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ABSTRACT OF THE DISSERTATION

Sequential Decision Making in Single-Agent and Multi-Agent Domains

By

Stephen McAleer

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Distinguished Professor Pierre Baldi, Chair

In this dissertation I outline three contributions. The first is in the area of single-agent

planning. In this section I describe my work on combining deep reinforcement learning with

search to solve hard planning problems such as the Rubik’s cube. In the next two sections

I focus on contributions in the area of two-player zero-sum games. Both contributions are

improvements to an existing double oracle algorithm called Policy Space Response Oracles

(PSRO). The first improves PSRO by parallelizing PSRO while maintaining convergence

guarantees. The resulting method, called Pipeline PSRO (P2SRO) achieves state-of-the-art

performance on Barrage Stratego. The second contribution, called Extensive-Form Double

Oracle (XDO) improves PSRO by extending it to extensive-form games. As a result, XDO

is able to converge to a Nash equilibrium in a number of iterations linear in the number

of infostates of the game, as opposed to a potentially exponential number of iterations

necessary to insure convergence for PSRO. A neural version of XDO achieves state-of-the-art

performance on a continuous-action game.

xii



Chapter 1

Introduction

A major branch of of machine learning studies the problem of learning optimal sequential

decision making under uncertainty. Most research in this branch studies the problem from

the perspective of a single decision maker, using techniques such as search, optimal control,

and reinforcement learning. In sequential decision making, actions taken at one time step

affect the state of the environment at future timesteps, so optimal policies must consider

both the short-term and long-term effects of actions. Learning approximately optimal policies

from data provides further challenges, as exploration and exploitation need to be balanced.

In this thesis we present one such project that combines deep reinforcement learning with

search to solve planning problems.

Even more complicated than the single-agent domain is the multi-agent domain. In this

problem setting, agents must learn to make optimal sequential decisions in the presence

of other agents that are also potentially learning. This complicates the problem because

now from the perspective of a single agent, the environment is not stationary. Thankfully,

in certain domains such as two-player zero-sum games, we can combine game-theoretic

concepts with techniques from single-agent sequential decision making to learn optimal

1



policies. In particular, in this thesis we combine the game-theoretic double oracle algorithm

with deep reinforcement learning to learn an approximate Nash equilibrium, which is optimal

in two-player zero-sum games. Below is a summary of each section of the thesis.

1.1 Solving the Rubik’s Cube with Deep Reinforcement

Learning and Search

The Rubik’s Cube is a prototypical combinatorial puzzle that has a large state space with

a single goal state. The goal state is unlikely to be accessed using sequences of randomly

generated moves, posing unique challenges for machine learning. We solve the Rubik’s

Cube with DeepCubeA, a deep reinforcement learning approach that learns how to solve

increasingly difficult states in reverse from the goal state without any specific domain

knowledge. DeepCubeA solves 100% of all test configurations, finding a shortest path to the

goal state 60.3% of the time. DeepCubeA generalizes to other combinatorial puzzles and is

able to solve the 15-puzzle, 24-puzzle, 35-puzzle, 48-puzzle, Lights Out, and Sokoban. For all

puzzles in which a shortest path solution can be computed tractably, DeepCubeA finds a

shortest path for the majority of test configurations.

1.2 Pipeline PSRO: A Scalable Approach for Finding

Approximate Nash Equilibria in Large Games

Finding approximate Nash equilibria in zero-sum imperfect-information games is challenging

when the number of information states is large. Policy Space Response Oracles (PSRO) is a

deep reinforcement learning algorithm grounded in game theory that is guaranteed to converge

to an approximate Nash equilibrium. However, PSRO requires training a reinforcement

2



learning policy at each iteration, making it too slow for large games. We show through

counterexamples and experiments that DCH and Rectified PSRO, two existing approaches

to scaling up PSRO, fail to converge even in small games. We introduce Pipeline PSRO

