UC Irvine

ICS Technical Reports

Title

New application of failure functions

Permalink

https://escholarship.org/uc/item/8s55r2p2

Authors

Hirschberg, D. S.
Larmore, L. L.

Publication Date

1984
Peer reviewed

New Applications of Failure Functions

D. S. Hirschberg and L. L. Larmore

October, 1984
Technical Report 236

Abstract

Several algorithms are presented whose operations are governed by a principle of failure functions: when searching for an extremal value within a sequence, it suffices to consider only the subsequence of items each of which is the first possible improvement of its predecessor. These algorithms are more efficient than their more traditional counterparts.

This research was supported in part by National Science Foundation Grant MCS-82-00362. Authors' address: Department of Information and Computer Science, University of California, Irvine, CA 92717.

New Applications of Failure Functions
 D. S. Hirschberg and L. L. Larmore

1. Introduction

The notion of failure functions is often associated with the linear-time substring recognition algorithm [1,6]. The principle of failure functions is disarmingly simple: when searching for an extremal value within a sequence, it suffices to consider only the subsequence of items each of which is the first feasible alternative of its predecessor. The value of the failure function is a pointer to that first feasible alternative. Implementing this function in isolation will not yield any advantage since the effort required to determine what is the first feasible alternative is equal to the hoped for savings, which is not having to consider many losing alternatives. The preprocessing costs negate the run-time savings. (In practice, the preprocessing may be chronologically interspersed with the processing.) However, if many such searches are contemplated and they are closely related then the preprocessing costs may be spread over the multiple searches with some additional intersearch fix-up costs. The net effect may be some real savings. This was the case for the pattern matching algorithm, and is also the case for the algorithms given in this paper.

We first consider the problem of determining the optimum way to break a paragraph (scroll of words) into lines, provided the penalty function (for a line being too long or too short) is linear. Our algorithm for this problem is linear-time. We then exhibit an algorithm for more general penalty functions which is linear-time in the case of a piecewise quadratic function.

We also consider the problem of finding the minimum sum of key length pagination of a scroll of n items. We present a linear-time algorithm, improving on the $O(n \log n)$ result of Diehr and Faaland.

2. Breaking a Paragraph into Lines

We are given a paragraph consisting of a scroll of n words, where the $t^{\text {th }}$ word has length $w_{i}>0$, and a non-negative valued function penalty (x) which is defined over the closed interval [lmin,lmax], where $0<l \min <l \max$. We assume that there is an optimum line length lopt $\in[\operatorname{lmin}, l m a x]$ for which penalty $(l o p t)=0$. We define a break sequence of the paragraph to be a monotone increasing sequence $1=b_{1}, b_{2}, \ldots b_{m} \leq n$ of integers. The break sequence defines lines, where the $k^{\text {th }}$ line begins with the $\boldsymbol{b}_{\boldsymbol{k}}^{\text {th }}$ word, and its length is length ${ }_{k}=w_{b_{k}}+\ldots+w_{b_{k+1}-1}$ (where b_{m+1} is taken to be $n+1$). We say that a break sequence is admissable if length ${ }_{k} \in[l \min , l m a x]$ for all $k<m$, and length $_{m} \leq$ lmax.

The total penalty of a given break sequence is defined to be the sum of the penalties of the lines, but where the last line is not penalized for being too short. The problem is to find an admissable break sequence with minimum total penalty.

2.1 The Traditional Line-Breaking Algorithm

For each $i \leq n+1$, define $f[i]$ to be the lowest total penalty of any break sequence of the subscroll $w_{i} \ldots w_{n}$. We let $f[n+1]=0$ by default. The traditional algorithm (see, for example, [3]) uses dynamic programming.

For any $1 \leq i \leq j \leq n+1$, let $\operatorname{Line}(i, j)=w_{i}+\ldots+w_{j-1}$, and let $\operatorname{Legal}(i, j)$ be the boolean function which is true if and only if $\operatorname{Line}(i, j) \in[l m i n, l m a x]$.

