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100 THEORY, SUITE 100
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Dr. Michael K. Racke
Editor-in-Chief
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Dear Professor Racke

After receiving comments from reviewers, I am submitting to you a 
revised version of the manuscript entitled “Aspects of the Immune 
System that Impact Brain Function”. 

The changes that have been made in response to these reviews are 
listed on the appropriate attachment.  I hope that some of the 
suggestions have resulted in a strengthened manuscript.

I would be grateful for your consideration of this revised version for 
publication in the Journal of Neuroimmunology.  

Sincerely,

Stephen Bondy, Ph. D.
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Reviewer 1

1] The following section is well written: 3.3.2. Slowing onset genetic changes characterizing 
aging. The author argues in favor of the “use of inexpensive agents such as melatonin, which has 
been shown to reverse many of the age-related changes modification of the gene expression 
profile”. Here it is important to mention the work showing melatonin level is itself decreasing 
with age.   Refs:
Age-related changes in serum melatonin in mice: higher levels of combined melatonin and 6-
hydroxymelatonin sulfate in the cerebral cortex. J Pineal Res. 36(4):217-23. The MT2 melatonin 
receptor subtype is present in human retina and decreases in AD, Curr Alzheimer Res. 4(1):47-
51. Dietary supplementation with melatonin reduces levels of amyloid beta-peptides in the 
murine cerebral cortex. J Pineal Res. 36(4):224-31.

Response Two references suggested (Lahiri et al., 2004a,b) are now added and discussed in text

2] Section: 2.2.4 Environmental factors: This is an important are. The author should provide a 
"big picture" of the human disease, particularly as complex  as AD. Refs: Epigenetics of 
dementia: understanding the disease as a transformation rather than a state.  Lancet Neurol. 
15(7):760-74; Mol. Psychiatry 14(11):992-1003; Curr Alzheimer Res. 9(5):563-73.  --Role of 
environmental contaminants in the etiology of AD. Curr Alzheimer Res.12(2):116-46. 

Response  The reference suggested, (Yegambaran et al.,2015) is added. In addition, a reference 
to the role of abnormal epigenetic profiles in neurodegenerative events, is included (Lardenoije 
et al., 2015).

3] Re the topic of Immunotherapy, Bondy may consider on touching these points. An 
inflammation-related nutrient pattern is associated with both brain and cognitive measures in a 
multiethnic elderly population’. Yu G et al.  CAR. 5(5): 493–501. - IVIG treatment exerts 
antioxidant and neuropreservatory effects in preclinical models of Alzheimer's disease. Counts et 
al.  J Clin Immunol. 2014;34 Suppl 1:S80-5.

Response  A new subsection containing 4 additional references has been added (3.3.4) on 
immunotherapy.  A suggested, the reference on diet and inflammation (Gu et al., 2018), is added 
to the section on diet 3.3.3.
 

Reviewer 2

Please include astroglia in the key words

Response  This has been done



2.1.1. Intensity can allow is repeated in the last line.

Response This error is corrected.

Regarding the meningeal lymphatic system, it is necessary to include a reference supporting this 
important point.

Response   An appropriate reference is added (De Mesquita et al., 2018).

3.1 It is not so clear than microglia are derived from systemic monocytes despite single cell RNA 
sequence studies (Goldman et al.,2016; Ginhoux and Garel 2018); please, moderate the sentence. 
In the same line the last sentence, “the proportion of cerebral microglia (microglia is always 
cerebral) of systemic origin is elevated in some neurodegenerative pathologies…” is not 
unequivocally demonstrated.

Response.  The sentence “However, single-cell RNA sequencing has found that some of these 
are derived from systemic monocytes”   has been altered to “However, single-cell RNA 
sequencing has provided results suggesting that some of these are derived from systemic 
monocytes”.  This is now more suggestive than definitive. 

3.2.3. Astroglia
That astrocytes can clear cell dead and “kill microorganisms” needs a reference. That astrocytes 
can act as real APCs have been a hot debate matter for a long time.

Response   A reference describing astroglial autophagy is added (Lui et al., 2018),  and the 
reference to Shechter and Schwartz (2013), is removed.  The issue of whether astroglia can kill 
micro-organisms has been removed,  as it is a large area in itself.  A reference is also added 
concerning the likelihood of astroglia acting as viral reservoirs and thus enhancing viral survival 
in the brain (Li et al., 2016).



Highlights

 Effective immune responses involve well targeted specificity, appropriate 
duration, and  relevant strength.

 Many slow, progressive disease states are consequent to failure of one or more 
of these critical factors. 

 The most common immune failure is excess inflammation either irrelevant, or 
extended beyond its useful phase.  The prevalence of this apparent shortcoming 
may relate to the increased the longevity of modern times.

 The nervous system has a distinctive vulnerability to excess inflammatory 
activity, both intrinsic and of systemic origin, which progresses with age.



The conditions required for effective immune responses to viral or bacterial organisms and 
chemicals of exogenous origin and to intrinsic molecules of abnormal configuration, is briefly 
outlined.  This is followed by a discussion of endocrine and environmental factors that can lead 
to excessive continuation of immune activity and persistent elevation of inflammatory 
responses. The role of aging events in facilitating such disproportionate activity, is considered.  
The specific vulnerability of the nervous system to prolonging immune events is emphasized.  

In addition of being a target for inflammation associated with neurodegenerative disease, the 
nervous system is also seriously impacted by systemically widespread immune disturbances.  
The means by which immune information can access the CNS and the varying types of 
activation of those cells that regulate immune responses within the brain are discussed.  Some 
possible reasons underlying the relatively common occurrence of derangement and 
hyperreactivity of the  complex immune system are considered, and a few potential ways of 
addressing this common problem receive mention.  
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Abstract

The conditions required for effective immune responses to viral or bacterial organisms and 

chemicals of exogenous origin and to intrinsic molecules of abnormal configuration, are briefly 

outlined.  This is followed by a discussion of endocrine and environmental factors that can lead 

to excessive continuation of immune activity and persistent elevation of inflammatory 

responses.  Such disproportionate activity becomes increasingly pronounced with aging and 

some possible reasons for this are considered.  The specific vulnerability of the nervous system 

to prolonged immune events is involved in several disorders frequently found in the aging 

brain.  In addition of being a target for inflammation associated with neurodegenerative 

disease, the nervous system is also seriously impacted by systemically widespread immune 

disturbances since there are several means by which immune information can access the CNS.  

The activation of glial cells and cells of non-nervous origin that form the basis of immune 

responses within the brain, can occur in differing modes resulting in widely differing 

consequences.  The events underlying the relatively frequent occurrence of derangement and 

hyperreactivity of the  immune system are considered, and a few potential ways of addressing 

this common condition are described.  

Keywords:  Neurodegeneration: Neuroinflammation, Immune, Microglia, Astroglia, 

Macrophage, Aging

1. Background

The immune system is a complex and sophisticated means of detecting aberrant 

macromolecules and promoting their dissolution or removal.  This precision allows an effective 

shield against invasive pathogenic organisms and also enables removal of endogenous cells that 

are damaged or abnormal.  The homeothermic nature of mammals ensures that protein 

structures are maintained in a relatively consistent configuration, in contrast to cold-blood 

phyla where these configurations can flux considerably with changing external temperature.  



This constancy allows the immune system to be especially selective and sensitive.  As is often 

the case, conferred biological benefits are also accompanied by a number of attendant hazards.  

This review is intended to briefly describe some of the adverse effects that inevitably 

accompany the highly intricate immune system which relies on efficient interaction of a large 

number of separate components.  The immune system on occasion, lacks the capacity to 

effectively down-regulate and terminate immune responses at the cessation of a crisis, and this 

inability is especially pronounced in the case of the  central nervous system.  The especial  

vulnerability of the nervous system to aberrant immune performance forms the core of many 

intractable neurological diseases.  This tendency to prolong activity beyond its useful 

applicability also worsens with aging (Bektas et al., 2018).  The basis for this malfunction is 

involves failure of some of the key criteria for effective immune functioning.  The increasing 

lifespan together with exposure to a growing range of xenobiotic agents  may in part account 

for extended age-related inflammatory events.  These are a few means of minimizing their 

adverse effects that include pharmacological strategies together with relatively simple dietary 

and modifications of lifestyle.

2.  General Attributes of Immune Mechanisms

2.1. Decisive features of immune responses 

2.1.1 Intensity

Effective immune functioning depends on a good degree of discrimination by immune 

competent cells.  This must allow for precise targeting of aberrant endogenous molecules and 

species associated with harmful organisms of exogenous origin.  Sometimes, with time, there is 

an increasing strength of the immune response and this can become harmful, leading to allergic 

reactions.  Conversely, certain environmentally prevalent toxic agents are known to  weaken 

the immune system (Kravchenko et al., 2015).  When the strength of the immune response  has 

been compromised, adverse outcomes can include lack of a positive response to infectious 



agents.  In addition, failure of immune surveillance to recognize and remove abnormal cells can 

allow their survival and multiplication, leading to  an elevated risk of cancer.

