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ABSTRACT 

Viscoelastic Effect of Thin Shell Fiber Reinforced Composites Used for 

Deployable Space Structures 

by 

Christopher Van Peterson 

 

Composite tape springs, and a related design called a storable tubular extendable member 

(STEM), are used in aerospace structures as deployment mechanisms for various components 

on satellites, e.g., solar arrays, antennae, booms. Laminates used in their designs must be thin 

to prevent micro-buckling when deformed into compact stowed configurations. As a result, 

they have matrix dominated properties that viscoelastically evolve in time and can result in 

deployable space structure designs with reduced deployment torque and deployed stiffness. 

In order to understand how to mitigate the effects of viscoelasticity in STEM designs, this 

dissertation explores how laminate stacking sequence and fiber orientation affect composite 

viscoelastic behavior and incorporates this knowledge in a method to model the performance 

of a particular biaxially stowed and then deployed STEM design. 

To explore the effect that stacking sequence and fiber orientation have on viscoelastic 

behavior, tensile and four-point bend creep tests are performed on neat resin, unidirectional 

and plain weave lamina, and 3-ply [45PW/0/45PW] and 4-ply [0/45PW/45PW/0] laminate 

samples, all composed of the same epoxy resin and carbon fiber system. The results of the 

creep tests indicate that fibers placed in the load path, e.g., surface plies in composites under 

flexure loads or fibers in the direction of tensile loads, mitigate the viscoelastic creep and 

relaxation of the composites. The presence of elastic fibers also increases the stiffness of the 
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laminae and laminates and reduces the degree to which they creep. The proportional 

viscoelastic change in the transient properties of the neat resin, lamina, and laminate, e.g., 

percent strain change over time at fixed stress between the initial elastic response and the 

equilibrium response of the material, are compared to one another. The results from indicate 

that the viscoelastic behavior of the resin system composing the matrix of the laminae and 

laminates is unchanged by the presence of fibers. 

An analytical model is developed to predict the viscoelastic behavior of a STEM after 

prolonged deformation in a state of biaxial bending, e.g., the stowed configuration. The 

model predicts the extent to which biaxial bending moments relax during the period of time a 

viscoelastic composite STEM is subjected to a state of constant biaxial bending curvature 

(i.e., stowage) and then predicts the resulting recovery curvature and moments after the 

stowed STEM is allowed to deploy. The predictions of the model for a one-dimensional 

beam in bending are shown to compare favorably to the predictions of validated one-

dimensional beam models found in the literature. 

Knowledge of a STEM’s laminate flexural creep and relaxation properties is needed for 

the model to predict the biaxial bending curvature and moments of a STEM design. Since the 

available test data provides information on creep performance only, viscoelastic inversion 

methods are needed to obtain relaxation information. Several approaches are explored for 

converting the creep compliance and flexure properties that are ascertained by the tensile and 

four-point bending creep tests. A review of one-dimensional viscoelastic inversion methods 

such as Gutierrez-Lemini’s exact method shows them not to be applicable for inversion of 

the multidimensional creep properties of the anisotropic laminae and laminates tested for this 

dissertation. To accomplish the task of inverting the creep data, a Laplace transform based 
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numerical method is developed for multidimensional viscoelastic materials. The creep 

properties for the neat resin, unidirectional and plain weave laminae, and 3-ply and 4-ply 

laminates are inverted using the Laplace transform based numerical inversion method. The 

flexure properties cannot be inverted because the axial/transverse flexure creep properties 

could not be measured by the four-point bend test method utilized. To acquire the relevant 

information, the inverted unidirectional and plain weave tensile creep properties are used as 

inputs for a viscoelastic version of classical laminate theory to predict the relaxation flexure 

properties of the unidirectional and plain weave laminae, and 3-ply and 4-ply laminates. 
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Chapter 1  
 
Introduction 

 

1.1 Composite History 

Composites are versatile materials utilized in a broad range of applications. They are 

lightweight, strong, and can be molded into an endless variety of shapes and sizes. Storable 

Tubular Extendable Members (STEMs) are one application where composites are being used. 

STEMs are long slit cylindrical tubes that are flattened and rolled longitudinally into a 

compact stowed configuration. They have been used in various applications since the 1960s 

[1]. These applications range from passive springs, such as hinges, to motor-driven 

telescoping antennae [2]. The versatility and compact storage configuration of STEMs make 

them ideal for use as deployable structures. Figure 1.1.1 illustrates a few STEM deployment 

configurations. Figure 1.1.1(a) shows a STEM with the stowed end wrapped around a fixed 

drum that rotates to deploy the STEM into a long cylindrical shape. Figure 1.1.1(b) illustrates 

the reverse of Figure 1.1.1(a) where the long cylindrical end of the STEM is fixed, and the 

stowed end wrapped around a drum deploys as it is unrolled. Figure 1.1.1(c) shows a long 

helical shaped STEM deployed outward by the rotation of the rolled base of the STEM.  
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Figure 1.1.1: Three example configurations of storable tubular extendable members (STEMs) [1]: (a) the 
stowed end of a STEM wrapped around a fixed drum that when rotated deploys the STEM into a long cylinder; 
(b) the reverse of (a) with the cylindrical end fixed and the stowed end wrapped around a drum unrolling to 
extend outwards; and (c) helical shaped STEM that extends outward as the stowed end rotates. 

Historically, STEMs have been manufactured from metallic materials, but in the past 

decade, the fabrication of STEMs from composite materials has become more prevalent [3]–

[6]. Deployable Space Systems (DSS) is one of many companies implementing composite 

STEMs to deploy various structures for space applications [7]. DSS's design utilizes the high 

stowed strain energy and high strength to weight ratio of a pair of composite STEMs to 

deploy a blanket of solar arrays, as illustrated in Figure 1.1.2. This is a working application 

of the STEM configuration illustrated in Figure 1.1.1(b). Figure 1.1.3 illustrates the 

deployment of a STEM in more detail where (a) shows the STEM in a stowed biaxial state of 

bending. Figure 1.1.3(b) and (c) illustrates the stowed end of the STEM unrolling and 

deploying outward while the stored strain energy is released as the fixed end springs back 

into its original cylindrical tubular configuration. During the deployment stage illustrated in 

Figure 1.1.3(b) and (c), the STEM transitions through a non-uniform curvature as it unrolls 

from the stowed to the deployed configuration. Figure 1.1.3(d) illustrates the STEM's final 

deployed configuration, where it forms a stiff, nearly cylindrical-shaped beam. 
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Figure 1.1.2: Deployable Space Systems' solar array consists of two STEMs on either side of a blanket of solar 
cells. The strain energy from stowing the two STEMs is used to unroll and deploy the blanket of cells. As the 
STEMs unroll, they deploy into their tubular shape providing a stiff structure, supporting the blanket upon 
deployment. 

 
Figure 1.1.3: A STEM deploying from its stowed configuration (a) to its deployed configuration (d). (a) through 
(d) the STEM forms into a long cylinder as the stowed end of the STEM unrolls and extends outward. (b) and 
(c) the STEM transitions through a non-uniform curvature as it deforms from the stowed configuration (a) to 
the deployed configuration (d). 

Composite STEMs are commonly composed of continuous carbon fiber laminae with a 

polymer resin matrix. The fibers of the composite provide stiffness and strength, especially 

along the orientation of the fibers, while the resin binds the fibers in place, allowing the 
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composite to be molded into the tubular shape of a STEM. The laminate layups of STEMs 

are constructed from a stacked set of laminae comprised of either unidirectional continuous 

fiber strands (Uni) or plain weave continuous fiber mats (PW). High stowed bending strains 

in STEMs can cause laminates to micro buckle and delaminate [8]. To eliminate high strains, 

laminate layups must remain thin, limiting the number of plies to as few as two and, 

typically, to not more than four. As a consequence, the options of ply orientation and 

stacking sequence for such thin laminates makes it impossible to align elastic fibers in all 

loading directions. This results in some directions and modes of deformation in the 

composite being matrix dominated, such as the transverse direction and the shear properties, 

and, consequently, they often exhibit significant viscoelasticity as the polymer matrix relaxes 

[9], [10]. In contrast, fiber dominated directions and modes of deformation exhibit limited, 

transient viscoelasticity. The net viscoelasticity of the system can be detrimental to the 

deployment states of a STEM. Relaxation in the strain energy of a composite STEM may 

result in its failure to deploy due to loss in deployment toque. In addition, reduction in the 

material’s modulus due to viscoelastic effects may compromise the STEM’s deployed 

stiffness. 

1.2 Composite Background 

The viscoelasticity present in composites is a direct result of the neat resin (matrix), 

which binds the purely elastic fibers in place. In the case of a unidirectionally reinforced 

lamina, the axial extension properties are fiber dominated and essentially elastic. However, 

the transverse response– both extension and shear– and the longitudinal shear properties are 

all matrix dominated and are time-dependent [11], [12]. The fundamental theories and system 

of equations used to define elastic composites [13] are the stepping off points for discussing 
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composite viscoelasticity. Figure 1.2.1 depicts a unidirectional reinforced lamina with a 

coordinate system in which the axial (fiber direction), transverse, and out of plane directions 

are the 1, 2, and 3 axes respectively. Lamina properties are best represented using classical 

laminate theory (CLT). The elastic reduced stiffness matrix, /, represents the elastic plane 

stress state of a lamina in contracted notation [14]. The relationship between Voigt notation 

and double subscript notation is 

G## = G#;      G$$ = G$;      G.. = G.;  

G$. = H/;      G.# = H0;      G#$ = H1 (1.2.1a)  

I## = I#;      I$$ = I$;      I.. = I.;  

2I$. = K$. = K/;      2I.# = K.# = K0;      2I#$ = K#$ = K1 (1.2.1b) 

G" = /"-I- (L, M = 1, 2, 6) (1.2.2)  

in which G. = 0, H/ = 0, and H0 = 0. The inverse relationship (elastic compliance) of 

equation (1.2.2) is written as 

I" = 2"-G- (L, M = 1, 2, 6) (1.2.3) 

 
Figure 1.2.1: A unidirectional reinforced lamina with 1, 2, and 3 axes in the fiber direction (axial), transverse 
fiber direction, and out-of-plane direction, respectively [14]. 
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Unidirectional (continuous fiber) lamina experiences little to no viscoelasticity in the 

axial (fiber) direction due to the fibers’ resistance to creep and their high modulus in 

comparison to that of the neat resin. The transverse and longitudinal shear lamina properties, 

however, experience creep the extent of which varies based on fiber modulus and volume 

fraction. The features of viscoelasticity are also present at the laminate level but are more 

complex due to interactions and constraints between the variously oriented laminae and their 

stacking sequence. Figure 1.2.2 represents the coordinate system of a laminate in which x is 

defined as the 0o axis of the laminate, y as the 90o axis of the laminate, and z is the out of 

plane axis in which the origin lies at the midplane or reference plane of the laminate. The 

laminate consists of n laminae (plies) k = 1 through n, each a distance !̅! from the laminate 

reference plane. Each lamina has a specified degree of rotation. All laminates considered are 

symmetric about the midplane and are therefore balanced. 

 
Figure 1.2.2: The coordinate system of a laminate is defined by x as the 0o axis of the laminate, y as the 90o axis 
of the laminate, and z as the out of plane axis. The origin lies at the midplane or reference plane of the 
laminate. The laminate consists of n laminae (plies) k = 1 through n each a distance !̅! from the laminate 
reference plane. Each lamina has a specified degree of rotation [14]. 

Figure 1.2.3 depicts a cross-sectional view of a laminate with unidirectional laminae at 

varying degrees of rotation. 
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Figure 1.2.3: Cross-sectional view of a laminate with varying degrees of rotation of unidirectional laminae 
(plies) [14]. 

Classical laminate theory is used to predict the behavior of a laminate under a set of 

assumptions [14]: 

1. Each layer (lamina) of the laminate is quasi-homogeneous and orthotropic. 

2. The laminate is thin with its lateral dimensions much larger than its thickness and 

is loaded in its plane only, that is, the laminate and its layers (except for their 

edges) are in a state of plane stress (G) = H&) = H') = 0). 

3. All displacements are small compared with the thickness of the laminate. 

4. Displacements are continuous throughout the laminate. 

5. In-plane displacements vary linearly through the thickness of the laminate. 

6. Straight lines normal to the middle surface remain straight and normal to the 

surface after deformation. This implies that the transverse shear strains K&) and 

K') are zero. 

7. Strain-displacement and stress-strain relations are linear. 

8. Normal distances from the middle surface are taken to remain constant, that is, the 

transverse normal strain I) is infinitesimal. 
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The reduced elastic stiffness matrix of the kth lamina in a laminate is represented using the 

composite x, y, and s notation for stress and strain where s is defined as the in-plane shear 

stress of the lamina or laminate. 

G"
! = /"-

! I-
!             (L, M = 4, D, *) (1.2.4) 

where G"
! is the elastic plane stress of the kth lamina; /"-

!  is the elastic reduced stiffness of the 

kth lamina; I-
! is the elastic strain in the kth lamina. The strain at any point in the laminate is 

related to the reference plane strain, (I&
(, I'

(, and K2
() and the laminate curvatures (9&, 9', and 

92). 

I-
! = I-

( + !9-             (M = 4, D, *) (1.2.5) 

Equation (1.2.4) is rewritten by substituting the expression for the strain in equation (1.2.5). 

G"
! = /"-

! I-
( + !/"-

!9-             (M = 4, D, *) (1.2.6) 

Figure 1.2.4 represents the discontinuous stress variation throughout a laminate due to an 

applied strain and varying lamina stiffness (P represents the Young’s modulus of the lamina). 

 
Figure 1.2.4: A laminate comprised of three laminae with varying Young’s moduli is deformed by a strain 
variation as in equation (1.2.5), resulting in discontinuous stress variations in the laminate arising from 
equation (1.2.6) and consistent with classical lamination theory [15]. 

Laminate forces and moments are a more useful expression when evaluating the laminate's 

response to deformations. Figure 1.2.5 shows the force and moment resultants on a single 

layer of a laminate.   
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Figure 1.2.5: Laminate force and moment resultants on a single ply [14]. 

The sum of the lamina stresses over its thickness # results in the resultant forces. 

Q"
! =	∫ s"3!

3/$
53/$  (L = 4, D, *) (1.2.7a) 

Q& and Q' are the elastic normal forces per unit length and Q2 is the elastic shear force per 

unit length. The resultant moment is a sum of the moments due to stresses a distance ! from 

the midplane (reference plane) of the lamina, as depicted in Figure 1.2.2. 

("
! = ∫ s"!3!

3/$
53/$  (L = 4, D, *) (1.2.7b) 

(& and (' are the elastic bending moments per unit length and (2 the elastic twisting 

moment or torque per unit length. Summing the stresses in each lamina over the thickness of 

a laminate results in the laminate force and moment resultants.  

Q" =	∑ ∫ G"
!3!

)"
)"#$

6
!7#  (L = 4, D, *) (1.2.8a) 

(" =	∑ ∫ G"
!!3!

)"
)"#$

6
!7#  (L = 4, D, *) (1.2.8b) 
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!! and !!5# are the upper and lower in-plane surface distances from the midplane of the 

laminate. Replacing the lamina stress G"
! in the equations (1.2.8a) and (1.2.8b) with the 

expression in equation (1.2.6) yields the following results 

Q" =	∑ ∫ /"-
! I-

(3!
)"
)"#$

+6
!7# ∑ ∫ !/"-

!9-3!
)"
)"#$

6
!7#         (L, M = 4, D, *) (1.2.9a) 

(" =	∑ ∫ !/"-
! I-

(3!
)"
)"#$

6
!7# + ∑ ∫ !$/"-

!9-3!
)"
)"#$

6
!7#         (L, M = 4, D, *) (1.2.9b) 

The integral expression of equations (1.2.9a) and (1.2.9b) are represented by three commonly 

defined symmetric matrices discussed in detail by Daniel and Ishai [14]: 

• The in-plane moduli, or extensional stiffness matrix, T"-, relates in-plane loads to 

in-plane strains. 

• The coupling stiffness matrix, U"-, relates in-plane curvatures and moments to in-

plane strains. A non-zero U"- matrix results in flexural and twisting due to in-

plane forces. Moments produce a similar response with the addition of extensional 

and shear deformations of the middle surface. 

• The bending and flexural laminate stiffness matrix, 0"-, relates moments to 

curvatures. 

Q" = T"-e-
( + U"-9- (1.2.10a) 

(" = U"-e-
( + 0"-9- (1.2.10b) 

It is common to refer to the laminate moduli, T"-, U"-, and 0"-, as the TU0 matrix. The 

laminate compliance is the inverse of the TU0 matrix expressing the strains and curvatures 

as a function of the applied loads and moments.  

e"
( = E"-Q- + V"-(- (1.2.11a) 

9" = ?"-Q- + 3"-(- (1.2.11b) 
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The laminate compliance is referred to as the EV?3 matrix. 

W
E"- V"-
?"- 3"-

X = LYZ W
T"- U"-
U"- 0"-

X (1.2.12) 

 

1.3 Viscoelasticity Background 

A material that exhibits both elastic and time-dependent properties is defined as 

viscoelastic. Most polymers are viscoelastic as a result of weak Van der Waals forces 

between polymer chains that can shift over time based on the applied loads and thermal 

energy [16], [17]. Viscoelasticity can be defined by two main loading categories, either 

relaxation or creep. Relaxation is a result of the polymer chains thermally rearranging to a 

minimum potential energy state due to the presence of an applied fixed displacement. As 

time progresses, the stress in the polymers due to the applied displacement decreases. Creep 

is a result of the polymer chains also thermally rearranging to a minimum potential energy 

state but as a result of a fixed load, which produces a change in displacement. Polymers are 

categorized into two main groups. One category is thermoplastics, which have no cross-

linking between polymer chains, resulting in an unbonded viscoelastic response leading to 

failure over long loading durations. The other category is thermosets, which have crosslinked 

polymers that limit the extent polymer chains can rearrange, preventing the material from 

straining viscoelastically after long durations. It is common practice to use tough, heavily 

crosslinked polymer resin systems for composites, i.e., thermosets. This disertation will focus 

on the behavior of thermoset resin systems. 

A thermoset’s viscoelastic response is broken down into three main behaviors: elastic 

glassy response, transient response, and long-time equilibrium response, often referred to as 
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an infinite equilibrium response. These features are depicted in Figure 1.3.1 for both the 

relaxation modulus and creep compliance. The relaxation modulus gives the stress as a 

function of time for a unit strain applied suddenly at time zero, whereas the creep compliance 

gives the strain as a function of time for a unit stress suddenly applied at time zero. The 

transient response of relaxation and creep differ due to the loading mechanisms that drive 

viscoelastic change. As a result, the interchange between the two properties requires special 

inversion methods, which are discussed in detail in Chapter 3. 

 
Figure 1.3.1: The creep compliance C(t) and relaxation stiffness M(t) of a composite viscoelastically changes 
as a function of time on a log scale. The glassy region defines the material’s elastic response. The transient 
region defines the material’s time-dependent deformation response. The equilibrium region defines the 
material’s final stabilized deformation response [18]. 

A Prony series is commonly used to define the viscoelastic behavior of polymers [16]. 

The relaxation modulus ((#) and creep compliance [(#) are defined as follows 

((#) = (% − ∑ (" \1 − >58
%3]!

"7#   (1.3.1a) 

[(#) = [% + ∑ [" \1 − >59
%3]!

"7#   (1.3.1b) 

where (" and [" are the Prony modulus and creep constants; -" and ." are the Prony 

modulus and compliance time constants; (% and [% are the initial glassy modulus and 
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compliance and thus are ((# = 0) and	[(# = 0), respectively. The equilibrium region can 

be defined mathematically by the limit of equation (1.3.1a) and (1.3.1b) as # approaches 

infinity. The parameter ^ is the number of Prony series terms needed to fully define a 

material’s transient behavior between the initial glassy response and the equilibrium 

response. 

_L`
3→;

((#) = (* (1.3.2a) 

_L`
3→;

[(#) = [* (1.3.2b) 

The equilibrium response is also related to the initial modulus and compliance by the 

following expressions 

(* = (% − ∑ ("!
"7#   (1.3.3a) 

[* = [% + ∑ ["!
"7#   (1.3.3b) 

Equations (1.3.1a) and (1.3.1b) can also be written using the equilibrium response as defined 

in equations (1.3.2a) and (1.3.2b), respectively. 

((#) = 	(* + ∑ (">58
%3!

"7#   (1.3.4a) 

[(#) = 	[* − ∑ [">59
%3!

"7#   (1.3.4b) 

The rate at which a material relaxes or creeps is dependent on temperature. The higher 

the temperature, the faster the material reaches equilibrium. A master curve defining the 

viscoelastic behavior of a material over its entire lifetime (glassy to equilibrium) can take 

more than a year to measure at room or similar modest temperatures. Fortunately, most 

polymers are thermorheologically simple [19], and obey an Arrhenius law for time-

temperature superposition. Experimental results from tests carried out over short periods of 

time at various levels of higher temperatures can be shifted along the time axis to form a 
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master curve, which is illustrated in Figure 1.3.2. The mathematical representation of the 

Arrhenius data shift is  

log(E<) = 	
=&
>
\
#
<
−

#
<'
]  (1.3.5) 

in which d( is the reference temperature for a material master curve. The shift coefficient, 

E<, is the required time axis shift to move the reference master curve to a new desired 

temperature d. e is the gas constant (J/(mol °K)), and P? is the viscoelastic activation energy 

of the material (J/mol). 

 
Figure 1.3.2: Creep compliance master curve: (a) master curve formed from (b) short-term creep data 
measured at different temperatures that are shifted based on time-temperature superposition principles 
mathematically defined using an Arrhenius law [20]. 

A mathematical representation of the master curve is created by fitting a Prony series to 

the master curve data. The Prony series functions (1.3.1a) and (1.3.1b) defining the 

viscoelastic master curve of a material can be modified to include the time/temperature 

effects expressed by the Arrhenius law, equation (1.3.5). This is accomplished by dividing 

the Prony time constants for both the relaxation modulus and creep compliance by the shift 

coefficient. 

-",< =
8%,)'

8)
  (1.3.6a) 
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.",< =
9%,)'

9)
  (1.3.6b) 

Where -",< and .",< are the relaxation modulus and creep compliance Prony time constants at 

the desired temperature, and -",<' and .",<' 	are the relaxation modulus and creep compliance 

Prony time constants at the reference temperature. 

The elastic laminate theory discussed earlier can be redefined using the viscoelastic 

theory just established [21]. The lamina reduced stiffness and compliance for elastic 

materials defined in equations (1.2.2) and (1.2.3), respectively, are presented below in 

viscoelastic form using the Prony series defined in equation (1.3.1a) for relaxation and 

equation (1.3.1b) for creep. 

/"-(#) = 	/"-
% − ∑ /"-

, \1 − >58*
+ 3]!

,7#   (1.3.7a) 

2"-(#) = 	2"-
% +∑ 2"-

, \1 − >59,
+ 3]!

,7#   (1.3.7b) 

-A
,  and .B

,  are the Prony time constants for the relaxation reduced stiffness and creep 

compliance, respectively; /"-
%  and 2"-

% are the lamina relaxation reduced stiffness and creep 

compliance glassy response; /"-
,  and 2"-

,  are the Prony constants for the lamina relaxation 

reduced stiffness and creep compliance, respectively. The laminate stiffness TU0 and 

compliance EV?3 matrices defined in equations (1.2.10) and (1.2.11) are presented below in 

viscoelastic form using Prony series. 

T"-(#) = 	T"-
% − ∑ T"-

, \1 − >58-
+ 3]!

,7#   (1.3.8a) 

U"-(#) = 	U"-
% −∑ U"-

, \1 − >58.
+ 3]!

,7#   (1.3.8b) 

0"-(#) = 	0"-
% − ∑ 0"-

, \1 − >58/
+ 3]!

,7#   (1.3.8c) 
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E"-(#) = 	E"-
% + ∑ E"-

, \1 − >59&
+ 3]!

,7#   (1.3.9a) 

V"-(#) = 	V"-
% +∑ V"-

, \1 − >590
+ 3]!

,7#   (1.3.9b) 

?"-(#) = 	 ?"-
% + ∑ ?"-

, \1 − >591
+3]!

,7#   (1.3.9c) 

3"-(#) = 	3"-
% + ∑ 3"-

, \1 − >592
+ 3]!

,7#   (1.3.9d) 

-C
, , -D

, , -E
, , and .?

, , .F
, , .G

, , .H
,  are the Prony time constants for the laminate relaxation 

modulus and creep compliance; T"-
% , U"-

%, 0"-
%, and E"-

% , V"-
% , ?"-

% , 3"-
%  are the laminate relaxation 

modulus and creep compliance glassy response; T"-
, , U"-

, , ["-
, , and E"-

, , V"-
, , ?"-

, , 3"-
,  are the 

Prony constants for the laminate relaxation modulus and creep compliance. 

1.4 Motivation and Outline 

My Ph.D. advisor, the late Dr. Keith Kedward, and I were awarded a NASA STTR grant 

in collaboration with Deployable Space Systems, tasked with understanding the underlying 

cause of viscoelasticity present in its deployable solar array. The program initially started as 

a year-long Phase I program at the end of which a Phase II and Phase II extension was 

awarded. It is common practice for most aerospace design applications to rely on 

experimental data at the system level to validate the reliability of deployments [22]. This 

approach, while valid, is costly and fails to elicit the underlying cause of viscoelasticity in 

structures, a necessity for the development of accurate and reliable predictive models. The 

goal of this research is to identify the presence of viscoelasticity in composites and how 

various laminate layups, orientations, and stacking sequences influence their viscoelastic 

properties. Furthermore, it also aims to develop a model to predict the behavior of 

viscoelastic STEMs used in structural applications such as DSS’ MEGA ROSA solar array. 
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Each chapter of this dissertation addresses a different aspect of viscoelasticity in composites. 

Chapter 2 discusses the results of creep tests conducted on various laminae and laminates. 

Chapter 3 develops a viscoelastic inversion method for predicting relaxation and creep 

properties from measured creep and relaxation properties, respectively. Chapter 4 presents 

the results of inverting the creep properties recorded in Chapter 2 using the inversion method 

developed in Chapter 3. Chapter 4 also presents predictions of relaxation flexural properties 

using a viscoelastic variant of classical laminate theory. Lastly, Chapter 5 derives a 

mathematical model to predict the viscoelastic behavior of composite STEMs when stowed 

for varying durations before being deployed using the measured and inverted relaxation data 

recorded in Chapter 2 and 4.  

Chapter 2 discusses the results of tensile and four-point bend tests performed on 

anisotropic viscoelastic composites and their neat resin matrix in order to determine the 

effect that fiber integration, lamina orientation, and laminate stacking sequence have on the 

viscoelastic behavior of composites. Four constant temperature tests are conducted below the 

glass transition temperature on all samples and laminate types. The results are combined to 

form master curves that model up to 3 years of the viscoelastic history of the samples. 

Normalization of the master curve equation allows for a comparison between the compliance 

and flexure properties obtained by the tensile and four-point bend tests, respectively. 

Similarities in the results between compliance and flexure properties validate the quality of 

the tests and confirm the absence of artifacts particular to a specific test method. The 

proportional transient response of the compliance and flexure master curves provides a 

means of comparing the rate of viscous change of these different properties. The evaluation 

of the tested materials using this method shows that the proportional transient response in all 
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laminate directions and variant properties (flexure and tension) matches that of the matrix 

neat resin system. This indicates that the neat resin time-dependent properties are unaffected 

by the integration of fibers and are independent of orientation and stacking sequence of the 

fiber dominant directions. The degree of creep and stiffness that the materials possess, 

however, is affected by orientation and stacking sequence. The results indicate that the 

placement of fibers in the highest strain/stress directions mitigate the viscoelastic response of 

the material. In the case of flexure, the surfaces of lamina/laminate experience the largest 

loads. With the utilization of these findings, composite laminates that mitigate creep can be 

predicted and used in deployable space applications. Furthermore, measuring the viscoelastic 

response of the resin system can provide the time-dependent proportional transient response 

of composites without the need to perform complex system-level tests. This significantly 

improves design development time and reduces development costs. 

