EIS Bode plot are extracted to represent the uncertainty

intervals.
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APPENDIX C

Appendix for high temperature Ångström’s method

study

C.1 Concentrated light source characterization

In this study the light source is controlled using an external 0-10 V programmable voltage

source. In order to model the concentrated light source, we must have an expression for the

total intensity as a function of the control voltage V . In this work, We heat the sample to

steady state using a constant control voltage V . At steady state, the total energy absorbed

from the concentrated light source and the surroundings equals to energy losses via radiation,

q(V ) + qsurr = qradiation (C.1)

A schematic to analyze the energy balance is shown in Fig. C.1A. First we calculate qradiation.

An IR image for steady state heating is shown in Fig. C.1B. We isolate the sample using a

digital mask and the processed image is shown in Fig. C.1C. We compute the total radiation

power by taking the summation of pixel-wise radiation using the data in Fig. C.1C:

qradiation = Σ
Np
i=1

(
T (ri)

4εfront 2π ri∆r + T (ri)
4εback 2π ri∆r

)
+ 2π R dzεT (R)4 (C.2)

where dz is the sample thickness, and 2π R dzεT (R)4 indicates radiation from the edge.
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Figure C.1: (A) Schematic for solar simulator characterization system. (B) An IR image of

the sample. (C) An IR image with a circular digital mask to isolate the sample for radiation

calculation.

In this study a layer of graphite foil with high-emissivity coating is wrapped around the

sample holder to minimize stray reflection. The graphite foil’s temperatures TW on the back

side were measured using the IR camera and we assume the temperature is constant for the

entire foil. The radiation from the graphite foil absorbed by the sample is calculated using:

qsurr = (AfFfsσ εfront + AbFbsσ εback)T
4
w (C.3)

where Af and Ab are the area of the graphite foil at the front and back side. Ffs and Fbs

indicates the view factor between the graphite foil to the sample at the front and back side

respectively.
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Figure C.2: (A) Total emissive power (qradiation) of the sample measured at different control

voltages. (B) Total absorption power measured from surrounding at different control voltages

(qsurr). (C) Total energy absorbed by the sample from the concentrated light source q(V ) at

different control voltages.

The intensity of the concentrated light source follows an Lorentzian distribution defined

in Eq. 3.1 in the main paper. We integrate the intensity distribution over sample’s radius R

and further multiply with absorptivity of the sample η to obtain the rate of energy absorbed

from the light source q(V ):

q(V ) =

∫ R

0

ηA(V )

π

σsolar
σ2
solar + r2

= 2ηA(V )σsolar ln
R2 + σ2

solar

σ2
solar

(C.4)

Using Eq. C.1, q(V ) is further expressed as:

2ηA(V )σsolar ln
R2 + σ2

solar

σ2
solar

=Σ
(
T (ri)

4εfront 2π ri∆r + T (ri)
4εback 2π ri∆r

)
+ 2π R dzεT (R)4 − (AfFfsσ εfront + AbFbsσ εback)T

4
w

(C.5)

In this study, σsolar is treated as a random variable and estimated using the Bayesian frame-

work. For a specific σsolar, the other parameter of the Lorentzian distribution A(V ) is

determined using Eq. C.5.

C.2 Discretizing the governing equation and the Newton’s solver

The governing equation of energy balance is expressed as:

∂

∂r

(
k
∂T

∂r

)
+

1

r

(
k
∂T

∂r

)
+
q”
s

dz
− (εback + Clb,m/(dθ r dr))σ T

4

dz
+
qlb,m + qsurr,back
r dr dθ dz

= ρ cp
∂T

∂t
(C.6)
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The initial and the boundary conditions are:



IC: t = 0, T (x, 0) = Ti

BC: r = R, −k∂T
∂r

= σ(εT 4 − η T 4
W )

has to satisfy:
∂T

∂r
|r=0 = 0

(C.7a)

(C.7b)

(C.7c)

Eq. C.6 is discretized using the central-difference method, and thermal properties are

evaluated at arithmetic mean temperature.