2.1.2. Specificity

For a useful immune response, the molecular species addressed must remain well 

focused without any significant drifting of identification of the target of the attack.  However, 

another deleterious tendency of deteriorating immune function is a decline in the precision of 

the goal of the response.  

Haptens are low molecular weight materials that are not immunogenic but can bind to 

endogenous proteins which can then become immunogenic.  A characteristic disorder 

associated with such a response is contact dermatitis.  Certain drugs and antibiotics can also act 

as haptens.  An antibody may ultimately be produced that is cross reactive with the unmodified 

parent protein, and this can lead to an auto-immune attack drug-induced form of 

lupus erythematosus.  Systemic lupus erythematosus is a severe disease in which the immune 

system is both inaccurate and hyperactive, attacking and damaging a range of organs.  The 

central nervous system (CNS) can also be involved with neuroinflammatory changes (Duarte-

Delagardo et al., 2019).   Other autoimmune diseases may target on a single tissue in a more 

limited and specific manner (Fig. 1). These include Type 1 diabetes ( involving beta cells within 

the pancreas), Rheumatoid arthritis (cartilage damaged), multiple sclerosis (myelin sheath of 

neurons attacked), myasthenia gravis (acetylcholine receptors at the neuromuscular junction 

ablated), most cases of Addison’s disease (outer layers of adrenal cortex involved), Grave’s 

disease (thyroid gland), pernicious anemia (intrinsic factor producing cells of the stomach), 

inflammatory bowel disease (cells of the digestive tract).  The causal basis of these autoimmune 

disorders is generally unknown.  A major increase in the strength of immune responses is often 

associated with a weakening of the degree of specificity.

2.1.3. Persistence

Restricting the period of activity of  immune responses is important  for their 

constructive and efficient functioning.  Most crises where immune reactions are advantageous 



and fully beneficial to an organism, are transient in nature.  The inflammatory reaction to 

infection involves activation of transcription factors such as NF-kB leading to production of 

inflammatory cytokines and recruitment of macrophages. This facilitates destruction of 

invading organisms and removal of dead cells. When infectious entities or damaged cells are 

successfully disposed of, the healthy immune system then returns to low level surveillance.  

Regrettably however, this is not always the case.  After provocation by a stimulus, immune 

activity often has difficulty is subsiding to levels existing before the appearance of a triggering 

factor.  Those same processes that are valuable in engaging and blocking pathogens and cell 

variants, if excessively extended, can cause serious harm if continued  in a protracted manner.  

Such persistence and failure to terminate responses may underlie several of the chronic 

immune disorders mentioned above.

 An explanation for some situations involving a chronic inflammatory state, is the 

presence of inorganic materials that cannot be resolved by the immune system.  This is the 

situation in lung disease such as silicosis or asbestosis.  Here the inflammation that is caused 

initially by crystalline mineral particles. Since they are similar in size to bacteria, leukocytes will 

respond to inflammation and will attempt to ingest these particles, and this leads to their death 

which signals other leukocytes to aid in countering what is perceived as an infection. Fibroblasts 

are also recruited leading to fibrosis.  Since the mineral particles cannot be cleared by these 

cells, they invoke chronic inflammatory events and an irresolvable site of irritation, eventually 

leading to infiltration of tissues with fibrotic material.  In the absence of any arrest of these 

processes, a persistently developing disease state emerges and continues long after the original 

exposure to the mineral particles (Leung et al., 2012).  It may be that a parallel inability to 

effectively clear amyloid plaques within the CNS accounts for the excess inflammation 

associated with Alzheimer’s disease (Clayton et al., 2017).

2.2.   Inappropriate continued activity of the immune system

The intricacy and subtlety of the mammalian immune system has resulting in the 

emergence of many undesirable and harmful side effects.  Current hygienic and medical 

practices together with an increasingly urban life style, have resulted in a diminished challenge 



of exogenous pathogenic organisms.  However, this has coincided with the emergence of a 

range of novel allergens and hapten-forming materials.  The prevalence of several common 

auto-immune diseases including multiple sclerosis, systemic lupus erythematosus (SLE), and 

type 1 diabetes mellitus has been rising (Parks et al., 2014).  Many types of cancer are also likely 

to involve chronic inflammation (Hunter, 2012).  Since the development of persistent 

inflammation, often of idiopathic origin is increasing, it is crucial to endeavor to identify those 

factors that may underlie this. Two of these features are related to the onset of increasing 

insensitivity to key regulatory hormones, insulin and glucocorticoids such as cortisol.

2.2.1. Insulin

The development of resistance to insulin is characteristic of Type II diabetes, and  

metabolic syndrome (Saltiel and Olefsky 2017). Failure of tissues to respond to insulin results in 

their not removing glucose from the circulation leading the hyperglycemia.  This is often causal 

to metabolic syndrome, involving, obesity, hypertension, and high levels of circulating 

cholesterol (Balakumar et al., 2016). These defects can be promoted by M1-polarized pro-

inflammatory macrophages (Castoldi et al., 2016).  Although obesity can lead to diabetes, the 

relation between insulin resistance and obesity seems to be interactive rather than one factor 

being clearly causal to the other with each being able to potentiate the other.  Both disorders 

and also metabolic syndrome are characterized by low grade but persistent inflammation 

(Frydrych et el., 2018).  Type II diabetes has global effects and is associated with increased risk 

of cognitive impairment and of Alzheimer’s disease (de la Monte et al., 2015).  This likely due to 

impaired responsivity of the brain to insulin and mitochondrial dysfunction (De Felice and 

Ferreira, 2014, Sripetchwandee et al., 2018).   Normal aging has been correlated with 

increasing unresponsiveness to insulin, and the conservation of responsivity to insulin 

sensitivity is associated with familial longevity (Kullmann et al., 2016).

2.2.2 Glucocorticoids

The inflammatory response is frequently terminated by the action of glucocorticoid 

hormones (Cohen et al., 2012).  However, prolonged activation of glucocorticoid receptors can 



lead to their decreased sensitivity to steroids. This insensitivity can reduce the normal capacity 

of glucocorticoids to inhibit inflammatory activity (Bekhbat et al., 2017).  Such suppression of 

glucocorticoid regulation can also be promoted by extended psychological stress  (Stark et al., 

2001).  It has been suggested that persistently excessive levels of glucocorticoids lead to 

glucocorticoid resistance, and may form the basis of  neuroinflammatory  priming in the aging 

brain (Fonken et al., 2018).

2.2.3 Aging and the senescence-associated secretory profile

Aging is commonly characterized by the presence of chronic, low-grade inflammation 

even in the absence of apparent infection (Franceschi and Campisi, 2014).  This is combined 

with increasing incidence of widespread pathological states including obesity, diabetes, and 

heart disease.  The root of this may relate to the characteristic senescence-associated secretory 

profile (SASP) of aged cells with an arrested cell cycle. This profile incorporates discharge of a 

range of pleiotropic inflammatory cytokines such as interleukin-6 (IL-6) (Kennedy et al., 2014). 

This SASP profile, can cause aging to be connected with high levels of inflammation that are 

unrelated to an exogenous stimulus of immune activation.   Rather than being protective, the 

SASP spectrum promotes angiogenesis, cell proliferation, cancer invasiveness, atherosclerosis 

and neurodegeneration (Rea et al., 2018), a reversal of healthy immune function.

2.2.4 Environmental factors

It has been proposed that increased incidence of inflammation-related disease is largely 

due to the increased range of novel man-made chemicals that are present in the environment 

and in foods (Schmidt, 2011, Lerner and Matthias, 2015).  Such xenobiotic factors of 

anthropogenic origin may  relate to age-related elevated basal levels of inflammation.  Metal-

containing airborne particulate matter can effect upregulation of inflammation related genes 

within the CNS (Ljubimova et al., 2018) and such air pollution is very prevalent in many urban 

centers.  A wide range of lifestyle and dietary choices together with other aspects of modern 

urban life may also contribute to  chronic, systemic inflammatory processes (Egger and Dixon, 

2014).  An association has been made between the extent of exposure to several 



environmental contaminants and the prevalence of Alzheimer’s disease (Yegambaram et al., 

2015).

Normal aging involves remodeling of the chromatin and distinctive epigenetic changes 

in the patterns of DNA methylation and in the non-coding miRNA profile.  Dysfunctional 

epigenetic events play a causal role in various neurodegenerative processes  (Lardenoije et al., 

2015).

Overall, the immune system has many problematic aspects and as these negative 

features become more pronounced with age, they may gradually prevail over the beneficial 

properties of the immune system. While misguided immune activity may target specific organ 

systems, liberation of circulating factors such as inflammatory cytokines can lead to more broad 

organ involvement.  This can jeopardize the integrity of remote tissues (Bernardi et al., 2015), 

including the nervous system (Solas et al., 2017).

