
UC Irvine
ICS Technical Reports

Title
New application of failure functions

Permalink
https://escholarship.org/uc/item/8s55r2p2

Authors
Hirschberg, D. S.
Larmore, L. L.

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8s55r2p2
https://escholarship.org
http://www.cdlib.org/

I

I

I

LIBRARY

University of Californj
IRViNE

Applications of Failure Function^
D. S. Hirschberg and L. L. Larmore

October, 1984

Technical Report 236

Abstract. Several algorithms are presented whose operations are governed by a

principle of failure functions: when searching for an extremal value within a sequence,

it suffices to consider only the subsequence of items each of which is the first possible

improvement of its predecessor. These algorithms are more efficient than their more

traditional counterparts.

This research was supported in part by National Science Foundation Grant MCS-82-00362. Authors'
address: Department of Information and Computer Science, University of California, Irvine, CA 92717.

New Applications of Failure Functions
D. S. Hirschberg and L. L. Larmore

1. Introduction

The notion of failure functions is often associated with the linear-time substring

recognition algorithm [1,6]. The principle of failure functions is disarmingly simple:

when searching for an extremal value within a sequence, it suffices to consider only the

subsequence of items each of which is the first feasible alternative of its predecessor.

The value of the failure function is a pointer to that first feasible alternative.

Implementing this function in isolation will not yield any advantage since the effort

required to determine what is the first feasible alternative is equal to the hoped for

savings, which is not having to consider many losing alternatives. The preprocessing

costs negate the run-time savings. (In practice, the preprocessing may be

chronologically interspersed with the processing.) However, if many such searches are

contemplated and they are closely related then the preprocessing costs may be spread

over the multiple searches with some additional intersearch fix-up costs. The net effect
/

may be some real savings. This was the case for the pattern matching algorithm, and is

also the case for the algorithms given in this paper.

We first consider the problem of determining the optimum way to break a

paragraph (scroll of words) into lines, provided the penalty function (for a line being too

long or too short) is linear. Our algorithm for this problem is linear-time. We then

exhibit an algorithm for more general penalty functions which is linear-time in the case

of a piecewise quadratic function.

We also consider the problem of finding the minimum sum of key length

pagination of a scroll of n items. We present a linear-time algorithm, improving on the

0(n log n) result of Diehr and Faaland.

2. Breaking a Paragraph into Lines

2-

We are given a paragraph consisting of a scroll of n words, where the word

has length w. > 0, and a non-negative valued function penaUy{x) which is defined over

the closed interval [lmin,lmax], where 0 < Imin < Imax. We assume that there is an

optimum line length lopt e [tmin,lmax] for which penalty[lopt] = 0. We define a break

sequence of the paragraph to be a monotone increasing sequence 1 = 6,, 6., ... 6 < n
J. M Tlx

of integers. The break sequence defines lines, where the line begins with the

word, and its length is + ... (where b^^^ is taken to be n-fl).
We say that a break sequence is admissable if lengthy € [/min,/maa^ for all k <. m, and
lengthy <lmax.

The total penalty of a given break sequence is defined to be the sum of the

penalties of the lines, but where the last line is not penalized for being too short. The

problem is to find an admissable break sequence with minimum total penalty.

2.1 The Traditional Line-Breaking Algorithm

For each i<n-l-l, define /[i] to be the lowest total penalty of any break sequence

of the subscroll ... w^. We let /[n-1-1] = 0 by default. The traditional algorithm (see,
for example, [3]) uses dynamic programming.

For any 1 < » < i < n4-l, let Line{i,j) = -f- ... and let Legal{i,j) be

the boolean function which is true if and only if Line(i,j) e (/mfn,/maa:].

Algorithm 1 — Traditional Algorithm

/Irj+l] - 0
Loop: for i from n downto 1 do

if Line{i,n+l)<lopt then
begin

/I'l - 0
ntxtbreak\i[^ n-Hl

end

else if Legal{i,j) for some j then
begin

Choose: Choose r such that Legal(i,r) and /(rj + penalty{Line{i,r) is minimized

-3-

I

I

f\^ *-f\r] + penalty{Lxne(i,r))
neztbreak\t[*— r

end

else

/[«! ^ 00

if/111 < 00 then Define_break_sequence

The subroutine Define_break_sequence recovers the breakpoint vector b from the

array nextbreak.