Algorithm 1 - Traditional Algorithm

$$
f[n+1] \leftarrow 0
$$

Loop: for i from n downto 1 do if $\operatorname{Line}(i, n+1) \leq$ lopt then
begin

$$
f[\mathfrak{z}] \leftarrow 0
$$

$$
\text { nextbreak } \mid i] \leftarrow n+1
$$

end
else if Legal (i, j) for some j then
begin
Choose: \quad Choose r such that Legal (i, r) and $f|r|+$ penalty $($ Line (i, r) is minimized

```
        \(f[i] \leftarrow f[r]+\operatorname{penalty}(\operatorname{Line}(i, r))\)
        nexibreak \([\mathrm{i}] \leftarrow r\)
        end
        else
        \(f[t] \leftarrow \infty\)
if \(f[1]<\infty\) then Define_break_sequence
```

The subroutine Define_break_sequence recovers the breakpoint vector b from the array nextbreak.

Subroutine Define_break_sequence

```
\(8 \leftarrow 1\)
\(t \leftarrow 1\)
while \(t \leq n\) do
    begin
        \(b[8]-t\)
        \(8 \leftarrow 8+1\)
        \(t \leftarrow\) nextbreak \(|t|\)
    end
```

The bottleneck in the Traditional Algorithm is the Choose step, since all other steps can be done in time $O(n)$. The total time for all executions of the Choose step is $O(n M)$, where M is the largest number of words that could possibly occur in a line (we could set $M=\operatorname{lmax} / W$, where W is the minimum value of w_{i}). If M is considered to be bounded, then the Traditional Algorithm is linear. However, if we consider a class of problems in which M, as well as n, grows then the Traditional Algorithm is no longer linear.

2.2 Linear Penalty Function

We consider the case that penalty is linear, i.e., for all $x \in[l m i n, l m a x]$, penalty $(x)=C(x$-lopt $)$, for some constant C which may be positive, negative, or zero. We define penalty $(x)=\infty$ if $x \notin[l m i n, l m a x]$.

We use dynamic arrays leftlow and rightlow, which have pointer (actually index)
values, and dynamic arrays f and g, which have penalty values. The array f is identical to the f in the traditional algorithm, and g is a modified array which always satisfies the equation $g[k]=f[k]+C \operatorname{Line}(1, k)$. At any given time, rightlow $[k]$ is the smallest $l>k$ such that $g[l] \leq g[k]$, and leftlow $[k]$ is the largest $l<k$ such that $g[l]<g[k]$. leftlow is used as a failure function for choosing the previous breakpoint (beginning of a line) corresponding to a current end of line, and rightlow is used as a failure function for updating the leftlow values.

```
Algorithm 2 - Linear Penalty Algorithm
\(g \mid n+2] \leftarrow-\infty\)
\(f \mid n+1] \leftarrow 0\)
\(g|n+1| \leftarrow C \operatorname{Line}(1, n+1)\)
\(r \leftarrow n+1\)
rightlow \([n+1] \leftarrow n+2\)
Loop: for \(\boldsymbol{i}\) from \(n\) downto 1 do begin
        if Line \((i, n+1) \leq l o p t\) then
                begin
            \(f[i] \leftarrow 0\)
            nextbreak[i] \(\leftarrow n+1\)
        end
        else
                begin
Choose1:
```

```
                        while Line \((i, r)>l_{\text {max }}\) do \(\quad r \leftarrow r-1\)
```

 while Line \((i, r)>l_{\text {max }}\) do \(\quad r \leftarrow r-1\)
 Choose2: \quad while leftlow $\mid \boldsymbol{\gamma}$ defined and Legal (i, leftlow $|r|$) do $r \leftarrow$ lefllow $|r|$
Choose2: \quad while leftlow $\mid \boldsymbol{\gamma}$ defined and Legal (i, leftlow $|r|$) do $r \leftarrow$ lefllow $|r|$
$f \mid i\} \leftarrow f|r|+\operatorname{penalty}($ Line $(i, r))$
$f \mid i\} \leftarrow f|r|+\operatorname{penalty}($ Line $(i, r))$
if $f[i]<\infty$ then nextbreak $[i] \leftarrow r$
if $f[i]<\infty$ then nextbreak $[i] \leftarrow r$
end
end
$g[i] \leftarrow f[i]+C \operatorname{Line}(1, i)$
$g[i] \leftarrow f[i]+C \operatorname{Line}(1, i)$
$k \leftarrow i+1$
$k \leftarrow i+1$
Update: \quad while $g[k]>g[i]$ do
Update: \quad while $g[k]>g[i]$ do
begin
begin
leftlow $[k] \leftarrow i$
leftlow $[k] \leftarrow i$
$k \leftarrow$ rightlowl서
$k \leftarrow$ rightlowl서
end
end
rightlow $[$ i $] \leftarrow k$
rightlow $[$ i $] \leftarrow k$
end (of Loop)
end (of Loop)
if $f[1]<\infty$ then Define_break_sequence

```
if \(f[1]<\infty\) then Define_break_sequence
```