In summary, the critical features of immune responses described above, all tend to flow 

toward a less beneficial balance point with age.  Specificity is reduced, persistence is excessively 

prolonged and  while the intensity of the response to authentic immune challenges is more 

inappropriate, despite elevated levels of inflammation.

3.  The Immune System and the Brain

3.1.  Susceptibility of the nervous system to prolonged systemic immune activity

Immune cells regulate many aspects of the nervous system.  This occurs from the very 

start of ontogeny, and  includes the pruning and elimination of neurons and their synapses 

during development as well as the subsequent organization of neuronal plasticity throughout 

the lifespan.  Interactions between immune cells and the nervous system are  bidirectional and 

coordinated so as to optimize somatic responses  to infectious pathogens (Dantzer, 2018). 

The adult central nervous system is partially protected by the blood-brain barrier. The 

endothelial cells of cerebral capillaries are coupled by tight junctions, leading to restricted the 

transfer of many high molecular weight materials.  The idea that the brain thus has an 

“immunologically privileged” insulation from the systemic immune system has been extensively 



revised and diminished in recent years, especially since the discovery of the meningeal 

lymphatic (glymphatic) system (De Mequita et al., 2018).  While the access of immune cells to 

the brain is limited, some immunocompetent cells are able to traverse the blood brain barrier 

and take up residence in the brain. Microglia are the innate immune cells, resembling 

macrophages, that are normally present in the brain. However, single-cell RNA sequencing has 

provided results suggesting that some of these are derived from systemic monocytes (Goldman 

et al., 2016, Ginhoux and Garel, 2018). While infiltrating monocytes come to closely resemble 

intrinsically resident microglia, they may be functionally different and more liable to promote 

autoimmune attack on nervous tissue (Li and Barres, 2018).  Thus, peripherally derived 

macrophages infiltrating into the brain underlie the onset and continuation of repeated social 

defeat-induced anxiety like behavior in mice (Wohleb et al., 2014).  On the other hand, native 

resident microglia often act in a more supportive manner such as promotion of remyelination in 

multiple sclerosis (Lloyd et al., 2017).  Although the proportion of cerebral microglia that are of 

systemic origin, derived from monocytes, is elevated in some neurodegenerative diseases,  it 

has been proposed that such infiltrating cells may have distinctive beneficial  qualities(London 

et al., 2013).  

Other means by which a general inflammatory process may infiltrate the brain from the 

periphery include afferent signaling through the vagus nerve, and  by way of disease-effected 

weakening of the brain’s barrier systems (Kempuraj et al., 2017).  Necrosis induced by 

radiotherapy of brain tissue can also lead to infiltration of inflammatory macrophages (Furuse 

et al., 2015).  Several studies have reported that  induction of systemic inflammation can 

produce many changes reminiscent of neurodegenerative disease in the brain which may 

involve a  secondary excessive microglial response (Cunningham, 2013).   By this means chronic 

inflammatory diseases relating to a single organ system, have the potential to augment the 

onset and progression development of several age-related neurological diseases.  Persistent 

systemic inflammatory conditions, such as atherosclerosis, diabetes, cancer, sepsis and obesity 

have been associated with increased risk of a variety of neurological disorders including stroke 

(Drake et al., 2016), Alzheimer’s disease (Holmes 2013), and Parkinsonism (Qin et al., 2007), as 

well as schizophrenia (Beumer et al., 2012), depression (Dowlati et al., 2010), and autism (Li et 



al., 2009).   All of these CNS disorders have been reported as being accompanied by 

neuroinflammation, and consequently, the use of anti-neuroinflammatory therapies has often 

been advocated as an adjunct in the treatment of systemic disorders (Kern et al.2016, Kohler et 

al., 2016, Meneses et al., 2019).  In the case of stroke, the ischemia that initially follows can 

lead to a peripheral inflammatory response, followed by compensatory immunosuppression.  

This latter event can then increase susceptibility to infection and result in elevated mortality.  

Some of the interactions that link the immune responses of the brain to those taking place 

within the entire organism are illustrated in Figure 1.

Overall, measures of brain aging and dementia risk factors are related to the extent of 

systemic inflammation and this rises with age (Corlier et al., 2018).  A striking example of the 

general immune system and that of the brain, is the consequence of a single systemic injection 

of lipopolysaccharide (LPS).  This caused levels of the inflammatory cytokine TNF- to be 

elevated in many organs.  However, while these values returned to normal within a week in 

most tissues, TNF remained elevated in brain for over 10 months. This was associated with 

microglial activation and neurodegenerative changes in the brain (Qin et al., 2007).  This report 

well illustrates the incapacity of the brain to rapidly restore homeostasis after an inflammatory 

shock.  Systemic inflammation can worsen behavioral shortcomings in both aged animals (Chen 

et al., 2008) and in humans with neurodegenerative disease (Murray et al., 2012).  The 

prolonged maintenance of adverse experience by the nervous system could underlie this. 

Reactivation of quiescent lesions by  LPS in the EAE model of multiple sclerosis reveals that 

distant inflammatory events can enable renewed progression of indolent brain lesions (Moreno 

et al., 2011). 

Another means by which disease states in non-nervous tissues can transmit pathological 

events to the brain despite the limited access granted by the blood brain barrier, may involve 

subcellular cytoplasmic vesicles called exosomes. Exosomes are extracellular vesicles that are 

released from cells upon fusion with the plasma membrane. This liberates vesicles into the 

extracellular fluid from whence they can travel widely. They contain a large range of 

macromolecules.  miRNAs are an important part of their cargo.  By transport of their contents 

into other cells, exosomes may enable the dissemination and progression of several 



diseases. Migration into the brain, of exosomes in serum derived from LPS-treated mice, results 

in inflammatory responses and gliosis (Li et al., 2018).  Such vesicles can carry immune-

activating information across the blood brain barrier, in the absence of inflammatory molecules 

(Villaseñor et al., 2019).  

Table 1 summarizes some of the disorders, both of systemic and of nervous origin, that 

can be associated with elevated levels of inflammation in the nervous system.  The causal 

sequence of these correlations is not always obvious.  It should be borne in mind that 

neuroinflammation is not only a result of some wide-ranging diseases encompassing the whole 

organism, but it is bi-directional in that it can also be the cause of such diseases.  An example of 

this is the evidence that inflammation within the CNS can lead to hypertension (Haspula and 

Clark, 2018).

3.2.  Role of macrophages,  microglia and astroglia

3.2.1.  Polarity of activated immune cells

Macrophage and microglial activation has been loosely classified as proceeding in one of 

two opposite directions. The M1 phenotype is a pro-inflammatory state, in which macrophages 

and microglial cells produce and release reactive oxygen species and inflammatory cytokines 

such as  tumor necrosis factor-α (TNF-α)and interleukin 6 (Il-6). The M2 state, is not 

inflammatory and is engaged in the production of anabolic factors, including brain derived 

neurotrophic factor (BDNF) (Tang and Le, 2016).  In the normal CNS microglia may be polarized 

toward a more M2 phenotype, but with inflammation, these cells  express M1 markers.  

Neither of these expression states is intrinsically harmful, but unbalanced overemphasis of M1 

together with diminution of M2 markers may initiate destructive events.    For example, 

promoting a more M2 configuration of microglia can improve functional recovery following 

traumatic brain injury (Loane et al., 2014) while induction of M1 polarization with 

lipopolysaccharide results in repression of telomerase-associated genes implying cell 

senescence (Kronenberg et al., 2017).  Both M1 and M2 configurations of macrophages and 

probably microglia possess phagocytic activity, and this can be associated with targeted cell or 



micro-organism removal, or with overall tissue repair and remodeling events (Boche et al., 

2013).   Each of these states represents a transition from a relatively dormant cell, but the 

outcomes of each type of activation are very different.

At the onset of AD, microglia are predominantly activated as the M2 form while as the 

disease progresses, the activation is more directed toward the inflammatory M1 form (Shen et 

al., 2018).  This type of transition is also found following ischemic stroke (Wang et al., 2018).  

The immune response to acute cerebral ischemia is a major factor in determining the outcome 

following acute ischemic stroke (Anrather and Iadecola, 2016). However, in glial tumors where 

inflammation is low and anabolic processes predominate,  the presence of markers of the M2 

phenotype predominates over markers for M1, and this facilitates tumor progression (Sasaki, 

2017).  Since a broad spectrum of intermediate states between M1 and M2 phenotypes exists, 

a simple separation into these two classes is insufficient.  Nevertheless, this division albeit 

imprecise can be useful in outlining the characteristics generally associated with each cell type 

(Table 2). 

Neuroinflammation is likely an important factor in accounting for age-related cognitive 

decline (Bettio et al., 2016).  In a clinical study, macrophages derived from patients with mild 

cognitive impairment (MCI), were unable to phagocytize and degrade amyloid-β1 - 42 (Aβ).  