Subroutine Deflne_break_Bequence

*4-1

<4-1

while < < n do

begin

b\s*- t
8 4- fi+1

14- nextbreak\^
end

The bottleneck in the Traditional Algorithm is the Choose step, since all other

steps can be done in time 0(n). The total time for all executions of the Choose step is

0{nM), where Mis the largest number of words that could possibly occur in a line (we

could set M= Imax/W, where M^is the minimum value of). If Mis considered to be

bounded, then the Traditional Algorithm is linear. However, if we consider a class of

problems in which M, as well as n, grows then the Traditional Algorithm is no longer

linear.

2.2 Linear Penalty Function

We consider the case that penalty is linear, i.e., for all x 6 [/mm,/maz],

penalty{x) = C{x-lopt), for some constant C which may be positive, negative, or zero.

We define penalty{x) = oo if x

We use dynamic arrays leftlow and rightlow, which have pointer (actually index)

-4

values, and dynamic arrays / and g, •which have penalty values. The array / is identical

to the / in the traditional algorithm, and is a modified array which always satisfies the

equation = f[k] + CLine{l,k). At any given time, righUow[l^ is the smallest I > k

such that j[/] < and leftlow[k] is the largest / < Arsuch that ^l] < leftlow is

used as a failure function for choosing the previous breakpoint (beginning of a line)

corresponding to a current end of line, and rightlow is used as a failure function for

updating the leftlow values.

Algorithm 2 — Linear Penalty Algorithm

g\n+2\ •< 00
/|n+l]^0
ff[n+l] •»- CLine{l,n-\r\)
r *- n+1

npA//ou;(n+l] n+2
Loop: for i from n downto 1 do

begin

if I/i«e(i,n+l)</opi then
begin

/hl-O
ntxtbreak\{i *- n+l

end

else

begin

Choosel: ' while Z/me(i,r) > Imax Ao r*-r-\
Choose2: while lefUovi\i\ defined and Ltgal(i,leftlou\r\) do

/[^l /['•] + peno/<j/(Lme(i,r))
if /[i] < 00 then nextbreak[{\ *- r

end

ffl'l /[»! + CLin({\,i)
k *— t+1

Update: while > ir[>l do
begin

t

k*- rightlov\I^
end

rtjrAffowft] ♦- k
end (of Loop)

if /|1] < 00 then Define_bre2k_sequence

leftlou\r]

We can prove the correctness of the Linear Penalty Algorithm by showing that it

5-

simulates the Traditional Algorithm. We need three lemmas.

Lemma A. Fix i. Among the set of all j such that Legal{i,j), that j which

minimizes g\j\ also minimizes f\J\ + penalty{Line{i,3)).

Proof. /[?] + penalty{Line{i,j)) - g\j\ = penaHy{Line{i,j)) - CLtne{l,j)

= -C{lopt + Line(l,r)), which is constant for fixed i. Q

Lemma B. The following loop invariant holds after each iteration of the main

loop of the Linear Penalty Algorithm.

LBl: For all i < « < n+1, rightlovi\^ = f, where <> «is the smallest value

such that g[t] < ^7(5].

LB2; For all i < s < n+1, leftlow[s] = i, where 1 < f < « is the largest value

such that g[t] < provided such a t exists. Thus, in this case, for all

leftlow[s] < /< s, g\j\ > Otherwise, leftlou^s] is undefined.

Proof. By induction on 1. Initially, i.e., before the main loop iterates at all, we

can take i = n+1. Then, LB2 holds vacuously, while LBl holds by initial assignment.

Our inductive hypothesis is that LB holds for all values larger then i. Thus,

before execution of the Update loop, for all i+l < s < n+1:

(a) rightlow[s] = t, where t > s is the smallest value such that < j?[s].

(b) leftlow[s] = t, where i+l < f < s is the largest value such that < j/[s],

provided such a t exists. Otherwise, leftlotv\8] is undefined.

Thus, we need to prove only that, at the end of an iteration of the main loop,

rightlow[t\ has the correct value, and that leftlow[8] = 1if 1< « < n+1 and (^[i] <

and leftlow[s] was undefined before the Update loop.

Let k^, ... be the sequence of values of kproduced in the Update loop, i.e.,
k^ = I+l, and = rightlov^k^] for 0 < / < m. Note that < jIJ, and >

-6-

for all 0 ^ / < m.