Chapter 3 explores inversion techniques between creep and relaxation for anisotropic 

viscoelastic materials like the lamina and laminates tested in Chapter 2. An accurate 

constitutive law inversion for anisotropic viscoelastic materials, such as those used in thin 

shell composites, between relaxation and creep, is required to produce reliable structural 

models and to enable their practical utilization. Since most materials are tested for either 

relaxation stiffness or creep compliance properties, viscoelastic inversion is needed to obtain 

both sets of properties. The development of a Laplace numerical inversion method using a 

Dirichlet-Prony series for anisotropic viscoelastic materials is presented in this chapter. The 

Laplace numerical method is compared to Schapery’s least squares method and Gutierrez-

Lemini’s exact matrix inversion techniques found in the literature. The Laplace numerical 
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method best models the critical characteristics required for robust inversion of anisotropic 

viscoelastic materials. 

Chapter 4 presents the inverted measured compliance data recorded in Chapter 2 using 

the numerical Laplace method developed in Chapter 3 and records the relaxation stiffness 

results using Prony series. It is not possible to invert the creep flexure data recorded in 

Chapter 2 due to the inability to measure the axial/transverse properties. Instead, a 

viscoelastic model of classical laminate theory is used to predict the relaxation flexure 

properties of the laminae and laminates measured in Chapter 2. The relaxation stiffness 

properties for the unidirectional and plain weave laminae are used as inputs into a 

viscoelastic version of the classical laminate theory. Ply orientation and ply thickness 

consistent with the measured samples are also used as inputs. The resulting relaxation flexure 

properties are presented in this chapter and recorded using Prony series. The results are 

compared to the measured creep flexure data by inverting the relaxation flexure properties 

using the numerical Laplace inversion method. The relaxation compliance properties from 

direct inversion and the relaxation flexure properties predicted from viscoelastic classical 

laminate theory produce properties that mimic the expected behavior as exemplified by the 

measured creep data. The results presented in this chapter demonstrate the viability of the 

numerically solved Laplace inversion method in combination with a viscoelastic version of 

classical laminate theory for obtaining relaxation and creep data required to predict the 

viscoelastic behavior of structures composed of viscoelastic materials. 

Chapter 5 develops a means for modeling the anisotropic viscoelastic behavior of STEMs 

through the use of hereditary integrals and classical laminate theory. The model predicts the 

bending curvature and moment histories of STEMs stowed in a state of biaxial bending for 
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varying duration and then deployed. Test data is not available to validate the model. 

However, confidence in the model's prediction of viscoelastic composite STEMs in biaxial 

bending is established by comparing the results from the model for a one-dimensional beam 

in bending to solutions derived based on hereditary expressions found in the literature. The 

model is also used to evaluate composite STEMs composed of the 3-ply laminate [45o PW/0o 

Uni/45o PW] and 4-ply laminate [0o Uni /45o PW/45o PW/0o Uni] with creep properties from 

measured data recorded in Chapter 2 and relaxation properties predicted using the inversion 

method discussed in Chapter 3. The bending moment and curvature histories behave as 

expected for the modeled stowed configuration, stowed duration, and deployed 

configuration. The model can help in the design development of composite STEMs for use in 

deployable structures. 

Chapter 6 provides some concluding remarks as an assessment of the research discussed 

in Chapters 2 through Chapter 5.   
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Chapter 2  
 
Viscoelastic Response of Composites in 
Tension and Flexure 

 

2.1 Introduction: Anisotropic Viscoelasticity of Composites 

It is common for aerospace design applications to rely on experimental data for a 

deployable structure to anticipate the reliability of composite design deployments [22]. This 

approach, while valid, is costly and fails to account for the root cause of viscoelasticity, 

which is necessary for the development of accurate and reliable predictive models. A review 

of the literature shows the primary research approach is to experimentally measure the 

viscoelasticity of unidirectional laminae under tensile loading conditions [12], [23]–[26]. 

While lamina properties of a specific material system are useful, these tests fail to provide 

insight into the effects elastic fibers have on a resin system resulting in anisotropic 

viscoelastic laminae. Flexure tests on both unidirectional and plain weave laminae are found 

in the literature [27]–[29]. However, an understanding of how various loading conditions 

affect the viscoelastic properties of laminae by comparing the response in bending and 

tension has yet to be published. Furthermore, little has been explored in the realm of more 

sophisticated composites and how laminate layup and stacking sequence affect the 
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viscoelastic properties of composites. As a result, there is an incomplete picture in the 

literature on this subject. Pellegrino and Kwok [30] have done the most work on creating a 

comprehensive picture of viscoelasticity in composites. They have explored the root cause of 

viscoelasticity by measuring the properties of the resin system and developing a lamina 

prediction method through the use of FEA microfiber modeling in Abaqus. Their research 

has focused on a plain weave lamina in bending [20]. However, their research does not 

characterize the effects elastic fibers have on the viscoelastic resin system at the lamina and 

laminate level. Instead, they use measured properties of a specific composite system for 

structural applications, e.g., a plain weave lamina. This chapter aims to characterize the 

viscoelastic behavior of composites by observing the various viscoelastic responses of a resin 

system at the neat resin, lamina, and laminate level under both tensile and four-point bend 

loading conditions in order to produce a generalized theory applicable to all continuous fiber 

lamina/laminate systems. 

2.2 Background 

The variation in viscoelastic behavior among laminae and laminate materials of various 

stiffnesses can best be assessed using the normalized form of the data. The anisotropic 

relaxation and creep properties of a composite presented in equations (1.3.1a) and (1.3.1b) 

are normalized by their respective material glassy property (% and [%. 

I(3)
I3

= 	1 − ∑ 	f
I%

I3
\1 − >58

%3]g!
"7#   (2.2.1a) 

L(3)
L3

= 	1 + ∑ 	f
L%

L3
\1 − >59

%3]g!
"7#   (2.2.1b) 

The lamina and laminate relaxation and creep equations (1.3.8a) through (1.3.9d) are 

presented in normalized form in the appendix (equation (A.1a) through (A.2d)). The 
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normalized relaxation modulus defining the viscoelastic response is 1 at t = 0, and 0 if full 

relaxation is possible before fracture occurs as # → ∞. In the case of a heavily cross-linked 

polymer, e.g., a thermoset, the material will relax to an equilibrium state (a non-zero 

normalized value for the relaxation modulus less than one) as # → ∞. The normalized creep, 

on the other hand, increases in value from unity until the material fractures or, in the case of a 

thermoset polymer, reaches some equilibrium state.  

While the normalized forms of relaxation and creep are useful in comparing viscoelastic 

materials with various stiffnesses, a means of studying the effects of fiber layup and laminate 

orientation on the transient response is also needed. For this purpose, Equations 2.2.1a and 

2.2.1b can be written in the following form. 

	
I(3)
I3

= 1 − V ∗ (i(#)  (2.2.2a) 

L(3)
L3

= 1 − U ∗ [j(#)  (2.2.2b) 

(i(#) and [j(#) are the time-dependent (transient) portions of equations (2.2.2a) and (2.2.2b), 

which will be referred to in this dissertation as the transient proportional response function.  

(i(#) = ∑ k
I%

∑ I%4
%5$

(1 − >58
%3)l!

"7#   (2.2.3a) 

[j(#) = ∑ k
L%

∑ L%4
%5$

(1 − >59
%3)l!

"7#   (2.2.3b) 

The transient relaxation modulus and creep compliance coefficients are normalized by the 

sum of all the series coefficients, which represents the extent the modulus and compliance 

change over the lifetime of an applied material load. The transient proportional response 

function ranges from zero (no transient response) to one (maximum transient response). This 

function is used to evaluate the neat resin’s influence on the transient behavior of different 

laminae and laminates, as presented in the appendix. The extent that the modulus and 
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compliance change over the lifetime of an applied material load is also equivalent to the 

difference between the glassy and the equilibrium response of a material, (% −(* for 

relaxation and [% − [* for creep. Dividing (% −(* by (% yields V in equation (2.2.2a), 

which will be referred to as the degree of relaxation. Dividing [* − [% by [% yields U in 

equation (2.2.2b), which will be referred to as the degree of creep. 

V = \
I35I6

I3
]  (2.2.4a) 

U = \
L65L3

L3
]  (2.2.4b) 

These expressions are useful for understanding the influence continuous fibers and their 

orientation have on the viscoelastic nature of laminae and laminates. The degree of relaxation 

can have values from -1 for a material that completely relaxes to a value greater than zero for 

a material that stiffens. The degree of creep can have values greater than or equal to zero. 

When the degree of relaxation or creep is zero, the material is elastic. 

Hereditary integrals are used to define the viscoelastic stress and strain histories of a 

material [31]. The elastic constitutive expressions representing the stress and strain of 

laminae and laminates defined in equations (1.2.2) and (1.2.3), and equations (1.2.10a) 

through (1.2.11b) are expressed below for viscoelasticity using hereditary integrals. 

G"(#) = ∫ /"-(# − H)
H
HN
I-(H)3H

3
O#   (2.2.5) 

I"(#) = ∫ 2"-(# − H)
H
HN
G-(H)3H

3
O#   (2.2.6) 

Q"(#) = ∫ T"-(# − H)
H
HN
I-
((H)3H

3
O# + ∫ U"-(# − H)

H
HN
9-(H)3H

3
O#   (2.2.7a) 

("(#) = ∫ U"-(# − H)
H
HN
I-
((H)3H

3
O# + ∫ 0"-(# − H)

H
HN
9-(H)3H

3
O#   (2.2.7b) 

I"
((#) = ∫ E"-(# − H)

H
HN
Q-(H)3H

3
O# + ∫ V"-(# − H)

H
HN
(-(H)3H

3
O#   (2.2.8a) 
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9"(#) = ∫ ?"-(# − H)
H
HN
Q-(H)3H

3
O# + ∫ 3"-(# − H)

H
HN
(-(H)3H

3
O#   (2.2.8b) 

The viscoelastic form of the viscoelastic constitutive equations can be rewritten for more 

specific loading conditions. The lamina and laminate properties measured in this chapter are 

obtained through a classic creep test in which a stress is quickly imposed at t = 0, thereafter 

held constant, and the corresponding strain response is measured over time. Figure 2.2.1 

depicts the general stress input and response of a creep test. The Heaviside step function is 

used to define the step response of the applied stress.  

m(#) = n
0, # < 0
1, # > 0

  (2.2.9) 

This assumption is valid for viscoelastic material systems with sufficiently fast ramped 

deformations, preventing viscoelasticity from occurring during loading. The graph on the left 

of Figure 2.2.1 depicts the applied stress. 

G(#) = m(#)G- = o
		0, # < 0
G- , # > 0   (2.2.10) 

Equations (2.2.10) can be input into the reduced lamina strain equation (2.2.6). The 

hereditary integration of a Heaviside step response is well defined in the literature. The 

equation for the viscoelastic creep response of a lamina due to the applied stress reduces to a 

simple expression.  

I"(#) = 2"-(#)m(#)G-  (2.2.11) 

The graph on the right of Figure 2.2.1 depicts the creep response of the applied stress. 
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Figure 2.2.1: The graph on the left depicts a constant stress applied at " = 0. The graph on the right depicts the 
creep response of a material due to the applied stress. As " → ∞ the material reaches equilibrium. 

The above steps can be applied to the laminate equations (2.2.8a) and (2.2.8b). The 

rapidly applied stress and bending moments that are thereafter held constant are represented 

using the Heaviside step function for axial and flexure composite creep tests. 

Q"(#) = m(#)Q- = o
		0, # < 0
Q- , # > 0  (2.2.12) 

("(#) = m(#)(- = o
		0, # < 0
(- , # > 0  (2.2.13) 

The composite creep strain response to the applied stress and moment is mathematically 

defined by inserting equation (2.2.12) and (2.2.13) into equation (2.2.8a).  

I"
((#) = E"-(#)m(#)Q- + V"-(#)m(#)(-  (2.2.14) 

The composite creep curvature response to the applied stress and moment is mathematically 

defined by inserting equations (2.2.12) and (2.2.13) into equation (2.2.8b). 

9"(#) = ?"-(#)m(#)Q- + 3"-(#)m(#)(-  (2.2.15) 
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2.3 Test Method 

Creep tests are performed on a series of sample laminae and laminates composed of the 

same resin and fiber system. Both tensile and four-point bend tests are used to obtain the 

anisotropic compliance and bending stiffness of the samples. Creep tests are favored over 

relaxation tests due to the complex loading conditions required by relaxation tests to obtain 

the necessary anisotropic viscoelastic properties. The lamina and laminate test samples are 

comprised of IM7 carbon fibers and a proprietary epoxy resin system similar to 977-3. 

Cuboidal samples, of planform 152.4 mm x 25.4 mm of neat resin, 24 ply unidirectionally 

reinforced laminate (Figure 2.3.1), 12 ply plain weave (PW) laminate (Figure 2.3.2), 3-ply 

laminate [45PW/0/45PW] (Figure 2.3.3), and 4-Ply laminate [0/45PW/45PW/0] (Figure 

2.3.4) are tested. The thickness of the resin specimen is 2.250 mm, while that of the 

unidirectionally reinforced laminate specimen consisting of 24 plies is 2.701 mm. The 

volume fraction of fibers in this specimen is 52%. The thickness of the specimen consisting 

of a 12 ply, plain weave laminate is 2.17 mm, while the volume fraction of fibers within it is 

54%. In the designation [45PW/0/45PW], the 3-ply laminate consists of a central, 

unidirectionally reinforced lamina with fibers parallel to the x-axis sandwiched between two 

plain weave laminae with fibers at 45o to those in the central lamina. The thickness of the 3-

ply laminate is 0.55 mm, and it is comprised of a unidirectional lamina ~0.115 mm thick and 

two plain weave lamina ~ 0.218 mm thick. The volume fraction of fibers in the 

unidirectionally reinforced lamina is 52% and in the plain weave lamina is 54%. In the 

designation [0/45PW/45PW/0], the 4-ply laminate consists of two outer, unidirectionally 

reinforced laminae with fibers identically aligned parallel to the x-axis, while the two inner 

laminae are plain weaves with their fibers at 45o to those in the unidirectionally reinforced 
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laminae. The 4-ply laminate thickness is 0.65 mm, consisting of two unidirectional laminae 

each ~0.115 mm and two plain weave lamina each ~0.210 mm. The volume fraction of fibers 

in the unidirectionally reinforced lamina is 52% and in the plain weave laminae it is 54%.  

All laminates being tested are symmetric and balanced due to the layup and stacking 

sequence of the laminae. The plain weave lamina is also intrinsically balanced and symmetric 

with an even number of fibers along both the positive and negative 45o axis that are an equal 

distance from the reference plane or mid-plane of the laminate. Due to their symmetry, the 

in-plane/flexure coupling laminate moduli, U"-, relating in-plane loads to curvatures and 

moments to in-plane strains, are zero. Also, in-plane shear/flexure coupling laminate moduli, 

0&2 and 0'2, and in-plane shear/axial coupling laminate moduli T&2 and T'2, are zero. 

 
Figure 2.3.1: Unidirectional lamina loading configurations 

 

Axial Tension Axial Bending

Unidirectional Laminate

Transverse Tension Transverse Bending

0 o 0 o 90 o 90 o



 

29 

 

 
Figure 2.3.2: Plain weave laminate loading configurations. 

 

 
Figure 2.3.3: 3-Ply Laminate loading configurations. 

Axial Tension Axial Bending

Plain Weave Laminate

45 o PW 45 o PW

Axial Tension Axial Bending

3-Ply Laminate

Transverse Tension Transverse Bending

45 o PW 45 o PW0 o 45 o PW 45 o PW0 o 45 o PW
45 o PW90 o 45 o PW

45 o PW90 o
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Figure 2.3.4: 4-Ply laminate loading configurations. 

An Instron machine is used to apply a constant load for the tensile creep test. A 4-point 

bend fixture loaded by dead weights is used for the flexure tests, also at constant load. In the 

tensile tests, each layup is tested as follows; (1) with the load applied parallel to the fibers of 

their unidirectionally reinforced laminae (0o case, laminate x-axis) and; (2) with the load 

applied orthogonal to the fibers of their unidirectionally reinforced laminae (90o case, 

laminate y-axis). The specimen consisting of 12 plain weave laminae had the load applied at 

45o to the fibers in the tensile tests and the axial bending strain was applied at 45o to the fiber 

directions for the flexure tests. The general applied stress function defined in equation 

(2.2.10) and (2.2.12) for lamina and laminate, respectively, can be rewritten for the two 

tensile creep test loading conditions. The x-axis lamina and laminate applied stress are 

presented below. Note that the in-plane/flexure coupling, V"-(#) and ?"-(#), are zero for the 

laminates studied. 

45 o PW 45 o PW0 o 0 o45 o PW 45 o PW0 o 0 o

Axial Tension Axial Bending

4-Ply Laminate

45 o PW 45 o PW90 o 90 o45 o PW 45 o PW90 o 90 o

Transverse Tension Transverse Bending
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G"(#) = o
G&m(#)
G' , G2 = 0  (2.3.1) 

Q"(#) = o
Q&m(#)
Q' , Q2 = 0              ("(#) = (& , (' , (2 = 0  (2.3.2) 

The lamina axial and transverse/axial creep compliance properties, 2&& and 2'&, respectively, 

can be calculated from the measured creep strain expressed in equation (2.2.11). 

2&&(#) =
P7(3)
Q7

  (2.3.3) 

2'&(#) =
P8(3)

Q7
  (2.3.4) 

The laminate axial and transverse/axial creep compliance properties, E&& and E'&, 

respectively, can be calculated from the measured creep strain expressed in equation (2.2.14). 

E&&(#) =
P7'(3)
R7

  (2.3.5) 

E'&(#) =
P8'(3)

R7
  (2.3.6) 

The lamina transverse/axial and transverse creep compliance properties, 2&' and 2'', 

respectively, can be calculated from the measured creep strain due to an applied transverse 

stress, G'. 

2&'(#) =
P7(3)
Q8

  (2.3.7) 

2''(#) =
P8(3)

Q8
  (2.3.8) 

Similarly, the laminate transverse/axial and transverse creep compliance properties, E&' and 

E'', respectively, can be calculated from the measured creep strain due to an applied stress, 

Q'. 

E&'(#) =
P7'(3)
R8

  (2.3.9) 
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E''(#) =
P8'(3)

R8
  (2.3.10) 

In the flexure tests, each layup is tested as follows; (1) with the axial bending strains 

applied parallel to the fibers of their unidirectional reinforced laminae (0o case, bending 

about the laminate y-axis) and; (2) with the axial bending strains applied orthogonal to the 

fibers of their unidirectional reinforced laminae (90o case, bending about the laminate x-

axis). Similar to the axial loaded condition, the general applied bending moment function 

defined in equation (2.2.13) for a laminate can be rewritten for the two flexure conditions. 

The x-axis applied moment is defined below. 

("(#) = o
(&m(#)

(' , (2 = 0              Q"(#) = Q& , Q' , Q2 = 0  (2.3.11) 

The lamina and laminate axial creep flexure compliance property, 3&&, can be calculated 

from the measured creep curvature expressed in equation (2.2.15). 

3&&(#) =
S7(3)
I7

  (2.3.12) 

The lamina and laminate transverse creep flexure compliance property, 3'', can be 

calculated from the measured creep curvature due to an applied transverse moment, ('. 

3''(#) =
S8(3)

I8
  (2.3.13) 

For the tensile tests, each specimen has two single-axis strain gauges, each a quarter inch 

in length, adhered to the mid-span section of the composite sample in both the transverse and 

axial directions. A Wheatstone bridge is used to increase the gain on the strain gauge signal 

as well as balance the strain gauges for each test temperature. The gauges are then used to 

measure the axial and transverse strains in the specimen throughout the test. The through-

thickness strain is not measured. For the flexure tests, a laser extensometer is used to measure 

the midspan deflection. The anticlastic curvature, if any, is not measured. 
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A clamshell thermal chamber encloses the sample for both test configurations (Figure 

2.3.5). A window in the front allows for visual inspection of the test sample as well as a 

means for the four-point bend test laser extensometer measurements. Calibration of the laser 

through the glass ensures that there is no noticeable refraction affecting the measurements. 

K-type thermo-couples are used to measure the surface temperature of the sample as well as 

the internal and external chamber temperature. A thermal controller maintains the sample 

surface temperature to +/- 1oC. Each sample is subjected to a random order of four 

temperature conditions, 25oC, 40oC, 60oC, and 80oC. For the tensile tests, the temperature of 

the chamber is allowed to equilibrate (~30 min soak time) before the strain gauges are 

balanced, and the tensile creep tests are carried out. The same temperature profile is applied 

for the four-point bend tests before the datum for the laser extensometer is established, and 

the flexural creep tests are carried out. The load in each test is set such that the largest 

principal glassy strain is under 0.5%. Creep can occur during load ramp-up and is detectable 

if the resulting measured strain during ramp-up is a non-linear function of time. A fast ramp-

up rate for the load is used to prevent this from occurring. An elapsed time of 60 sec. or less 

for the ramp-up of the load is found to be suitable for avoiding creep during ramp-up at all 

temperatures for all specimen types. The specimens are allowed to creep for roughly ten 

minutes. The material is allowed to then fully recover at the test temperature before a new 

temperature condition is set. The above procedure is repeated for all four test temperatures.  
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Figure 2.3.5: Four-point bend test setup consisting of a thermal chamber, heater coil, fan, thermal data 
recorder, and thermal controller. Clamshell thermal chamber is supported around a four-point bend test 
fixture. 

 

2.4 Results 

The axial creep compliance properties (equation (2.3.3)) of a neat resin sample measured 

from axial tensile creep tests (applied stress defined by equation (2.3.1)) at various 

temperatures are plotted in Figure 2.4.1 in normalized form (equation (2.2.1b)). A series of 

four creep tests at constant stress, but different constant temperatures are shifted such that a 

master curve is formed with the reference temperature equaling that for the first creep test in 

the curve. The creep compliance master curve is normalized by dividing all the master curve 

data by the compliance for the glassy response determined from the initial loading of the 

specimen. A logarithmic (base 10) time axis is used to better view the test data, which spans 

several orders of magnitude. A MATLAB [32] fitting algorithm uses time-temperature 

superposition to align the creep compliance data from the four different constant temperature 

tests into a master curve by shifting the data sets along the time axis. As discussed in Chapter 

1, section 3, an Arrhenius law (equation (1.3.5)) [19] is used to mathematically define the 

time-temperature superposition behavior of the neat resin master curve. The viscoelastic 
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activation energy and reference temperature of the master curve is obtained from linearly 

fitting the logarithm (base 10) of the shift coefficients versus the inverse of the test 

temperatures graphed in Figure 2.4.2. The Prony series (equation (1.3.7b)) fit to the master 

curve is depicted by the dashed black line.  

 
Figure 2.4.1: The neat resin creep compliance test data conducted at four different constant temperatures are 
shifted on the time axis to create a creep compliance master curve. Creep compliance is normalized by the 
instantaneous (i.e., glassy) compliance of the initial creep test. A Prony series is fit to the data representing the 
master curve of the neat resin epoxy. 

 
Figure 2.4.2: The log10 of the shifted time coefficient obtained when generating the neat resin creep master 
curve from the compliance data measured at four different constant temperature tests are plotted verse the 
inverse of the corresponding test temperatures. A linear fit depicting the Arrhenius law (equation (1.3.5)) is 
used to obtain the viscoelastic activation energy. 
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The same steps describing the formation of the neat resin master curve are applied to the 

measured unidirectional, plain weave, 3-ply, and 4-ply laminate material properties in order 

to generate their respective master curves. The measured unidirectional, plain weave, 3-ply, 

and 4-ply laminate master curve properties are presented in Figure A.9 through Figure A.16 

in the appendix. Each laminate sample, except that of the plain weave, requires a series of 

three graphs to depict the tensile creep normalized master curve axial (equation (2.3.3)), 

transverse/axial (equation (2.3.4)), and transverse (equation (2.3.8)) properties. The PW only 

requires two graphs because the axial and transverse properties are equivalent due to the 

laminate’s symmetry. Two graphs for each laminate sample are needed to depict the axial 

(equation (2.3.12)), and transverse (equation (2.3.13)) creep flexure master curves in 

normalized form. The Prony coefficients of the compliance master curve fits are presented in 

Table A.11 through Table A.15 in the appendix along with the Arrhenius viscoelastic 

activation energy and the master curve reference temperature. The measured unidirectional 

laminate axial creep compliance and axial creep flexure master curves reveal that these 

laminate properties are elastic, not viscoelastic. As a result, the raw data in Figure A.9 and 

Figure A.10 are presented without a Prony series fit or an Arrhenius viscoelastic activation 

energy. The axial creep compliance and axial creep flexure properties of the 4-ply laminate 

presented in Figure A.15 and Figure A.16 can also be treated elastically due to the small 

degree of creep measured. Further evidence for treating the 4-ply laminate as an elastic 

material in the axial direction is the time-temperature superposition shift of its flexure creep 

compliance master curve test data (Figure A.16) not aligning sequentially. The lowest 

constant temperature test, at 24.0oC, should be the initial data set when forming the axial 
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flexure master curve. Instead, the 39.7oC and 60.1oC test data align more favorably, 

superseding the 24.0oC data set.  

A viscoelastic material is defined as linear viscoelastic when the stress/strain response is 

a linear superposition of the effects of multiple individual loads. Figure 2.4.3 depicts a series 

of creep tests with different constant stresses. The linear stress and strain relationship from 

the creep tests at a given moment in time are plotted in the bottom graph. The same method 

depicted in Figure 2.4.3 is performed on all tensile creep samples to check the linearity of the 

response. Similar to elastic materials, the stress/strain behavior is dependent on the applied 

load and temperature. However, the stress/strain response tends to become nonlinear as the 

applied load increases and as the test temperature approaches the glass transition temperature 

[16], [33]. To avoid the non-linear behavior near the glass transition temperature, a maximum 

temperature (~80oC) is used for all linear viscoelastic validation tests. Figure 2.4.4 plots the 

stress/strain results for neat resin samples at three different constant stresses. The stress/strain 

results at 1 sec., 10 sec., 100 sec., and 1000 sec. are identified in the graph.  Linear fits 

indicate that the neat resin samples in the applied stress and temperature range studied exhibit 

linear viscoelasticity. Linear viscoelastic stress/strain tests in both bending and tension were 

conducted on all of the material samples. Results indicate that all materials in the 

experimental stress/strain and temperature ranges behave linearly viscoelastic.   
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Figure 2.4.3: Linear viscoelasticity is determined by preforming a series of creep test at vary increments of 
applied constant stress. The top graph depicts three varying constant applied stresses; middle graphs depict the 
creep strain results due to the applied stresses; bottom graph depicts the stress/strain results at three different 
elapsed time intervals. The linearity of the stress/strain results at varying time intervals indicates that the 
material is linear viscoelastic. [16] 
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Figure 2.4.4: The creep stress/strain results for neat resin tensile samples due to three different constant 
applied stresses are plotted. Tests are performed at the maximum constant test temperature (~80oC). The 
stress/strain results at 1 sec., 10 sec., 100 sec., and 1000 sec. are identified in the graph. Linear fits indicate 
that the neat resin samples, in the applied stress and temperature range studied, exhibit linear viscoelasticity. 

 

2.5 Discussion 

The viscoelastic response of neat resin, unidirectional, 45o plain weave, 3-Ply 

[45PW/0/45PW] and 4-Ply [0/45PW/45PW/0] samples tested in this dissertation under both 

tension and bending loading conditions provide deeper insight into the viscoelastic 

characteristics of composites than if only one test method or one type of laminate had been 

measured. The effects of stacking sequence and orientation of laminae on the viscoelastic 

properties of composites are more accurately quantified as a result of using the two loading 

conditions and a variety of laminates. The experimental results for each laminate type from 

the tests at the four constant levels of temperature spanned a time duration that was sufficient 
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to provide a continuous material master curve using time-temperature superposition. The 

master curve properties, however, are incomplete since they do not completely measure a 

sample’s glassy (# = 0) to equilibrium (# → ∞) properties. Even at the maximum elevated 

temperature (~80oC), the experimental time durations are not sufficient to determine the 

equilibrium properties. 

A test temperature greater than 80oC was attempted for the neat resin sample, but this 

resulted in noticeable discoloration in the sample indicating damage to the polymer chains. 