(P2SRO), the first scalable PSRO-based method for finding approximate Nash equilibria

in large zero-sum imperfect-information games. P2SRO is able to parallelize PSRO with

convergence guarantees by maintaining a hierarchical pipeline of reinforcement learning

workers, each training against the policies generated by lower levels in the hierarchy. We

show that unlike existing methods, P2SRO converges to an approximate Nash equilibrium,

and does so faster as the number of parallel workers increases, across a variety of imperfect

information games. We also introduce an open-source environment for Barrage Stratego,

a variant of Stratego with an approximate game tree complexity of 1050. P2SRO is able

to achieve state-of-the-art performance on Barrage Stratego and beats all existing bots.

Experiment code is available at https://github.com/JBLanier/pipeline-psro.

1.3 XDO: A Double Oracle Algorithm For Extensive-Form

Games

Policy Space Response Oracles (PSRO) is a reinforcement learning (RL) algorithm for two-

player zero-sum games that has been empirically shown to find approximate Nash equilibria in

large games. Although PSRO is guaranteed to converge to an approximate Nash equilibrium

and can handle continuous actions, it may take an exponential number of iterations as

the number of information states (infostates) grows. We propose Extensive-Form Double

Oracle (XDO), an extensive-form double oracle algorithm for two-player zero-sum games

that is guaranteed to converge to an approximate Nash equilibrium linearly in the number

of infostates. Unlike PSRO, which mixes best responses at the root of the game, XDO

mixes best responses at every infostate. We also introduce Neural XDO (NXDO), where the

3
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best response is learned through deep RL. In tabular experiments on Leduc poker, we find

that XDO achieves an approximate Nash equilibrium in a number of iterations an order of

magnitude smaller than PSRO. Experiments on a modified Leduc poker game and Oshi-Zumo

show that tabular XDO achieves a lower exploitability than CFR with the same amount

of computation. We also find that NXDO outperforms PSRO and NFSP on a sequential

multidimensional continuous-action game. NXDO is the first deep RL method that can find

an approximate Nash equilibrium in high-dimensional continuous-action sequential games.

Experiment code is available at https://github.com/indylab/nxdo.

4
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Chapter 2

Solving the Rubik’s Cube with Deep

Reinforcement Learning and Search

2.1 Introduction

The Rubik’s Cube is a classic combinatorial puzzle that poses unique and interesting challenges

for artificial intelligence and machine learning. Although the state space is exceptionally large

(4.3 ˆ 1019 different states), there is only one goal state. Furthermore, the Rubik’s Cube is a

single-player game and a sequence of random moves, no matter how long, is unlikely to end

in the goal state. Developing machine learning algorithms to deal with this property of the

Rubik’s Cube might provide insights into learning to solve planning problems with large state

spaces. While machine learning methods have previously been applied to the Rubik’s Cube,

these methods have either failed to reliably solve the cube[68, 99, 23, 49] or have had to rely

on specific domain knowledge[54, 7]. Outside of machine learning methods, methods based on

pattern databases have been effective at solving puzzles such as the Rubik’s Cube, 15-puzzle,

and 24-puzzle [55, 57]. However, pattern databases are very memory intensive because they

5
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Figure 2.1: A visualization of a scrambled state (top) and the goal state (bottom) for four of
the puzzles investigated in this paper.

store the number of moves required to reach all possible states for multiple given subgoals.

Generally speaking, the larger the subgoals, the more effective the heuristic. However, using

larger subgoals may come at the expense of an exponential increase in memory usage. For

example, for the 35-puzzle, a pattern database that divides the puzzle into 7 subgoals of size

5 would require 0.37 GB of memory while a pattern database that divides the puzzle into 5

subgoals of size 7 would require 321.70 GB of memory.