We can prove the correctness of the Linear Penalty Algorithm by showing that it
simulates the Traditional Algorithm. We need three lemmas.

Lemma A. Fix i. Among the set of all j such that Legal (i, j), that j which minimizes $g[j]$ also minimizes $f[]]+\operatorname{penalty}(\operatorname{Line}(i, j)$).

Proof. $f[0]+\operatorname{penalty}(\operatorname{Line}(i, j))-g[j]=\operatorname{penalty}(\operatorname{Line}(i, j))-\operatorname{CLine}(1, j)$ $=-C($ lopt $+\operatorname{Line}(1, i)$, which is constant for fixed i.

Lemma B. The following loop invariant holds after each iteration of the main loop of the Linear Penalty Algorithm.

LB1: For all $i \leq s \leq n+1$, rightlow[$s]=t$, where $t>s$ is the smallest value such that $g[t] \leq g[s]$.
LB2: For all $i<s \leq n+1$, leftlow $[s]=t$, where $i \leq t<s$ is the largest value such that $g[t]<g[s]$, provided such a t exists. Thus, in this case, for all leftlow $[s]<j<s, g[j] \geq g[s]$. Otherwise, leftlow $[s]$ is undefined.

Proof. By induction on i. Initially, i.e., before the main loop iterates at all; we can take $i=n+1$. Then, LB2 holds vacuously, while LB1 holds by initial assignment.

Our inductive hypothesis is that LB holds for all values larger then i. Thus, before execution of the Update loop, for all $i+1 \leq s \leq n+1$:
(a) rightlow[s]=t, where $t>s$ is the smallest value such that $g[t] \leq g[s]$.
(b) leftlow[s]=t, where $i+1 \leq t<s$ is the largest value such that $g[t]<g[s]$, provided such a t exists. Otherwise, leftlow $[s]$ is undefined.

Thus, we need to prove only that, at the end of an iteration of the main loop, rightlow $[i]$ has the correct value, and that leftlow $[s]=i$ if $i<8 \leq n+1$ and $g[i]<g[s]$ and leftlow[s] was undefined before the Update loop.

Let $k_{0}, \ldots k_{m}$ be the sequence of values of k produced in the Update loop, i.e., $k_{0}=i+1$, and $k_{l+1}=$ rightlow $\left[k_{l}\right]$ for $0 \leq l<m$. Note that $g\left[k_{m}\right] \leq g[\mathfrak{l}]$, and $g\left[k_{l}\right]>$
$g \prod_{i} j$ for all $0 \leq l<m$.

Sublemma. For all $0 \leq l \leq m$, and for all $i<s \leq k_{l}, g[s] \geq g\left[k_{l}\right]$. Furthermore, if $l \geq 1$ and $s<k_{l}, g[s] \geq g\left[k_{l-1}\right]$.

Proof. By induction on l. For $l=0$, the sublemma holds since we must have s $=k_{0}=i+1$. For the inductive step, assume the sublemma holds for $l-1$. If $i<s \leq k_{l}$ then, because $k_{l}=\operatorname{rightlow}\left[k_{l-1}\right]>k_{l-1}$ by LB1, either (i) $s \leq k_{l-1}$, or (ii) $k_{l-1}<s<$ k_{l}, or (iii) $s=k_{l}$.

If (i) then, by the inductive hypothesis, $g[s] \geq g\left[k_{l-1}\right]$.

If (ii) then $k_{l}=$ rightlow $\left[k_{l-1}\right]$ by the second assignment of the Update loop. By LB1, $g\left[k_{l}\right] \leq g\left[k_{l-1}\right]$ and for any s between k_{l-1} and $k_{l}, g[s]>g\left[k_{l-1}\right]$.