Dietary administration of ω-3 fatty acids, antioxidants, vitamin D3, and resveratrol together, 

restored the ability of macrophages to  clear amyloid and phagocytose unfolded proteins and 

slowed down the rate of cognitive decline.  This was accompanied by a phagocytic macrophage 

type, whose expression profile reflected a combination M1 and M2 characteristics (Fiala et al., 

2018).  Microglia cannot simply be described as either dormant or activated as they are very 

responsive to the surrounding milieu which can rapidly alter the spectrum their gene 

expression profile in a complex rather than a binary manner (Gosselin et al., 2017).

Generally, there is clear evidence that the switch of microglia from the M1 to M2 

phenotype is able to  lessen adverse changes in animal models of AD, by attenuation of 

inflammation (Yao and Zu, 2019), and this has been associated with improved cognition (Zhu et 

al., 2016). Alternatively activated microglia in the M2 form are largely involved with tissue 

repair, phagocytosis of misfolded proteins and dead cells, while the classical M1 configuration 



predominates in neurodegenerative  states (Manchikalapudi et al., 2019) and can promote 

protein misfolding (Tang and Le, 2016).  A range of pharmacological strategies have been 

suggested in order to effect the transition toward the M2 state (Yao and Zu, 2019).  While 

treatments for neurodegenerative disease may attempt a polarization toward the M2 form of 

microglia, therapy for glioma is likely most beneficial when directed toward inducing a M1 form 

(Song and Suk, 2017).  Rebalancing the equilibrium of microglial polarity toward either anabolic 

or inflammatory events can have significant therapeutic relevance (Kanazawa et al., 2017).  

3.2.2.  Microglial ablation studies

The ability to selectively ablate microglia by pharmacological means has led to much 

recent work on this strategy involving their transient depletion.  While this is a very active area, 

consensus has not yet been reached on whether the role of microglia is largely beneficial or 

detrimental.  

In the study of neurodegenerative or brain trauma, reports concerning the 

advantageous nature of glial ablation predominate. Thus animal models of Alzheimer’s disease 

(AD) respond well to elimination of microglia, exhibiting diminished formation of amyloid 

plaques (Spangenberg et al., 2019).  As a result, pharmacological removal of microglia, followed 

by repopulation has been suggested as a potential therapy for a variety of neurodegenerative 

disorders (Han et al., 2019).  Microglial removal has also been described as beneficial in a 

variety of conditions including reduced severity of postoperative inflammation (Feng et al., 

2017), and a diminished response to acute ethanol withdrawal (Walter and Crews, 2017).  

However, there are also reports that conflict with the concept that microglial removal 

confers benefits. In another mouse model of AD, ablation of resident microglia allowed 

penetrance of peripheral macrophages in to the brain and the emergence of increased 

expression of inflammatory genes and  a much more pro-inflammatory milieu (Unger et al., 

2018).  The ablation procedure also blocked host defenses against prion disease (Carroll et al., 

2018) and against picornavirus infection of the brain (Sanchez et al., 2019).  Evidence for the 

useful role of microglia includes a report that their depletion exacerbates post-ischemic 

inflammatory damage within the brain (Jin et al., 2017).  Finally, effecting repopulation of 



microglia subsequent to their depletion in aged mice reverses cognitive and morphological 

defects (Elmore et al., 2018).  

The subtle nature of microglial functioning has yet to be clarified.  While it is obvious 

that microglia play an essential supportive role in nervous tissue, they appear under some 

common circumstances, to undergo pathological  transformation to a form where they enhance 

and promote disease processes.   Perhaps the best clue to resolving these apparently 

contradictory findings, comes from the report of Garcia-Agudo et al., (2019). This group found 

that while microglia depletion transiently benefitted  genetically induced brain inflammation, a 

residual surviving microglial species  which was aggressively inflammatory and destructive, soon 

expanded.  This led to no long term improvement whatsoever in  treated mice.  Detailed 

investigation of the variety of microglial species and the kinetics of their proliferation in 

response to an altered environment, are a complex challenge but may explain the reason 

underlying the many inconsistent reports on this topic.

3.2.3.  Astroglia

Brain inflammation is also enabled by astroglia which respond to adverse events in the 

CNS by undergoing reactive gliosis, and displaying inflammatory markers such as glial fibrillary 

reactive protein (GFAP)(Norden et al., 2015).  There is extensive supportive interaction between 

microglial and astroglial activity, and with age (Crotti and Ransohof, 2016), this leads to 

progressively increasing basal levels of cerebral basal inflammation (Primiani et al., 2014).  This 

increase is especially pronounced in the presence of neurodegenerative disorders (Kabba et al., 

2018).

Astrocytes resemble microglia in that they have both a positive and an undesirable role 

in maintaining cerebral function.  They can clear dead cells (Lui et al., 2018), and form a border 

between neural cells and other tissues such as blood vessels and the meninges.  However they  

are able to act as viral reservoirs, and may thus prolong viral in the brain (Li et al., 2016). In 

addition, astrocytes are  capable of apparently unprovoked reactive gliosis that involves 

enhanced production of inflammatory cytokines, and reactive oxygen species, changes that can 



interfere with neuronal structure and function.  In addition to AD, several other 

neurodegenerative disorders are associated with astroglial activation, including Parkinson’s 

disease (PD) and multiple sclerosis (MS) (Stephenson et al., 2018).  Astroglia are also capable of  

expressing anti-inflammatory properties, and this duality may account for the waxing and 

waning nature of MS (Sofroniew, 2015).  Inhibition of reactive astrogliosis  has been reported to 

intensify beta-amyloid peptide  deposition and to increase levels of inflammation in a mouse 

model of AD  (Kraft et al., 2013).  Conflicting findings related to the role of astroglia in 

neurodegenerative disease may also reflect their  capacity to exist in several activated states 

with strikingly different properties (Liddelow and Barres 2017).  Induction of 

neuroinflammation with lipopolysaccharide leads to formation of a detrimental type of reactive 

astrocyte, while the reactive astrocytes generated after ischemia, have a gene expression 

profile reflecting more protective qualities (Zamanian et al., 2012).  These have been termed A1 

and A2  respectively, paralleling the M1/M2 distinction of microglia (Lidelow and Barres, 2017).  

On the whole, reactive astrocytes seem predominantly deleterious in AD and their suppression 

offers a promising therapeutic strategy (Ceyzériat et al., 2018).

3.2.4.  Micro-RNAs

In recent years, micro-RNAs  (miRNAs) have emerged as major cytoplasmic regulators of 

post-transcriptional activity of their corresponding messenger RNAs.  A single miRNA may act 

on many different mRNA targets (Friedman et al., 2009) and this breadth makes these 

molecular species particularly powerful in control of biological function.   miRNAs play an 

important role in influencing macrophage/microglial activity and thus  as critical modulators of 

immunity and inflammation.   miR-124 facilitates downregulation of indices of the M1 

phenotype such as  the inflammatory cytokines IL-6 and TNFα while M2-linked markers such as 

neurotrophic and growth factors are upregulated (Ponomarev et al., 2013). miR-124 is the most 

highly expressed miRNA in neurons and is also  present in large amounts in immune cells (Qin et 

al., 2016).   Additionally, miR-124 appears to be essential for the initiation and maintenance of 

the M2 phenotype (Qin et al., 2016) and is also important in maintenance of cerebral 

vasculature and inhibition of neuronal apoptosis (Che et al., 2019, Li et al., 2019).  In contrast, 



miR-155 is oriented toward promotion of the microglial polarization toward a more 

inflammatory  posture (Guo et al, 2019).  Transcriptome analysis of microglia from models of 

neurodegenerative diseases often exhibit heighted levels of both M1 and M2 markers together 

(Sarlus and Heneka, 2017).  

Whether or not the activity of a specific miRNA is supportive or harmful is very 

dependent on the target issue.  For example miRNA-21 administration can mitigate the 

magnitude of brain injury by inhibition of inflammation and apoptosis.  Thus it has been 

suggested as a possible treatment for stroke (Ge et al., 2016).   On the other hand, this same 

miRNA is implicated in  the promotion of neoplastic transformation, angiogenesis support and 

growth of glioma (Chai et al., 2018). 

3.3. Potential therapeutic directions 

A wide range of pharmacological and phytochemical tactics are being investigated to 

both to understand the basis of,  and to devise means of mitigating the age related progression 

of inflammatory disorders.  Three possible strategies are listed:

3.3.1  Mitochondrial protection

Chronic inflammation leads to impaired functioning of the mitochondrial tricarboxylic 

acid cycle which leads production of excess free radicals. This can be mitigated by 

dimethylfumarate which exerts an anti-inflammatory effect by both inhibiting mitochondrial 

aerobic glycolysis (Kornberg et al., 2018), and activation of the nuclear factor erythroid 2–

related factor 2 (Nrf-2) signaling pathway (Giustina et al., 2017).  Dimethylfumarate 

administration has been found useful as a means of reducing immune responsivity, and has 

clinical utility in the treatment of multiple sclerosis (Wingerchuk and Weinshenker, 2018).