Furthermore, the properties of a sample approaching the glass transition temperature are 

known to be non-linear. The experimental measurements of each sample in the selected 

thermal range, 25oC to 80oC, are within the linear viscoelastic regime, exemplified in the neat 

resin results presented in Figure 2.4.4. Time did not permit experiments to be conducted that 

captured the material equilibrium properties of the samples tested. As a result, a comparison 

of the equilibrium properties of each laminate type to assess the effects that elastic fiber 

stacking sequence and orientation have on the viscoelastic properties of composites are not 

quantified in this chapter. However, the transient viscoelastic properties of the tested material 

can be compared and analyzed without the equilibrium properties being known. The transient 

properties that are quantified in this chapter are arguably the most important characteristic to 

understand. Most design applications rarely involve materials reaching equilibrium even at 

increased temperatures due to the long transient times (years) characteristic of the heavily 

crosslinked polymers. The effective transient time of the materials tested in our experiments 

spanned a time frame of at least three years, exceeding the typical storage cycle of most 

deployables. 
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The measured data discussed in the results section (including Figure A.9 through Figure 

A.16 in the appendix) records the tensile and flexure tests used to observe the viscoelastic 

behavior of various composites. A comparison of the data is best achieved by comparing the 

neat resin, unidirectional, plain weave, 3-ply, and 4-ply laminates equivalent master curve 

properties (e.g., all laminates’ axial creep compliance properties) on the same graph in 

normalized Prony series form. The laminate master curve properties, axial creep compliance 

(equation (2.3.3)), axial/transverse creep compliance (equation (2.3.4)), transverse creep 

compliance (equation (2.3.8)), axial creep flexure (equation (2.3.12)), and transverse creep 

flexure (equation (2.3.13)), are presented for all measured laminate samples in Figure 2.5.1 

through Figure 2.5.5, respectively. As noted in the results section, the axial creep 

compliance, axial/transverse creep compliance, and axial creep flexure properties of the 

unidirectional laminate result in an elastic response due to the presences of the purely elastic 

carbon fibers aligned in the axial direction (0o). Similarly, the 4-ply laminate axial creep 

compliance and axial creep flexure properties are elastic due to the two axially aligned 

unidirectional surface ply laminae. A straight horizontal line equal to unity represents the 

elastic behavior of the unidirectional laminate in Figure 2.5.1, Figure 2.5.2, and Figure 2.5.4. 

The normalized Prony series master curves presented in Figure 2.5.1 to Figure 2.5.5 are 

shifted to a common temperature of 25oC using the respective laminate material Arrhenius 

law. Additional thermal corrective shifts to the time axis using the respective laminate master 

curve Arrhenius laws are required to best align the unidirectional transverse creep 

compliance and flexure, 3-ply axial, axial/transverse, and transverse creep compliance, and 

4-ply axial/transverse and transverse creep compliance, as well as the axial flexural creep 
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properties. A thermal shift of +50C, -20C, +50C, +50C, +80C, +100C, +100C, and -50C are 

applied to the respective laminate master curves. 

 
Figure 2.5.1: The normalized Prony series master curve fits to the measured axial creep compliance data for 
the neat resin, unidirectional, plain weave, 3-ply and 4-ply laminates are complied in a single graph. 

 
Figure 2.5.2: The normalized Prony series master curve fits to the measured axial/transverse creep compliance 
data for the neat resin, unidirectional, plain weave, 3-ply and 4-ply laminates are complied in a single graph. 
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Figure 2.5.3: The normalized Prony series master curve fits to the measured transverse creep compliance data 
for the neat resin, unidirectional, plain weave, 3-ply and 4-ply laminates are complied in a single graph. 

 
Figure 2.5.4: The normalized Prony series master curve fits to the measured axial creep flexure data for the 
neat resin, unidirectional, plain weave, 3-ply and 4-ply laminates are complied in a single graph. 
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Figure 2.5.5: The normalized Prony series master curve fits to the measured transverse creep flexure data for 
the neat resin, unidirectional, plain weave, 3-ply and 4-ply laminates are compiled in a single graph. 

In addition to the normalized Prony series representation of the data, the time-dependent 

transient contribution to viscoelasticity represented by the transient proportional response 

function defined in equation (2.2.3b) for creep can give further insight to the effects fiber 

integration, laminate stacking sequence, and laminate orientation have on the viscoelastic 

response of composites. Similar to the normalized Prony series master curves presented 

above, the transient proportional response functions of the neat resin, unidirectional, plain 

weave, 3-ply, and 4-ply laminates for a particular material property are compared on the 

same graph. Figure 2.5.6 to Figure 2.5.10 present the respective axial creep compliance, 

axial/transverse creep compliance, transverse creep compliance, axial creep flexure, and 

transverse creep flexure for all tested laminates. The transient proportional response ranges 

from zero, i.e., no viscoelastic change at # = 0 (glassy response), to one, i.e., maximum 

viscoelastic change at # → ∞ (equilibrium response). In the case of the materials measured in 

this chapter, the tests were unable to access the equilibrium properties of the laminate 

samples. The transient proportional response represented by equation (2.2.3b) can be 
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redefined for data sets that do not reach equilibrium. [* 	is replaced by [3642 in which #*6H is 

the time interval of the last measured data point of a viscoelastic master curve.  

[j(#) = ∑ f
L%

L96425L%
\1 − >59

%3]g6
"7#   (2.5.1) 

The measured master curve properties all have varying test durations; as a result, a 

comparison of the viscous contribution of various laminates must be evaluated based on the 

master curve data set with the shortest time duration, # = 10T*>?. 

 
Figure 2.5.6: The transient proportional response of the measured axial creep compliance data for the neat 
resin, unidirectional, plain weave, 3-ply and 4-ply laminates are recorded in a single graph. 
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Figure 2.5.7: The transient proportional response of the measured axial/transverse creep compliance data for 
the neat resin, unidirectional, plain weave, 3-ply and 4-ply laminates are recorded in a single graph. 

 

 
Figure 2.5.8: The transient proportional response of the measured transverse creep compliance data for the 
neat resin, unidirectional, plain weave, 3-ply and 4-ply laminates are recorded in a single graph. 

 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08A
xi

al
/T

ra
ns

ve
rs

e 
Cr

ee
p 

Co
m

pl
ia

nc
e:

Tr
an

sie
nt

 P
ro

po
rti

on
al

 R
es

po
ns

e

Time(sec)

Transient Proportional Response:
Axial/Transverse Creep Compliance

Neat Resin Unidirection Sxy Compliance
Plain Weave Sxy Compliance 3-Ply Sxy Compliance
4-Ply Sxy Compliance

10-1 100 101 102 103 104 105 106 107 108

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

Tr
an

sv
er

se
 C

re
ep

 C
om

pl
ia

nc
e:

Tr
an

sie
nt

 P
ro

po
rti

on
al

 R
es

po
ns

e

Time (sec)

Transient Proportional Response:
Transverse Creep Compliance

Neat Resin Unidirection Syy Compliance
Plain Weave Syy Compliance 3-Ply Syy Compliance
4-Ply Syy Compliance

10-1 100 101 102 103 104 105 106 107 108



 

47 

 

 
Figure 2.5.9: The transient proportional response of the measured axial creep flexure data for the neat resin, 
unidirectional, plain weave, 3-ply and 4-ply laminates are recorded in a single graph. 

 
Figure 2.5.10: The transient proportional response of the measured transverse creep flexure data for the neat 
resin, unidirectional, plain weave, 3-ply and 4-ply laminates are recorded in a single graph. 
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unidirectional and plain weave laminae or by variation in stacking sequence and orientation 

of such laminates in the case of the 3-ply and 4-ply laminates.  

2.5.1 Unidirectional Laminae 

In the case of the unidirectional lamina, the introduction of continuous elastic fibers 

results in axial compliance and flexure properties that are purely elastic (Figure 2.5.1 and 

Figure 2.5.4, respectively). The transverse tensile creep compliance (Figure 2.5.3) and creep 

flexure (Figure 2.5.5) properties are matrix dominated (viscoelastic) due to the absence of 

fibers oriented in the transverse direction. More notably, however, the viscoelastic transverse 

properties presented in normalized form and transient proportional response form (Figure 

2.5.3 and Figure 2.5.8 for transverse creep compliance, respectively, and Figure 2.5.5 and 

Figure 2.5.10 for creep flexure, respectively) match that of the neat resin. The stiffness is 

greater in the transverse property than the neat resin due to the integration of the fibers. 

However, when compared using the transient proportional response over the span of 10T 

seconds, they are equivalent. The transverse/axial creep compliance, unlike the neat resin, is 

elastic due to the presence of the elastic fibers. The integration of elastic fibers in the neat 

resin that form the unidirectional lamina result in a composite with elastic properties in the 

direction of the fibers and viscoelastic properties in the matrix dominant directions that 

directly match that of the neat resin except with increased stiffness. 

2.5.2 Plain Weave Laminae 

The woven elastic continuous fiber tows of the plain weave laminae oriented 45o to the x-

axis do not prevent viscoelasticity. In fact, the measured plain weave lamina axial properties 

(tensile creep compliance and creep flexure) are more viscoelastic than the neat resin system 

as depicted in the normalized Prony series plot presented in Figure 2.5.1 and Figure 2.5.4, 
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respectively. The compliance and flexure properties from the two different loading systems, 

however, match favorably when compared using the normalized Prony series plots. The 

transient proportional response between flexure and creep are also similar, but the transient 

proportional response is greater than that of the neat resin. This is more noticeable when 

comparing the transient proportional response of the plain weave’s axial/transverse creep 

compliance to that of the neat resin (Figure 2.5.7). It is believed that the material’s transient 

proportional response is great than the neat resin properties due to the fiber weave elongating 

over time. Traditionally, it has been suspected that the fibers in the plain weave lamina would 

mitigate the transient response of the matrix to some degree, regardless of fiber orientation. 

On the contrary, the test data indicate that the laminate with plain weave laminae exhibits a 

more pronounced transient response. Publications indicate that the stress response behavior 

of plain weave laminae differs from that of unidirectional laminae due to the kinked tows of 

the plain weave [28], [34], [35]. Our results suggest that further testing of plain weave 

laminae in different orientations along with further stress analysis is required to better 

understand the effects of woven fibers on the transient response behavior of a plain weave 

laminate. 

2.5.3 3-ply Laminate 

The unidirectional lamina at the center of the 3-ply laminate does not mitigate creep in 

the tensile axial compliance property. This is surprising, considering that the measured 

unidirectional lamina presented in Figure 2.5.1 exhibits no viscoelasticity in the fiber 

direction. The axial bending stiffness, however, as expected, crept due to the majority of the 

bending stresses being applied to the viscoelastic 45o plain weave laminae on both surfaces 

of the 3-ply laminate. The clamping method used to hold the samples may account for the 
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transient proportional response in the axial direction as a result of shear loading in the 

viscoelastic 45o plain weave laminae on both surfaces of the composite. The plain weave 

laminae shear out-of-plane while the fiber direction of the unidirectional lamina in the center 

remains fixed. This is different than slipping in which the grips would lose their hold on the 

samples. Continuous clamping is monitored by observing the Instron machine’s displacement 

behavior, which indicates continuous viscoelastic evolution without sudden jumps (skips) 

that would occur when static frictional grip is lost. The load path of the axial tensile test is 

through the viscous plain weave ply, which may explain why the normalized axial tensile 

creep compliance and creep flexure are so similar. 

The transient proportional response of the transverse compliance and flexure properties 

presented in Figure 2.5.8 and Figure 2.5.10, respectively, are nearly equivalent and almost 

match the behavior of the neat resin. This is interesting since the majority of the laminate is 

comprised of the plain weave laminae, which were found to exhibit a degree of 

viscoelasticity greater than that of the resin system. The elastic fibers of the unidirectional 

lamina at the midplane of the 3-ply laminate in the axial direction may be preventing the 

plain weave laminae from elongating due to constrained Poisson’s interactions. As 

mentioned earlier, further investigation into the plain weave laminate behavior is required 

before a more robust conclusion can be drawn. The 3-ply laminate’s normalized 

axial/transverse compliance presented in Figure 2.5.2 exhibits less viscoelastic change than 

that of the neat resin, indicating the unidirectional lamina at the midplane of the 3-ply 

laminate does mitigate creep to some degree. 

While the normalized axial creep compliance and creep flexure curves (Figure 2.5.1 and 

Figure 2.5.4, respectively) differ from the normalized neat resin, the corresponding transient 
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proportional response (Figure 2.5.6 and Figure 2.5.9, respectively) match that of the neat 

resin. This indicates that the viscous contribution of the neat resin, the root of viscoelasticity 

in composites, is unchanged by the integration of elastic fibers. This behavior is also present 

in the transverse creep compliance and creep flexure properties, as well as the 

axial/transverse creep compliance. 

2.5.4 4-ply Laminate 

The orientation and stacking sequence of the 4-ply laminate prevent creep from occurring 

in the axial direction. For example, the plain weave lamina at the neutral axis of the 4-ply 

laminate experiences little to no stress in bending. On the other hand, the unidirectional 

laminae located at the surface of the laminate react to applied bending stresses. As a result, 

the axial flexure properties (Figure 2.5.4) are essentially elastic. Similarly, the tensile axial 

creep compliance (Figure 2.5.1) is also nearly elastic, with the majority of the applied stress 

carried by the much stiffer unidirectional plies. It was assumed that the 3-ply laminate would 

behave similarly, but as previously stated, the clamping method used to apply a constant load 

to the samples is believed to apply an out-of-plane shear load (matrix dominant load 

condition) to the plain weave surface plies. This may also indicate why the tensile axial creep 

compliance has a small degree of creep over the duration of the normalized compliance 

curve.  The transverse compliance and flexure properties of the 4-Ply laminate presented in 

Figure 2.5.3 and Figure 2.5.5, respectively, are nearly identical, with both properties 

exhibiting a degree of creep that is less than that of the neat resin. The slight difference 

between the results from the tensile and flexure loading conditions is a consequence of stress 

distribution throughout the laminate. In the case of the tensile test, which distributed the 

stress across each ply of the 4-ply laminate, the normalized compliance is slightly stiffer and 
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is believed to be a result of the fiber contribution from the two innermost 45o plain weave 

plies. The bending test, which primarily loads the viscoelastic unidirectional transverse 

laminae at the surface of the laminate, is affected less by the plain weave laminae due to the 

plies’ close proximity to the neutral axis. This behavior is contrary to the results of the plain 

weave test in which the laminate exhibits more viscoelasticity than the neat resin. As with the 

3-ply laminate, it appears the introduction of the unidirectional fibers resists the Poisson 

contraction of the laminate, which may contribute to a reduction in the creep compliance of 

the plain weave response in the 4-ply laminate. The axial/transverse creep compliance 

presented in Figure 2.5.2 in normalized Prony series form is viscoelastic. The unidirectional 

plies at the surface of the 4-Ply laminate do not behave like the tested unidirectional laminate 

in which the axial/transverse coupling compliance properties are elastic. This is believed to 

be the result of the axial properties having only a slight viscoelastic response. 

The creep master curves obtained by the experimental measurements of the neat resin, 

unidirectional, plain weave, 3-ply and 4-ply laminates in both tension and bending provide a 

means of quantifying the drivers of viscoelasticity in composites. By observing the transient 

proportional response of the test sample properties measured, it is clear that the source of 

viscoelasticity is the neat resin, and this response is unchanged by the integration, orientation, 

or stacking layup of elastic carbon fibers. The neat resin normalized compliance is mitigated 

in composites when plies with viscoelastic resistant properties in specific directions are 

oriented and stacked such that they resist creep in the direction of applied loads. Ideal 

laminate layups that reduce viscoelastic response can better be determined by understanding 

the effects of fiber placement, which does not always guarantee non-viscoelastic composites 

as exemplified in the 3-Ply and 4-Ply axial properties. The integration of the fibers and, 
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orientation and stacking sequence of the laminae affect the degree of creep and stiffness of 

the composite materials. However, the transient proportional response of the resin system 

comprising the matrix of the laminates is unaffected. It is shown that viscoelasticity of thin 

shell composites commonly used in aerospace hinge and deployable applications is a result 

of the resin system. Prediction methods built on the framework of resin driven creep can be 

validated and improved based on these findings.  

 

2.6 Conclusion 

Tensile and flexure creep tests performed on neat resin, unidirectional, plain weave, 3-

ply, and 4-ply laminate samples proved that fiber integration, stacking sequence, and 

orientation play a crucial role in the viscoelastic properties of laminates. Comparison of the 

two loading conditions not only validates the quality of the tests and confirm the absence of 

artifacts particular to a specific test method but, more importantly, show how load 

distribution affects the viscoelastic properties of laminates. The degree of creep is affected by 

the integration of fibers and the orientation and stacking sequence of plies with viscoelastic 

resistant properties. In general, the placement of viscoelastic resistant plies in the direction of 

loads reduces the composite’s viscoelastic response. In other words, as the degree of creep 

decreases, the stiffness increases. However, observation of the transient proportional 

response of the measured data reveals that the neat resin transient proportional response is 

unchanged in laminates regardless of fiber integration, laminate orientation, or stacking 

sequence. Based on these findings, viscoelastic laminate prediction methods can be 

established based on the neat resin properties alone.  
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Chapter 3  
 
Inversion of Anisotropic Viscoelastic 
Properties  

 

3.1 Introduction 

The mathematical analysis and prediction of the behavior of viscoelastic materials are 

dependent on accurate models of their relaxation modulus and creep compliance properties. 

Unlike elastic materials, where conversion from moduli to compliances and vice versa is a 

simple linear matrix inversion, interchange between such properties of a viscoelastic material 

due to time dependence requires direct measurements or special inversion methods. Direct 

experimental tests for both relaxation and creep properties are often difficult and time-

consuming. The ability to convert between these properties by mathematical inversion 

methods only requires the measurement of one set of viscoelastic properties.  

Almost all available inversion methods for viscoelasticity utilize the Laplace transform 

domain to convert time-dependent problems to equivalent elasticity techniques. This was first 

introduced by Schapery [36], [37] and has set the framework for most viscoelastic Laplace 

transform inversion methods. In his approach, the inverted viscoelastic properties, in the 

form of a Dirichlet-Prony series (equations 1.3.4a and 1.3.4b), are approximated through the 
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use of least-squares. Given the limitation of computational capacity in the 1960s, Schapery’s 

method was a system that aimed to make linear equations solvable by conventional 

mathematics. Several disadvantages, however, result from this outcome. 1) The unknown 

function’s Prony time constants (-" and .U) must be assumed empirically and are often set 

equal to those of the known function’s Prony time constants. The validity of such an 

assumption will be elaborated on later in this chapter. The predicted inverted Prony constants 

that should represent creep or relaxation curves can result in a function that does not satisfy 

energy principles, e.g., the relaxation Prony constants (" are not all positive or the creep 

Prony constants [U are not all negative. As a consequence, Schapery’s method may poorly 

represent viscoelastic materials. Gutierrez-Lemini [38] defines a better means for achieving 

the ideal approach for 1-D materials. His method, while approximate in the sense that 

measured data is required to be fitted with a Dirichlet-Prony series, is defined by him as 

being exact because it remains in the time domain, using the hereditary integral form of the 

viscoelastic stress and strain equation to invert the material properties. There is no need for 

the method to use approximate transformations or inverse transformations between the time 

domain and Laplace domain. Furthermore, this inversion process does not require the time-

dependent properties of the inverse function to be known and results in consistent, 

appropriate signs for all Prony constants (e.g., negative for creep and positive for relaxation). 

The complexity of inverting creep and relaxation is dramatically increased for anisotropic 

materials. The material’s directional properties may vary in the degree of viscoelasticity. In 

the case of a unidirectional carbon fiber lamina, matrix dominated directions such as shear 

and transverse properties will experience viscoelastic evolution while the fiber direction will 

remain elastic. Few inversion methods are found in the literature to model such materials and 



 

56 

 

they make assumptions in general that limit the application and accuracy of solutions. One 

method of handling 2- and 3-dimensional viscoelastic constitutive behavior is to treat it as 1-

dimensional by breaking it into the deviatoric and isotropic contributions [39], [40], an 

approach that proves less useful for anisotropic materials. Other approaches attempt to 

predict the time-dependent Poisson’s ratio [41], [42], so that anisotropic materials can be 

handled. Due to the high precision required to measure viscoelastic Poisson’s ratios, 

comparisons between predictions and experimental data often result in unacceptable error. 

The ideal method, however, forgoes predicting Poisson’s ratios and directly computes the 

inversion of the anisotropic creep compliance and relaxation moduli [43]–[45]. This chapter 

shows how the principles of Schapery’s Laplace inversion for 1-dimensional problems can be 

developed into a robust anisotropic viscoelastic (multidimensional) method that maintains 

consistency with fundamental energy principles and provides the means of solving for the 

unknown Prony time constant, (-" and .U). Furthermore, Gutierrez-Lemini’s [18] exact 

method while useful for 1-D materials and treatments is shown to be unusable as a means of 

inverting the multiaxial response of anisotropic viscoelastic materials. 

 

3.2 Background 

The Stieltjes convolution integral (3.2.3b), which describes the relationship between 

known creep and unknown relaxation properties, is derived below. Figure 3.2.1 shows the 

results of a creep test in which viscoelastic strain is measured as a result of an applied steady-

state, uniaxial stress, G(, (e.g., all other components of the array are zero) which is 

represented mathematically by equations (3.2.1) and (3.2.2b) respectively. 
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Figure 3.2.1: Left graph depicts a step response in applied stress. The right graph depicts the resulting creep 
response of a material to the constant stress depicted in the left graph. 

 

G,(#) = m(#)G,  

(3.2.1) 
G, = o

G(		pq<	_ = Z
0				pq<	_ ≠ Z

 

The applied stress (3.2.1) is input into the strain hereditary integral (2.2.6). The derivative of 

the Heaviside step function results in the Dirac delta function s(#).  

I!(#) = ∫ [!,(# − H)s(H)G,3H
3
O#   (3.2.2a) 

The creep compliance becomes a vertical array with column Z due to the uniaxial stress state. 

I!(#) = [!,(#)G, = [!V(#)G(  (3.2.2b) 

The creep strain due to an applied stress step function (3.2.2b) is then placed into stress 

hereditary integral (2.2.5) and set equal to stress input (3.2.1). 

m(#)G+ = ∫ (+!(# − H)
H
HN
[!V(#)G(3H

3
O#   (3.2.3a) 

The stress tensor is factored out and inverted to the left side of equation (3.2.3a), resulting in 

the Kronecker delta in which all values are zero except at the uniaxial stress state ` = Z. 

m(#)s+V = ∫ (+!(# − H)
H
HN
[!V(H)3H

3
O#   (3.2.3b) 

The above method is repeated to obtain the Stieltjes convolution integral relating 

unknown creep to known relaxation properties. Figure 3.2.2 depicts the applied strain and 
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relaxation stress response represented mathematically by equations (3.2.4) and (3.2.5), 

respectively. 

 
Figure 3.2.2: Left graph depicts a step response in applied strain. The right graph depicts the relaxation 
response of a material to the constant strain depicted in the left graph. 

 

I+(#) = m(#)I+  

(3.2.4) 
I+ = o

I(		pq<	` = Z
0				pq<	` ≠ Z

 

The applied strain (3.2.4) is input into the hereditary stress integral (2.2.5). 

G6(#) = ∫ (6+(# − H)s(H)I+3H
3
O#   (3.2.5a) 

The relaxation modulus becomes a vertical array with column Z due to the uniaxial strain 

state. 

G6(#) = (6+(#)I+ = (6V(#)I(  (3.2.5b) 

Inserting (3.2.5b) into strain hereditary integral (2.2.6) and setting it equal to equation (3.2.4) 

results in the following. 

m(#)I! = ∫ [!6(# − H)
H
HN
(6V(H)I(3H

3
O#   (3.2.6a) 

The strain tensor is factored out and inverted to the left side of equation (3.2.6a), resulting in 

the Kronecker delta in which all values are zero except at the uniaxial strain state ^ = Z. 

m(#)s!V = ∫ [!6(# − H)
H
HN
(6V(H)3H

3
O#   (3.2.6b) 



 

59 

 

The Laplace transform of equations (3.2.3b) and (3.2.6b), derived below, prove that 

either equation can be used for inverting between relaxation and creep regardless of which 

viscoelastic properties are known. Starting with the right side of equation (3.2.3b), the 

Laplace transform of the hereditary integral is expressed below.  

ℒ u∫ (+!(# − H)
H
HN
[!V(H)3H

3
O# v = ℒ[(+!(#)]	ℒ u

H
H3
[!V(#)v = *(y+!(*)[̅!V(*)  (3.2.7a) 

The Laplace transform of equation (3.2.6b) results in the same form as the Laplace transform 

of equation (3.2.3b), proving that both Stieltjes convolution integrals are independent of 

inversion direction. 

ℒ u∫ [!6(# − H)
H
HN
(6V(H)3H

3
O# v = ℒ[[!6(#)]	ℒ u

H
H3
(6V(#)v = *[!̅6(*)(y6V(*)  (3.2.7b) 

The Laplace inversion of a Heaviside step function acting at # = 0 is 
#
2
, where * is the 

frequency domain. The Laplace transforms of equations (3.2.3b) and (3.2.6b) produces the 

equation below. 

W":
2;
	= [!̅6(*)(y6V(*)  (3.2.8) 

The Laplace transforms of equations (2.2.5) and (2.2.6) 

Gz,(*) = *(y,!(*)I!̅(*)  (3.2.9) 

I!̅(*) = *[̅!,(*)Gz,(*)  (3.2.10) 

can also be used to derive equation (3.2.8) by insetting equation (3.2.9) into equation (3.2.10) 

and factoring like terms. 
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3.3 Methods 

3.3.1 Laplace Inversion—Schapery’s Technique 

Schapery’s least-squares Laplace inversion method uses the one-dimensional case of 

equation (3.2.8) to invert creep and relaxation. This chapter will show how Schapery’s 

method can be used for multidimensional materials. In the Laplace domain, the creep 

compliance and relaxation modulus can be linearly inverted. The exponential decay and 

growth of relaxation and creep, which is represented by Dirichlet-Prony series equations 

(1.3.4a) and (1.3.4b), make the transformation into the Laplace domain easy and accurate. 

(y+!(*) =
I<"
6

2
+ ∑

I<"
%

2X8<"
%

6
"7#   (3.3.1) 

[̅!,(*) =
L"+
6

2
− ∑

L"+
=

2X9"+
=

6
U7#   (3.3.2) 

Schapery’s approximate Laplace inversion method [43] takes p(#) to be the unknown 

viscoelastic response being sought with an assumed known behavior of either creep or 

relaxation depending on the direction of inversion. Dirichlet-Prony series (2.2.5) or (2.2.6) 

are used as an estimate function of the unknown viscoelastic response of the desired material. 

The total squared error between the approximate function, p(#), and known function, pC(#), 

can be minimized by changing the Prony constants of the unknown function, (+!
"  or [!,

U . 

>(p, pC) ≡ ∫ |p(#) − pC(#)}
$
3#

;
O   (3.3.3) 

The Laplace transform of the total squared error, assuming that both functions are 

represented by a Dirichlet-Prony series, results in the following expression. 

pC̅(*)|27N> = p̅(*)|27N>  (3.3.4) 
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* = 	 H- is equal to the Prony time constants of the unknown function, which are assumed 

equal to the known function’s Prony time constants (e.g., .+,
- = -+,

-  regardless of inverting 

from relaxation to creep or creep to relaxation). The -+,
-  and .+,

-  Prony time constants must 

be equal for all components of the relaxation modulus and creep compliance, e.g., -- = .- 

for all values of ` and _. The assumption that the Prony time constants are equal for both 

creep and relaxation limits the robustness and accuracy of the inversion method.   

The following forms of equation (3.2.8) can be used to invert relaxation to creep  

[!̅,(*) =
W<+

2;
|(y+!(*)}

5#
  (3.3.5a) 

and creep to relaxation. 

(y+!(*) =
W<+

2;
|[!̅,(*)}

5#
  (3.3.5b) 

The inversion from creep to relaxation (3.3.5b) will be used for the following inversion 

derivation. 

p̅(*)|279> = (y+!(*)|279> =
I<"
6

9>
+ ∑

I<"
=

9>X9=
6
U7#   (3.3.6) 

pC̅(*)|279> =
#
2;
|[+̅,(*)}

5#
|279> =

#

Y9>Z
; k

L<+
6

9>
− ∑

L<+
%

9>X9%
6
"7# l

5#
  (3.3.7) 

Equation (3.3.4) with p(̅*)|279> and pC̅(*)|279> expressed by (3.3.6) and (3.3.7), respectively, 

can be represented as a system of linear equations with unknown Prony constants (+,
U  and 

equilibrium constants (+,
*  for every component of the relaxation modulus ` and _. 