In either case we are done, since $g\left[k_{l}\right] \leq g\left[k_{l-1}\right]$. Case (iii) is trivial.

Proof of Lemma B, continued. By the sublemma, all $i<s \leq k_{l}$ are unsuitable values for leftlow $\left[k_{l}\right]$ since $g[s] \geq g\left[k_{l}\right]$. Therefore, for any $l<m$, leftlow $\left[k_{l}\right]$ should be assigned the value i if $g[1]<g\left[k_{l}\right]$. The first assignment of the Update loop does exactly that. We now show that rightlow[i] should be assigned the value $\boldsymbol{k}_{m^{\prime}}$. That is, we need to show that, for $i<s<k_{m}, g[s]>g[t]$ and that $g\left[k_{m}\right] \leq g[i]$.

Since the Update loop no longer iterates when $k=k_{m^{\prime}} g\left[k_{m}\right] \leq g[i]$. We now show that $g[s]>g[t]$ for all $i<s<k_{m}$. If $m=0$, this is vacuously true since $k_{0}=i+1$. Otherwise, $g[s] \geq g\left[k_{m-1}\right]$ by the sublemma, and $g\left[k_{m-1}\right]>g[g]$ because the Update loop continues to iterate when $k=k_{m-1}$.

Thus, the Update loop makes the correct assignment to rightlow[1$]. \square$

Lemma C. After execution of the Choose loops, one of the following two

conditions holds.

(I) There is no $j \leq n+1$ such that Legal (i, j), and r is the largest possible value of $j \leq n+1$ such that $\operatorname{Line}(i, j) \leq l \max$.
or (II) Among all j such that $\operatorname{Legal}(i, j), r$ is the choice of j which minimizes $g[j]$.

Proof. By induction on \boldsymbol{i}. Condition (I) holds before the first iteration of the main loop (consider $i=n+1$). We define a loop invariant.

LC1: For all $r<j \leq n+1$ such that Line $(i, j) \leq \operatorname{lmax}, g[j] \geq g[r]$.
LC2: If $r<n+1, \operatorname{Line}(i, r+1) \geq \operatorname{lmin}$.

We will establish that the loop invariant holds initially i.e., before the main loop (consider $i=n+1$), and that it is preserved by each execution of the while loops of the choose block, as well as when i is decremented in the main loop.

Initially, LC holds vacuously. Decrementing icannot cause LC to fail, because $\operatorname{Line}(i, j)$ is monotone decreasing on the first argument. An iteration of Choosel preserves LC2 because, immediately after any such iteration, Line(i,r+1)>lmax \geq Imin. Also, if Choosel iterated one or more times, LC1 holds vacuously.

We now show that an iteration of Choose 2 preserves LC. r^{\prime} denotes the value of r after the iteration.

If LC holds before an iteration then, by LC1, $g[j] \geq g[r]$ for all $r<j \leq n+1$ such that Line($(i, j) \leq \operatorname{lmax}$. In order for Choose2 to iterate, leftlow $\mid \boldsymbol{r}$ is defined and Line $(i$, leftlow $[r]) \geq l$ min.

LC2 will hold after the iteration, since Line($(i$, lefllow $[r]+1)>\operatorname{Line}(i$, leftlow $[\eta) \geq$ $l m i n$ and thus $\operatorname{Line}\left(i, r^{\prime}+1\right) \geq \operatorname{lmin}$.

To prove that LC1 is preserved, consider j such that $\boldsymbol{r}^{\prime}=$ leftlow $[r]<j \leq n+1$ and $\operatorname{Line}(i, j) \leq \operatorname{lmax}$. We need to show that $g[j] \geq g[$ leftlow $[r]]=g\left[r^{\prime}\right]$. If $r<j \leq$ $n+1$ then $g[j] \geq g[r]$ by LC1 and $g[r]>g\left[r^{\prime}\right]$ by LB2. If $r^{\prime}=$ leftlow $[r]<j \leq r$ then
$g[] \geq g[r]>g[l e f t l o w[r]$ by LB2.

Thus, LC is loop invariant.