Sublemma. For all 0 < / < m, and for all »< s < k^, ff[s] > g[k^].
Furthermore, if / > 1 and s < k^, f^[s] >

Proof. By induction on /, For / = 0, the sublemma holds since we must have a

= = 1+1. For the inductive step, assume the sublemma holds for /-I. If « < a <

then, because k^ = rightlow[k^_^] > k^_.^ by LBl, either (i) a < k^_^, or (ii) ^ < a <
k^, or (iii) 8=k^.

If (i) then, by the inductive hypothesis, j^[a] >

If (ii) then k^ = rightlow[k^^ by the second assignment of the Update loop. By
LBl, g{k^] < </[A:^_j] and for any abetween k^_^ and k^, ff[a] > j?[A:^_j].

In either case we are done, since i^[A:^] < y[Ar^_j]. Case (iii) is trivial. Q

Proof ofLemma B, continued. By the sublemma, all i <. s < k^ are unsuitable
values for leftlow[ki\ since (/[a] > j^[A:^]. Therefore, for any / < m, leftlowlk^] should be
assigned the value i if The first assignment of the Update loop does exactly

that. We now show that rightlow[t\ should be assigned the value k^. That is, we need
to show that, for »< a < k^, j^[a] > i |̂i] and that

Since the Update loop no longer iterates when l^k^, ^ show
that j[a] > i^[»] for all t < a < k^. If m=0, this is vacuously true since ArQ=i+l.
Otherwise, i?[a] > g[k^^ by the sublemma, and because the Update loop
continues to iterate when k=k

m-l

Thus, the Update loop makes the correct assignment to rtjrAf/ow[i].Q

Lemma C. After execution of the Choose loops, one of the following two

- 7

conditions holds.

(I) There is no j < n+1 such that Legal{i,j), and r is the largest possible

value of j < n+1 such that Line{i,j) < Imax.

or (E) Among all j such that Legal{i,j), r is the choice of j which minimizes g[}\.

Proof. By induction on i. Condition (I) holds before the first iteration of the

main loop (consider i = n+1). We define a loop invariant.

LCI: For all r < j < n+1 such that Line{i,j) < Imax, g\j\ > ff[r].

LC2: If r < n+1, Linc(i,r+1) > Imin.

We will establish that the loop invariant holds initially i.e., before the main loop

(consider i = n+1), and that it is preserved by each execution of the while loops of the

choose block, as well as when i is decremented in the main loop.

Initially, LC holds vacuously. Decrementing i cannot cause LC to fail, because

Line{i,j) is monotone decreasing on the first argument. An iteration of Choosel

preserves LC2 because, immediately after any such iteration, Line(f,r+1) > Imax >

Imin. Also, if Choosel iterated one or more times, LCI holds vacuously.

We now show that an iteration of Choose2 preserves LC. r' denotes the value of

r after the iteration.

If LC holds before an iteration then, by LCI, g\j\ > ff[r] for all r < j < n+1

such that Line{i,j) < Imax. In order for Choose2 to iterate, leftlovi\r\ is defined and

Lmc(i,/c/f/ow(r]) > Imin.

LC2 will hold after the iteration, since Lint{i,leftlow\i\-¥l) > Line{i,leftlov\i^ >

/mm and thus Ljne(t,r'+1) > /min.

To prove that LCI is preserved, consider j such that r' = leftlow\r\ < j < n+1

and Line{i,j} < Imax. We need to show that g\j\ > g[leftlov\r]] = V r < j <

n+1 then g\j\ > by LCl and > j^[r'] by LB2. If r' = leftlow[t] < j < r then

-8-

9b] > > g[lefilov\r\\ by LB2,

Thus, LC is loop invariant.

Consider the case when Legal{i,r) after Choosel has executed. By LCl, gb] >

for any j > r such that Legal{i,j). U j < r and Legal{i,j) then, since Choose2 has

ceased iterating, either leftlow[r] is undefined, or Line{i,leftlow[r]) < Imin which implies

by monotonicity of Line that leftloti\r] < j <. r. In either case, by LB2, gb] > j[r].

Thus case (U) of Lemma C holds.