∂

∂r

(
k
∂T

∂r

)
=

1

∆r
[(
kp−1
m+1 + kp−1

m

2
T pm+1 −

kp−1
m+1 + kp−1

m

2
T pm)∆r

− (
kp−1
m + kp−1

m−1

2
T pm −

kp−1
m + kp−1

m−1

2
T pm−1)∆r]

=
1

2∆r2

[
(kp−1
m+1 + kp−1

m )T pm+1 − (kp−1
m+1 + 2kp−1

m + kp−1
m−1)T pm + (kp−1

m+1 + kp−1
m )T pm−1

]
(C.8)

k

r

∂T

∂r
=
kp−1
m

r

T pm+1 − T
p
m−1

2∆r
=
kp−1
m (T pm+1 − T

p
m−1)

2 r∆r
(C.9)

ρcp
∂T

∂t
= ρcp

T pm − T p−1
m

∆t
(C.10)

The discretized governing equation for a node m and at time step p is further expressed

as:

T p−1
m = Am T

p
m−1 +Bm T

p
m + Cm Tm+1 +Dm T

p4
m + Em + Fm (C.11)

where

Am = −αba∆t
∆r2

+
∆tα

2 r∆r
, α =

kp−1
m

ρcp−1
m

, αba =
kp−1
m + kp−1

m−1

2ρcp−1
m

(C.12)

Bm =
2∆t

∆r2
αce + 1 , αce =

kp−1
m+1 + 2kp−1

m + kp−1
m−1

4ρcp−1
m

(C.13)

Cm = − ∆t

∆r2
αfo −

∆tα

2r∆r
, αfo =

kp−1
m+1 + kp−1

m

2ρcp−1
m

(C.14)
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Dm =
(Clb/(2πr∆r) + εback)σ∆t

dz ρ cp−1
m

(C.15)

Em = − q”
s∆t

dz ρ cp−1
m

(C.16)

Fm = −qlb,m + qsurr,back
r dr dz

∆t

ρcp−1
m

(C.17)

For r = 0, the governing equation has to satisfy the symmetry condition. Here we

introduce a ghost node T p−1. Using central diffence, the symmetry condition is expressed as:

∂T

∂r
=
T p−1 − T

p
1

2∆r
(C.18)

Therefore, T p−1 = T p1 . The finite difference equation for the node at the center r = 0 is

expressed as:

T p−1
0 = (A0 + C0)T p1 +B0 T

p
0 +D0 T

4
0 + E0 + F0 (C.19)

Consider the boundary condition at r = R. We introduce another ghost node outside

domain T pN+1. Using central difference method, Eq. C.7b is discretized as:

−kp−1
N

T pN+1 − T
p
N−1

2∆r
= σ(εT 4 − ηT 4

W ) (C.20)

The temperature at the last node is:

T p−1
N = (AN+CN)T pN−1+BN T

p
N+(DN−

2CN ∆r σ ε

kp−1
N

)T p4N +EN+FN+
2∆r σ η T 4

W CN

kp−1
N

(C.21)

The finite difference equations (Eq. C.19, Eq. C.11 and Eq. C.21) are solved implicitly using

Newton-Raphson’s method. Here we denote temperatures before and after Newton-Raphson

update as T
′

and T . If we define the residual using:

G = −T p−1
m + Am T

p
m−1 +Bm T

p
m + Cm Tm+1 +Dm T

p4
m + Em + Fm (C.22)

Using Newton-Ralphson’s method we obtain:

J(T
′
)(T − T ′) = −G(T

′
) (C.23)
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where J(·) indicates the Jacobian matrix for G and is shown below:
B0 + 4D0T

′,P3
0 , A0 + C0, 0 0 0 0 ......

0 ... Am, Bm, Cm, 0 ......

0 0 0 0 ... AN + CN , BN + 4(DN − 2CN∆rσε

kp−1
N

)T
′p3
N



×


δT0

δT1

...

δTN

 = −


G0(T

′
)

G1(T
′
)

...

GN(T
′
)


(C.24)

At a given time step temperature is updated as:

T = T
′
+ δT (C.25)

For each time step the convergence criteria is δT < 10−12 K.

A mesh independent study is conducted to determine the optimal number of nodes for

the 1D transient heat transfer simulation. We examine the relative error in transient temper-

ature profiles, amplitude decay and phase shift for simulations with fewer number of nodes

compared to simulation with high number of nodes (N = 600). As observed in Fig. C.3,

choosing N ≈ 200 yields high accuracy (less than 0.1%) and fast computing speed (approx.