More broadly, a major goal in artificial intelligence is to create algorithms that are able

to learn how to master various environments without relying on domain-specific human

knowledge. The classical 3x3x3 Rubik’s Cube is only one representative of a larger family of

possible combinatorial puzzles, broadly sharing the characteristics described above, including:

(1) cubes with longer edges or in higher dimension (e.g. 4x4x4 or 2x2x2x2); (2) sliding tile

puzzles (e.g. the 15-puzzle, 24-puzzle, and 35-puzzle); (3) Lights Out; as well as (4) Sokoban.

As the size and dimensions are increased, the complexity of the underlying combinatorial

problems rapidly increases. For instance, while finding an optimal solution to the 15-puzzle

takes less than a second on a modern day desktop, finding an optimal solution to the 24-puzzle
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can take days, and finding an optimal solution to the 35-puzzle is generally intractable[30].

Not only are the aforementioned puzzles relevant as mathematical games, but they can also

be used to test planning algorithms [14] and to assess how well a machine learning approach

may generalize to different environments. Thus, a general algorithm that can be used to

solve combinatorial puzzles would be a significant contribution to the field of automated

planning [35]. Furthermore, since the operation of the Rubik’s Cube and other combinatorial

puzzles are deeply rooted in group theory, these puzzles also raise broader questions about the

application of machine learning methods to complex symbolic systems, including mathematics.

In short, for all these reasons, the Rubik’s Cube poses interesting challenges for machine

learning.

To address these challenges, we develop DeepCubeA which combines deep learning [94, 38]

with classical reinforcement learning [103] (approximate value iteration[11, 85, 13]) and path

finding methods (weighted A* search[42, 84]). DeepCubeA is able to solve combinatorial

puzzles such as the Rubik’s Cube, 15-puzzle, 24-puzzle, 35-Puzzle, 48-puzzle, Lights Out, and

Sokoban (see Figure 2.1). DeepCubeA works by using approximate value iteration to train a

deep neural network (DNN) to approximate a function that outputs the cost to reach the

goal (also known as the cost-to-go function). Since random play is unlikely to end in the goal

state, DeepCubeA trains on states obtained by starting from the goal state and randomly

taking moves in reverse. After training, the learned cost-to-go function is used as a heuristic

to solve the puzzles using weighted A* search [42, 84, 29].

DeepCubeA builds upon DeepCube [73], a deep reinforcement learning algorithm that solves

the Rubik’s Cube using a policy and value combined with Monte Carlo tree search (MCTS).

MCTS combined with a policy and value function is also used by AlphaZero which learns to

beat the best existing programs in chess, Go, and shogi [98]. In practice, we find that, for

combinatorial puzzles, MCTS has relatively long runtimes and often produces solutions many

moves longer than the length of a shortest path. In contrast, DeepCubeA finds a shortest
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path to the goal in the majority of cases, not only for the Rubik’s Cube, but also for the

15-puzzle, 24-puzzle, and Lights Out.

2.2 Methods

2.2.1 The Rubik’s Cube

The 3x3x3 Rubik’s Cube consists of smaller cubes called cubelets. These are classified by

their sticker count: center, edge, and corner cubelets have 1, 2, and 3 stickers, respectively.

The Rubik’s Cube has 26 cubelets with 54 stickers in total. The stickers have colors and there

are six colors, one per face. In the solved state, all stickers on each face of the cube are the

same color. Since the set of stickers on each cubelet is unique (i.e. there is only one cubelet

with white, red, and green stickers), the 54 stickers themselves can be uniquely identified in

any legal configuration of the Rubik’s Cube. The representation given to the DNN encodes

the color of each sticker at each location using a one-hot encoding. Since there are 6 possible

colors and 54 stickers in total, this results in a state representation of size 324.

Moves are represented using face notation: a move is a letter stating which face to rotate.

F, B, L, R, U, and D correspond to turning the front, back, left, right, up, and down faces,

respectively. Each face name is in reference to a fixed front face. A clockwise rotation is

represented with a single letter, whereas a letter followed by an apostrophe represents a

counter-clockwise rotation. For example: R rotates the right face by 90˝ clockwise, while R’

rotates it by 90˝ counter-clockwise.