Consider the case when Legal (i, r) after Choosel has executed. By LC1, $g[j \geq$ $g[r]$ for any $j>r$ such that Legal (i, j). If $j<r$ and Legal (i, j) then, since Choose2 has ceased iterating, either leftlow $[r]$ is undefined, or Line($(, \operatorname{leftlow}[r])<\operatorname{lmin}$ which implies by monotonicity of Line that leftlow $[r]<j<r$. In either case, by LB2, $g[j] \geq g[r]$. Thus case (II) of Lemma C holds.

Otherwise, not Legal((i, r) after Choosel has executed. In this case, Line $(i, r) \leq$ lmax since Choosel did not iterate again, and therefore Line $(i, r)<l \min$ since otherwise Legal (i,r). Thus, Choose2 cannot iterate by the monotonicity of Line and the fact that if leftlow $[r]$ is defined then leftlow $[r]<r$. Now, either Choose1 iterated once or more, or it did not iterate. If Choosel iterated, Case (I) of Lemma C holds, since then Line $(i, r+1)>\operatorname{lmax}$ (and Choose2 did not iterate). If Choosel did not iterate, r has the same value as it did after execution of Choose2 of the previous iteration of the main loop. By the inductive hypothesis, Lemma C held for $i+1$. Case (II) cannot have held, because then Line $(i, r)>\operatorname{Line}(i+1, r) \geq \operatorname{lmin}$, which would imply that Legal (i, r). Thus Case (I) of Lemma C held for $i+1$. Since Line is monotone decreasing on its first parameter, Case (I) of Lemma C then holds for i.

We now prove the correctness of the Linear Penalty Algorithm, assuming that the traditional algorithm is correct. We need to show that the Choose steps of the Linear Penalty Algorithm are equivalent to the Choose step of the traditional algorithm. By Lemmas A and C (only case C(II) applies since we are within the Else if clause), the value of r after execution of Choose 2 is the same as the value of r chosen in the Choose step of the traditional algorithm, provided such a legal r exists. $\quad \square$

Time complexity. We can use $O(n)$ preprocessing time to compute Line $(1, i)$ for
all i. Then Line (i, j) (and hence Legal (i, j)) can be computed in $O(1)$ time by the formula $\operatorname{Line}(i, j)=\operatorname{Line}(1, j)-\operatorname{Line}(1, i)$.

The Choose loops appear to iterate $O(n)$ times within each iteration of the main loop. However, r decreases with each iteration of each of those loops. Thus, the total number of such iterations cannot exceed n.

The Update loop also appears to iterate $O(n)$ times within each iteration of the main loop. Note, by LB2, the value of leftlow $[k]$, once defined, is never redefined. It follows that the total number of iterations of the Update loop, over all iterations of the main loop, is at most n.

2.3 General Concave Penalty Function

We say that a function $p(x)$ is concave if, for any $x<y<z$ in its domain, $(z-x) p(y) \leq(y-x) p(z)+(z-y) p(x)$. For example, any quadratic function with nonnegative leading coefficient is concave.

We now consider the breaksequence problem where penalty (x) is non-negative and concave for $x \in[\operatorname{lmin}, l m a x]$. As before, penalt $y(x)=\infty$ for $x \notin[\operatorname{lmin}, l m a x]$, and there is no penalty for the last line if its length does not exceed lopt.

The time bottleneck in the General Concave Algorithm (GCA) given below is the evaluation of the Boolean function Bridge. All other parts of the algorithm run in linear time, and Bridge needs to be evaluated $O(n)$ times. If penalty is quadratic, Bridge can be evaluated in $O(1)$ time, and hence the entire algorithm is linear. Generally, Bridge can be evaluated in $O(\log M)$ time by binary search, making the entire algorithm $O(n \log M)$. We leave open the possibility that a faster general algorithm exists.

Notation. For convenience, we let $F(i, j)=f[j]+$ penalty $(\operatorname{Line}(i, j))$, the least cost of a paragraph beginning at the $\boldsymbol{i}^{\text {th }}$ word whose second line begins at the $j^{\text {th }}$ word.