Otherwise, not Lega{{i,r) after Choosel has executed. In this case, Z/fnc(i,r) <

/moar since Choosel did not iterate again, and therefore Line{i,r) < Imin since otherwise

Legal{i,r). Thus, Choose2 cannot iterate by the monotonicity of Line and the fact that

if leftlow{f] is defined then leftlow[r] < r. Now, either Choosel iterated once or more, or

it did not iterate. If Choosel iterated. Case (I) of Lemma C holds, since then

Z/ine{«,r+l) > Imax (and Choose2 did not iterate). If Choosel did not iterate, r has the

same value as it did after execution of Choose2 of the previous iteration of the main

loop. By the inductive hypothesis. Lemma C held for i-fl. Case (11) cannot have held,

because then Line{i,r) > Lmc(i+l,r) > /mm, which would imply that Legal{i,r). Thus

Case (I) of Lemma C held for i+l. Since Line is monotone decreasing on its first

parameter. Case (I) of Lemma C then holds for i. Q

We now prove the correctness of the Linear Penalty Algorithm, assuming that

the traditional algorithm is correct. We need to show that the Choose steps of the

Linear Penalty Algorithm are equivalent to the Choose step of the traditional algorithm.

By Lemmas A and C (only case C(n) applies since we are within the Else if clause), the

value of r after execution of Choose2 is the same as the value of r chosen in the Choose

step of the traditional algorithm, provided such a legal r exists. Q

Time complexity. We can use 0(n) preprocessing time to compute Line{l,t) for

- 9-

all I. Then L»ne(fj") (and hence Legal{i,j)) can be computed in 0(1) time by the

(ormulsi Line{i,j) = Line{l,j) - Line{l,{).

The Choose loops appear to iterate 0(n) times within each iteration of the main

loop. However, r decreases with each iteration of each of those loops. Thus, the total

number of such iterations cannot exceed n.

The Update loop also appears to iterate 0(n) times within each iteration of the

main loop. Note, by LB2, the value of lefUow[l^, once defined, is never redefined. It

follows that the total number of iterations of the Update loop, over all iterations of the

main loop, is at most n.

2.3 General Concave Penalty Function

We say that a function p(i) is concave if, for any x < y < r in its domain,

[z-x)p{y) < {y-x)j){z) + (z-y)j>{x). For example, any quadratic function with non-

negative leading coefficient is concave.

We now consider the breaksequence problem where penalty{x) is non-negative

and concave for x € As before, penaliy{x) = oo for a: [lmin,lma:!^, and

there is no penalty for the last line if its length does not exceed lopi.

The time bottleneck in the General Concave Algorithm (GCA) given below is the

evaluation of the Boolean function Bridge. All other parts of the algorithm run in linear

time, and Bridge needs to be evaluated 0(n) times. If penalty is quadratic. Bridge can

be evaluated in 0(1) time, and hence the entire algorithm is linear. Generally, Bridge

can be evaluated in O(log M) time by binary search, making the entire algorithm

0(n log M). We leave open the possibility that a faster general algorithm exists.

Notation. For convenience, we let F{i,j) = f\j\+penalty{Line{i,j)), the least cost

of a paragraph beginning at the i*'' word whose second line begins at the word.

- 10-

The Boolean function Bridge. Bridge{j,k,l) is defined for 1 < / < t < / < n+1.

If true, it means that need not be considered as a choice for nextbreak[t\ for any

"future" t (i.e., i < j), since either j or / is always (i.e., for any i) at least as good a

choice as k. Formally, for the algorithm to run correctly, it suffices that Bridge satisfy

the following two conditions. _

Brl: If 1 < I < y < A: < / < n+1 such that Legal{i,k) and Bridge{j,k,l), then

F{i,j) < F{i,k) or F{i,l) < Fii,k).

Br2: If 1 < i < y < A: < / < n+1 such that Legal{i,k) and not Bridge{j,k,l),

then F{i,k) < F{i,j) or F{i,k) <F{i,I).

There is an allowed ambiguity in the definition of Bridge. Any function that

satisfies Brl and Br2 will work. We note that, for example, one possible Bridge function

is such that it is false if and only if there exists some i such that F{i,k) is less than both

F{i,j) and F(i,/). To compute this particular function, we can determine whether such

an i exists by binary search since, by concavity of penalty, F{i,f) < F(i,k) implies that i

is too low and F(i,l) < F(i,k) implies that i is too high. Because we can restrict our

initial search domain to no more than M possible values of i. Bridge can be computed in

0(log M) time.

Quadratic Case. Suppose that penalty{x) = ax + bx + c for x e [lmin,lmax],

where a > 0. Then for any j < k < I, let Bridge{j,k,l) be true if and only if the

following two conditions hold.