The Rubik’s Cube state space has 4.3 ˆ 1019 possible states. Any valid Rubik’s Cube state

can be optimally solved with at most 26 moves in the quarter-turn metric, or 20 moves in

the half-turn metric [89, 87]. The quarter-turn metric treats 180 degree rotations as two
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moves, whereas the half-turn metric treats 180 degree rotations as one move. We use the

quarter-turn metric.

2.2.2 Additional Combinatorial Puzzles

Sliding Puzzles

Another combinatorial puzzle we use to test DeepCubeA is the n piece sliding puzzle. In

the n-puzzle, n square sliding tiles, numbered from 1 to n, are positioned in a square of

length
?
n ` 1, with one empty tile position. Thus, the 15-puzzle consists of 15 tiles in a 4x4

grid, the 24-puzzle consists of 24 tiles in a 5x5 grid, the 35-puzzle consists of 35 tiles in a

6x6 grid, and the 48-puzzle consists of 48 tiles in a 7x7 grid. Moves are made by swapping

the empty position with any tile that is horizontally or vertically adjacent to it. For both

puzzles, the representation given to the neural network uses one-hot encoding to specify

which piece (tile or blank position) is in each position. For example, the dimension of the

input to the neural network for the 15-puzzle would be 16 ˚ 16 “ 256. The 15-puzzle has

16!{2 « 1.0 ˆ 1013 possible states, the 24-puzzle has 25!{2 « 7.7 ˆ 1024 possible states, the

35-puzzle has 36!{2 « 1.8 ˆ 1041 possible states, and the 48-puzzle has 49!{2 « 3.0 ˆ 1062

possible states. Any valid 15-puzzle configuration can be solved with at most 80 moves

[24, 56]. The largest minimal number of moves required to solve the 24-puzzle, 35-puzzle,

and 48-puzzle is not known.

Lights Out

Lights Out contains N2 lights on an N by N board. The lights can either be on or off. The

representation given to the DNN is a vector of size N2. Each element is 1 if the corresponding

light is on and 0 if the corresponding light is off.
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Sokoban

The Sokoban environment we use is a 10 by 10 grid which contains four boxes that an agent

needs to push on to four targets. In addition to the agent, boxes, and targets, Sokoban also

contains walls. The representation given to the DNN contains four binary vectors of size 102

that represent the position on the agent, boxes, targets, and walls. Since boxes can only be

pushed, not pulled, some actions are irreversible. For example, a box pushed into a corner

can no longer be moved, creating a sampling problem because some states are unreachable

when starting from the goal state. To address this, for each training state, we start from the

goal state and allow boxes to be pulled instead of pushed.

2.2.3 Deep Approximate Value Iteration

Value iteration [85] is a dynamic programming algorithm [11, 13] that iteratively improves a

cost-to-go function J . In traditional value iteration, J takes the form of a lookup table where

the cost-to-go Jpsq is stored in a table for all possible states s. Value iteration loops through

each state s and updates Jpsq until convergence:

Jpsq Ð mina

ÿ

s1

P a
ps, s1

qpgaps, s1
q ` γJps1

qq (2.1)

Here P aps, s1q is the transition matrix representing the probability of transitioning from state

s to state s1 by taking action a; gaps, s1q is the cost associated with transitioning from state

s to s1 by taking action a; and γ is the discount factor. In principle, this update equation

can also be applied to the puzzles investigated in this paper. However, since these puzzles

are deterministic, the transition function is a degenerate probability mass function for each

action, simplifying Equation 2.1. Furthermore, because we wish to assign equal importance
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Algorithm 1 Deep Approximate Value Iteration (DAVI)
1: Input:
2: B: Batch size
3: M : Training iterations
4: K: Maximum number of scrambles
5: C: How often to check for convergence
6: ϵ: Error threshold
7: Output:
8: θ: Trained neural network parameters
9:

10: θ Ð initialize_parameterspq

11: θe Ð θ
12:
13: for m “ 1 to M do
14: X Ð get_scrambled_statespB,Kq

15: for xi P X do
16: yi Ð minapgapxi, Apxi, aqq ` jθepApxi, aqqq

17: θ, loss Ð trainpjθ, X,yq

18: if (M mod C = 0) and (loss ă ϵ) then
19: θe Ð θ

20: Return θ

to all costs, γ “ 1. Therefore, we can update Jpsq using the following equation:

J 1
psq “ minapgaps, Aps, aqq ` JpAps, aqqq (2.2)

However, given the size of the state space of the Rubik’s Cube, maintaining a table to store

the cost-to-go of each state is not feasible. Therefore, we resort to approximate value iteration

[13]. Instead of representing the cost-to-go function as a lookup table, we approximate the

cost-to-go function using a parameterized function jθ, with parameters θ. This function is

implemented using a deep neural network (DNN). Therefore, we call the resulting algorithm

deep approximate value iteration (DAVI).

In order to train the DNN, we have two sets of parameters: the parameters being trained θ,
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and the parameters used to obtain an improved estimate of the cost-to-go θe. The output of

jθepsq is set to 0 if s is the goal state. The DNN is trained to minimize the mean squared

error between its estimation of the cost-to-go and the estimation obtained from Equation

2.1. Every C iterations, the algorithms checks if the error falls below a certain threshold ϵ; if

so, then θe is set to θ. The entire DAVI process is shown in Algorithm ??. While we tried

updating θe at each iteration, we found that the performance saturated after a certain point

and sometimes became unstable. Updating θe only after the error falls below a threshold ϵ

yields better, more stable, performance.

Training Set State Distribution

In order for learning to occur, we must train on a state distribution that allows information

to propagate from the goal state to all the other states seen during training. Our approach

for achieving this is simple: each training state xi is obtained by randomly scrambling the

goal state ki times, where ki is uniformly distributed between 1 and K. During training,

the cost-to-go function first improves for states that are only one move away from the goal

state. The cost-to-go function then improves for states further away as the reward signal is

propagated from the goal state to other states through the cost-to-go function. This can be

seen as a simplified version of prioritized sweeping [78]. Working backward from the goal

state is a well-known technique in AI, and has been used in means-end analysis [81] and

STRIPS planning [31]. In future work we will explore different ways of generating a training

set distribution.

2.2.4 Batch Weighted A* Search

A* search [42] is a heuristic-based search algorithm that finds a path between a starting node

xs and a goal node xg. A* search maintains a set, OPEN, from which it iteratively removes
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and expands the node with the lowest cost. The cost of each node x is determined by the

function fpxq “ gpxq ` hpxq, where gpxq is the path cost, which is the distance between xs

and x, and hpxq is the heuristic function, which estimates the distance between x and xg.

After a node is expanded, that node is then added to another set, CLOSED, and its children

that are not already in CLOSED are added to OPEN. The algorithm starts with only the

starting node in OPEN and terminates when the goal node is removed from OPEN.

In this application, each node corresponds to a state of the Rubik’s Cube and the goal node

corresponds to the goal state shown in Figure 2.1. The path cost of every child of a node x is

set to gpxq ` 1. The path cost of xs is 0. The heuristic function hpxq is obtained from the

learned cost-to-go function.

A variant of A* search, called weighted A* search [29], trades potentially longer solutions

for potentially less memory usage. In this case, the function fpxq is modified to fpxq “

λ gpxq ` hpxq, with the weight λ P r0, 1s. While decreasing the weight λ will not necessarily

decrease the number of nodes generated [108], in practice our experiments show that decreasing

λ generally reduces the number of nodes generated and increases the length of the solutions

found. In our implementation, if we encounter a node x that is already in CLOSED, and if x

has a lower path cost than the node that is already in CLOSED, we remove that node from

CLOSED and add x to OPEN.