3.3.2 Slowing onset genetic changes characterizing aging

Another tactic could be to develop means to retard the changes in gene expression and 

miRNA profile taking place with aging.   These changes are tilted toward increased 



manifestation of inflammatory gene activity (Victoria et al., 2017, Sharman et al., 2004).  These 

changes could be remedially addressed by use of inexpensive agents such as melatonin, which 

has been shown to reverse many of the age-related changes modification of the gene 

expression profile, especially those relating to immune activity (Bondy, 2018).  Melatonin 

declines rapidly with age (Lahiri et al., 2001a) but cortical levels can be elevated by dietary 

administration. Such treatment can also reduce levels of amyloid peptides in an 

experimental animal model (Lahiri et al., 2001b).

3.3.3 Reduction of glycemic potency of diet and increase of physical activity

A  marked association between diets with a high inflammatory potential and less 

favorable measures of brain and cognitive health, has been made among the elderly (Gu et al., 

2018).  The rapid evolution of the incidence of immune-mediated inflammatory diseases among 

immigrants, further suggests a role for non-genetic factors and gene-environment interactions 

(Agrawal et al., 2019).  It then follows that appropriate environmental modifications could be 

promptly useful in reducing the prevalence of these disorders.  This is consistent with the 

promotion of a suggested ketogenic diet in order to broadly control systemic inflammation 

(Dupuis et al., 2015, Puchalska and Crawford, 2017).  The utility of regular exercise in 

attenuating age-related inflammation has similarly been frequently attested to (Garatachea et 

al., 2015).  These changes could be effected readily without the necessity for development of 

specific new drugs and would be low cost. It has been advocated that this dietary approach may 

be of especial value in the treatment of neurodegenerative diseases (McDonald and, Cervenka, 

2018).  The development of more sophisticated means to maintain the selectivity and efficiency 

of immune responses with senescence, is a growing medical concern and a challenge for the 

future.  However this dietary approach is limited only by the ability to convince people to make 

relatively simple changes, but that demand a degree of determination to modify their routines.  

3.3.4  A role for immunotherapy

The potential for immunotherapy for moderation of senescence-related or 

neurodegenerative events has been widely studied but overall, success in this area remains 



elusive.  The development of antibodies specific for undesirable peptides, while most promising 

in animal models, has not  proved as useful in clinical trials as hoped, and has sometimes led to 

serious undesirable side effects (Wisniewski and Goñi, 2015, Valera et al., 2016).  However a 

less focal approach involving intravenous administration of general immunoglobulins  (IVIG) has 

been more promising and has minimal toxic sequelae (Vitaliti et al., 2017, Thom et al., 2017).  

Nevertheless, this area is currently being intensively investigated and in dynamic flux, thus 

offering much hope in the future.

4.  Conclusion

The listing of the pathological consequences of excess immune activity, should not 

obscure the fact that the immune system has been maintained and enriched with time by 

evolutionary processes, indicating its great value.  The issue then arises as to why then there 

are so many instances of aberrant and excessive inflammation.  There are several possible 

explanations for this, many of which relate to the prevailing life style.  The way of life today 

often contains less physical activity  and a greater dietary abundance than over the large 

timespan of human existence.  These features can account for the prevalence and likely 

increase of many disorders with an inflammatory component.  But perhaps the most significant 

factor to be considered, is the increased lifespan of modern times.  This prolongation beyond 

reproductive years implies that no further evolutionary pressures can be exerted in later life.  

Thus any aberrant metabolism of the elderly cannot be amended by selective forces.  The 

immune system functions efficiently in the young, but cannot respond as successfully to the 

new demands placed on it by extended survival.  It is noteworthy that the large majority of  

disorders including an undesirable inflammatory component, become increasingly pronounced 

with age.  All three of the distinctive features of immune responses described above, become 

less effective with age.  The efficiency of the immune response may be gradually, compromised 

by the combination of a loss of selectivity together with protracted inflammatory activity.  In 

this manner, the adverse effects of immune activity gradually become more pronounced and 

persistent and slowly displace the many positive features of immune defense. However, there 

are accessible means of moderating this inevitable deterioration that could readily be acted 



upon. It is urgent that relevant information be more generally directed to a more extensive 

audience.



References

1. Agrawal M, Shah S, Patel A, Pinotti R, Colombel JF, Burisch J. Changing 

epidemiology of immune-mediated inflammatory diseases in immigrants: A 

systematic review of population-based studies. J Autoimmun. 2019;105:102303. 

2. Anrather J, Iadecola C.  Inflammation and stroke: an overview. Neurotherapeutics. 

2016;13(4):661-670. 

3. Balakumar P, Maung-U K, Jagadeesh G.  Prevalence and prevention of 

cardiovascular disease and diabetes mellitus.  Pharmacol Res. 2016;113(Pt A):600-

609. 

4. Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid 

receptor and NFĸB in good times and bad. Front Neuroendocrinol. 2017;46:15-31.

5. Bektas A, Schurman SH, Sen R, Ferrucci L. Aging, inflammation and the 

environment. Exp Gerontol. 2018;105:10-18.

6. Bernardi M, Moreau R, Angeli P, Schnabl B, Arroyo V.  Mechanisms of 

decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation 

to systemic inflammation hypothesis. J Hepatol. 2015;63(5):1272-1284. 

7. Bettio LEB, Rajendran L, Gil-Mohapel J.  The effects of aging in the hippocampus 

and cognitive decline.  Neurosci Biobehav Rev. 2017;79:66-86.



8. Beumer W., Gibney S. M., Drexhage R. C., Pont-Lezica L., Doorduin J., Klein H. C., et 

al.. The immune theory of psychiatric diseases: a key role for activated microglia 

and circulating monocytes. J. Leukoc. Biol.2012; 92, 959–975

9. Boche D, Perry VH, Nicoll JA.  Activation patterns of microglia and their 

identification in the human brain.  Neuropathol Appl Neurobiol. 2013;39(1):3-18.

10. Bondy SC. Melatonin: beneficial aspects and underlying mechanisms.  In:  

Melatonin: Medical Uses and Role in Health and Disease. Nova Press, Hauppauge 

NY, pp. 277-294, (Eds. Correia L. Meyers G), 2018.  

11. Carroll JA, Race B, Williams K, Striebel J, Chesebro B.  Microglia are critical in host 

defense against prion disease.  J Virol. 2018;92(15). pii: e00549-18.

12. Castoldi A, Naffah de Souza C, Câmara NO, Moraes-Vieira PM.  The macrophage 

switch in obesity development.  Front Immunol. 2016;6:637.

13. Ceyzériat K, Ben Haim L, Denizot A, Pommier D, Matos M, Guillemaud O, Palomares 

MA, Abjean L, Petit F, Gipchtein P, Gaillard MC, Guillermier M, Bernier S, Gaudin M, 

Aurégan G, Joséphine C, Déchamps N, Veran J, Langlais V, Cambon K, Bemelmans 

AP, Baijer J, Bonvento G, Dhenain M, Deleuze JF, Oliet SHR, Brouillet E, Hantraye P, 

Carrillo-de Sauvage MA, Olaso R, Panatier A, Escartin C. Modulation of astrocyte 

reactivity improves functional deficits in mouse models of Alzheimer's disease.  

Acta Neuropathol Commun. 2018;6(1):104.

14. Chai C, Song LJ, Han SY, Li XQ, Li M.  MicroRNA-21 promotes glioma cell 

proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the 

PTEN/PI3K/AKT signaling pathway. CNS Neurosci Ther. 2018;24(5):369-380.



15. Che QQ, Huang T, Zhang YD, Qian XJ. Effect of miR-124 on neuronal apoptosis in 

rats with cerebral infarction through Wnt/β-catenin signaling pathway. Eur Rev 

Med Pharmacol Sci. 2019;23(15):6657-6664. 

16. Chen J, Buchanan JB, Sparkman NL, Godbout JP, Freund GG, Johnson RW. 

Neuroinflammation and disruption in working memory in aged mice after acute 

stimulation of the peripheral innate immune system. Brain Behav Immun. 2008; 

22:301–311.

17. Clayton KA, Van Enoo AA, Ikezu T.  Alzheimer's Disease: The Role of Microglia in 

Brain Homeostasis and Proteopathy.  Front Neurosci. 2017;11:680.

18. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, Turner RB. 

Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. 

Proc Natl Acad Sci U S A. 2012;109(16):5995-5999.

19. Corlier F, Hafzalla G, Faskowitz J, Kuller LH, Becker JT, Lopez OL, Thompson PM , 

Meredith N. BraskieMB.  Systemic inflammation as a predictor of brain aging: 

Contributions of physical activity, metabolic risk, and genetic risk.  Neuroimage. 

2018; 172: 118–129.