The Boolean function Bridge. Bridge($j, k, l)$ is defined for $1<j<k<l \leq n+1$. If true, it means that k need not be considered as a choice for nextbreak[$[\boldsymbol{l}]$ for any "future" i (i.e., $i<j$), since either j or l is always (i.e., for any i) at least as good a choice as k. Formally, for the algorithm to run correctly, it suffices that Bridge satisfy the following two conditions.

Brl: If $1 \leq i<j<k<l \leq n+1$ such that Legal (i, k) and Bridge (j, k, l), then $F(i, j) \leq F(i, k)$ or $F(i, l) \leq F(i, k)$.
Br2: If $1 \leq i<j<k<l \leq n+1$ such that Legal (i, k) and not $\operatorname{Bridge}(j, k, l)$, then $F(i, k) \leq F(i, j)$ or $F(i, k) \leq F(i, l)$.

There is an allowed ambiguity in the definition of Bridge. Any function that satisfies Br 1 and Br 2 will work. We note that, for example, one possible Bridge function is such that it is false if and only if there exists some i such that $F(i, k)$ is less than both $F(i, j)$ and $F(i, l)$. To compute this particular function, we can determine whether such an i exists by binary search since, by concavity of penalty, $F(i, j) \leq F(i, k)$ implies that i is too low and $F(i, l) \leq F(i, k)$ implies that i is too high. Because we can restrict our initial search domain to no more than M possible values of i, Bridge can be computed in $O(\log M)$ time.

Quadratic Case. Suppose that penalty $(x)=a x^{2}+b x+c$ for $x \in[\operatorname{lmin}, l m a x]$, where $a \geq 0$. Then for any $j<k<l$, let $\operatorname{Bridge}(j, k, l)$ be true if and only if the following two conditions hold.

$$
\begin{array}{ll}
\text { Q1: } & f[k]+\operatorname{penalty}(\operatorname{lmax}-\operatorname{Line}(k, l)) \geq f[j]+\operatorname{penalty}(\operatorname{lmax}-\operatorname{Line}(j, l)) \\
\text { Q2: } & \operatorname{Line}(j, l) f[k] \geq \operatorname{Line}(j, k) f[l]+\operatorname{Line}(k, l) f[j]+\operatorname{a} \operatorname{Line}(j, k) \operatorname{Line}(j, l) \operatorname{Line}(k, l)
\end{array}
$$

Q1 and Q2 can both be computed in $O(1)$ time. Thus, we have a linear time algorithm for the case of a quadratic penalty function.

Data structure. We make use of an input-restricted deque S of integers. Integers can be deleted from both the top and bottom ends of S, but can only be inserted to the top end. Deque S is used to choose r, similar in function to the leftlow pointer array in the Linear Penalty Algorithm (LPA). The chosen value of r will be at the bottom of S.

Let us define time i to be the point in an algorithm when the main loop variable has value i (smaller values of i are later).

After it is completely evaluated, the leftlow pointer array is a failure forest that can be thought of as being rooted at 0 . At any time in the LPA, the leftlow failure tree is only partially constructed. During each loop, the LPA progressively develops the failure tree (in Update) and eliminates from consideration some candidates by consideration of Imax (in Choosel) and by following a chain in the failure tree (in Choose2). In the GCA, deque S at time i corresponds to the frontier of the developing failure tree in the LPA at the latest time j when $\operatorname{Line}(i, j) \geq \operatorname{lmin}$. The following operators on S are used.

Functions: $\quad|S| \quad=$ current cardinality of S
Top $\quad=$ value of the top element of S
Bottom $\quad=$ value of the bottom element of S
$2 T o p \quad=$ value of the second from the top element of S
2Bottom $\quad=$ value of the second from the bottom element of S

Procedures: Pop delete the top element of S
Drop delete the bottom element of S
Push $(x) \quad$ insert x at the top of S