The most time consuming aspect of the algorithm is the computation of the heuristic hpxq.

The heuristic of many nodes can be computed in parallel across multiple GPUs by expanding

the N best nodes from OPEN at each iteration. Our experiments show that larger values of

N generally lead to shorter solutions and evaluate more nodes per second than searches with

smaller N. We call the combination of A* search with a path-cost weight λ and a batch size

of N batch weighted A* search (BWAS).

To satisfy the theoretical bounds on how much the length of a solution will deviate from
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the length of an optimal solution, the heuristic used in weighted A* search must be admis-

sible. That is to say that the heuristic can never overestimate the cost to reach the goal.

While DeepCubeA’s value function is not admissible, we empirically evaluate by how much

DeepCubeA overestimates the cost to reach the goal. To do this, we obtain the length of a

shortest path to the goal for 100,000 Rubik’s cube states scrambled between 1 and 30 times.

We then evaluate those same states with DeepCubeA’s heuristic function jθ. We find that

DeepCubeA’s heuristic function does not overestimate the cost to reach the goal 66.8% of

the time and 97.4% of the time it does not overestimate it by more than 1. The average

overestimation of the cost is 0.24.

2.2.5 Neural Network Architecture

The first two hidden layers of the DNNs have size 5,000 and 1,000 respectively, with full

connectivity. This is then followed by 4 residual blocks [44], where each residual block has

two hidden layers of size 1,000. Finally, the output layer consists of a single linear unit

representing the cost-to-go estimate. We used batch normalization [47] and rectified linear

activation functions [37] in all hidden layers. The DNN was trained with a batch size of

10,000, optimized with ADAM [51], and did not use any regularization. The maximum

number of random moves applied to any training state K was set to 30. The error threshold

ϵ was set to 0.05. We checked if the loss fell below the error threshold every 5,000 iterations.

Training was carried out for 1 million iterations on two NVIDIA Titan V GPUs, with six

other GPUs used in parallel for data generation. In total, the DNN saw 10 billion examples

during training. Training was completed in 36 hours. When solving scrambled cubes from

the test set, we use 4 NVIDIA X Pascal GPUs in parallel to compute the cost-to-go estimate.

For the 15-puzzle, 24-puzzle, and Lights Out we set K to 500. For the 35-puzzle, 48-puzzle,

and Sokoban, we set K to 1, 000. For the 24-puzzle, we use 6 residual blocks instead of 4.
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2.2.6 Hyperparameter Selection for Batch Weighted A* Search

To choose the hyperparameters of BWAS, we did a grid search over λ and N . Values of λ

were 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 while values of N were 1, 100, 1,000, and 10,000. The

grid search was performed on 100 cubes that were generated separately from the test set.

The GPU machines available to us had 64GB of RAM. Hyperparameter configurations that

reached this limit were stopped early and thus not included in the results. Extended Figure ??

shows how λ and N affect performance in terms of average solution length, average number of

nodes generated, average solve time, and average number of nodes generated per second. The

figure shows that as λ increases, the average solution length decreases, however, the time to

find a solution typically increases as well. The results also show that larger values of N lead

to shorter solution lengths, but generally also require more time to find a solution; however,

the number of nodes generated per second also increases due to the parallelism provided by

the GPUs. Since λ “ 0.6 and N “ 10, 000 resulted in the shortest solution lengths, we use

these hyperparameters for the Rubik’s Cube. For the 15-puzzle, 24-puzzle, and 35-puzzle

we use λ “ 0.8 and N “ 20, 000. For the 48-puzzle we use λ “ 0.6 and N “ 20, 000. We

increased N from 10, 000 to 20, 000 because we saw a reduction in solution length. For Lights

Out we use λ “ 0.2 and N “ 1, 000. For Sokoban we use λ “ 0.8 and N “ 1.