20. Corrigan F, Mander KA, Leonard AV, Vink R.  Neurogenic inflammation after 

traumatic brain injury and its potentiation of classical inflammation. J 

Neuroinflammation. 2016;13(1):264.

21. Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from 

genome-wide transcriptional profiling. Immunity. 2016; 44:505–515

22. Cunningham C.  Microglia and neurodegeneration: the role of systemic 

inflammation. Glia. 2013;61(1):71-90



23. Da Mesquita S, Fu Z, Kipnis. The meningeal lymphatic system: a new player in 

neurophysiology. J.Neuron. 2018;100(2):375-388.

24. Dantzer R. Neuroimmune Interactions: From the brain to the immune system and 

vice versa. Physiol Rev. 2018; 98(1): 477–504.

25. De Felice FG, Ferreira ST.  Inflammation, defective insulin signaling, and 

mitochondrial dysfunction as common molecular denominators connecting type 2 

diabetes to Alzheimer disease. Diabetes. 2014;63(7):2262-2272. 

26. de la Monte SM, Longato L , Tong M, Wands JR. Insulin resistance and 

neurodegeneration: Roles of obesity, type 2 diabetes mellitus and non-alcoholic 

steatohepatitis.  Curr Opin Investig Drugs. 2009; 10(10): 1049–1060.

27. Dowlati Y., Herrmann N., Swardfager W., Liu H., Sham L., Reim E. K., et al.  A meta-

analysis of cytokines in major depression. Biol. Psychiatry, 2010; 67, 446–457.

28. Drake C, Boutin H, Jones MS, Denes A, McColl BW, Selvarajah JR, Hulme S, Georgiou 

RF, Hinz R, Gerhard A, Vail A, Prenant C, Julyan P, Maroy R, Brown G, Smigova A, 

Herholz K, Kassiou M, Crossman D, Francis S, Proctor SD, Russell JC, Hopkins SJ, 

Tyrrell PJ, Rothwell NJ, Allan SM.  Brain inflammation is induced by co-morbidities 

and risk factors for stroke. 2011;25(6):1113-1122.

29. Duarte-Delgado NP, Vásquez G, Ortiz-Reyes BL.  Blood-brain barrier disruption and 

neuroinflammation as pathophysiological mechanisms of the diffuse manifestations 

of neuropsychiatric systemic lupus erythematosus.  Autoimmun Rev. 

2019;18(4):426-432.



30. Dukay B, Csoboz B, Tóth ME.  Heat-Shock Proteins in Neuroinflammation.  Front 

Pharmacol. 2019;10:920.

31. Dupuis N, Curatolo N, Benoist JF, Auvin S.  Ketogenic diet exhibits anti-inflammatory 

properties. Epilepsia. 2015;56(7):e95-8.

32. Elmore MRP, Hohsfield LA, Kramár EA, Soreq L, Lee RJ, Pham ST, Najafi AR, 

Spangenberg EE, Wood MA, West BL, Green KN. Replacement of microglia in the 

aged brain reverses cognitive, synaptic, and neuronal deficits in mice.  Aging Cell. 

2018;17(6):e12832.

33. Egger G, Dixon J.  Beyond obesity and lifestyle: a review of 21st century chronic 

disease determinants. Biomed Res Int. 2014;2014:731685. 

34. Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M1, Koliwad SK.  Microglia mediate 

postoperative hippocampal inflammation and cognitive decline in mice.  JCI Insight. 

2017;2(7):e91229. 

35. Fiala M, Restrepo L, PellegriniM.  Immunotherapy of mild cognitive impairment by 

ω-3 supplementation: why are amyloid-β antibodies and ω-3 not working in clinical 

trials.?  J Alzheimers Dis. 2018; 62(3): 1013–1022

36. Fonken LK, Frank MG, Gaudet AD, Maier SF.  Stress and aging act through common 

mechanisms to elicit neuroinflammatory priming.  Brain Behav Immun. 

2018;73:133-148.

37. Franceschi C, Campisi J.  Chronic inflammation (inflammaging) and its potential 

contribution to age-associated diseases.  J Gerontol A Biol Sci Med Sci. 2014;69 

Suppl 1:S4-9.



38. Friedman RC, Kyle Kai-How Farh KK, Christopher B. Burge CB, David P. Bartel DP. 

Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 

19(1): 92–105.

39. Frydrych LM, Bian G, O'Lone DE, Ward PA, Delano MJ. Obesity and type 2 diabetes 

mellitus drive immune dysfunction, infection development, and sepsis mortality. J 

Leukoc Biol. 2018;104(3):525-534.

40. Furuse M, Nonoguchi N, Kawabata S, Miyatake S, Kuroiwa T.  Delayed brain 

radiation necrosis: pathological review and new molecular targets for treatment.  

Med Mol Morphol. 2015;48(4):183-90.

41. Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, 

Morán M, Emanuele E, Joyner MJ, Alejandro Lucia A.  Exercise attenuates the major 

hallmarks of aging.  Rejuvenation Res. 2015; 18(1): 57–89.

42. Garcia-Agudo LF, Janova H, Sendler LE, Arinrad S, Steixner AA, Hassouna I, Balmuth 

E, Ronnenberg A, Schopf N, van der Flier FJ, Begemann M, Martens H, Weber MS, 

Boretius S, Nave KA, Ehrenreich H. Genetically induced brain inflammation by Cnp 

deletion transiently benefits from microglia depletion. FASEB J. 2019;33(7):8634-

8647

43. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, Wang Z, Kang C, Jiang R, Yue S, Lei P, 

Zhang J.  miR-21-5p alleviates leakage of injured brain microvascular endothelial 

barrier in vitro through suppressing inflammation and apoptosis.  Brain Res. 

2016;1650:31-40. 



44. Ginhoux F, Garel S.  The mysterious origins of microglia.  Nat Neurosci. 

2018;21(7):897-899. 

45. Giustina AD, Bonfante S, Zarbato GF, Danielski LG, Mathias K, de Oliveira AN Jr, 

Garbossa L, Cardoso T, Fileti ME, De Carli RJ, Goldim MP, Barichello T, Petronilho F.  

Dimethyl fumarate modulates oxidative stress and inflammation in organs after 

sepsis in rats.  Inflammation. 2018;41(1)315-327.

46. Goldmann T, Wieghofer P, Jordão MJ, Prutek F, Hagemeyer N, Frenzel K, Amann L, 

Staszewski O, Kierdorf K, Krueger M, Locatelli G, Hochgerner H, Zeiser R, Epelman S, 

Geissmann F, Priller J, Rossi FM, Bechmann I, Kerschensteiner M, Linnarsson S, Jung 

S, Prinz M. Origin, fate and dynamics of macrophages at central nervous system 

interfaces. Nat Immunol. 2016;17(7):797-805.

47. Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, Jaeger BN, 

O'Connor C, Fitzpatrick C, Pasillas MP, Pena M, Adair A, Gonda DD, Levy ML, 

Ransohoff RM, Gage FH, Glass CK.  An environment-dependent transcriptional 

network specifies human microglia identity.  Science. 2017;356(6344). 

48. Guo Y, Hong W, Wang X, et al. MicroRNAs in microglia: how do microRNAs affect 

activation, inflammation, polarization of microglia and mediate the interaction 

between microglia and glioma?. Front Mol Neurosci. 2019;12:125. 

49. Han J, Zhu K, Zhang XM, Harris RA. Enforced microglial depletion and repopulation 

as a promising strategy for the treatment of neurological disorders. Glia. 

2019;67(2):217-231.

50. Haspula D, Clark MA.  Neuroinflammation and sympathetic overactivity: 

Mechanisms and implications in hypertension.  Auton Neurosci. 2018;210:10-17.



51. Holmes C.  Review: systemic inflammation and Alzheimer's disease. Neuropathol 

Appl Neurobiol. 2013;39(1):51-68. 

52. Hunter P. The inflammation theory of disease. The growing realization that chronic 

inflammation is crucial in many diseases opens new avenues for treatment.  EMBO 

Rep. 2012;13(11):968-70.

53. Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, Liu Q. Depletion of microglia 

exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab. 

2017;37(6):2224-2236.

54. Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang 

T. Microglia: housekeeper of the central nervous system. Cell Mol Neurobiol. 2018; 

38(1):53-71. 

55. Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T.  Microglia and 

monocytes/macrophages polarization reveal novel therapeutic mechanism against 

stroke. Int J Mol Sci. 2017;18(10). pii: E2135.

56. Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, 

Zahoor H, Saeed D, Natteru PA, Iyer S, Zaheer A. Brain and peripheral atypical 

inflammatory mediators potentiate neuroinflammation and neurodegeneration.  

Front Cell Neurosci. 2017;11:216.

57. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, 

Lithgow GJ, Morimoto R, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray 

T, Sierra F. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709-713.



58. Kern JK, Geier DA, Sykes LK, Geier MR.  Relevance of neuroinflammation and 

encephalitis in autism. Front Cell Neurosci. 2016;9:519.