�-UT+,
U = U+,

- − �+,
*   (3.3.8) 

�-U is a symmetric Y	4	Y	matrix where Y is equal to the number of Prony series and is the 

same for all components of the relaxation modulus. 



 

62 

 

�-U =
#

9>X9=
             M = 1, Y and < = 1, Y;  (3.3.8a) 

T+,
U  is a series of vectors containing the unknown relaxation Prony constants for a particular 

component of the modulus matrix, e.g., T##
U = (##

U  for < = 1, Y. 

T+,
U = (+,

U             < = 1, Y; (3.3.8b) 

U+,
-  is a series of known vectors comprised of Laplace creep properties that have been 

linearly inverted, e.g., U##
- 	corresponds to the 11 component of the linearly inverted creep 

matrix with length M = Y, the number of Prony series. 

U+,
- =

#

Y9>Z
; k

L<+
6

9>
−∑

L<+
%

9>X9%
6
"7# l

5#
           M = 1, Y and L = 1, Y; (3.3.8c) 

�+,
*  is a vector, Y Prony series in length, containing the equilibrium properties for each 

component of the unknown viscoelastic matrix response, in this case, relaxation, e.g., �##
* =

(##
*  for ` = _ = 1. The equilibrium constants of the unknown viscoelastic properties are 

found from linearly inverting the known viscoelastic equilibrium constants, e.g., (+,
* =

[[+,
* ]5#. 

�+,
* =

I<+
6

9>
  (3.3.8d) 

�-U in equation (3.3.8) can be inverted and the unknown relaxation modulus values 

represented by T+,
U  can be solved. 

T+,
U = |�-U}

5#
|U+,

- − �+,
* }  (3.3.9) 

In order to fully define the unknown relaxation modulus, equation (3.3.9) must be repeated 

for each component of the matrix, e.g., all values of ` and _. For a 9 by 9 orthotropic 

material, there would be 9 unknown relaxation modulus components resulting in 9 variants of 

equation (3.3.9). 
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3.3.2 Numerical Laplace Inversion 

A numerical Laplace method for inverting anisotropic materials can be used to provide a 

more exact means of interchanging between relaxation and creep properties. Based on similar 

principles used by Schapery’s least-squares inversion, the numerical Laplace inversion 

directly solves equation (3.2.8) by numerical means. Assuming that the creep compliance is 

known, the relaxation modulus can be solved based on equation (3.3.5b). Unlike Schapery’s 

method, which uses the Laplace inversion of least squares to minimize the error between the 

known and unknown viscoelastic functions when * = 	 H- (H- equals either -- or .-), the 

numerical method instead inverts the data over all of s and allows for -- and .- to be 

arbitrary, e.g., -- ≠ .-. The unknown viscoelastic function must be fit by an assumed 

function, either equation (3.3.1) or (3.3.2), in order to be easily inverted back to the time 

domain. For the case of inverting from creep to relaxation, equation (3.3.1) is used as the 

assumed function. 

In order to obtain an idealized numerical fit between the known linearly inverted Laplace 

creep function (3.3.5b) and the relaxation fitting function (3.3.1), the span over the frequency 

domain * must be sufficiently large. An ideal range for * is one magnitude smaller and one 

magnitude greater than the smallest and largest Prony time constant .", respectively. The fit 

is carried out for all components of the relaxation matrix being sought. The relaxation Prony 

constants (6!
"  of the assumed function are shifted until the error between the inverted data 

and the relaxation fitting function over the positive frequency domain is sufficiently small. 

The equilibrium (# → ∞) and glassy (# = 0) properties of the desired inverted data are solved 

by linearly inverting the respective properties that are known from measured data. 

[[*] = [(*]5#          [(*] = [[*]5#          (# → ∞) (3.3.10a) 
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[[%] = [(%]5#         [(%] = [[%]5#          (# = 0) (3.3.10b) 

Once the resulting relaxation Prony constants (6!
"  are solved, the fitting function can be 

inverted back to the time domain. It is important to note that the data is fit to the assumed 

function over the positive frequency domain. Data fit to the negative frequency domain 

results in asymptotic spikes in the Laplace inverted viscoelastic response, making it difficult 

to obtain ideal fits as compared to the results of the positive frequency domain. The negative 

frequency domain, however, can be useful in obtaining the unknown Prony time constants, 

which further improves the data fit.  

The assumption made by Schapery’s least-squares Laplace method that the Prony time 

constants are equivalent is valid when there is a small difference between the relaxation and 

creep time constants (-" and ."). However, Schapery discusses a method for obtaining the 

unknown time constants [46] for one-dimensional materials. Equation (3.3.5) used to obtain 

relaxation modulus properties from known creep compliance can be expressed for the one-

dimensional case as shown by 

(y(*) =
$

?;

@6

?
5∑ @%

?AB%
4
%5$

  (3.3.11) 

This equation can further be rewritten into polynomial form. 

(y(*) =
∏ Y2X9%Z4
%5$

2YL6∏ Y2X9%Z52 ∑ L=∏ !W=%Y2X9%Z4
%5$

4
=5$

4
%5$ Z

  (3.3.12) 

where	! sU" = (1 − sU") which results in ! sU" equal to zero when < = L and ! sU" equal to one 

when < ≠ L. 

Using the negative frequency domain * the polynomial in the numerator of equation (3.3.12) 

goes to zero as * goes to −.". 
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lim
2→59%

∏ |* + ."}6
"7# = 0  (3.3.13) 

The polynomial in the denominator goes to zero as * approaches −-" resulting in equation 

(3.3.12) equaling negative infinity. 

lim
2→58%	

∏ k
∏ Y2X9%Z4
%5$

2YL6 	∏ Y2X9%Z52 ∑ L= 	∏ !W=%	Y2X9%Z4
%5$

4
=5$

4
%5$ Z

l6
"7# = −∞  (3.3.14) 

This can be observed graphically by plotting the absolute value of equation (3.3.12) against 

the absolute value of * on a log-log scale. Estimated relaxation Prony time constants -" can 

be obtained where the inverted relaxation data goes to infinity. Figure 3.3.1 and Figure 3.3.2 

display the linearly inverted Laplace creep equation (3.3.11) fitted with the assumed Laplace 

relaxation equation (3.3.5b) for neat resin test data using the numerical method. The Prony 

time constants -" of the fitting function are equal to the frequencies * that result in the 

inverted data equaling infinity. Figure 3.3.2 is a magnified section of Figure 3.3.1 where the 

inverted data goes to zero and infinity as * approaches −." and −-", respectively. 

 
Figure 3.3.1: The graph depicts the linearly inverted Laplace Neat Resin Creep data from (3.3.11) fitted with 
an assumed relaxation Laplace function (3.3.5b) over the negative frequency domain plotted on a loglog of the 
absolute value of '()) vs. the absolute value of ). 
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Figure 3.3.2: The figure is a magnified portion of Figure 3.3.1 spanning one Prony constant inflection point. 
The upward vertical spike is a result of the limit of the denominator of the linearly inverted Laplace creep data 
(3.3.14) approaching infinity as ) approaches −,C. The downward spike is a result of the numerator of the 
linearly inverted Laplace creep data (3.3.13) approaching zero as ) approaches −-C. The upward spikes can be 
used to obtain the values of the unknown relaxation Prony time constants,	,C. 

 

3.3.3 Numerical Laplace Inversion for Multidimensional Materials 

The numerical Laplace inversion of multidimensional materials is applied in the same 

way as the method described above for one-dimension. However, there are unique 

characteristics of inverting multidimensional materials that become apparent when observing 

the Laplace inversion over the negative frequency domain. Similar to the one-dimensional 

case, the inversion of creep to relaxation will be used to discuss the following characteristics. 

The addition of coupled stresses and strains due to Poisson’s contractions and anisotropic 

properties makes it much more difficult to simplify the inversion expression (3.3.5b) into a 

polynomial form such as that used for the one-dimensional case (3.3.12). While the specific 

equations are not as easily solvable, generalized forms of the limit of equation (3.3.5b) can be 
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useful to study. For a two-dimensional creep compliance matrix, equation (3.3.5b) can be 

written into a polynomial form. 

(y!,(*) =
L̂:<(2)∏ Y2X9%Z4

%5$

2_L̂$$(2)L̂;;(2)5YL̂$;(2)Z
;
`
  (3.3.15) 

[jV+(*) = [V+
* ∏ |* + ."} − *∑ [V+

U ∏ ! sU"|* + ."}6
"7#

6
U7#

6
"7#   (3.3.16) 

To simplify equation (3.3.15) the function [jV+(*) in the numerator is represented by 

equation (3.3.16). The behavior of equation (3.3.15) is similar to that of the one-dimensional 

case (3.3.12) except for the addition of the expression (3.3.16). As a result, the limit of the 

numerator equals zero at more values of * than those equal to −.". Similarly, the limit of 

equation (3.3.15) equal to negative infinity can result at more values of * than −-". A 

graphical representation of the data is best used to understand how the inverted data behaves 

as * approaches the Prony time constants −." and −-". Figure 3.3.3 displays the inversion of 

the Laplace creep compliance matrix (3.3.5b) of a unidirectional lamina comprised of the 

same resin system used in Figure 3.3.1 plotted over the negative frequency domain on an 

absolute log-log scale. The general form of the inverted data appears similar to the one-

dimensional case depicted in Figure 3.3.1. A magnified view, Figure 3.3.4, spanning one of 

the infinite and zero spikes, however, shows the additional * values that result in the limit of 

(3.3.15) equaling zero or infinity. Unlike the one-dimensional case, no single frequency value 

for the relaxation Prony time constants, -", can be used to perfectly match the viscoelastic 

response of the inverted data. As a result, the inversion between creep and relaxation is, at 

best, an estimate and idealized by the fitting function. The relaxation Prony time constants 

that provide the best fit for the assumed relaxation function (3.3.1) are found where the limit 

of (3.3.15) is infinite for all components of the linearly inverted creep compliance matrix. In 

Figure 3.3.4 this occurs in the farthest right * value. Using the assumed Prony time constants, 
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the estimated Laplace relaxation function (3.3.1) fitted to the inverted creep compliance 

function (3.3.15) by solving for the Prony relaxation constants is displayed in Figure 3.4.1. 

To improve the result of the numerical Laplace inversion method, the predicted relaxation 

modulus is simultaneously inverted back to the creep compliance and compared directly to 

the measured creep compliance that is being inverted. Relaxation Prony constants (+!
"  are 

selected by the numerical model that minimizes the error between both the inverted predicted 

relaxation modulus and the originally measured creep compliance. The fit fails to take into 

account the added infinite and zero spikes present in the inverted data; however, it does 

provide an accurate estimate for the inverted data.  
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Figure 3.3.3: The Laplace numerical inversion of the unidirectional carbon fiber lamina creep compliance 
properties resulting in the relaxation modulus, 'DD, 'DE, and 'EE are plotted over the absolute value of the 
negative frequency domain on a log-log scale. 
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Figure 3.3.4: A magnified view of Figure 3.3.3 spans one of the zero/infinite spikes. The known relaxation 
properties are defined by a black-dotted line. The fitted relaxation properties are defined by a red-dashed line. 

 

3.3.4 Gutierrez-Lemini’s Exact Inversion 

Gutierrez-Lemini’s exact inversion method has been proven to be a reliable technique for 

inverting one-dimensional materials. The use of the hereditary integral form of stress and 

strain (2.2.5) and (2.2.6) allows for a direct inversion between creep and relaxation properties 

without the use of estimated inversion methods. The method provides a means of solving for 
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the unknown Prony constants ((" or [U) as well as the unknown Prony time constants (-" or 

.U) without any assumed behavior of the sought inverted properties. The robustness of the 

exact method for the one-dimensional case, however, does not translate for inverting 

multidimensional materials. The following will discuss the limitations of the exact method 

for use in inverting viscoelastic multidimensional materials.  

The Stieltjes convolution integral (3.2.3b) and (3.2.6b) are interchangeable. Equation 

(3.2.3b) is expanded for the following derivation of the exact method into two parts. The first 

part represents where the initial step load is applied between 05 and 0X, and the second part 

represents the viscoelastic response between 0X and #. 

m(#)s+V = ∫ (+!(# − H)
H
HN
[!V(H)3H

OA

O# + ∫ (+!(# − H)
H
HN
[!V(H)3H

3
OA   (3.3.17a) 

m(#)s+V = (+!(#)[!V(0
X) + ∫ (+!(# − H)

H
HN
[!V(H)3H

3
OA   (3.3.17b) 

Inserting the Prony series expression for relaxation (1.3.4a) and creep (1.3.4b) into equation 

(3.3.17b) gives the following. 

\(+!
* + ∑ (+!

" >58<"
% 36

"7# ] |[!V
* − ∑ [!V

U >59":
= YOAZ6

U7# }   

+∫ \(+!
* + ∑ (+!

" >58<"
% (35N)6

"7# ]
H
HN
|−∑ [!V

U >59":
= (N)6

U7# }3H
3
OA = m(#)s+V  (3.3.18a) 

Equation (3.3.18a) is expanded and reduced. 

(+!
* [!V

* + \∑ (+!
" >58<"

% 36
"7# ] [!V

*    

−\∑ (+!
" >58<"

% 36
"7# ] |∑ [!V

U >59":
= YOAZ6

U7# } − (+!
* |∑ [!V

U >59":
= 36

U7# }   

−	∫ \∑ (+!
" >58<"

% (35N)6
"7# ]

H
HN

3
OA |∑ [!V

U >59":
= N6

U7# }3H = m(#)s+V  (3.3.18b) 
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The expansion of the integral in equation (3.3.18b), with the sum of the Prony constants 

(+!
" , [!V

U , and the exponential >58<"
% 3 factored out of the integral, is expressed by the 

following equation. 

∫ \∑ (+!
" >58<"

% (35N)6
"7# ]

H
HN

3
OA |∑ [!V

U >59":
= N6

U7# }3H   

= ∑ ∑ \[!V
U (+!

" >58<"
% 3 ∫ >8<"

% N H
HN

3
OA |>59":

= N}3H]6
"7#

6
U7#   (3.3.19) 

Equation (3.3.19) can be evaluated through integration by parts.  

∫[∫Ñ(4)34]pa(4)34 = p(4) ∫Ñ(4)34 − ∫p(4)Ñ(4)34  (3.3.20a) 

The derivative of >59":
= N is defined as pa(4). 

pa(4) =
H
HN
|>59":

= N}               p(4) = |>59":
= N}  (3.3.20b) 

>8<"
% N is the integral of Ñ(4) 

∫Ñ(4)34 = >8<"
% N               Ñ(4) = -+!

" >8<"
% N  (3.3.20c) 

Evaluating the integral by parts results in the following expression.  

∑ ∑ [!V
U (+!

" \>8<"
% 3>59":

= 3 − 1 − ∫ -+!
" >8<"

% N>59":
= N3H

3
OA ]6

"7#
6
U7#   (3.3.20d) 

The integral in (3.3.20d) is rearranged so that the product of exponentials is the sum of their 

exponents. 

∑ ∑ [!V
U (+!

" \>8<"
% 3>59":

= 3 − 1 − ∫ -+!
" >_8<"

% 59":
= `N3H

3
OA ]6

"7#
6
U7#   (3.3.20e) 

The following expression is derived from the integration of (3.3.20e). 

∑ ∑ \[!V
U (+!

" >58<"
% 3 \>8<"

% 3>59":
= 36

"7#
6
U7#    

−1 −
8<"
%

Y8<"
% 59":

= Z
>_8<"

% 59":
= `3 +

8<"
%

Y8<"
% 59":

= Z
lg  (3.3.21a) 
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By distributing the expression, ∑ ∑ [!V
U (+!

" >58<"
% 36

"7#
6
U7# , over the integrated equation and 

canceling exponentials with like terms, (3.3.21a) becomes: 

∑ ∑ (+!
" [!V

U >59":
= 36

U7#
6
"7# − ∑ ∑ (+!

" [!V
U >58<"

% 36
U7#

6
"7#    

−∑ ∑
8<"
% I<"

% L":
=

Y8<"
% 59":

= Z
>59":

= 36
U7#

6
"7# + ∑ ∑

8<"
% I<"

% L":
=

Y8<"
% 59":

= Z
>58<"

% 36
U7#

6
"7#   (3.3.21b) 

Inserting (3.3.21b) into (3.3.18b) produces 

(+!
* [!V

* + \∑ (+!
" >58<"

% 36
"7# ] [!V

* − \∑ (+!
" >58<"

% 36
"7# ] (∑ [!V

U6
U7# )   

+∑ ∑
8<"
% I<"

% L":
=

Y8<"
% 9":

= Z
>59":

= 36
U7#

6
"7# −∑ ∑

8<"
% I<"

% L":
=

Y8<"
%	 59":

= Z
>58<"

% 36
U7#

6
"7# = m(#)s+V  (3.3.22a) 

Applying the Dirichlet-Prony series equation (1.3.3a) and rearranging the terms in (3.3.22a) 

produces 

(+!
* [!V

* + ∑ (+!
" >58<"

% 36
"7# k[!V

* − ∑
8<"
% L":

=

Y8<"
% 59":

= Z
6
U7# l   

−∑ [!V
U >59":

= 36
U7# k(+!

% −∑
8<"
% I<"

%

Y8<"
% 59":

= Z
6
"7# l = m(#)s+V  (3.3.22b) 

Equation (3.3.22b) results in a homogenous equation. 

∑ (+!
" >58<"

% 36
"7# k[!V

* −∑
8<"
% L":

=

Y8<"
% 59":

= Z
6
U7# l   

−∑ [!V
U >59":

= 36
U7# k(+!

% −∑
8<"
% I<"

%

Y8<"
% 59":

= Z
6
"7# l = 0  (3.3.22c) 

This is a result of the glassy relaxation modulus and creep compliance on the left side of 

(3.3.22b) equaling the identity matrix, which cancels the Kronecker delta. Equation (3.3.22c) 

results in a system of dependent equations. For the one-dimensional case (Z = ` = 1), the 

exponential functions >58
%3 and >59

=3 in equation (3.3.22c) are linearly independent. The 

expressions in the brackets in equation (3.3.22c) must be independently equal to zero for the 

equation to satisfy all choices of the original function. This results in the following: 
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(% − ∑ ∑
8%I%

Y8%59=Z
6
"7#

6
U7# = 0  (3.3.23) 

[* − ∑ ∑
8%L=

Y8%59=Z
6
U7#

6
"7# = 0  (3.3.24) 

where .U, [U, [%, and [* are known and (* = [*
#$

 and (% = [%
#$

. The unknown Prony 

time constantans, -", can be solved using equation (3.3.24) and the unknown Prony 

constants, (", can be solved using equation (3.3.23). 

For multidimensional materials, however, the expressions in brackets in equation 

(3.3.22c) cannot be independently equal to zero. Equation (3.3.22c) is a system of dependent 

nonlinear homogenous equations. As a result, a means of rearranging the system into linear 

equations or the use of numerical solvers are required. The number of unknown variables 

makes finding reliable inverted viscoelastic properties through numerical means undesirable. 

The simplification used in Schapery’s method (-" = .") is not feasible using the exact 

method since the values in the denominator of equation (3.3.22c) would result in 

indeterminate solutions. 

 

3.4 Results 

The inversion methods developed for one-dimensional materials can be evaluated using 

isotropic materials. The creep compliance properties of epoxy neat resin used as the matrix of 

a unidirectional carbon/epoxy lamina are obtained from tensile creep tests. Strain gauges are 

used to measure the creep strain as the load is held constant. A thermal chamber is used to 

maintain the desired 300C temperature by ±10C. A Dirichlet-Prony series is fit to the test 

data. Table 3.4.1 records the one-dimensional creep compliance of the neat resin. The 
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relaxation modulus, ((#), is obtained by inverting the measured compliance using 

Schapery’s least squares, the numerical Laplace, and Gutierrez-Lemini’s exact method. 

[* 	((ÖE5#)  
= 6.21E-4 

[U 	((ÖE5#) .U 	(*5#) 

< = 1 6.21E-4 1.52 
2 1.18E-6 1.52E-2 
3 5.07E-6 1.52E-3 
4 1.03E-5 1.52E-4 
5 6.27E-6 1.52E-5 
6 2.76E-5 1.52E-6 
7 6.88E-6 1.52E-7 
8 1.03E-5 1.52E-8 
9 3.13E-5 1.52E-9 
10 1.12E-5 1.52E-10 
11 2.64E-5 1.52E-11 
12 2.77E-5 1.52E-12 
13 1.02E-4 1.52E-13 

Table 3.4.1: The one-dimensional creep compliance properties obtained from a neat resin tensile creep test at 
300C are recorded in Dirichlet-Prony series form. 

Table 3.4.2 provides the relaxation properties inverted using all three methods. The 

percent difference between the Prony time constants assumed by Schapery or solved for 

using Gutierrez-Lemini’s exact and using the numerical inversion methods are listed. The 

percent difference between alpha and beta was derived using the average of the alpha 

properties obtained by the numerical and Gutierrez-Lemini’s exact methods. Figure 3.4.1 

displays the resulting relaxation response for all three methods in the time domain. The 

results are normalized by the respective inversion method’s glassy response ((%). 
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 Schapery 
("#$) 

Numerical 
("#$) 

Gutierrez- 
Lemini 
("#$) &!	(("#) 

Numerical 
)$ (("#) 

 

Gutierrez- 
Lemini 
)$ (("#) 

%Dif. in )$  
Numerical 

& 
Gutierrez- 

Lemini 

%Dif. 
Avg. )$ 

& 
&! 

 "% 1.61E+3 1.61E+3 1.61E+3 
*	+,	, = 1 -2.13E+1 1.06E+1 1.06E+1 1.52 1.52 1.52 0.01 0.35 

2 2.24E+2 1.77E+2 1.77E+2 1.52E-2 1.61E-2 1.61E-2 0.01 6.1 
3 -2.26E+1 3.92E+1 3.92E+1 1.52E-3 1.54E-3 1.54E-3 0.04 1.39 
4 1.40E+2 7.68E+1 7.69E+1 1.52E-4 1.56E-4 1.56E-4 0.03 2.8 
5 -1.70E+1 4.52E+1 4.51E+1 1.52E-5 1.54E-5 1.54E-5 0.02 1.69 
6 2.49E+2 1.80E+2 1.80E+2 1.52E-6 1.63E-6 1.63E-6 0.02 7.05 
7 -3.59E+1 4.07E+1 4.08E+1 1.52E-7 1.54E-7 1.54E-7 0.00 1.67 
8 1.37E+2 5.99E+1 5.99E+1 1.52E-8 1.55E-8 1.55E-8 0.03 2.5 
9 9.18E+1 1.63E+2 1.63E+2 1.52E-9 1.63E-9 1.63E-9 0.01 7.13 
10 1.18E+2 5.31E+1 5.30E+1 1.52E-10 1.55E-10 1.55E-10 0.05 2.46 
11 5.35E+1 1.16E+2 1.17E+2 1.52E-11 1.60E-11 1.60E-11 0.01 5.55 
12 1.81E+2 1.12E+2 1.12E+2 1.52E-12 1.60E-12 1.60E-12 0.03 5.58 
13 2.71E+2 3.11E+2 3.11E+2 1.52E-13 1.81E-13 1.81E-13 0.02 17.75 

Table 3.4.2: The neat resin relaxation modulus are obtained by inverting the measured neat resin compliance 
properties (Table 3.4.1) using Schapery’s least squares method, the numerical method, and Gutierrez-Lemini’s 
exact method. Properties are recorded in Dirichlet-Prony series form. Percent differences in the Prony time 
constants are also presented. 

 

 
Figure 3.4.1: The relaxation modulus properties, '(") (equation (3.2.5b)) with Prony series coefficients 
recorded in Table 3.4.2 which are obtained from inverting the creep compliance properties presented in Table 
3.4.1 are plotted on a log10 time scale. The results of Schapery’s least square method, the numerical method, 
and Gutierrez-Lemini’s exact method are normalized using their corresponding glassy response, 'G. The exact 
method and numerical method produce the same solution resulting in both lines in the graph lying on top of one 
another. 

The Laplace numerical method and Schapery’s least-squares method are compared by 

inverting the creep compliance properties of the unidirectional carbon lamina recorded in 

Table 3.4.3. The unidirectional lamina matrix consists of the same neat resin epoxy used in 

the one-dimensional viscoelastic inversion. The creep compliance properties are obtained 
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using the same method as described above, but with modifications to obtain all properties of 

the anisotropic material. 

 [##
U ((ÖE5#) [#$

U 	((ÖE5#) [$$
U 	((ÖE5#) 

.U 	(*5#) 

< = > 8.24E-06 -2.92E-06 1.86E-04 
< = 1 1.00E-08 -1.00E-08 1.00E-09 1.34E-1 

2 7.28E-09 -1.00E-08 3.28E-06 1.34E-02 
3 4.51E-08 -1.00E-08 2.10E-06 1.34E-03 
4 6.73E-08 -1.00E-08 7.55E-06 1.34E-04 
5 7.91E-08 -1.00E-08 3.30E-06 1.34E-05 
6 8.64E-08 -1.00E-08 8.06E-06 1.34E-06 
7 1.00E-09 0 6.55E-06 1.34E-07 
8 0 0 6.25E-06 1.33E-08 

Table 3.4.3: Creep compliance Dirichlet-Prony series properties for a unidirectional carbon fiber/epoxy 
lamina. 

The inverted relaxation properties are presented in Table 3.4.4 using Dirichlet-Prony 

series. The percent variance (3.4.1) in the numerical fit and the percent difference in the beta 

and numerically estimated alpha Prony time constants are recorded in Table 3.4.4. 

%áE<LEY?> =
∑?F2_H4'I4	2&9&

(?)#L%99%43	MN419%'4(?)

H4'I4	2&9&(?)
`

6
;   n=number of data point (3.4.1) 

 'DD
C 	('/0) 'DE

C 	('/0) 'EE
C 	('/0) ,C	()OD)  

 Schapery Num. Schapery Num. Schapery Num. 
Schapery Num. 

%Dif. 
in 
,C 

%Var. 2.80E-4 6.21E-2 1.32E-1 
1 = 2 1.22E+5 1.22E+5 1.92E+3 1.92E+3 5.41E+3 5.41E+3 
1 = 1 1.63E+2 1.53E+2 3.27 0 2.25E+1 0 1.34E-1 1.34E-1 0.13 

2 1.20E+2 1.32E+2 3.70E+1 4.22E+1 1.22E+2 1.47E+2 1.34E-2 1.37E-2 2.2 
3 7.38E+2 7.10E+2 4.90E+1 4.06E+1 1.18E+2 9.16E+1 1.34E-3 1.35E-3 1.38 
4 1.08E+3 1.09E+3 1.15E+2 1.22E+2 2.89E+2 3.08E+2 1.34E-4 1.40E-4 4.82 
5 1.24E+3 1.22E+3 6.40E+1 5.92E+1 1.38E+2 1.26E+2 1.34E-5 1.36E-5 2.04 
6 1.32E+3 1.33E+3 1.14E+2 1.17E+2 2.81E+2 2.87E+2 1.34E-6 1.40E-6 4.81 
7 4.05E+1 5.60E+1 7.66E+1 7.56E+1 2.16E+2 2.13E+2 1.34E-7 1.39E-7 3.73 
8 2.31E+1 2.14E+1 6.48E+1 6.66E+1 1.83E+2 1.88E+2 1.34E-8 1.38E-8 3.43 

Table 3.4.4 contains the relaxation modulus properties in Dirichlet-Prony series form obtained from inverting 
the creep compliance properties of an unidirectional carbon fiber/epoxy lamina (Table 3.4.3) using the 
numerical method and using Schapery’s least squares method. 

Figure 3.4.2 plots the relaxation modulus properties (Table 3.4.4) over the time domain. The 

properties are normalized by the glassy response (% for the corresponding inversion method 



 

78 

 

and modulus components. The results are plotted with the time axis using a logarithm base 

10 scale. 