Ql: /[A^ + penalty{lmax-Line[k,l)) > /[;] + penalty{lmax-Line{j,I))

Q2: Line{j,l)f[l^ > Line{j,k)f[l] + Line{k,l)f\j] aLine{j,k)Line{j,l)Line{k,l)

Ql and Q2 can both be computed in 0(1) time. Thus, we have a linear time algorithm

for the case of a quadratic penalty function.

Data structure. We make use of an input-restricted deque S of integers. Integers

can be deleted from both the top and bottom ends of S, but can only be inserted to the

top end. Deque S is used to choose r, similar in function to the leftlow pointer array in

the Linear Penalty Algorithm (LPA). The chosen value of r will be at the bottom of S.

11

Let us define time i to be the point in an algorithm when the main loop variable has

value I (smaller values of i are later).

After it is completely evaluated, the leftlow pointer array is a failure forest that

can be thought of as being rooted at 0. At any time in the LPA, the leftlow failure tree

is only partially constructed. During each loop, the LPA progressively develops the

failure tree (in Update) and eliminates from consideration some candidates by

consideration of Imax (in Choosel) and by following a chain in the failure tree (in

Choose2). In the GCA, deque 5 at time t corresponds to the frontier of the developing

failure tree in the LPA at the latest time j when Line(i,j) > Imin. The following

operators on S are used.

Functions: |5| = current cardinality of 5

•Top = value of the top element of S

Bottom = value of the bottom element of 5

2Top = value of the second from the top element of S

2Bottom = value of the second from the bottom element of S

Procedures: Pop

Drop

Push{x)

delete the top element of S

delete the bottom element of S

insert x at the top of S

Algorithm 3 — General Concave Algorithm

/[n+l]^0
S *- A (empty list)
eol n+1

Loop: for i from n downto 1 do

begin

Cboosel: while 5nonempty and Lint{i,Bottom) > imaxdo Drop
Update: while LtRe(t,eol) >/mm do

begin

while 5nonempty and F(i,eol) < F{i,Top) do Pop
while |5| > 2 and Bridgf{eol,Top,STop) do Pop
if Z>tne(i,eo/) < Imax then Ptt8k{eo()
eol ♦- eol-1

- 12-

I
end (of Update)

Choose2; while |5| > 2 and F(i,SBottom) < F(i,Bottom) do Drop
if Line{i,n+1) < lopt then

begin

nextbreakll) m+1

end

else if S nonempty then

begin

neztbreak[{\ •»- Bottom
/!»] F(i,Bottom)

end

else (i.e., 5 = A)
/[i] ^ 00

end (of Loop)
if /[l] < 00 then D€fine_brcak_sequence

2.4 Piecewise Concave Penalty Function

If the penalty function is piecewise concave, the algorithm can be generalized,

using one deque for each concave piece. The running times are simply added. If there

are F concave pieces, the running time for the combined algorithm is

0{ nr(l+log(M/r))). In the case where the function is piecewise linear or piecewise

quadratic, the running time is 0(nr).

The method is essentially to use independent copies of the general concave

algorithm, one for each concave piece of the penalty function. These procedures meet

once during each iteration of the main loop to exchange information and decide which

one has the best value for n€xtbreak[{\.

3. PaginBtion of Scrolls

A boundary sequence for a scroll is a sequence 0 =«<«<...< « = n+1
V B Vtx

such that E ^ for all 1 < k < v+l, where 0 < Imin < imax are
*4-1 4 *

fixed. The feni/fA of that boundary sequence is defined to be . McCreight j5]

- 13-

asks whether we can "quickly" find a boundary sequence of minimum length.

Diehr and Faaland [2] develop an algorithm which finds the minimum length

boundary sequence in 0{n Ig n) time. We present a linear-time algorithm.

For convenience, assign any positive value, say 1, to and

Define, Gap{a,b) as the sum of the lengths of the scroll items, w., strictly between

the and the b^^ items. Note that Gap{a,a+1) = 0. Define Gap{a,a) = -w^.

Define boolean function Page{a,b) to be true iff Gap{a,b) e [Iminjmax].

For any 0 < a < 6 < n-t-1, we define an admiasable path from a to 6 to be a

sequence s^, ... s^ such that Page^s^ for each 0 < A< w. The length of that
path is there exists an admissable path from j to n-|-l, we say that j is

accessable.