59. Kohler O, Krogh J, Mors O, Benros ME.  Inflammation in depression and the 

potential for anti-inflammatory treatment.  Curr Neuropharmacol. 2016;14(7):732-

742.

60. Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, 

Snyder SH. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate 

immunity. Science. 2018;360(6387):449-453.

61. Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, Gil SC, Brown J, Wilhelmsson U, 

Restivo JL, Cirrito JR, Holtzman DM, Kim J, Pekny M, Lee JM. Attenuating astrocyte 

activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 

2013;27(1):187-98.

62. Kravchenko J, Corsini E, Williams MA, Decker W, Masoud H. MH, Otsuki T, Singh, Al-

Mulla F,   Al-Temaimi R, Amedei A, ColaccI AM, Vaccari M, Chiara Mondello C, 

Scovassi AI, Raju J, Roslida A. Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, 

Salem HK, RyanEP, Brown DG,. Bisson WH, Lowe L, Lyerly HK. Chemical compounds 

from anthropogenic environment and immune evasion mechanisms: potential 

interactions. Carcinogenesis. 2015; 36(Suppl 1): S111–S127.

63. Kronenberg G, Uhlemann R, Schöner J, Wegner S, Boujon V, Deigendesch N, Endres 

M, Gertz K.  Repression of telomere-associated genes by microglia activation in 

neuropsychiatric disease. Eur Arch Psychiatry Clin Neurosci. 2017;267(5):473-477



64. Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU.  Brain insulin 

resistance at the crossroads of metabolic and cognitive disorders in humans.  

Physiol Rev. 2016;96(4):1169-1209.

65. Lahiri DK, Ge YW, Sharman EH, Bondy SC.  Age-related changes in serum melatonin 

in mice: higher levels of combined melatonin and 6-hydroxymelatonin sulfate in the 

cerebral cortex than serum, heart, liver and kidney tissues. J Pineal Res. 

2004a;36(4):217-223.

66. Lahiri DK, Chen D, Ge YW, Bondy SC, Sharman EH. Dietary supplementation with

melatonin reduces levels of amyloid beta-peptides in the murine cerebral cortex. 

J Pineal Res. 2004b;36(4):224-231.

67. Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HW, Mastroeni D,Coleman 

P, Lemere CA, Hof PR, van den Hove DL, Rutten BP. The epigenetics of aging and 

neurodegeneration. Prog Neurobiol. 2015;131:21-64.

68. Lerner A, Matthias T.  Changes in intestinal tight junction permeability associated 

with industrial food additives explain the rising incidence of autoimmune disease. 

Autoimmun Rev. 2015;14(6):479-89.

69. Leung CC, Yu IT, Chen W. Silicosis. Lancet. 2012;379(9830):2008-2018

70. Li AD, Tong L, Xu N, Ye Y, Nie PY, Wang ZY, Ji LL. miR-124 regulates 

cerebromicrovascular function in APP/PS1 transgenic mice via C1ql3. Brain Res Bull. 

2019;153:214-222. 

71. Li GH, Henderson L, Nath A. Astrocytes as an HIV reservoir: Mechanism of HIV 

infection. Curr HIV Res. 2016;14(5):373-381.



72. Li JJ, Wang B, Kodali MC, Chen C, Kim E, Patters BJ, Lan L, Kumar S, Wang X, Yue J, 

Liao FF.   In vivo evidence for the contribution of peripheral circulating 

inflammatory exosomes to neuroinflammation. J Neuroinflammation. 2018;15(1):8. 

73. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat 

Rev Immunol. 2018;18(4):225-242.

74. Li X., Chauhan A., Sheikh A. M., Patil S., Chauhan V., Li X. M., et al. Elevated immune 

response in the brain of autistic patients. J. Neuroimmunol. 2009; 207, 111–116.

75. Liu X, Tian F, Wang S, Wang F, Xiong L. Astrocyte autophagy flux protects neurons 

against oxygen-glucose deprivation and ischemic/reperfusion injury. Rejuvenation 

Res. 2018;21(5):405-415.

76. Liddelow SA, Barres BA.  Reactive astrocytes: production, function, and therapeutic 

potential. Immunity. 2017;46(6):957-967.

77. Ljubimova JY, Braubach O, Patil R, Chiechi A, Tang J, Galstyan A, Shatalova ES, 

Kleinman MT, Black KL, Holler E.  Coarse particulate matter (PM2.5-10) in Los 

Angeles Basin air induces expression of inflammation and cancer biomarkers in rat 

brains. Sci Rep. 2018;8(1):5708. 

78. Lloyd AF, Davies CL, Miron VE. Microglia: origins, homeostasis, and roles in myelin 

repair.  Curr Opin Neurobiol. 2017;47:113-120. 

79. Loane DJ, Stoica BA, Tchantchou F, Kumar A, Barrett JP, Akintola T, Xue F, Conn PJ, 

Faden AI. Novel mGluR5 positive allosteric modulator improves functional recovery, 



attenuates neurodegeneration, and alters microglial polarization after experimental 

traumatic brain injury.  Neurotherapeutics. 2014;11(4):857-869.

80. London A, Cohen M, Schwartz M.  Microglia and monocyte-derived macrophages: 

functionally distinct populations that act in concert in CNS plasticity and repair. 

Front Cell Neurosci. 2013; 7: 34.

81. McDonald TJW, Cervenka MC. Ketogenic diets for adult neurological disorders. 

Neurotherapeutics. 2018;15(4):1018-1031.

82. Manchikalapudi AL, Chilakala RR, Kalia K, Sunkaria A.  Evaluating the Role of 

Microglial Cells in Clearance of Aβ from Alzheimer's Brain.  ACS Chem Neurosci. 

2019;10(3):1149-1156.

83. Meneses G, Cárdenas G, Espinosa A, Rassy D, Pérez-Osorio IN, Bárcena B, Fleury A, 

Besedovsky H, Fragoso G, Sciutto E.  Sepsis: developing new alternatives to reduce 

neuroinflammation and attenuate brain injury.  Ann N Y Acad Sci. 2019;1437(1):43-

56.

84. Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P, Perry VH, Newman TA. 

Systemic inflammation induces axon injury during brain inflammation. Ann Neurol, 

2011; 70:932–942.

85. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM.  Diabetes and the brain: 

oxidative stress, inflammation, and autophagy.  Oxid Med Cell Longev. 

2014;2014:102158.



86. Murray C, Sanderson DJ, Barkus C, Deacon RM, Rawlins JN, Bannerman DM, 

Cunningham C. Systemic inflammation induces acute working memory deficits in 

the primed brain: Relevance for delirium. Neurobiol Aging 2012; 33:603–616.

87. Norden DM, Muccigrosso MM, Godbout JP. Microglial priming and enhanced 

reactivity to secondary insult in aging, and traumatic CNS injury, and 

neurodegenerative disease. Neuropharmacology. 2015; 96:29–41.

88. Parks CG, Miller FW, Pollard KM, Selmi C, Germolec D, Joyce K, Rose NR, Humble 

MC. Expert panel workshop consensus statement on the role of the environment in 

the development of autoimmune disease.  Int J Mol Sci. 2014;15(8):14269-297.

89. Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of 

differentiation, activation, and polarization of microglia and macrophages in normal 

and diseased CNS. Glia. 2013;61(1):91–103. 

90. Primiani CT, Ryan VH, Rao JS, Cam MC, Ahn K, Modi HR,Rapoport SI. Coordinated 

gene expression of neuroinflammatory and cell signaling markers in dorsolateral 

prefrontal cortex during human brain development and aging. 2014; PLoS ONE 

9:e110972.

91. Puchalska P, Crawford PA. Multi-dimensional roles of Ketone bodies in fuel 

metabolism, signaling, and therapeutics.  Cell Metab. 2017;25(2):262-284.

92. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT.  Systemic LPS 

causes chronic neuroinflammation and progressive neurodegeneration. Glia. 

2007;55(5):453-462.



93. Qin Z, Wang PY, Su DF, Liu X. miRNA-124 in immune system and immune disorders. 

Front Immunol. 2016;7:406. 2016.

94. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and 

Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Front Immunol. 

2018;9:586.

95. Russo R, Cristiano C, Avagliano C, De Caro C, La Rana G, Raso GM, Canani RB, Meli 

R, Calignano A.  Gut-brain axis: role of lipids in the regulation of inflammation, pain 

and CNS Diseases. Curr Med Chem. 2018;25(32):3930-3952. 

96. Saltiel AR, Olefsky JM.  Inflammatory mechanisms linking obesity and metabolic 

disease. J Clin Invest. 2017;127(1):1-4. 

97. Sanchez JMS, DePaula-Silva AB, Doty DJ, Truong A, Libbey JE, Fujinami RS.  

Microglial cell depletion is fatal with low level picornavirus infection of the central 

nervous system. J Neurovirol. 2019;25(3):415-442.