 
Figure 3.4.2: The log10 scaled time domain of the inverted creep compliance properties with Prony coefficients 
recorded in Table 3.4.4 are presented for both the numerical method and Schapery’s least-squares inversion 
method. The relaxation modulus properties, '(") (equation (3.2.5b), are normalized by the glassy response, 
'G, of the corresponding modulus component and inversion method. Both methods produce nearly identical 
solutions resulting in the lines of the graphs lying on top of one another. 
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3.5 Discussion 

Accurate, robust viscoelastic inversion methods are needed to obtain reliable creep and 

relaxation properties from the corresponding relaxation and creep tests. The ability to invert 

between material properties eliminates the need for redundant, time-consuming tests. 

Furthermore, many structural models require both viscoelastic compliance and modulus 

properties to predict stress/strain time-dependent behavior. The numerical viscoelastic 

method developed in this chapter used to invert multidimensional material data aims to meet 

these requirements. Validation of the numerical method is not compared to measured 

relaxation data due to the difficulty of producing accurate relaxation tests. Instead, the 

method is compared to Schapery’s least squares method and Gutierrez-Lemini’s exact 

method for one-dimensional materials.  

Measured creep compliance properties of an isotropic neat resin epoxy presented in Table 

3.4.1 in Dirichlet Prony series form is inverted using the three methods. Table 3.4.2 contains 

the relaxation properties resulting from the three inversion methods. It can be observed that 

Schapery’s least-squares inversion method fails to satisfy basic energy principles and results 

in several negative relaxation Prony constants (". This is not always true for all materials. 

The oscillatory behavior resulting from such sign changes in the Prony constants can be seen 

in Figure 3.4.1. Furthermore, the Prony time constants for the inverted relaxation properties 

have to be assumed equal to the creep compliance Prony time constants for Schapery’s least-

squares method. The percent difference between -" found by Gutierrez-Lemini’s exact 

method to that of the measured ." properties are presented in Table 3.4.2. For some Prony 

time constants, the difference is as high as 18%. The assumption made by Schapery’s least-

squares inversion that alpha and beta are equivalent may not be valid for all materials. The 
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relaxation Prony time constants -", however, can be solved using Gutierrez-Lemini’s exact 

method and the numerical method. The exact method solves for -" by factoring the roots of 

the polynomial expressed by equation (3.3.12). The numerical method sets -" equal to the 

frequencies s that result in the limit of equation (3.3.14) equaling negative infinity. The 

absolute value of equation (3.3.14) is graphically depicted in Figure 3.3.1 and Figure 3.3.2. 

The one-dimensional creep data inverted by the numerical method and the exact method 

result in similar solutions. This is graphically observed in Figure 3.4.1 in which the plot of 

both data sets align identically. The Prony constants, -" and (", calculated by the numerical 

method, match the exact method with minimum error (Table 3.4.2). It is important to note 

that, unlike Gutierrez-Lemini’s exact method, which directly solves the hereditary integral 

relating creep compliance and relaxation modulus, the numerical method will always be an 

idealized solution due to the use of Laplace transforms and the need for numerical fitting. 

The level of accuracy and reliability in the method is improved when accurate Prony time 

constants and large spans of the frequency domain are used to fit the assumed fitting 

function. Furthermore, the method will always satisfy the energy principles by maintaining 

the fundamental relaxation decay or creep growth known throughout literature. 

Inversion of viscoelastic data with anisotropic viscoelastic properties is required for 

analyzing and predicting the viscoelastic behavior of materials such as anisotropic 

composites used in tape spring applications. In this setting, the development of the numerical, 

exact, and least-squares methods for inverting multidimensional materials are estimates, at 

best. The reliable exact method developed by Gutierrez-Lemini for one-dimensional 

materials results in a series of dependent nonlinear homogeneous equations when applied to 

multidimensional materials. As a result, the exact method requires numerical solvers to 
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obtain all Prony constants and no longer produces an exact solution by directly solving the 

hereditary integrals (3.2.3b) and (3.2.6b). The level of complexity required to solve the 

“exact” method makes it an unreliable and cumbersome inversion method. The numerical 

method and Schapery’s least squares method, however, can be developed for multiaxial 

anisotropic materials. The creep compliance properties of a unidirectional carbon fiber/epoxy 

lamina recorded in Table 3.4.3 are inverted using the numerical and least-squares methods. 

The resulting Dirichlet-Prony series relaxation modulus properties are presented in Table 

3.4.4. Unlike in the one-dimensional example just discussed, Schapery’s least-squares 

inversion satisfies energy constraints when applied to the multiaxial response of this specific 

anisotropic material. All relaxation Prony constants (" maintain positive values. Similar to 

the one-dimensional case, the multiaxial least-squares method assumes that the Prony time 

constants are equivalent (-" = ."), which simplifies the inversion into a system of linear 

equations (3.3.8). The method which uses numerical inversion, while much more 

computationally taxing, produces reliable estimates for the Prony time constants -" by 

observing where each component of the linearly inverted Laplace creep compliance matrix 

approaches negative infinity. Discerning the ideal alpha terms for the multidimensional case 

is much more difficult than in the one-dimensional case due to the added infinite and zero 

spikes which result from anisotropic coupling terms. Figure 3.3.4 depicts a magnified view of 

the inverted creep compliance data and the ideal relaxation fit. It can be observed that the 

alpha terms (infinite spike in the fitted relaxation function) align with the infinite spikes for 

all components of the inverted creep compliance data. The fitted curve, however, fails to 

predict the added infinite and zero spikes present in the inverted creep data. The numerical 

method, while an estimated solution of the inverted viscoelastic properties, nevertheless 
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results in an accurate solution. The variances (equation (3.4.1)) between the inverted creep 

compliance using Shapery’s least-squares method and the numerical method for all 

components of the modulus matrix, e.g., (##, (#$, and ($$ are recorded in Table 3.4.4. The 

variance over the positive frequency domain is small (<0.13%). Figure 3.4.2 presents results 

for the relaxation modulus as a function of time from the numerical method and from 

Schapery’s least-squares method. Both methods appear to give identical results, and we also 

assume that both are accurate. The percent differences in the numerically estimated 

relaxation Prony time constants -" and the measured creep Prony time constants ." presented 

in Table 3.4.4 are small (<5%), significantly smaller in some cases than was found for the 

discrepancies when data was inverted for the neat resin. The assumption made by Schapery’s 

least-squares method that -" and ." are equivalent proves to be valid for the unidirectional 

carbon/epoxy lamina. However, Schapery’s least squares method, while computationally 

easy to solve, sometimes provides unreliable results that are not accurate or fail to satisfy 

fundamental energy constraints. In contrast, the numerical method used to invert viscoelastic 

data provides accurate, reliable, and robust means of estimating the inverted viscoelastic 

properties without violation of energy constraints. 

 

3.6 Conclusion 

The numerical inversion method developed in this chapter for viscoelastic materials, 

when used to invert creep compliance data to generate the relaxation modulus, is more 

accurate and more reliable than other methods. When applied to uniaxial data for neat resin, 

the numerical method provides results that differ little from Gutierrez-Lemini’s [18] exact 

method, whereas Schapery’s least squares method [36], [37] is both less accurate and has 
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energetic inconsistencies in its results. Gutierrez-Lemini’s method cannot be applied reliably 

to multiaxial data for anisotropic materials. When applied to multiaxial data for anisotropic 

carbon fiber reinforced composite materials, the numerical method provides results little 

different from Schapery’s least squares method [36], [37], and, in this case, we presume them 

to be both accurate. Furthermore, the numerical method requires no foreknowledge of the 

inverted time-dependent Prony constant values. The numerical method maintains consistent 

signs (all positive or all negative) across the Prony constants in the series, which satisfies 

fundamental relaxation and creep characteristics. Schapery’s method cannot, in general, be 

relied upon to stay energetically consistent and, as a result, introduces the possibility of error.  

  



 

84 

 

 

 

 

Chapter 4  
 
Relaxation Stiffness and Flexure 
Properties of the Neat Resin, 
Unidirectional and Plain Weave 
Laminae, and the 3-ply and 4-ply 
Laminates Predicted Using the 
Numerical Laplace Inversion Method 
and Viscoelastic Classical Laminate 
Theory 

 

4.1 Introduction 

Most prediction methods for modeling the behavior of viscoelastic structures require the 

use of both the relaxation stiffness and creep compliance properties. However, relaxation 

properties are difficult to measure. Therefore, it is common to determine a material’s creep 

compliance properties because they are relatively easy to measure and then invert the data to 

acquire a material’s relaxation stiffness properties. As discussed in the previous chapter 

(Chapter 3), methods for inverting viscoelastic composite properties are not simple and 

require complex inversion methods which commonly utilize Laplace transforms. To the best 
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of our knowledge, the application of viscoelastic inversion methods for multidimensional 

materials such as the carbon fiber lamina and laminate test results published in Chapter 2 are 

not described in the literature. Therefore, this chapter will describe the application of the 

multidimensional viscoelastic inversion methods developed in Chapter 3 to the viscoelastic 

creep compliance properties of the neat resin, unidirectional and plain weave laminae, and 

the 3-ply [±45PW/0/±45PW] and 4-ply [0/±45PW/±45PW/0] laminates measured in Chapter 

2. Since the axial/transverse flexure properties 3&'(#) could not be recorded using the four-

point bend test setup discussed in detail in Chapter 2, there is insufficient data to invert the 

measured creep flexure properties. To overcome this difficulty, the use of viscoelastic 

classical laminate theory (CLT) to estimate the relaxation flexure stiffness of the samples 

tested in Chapter 2 from the relaxation stiffness properties of the unidirectional and plain 

weave lamina is discussed. 

 

4.2 Background 

It is not possible to use the numerical Laplace inversion method developed in Chapter 3 

to determine the relaxation flexure properties 0"-(#) from the measured creep flexure 

properties 3"-(#) recorded in Chapter 2 due to the missing axial/transverse flexure 

compliance properties 3&'(#). However, the relaxation flexure stiffness properties can be 

predicted using classical laminate theory [47] adapted for viscoelastic composites. Classical 

laminate theory (CLT) is well established in the literature [14] to reliably predict the elastic 

flexure properties 0"- of a lamina or laminate based the orientation, stacking sequence, 

thickness, and reduced stiffness properties of the plies composing the lamina or laminate. 
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Figure 1.2.3 illustrates a cross-sectional view of a laminate with unidirectional plies oriented 

at varying degrees from the x-axis of the laminate. The viscoelastic variant of classical 

laminate theory uses the equivalent inputs as the CLT; however, the reduced stiffness 

properties of the plies composing the lamina or laminate are represented using the relaxation 

reduced stiffness properties /"-(#) defined by equation (1.3.7a). The composite relaxation 

flexure stiffness properties 0"-(#) are predicted by the viscoelastic classical laminate theory 

using the following 

0"-(#) = 	∑ /"-
b (#)6

b7# ∫ !$3!
)̅P
)̅P#$

								L, M = 4, D, *  (4.2.1) 

The individual plies comprising the lamina or laminate are represented by à ranging from 1, 

bottom ply of the composite, to n, the total number of plies in the composite, e.g., topmost 

ply. /"-
b (#) are the relaxation reduced stiffness properties for the individual plies that 

comprise the laminate. The reduced stiffness properties are oriented according to the 

laminate’s coordinate system illustrated in Figure 4.2.1 with the zero ply angle along the x-

axis of the laminate. ! represents the through-thickness position of the laminate from its 

reference plane or midplane. !b̅ and !b̅5# represents the distance between the plies surface 

from the reference plane of the laminate as depicted in Figure 1.2.2. The predicted lamina 

and laminate relaxation flexure properties can be compared to the measured creep flexure by 

inverting the predicted laminate relaxation flexure properties using the numerical inversion 

method developed in Chapter 3. 
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Figure 4.2.1: The lamina and laminate samples tested in Chapter 2 are illustrated graphically. The plies 
composing the laminates are oriented with respect to the x-axis. 

 

4.3 Results 

The Prony series coefficients defining the predicted relaxation stiffness properties for the 

neat resin, unidirectional and plain weave laminae, and the 3-ply and 4-ply laminates are 

recorded in Table A.16 through Table A.20 in the appendix, respectively. The predicted axial 

relaxation stiffness	/&&(#) for these laminae and laminates normalized by their respective 

glassy properties /&&
%   are illustrated in Figure 4.3.1. The solid blue line represents the 

inverted neat resin, the short dashed-dotted green line represents the unidirectional lamina, 

the long dashed-dotted red line represents the plain weave lamina, the short dashed light blue 

line represents the 3-ply laminate, and the long dashed orange line represents the 4-ply 

laminate. Similarly, the normalized axial/transverse relaxation stiffness /&'(#)//&'
%  and 

normalized transverse relaxation stiffness /''(#)//''
%  for the listed laminae and laminates 
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are illustrated in Figure 4.3.2 and Figure 4.3.3, respectively. The relaxation data is plotted 

and predicted up to 10T sec. This duration corresponds to the shortest master curves 

measured by the creep tests performed in Chapter 2. 

 
Figure 4.3.1: The relaxation axial stiffness master curves, 4QQ("), for the unidirectional and plain weave 
laminae, and 3-ply and 4-ply laminates are normalized by their respective glassy response, 4QQ

G . The relaxation 
master curves are obtained by inverting the measured creep compliance properties recorded in Chapter 2 using 
the numerical inversion method developed in Chapter 3. The solid blue line represents the inverted neat resin, 
the short dashed-dotted green line represents the unidirectional lamina, the long dashed-dotted red line 
represents the plain weave lamina, the short dashed light blue line represents the 3-ply laminate, and the long 
dashed orange line represents the 4-ply laminate. 

 
Figure 4.3.2: The relaxation axial/transverse stiffness master curves, 4QR("), for the unidirectional and plain 
weave laminae, and 3-ply and 4-ply laminates are normalized by their respective glassy response, 4QR

G . The 
relaxation master curves are obtained by inverting the measured creep compliance properties recorded in 
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Chapter 2 using the numerical inversion method developed in Chapter 3. The solid blue line represents the 
inverted neat resin, the short dashed-dotted green line represents the unidirectional lamina, the long dashed-
dotted red line represents the plain weave lamina, the short dashed light blue line represents the 3-ply laminate, 
and the long dashed orange line represents the 4-ply laminate.  

 
Figure 4.3.3: The relaxation transverse stiffness master curves, 4RR("), for the unidirectional and plain weave 
laminae, and 3-ply and 4-ply laminates are normalized by their respective glassy response, 4RR

G . The relaxation 
master curves are obtained by inverting the measured creep compliance properties recorded in Chapter 2 using 
the numerical inversion method developed in Chapter 3. The solid blue line represents the inverted neat resin, 
the short dashed-dotted green line represents the unidirectional lamina, the long dashed-dotted red line 
represents the plain weave lamina, the short dashed light blue line represents the 3-ply laminate, and the long 
dashed orange line represents the 4-ply laminate. 

The relaxation flexure properties for the neat resin, unidirectional and plain weave 

laminae, and the 3-ply and 4-ply laminates are predicted using the viscoelastic classical 

laminate theory defined by equation (4.2.1). The predicted relaxation Prony coefficients for 

the unidirectional and plain weave laminae recorded in Table A.17 through Table A.18, 

respectively, are used as inputs in the viscoelastic classical laminate theory to predict the 

relaxation flexure properties of the laminae and laminates. Figure 4.3.4 plots the relaxation 

axial flexure stiffness 0&&(#) normalized by the glassy property 0&&
%  for the respective 

laminae and laminates. The solid blue line represents the inverted neat resin, the short 

dashed-dotted green line represents the unidirectional lamina, the long dashed-dotted red line 

represents the plain weave lamina, the short dashed light blue line represents the 3-ply 
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laminate, and the long dashed orange line represents the 4-ply laminate. Figure 4.3.5 plots the 

relaxation axial/transverse flexure stiffness 0&'(#) normalized by the glassy property 0&'
%  

and Figure 4.3.6 plots the relaxation transverse flexure stiffness 0''(#) in normalized form 

for these same laminae and laminates. Table A.17 through Table A.20 in the appendix, 

record the Prony coefficients of the relaxation flexure properties predicted by the viscoelastic 

classical laminate theory for the neat resin, unidirectional and plain weave laminae, and the 

3-ply and 4-ply laminates, respectively. 

 
Figure 4.3.4: The relaxation axial flexure stiffness 5QQ(") for the neat resin, unidirectional and plain weave 
lamina, and 3-ply and 4-ply laminates are normalized by their respective glassy response,	5QQ

G . The relaxation 
flexure stiffnesses are predicted by the viscoelastic CLT. The solid blue line represents the inverted neat resin, 
the short dashed-dotted green line represents the unidirectional lamina, the long dashed dotted red line 
represents the plain weave lamina, the short dashed light blue line represents the 3-ply laminate, and the long 
dashed orange line represents the 4-ply laminate. 
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Figure 4.3.5: The relaxation axial/transverse flexure stiffness 5QR(") for the neat resin, unidirectional and plain 
weave lamina, and 3-ply and 4-ply laminates are normalized by their respective glassy response,	5QR

G . The 
relaxation flexure stiffnesses are predicted by the viscoelastic CLT. The solid blue line represents the inverted 
neat resin, the short dashed-dotted green line represents the unidirectional lamina, the long dashed-dotted red 
line represents the plain weave lamina, the short dashed light blue line represents the 3-ply laminate, and the 
long dashed orange line represents the 4-ply laminate. 

 
Figure 4.3.6: The relaxation transverse flexure stiffness 5RR(") for the neat resin, unidirectional and plain 
weave lamina, and 3-ply and 4-ply laminates are normalized by their respective glassy response,	5RR

G . The 
relaxation flexure stiffnesses are predicted by the viscoelastic CLT. The solid blue line represents the inverted 
neat resin, the short dashed-dotted green line represents the unidirectional lamina, the long dashed-dotted red 
line represents the plain weave lamina, the short dashed light blue line represents the 3-ply laminate, and the 
long dashed orange line represents the 4-ply laminate. 

The relaxation stiffness properties /"-(#) and flexure stiffness properties 0"-(#) predicted 

by the viscoelastic CLT are compared to the measured creep compliance 2"-(#) and flexure 
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stiffness 3"-(#) recorded in Chapter 2 by inverting the predicted relaxation results for the 3-

ply and 4-ply laminates listed in Table A.19 through Table A.20, respectively, using the 

numerical Laplace inversion method developed in Chapter 3. Figure 4.3.7 through Figure 

4.3.9 illustrate the predicted compliance properties 2"-(#) for the 3-ply and 4-ply laminates 

compared to the measured compliance properties. Figure 4.3.7 compares the normalized axial 

properties 2&&(#)/2&&
% , Figure 4.3.8 the normalized axial/transverse properties, 2&'(#)/2&'

% , 

and Figure 4.3.9 the normalized transverse properties 2''(#)/2''
% . In a similar format, the 

normalized creep flexure stiffness for the 3-ply and 4-ply laminates are illustrated in Figure 

4.3.10 and Figure 4.3.11 comparing measured and predicted axial stiffness 3&&(#)/3&&
%  and 

transverse 3''(#)/3''
%  stiffness, respectively. The 3-ply laminate’s measured properties are 

represented by the dashed light blue line and the predicted properties are represented by the 

dashed-dotted blue line in Figure 4.3.7 through Figure 4.3.11. The 4-ply laminate’s measured 

properties are represented by the long dashed orange line and the predicted properties by the 

long dashed-dotted red line. The flexure stiffness 0"-(#) predicted by the viscoelastic CLT is 

sensitive to slight variations in the laminate thickness as a result of cubing the thickness in 

equation (4.2.1). The input thickness of the unidirectional and plain weave plies composing 

the 3-ply and 4-ply laminates were estimated based on the lamina and laminate thicknesses of 

the samples tested in Chapter 2. The input ply thicknesses were adjusted to produce laminate 

thicknesses that match closely to the measured 3-ply and 4-ply laminates as well as produce 

glassy flexure stiffnesses 3"-
% (#) predicted by inverting the viscoelastic CLT flexure stiffness 

to within <10% of the measured data. Table 4.3.1 and Table 4.3.2 record the measured and 

predicted glassy compliance, glassy flexure, and laminate thicknesses for the 3-ply and 4-ply 
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laminates, respectively. The percent error between the measured and predicted properties are 

also listed. 

 
Figure 4.3.7: The measured and inverted CLT axial creep compliance master curves, 6QQ("), for the 3-ply and 
4-ply laminates are normalized by their respecrtive glassy propeties. The measured axial creep compliance for 
the 3-ply laminate represented by the dashed light blue line and the predicted creep compliance is represented 
by the dashed-dotted blue line. The measured axial creep compliance for the 4-ply laminate is represented by 
the long dashed orange line and the predicted creep compliance is represented by the long dashed-dotted red 
line. 

 
Figure 4.3.8: The measured and inverted CLT axial/transverse creep compliance master curves, 6QR("), for the 
3-ply and 4-ply laminates are normalized by their respecrtive glassy properties. The measured axial/transverse 
creep compliance for the 3-ply laminate represented by the dashed light blue line and the predicted creep 
compliance is represented by the dashed-dotted blue line. The measured axial/transverse creep compliance for 
the 4-ply laminate is represented by the long dashed orange line and the predicted creep compliance is 
represented by the long dashed-dotted red line. 
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Figure 4.3.9: The measured and inverted CLT transverse creep compliance master curves, 6RR("), for the 3-ply 
and 4-ply laminates are normalized by their respective glassy properties.The measured transverse creep 
compliance for the 3-ply laminate represented by the dashed light blue line and the predicted creep compliance 
is represented by the dashed-dotted blue line. The measured transverse creep compliance for the 4-ply laminate 
is represented by the long dashed orange line and the predicted creep compliance is represented by the long 
dashed-dotted red line. 

 
Figure 4.3.10: The measured and inverted CLT axial creep flexure master curves, 7QQ("), for the 3-ply and 4-
ply laminates are normalized by their repsective glassy properties.The measured axial creep flexure for the 3-
ply laminate represented by the dashed light blue line and the predicted creep flexure is represented by the 
dashed-dotted blue line. The measured axial creep flexure for the 4-ply laminate is represented by the long 
dashed orange line and the predicted creep flexure is represented by the long dashed/dotted red line. 
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Figure 4.3.11: The measured and inverted CLT transverse creep flexure master curves, 7RR("), for the 3-ply 
and 4-ply laminates are normalized by their respective glassy properties. The measured transverse creep 
flexure for the 3-ply laminate represented by the dashed light blue line and the predicted creep flexure is 
represented by the dashed-dotted blue line. The measured transverse creep flexure for the 4-ply laminate is 
represented by the long dashed orange line and the predicted creep flexure is represented by the long dashed-
dotted red line. 
 

 Measured 
3-ply !&&%  

Predicted 
3-ply !&&%  

Measured 
3-ply !&'%  

Predicted 
3-ply !&'%  

Measured 
3-ply !''%  

Predicted 
3-ply !''%  

Measured 
3-ply "&&%  

Predicted 
3-ply "&&%  

Measured 
3-ply "''%  

Predicted 
3-ply "''%  

Uni Ply 
Thickness 

(mm) 
- .1 - .1 - .1 - .1 - .1 

PW Ply 
Thickness 

(mm) 
- .2475 - .2475 - .2475 - .2475 - .2475 

Laminate 
Thickness 

(mm) 
.55 .595 .55 .595 .61 .595 .5 .595 .5 .595 

Units #$%"# #$%"# #$%"# &''"# &''"# 
!% or "% 2.82E-5 2.97E-5 -2.01E-5 -2.38E-5 6.24E-5 4.55E-5 3.82 3.72 3.19 3.77 
Error (%) 5.22 18.54 26.99 2.61 18.08 

Table 4.3.1 records the creep compliance and creep flexure glassy properties for the 3-ply laminate obtained 
from both measured and inverted CLT predicted data. In addition, the table records the percent error between 
the respective measured and predicted properties. The measured and adjusted laminate thickness are also 
recorded. 
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 Measured 
4-ply !&&%  

Predicted 
4-ply !&&%  

Measured 
4-ply !&'%  

Predicted 
4-ply !&'%  

Measured 
4-ply !''%  

Predicted 
4-ply !''%  

Measured 
4-ply "&&%  

Predicted 
4-ply "&&%  

Measured 
4-ply "''%  

Predicted 
4-ply "''%  

Uni Ply 
Thickness 

(mm) 
- .14 - .14 - .14 - .14 - .14 

PW Ply 
Thickness 

(mm) 
- .18 - .18 - .18 - .18 - .18 

Laminate 
Thickness 

(mm) 
.62 .64 .62 .64 .65 .64 .60 .64 .63 .64 

Units #$%"# #$%"# #$%"# &	''"# &	''"# 
!% or "% 1.68E-5 1.56E-5 -1.09E-5 -1.20E-5 5.07E-5 4.52E-5 0.416 0.429 3.74 3.58 
Error (%) 6.88 9.73 10.89 3.09 4.30 

Table 4.3.2 records the creep compliance and creep flexure glassy properties for the 4-ply laminate obtained 
from both measured and CLT predicted data. In addition, the table records the percent error between the 
respective measured and predicted properties. The measured and adjusted laminate thickness are also 
recorded. 

 

4.4 Discussion 

The effects of fiber placement, ply orientation, and stacking sequence on the viscoelastic 

behavior of the composites were described in Chapter 2 by plotting the normalized axial, 

axial/transverse, and transverse creep master curves on respective graphs and comparing the 

viscoelastic behavior of the tested laminae and laminates with each other. Similarly, the 

normalized relaxation master curves predicted from the application of the numerical Laplace 

inversion method developed in Chapter 3 are presented in Figure 4.3.1 through Figure 4.3.3. 

As expected, the unidirectional lamina illustrated in Figure 4.3.1 exhibits elastic behavior in 

the axial direction due to the axially placed carbon fibers while its matrix dominated 

axial/transverse and transverse normalized properties illustrated in Figure 4.3.2 and Figure 

4.3.3, respectively, match that of the neat resin. The plain weave lamina relaxes in both the 

axial and transverse directions but has a nearly elastic axial/transverse property. It is 

observed that the 3-ply laminate [±45PW/0/±45PW] composed of two surface plain weave 

plies and a unidirectional ply at its neutral axis has a normalized modulus in the axial 



 

97 

 

direction that behaves similarly to the plain weave lamina. The effect of the elastic fibers 

from the unidirectional ply in the 3-ply laminate has little influence on the laminate’s axial 

relaxation modulus. In contrast, the 4-ply laminate [0/±45PW/±45PW/0] composed of two 

unidirectional surface plies and two plain weave plies at its midplane has a nearly elastic 

axial modulus that mimics the behavior of the normalized unidirectional lamina master 

curve. The normalized axial/transverse and transverse relaxation master curves for both the 

3-ply and 4-ply laminates are nearly identical. The additional unidirectional ply in the 4-ply 

laminate layup makes the laminate’s normalized axial/transverse properties relax slightly 

more than the 3-ply laminate. The relaxation properties of the unidirectional and plain weave 

laminae, and the 3-ply and 4-ply laminates behave as expected, having similar viscoelastic 

tendencies that align with the observations of the measured creep properties presented in 

Chapter 2. 

Using the same format discussed above, the relaxation behavior of the flexure master 

curves predicted by the viscoelastic classical laminate theory for the neat resin, unidirectional 

and plain weave laminae, and the 3-ply and 4-ply laminates are compared in Figure 4.3.4 

through Figure 4.3.6 using plots of the normalized axial, axial/transverse, and transverse 

flexure properties, respectively. The unidirectional lamina’s normalized flexure in the axial 

direction is observed in Figure 4.3.4 to have nearly elastic behavior. In contrast, the matrix 

dominated relaxation properties of the unidirectional lamina’s axial/transverse and transverse 

flexure properties illustrated in Figure 4.3.5 and Figure 4.3.6, respectively, behave similarly 

to the neat resin when comparing their normalized master curves. The plain weave lamina’s 

axial and transverse normalized flexure properties relax but are less than the neat resin. This 

behavior is attributed to the carbon fiber woven tows aligned ±45o to the axial direction of 



 

98 

 

the lamina mitigating some of the viscoelasticity of the matrix. This is notably a different 

response than what was observed in the creep tests. As mentioned in Chapter 2, more 

experimental testing of the plain weave lamina is required to better understand how kinks in 

the continuous fiber tows due to the weave affect the viscoelastic response of the material. 