For any 0 < i < n-l-1, define f{t) to be the minimum length of all paths from i

to n+1. If I is inaccessable, let /(i) = oo.

For each 0 < t < n-l-1 such that Page{i,k) for some k, define p(i) to be the

unique number which satisfies the following three conditions:

(i) Page(i,p(i))

(ii) /(a'(O) ^ minimized subject to (i)

(iii) /;(t) is maximized subject to (i) and (ii)

If there is no A: for which Page[i,l^ is true, then p(i) is undefined. Also, /'(n+1) is

undefined.

Computation of / and p clearly suffices to find the minimum length boundary

sequence. A boundary sequence exists if and only if /(O) < oo, and the minimum length

boundary sequence can be found by using p.

- 14-

I
Algorithm 4 — Scroll Pagination

Compute 5um[t] = 0 < t < n+l
leftlou^{[•< 1, 0 < { ^ n+l
/[n+l] 4- 0
r n+l

Loop: for i from n downto 0 do

begin

Choosel: while Gap(i,r) > Imaxdo r ♦- r-1
Choose2: while r < leftlow\r\ and Gap{i,lefilotJi:\T]) > Imin do r *- leftlou^r]

if Po5e(j,r) then
begin

/[»] M +
p\i] ^ r

end

else

/[»] ^ 00
k •*- »+1

Update: while /[I] > /[»] do
begin

leftlou:{k] ^ i
k •<— rigktloii\j\

end

rightlou\{\ *- k
end (of Loop)

It is important to distinguish between the functions /(i) and p{t) on the one hand,

which are defined abstractly, and the arrays /[i] and p[i], whose values are assigned

dynamically during execution of the algorithm. Also, we remind the reader that, for all

0 < I < n+l, either /(i) = oo or /(i) = + tv^.

Intuitively, the algorithm works as follows, r is a running temporary p(i), which

never decreases. When r is too large because Gap{i,r) > Imax, r is decremented by 1

until Gap is small enough. We then need to decrease r, minimizing the / value, thus

obtaining p(t}. In [2], a heap of possible values is maintained, and it takes 6(lg n) time

to find p{i). In Algorithm 4, the pointer leftlowtells us where to look next. Even

though it might take 0(n) time to find p(i) for a particular i, the total time for these

searches over all i is still only 0(n), since r never increases. Thus, leftlow is a failure

function. The pointer array righilow is used for updating leftlow, and also for updating

- 15

itself. It too is used as a failure function.

Loop invariant. For any 0 < i < n+1, the following conditions hold after n+l-i

iterations of the loop of Main;

Ll(t): If p{t) is defined, r = p{i). Otherwise, r b the largest jsuch that Gap{i,j) <

Imax.

L2(f): For all t < j < n+1, /[;] = /{j).

L3(i): For all i < j < n+1, if p{j) is defined, p\f^ — p{j). Otherwise, p\j\ b undefined.

L4(»): For all i < j < n+1, leftlov^] b the largest t < k < ysuch that f(k) < /(j),

provided there is such a k. Otherwbe, Uftloui\j] = -1.

L5(i): For all i < j < n+1, rightlow]j\ b the smallest j < k < n+1 such that f{k) <

M-

The reader is referred to [4] for a complete proof of the loop-invariants.

References

[1] Aho, A.v., J.E, Hopcroft, and J.D. Ullman. The Design and Analysis of

Computer Algorithms. Addbon-Wesley, 1974, pp.329-335.

[2] Diehr, G. and B. Faaland. Optimal pagination of B-trees with variable-length

items. Comm. AGM ;27, 3 (March 1984), 241-247.

[3] Knuth, D.E. and M.F. Plass. Breaking paragraphs into lines. Software -

Practice Expcnencc (1981), 1119-1184.

[4] Larmore, L.L. and D.S. Hirschberg. Efficient optimal pagination of scroUs.

Technical Report 524, ICS Dept., Univ. of Calif. Irvine, April 1984.

[5] McCreight, E.M. Pagination of B*-tTees ywtli variable-length records. Comm.

ACM .eO, 9 (Sept. 1077), 670-674.

- 16-

[6] Morris, J.H., Jr. and V.R. Pratt. A linear pattern matching algorithm.

Technical Report No. 40, Computing Center, Univ. of Calif. Berkeley, 1970.

- 17-