Algorithm 3 - General Concave Algorithm

$f \mid n+1] \leftarrow 0$
$S \leftarrow \Lambda$ (empty list)
eol $\leftarrow n+1$
Loop: for \boldsymbol{i} from n downto 1 do begin
Choosel: \quad while S nonempty and Line(i,Bottom) $>\operatorname{lmax}$ do Drop
Update: \quad while $\operatorname{Line}(i, e o l) \geq l \min$ do begin
while S nonempty and $F(i, e o l) \leq F(i, T o p)$ do Pop while $|S| \geq 2$ and Bridge(eol,Top,2Top) do Pop if Line(i,eol) $\leq \operatorname{lmax}$ then Push(eol) eol \leftarrow eobl

```
                end (of Update)
Choose2: }\quad\mathrm{ while }|S|\geq2\mathrm{ and }F(i,2Bottom)\leqF(i,Bottom) do Drop
            if Line(i,n+1) \leqlopt then
            begin
            nextbreak[i]}-n+
            f[i]}\leftarrow
        end
            else if S nonempty then
        begin
            nextbreak[i]}\leftarrow\mathrm{ Bottom
            f[i]}\leftarrowF(i,Bottom
            end
        else (i.e., S=\Lambda)
        f[i]}\leftarrow
    end (of Loop)
    if f[1]<\infty then Define_break_sequence
```


2.4 Piecewise Concave Penalty Function

If the penalty function is piecewise concave, the algorithm can be generalized, using one deque for each concave piece. The running times are simply added. If there are Γ concave pieces, the running time for the combined algorithm is $O(n \Gamma(1+\log (M / \Gamma)))$. In the case where the function is piecewise linear or piecewise quadratic, the running time is $O(n \Gamma)$.

The method is essentially to use independent copies of the general concave algorithm, one for each concave piece of the penalty function. These procedures meet once during each iteration of the main loop to exchange information and decide which one has the best value for nextbreak[i].

3. Pagination of Serolls

A boundary sequence for a scroll is a sequence $0=8_{0}<8_{1}<\ldots<\boldsymbol{s}_{v+1}=n+1$ such that $\Sigma_{8_{k-1}<i<s_{k}} w_{i} \in[l \min , l \max]$ for all $1 \leq k \leq v+1$, where $0 \leq l \min <l_{\text {max }}$ are fixed. The length of that boundary sequence is defined to be $\Sigma_{1 \leq k \leq v_{\varepsilon_{i}}}$. McCreight [5]
asks whether we can "quickly" find a boundary sequence of minimum length.

Diehr and Faaland [2] develop an algorithm which finds the minimum length boundary sequence in $O(n \lg n)$ time. We present a linear-time algorithm.

For convenience, assign any positive value, say 1 , to w_{n+1} and w_{0}.

Define $\operatorname{Gap}^{\operatorname{Ga}}(a, b)$ as the sum of the lengths of the scroll items, w_{i}, strictly between the $a^{\text {th }}$ and the $b^{\text {th }}$ items. Note that $\operatorname{Gap}(a, a+1)=0$. Define $\operatorname{Gap}(a, a)=-w_{a}$.

Define boolean function $\operatorname{Page}(a, b)$ to be true iff $\operatorname{Gap}(a, b) \in[l m i n, l m a x]$.

For any $0 \leq a \leq b \leq n+1$, we define an admissable path from a to b to be a sequence $s_{0}, s_{1}, \ldots s_{v}$ such that $\operatorname{Page}\left(s_{k-1}, s_{k}\right)$ for each $0<k \leq v$. The length of that path is $\Sigma_{1 \leq k \leq v} w_{s_{k}}$. If there exists an admissable path from j to $n+1$, we say that j is accessable.

For any $0 \leq i \leq n+1$, define $f(i)$ to be the minimum length of all paths from i to $n+1$. If i is inaccessable, let $f(i)=\infty$.

For each $0 \leq i<n+1$ such that Page (i, k) for some k, define $\rho(i)$ to be the unique number which satisfies the following three conditions:
(i) $\operatorname{Page}(i, \rho(i))$
(ii) $\quad f(\rho(i))$ is minimized subject to (i)
(iii) $\rho(i)$ is maximized subject to (i) and (ii)

If there is no k for which Page (i, k) is true, then $\rho(i)$ is undefined. Also, $\rho(n+1)$ is undefined.