The relaxation behaviors observed in the unidirectional and plain weave laminae are much 

more pronounced in the relaxation flexure response of the 3-ply and 4-ply laminates 

compared to their relaxation modulus properties discussed earlier. The plies at the surface of 

the laminate make a greater contribution to the flexure properties than the plies located closer 

to the midplane (bending neutral axis). The unidirectional ply at the neutral axis of the 3-ply 

laminate does little to mitigate relaxation. As a result, the surface plain weave plies of the 3-

ply laminate primarily influence its relaxation flexure properties. Similar behavior is 

observed with the 4-ply laminate’s flexure properties where the unidirectional surface plies 

of the laminate dominate the relaxation flexure stiffness in the axial direction resulting in an 

elastic behavior that matches the normalized master curve of the unidirectional lamina. The 

4-ply laminate’s axial/transverse and transverse relaxation flexure properties, on the other 

hand, are a combination of the relaxation behavior of the unidirectional plies on either side of 

the laminate’s neutral axis and the laminates plain weave surface plies. The 4-ply laminate’s 

normalized axial/transverse and transverse master curves lie between the more viscoelastic 

unidirectional lamina and the less viscoelastic plain weave lamina.  

The measured creep compliance and flexure test data for the 3-ply and 4-ply laminates is 

directly compared to relaxation properties predicted by the viscoelastic CLT by inverting the 

relaxation stiffness and flexure properties using the numerical Laplace inversion method 

developed in Chapter 3. Figure 4.3.7 through Figure 4.3.11 present the originally measured 
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3-ply and 4-ply data alongside the inverted CLT master curves for the individual material 

properties normalized by their respective glassy properties, e.g., axial creep compliance 

2&&(#)/2&&
% , axial/transverse creep compliance 2&'(#)/2&'

% ,  transverse creep compliance 

2''(#)/2''
% , axial creep flexure 3&&(#)/3&&

% , and transverse creep flexure 3''(#)/3''
% , 

respectively. The inverted CLT 4-ply creep compliance properties illustrated in Figure 4.3.7 

through Figure 4.3.9 using normalized master curves, match well with the measured data. 

The inverted CLT creep compliance properties for the 3-ply laminate, however, tends to 

creep less than the measured data. This may be a further indication of the observations 

discussed in Chapter 2, which noted that the grips used in the tensile creep tests may have 

been applying shear loading to the more viscoelastic plain weave surface plies of the 3-ply 

laminate resulting in test results exhibiting a greater degree of viscous response. However, 

the CLT model appears to over predict the creep flexure properties illustrated in Figure 

4.3.10 and Figure 4.3.11 in which the plain weave surface plies of the 3-ply laminate 

dominate the creep normalized master curves resulting in more creep than illustrated by the 

measured data. The flexure master curves predicted by the CLT for the 4-ply laminate match 

more favorably to measured data with predictions creeping slightly less. The variation 

between the measured and predicted normalized master curves appears to be primarily the 

result of discrepancies in the laminate’s ply thickness. This is evident when comparing the 

measured and predicted glassy properties of the 3-ply and 4-ply laminates listed in Table 

4.3.1 and Table 4.3.2. The 4-ply laminates glassy properties (compliance and flexure) fall 

within a 10% error. The 3-ply laminates glassy properties, however, vary more with a 

maximum transverse compliance error of 26%. The laminate thicknesses of the predicted and 

measured samples are quite similar, but the unidirectional and plain weave ply thicknesses 
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vary more between laminates. As discussed in Chapter 2, samples were water-jet cut from a 

single sheet of the respective unidirectional and plain weave laminae, and the 3-ply and 4-ply 

laminates. Slight variations in the lamina or laminate’s sheet thickness, resin concentration, 

and ply orientations could contribute to the variability observed in the material properties. 

Tighter quality control and greater statistical test profiles could provide more accurate test 

data reducing the variability between the measured and predicted glassy values for the axial, 

axial/transverse, and transverse properties. Overall, the viscoelastic CLT and inversion 

method predictions trend towards the expected creep response of the 3-ply and 4-ply 

laminate and provide the relaxation modulus and flexure properties required for the 

development of structural models.  

 

4.5 Conclusion 

Creep compliance and flexure properties are often experimentally obtained in lieu of the 

more difficult to measure relaxation properties. The Laplace numerical inversion method 

developed in Chapter 3 provides a means of predicting the relaxation properties from 

measured creep data. The numerical Laplace inversion of the measured creep compliance 

properties of the neat resin, unidirectional and plain weave laminae, and the 3-ply and 4-ply 

laminates from Chapter 2 are recorded in this chapter. Inversion of the creep flexure 

properties is not possible due to the lack of measured axial/transverse creep flexure 

properties. As a result, the viscoelastic classical laminate theory is used to predict the lamina 

and laminate relaxation flexure properties using measured inverted unidirectional and plain 

weave compliance data as inputs. The numerical Laplace inversion method and the 

viscoelastic classical laminate theory discussed in this chapter provide a means of obtaining 
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relaxation properties without the need for complex relaxation tests. The relaxation properties 

predicted by the two methods can be used in structural models. 
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Chapter 5  
 
Viscoelastic Behavior of a Biaxially Bent 
Composite Storable Tubular Extendable 
Member 

 

5.1 Introduction 

An analytical model is needed to define how laminate composition (plies composed of 

either unidirectional fibers or plain weave mats), ply orientation, and stacking sequence 

impact the viscoelastic performance of a composite STEM. The viscoelastic behavior of tape 

springs, which are very similar to STEMs, has been studied in the literature [3], [9], [10], 

[48]–[50]. Tapes spring have a more open U-shaped cross-section and are less tubular than 

STEMs. Nonetheless, the stowage configuration of STEMs and their unfolding action is 

comparable to the behavior of a tape spring, in which imposed biaxial bending curvatures 

result in moments that can relax, impeding the tape springs deployment. Similarly, the 

deformation in the tape spring's deployed curvature due to viscoelasticity, like that of the 

STEM, can affect the stiffness of the structure. In an attempt to understand viscoelastic 

effects in tape springs, Kwok and Pellegrino [30] modified elastic finite element analysis 

(FEA) methods to model a tape spring made from a plain weave composite. The stowed 
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configuration of their tape spring varies slightly from the STEMs shown in Figure 1.1.1. 

Kwok and Pellegrino's tape spring are severely bent in half rather than rolled, resulting in a 

biaxial bend state in a localized section of the tape spring as opposed to the entire length of a 

STEM as illustrated in Figure 1.1.3. Once bent, their tape spring is held in this position for 

some time and allowed to relax. It is then deployed and allowed to return to its original 

configuration. The resulting advanced FEA model is useful for predicting complex 

transitional shapes of deployable tape spring structures. However, the approach is 

computationally time-consuming and does not provide a quick and straightforward method 

for modeling various STEMs composed of differing laminate layups, and geometric 

configurations (e.g., stowed and deployed geometries). In contrast, a mathematical model is 

developed in this chapter that can quickly predict the relaxation moments and recovery 

curvature of composite STEMs in biaxial bending. The model builds upon analytical 

solutions for one-dimensional simple beam structures [20], [49], and uses hereditary integral 

expressions, found in the literature [18], [51], to model the viscoelastic behavior of STEMs. 

Through the use of classical laminate theory, the model provides a tool to aid in the design 

evaluation of composite STEMs for various applications based on structural composition 

(e.g., number of plies, laminae type and ply orientation), geometrical configurations (e.g., 

deployed and stowed curvatures), and stowed durations. 

 

5.2 Background 

Hereditary integrals were developed by Boltzmann and Volterra as part of their work on 

hereditary mechanics to account for time-dependent stress-strain relationships, also known as 

the memory effect [52]. Deformation or creep processes in viscoelastic solids with memory 
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have been modeled using hereditary integrals [18], [51]. Time-dependent beam bending 

equations of the hereditary integral type are found in the literature representing beam 

deflection and moment response [20], [49], [53]. A one-dimensional, viscoelastic, isotropic 

beam in bending provides the foundation for the anisotropic biaxial bending equations 

developed in this chapter. The general form of the beam bending equations represented in the 

literature is derived using time-dependent laminate convolution integrals in the form 

9(#) = ∫ 3(# − H)
H
HN
((H)3H

3
5;   (5.2.1a) 

((#) = ∫ 0(# − H)
H
HN
9(H)3H

3
5;   (5.2.1b) 

where 9(#) is the curvature, # is time, 3(#) is the creep flexural compliance, ((#) is the 

bending moment and 0(#) is the relaxation flexure modulus. The hereditary integral spans 

the entire load history from time −∞ to the current time #, but the material is assumed to be 

unchanged until just before the deformation is applied at time 0. As a result, the integration 

from −∞ to # can be rewritten from 05 to #, 

9(#) = ∫ 3(# − H)
H
HN
((H)3H

3
O#   (5.2.2a) 

((#) = ∫ 0(# − H)
H
HN
9(H)3H

3
O#   (5.2.2b) 

What follows is the development of the equations that represent the relaxation form of the 

general hereditary equations, in which the resulting bending moment is deduced from the 

curvature that the beam experiences. The same methods applied to relaxation can be applied 

to creep, in which the curvature is deduced from the applied bending moment. 

Figure 5.2.1 represents the bending curvature and moment histories of a one-dimensional 

beam in bending, (a) and (b), respectively. An imposed constant change in curvature ∆9( is 

quickly applied at # = 0 and the resulting moment relaxes while the change in curvature is 
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held fixed. At time # = #( the constant change in curvature is released, and the bending 

moment is reduced to zero. Due to the preceding viscoelastic response (e.g., relaxation of the 

material), the change in curvature at # = #( is initially nonzero, but over time # > #(, the 

beam's curvature will recover to its original undeformed state. This phenomenon occurs 

because the polymer chains of the resin matrix slowly rearrange to a minimum potential 

energy state (e.g., the beam's undeformed, unstressed state). All imposed changes in the 

moment and curvature of the beam are assumed to occur instantaneously and are represented 

by a Heaviside step function, m(#). This is a valid representation for viscoelastic materials 

when imposed deformation rates and the rate of change of imposed curvatures are 

sufficiently fast to render viscoelasticity negligible during such transitions. The Heaviside 

function is such that. 

m(#) = n
0, # < 0
1, # ≥ 0

  (5.2.3) 

As shown in Figure 5.2.1a, a constant change in curvature	∆9( is imposed on the beam from 

0 < # ≤ #(. The beam equations (5.2.2a) and (5.2.2b) are broken into two stages, relaxation 

(0 < # ≤ #(), and recovery (#( < # < ∞). The initial applied constant change in 

curvature	∆9( is represented using the Heaviside step function as given in equation (5.2.3). 

∆9(#) = m(#)∆9( = n
						0, # < 0
∆9( , # ≥ 0

  (5.2.4) 

The resulting relaxation moment is obtained by inserting equation (5.2.4) into the general 

hereditary beam bending equation (5.2.2b). 

((#) = ∫ 0(# − H)
H
HN
m(H)∆9(3H

3
O#   (5.2.5a) 

The derivative of the Heaviside step function is the Dirac delta function s(#). 
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((#) = ∫ 0(# − H)s(H)∆9(3H
3
O#   (5.2.5b) 

The integration of equation (5.2.5b) results in the final expression of the moment equation for 

an applied constant change in curvature. 

((#) = 0(#)∆9(  (5.2.5c) 

At time # = #( the constant curvature is quickly released, and the resulting moment is 

reduced to zero. Equation (5.2.5c) is modified with the use of the Heaviside step function to 

represent the zero moment for # ≥ #(. 

((#) = 0(#)∆9( − m(# − #()0(#)∆9
( = o

0(#)∆9( , 0 ≤ # < #(
									0,							# ≥ 0

  (5.2.6) 

Inserting equation (5.2.6) into the general form of the curvature equation (5.2.2a) results in 

the curvature equation for a relaxing beam in pure bending. 

∆9(#) = ∫ 3(# − H)
H
HN
(0(H)∆9( − m(H − #()0(H)∆9

()3H
3
O#   (5.2.7a) 

The result in equation (5.2.7a) can be formed into two integrals. 

∆9(#) = ∫ 3(# − H)
H
HN
(0(H)∆9()3H

3
O#    

−∫ 3(# − H)
H
HN
(m(H − #()0(H)∆9

()3H
3
O#   (5.2.7b) 

Note that 

∫ 3(# − H)
H
HN
0(H)3H

3
O# = ∫ 0(# − H)

H
HN
3(H)3H

3
O# = m(#)  (5.2.8) 

Replacing the first integral in (5.2.7b) by the result from equation (5.2.8) and deriving the 

products in the second integrand we obtain 

∆9(#) = m(#)∆9( − ∫ [3(# − H)s(H − #()0(H)∆9
(3

O#    

+m(H − #()3(# − H)
H
HN
0(H)∆9(]3H  (5.2.7c) 

The integral in equation (5.2.7c) containing the Dirac delta function becomes 
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∫ 3(# − H)s(H − #()0(H)∆9
(3H

3
O# = 	3(# − #()0(#()∆9

(  (5.2.9) 

The other integral in equation (5.2.7c) can be rearranged to provide 

∫ m(H − #()3(# − H)
H
HN
0(H)∆9(3H

3
O#    

= m(# − #() ∫ 3(# − H)
H
HN
0(H)∆9(3H

3
3'

  (5.2.10) 

As a result, the change in curvature from equation (5.2.7c) can be simplified by the use of 

equations (5.2.9) and (5.2.10) to give 

∆9(#) = m(#)∆9( − 3(# − #()0(#()∆9
(   

−m(# − #() ∫ 3(# − H)
H
HN
0(H)∆9(3H

3
3'

  (5.2.7d) 

where it is to be understood that 0(#) = 0 for # < 0. The curvature equation (5.2.7d) can be 

expressed for the different time intervals involving constant curvature, 0 ≤ # < #(, elastic 

recovery at time	# = #(, and viscoelastic recovery thereafter for # > #(.  

∆"($) = '
∆"!,

∆"! − *(0),($!)∆"!,
∆"! − *($ − $!),($!)∆"! − ∫ *($ − .) "

"#,(.)∆"
!*.$

$( ,

0 ≤ $ < $!
$ = $!%
$ > $!

	  (5.2.7e) 

In the next section, equations (5.2.6) and (5.2.7d), representing the moment and curvature 

history of a beam in pure bending, will be used as the foundations to develop expressions for 

the biaxially bent condition of the composite material.   
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Figure 5.2.1: The viscoelastic curvature (a) and bending moment (b) for a one-dimensional beam in pure 
bending. A constant curvature is imposed during 0 ≤ " < "S, resulting in a bending moment that relaxes.  At 
" = "S the imposed constant curvature is quickly released and the bending moment reduces to zero. As a result 
of relaxation, the released curvature is nonzero. However, as time progresses " > "S the curvature recovers 
viscoelastically to zero, due to the slow rearranging of the polymer chains of the neat resin matrix to a 
minimum potential energy state (e.g., the beam’s undeformed, unstressed state). 

 

5.3 Methods 

Biaxial bending of a viscoelastic composite is characterized by the use of time-dependent 

applied bending moments and curvatures consistent with classical laminate theory. All 

composites are assumed to be balanced/symmetric laminates in which no torsional/shear 

coupling occurs in tension and bending. Hereditary integrals are used to define the 

viscoelastic response of a STEM (e.g., tape spring) deformed by two axial curvatures defined 

as a biaxial state of bending. Figure 5.3.1 illustrates a section of the STEM presented in 

Figure 1.1.3 in which the z-direction extends along the length of the undeformed tubular 

portion of the STEM (a). The STEM in this configuration prior to deformation is assumed to 

be free of stress. A biaxial state of bending is imposed at # = 0 by first flattening the STEM 

as shown going from illustration (a) to (b) in Figure 5.3.1 by imposing a bending curvature 

∆9)). The STEM is then rolled up about the x-axis into a uniform stowed curvature ∆9&&, as 

shown going from illustration (b) to (c). Illustration (c) shows the STEM reverse rolled in its 

(a) (b)

∆"!
#!
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undeployed, stowed configuration with both principal curvatures defined to be positive. This 

state of bending results in a biaxial compression of the STEM's outer surface and a biaxial 

tension of the inner surface. In order to prevent the STEM from microbuckling in the 

compressed state, the laminates must be thin- 2 to 4 plies thick- and the undeformed STEM 

radius and reversed roll radius must be sufficiently large to reduce compressive strains. The 

stowed configuration curvature is defined to be ∆9)) = 1/<$, and is selected to prevent 

micro buckling. The bending curvature that arises due to flattening the STEM (Figure 5.3.1 

(b)) is defined to be ∆9&&, and is equivalent to its undeformed curvature,	9&& = 1/<#. The 

biaxial state of bending imposed to stow the STEM is maintained for a period of time 0 <

# ≤ #(, typically the storage duration of the STEM after production, during which the 

resulting axial and transverse bending moments, ())(#) and (&&(#), respectively, relax due 

to the material’s viscoelastic properties. During deployment at # = #(, the STEM unrolls 

from being coiled around the x-axis and extends in the z-direction. The imposed biaxial 

bending curvatures, ∆9)) and ∆9&&, are released. Due to the tubular shape of the deployed 

STEM (nonzero transverse curvature), the axial curvature ∆9)) immediately goes to zero on 

deployment, which produces a negative axial moment ())(#) as a result of the 

viscoelastically changed material. The transverse moment (&&(#) on deployment is zero 

resulting in a nonzero transverse curvature ∆9&&(#). As time progresses, i.e., # > #(, both the 

negative axial moment ())(#) and nonzero transverse curvature ∆9&&(#) will slowly return 

to zero as the STEM recovers to its original stress-free deployed configuration, Figure 5.3.1 

(a). 
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Figure 5.3.1: A segment of a STEM in its deployed (a), flattened (c), and biaxial stowed configuration (c). The 
STEM is longer than shown in the z-direction as only a segment is illustrated. In the stowed configuration, the 
STEM is rolled up around the x-axis in a coil. The stowed curvature ∆<TT = 1/>E (c) is selected such that micro 
buckling in the laminate does not occur. The other principal curvature ∆<QQ = 1/>D is determined by the 
deployed state (a), which must be flattened to stow the STEM. 

In order to simplify the following derivations, it is assumed that at time # = 0 both 

principal curvatures are simultaneously and rapidly imposed to deform the STEM into the 

biaxially bent stowed configuration and that at time # = #( both of the principal curvatures 

are simultaneously and rapidly modified. In reality, during both stowage and deployment, the 

STEM must be flattened first, inducing the change of one principal curvature, before the 

other principal curvature change can occur. However, if the duration required to stow and 

deploy the boom are sufficiently short in comparison to the characteristic time for the 

material's viscoelastic response, the assumption of simultaneous and rapid biaxial bending 

deformation is valid for the solutions derived in this chapter. Furthermore, Figure 5.3.1 

illustrates the stowed and deployed transitions assumed by the model developed in this 
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chapter, which ignores the complex transition zones that arise as the boom unrolls from the 

biaxial stowed configuration to the deployed configuration as illustrated in Figure 1.1.3. 

Figure 5.3.2 illustrates a STEM's bending moment and curvature histories in both 

principal directions resulting from the stowed and deployed configurations illustrated in 

Figure 5.3.1. The curvatures are shown in Figure 5.3.2 (a) and (c) and the bending moments 

in Figure 5.3.2 (b) and (d). Figure 5.3.2 (a) and (b) show the axial curvature and bending 

moment while Figure 5.3.2 (c) and (d) show the transverse curvature and bending moment. 

The bending moments in the stowed state (0 < # ≤ #() experience relaxation due to constant 

biaxial curvature.  The degree to which the moments relax is dependent on the material. In 

the case of a composite, stacking sequence and orientation play a significant role in the 

material's viscoelastic response. At # = #( the curvatures are released, and the STEM 

responds elastically and then commences to recover viscoelastically. The material, at this 

time, has lost some memory of its original undeformed shape, resulting in the retention of a 

nonzero transverse curvature (Figure 5.3.2 (c)). The transverse moment of the STEM 

immediately returns to zero (Figure 5.3.2 (d)). As noted above, the axial curvature is forced 

to zero (illustrated in Figure 5.3.2 (a)) due to the geometric configuration of the STEM even 

though the material seeks a nonzero curvature similar to that developed for the transverse 

curvature. As a result, during # > #(, the material experiences an induced bending moment in 

the axial direction, as shown in Figure 5.3.2 (b).  During this phase, the axial bending 

moment is negative, and the transverse curvature is positive, but both recover towards zero 

over time as the STEM returns to its original undeformed, unstressed, deployed state.   
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Figure 5.3.2: The biaxial curvature and bending moment histories of a viscoelastic STEM. The curvatures are 
shown in illustrations (a) and (c) and the bending moments in illustrations (b) and (d). Illustrations (a) and (b) 
show the axial curvature and bending moment while illustration (c) and (d) show the transverse curvature and 
bending moment. Biaxial curvatures are applied at " = 0 to stow the STEM and are released at " = "S to 
deploy the STEM. The STEM recovers during " > "S to its original undeformed, unstressed, deployed state.  

As mentioned earlier, all materials are assumed to be anisotropic and viscoelastic with 

balanced symmetric properties that eliminate any torsional/shear coupling properties.  The 

flexural relaxation properties of classical laminate theory (CLT), i.e., those contained in 0 of 

the ABD matrix, are used. The history of the axial curvature changes is given by 

∆9))(#) = 	 |m(#) − m(# − #()}∆9))
(   (5.3.1) 

where, at #	 = 	0, a curvature change of magnitude ∆9))
(  is rapidly imposed, and then, at # =

#(, a second rapid curvature change completely eliminates the initial deformation, with the 

latter condition persisting for # > #(. The history of the transverse curvature changes is given 

by  

∆9&&(#) = m(#)∆9&&
( − m(# − #()∆9y&&(#)  (5.3.2) 

where, at #	 = 	0, a curvature change of magnitude ∆9&&
(  is rapidly imposed, and then, at # =

#(, a second rapid curvature change occurs to eliminate the bending moment, (&&, with the 

latter quantity remaining zero for # > #(. However, the change of curvature at time # = #(, 
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and the history of the curvature for # > #( is, as yet, undetermined and so its negative is 

represented by an as yet unknown function ∆9y&&(#). 

A hereditary integral form of the classical laminate theory flexure equation is used for the 

relationship between the bending moments and the curvature changes in the form 

())(#) = ∫ 0))(# − H
3
O# )

H
HN
∆9))(H)3H + ∫ 0)&(# − H

3
O# )

H
HN
∆9&&(H)3H  (5.3.3a) 

(&&(#) = ∫ 0&)(# − H
3
O# )

H
HN
∆9))(H)3H + ∫ 0&&(# − H

3
O# )

H
HN
∆9&&(H)3H  (5.3.4a) 

Insertion of equations (5.3.1) and (5.3.2) into equations (5.3.3a) and (5.3.4a) then provides 

())(#) = ∫ 0))(# − H
3
O# )

H
HN
\|m(H) − m(H − #()}∆9))

( ] 3H   

+∫ 0)&(# − H
3
O# )

H
HN
|m(H)∆9&&

( − m(H − #()∆9y&&(H)}3H  (5.3.3b) 

(&&(#) = ∫ 0&)(# − H
3
O# )

H
HN
\|m(H) − m(H − #()}∆9))

( ] 3H   

+∫ 0&&(# − H
3
O# )

H
HN
|m(H)∆9&&

( − m(H − #()∆9y&&(H)}3H  (5.3.4b) 

For # < #( the bending moments from equations (5.3.3) and (5.3.4) are 

())(#) = 0))(#)∆9))
( + 0)&(#)∆9&&

(   (5.3.5a) 

(&&(#) = 0&)(#)∆9))
( + 0&&(#)∆9&&

(   (5.3.5b) 

For # ≥ #( they are 

())(#) = |0))(#) − 0))(# − #()}∆9))
( + 0)&(#)∆9&&

(   

−0)&(# − #()∆9y&&(#() − ∫ 0)&(# − H
3
3'

)
H
HN
∆9y&&(H)3H  (5.3.6a) 

(&&(#) = |0&)(#) − 0&)(# − #()}∆9))
( + 0&&(#)∆9&&

(   

−0&&(# − #()∆9y&&(#() − ∫ 0&&(# − H
3
3'

)
H
HN
∆9y&&(H)3H = 0  (5.3.6b) 

where the fact that (&& = 0 for # ≥ #( is identified in equation (5.3.6b). 
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To obtain a solution for the curvatures and moments, a numerical method is used utilizing 

a Prony series to estimate the recovery response for the transverse recovery curvature. 

∆9y&&(#) = ∆9&&
( − ∑ ∆9&&

, >5d
+(353')6

,7#   (5.3.7) 

The Prony time constants F, are set equal to the inverse of the time decay spanning the 

master curve history of the material (e.g., 0.1, 0.01, 0.001, etc.), and ∆9&&
,  are Prony series 

coefficients to be solved for numerically. The transverse curvature equation (5.3.2) can, 

therefore, be rewritten as 

∆9&&(#) = ∆9&&
( − m(# − #() \∆9&&

( − ∑ ∆9&&
, >5d

+(353')6
,7# ]  (5.3.8) 

In order to solve the system of equations further the known relaxation flexure, 0(#), defined 

by the Prony series equation (1.3.8c) with 0% = 0* + ∑ 0+6
+7#  is inserted into the general 

form of the transverse moment equation (5.3.6b) to obtain for # > #( 

(&&(#) = |0&)
* +∑ 0&)

+>58
<36

+7# }∆9))
( − |0&)

* + ∑ 0&)
+>58

<(353')6
+7# }∆9))

(    

+|0&&
* +∑ 0&&

+ >58
<36

+7# }∆9&&
(    

−|0&&
* + ∑ 0&&

+ >58
<(353')6

+7# }(∆9&&
( −∑ ∆9&&

,6
,7# )   

−∫ |0&&
* +∑ 0&&

+ >58
<(35N)6

+7# }
H
HN
\∆9&&

( − ∑ ∆9&&
, >5d

+(N53')6
,7# ] 3H

3
3'

  (5.3.9) 

The integral in equation (5.3.9) can be reduced further by differentiating the unknown 

curvature function. 

∫ |0&&
* +∑ 0&&

+ >58
<(35N)6

+7# } \∑ ∆9&&
, F,>5d

+(N53')6
,7# ] 3H

3
3'

  (5.3.10) 

The integral can then be separated into two parts. 

0&&
* ∑ ∆9&&

, F,6
,7# ∫ >5d

+(N53')3H
3
3'

= 0&&
* ∑ ∆9&&

,6
,7# \1 − >5d

+(353')]  (5.3.11) 

∫ ∑ 0&&
+ >58

<(35N)6
+7# ∑ ∆9&&

, F,>5d
+(N53')6

,7# 3H
3
3'
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= ∑ ∑
E77<∆S77+ d+

8<5d+
\>5d

+(353') − >58
<(353')]6

,7#
6
+7#   (5.3.12) 

Inserting equation (5.3.11) and (5.3.12) into equation (5.3.9) results in the expression of the 

transverse moment equation for # > #(.  

(&&(#) = |0&)
* + ∑ 0&)

+>58
<36

+7# }∆9))
( − |0&)

* + ∑ 0&)
+>58

<(353')6
+7# }∆9))

(    

+|0&&
* + ∑ 0&&

+ >58
<36

+7# }∆9&&
(    

−|0&&
* + ∑ 0&&

+ >58
<(353')6

+7# }(∆9&&
( −∑ ∆9&&

,6
,7# )   

−0&&
* ∑ ∆9&&

,6
,7# \1 − >5d

+(353')]   

−∑ ∑
E77<∆S77+ d+

8<5d+
\>5d

+(353') − >58
<(353')]6

,7#
6
+7# = 0  (5.3.13) 

The transverse recovery curvature is evaluated by solving numerically for the Prony 

series coefficients ∆9&&
,  in equation (5.3.7) that result in satisfying the transverse moment 

equation (5.3.13). The time scale in which the data is obtained is dependent on the duration 

of storage #( of the STEM and the material’s viscoelastic master curve time history. The 

Prony series curvature constants are solved using a numerical method and are unique 

solutions dependent on the applied biaxial curvature, material properties, and duration of 

storage. As a result, the solution for one set of conditions cannot be applied universally. 