98. Sarlus H, Heneka MT. Microglia in Alzheimer's disease.  J Clin Invest. 

2017;127(9):3240-3249. 

99. Sasaki A.  Microglia and brain macrophages: An update.  Neuropathology. 

2017;37(5):452-464.

100. Schmidt CW. Questions persist: environmental factors in autoimmune disease. 

Environ Health Perspect. 2011; 119(6): A248–A253.



101. Sharman EH, Sharman KG, Ge YW, Lahiri DK, Bondy SC. Age-related changes in 

murine CNS mRNA gene expression are modulated by dietary melatonin.  J Pineal 

Res. 2004;36(3):165-170.

102. Shen Z, Bao X, Wang R. Clinical PET Imaging of microglial activation: implications 

for microglial therapeutics in Alzheimer's disease.  Front Aging Neurosci. 

2018;10:314.

103. Sofroniew MV.  Astrocyte barriers to neurotoxic inflammation.  Nat Rev 

Neurosci. 2015;16(5):249-263. 

104. Solas M, Milagro FI, Ramírez MJ, Martínez JA.  Inflammation and gut-brain axis 

link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr 

Opin Pharmacol. 2017;37:87-92.

105. Song GJ, Suk K.  Pharmacological modulation of functional phenotypes of 

microglia in neurodegenerative diseases.  Front Aging Neurosci. 2017;9:139.

106. Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, 

Spevak W, Lin J, Phan NY, Habets G, Rymar A, Tsang G, Walters J, Nespi M, Singh 

P, Broome S, Ibrahim P, Zhang C, Bollag G, West BL, Green KN.  Sustained 

microglial depletion with CSF1R inhibitor impairs parenchymal plaque 

development in an Alzheimer's disease model.  Nat Commun. 2019;10(1):3758.

107.  Spencer SJ, D'Angelo H, Soch A, Watkins LR, Maier SF, Barrientos RM. High-fat 

diet and aging interact to produce neuroinflammation and impair hippocampal- 

and amygdala-dependent memory.  Neurobiol Aging. 2017;58:88-101.



108. Sripetchwandee J, Chattipakorn N, Chattipakorn SC. Links between obesity-

induced brain insulin resistance, brain mitochondrial dysfunction, and dementia. 

Front Endocrinol (Lausanne). 2018;9:496.

109. Stark JL, Avitsur R, Padgett DA, Campbell KA, Beck FM, Sheridan JF. Social stress 

induces glucocorticoid resistance in macrophages. Am J Physiol Regul Integr Comp 

Physiol. 2001;280(6):R1799-1805.

110. Stephenson J, Nutma E, van der Valk P, Amor S.  Inflammation in CNS 

neurodegenerative diseases. Immunology. 2018;154(2):204-219. 

111. Tang Y, Le W.  Differential Roles of M1 and M2 Microglia in neurodegenerative 

diseases.  Mol Neurobiol. 2016;53(2):1181-1194

112. Thom V, Arumugam TV, Magnus T, Gelderblom M. Therapeutic potential of 

intravenous immunoglobulin in acute brain injury. Front Immunol. 2017;8:875.

113. Unger MS, Schernthaner P, Marschallinger J, Mrowetz H, Aigner L. Microglia 

prevent peripheral immune cell invasion and promote an anti-inflammatory 

environment in the brain of APP-PS1 transgenic mice. J Neuroinflammation. 

2018;15(1):274.

114. Valera E, Spencer B, Masliah E. immunotherapeutic approaches targeting 

amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative 

disorders. Neurotherapeutics. 2016;13(1):179–189. 

115. Victoria B, Nunez Lopez YO, Masternak MM.  MicroRNAs and the metabolic 

hallmarks of aging.  Mol Cell Endocrinol. 2017;455:131-147. 



116. Vitaliti G, Tabatabaie O, Matin N, Ledda C, Pavone P, Lubrano R, Serra A, Di

Mauro P, Cocuzza S, Falsaperla R. The usefulness of immunotherapy in pediatric

neurodegenerative disorders: A systematic review of literature data. Hum 

Vaccin Immunother. 2015;11(12):2749-63.

117. Villaseñor R, Lampe J, Schwaninger M, Ludovic Collin L. Intracellular transport and 

regulation of transcytosis across the blood–brain barrier.  Cell Mol Life Sci. 2019; 

76(6): 1081–1092.

118. Walter TJ, Crews FT.  Microglial depletion alters the brain neuroimmune response 

to acute binge ethanol withdrawal.  J Neuroinflammation. 2017;14(1):86.

119. Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y.  Treatment targets for M2 

microglia polarization in ischemic stroke.  Biomed Pharmacother. 2018;105:518-

525.

120. Wingerchuk DM, Weinshenker BG. Disease modifying therapies for relapsing 

multiple sclerosis. BMJ. 2016;354:i3518.

121. Wisniewski T, Goñi F.  Immunotherapeutic approaches for Alzheimer’s disease

Neuron. 2015; 85(6): 1162–1176.

122. Wohleb ES, McKim DB, Shea DT, Powell ND, Tarr AJ, Sheridan JF, Godbout JP. Re-

establishment of anxiety in stress-sensitized mice is caused by monocyte 

trafficking from the spleen to the brain. Biol Psychiatry. 2014 ;75(12):970-981.



123. Yao K, Zu HB.  Microglial polarization: novel therapeutic mechanism against 

Alzheimer's disease. Inflammopharmacology. 2019. doi: 10.1007/s10787-019-

00613-5 (in press).

124. Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental 

contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res. 

2015;12(2):116-146.

125.   Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA.  Genomic 

analysis of reactive astrogliosis.  J Neurosci. 2012;32(18):6391-6410.

126. Zhu D, Yang N, Liu YY, Zheng J, Ji C, Zuo PP.  M2 macrophage transplantation 

ameliorates cognitive dysfunction in amyloid-β-treated rats through regulation of 

microglial polarization.  J Alzheimers Dis. 2016;52(2):483-95.



DECLARATIONS 

Author Agreement
This is to certify that all authors have seen and approved the final version of the 

manuscript being submitted.  There is no conflict of interest and no funds or research 

grants were used to support this work

Availability of data and materials
Not applicable

Competing Interests  
The author declares that he has no competing interests

Acknowledgments 
Not applicable

Ethics approval and consent to participate
Not applicable

Funding sources
None





Fig. 1   

Representation of factors by which systemic immune activity may lead to 
prolonged inflammatory responses in thrcentral nervous system

 

 Central Nervous 
System Reaction 

Increased Target Penumbra 

 Systemic Inflammatory 
Response

   Exogenous immune stimuli

Age

Failure of Response Shutdown

Intrinsic  Immune 
Stimuli

M1/M2 polarity Exosomes, Vagal input,
Macrophage infiltration



            Table 1. 
Adverse health conditions associated with neuroinflammation.

                         

_______________________________________

______________Disturbances of Nervous Origin_______

Neurodegenerative disease (AD, PD, Stephenson et al., 2018
HD, MS, ALS)
Brain irradiation Furuse et al., 2015
Traumatic brain injury Corrigan et al., 2016
Stroke Anrather and Iadecola, 2016
Depression Kohler et al., 2016
Autism Kern et al., 2016

_____________Disturbances of Systemic Origin________

Aging  Bettio et al., 2017
High fat diet  Spencer t al., 2017
Abnormal gut microbiota  Russo et al., 2018
Inhalation of particulate matter  Ljubimova et al., 2018
Peripheral inflammation  Demers et al., 2018
Diabetes  Muriach et al., 2014
Hypertension  Haspula et al., 2018
Lupus  erythematosus  Makay, 2105
Sepsis Meneses et al., 2019



Table 2.  
Comparison of properties of macrophages/microglia at the two poles of differing states of 
activation.

  _____________________________________________________________________________  

Promoted by M1 type cell polarization 
(classical activation)

Promoted by M2 type cell polarization
(alternative activation)

Bacteriocidal events promoted Anabolic, Reconstructive processes in injured 
tissues

Attempt to phagocytose tumor cells, 
promotion of T-cell responses

Tumor progression, angiogenesis and 
resistance to chemotherapy enhanced

Inflammatory factors produced Anti-inflammatory cytokines produced

M1 polarity elevated rapidly after injury, 
removal of dead cells

Delayed increase of M2 type after injury, repair 
initiated

Diabetes, insulin resistance elevated Insulin sensitivity restored, plasma glucose 

levels regulated

Obesity Adipose tissue homeostasis maintained
Enriched in atherosclerotic plaques Regression of atherosclerosis 

Induced by misfolded proteins Clearance of misfolded proteins, and beta 

amyloid

Promotion of elevated inflammation, 
apoptosis, neurodegenerative disease 
Phagocytosis

Neuroprotection after traumatic brain injury.
Tissue remodeling after stroke
Phagocytosis

Repression of telomere complex genes Upregulation of genes related to bioenergetic 
metabolism
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