Computation of f and ρ clearly suffices to find the minimum length boundary sequence. A boundary sequence exists if and only if $f(0)<\infty$, and the minimum length boundary sequence can be found by using ρ.

```
    Compute \(\operatorname{Sum}[i]=\Sigma_{k \leq i} w[k], 0 \leq i \leq n+1\)
    leftlow \([\) i] \(\leftarrow-1,0 \leq i \leq n+1\)
    \(f|n+1| \leftarrow 0\)
    \(r \leftarrow n+1\)
```

Loop: for \boldsymbol{i} from n downto 0 do
begin
Choose1: \quad while $\operatorname{Gap}(i, r)>\operatorname{lmax}$ do $\quad r \leftarrow r-1$
Choose2: \quad while $r<l$ leftlow $[r \mid$ and $G a p(i, l e f t l o w|r|) \geq l \operatorname{lmin}$ do $r \leftarrow$ leftlow $|r|$
if Page (i, r) then
begin
$f[i] \leftarrow f[r]+w[i]$
$p[i] \leftarrow r$
end
else
$f[i] \leftarrow \infty$
$k \leftarrow i+1$
Update: \quad while $f[k]>f[i]$ do
begin
leftlow $[k] \leftarrow i$
$k \leftarrow$ rightlow [3]
end
rightlow $[i] \leftarrow k$
end (of Loop)

It is important to distinguish between the functions $f(i)$ and $\rho(i)$ on the one hand, which are defined abstractly, and the arrays $f[t]$ and $\rho[t]$, whose values are assigned dynamically during execution of the algorithm. Also, we remind the reader that, for all $0<i \leq n+1$, either $f(i)=\infty$ or $f(i)=f(\rho(i))+w_{i}$.

Intuitively, the algorithm works as follows. r is a running temporary $\rho(i)$, which never decreases. When r is too large because $\operatorname{Gap}(i, r)>\operatorname{lmax}, r$ is decremented by 1 until Gap is small enough. We then need to decrease r, minimizing the f value, thus obtaining $\rho(i)$. In [2], a heap of possible values is maintained, and it takes $\Theta(\lg n)$ time to find $\rho(i)$. In Algorithm 4, the pointer leftlow tells us where to look next. Even though it might take $\Theta(n)$ time to find $\rho(i)$ for a particular i, the total time for these searches over all i is still only $O(n)$, since r never increases. Thus, leftlow is a failure function. The pointer array rightlow is used for updating leftlow, and also for updating
itself. It too is used as a failure function.

Loop invariant. For any $0 \leq i \leq n+1$, the following conditions hold after $n+1-i$ iterations of the loop of Main:
$\mathrm{Ll}(i):$ If $\rho(i)$ is defined, $r=\rho(i)$. Otherwise, r is the largest j such that $\operatorname{Gap}(i, j) \leq$ Imax.
$\mathrm{L} 2(i):$ For all $i \leq j \leq n+1, f[j]=f(j)$.
$\mathrm{L3}(i)$: For all $i \leq j \leq n+1$, if $\rho(j)$ is defined, $\rho[j]=\rho(j)$. Otherwise, $\rho[j]$ is undefined.
$\mathrm{L} 4(i)$: For all $i \leq j \leq n+1$, leftlow[j] is the largest $i \leq k<j$ such that $f(k)<f(j)$, provided there is such a k. Otherwise, leftlow $[\}]=-1$.
$\mathrm{L} 5(i):$ For all $i \leq j<n+1$, rightlow[j] is the smallest $j<k \leq n+1$ such that $f(k) \leq$ $f(j)$.

The reader is referred to [4] for a complete proof of the loop invariants.

References

[1] Aho, A.V., J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974, pp.329-335.
[2] Diehr, G. and B. Faaland. Optimal pagination of B-trees with variable-length items. Comm. ACM 27, 3 (March 1984), 241-247.
[3] Knuth, D.E. and M.F. Plass. Breaking paragraphs into lines. Software Practice \& Experience (1081), 1119-1184.
[4] Larmore, L.L. and D.S. Hirschberg. Efficient optimal pagination of scrolls. Technical Report 224, ICS Dept.; Univ. of Calif. Irvine, April 1984.
[5] McCreight, E.M. Pagination of B*-trees with variable-length records. Comm. ACM 20, 9 (Sept. 1077), 670-674.
[6] Morris, J.H., Jr. and V.R. Pratt. A linear pattern matching algorithm. Technical Report No. 40, Computing Center, Univ. of Calif. Berkeley, 1970.