Using the numerical solution for the recovery curvature ∆9y&&(#) (equation (5.3.7)), the result 

for the axial moment can now be obtained. First, equation (5.3.6a) is rewritten using the 

Prony series form of the relaxation curvature (5.3.6) and bending stiffness material properties 

(1.3.8c) with 0% = 0* + ∑ 0+6
+7# , and for # > #( leads to 

())(#) = |0))
* + ∑ 0))

+>58
<36

+7# }∆9))
( − |0))

* +∑ 0))
+>58

<(353')6
+7# }∆9))

(    

+|0)&
* + ∑ 0)&

+>58
<36

+7# }∆9&&
(    
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−|0)&
* + ∑ 0)&

+>58
<(353')6

+7# }(∆9&&
( − ∑ ∆9&&

,6
,7# )   

−∫ |0)&
* +∑ 0)&

+>58
<(35N)6

+7# }
H
HN
\∆9&&

( − ∑ ∆9&&
, >5d

+(N53')6
,7# ] 3H

3
3'

  (5.3.14) 

The approach used for the transverse moment equation (5.3.9) is also applied to the axial 

moment equation (5.3.14), for # > #( resulting in 

())(#) = |0))
* + ∑ 0))

+>58
<36

+7# }∆9))
( − |0))

* +∑ 0))
+>58

<(353')6
+7# }∆9))

(    

+|0)&
* + ∑ 0)&

+>58
<36

+7# }∆9&&
(    

−|0)&
* + ∑ 0)&

+>58
<(353')6

+7# }(∆9&&
( − ∑ ∆9&&

,6
,7# )   

−0)&
* ∑ ∆9&&

,6
,7# \1 − >5d

+(353')]   

−∑ ∑
EU7<∆S77+ d+

8<5d+
\>5d

+(353') − >58
<(353')]6

,7#
6
+7#   (5.3.15) 

Based on the method and equations derived above, the viscoelastic response of an anisotropic 

STEM, when stored with biaxial curvature, can be fully defined using equation (5.3.1) for 

axial curvature, ∆9))(#), equation (5.3.8) for the transverse curvature, ∆9&&(#), equation 

(5.3.15) for the axial moment, ())(#), and equation (5.3.13) for the transverse moment, 

(&&(#). 

The biaxial anisotropic viscoelastic system of equations (biaxial bend model) can be 

validated by reducing the system of equations developed above to match that of the one-

dimension isotropic condition, with the moment and curvature in the axial direction equal to 

zero. With the use of the Prony series, the history of the curvature change is given by 

∆9(#) = m(#)∆9( − m(# − #() \∆9
( − ∑ ∆9,>5d

+(353')6
,7# ]  (5.3.16) 

where the Prony coefficients ∆9, are unknown and solved numerically by satisfying the 

bending moment equation for # > #( . 
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((#) = |0* + ∑ 0+>58
<36

+7# }∆9(   

−|0* +∑ 0+>58
<(353')6

+7# }(∆9( − ∑ ∆9,6
,7# )   

−0* ∑ ∆9,6
,7# \1 − >5d

+(353')]   

−∑ ∑
E<∆S+d+

8<5d+
\>5d

+(353') − >58
<(353')]6

,7#
6
+7# = 0  (5.3.17) 

The Prony coefficients for the unknown recovery curvature, defined by equation (5.3.16) for 

a one-dimensional beam in bending, are numerically solved by equating the bending moment 

(equation (5.3.17)) to zero for # ≥ #(. The results are compared to the one-dimensional beam 

bending and curvature solutions derived based on the literature [16], [18], [20], [49], 

equation (5.2.6) and (5.2.7d), respectively, providing a level of confidence for the numerical 

method’s use in the more complex multiaxial case of a composite STEM in biaxial bending.  

 

5.4 Results 

The numerical method derived to predict the viscoelastic response of a STEM in biaxial 

bending is evaluated for a one-dimensional case using the neat resin relaxation flexure 

properties 0(#) and creep flexure properties 3(#) recorded using Prony series coefficients in 

Table 5.4.1 and Table 5.4.2, respectively. For the following predictions, a one-dimensional 

beam is initially subjected to a change in curvature ∆9( = 0.0098 mm-1 and then released at 

#( = 100,000,000	*>? (~3.17	D>E<*). The bending moment due to the initially imposed 

change in curvature relaxes until the curvature is released, at which point the bending 

moment reduces completely to zero. Using the inputs listed above, the one-dimensional 

bending curvature and moment equations (5.3.16) and (5.3.17), respectively, derived from 

the reduced form of the biaxial bending model are evaluated. The Prony series representing 
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the recovery curvature portion of equation (5.3.16) (# > #() is evaluated using a numerical 

solver to find the Prony coefficients that satisfy the moment equation (5.3.17) set equal to 

zero for # > #(. The Prony coefficients are listed in Table 5.4.3 and are unique for the given 

material properties and imposed bending history listed above. The result for the bending 

moment and curvature histories of the one-dimensional form of the biaxial bending model 

are compared to the respective one-dimensional moment and curvature equations (5.2.6) and 

(5.2.7d) derived based on literature results [16], [18], [20], [49] which are evaluated using the 

same input parameters listed above. Figure 5.4.1 presents the solutions for the bending 

moment (a) and the bending curvature (b) histories for a one-dimensional beam evaluated by 

both methods. The numerical results from the reduced biaxial bend model are represented by 

a solid orange line and the one-dimensional results are represented by a dashed blue line.     
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Figure 5.4.1: The histories of one-dimensional bending moment (a) and bending curvature (b) are shown for a 
one-dimensional beam in bending composed of a viscoelastic material. The relaxation and creep flexure 
properties represented by Prony series constants are given in Table 5.4.1 and Table 5.4.2, respectively. The 
dashed blue line is the solution from the one-dimensional beam bending equations developed in this chapter 
based on the solutions of the hereditary integrals found in the literature [16], [18], [20], [49]. The orange solid 
line presents the numerical solution from the biaxial bend model developed in this chapter but reduced to one-
dimensional bending. 
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? 5V	(Nmm) ,V	()2@OD)  
A 1.60E+3  
1 2.47 1.60 
2 5.74E-3 1.55E-1 
3 1.15E+2 1.69E-2 
4 1.01E-2 1.61E-3 
5 8.47E+1 1.63E-4 
6 5.87E+1 1.62E-5 
7 1.20E+2 1.70E-6 
8 2.12E+1 1.62E-7 
9 6.67E+1 1.63E-8 
10 9.20E+1 1.67E-9 
11 7.27E+1 1.63E-10 
12 6.45E+1 1.67E-11 
13 6.11E+1 1.57E-12 

Table 5.4.1 lists the Prony series coefficient representing the relaxation flexure properties 5(") of the isotropic, 
one-dimensional, neat resin epoxy. The table lists the relaxation flexure properties starting with the equilibrium 
parameter 5W, followed by thirteen Prony series coefficients 5V and their respective time constants ,V where 
m = 1 through 13. The Prony coefficients have units of N-mm and the time constants have units of sec-1. 

 

? 7V	(B??OD) -V	()2@OD) 
A 6.24E-4  
1 4.01E-7 1.61 
2 4.89E-6 1.55E-1 
3 9.12E-6 1.61E-2 
4 1.15E-5 1.61E-3 
5 1.38E-5 1.57E-4 
6 1.62E-5 1.58E-5 
7 1.69E-5 1.60E-6 
8 1.65E-5 1.60E-7 
9 1.86E-5 1.58E-8 
10 2.23E-5 1.59E-9 
11 2.47E-5 1.56E-10 
12 2.41E-5 1.61E-11 
13 2.16E-5 1.51E-12 

Table 5.4.2 lists the Prony series coefficient representing the creep flexure properties 7(") of the isotropic, one-
dimensional, neat resin epoxy. The table lists the creep flexure properties starting with the equilibrium 
parameter 7W, followed by thirteen Prony series coefficients 7V and their respective time constants -V where 
m = 1 through 13. The Prony coefficients have units of N-mm-1 and the time constants have units of sec-1. 
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∆<S = 0.009884	??OD "S = 1G8	)2@ 
l ∆<X	(??OD) HX 	()2@OD) 
1 6.53E-6 1.60 
2 8.05E-7 1.55E-1 
3 4.07E-4 1.69E-2 
4 2.54E-8 1.61E-3 
5 3.25E-4 1.63E-4 
6 2.41E-4 1.62E-5 
7 5.42E-4 1.70E-6 
8 1.03E-4 1.62E-7 
9 2.70E-4 1.63E-8 
10 5.17E-5 1.67E-9 
11 7.35E-6 1.63E-10 
12 3.48E-8 1.67E-11 
13 2.08E-5 1.57E-12 

Table 5.4.3: The numerically predicted Prony series coefficients, ∆<X	and HX estimating the recovery response 
∆<(") defined in equation (5.3.16) are recorded for a neat resin, one-dimensional beam in bending. A series of 
thirteen coefficients are listed with l = 1 through 13. All curvature properties have units of mm-1 and the Prony 
series time coefficients have units of sec-1. 

The bending curvature and moment histories of composite STEMs with 3-ply and 4-ply 

laminate layups are evaluated using the biaxial bending model developed in this chapter for 

equivalent stowed and deployed conditions. The 3-ply and 4-ply laminate relaxation flexure 

properties predicted in Chapter 4 using the viscoelastic variant of classical laminate theory 

are recorded in Table 5.4.4 and Table 5.4.6, respectively, using the modeled coordinate 

STEM illustrated in Figure 5.3.1 which shows the z-axis in the axial direction along the 

deployed tube length and the y-axis in the transverse direction. At # = 0 a transverse 

curvature ∆9&&
( = 0.009884 mm-1 and an axial curvature ∆9))

( = 0.009843 mm-1 are 

imposed to flatten (Figure 5.3.1 (b)) and then roll (Figure 5.3.1 (c)) the STEM into its stowed 

configuration. The imposed curvatures are held constant during which the resulting bending 

moments of the stowed STEM relax during 0 ≤ # < #( . Equation (5.3.5a) and (5.3.5b) 

define the relaxation bending moments in the axial ())(#) and transverse (&&(#) directions, 

respectively. At #( = 100,000,000*>?  (~3.17	D>E<*)	the imposed biaxial curvatures are 

released, deploying the STEM. The axial curvature ∆9))(#) is forced to zero and the nonzero 
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transverse curvature ∆9&&(#) of the deployed STEM results in a small axial moment ())(#). 

As time progresses, # > #(, both the axial moment (equation (5.3.15)) and transverse 

curvature (equation (5.3.8)) recover to zero as a result of the crosslinked polymer chains of 

the epoxy matrix slowly rearranging themselves back to their original chaotic, undeformed 

state. The unknown transverse curvature response in equation (5.3.8) is represented by a 

Prony series with coefficients for the 3-ply laminate and 4-ply laminate STEMs evaluated 

numerically by satisfying equation (5.3.13) which sets the transverse moment (&&(#) to zero 

for # > #(. The Prony coefficients representing the 3-ply and 4-ply transverse curvature are 

recorded in Table 5.4.5 and Table 5.4.7, respectively. Figure 5.4.2 and Figure 5.4.4 

representing the 3-ply and 4-ply laminates, respectively, contains four graphs illustrating the 

histories of the axial curvature (a), axial bending moments (b), transverse curvature (c), and 

transverse bending moments (d) predicted by the biaxial bend model of the STEM with 

material properties, and stowed and deformed configurations described above. Figure 5.4.3 

and Figure 5.4.5 provide a magnified perspective of Figure 5.4.2 (b) and Figure 5.4.4 (b), 

respectively, showing in more detail the axial moment resulting from the deployed curvature 

of the STEM after prolonged storage.  
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Figure 5.4.2: The bending curvature and moment histories obtained using the numerical method developed in 
Chapter 5 are graphed for a viscoelastic STEM in a state of biaxial bending. (a) illustrates the axial curvature, 
(b) the axial moment, (c) the transverse curvature, and (d) the transverse moment histories of a STEM 
composed of a 3-ply composite [45o PW/0o Uni/45o PW] with viscoelastic flexure properties recorded in Table 
5.4.4. The STEM is subjected to biaxial bending during stowage	0 ≤ " < "S, then deployed at "S =
100,000,000	)2@ (~3.17	M20>)), and lastly allowed to recover to a zero-stress state over time " > "S. 

 

 
Figure 5.4.3: A magnified view of Figure 5.4.2 (b) depicts the axial moment in the 3-ply composite STEM due to 
a nonzero transverse curvature at the onset of deployment at " = "S after prolonged stowage during 0 ≤ " < "S. 
The viscoelastic properties of the 3-ply laminate used to form the STEM are modest, and as a result, the axial 
moment on deployment is small. 
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m DYYZ 	(B??) DY[Z 	(B??) D[[Z 	(B??) αZ	()2@OD) 
A 709.96 627.67 699.85  
1 0 9.07E-5 0 1 
2 9.36E-7 0 0 1E-1 
3 4.15 4.36E-3 4.06 1E-2 
4 6.28 4.42E-3 6.32 1E-3 
5 6.74 7.75E-3 6.70 1E-4 
6 6.28 1.00E-7 6.36 1E-5 
7 4.84 5.48E-2 4.80 1E-6 
8 8.71 6.41E-1 9.02 1E-7 
9 8.86 5.15E-1 8.99 1E-8 
10 8.82 9.45E-2 8.34 1E-9 
11 10.7 2.00E-1 10.7 1E-10 
12 6.43 1.72E-1 6.64 1E-11 
13 5.89E-6  0 1E-12 

Table 5.4.4: The 3-ply composite [45o PW/0o Uni/45o PW] relaxation flexure properties recorded in Chapter 4. 
The Prony series coefficients are used to define the axial 5TT("), transverse/axial 5TQ("), and transverse 5QQ(") 
flexure properties in the curvature equations (5.3.1) and (5.3.8), and bending moment equations (5.3.13) and 
(5.3.15) developed in Chapter 5 for a STEM in a state of biaxial bending. The table lists the relaxation flexure 
Prony coefficients starting with the equilibrium parameters 5C\W  in which i, j = x or z followed by the Prony 
series coefficients 5C\V where m = 1 through 13. The respective Prony series time constants ,C are also listed. 
The Prony coefficients have units of N-mm and the time constants have units of sec-1. 

 

∆KYY] = 0.009843	(??OD) 
t] = 1E8	sec 

∆K[[] = 0.009884	(??OD) 
l ∆K[[^ 	(??OD) λ^	()2@OD) 
1 0 1 
2 1.01E-8 1E-1 
3 4.91E-5 1E-2 
4 7.77E-5 1E-3 
5 8.38E-5 1E-4 
6 8.13E-5 1E-5 
7 6.09E-5 1E-6 
8 1.33E-4 1E-7 
9 6.32E-5 1E-8 
10 1.57E-5 1E-9 
11 8.46E-6 1E-10 
12 1.84E-9 1E-11 
13 1.29E-6 1E-12 

Table 5.4.5: The numerically predicted Prony series coefficients, ∆<QQX  and HX, estimating the transverse 
recovery response ∆<QQ(") defined in equation (5.3.8) are recorded for the 3-ply composite STEM in biaxial 
bending. The biaxial curvatures ∆<TTS  and ∆<QQS  are initially imposed at " = 0 on the 3-ply composite STEM 
and then released at "S = 100,000,000	)2@. A series of thirteen Prony coefficients listed with l = 1 through 13 
are used to define the transverse recovery curvature of the STEM. All curvature properties have units of mm-1. 
Prony series time coefficients have units of sec-1. 
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Figure 5.4.4: The bending curvature and moment histories obtained using the numerical method developed in 
Chapter 5 are graphed for a viscoelastic STEM in a state of biaxial bending. (b) the axial moment, (c) the 
transverse curvature, and (d) the transverse moment histories of a STEM composed of a 4-ply composite [0o 
Uni/45o PW/45o PW/0o Uni] with viscoelastic flexure properties recorded in Table (5.4.6). The STEM is 
subjected to biaxial bending during stowage	0 ≤ " < "S, then deployed at "S = 100,000,000	)2@ 
(~3.17	M20>)), and lastly allowed to recover to a zero-stress state over time " > "S. 

 

 
Figure 5.4.5: A magnified view of Figure 5.4.4 (b) depicts the axial moment in the 4-ply composite STEM due to 
a nonzero transverse curvature at the onset of deployment at " = "S after prolonged stowage during 0 ≤ " < "S. 
The viscoelastic properties of the 4-ply laminate used to form the STEM are modest, and as a result, the axial 
moment on deployment is small. 
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m DYYZ 	(B??) DY[Z 	(B??) D[[Z (B??) αZ	()2@OD) 
A 2430.776 174.715 252.875  
1 0.000 0.170 0.692 1E-1 
2 0.870 0.688 2.745 1E-2 
3 1.446 1.027 4.276 1E-3 
4 1.512 1.408 5.231 1E-4 
5 1.389 1.505 5.285 1E-5 
6 1.043 1.564 5.601 1E-6 
7 1.999 1.442 5.853 1E-7 
8 1.993 0.937 4.559 1E-8 
9 1.969 0.335 2.946 1E-9 
10 2.344 0.000 2.086 1E-10 
11 1.420 0.030 1.134 1E-11 
12 0.000 0.000 3.48E-06 1E-12 

Table 5.4.6: The 4-ply composite [0o Uni/45o PW/45o PW/0o Uni] relaxation flexure properties recorded in 
Chapter 4. The Prony series coefficients are used to define the axial 5TT("), transverse/axial 5TQ("), and 
transverse 5QQ(") flexure properties in the curvature equations (5.3.1) and (5.3.8), and bending moment 
equations (5.3.13) and (5.3.15) developed in Chapter 5 for a STEM in a state of biaxial bending. The table lists 
the relaxation flexure Prony coefficients starting with the equilibrium parameters 5C\W  in which i, j = x or z 
followed by the Prony series coefficients 5C\V where m = 1 through 13. The respective Prony series time 
constants ,C are also listed. The Prony coefficients have units of N-mm and the time constants have units of  
sec-1. 

 

∆KYY] = 0.009843	(??OD) 
t] = 1E8	sec 

∆K[[] = 0.009884	(??OD) 
l ∆K[[^ 	(??OD) λ^	()2@OD) 
1 1.94E-10 1 
2 2.58E-05 1E-1 
3 1.04E-04 1E-2 
4 1.64E-04 1E-3 
5 2.14E-04 1E-4 
6 2.26E-04 1E-5 
7 2.50E-04 1E-6 
8 2.69E-04 1E-7 
9 9.99E-05 1E-8 
10 2.20E-05 1E-9 
11 1.19E-05 1E-10 
12 5.29E-06 1E-11 
13 1.42E-09 1E-12 

Table 5.4.7: The numerically predicted Prony series coefficients, ∆<QQX  and HX, estimating the transverse 
recovery response ∆<QQ(") defined in equation (5.3.8) are recorded for the 4-ply composite STEM in biaxial 
bending. The biaxial curvatures ∆<TTS  and ∆<QQS  are initially imposed at " = 0 on the 4-ply composite STEM 
and then released at "S = 100,000,000	)2@. A series of thirteen Prony coefficients listed with l = 1 through 13 
are used to define the transverse recovery curvature of the STEM. All curvature properties have units of mm-1. 
Prony series time coefficients have units of sec-1. 
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5.5 Discussion 

The analytical model developed in this chapter provides a tool for predicting the bending 

curvature and moment histories of a viscoelastic composite STEM deformed into a stowed 

and then a deployed configuration. The effects of material selection on the deployment 

performance of STEMs used for various applications (e.g., the deployment torque and 

deployed stiffness) can be easily evaluated using the method developed in this chapter for 

composites with differing ply orientation, stacking sequence, and laminae properties. In 

addition, the influence of a STEM's undeformed curvature shape (e.g., the radius of curvature 

of the undeformed STEM Figure 5.3.1 (a)), stowed duration and stowed configuration 

(Figure 5.3.1 (c)) on the deployment parameters can be assessed. Validation of the biaxial 

bend model in comparison with test data is not possible due to the non-availability of 

experimental results. As a consequence, the analytical model developed in this chapter and 

used to predict the biaxial bending of a STEM was simplified to model a one-dimensional 

beam in bending (equations (5.3.16) and (5.3.17)). A beam composed of neat resin epoxy, 

with properties collected from experimental data, was predicted using the simplified model. 

The bending moment and curvature results from the model are compared to the one-

dimensional beam bending problems found in the literature [16], [18], [20], [49] that have 

been modified for use with laminate flexure notation (equation (5.2.6) and (5.2.7e)) and 

evaluated using the viscoelastic neat resin properties. The relaxation moment (0 < # < #() 

predicted by the models for a beam in bending due to a constant imposed curvature are 

illustrated in Figure 5.4.1 of the results section with the reduced biaxial model represented by 

a solid orange line and the one-dimensional results represented by a dashed blue line. The 

recovery curvature and moment response (# > #() predicted by the two methods are also 



 

128 

 

illustrated in Figure 5.4.1. It can be seen that there is very good agreement between the two 

sets of results for the one-dimensional beam bending problem, providing confidence in the 

reliability of the analytical solution developed in this chapter for a biaxial bent STEM 

composed of a viscoelastic composite. 

To demonstrate the applicability of the biaxial bend model, the bending curvature and 

moment histories of two STEMs, one composed of a viscoelastic 3-ply laminate [45o PW/0o 

Uni/45o PW] and another composed of a viscoelastic 4-ply laminate [0o Uni /45o PW/45o 

PW/0o Uni], are predicted using the model. Both STEMs are stowed in a state of biaxial 

bending from 0 < # < #( and then released at # = #( to deploy and then slowly recover as 

time progresses # > #(. The numerically solved (a) axial curvature, (b) axial moment, (c) 

transverse curvature, and (d) transverse moment are presented in Figure 5.4.2 for the 3-ply 

composite STEM and in Figure 5.4.4 for the 4-ply composite STEM. Due to the viscoelastic 

properties of the laminates composing the STEMs, the model, as expected, predicts the 

relaxation of the axial and transverse moments due to the imposed biaxial bending curvatures 

required to stow the STEMs. At # = #( the imposed biaxial bending curvatures are released 

deploying the STEMs. The viscoelastic change in the composite STEMs as a result of 

prolonged stowage affects the STEMs’ initial (# = #() deployed configuration. The 

transverse moments of the STEMs are equal to zero while the resulting transverse curvatures 

are nonzero. Due to the geometrical shape of the deployed STEM (nonzero transverse 

curvature), the axial curvature is forced to zero. The resulting axial moment predicted by the 

model is illustrated in Figure 5.4.2 (b) for the 3-ply composite STEM and in Figure 5.4.4 (b) 

for the 4-ply laminate. The results appear to be zero, contrary to the expected response. 

However, when this response is viewed in magnification as shown in Figure 5.4.3 for the 3-
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ply composite STEM, a small, yet noticeably negative moment is observed which recovers to 

zero over time. The relaxation of the 3-ply composite STEM’s modulus due to the stowed 

deformation reduces very little over the stowed duration (e.g., the stress relaxation is small 

during stowage). As a result, the moment required to force the axial curvature back to zero is 

small. A similar response is observed in Figure 5.4.5 illustrating the magnified axial moment 

response of the 4-ply laminate which shows a small positive moment recovery at the start of 

deployment # = #(. The 4-ply axial flexure is essentially elastic as opposed to the slight 

viscoelastic response of the 3-ply laminate, which in turn produces a positive axial moment 

due to the curvature state of the deployed STEM. Materials that relax more due to the 

imposed stowed deformations will result in a greater deployed axial moment. The residual 

transverse curvature, however, is much more noticeable due to the viscoelastic properties of 

the 3-ply and 4-ply laminates. The reduced modulus due to relaxation of the material during 

stowage and the change in the deployed curvature can negatively affect the deployed 

stiffness of the STEM. As time progresses, both the axial moment and transverse curvature 

are predicted to recover to zero. 

 

5.6 Conclusion 

Hereditary integrals were adapted for classical laminate theory to provide an analytical 

tool that predicts the bending curvature and moment histories (e.g., deployment torque and 

deployed stiffness) of viscoelastic composite STEMs in a state of biaxial bending when 

stored and then deployed. The model and its results, reduced to represent a one-dimensional 

beam in bending, were compared to a one-dimensional bending solution developed in this 

chapter based on a problem found in the literature. The results match favorably to one 
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another, providing confidence in the bending moment and curvature histories predicted by 

the biaxial bend model for viscoelastic composite STEMs. Two STEMs, one composed of a 

3-ply laminate [45o PW/0o Uni/45o PW] and another composed of a 4-ply laminate [0o Uni 

/45o PW/45o PW/0o Uni] with measured viscoelastic properties predicted in Chapter 4, were 

evaluated using the biaxial bend model. The model predicted the expected bending curvature 

and moment histories of the STEMs stowed for a long duration before being deployed. The 

biaxial bend model provides a tool that can be used to aid in the design development of 

robust and reliable composite STEMs for the use in various deployment applications. 
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Chapter 6  
 
Concluding Remarks 

 

This dissertation had two objectives. The first was to observe the presence of 

viscoelasticity in composites and how various laminate layups, orientations, and stacking 

sequences influence their viscoelastic properties. The second was to develop a model to 

predict the viscoelastic behavior of STEMs used in structural applications, such as DSS’ 

MEGA ROSA solar array, utilizing the insights learned about composite viscoelasticity from 

experimental data. These objectives were achieved.  

The creep tests performed in Chapter 2 on a set of samples with varying compositions, 

e.g., ply orientation, ply type (unidirectional and/or plain weave laminae), and stacking 

sequence, with all having the same resin system allowed for a direct comparison of the 

measured creep properties of the various samples providing insight into how the introduction 

of elastic fibers and their placement affect the viscoelasticity of the neat resin matrix. The 

results of the tests performed in Chapter 2 show that the viscoelastic properties of the neat 

resin are mitigated by the placement of the elastic carbon fibers in the direction of loads. The 

presence of fibers reduces the degree laminae or laminates creep over their lifetime (glassy to 

equilibrium). However, the transient proportional response of the measured samples indicates 
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the viscoelastic behavior of the neat resin matrix of all the laminae and laminates tested is 

unchanged. The four-point-bending test validated the viscoelastic responses observed in the 

tensile creep tests and exemplified the influence that the ply stacking sequence has on thin 

shell composites viscoelastic properties. The creep properties recorded in Chapter 2 provide a 

good set of data for understanding the viscoelastic behavior of laminae and laminates, 

however further testing is required to measure the tensile shear properties and 

axial/transverse flexure properties of laminae and laminates. Creep tests measuring the 

influence of fiber volume fraction, which is well known in the literature to affect the elastic 

properties of composites, should also be explored. Lastly, the unique behavior observed by 

the plain weave laminate should be studied further. Tensile creep test measuring the plain 

weave laminates 0o/90o properties versus a laminate composed of unidirectional fiber 

[0o/90o]s would help characterize the influence of the assumed fiber tow elongation as a result 

of the weave pattern of the plain weave laminate straightening under load. 

An analytical model, described in Chapter 5, was developed using hereditary integrals 

that are numerically solved to predict the viscoelastic behavior of composite storable tubular 

members with varying laminate composition. The 3-ply and 4-ply laminate creep and 

relaxation flexure properties measured and predicted in Chapters 2 and 4, respectively, are 

used to predict the relaxation moments and recovery curvatures of a STEM flattened and 

reversed rolled into a stowed position and then deployed. Due to the lack of available test 

data for the composite STEMs of interest and the expense of gathering experimental data, the 

multidimensional STEM model is validated by comparing the reduced one-dimensional 

version of the model to similar models published in the literature using the viscoelastic 

laminate properties recorded in Chapter 2 and 4 as inputs. The analytical model developed in 
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Chapter 5 provides a unique tool for adding in the design development of STEMs. A more 

complex FEA model is in development that predicts the non-uniform curvature transition 

zone of STEMs as they deploy from their stowed configuration. 

In order to utilize the test data in the analytical STEM model, the measured tensile and 

flexure creep properties of the neat resin, unidirectional and plain weave laminae, and 3-ply 

and 4-ply laminates needed to be inverted to provide their corresponding relaxation response. 