40 s compared to 5 mins with N = 600). In this study, we discretize the radius of the sample

with approx. 220 nodes.
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Figure C.3: Relative error in amplitude decay, phase shift and transient temperature profiles

with increased number of nodes.

C.3 Light blocker temperature measurement

In this study the light blocker is closely placed in front of the sample so that the intensity of

the truncated light source can be modeled with a simple window function shown in Fig. 3.1C.

Placing thermocouples on the light blocker is difficult because of tight space. Because the

light blocker facing the sample is coated with high temperature high-emissivity coating, we

use the IR camera to measure the light blocker temperature along the radial direction. We

used a disk that is identical to samples under test and cut a narrow slot along the radial

direction. We heat the sample with slot to identical working conditions (the same bias control

voltage) and measure the temperature of the narrow slot using the IR camera. An IR image

for the sample with slot is shown in Fig. C.4A and the steady temperatures measured at

different radius is shown in Fig. C.4B.

150



Figure C.4: (A) An IR image for a sample with a narrow slot for light blocker temperature

measurements. (B) Measured light blocker temperature at different radial locations.

However, because of the slot on the disk, the measured light blocker temperature defers

from that without the slot. The light blocker temperature is also difficult to determine

precisely because reflection from the front side of the sample (facing the solar simulator) is

difficult to quantify. However, because of the high-emissivity coating on the light blocker,

the error caused by unknown reflection is estimated to be less than 20 K. To mitigate these

system errors, we treated the light blocker temperature T (r) as a random variable and

assumed it equals to the temperatures measured by the IR camera TIR(r) plus an unknown

bias temperature:

T (r) = TIR(r) + Tbias (C.26)

We employ the Bayesian framework to estimate the unknown bias temperature Tbias.

C.4 Effect of random noise at high temperatures

Under extreme temperatures high noise exist, as shown in Fig. 3.1B. Therefore, to reduce

such random noise, we average the pixels along the isothermal locations, i.e. constant radius

as shown in Fig. C.5A. Our approach is to convert temperature measurements in a Cartesian

coordinate shown in Fig. C.5A to a polar coordinate using bilinear interpolation illustrated
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in Fig. C.5B.

Figure C.5: (A) Temperature data in Cartesian coordinate. (B) Average Cartesian temper-

ature data to polar coordinate using bilinear interpolation.

First we identify the center of the light source (xc, yc). Then for each discrete radius

ri (ri ∈ [1, 2...N ], unit pixels), we divide it into Nangle evenly spaced points along the

circle. To estimate the temperature of a particular point at angle θi, we employ bilinear

interpolation using the nearest four temperature data in Cartesian coordinate using Eq. C.27.

We averaged temperatures obtained at 200 evenly spaced θi ranging from 0 to 2π to get the

mean temperature at ri. Then the procedure is repeated to get all the mean temperatures

along the sample’s radial direction. Lastly we employ parallel computing to execute the

foregoing process for all images in an IR recording. The final result is averaged radial

temperatures as a function of time shown in Fig. 3.5C.

T (R, θ) ≈ y2 −R sin(θ)

y2 − y1

T (R cos(θ), y1) +
R sin(θ)− y1

y2 − y1

T (R cos(θ), y2) (C.27)

C.5 Amplitude decay and phase shift calculation

Given two quasi-steady-state oscillating temperature profiles v1(t) and v2(t). The amplitude

decay ∆A and phase shift ∆φ are calculated using a discrete Fourier transform (DFT), where
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n∆ indicates discrete samples.

dA =

∣∣∣∣DFT(v1(n∆)

DFT(v2(n∆)

∣∣∣∣ , dφ = ∠
DFT(v1(n∆))

DFT(v2(n∆))
(C.28)

For an IR image shown in Fig. C.6A, we divide such an image into eight areas and analyze

amplitude and phase within each area bounded by dashed blue lines and the region of interest

(bounded by dashed red and black lines). The corresponding amplitude decay and phase

shift results are shown in Fig. C.6B and C respectively.

Figure C.6: (A) Temperature contour plot of an IR image. The black dots indicate the area

irradiated by the concentrate light source. The region of analysis for amplitude and phase is

bounded by the red and black dashed line. (B) Amplitude decay for different angular regions

(shown in A) on the sample. (C) Phase shift for different angular regions (shown in A) on

the sample.
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