Many viscoelastic inversion methods found in the literature suitable for inverting one-

dimensional materials cannot be used for multidimensional materials, as discussed in Chapter 

3. However, a numerical Laplace method was developed for inverting anisotropic 

multidimensional materials. This inversion method was applied to the lamina and laminate 

tensile creep data recorded in Chapter 2 to generate Prony series coefficients that modeled 

the relaxation master curves of the laminae and laminates tested. The numerical Laplace 

method is more robust than the other methods discussed in Chapter 3, producing inverted 

properties that are consistent with fundamental energy principles while more accurately 

estimating the Prony time constants of the inverted material. The creep flexure properties 

could not be inverted to acquire the relaxation flexure properties due to the lack of measured 

axial/transverse flexure data. Instead, relaxation flexure properties were successfully attained 

using a viscoelastic version of classical laminate theory, which used the inverted creep 

compliance properties (relaxation properties) from the unidirectional and the plain weave 

laminae as inputs. Relaxation tensile and flexure test on the laminae and laminates inverted 

would validate the relaxation properties predicted by both the numerical Laplace inversion 

method and the viscoelastic version of classical laminate theory.  
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Appendix 
The lamina and laminate relaxation and creep equations (1.3.8a) through (1.3.9d) are 

normalized by their respective material glassy properties 
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, , .F
, , .G

, , .H
,  are the Prony time constants for the laminate relaxation 

modulus and creep compliance;  T"-
% , U"-

%, 0"-
%, and E"-

% , V"-
% , ?"-

% , 3"-
%  are the laminate relaxation 

modulus and creep compliance glassy response;  T"-
, , U"-

, , ["-
, , and E"-

, , V"-
, , ?"-

, , 3"-
,  are the 

Prony constants for the laminate relaxation modulus and creep compliance. 

The appendix contains a series of tables and graphs recording the neat resin, 

unidirectional, plain weave, 3-ply, and 4-ply laminate compliance and flexure properties 

measured by the tensile and four-point bend creep test described in Chapter 2. A Prony series 

which is fit to the measured creep data is presented in each of the figures. The tables record 

the Prony series constant for the respective measured samples. The time-temperature 
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superposition shift coefficients, e.g., activation energy and initial temperature, used to form 

the master curve for each sample are also recorded in the tables. 

 

XS = 30_Y Neat Resin 6QQ Neat Resin 6QR 

G0	(Z ?[\⁄ ) 1.76E+5 1.76E+5 

6XV
G 	('/0OD) 3.34E-4 -1.31E-4 

Prony Value 6QQC 	('/0)OD -QQC ())OD 6QRC ('/0)OD -QRC ())OD 
i = 1 1.18E-6 1.59 -5.93E-6 1.59E-1 

2 2.11E-5 1.59E-2 -9.13E-6 1.59E-2 
3 5.07E-6 1.59E-3 -3.22E-6 1.59E-3 
4 1.03E-5 1.59E-4 -2.34E-6 1.59E-4 
5 6.27E-6 1.59E-5 -2.77E-6 1.59E-5 
6 2.76E-5 1.59E-6 -1.23E-5 1.59E-6 
7 6.88E-6 1.59E-7 -2.83E-6 1.59E-7 
8 1.03E-5 1.59E-8 -4.34E-6 1.59E-8 
9 3.13E-5 1.59E-9 -1.92E-5 1.59E-9 
10 1.12E-5 1.59E-10 -3.67E-6 1.59E-10 
11 2.64E-5 1.59E-11 -3.85E-6 1.59E-11 
12 2.77E-5 1.59E-12 -3.16E-5 1.59E-12 
13 1.02E-4 1.59E-13 -1.48E-5 1.59E-13 

Table A.11: Neat resin master curve Prony series constants and 
Arrhenius law activation energy from measured data. 
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Figure A.9: The master curves for the unidirectional laminate axial compliance (top graph), axial/transverse 
coupling compliance (middle graph), and transverse compliance (bottom graph) obtained from tesnile test data. 
Tests are conducted at four different constant temperature tests for each material property. The axial and 
axial/transverse coupling compliance are elastic with a mean value that is constant in time. The transverse 
compliance is viscoelastic. A master curve is formed by shifting the data gathered at the four different 
temperatures on the time axis to create a creep compliance master curve. The creep compliance properties are 
normalized by the respective instantaneous (i.e., glassy) compliance of the initial creep test. A Prony series is 
fitted to the transverse creep compliance data representing the master curve. 
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Figure A.10: The master curves for the unidirectional laminate axial flexure (top graph) and transverse flexure 
(bottom graph) obtained from four-point-bend test data. Four different constant temperature tests are 
conducted for each material property. The laminate behaves elastically in axial flexure. The transverse flexure 
response is viscoelastic. A master curve is formed by shifting the four temperature data sets along the time axis 
to create a creep flexure master curve. The creep flexure properties are normalized by the respective 
instantaneous (i.e., glassy) flexure of the initial creep test. A Prony series is fitted to the transverse creep flexure 
data representing the master curve.
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!! = 30% Tensile Test Uni &"" Tensile Test Uni &"# Tensile Test Uni &## Bend Test Uni '"" Bend Test Uni '## 

($	(+ ,-.⁄ ) 0 0 8.57E+04 0 1.13E+05 

&%&' 	(123()) 
-4 

'%&' 	(5,,()) 
7.95E-06 -2.86E-06 1.49E-04 4.39E-03 7.15E-02 

Prony Values &""* 	(123()) 6+!!* 	(7()) &"#* 	(123()) 6+!"* 	(7()) &##* 	(123()) 6+""* 	(7()) '""* 	(5,,()) 6,!!* 	(7()) '##* 	(5,,()) 6,""* 	(7()) 
i = 1     1.00E-09 1.22E-01   1.29E-03 1.23E+00 

2     3.28E-06 1.22E-02   1.37E-03 1.23E-01 
3     2.10E-06 1.22E-03   2.45E-03 1.23E-02 
4     7.55E-06 1.22E-04   1.78E-03 1.23E-03 
5     3.30E-06 1.22E-05   2.59E-03 1.23E-04 
6     8.06E-06 1.22E-06   3.26E-03 1.23E-05 
7     6.55E-06 1.22E-07   1.77E-03 1.23E-06 
8     6.25E-06 1.22E-08   2.54E-03 1.23E-07 
9         3.64E-03 1.23E-08 
10         6.69E-03 1.23E-09 

Table A.12: The Prony time constants representing the creep compliance and flexure master curves of the unidirectional laminate. The table also records the 
Arrhenius law activation energies used to form the master curves from test data at varying constant temperatures.  
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Figure A.11: The master curves for the plain weave laminate axial compliance (top graph) and axial/transverse 
coupling compliance (bottom graph) obtained by tensile test data. Tests at four different constant temperatures 
are conducted for each material property. The axial and axial/transverse coupling compliance are viscoelastic. 
The master curves of the respective properties are formed by shifting the four temperature data sets on the time 
axis. The creep compliance properties are normalized by the respective instantaneous (i.e., glassy) compliance 
of the initial creep test comprising the master curve. A Prony series is fitted to the creep compliance data 
representing the master curve axial and axial/transverse coupling. 
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Figure A.12: The master curve for the plain weave laminate axial flexure obtained from four-point-bend test 
data. Four different constant temperature tests are conducted for each material property. The response in axial 
flexure is viscoelastic. The master curve of this property is formed by shifting the four temperature data sets 
along the time axis. The creep flexure property is normalized by the instantaneous (i.e., glassy) flexure of the 
initial thermal test. A Prony series is fitted to the creep flexure data to form the master curve for the axial 
property. 
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!! = 30% Tensile Test PW &"" Tensile Test PW &"# Bend Test PW '"" Bend Test PW '## 

($	(+ ,-.⁄ ) 1.40E+05 1.41E+05 1.09E+05 1.09E+05 

&%&' 	(123()) 
-4 

'%&' 	(5,,()) 
7.12E-05 -4.94E-05 8.45E-02 8.45E-02 

Prony Values &""* 	(123()) 6+!!* 	(7()) &"#* 	(123()) 6+!"* 	(7()) '""* 	(5,,()) 6,!!* 	(7()) '##* 	(5,,()) 6,""* 	(7()) 
i = 1 2.82E-06 8.24E-02 -1.17E-06 8.24E-01 1.96E-03 6.32E-01 1.96E-03 6.32E-01 

         
2 1.94E-06 8.24E-03 -1.18E-06 8.24E-02 1.63E-03 6.32E-02 1.63E-03 6.32E-02 
3 4.40E-06 8.24E-04 -3.33E-06 8.24E-03 2.16E-03 6.32E-03 2.16E-03 6.32E-03 
4 1.66E-06 8.24E-05 -2.69E-06 8.24E-04 3.60E-03 6.32E-04 3.60E-03 6.32E-04 
5 5.46E-06 8.24E-06 -2.75E-06 8.24E-05 5.02E-03 6.32E-05 5.02E-03 6.32E-05 
6 3.92E-06 8.24E-07 -6.74E-06 8.24E-06 5.49E-03 6.32E-06 5.49E-03 6.32E-06 
7 6.16E-06 8.24E-08 -3.57E-06 8.24E-07 8.12E-03 6.32E-07 8.12E-03 6.32E-07 
8 1.38E-05 8.24E-09 -1.13E-05 8.24E-08 1.15E-02 6.32E-08 1.15E-02 6.32E-08 
9 8.09E-06 8.24E-10 -7.68E-06 8.24E-09 6.49E-03 6.32E-09 6.49E-03 6.32E-09 
10 2.38E-05 8.24E-11 -1.44E-05 8.24E-10 1.27E-02 6.32E-10 1.27E-02 6.32E-10 
11   -2.22E-05 8.24E-11 9.78E-03 6.32E-11 9.78E-03 6.32E-11 

Table A.13: The Prony time constants representing the creep compliance and flexure master curves of the plain weave laminate. The table 
also records the Arrhenius law activation energies used to form the master curves from test data at varying constant temperatures. 
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Figure A.13: The master curves for the 3-Ply laminate axial compliance (top graph), axial/transverse coupling 
compliance (middle graph), and transverse compliance (bottom graph) obtained from tensile test data. Tests at 
four different constant temperatures are conducted for each material property. The axial, axial/transverse 
coupling, and transverse compliance show some degree of viscoelasticity. The master curves of the respective 
properties are formed by shifting the four constant temperature data sets along the time axis. The creep 
compliance properties are normalized by the respective instantaneous (i.e., glassy) compliance of the initial 
creep test. A Prony series is fitted to the creep compliance data representing the master curve axial, 
axial/transverse coupling, and transverse properties. 
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Figure A.14: The master curves for the 3-Ply laminate axial flexure (top graph) and transverse flexure (bottom 
graph) obtained from four-point-bend test data. Four constant temperature tests are conducted for each 
material property. The axial and transverse flexure properties are viscoelastic. A master curve is formed by 
shifting the data from the tests at the four different temperatures on the time axis to create a creep flexure 
master curve. The creep flexure properties are normalized by the respective instantaneous (i.e., glassy) flexure 
from the initial creep test. A Prony series is fitted to both the axial and transverse creep flexure data 
representing the master curve. 
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!! = 30% Tensile Test 3-ply &"" Tensile Test 3-ply &"# Tensile Test 3-ply &## Bend Test 3-ply '"" Bend Test 3-ply '## 

($	(+ ,-.⁄ ) 1.08E+05 1.08E+05 9.61E+04 1.50E+05 8.75E+04 

&%&' 	(123()) 
-4 

'%&' 	(5,,()) 
2.82E-05 -2.01E-05 6.24E-05 3.82E+00 3.19E+00 

Prony Values &""* 	(123()) 6+!!* 	(7()) &"#* 	(123()) 6+!"* 	(7()) &##* 	(123()) 6+""* 	(7()) '""* 	(5,,()) 6,!!* 	(7()) '##* 	(5,,()) 6,""* 	(7()) 
i = 1 3.35E-07 1.94E-03 -2.01E-07 1.94E-01 3.87E-07 4.33E-01 6.32E-02 2.29E+00 4.65E-02 1.19E+00 

2 6.39E-07 1.94E-04 -1.28E-06 1.94E-03 5.10E-07 4.33E-02 3.63E-02 2.29E-01 6.30E-02 1.19E-01 
3 6.87E-07 1.94E-05 -5.25E-07 1.94E-04 2.15E-06 4.33E-05 1.20E-01 2.29E-03 7.24E-02 1.19E-02 
4 7.29E-07 1.94E-06 -7.15E-07 1.94E-05 1.88E-06 4.33E-06 7.70E-02 2.29E-04 8.25E-02 1.19E-03 
5 7.29E-07 1.94E-07 -9.80E-07 1.94E-06 2.43E-06 4.33E-07 9.01E-02 2.29E-05 1.44E-01 1.19E-04 
6 4.72E-07 1.94E-08 -8.27E-07 1.94E-07 1.80E-06 4.33E-08 9.29E-02 2.29E-06 1.26E-01 1.19E-05 
7 5.98E-07 1.94E-09 -5.82E-07 1.94E-08 3.23E-06 4.33E-09 5.97E-02 2.29E-07 1.19E-01 1.19E-06 
8 3.45E-07 1.94E-10 -1.19E-06 1.94E-09   6.14E-02 2.29E-08 7.64E-02 1.19E-07 
9       1.42E-01 2.29E-09 1.12E-01 1.19E-08 
10       6.56E-02 2.29E-10   
11       8.46E-02 2.29E-11   
12       1.99E-01 2.29E-12   

Table A.14: The Prony time constant representing the creep compliance and flexure master curves of the 3-ply laminate. The table also records the Arrhenius 
law activation energies used to form the master curves from test data at varying constant temperatures. 
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Figure A.15: The master curves for the 4-Ply laminate axial compliance (top graph), axial/transverse coupling 
compliance (middle graph), and transverse compliance (bottom graph) obtained from tensile test data. Tests 
are conducted at four different constant temperatures for each material property. The axial, axial/transverse 
coupling, and transverse compliance show some degree of viscoelasticity. The master curves of the respective 
properties are formed by shifting the four constant temperature data sets along the time axis. The creep 
compliance properties are normalized by the respective instantaneous (i.e., glassy) compliance of the initial 
creep test. A Prony series is fitted to the creep compliance data representing the master curve axial, 
axial/transverse coupling, and transverse properties. 
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Figure A.16: The master curves for the 4-ply laminate axial flexure (top graph) and transverse flexure (bottom 
graph) obtained from four-point-bend test data. Four constant temperature tests are conducted for each 
material property. The axial and transverse flexure is viscoelastic. A master curve is formed by shifting the four 
temperature data sets along the time axis to create a creep flexure master curve. The creep flexure properties 
are nominalized by the respective instantaneous (i.e., glassy) flexure of the initial creep test. A Prony series is 
fitted to both the axial and transverse creep flexure data representing the master curve.
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!! = 30% Inverted 4-ply &"" Inverted 4-ply &"# Inverted 4-ply &## Inverted 4-ply '"" Inverted 4-ply '## 

($	(+ ,-.⁄ ) 1.19E+5 1.19E+5 1.12E+5 7.79E+4 8.45E+4 
&%&' 	(123()) 

-4 
'%&' 	(5,,()) 

1.68E-5 -1.09E-5 5.07E-5 4.16E-1 3.74 

Prony Value &""* 	(123()) 6+!!* 	(7()) &"#* 	(123()) 6+!"* 	(7()) &##* 	(123()) 6+""* 	(7()) '""* 	(5,,()) 6,!!* 	(7()) '##* 	(5,,()) 6,""* 	(7()) 
i = 1 5.72E-8 2.64E-1 -7.00E-8 2.64E-1 3.96E-7 2.40E-3 1.31E-5 1.00E-1 9.40E-2 3.20E-1 

2 6.17E-8 2.64E-2 -9.60E-8 2.64E-2 5.72E-7 2.40E-4 2.97E-3 1.00E-2 3.84E-2 3.20E-2 
3 7.94E-8 2.64E-3 -1.99E-7 2.64E-3 1.01E-6 2.40E-5 1.25E-3 1.00E-3 5.25E-2 3.20E-3 
4 8.49E-8 2.64E-4 -2.30E-7 2.64E-4 1.21E-6 2.40E-6 2.75E-3 1.00E-4 7.03E-2 3.20E-4 
5 9.56E-8 2.64E-5 -2.89E-7 2.64E-5 1.21E-6 2.40E-7 1.40E-3 1.00E-5 1.20E-1 3.20E-5 
6 1.06E-7 2.64E-6 -2.97E-7 2.64E-6 1.08E-6 2.40E-8 7.31E-4 1.00E-6 7.93E-2 3.20E-6 
7 1.99E-7 2.64E-7 -4.00E-7 2.64E-7 9.87E-7 2.40E-9 1.94E-3 1.00E-7 1.14E-1 3.20E-7 
8 1.49E-7 2.64E-8 -3.00E-7 2.64E-8 4.31E-7 2.40E-10 9.52E-7 1.00E-8 1.18E-1 3.20E-8 
9 1.30E-7 2.64E-9 -3.00E-7 2.64E-9   4.38E-3 1.00E-9 1.54E-2 3.20E-9 
10 1.30E-7 2.64E-10 -5.00E-7 2.64E-10   3.54E-3 1.00E-10   
11       1.89E-3 1.00E-11   
12       9.52E-4 1.00E-12   

Table A.15: The Prony time constant representing the creep compliance and flexure master curves of the 4-ply laminate. The table also records the Arrhenius 
law activation energies used to form the master curves from test data at varying constant temperatures.
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Table A.16 to Table A.20 record the relaxation stiffness properties predicted using the 

numerical Laplace inversion method developed in Chapter 3 to invert the measured creep 

compliance properties of the neat resin, unidirectional, plain weave, 3-ply, and 4-ply 

laminates discussed in Chapter 2. The tables also record the relaxation flexure stiffness 

predicted using viscoelastic classical laminate theory (CLT) described in Chapter 4 in which 

the relaxation stiffness of the unidirectional and plain weave lamina inverted from test data 

are used as inputs.  

!! = 30% Inverted NR &"" Inverted NR &"# 

&$%& (()*) 3.54E+3 1.38E+3 

Prony Value &""' (()*) ,""' 	(.()) &"#' (()*) ,"#' 	(.()) 
i = 1 3.71 1.60 9.49E-5 1.62E-3 

2 8.61E-3 1.55E-1 4.02E+1 1.65E-4 
3 1.73E+2 1.69E-2 9.85E+1 1.62E-5 
4 1.51E-2 1.61E-3 2.58E+1 1.71E-6 
5 1.27E+2 1.63E-4 9.61E-3 1.62E-7 
6 8.81E+1 1.62E-5 6.57E+1 1.63E-8 
7 1.80E+2 1.70E-6 4.65E-3 1.73E-9 
8 3.18E+1 1.62E-7 8.96E+1 1.64E-10 
9 1.00E+2 1.63E-8   
10 1.38E+2 1.67E-9   
11 1.09E+2 1.63E-10   
12 9.67E+1 1.67E-11   
13 9.17E+1 1.57E-12   

Table A.16: The neat resin Prony series constants representing the 
relaxation stiffness master curve properties inverted from measured 
creep compliance data using the Laplace numerical inversion 
method developed in Chapter 3. 
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!! = 30!% Inverted Uni &"" Inverted Uni &"# Inverted Uni &## Inverted Uni '"" Inverted Uni '"# Inverted Uni '## 

&$%& 	(*+,) 
./ 

'$%& 	(011) 
1.27E+5 2.44E+3 6.77E+3 2.08E+5 4.00E+3 1.11E+4 

Prony 
Value &""' (*+,) 2""' (3()) &"#' (*+,) 2"#' (3()) &##' 	(*+,) 2##' (3()) '""' (011) 2""' (3()) '"#' (011) 2"#' (3()) '##' (011) 2##' (3()) 
i = 1 4.46E-1 1.2 E-1 3.55E-11 1.22E-1 3.87E-10 1.22E-1 3.95E-6 1.0E-5 1.65 1.0 1.55E+1 1.0E-1 

2 1.28E+1 1.24E-2 5.29E+1 1.24E-2 1.48E+2 1.24E-2 7.73E-6 1.0E-6 1.48E+1 1.0E-1 2.33E+2 1.0E-2 
3 2.33E+1 1.23E-3 3.32E+1 1.23E-3 9.15E+1 1.23E-3 9.81E-6 1.0E-7 5.62E+1 1.0E-2 1.93E+2 1.0E-3 
4 2.40E+1 1.28E-4 1.10E+2 1.28E-4 3.08E+2 1.28E-4 7.24E-6 1.0E-8 9.62E+1 1.0E-3 4.72E+2 1.0E-4 
5 1.34E+1 1.24E-5 4.86E+1 1.24E-5 1.25E+2 1.24E-5 3.29E-6 1.0E-9 1.25E+2 1.0E-4 2.29E+2 1.0E-5 
6 5.58E+1 1.28E-6 9.74E+1 1.28E-6 2.87E+2 1.28E-6 1.30E-7 1.0E-10 1.32E+2 1.0E-5 4.68E+2 1.0E-6 
7 1.35E-4 1.26E-7 8.30E+1 1.26E-7 2.13E+2 1.26E-7 2.69E-7 1.0E-11 1.47E+2 1.0E-6 3.53E+2 1.0E-7 
8 3.29E+1 1.26E-8 6.46E+1 1.26E-8 1.88E+2 1.26E-8   1.34E+2 1.0E-7 2.67E+2 1.0E-8 
9         7.76E+1 1.0E-8 7.13E-4 1.0E-9 
10         1.40E+1 1.0E-9   
11         1.60E-6 1.0E-10   
12         1.23E-6 1.0E-11   
13         8.96E-7 1.0E-12   

Table A.17: The unidirectional lamina Prony series constants representing the relaxation stiffness master curve properties inverted from measured creep 
compliance data using the Laplace numerical inversion method developed in Chapter 3. The table also records the relaxation flexure stiffness Prony series 
constants predicted using viscoelastic classical laminate theory (CLT) with the unidirectional lamina inverted relaxation stiffness as an input. 
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!! = 30!% Inverted PW &"" Inverted PW &"# Inverted PW '"" Inverted PW '"# 

&$%& 	(*+,) 
./ 

'$%& 	(011) 
4.41E+4 3.60E+4 3.76E+4 3.07E+4 

Prony Value &""' (*+,) 2""' (3()) &"#' (*+,) 2"#' (3()) '""' (011) 2""' (3()) '"#' (011) 2"#' (3()) 
i = 1 5.77E+2 2.58E-3 1.24E+1 2.61E-7 1.28 1.00E-1 2.88E-6 1.00E-5 

2 1.25E+2 2.38E-4 5.84E+1 2.75E-8 1.70E+2 1.00E-2 1.10E+1 1.00E-6 
3 5.87E+2 2.81E-5 2.38E+1 2.90E-11 3.44E+2 1.00E-3 2.08E+1 1.00E-7 
4 1.89E+2 2.23E-6   2.83E+2 1.00E-4 2.00E+1 1.00E-8 
5 3.14E+2 2.56E-7   4.26E+2 1.00E-5 1.09E+1 1.00E-9 
6 8.01E+2 3.39E-8   4.95E+1 1.00E-6 9.92 1.00E-10 
7 2.90E+2 1.94E-9   6.41E+2 1.00E-7 7.91 1.00E-11 
8 5.29E+2 2.31E-10   3.98E+2 1.00E-8 1.54E-4 1.00E-12 
9 6.99E+2 2.93E-11   2.64E+2 1.00E-9   
10     6.83E+2 1.00E-10   
11     2.42E+2 1.00E-11   

Table A.18 : The plain weave lamina Prony series constants representing the relaxation stiffness master curve properties 
inverted from measured creep compliance data using the Laplace numerical inversion method developed in Chapter 3. 
The table also records the relaxation flexure stiffness Prony series constants predicted using viscoelastic classical 
laminate theory (CLT) with the plain weave lamina inverted relaxation stiffness as an input. 
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!! = 30!% Inverted 3-ply &"" Inverted 3-ply &"# Inverted 3-ply &## Inverted 3-ply '"" Inverted 3-ply '"# Inverted 3-ply '## 

&$%& 	(*+,) 
./ 

'$%& 	(011) 
4.60E+4 1.48E+4 2.08E+4 7.82E+2 6.29E+2 7.72E+2 

Prony 
Value &""' (*+,) 2""' (3()) &"#' (*+,) 2"#' (3()) &##' 	(*+,) 2##' (3()) '""' (011) 2""' (3()) '"#' (011) 2"#' (3()) '##' (011) 2##' (3()) 
i = 1 1.40E+3 1.91E-5 5.76E+2 1.98E-5 3.18E+2 4.37E-2 9.36E-7 1.0E-1 9.07E-5 1.0 4.06 1.0E-2 

2 6.94E+2 1.90E-7   5.48E+2 4.49E-6 4.15 1.0E-2 4.36E-3 1.0E-2 6.32 1.0E-3 
3 4.47E+2 1.88E-9   6.74E+2 4.47E-8 6.28 1.0E-3 4.42E-3 1.0E-3 6.70 1.0E-4 
4     4.30E+2 4.59E-9 6.74 1.0E-4 7.75E-3 1.0E-4 6.36 1.0E-5 
5       6.28 1.0E-5 1.00E-7 1.0E-5 4.80 1.0E-6 
6       4.84 1.0E-6 5.48E-2 1.0E-6 9.02 1.0E-7 
7       8.71 1.0E-7 6.41E-1 1.0E-7 8.99 1.0E-8 
8       8.86 1.0E-8 5.15E-1 1.0E-8 8.34 1.0E-9 
9       8.82 1.0E-9 9.45E-2 1.0E-9 1.07E+1 1.0E-10 
10       1.07E+1 1.0E-10 2.00E-1 1.0E-10 6.64 1.0E-11 
11       6.43 1.0E-11 1.72E-1 1.0E-11   
12       5.89E-6 1.0E-12     

Table A.19: The 3-ply laminate Prony series constants representing the relaxation stiffness master curve properties inverted from measured creep compliance 
data using the Laplace numerical inversion method developed in Chapter 3. The table also records the relaxation flexure stiffness Prony series constants 
predicted using viscoelastic classical laminate theory (CLT) with the unidirectional lamina and plain weave lamina inverted relaxation stiffness as inputs. 
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!! = 30!% Inverted 4-ply &"" Inverted 4-ply &"# Inverted 4-ply &## Inverted 4-ply '"" Inverted 4-ply '"# Inverted 4-ply '## 

&$%& 	(*+,) 
./ 

'$%& 	(011) 
6.92E+4 1.49E+4 2.29E+4 2.45E+3 1.84E+2 2.93E+2 

Prony Value &""' (*+,) 2""' (3()) &"#' (*+,) 2"#' (3()) &##' 	(*+,) 2##' (3()) '""' (011) 2""' (3()) '"#' (011) 2"#' (3()) '##' (011) 2##' (3()) 
i = 1 4.54E-4 2.65E-1 1.13E-3 2.64E-1 1.16E+1 2.40E-2 8.70E-1 1.0E-2 1.70E-1 1.0E-1 6.92E-1 1.0E-1 

2 1.43E-4 2.64E-2 1.41E+2 2.64E-2 1.54E-3 2.67E-3 1.45 1.0E-3 6.88E-1 1.0E-2 2.74 1.0E-2 
3 5.80E+2 2.42E-3 1.28E+2 2.62E-3 5.83E-4 2.66E-4 1.51 1.0E-4 1.03 1.0E-3 4.28 1.0E-3 
4 1.66E-5 2.43E-4 4.58E+2 2.61E-6 8.48E+2 2.67E-5 1.39 1.0E-5 1.41 1.0E-4 5.23 1.0E-4 
5 2.70E-4 2.46E-5 4.47E+2 2.58E-10 3.53E-4 2.67E-6 1.04 1.0E-6 1.51 1.0E-5 5.28 1.0E-5 
6 1.12E-3 2.47E-6   9.11E+2 2.67E-8 2.00 1.0E-7 1.56 1.0E-6 5.60 1.0E-6 
7 3.83E-4 2.47E-7   3.32E-4 2.68E-10 1.99 1.0E-8 1.44 1.0E-7 5.85 1.0E-7 
8 5.55E+2 2.46E-8     1.97 1.0E-9 9.37E-1 1.0E-8 4.56 1.0E-8 
9 1.00E-6 2.45E-9     2.34 1.0E-10 3.35E-1 1.0E-9 2.95 1.0E-9 
10       1.42 1.0E-11 3.04E-2 1.0E-11 2.09 1.0E-10 
11       2.81E-5 1.0E-12   1.13 1.0E-11 
12           3.48E-6 1.0E-12 

Table A.20 : The 4-ply laminate Prony series constants representing the relaxation stiffness master curve properties inverted from measured creep compliance 
data using the Laplace numerical inversion method developed in Chapter 3. The table also records the relaxation flexure stiffness Prony series constants 
predicted using viscoelastic classical laminate theory (CLT) with the unidirectional lamina and plain weave lamina inverted relaxation stiffness as inputs. 
 