2.2.7 Pattern Databases

Pattern databases (PDBs)[27] are used to obtain a heuristic using lookup tables. Each lookup

table contains the number of moves required to solve all possible combinations of a certain

subgoal. For example, we can obtain a lookup table by enumerating all possible combinations

of the edge cubelets on the Rubik’s cube using a breadth-first search. These tables are then

combined through either a max operator or a sum operator (depending on independence

between subgoals)[55, 57] to produce a lower bound on the number of steps required to solve
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the problem. Features from different pattern databases can be combined with neural networks

for improved performance [90].

For the Rubik’s Cube, we implemented the pattern database that Korf uses to find optimal

solutions to the Rubik’s Cube [55]. For the 15-puzzle, 24-puzzle, and 35-puzzle, we implement

the pattern databases described in Felner et. al’s work on additive pattern databases[30].

To the best of our knowledge, no one has created a pattern database for the 48-puzzle. We

create our own by dividing the puzzle into 9 subgoals of size 5 and one subgoal of size 3. For

all the n-puzzles, we also save the mirror of each PDB to improve the heuristic. Each PDB is

saved in a “flat” representation; meaning that we use a database of size pn ` 1qk where n is

the prefix of the n-puzzle and k is the size of the subgoal. Though this uses more memory,

this is done to increase the speed of the table lookup operation[30].

2.2.8 Web Server

We have created a web server, located at http://deepcube.igb.uci.edu/, to allow anyone to

use DeepCubeA to solve the Rubik’s Cube. In the interest of speed, the hyperparameters

for BWAS are set to λ “ 0.2 and N “ 100 in the server. The user can initiate a request to

scramble the cube randomly, or use the keyboard keys to scramble the cube as he wishes.

The user can then use the “solve” button to have DeepCubeA compute and post a solution,

and execute the corresponding moves.
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2.3 Results

To test the approach, we generate a test set of 1,000 states by randomly scrambling the goal

state between 1,000 and 10,000 times. Additionally, we test the performance of DeepCubeA

on the three known states that are the furthest possible distance away from the goal (26

moves)[87]. In order to assess how often DeepCubeA finds a shortest path to the goal, we

need to compare our results to a shortest path solver. We can obtain a shortest path solver

by using iterative deepening A* search (IDA*)[53] with an admissible heuristic computed

from a pattern database. Initially, we used the pattern database described in Korf’s work

on finding optimal solutions to the Rubik’s Cube[55]; however, this solver only solves a few

states a day. Therefore, we use the optimal solver that was used to find the maximum of the

minimum number of moves required to solve the Rubik’s Cube from any given state (so-called

“God’s number”) [88, 89]. This human-engineered solver relies on large pattern databases

[27] (requiring 182GB of memory) and sophisticated knowledge of group theory to find a

shortest path to the goal state. Comparisons between DeepCubeA and shortest path solvers

are shown in Extended Table 2.1.

The DNN architecture consists of two fully connected hidden layers, followed by 4 residual

blocks [44], followed by a linear output unit which represents the cost-to-go estimate. The

hyperparameters of BWAS were chosen by doing a grid search over λ and N on data generated

separately from the test set (see Methods for more details). When performing BWAS, the

heuristic function is computed in parallel across four NVIDIA Titan V GPUs.

2.3.1 Performance

DeepCubeA finds a solution to 100% of all test states. DeepCubeA finds a shortest path

to the goal 60.3% of the time. Aside from the optimal solutions, 36.4% of the solutions are
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Puzzle Solver Len % Opt Nodes Secs Nodes/Sec

Rubik’s Cube
PDBs[55] - - - - -
PDBs`[88] 20.67 100.0% 2.05E+06 2.20 1.79E+06
DeepCubeA 21.50 60.3% 6.62E+06 24.22 2.90E+05

Rubik’s Cubeh
PDBs[55] - - - - -
PDBs`[88] 26.00 100.0% 2.41E+10 13,561.27 1.78E+06
DeepCubeA 26.00 100.0% 5.33E+06 18.77 2.96E+05

15-Puzzle PDBs[30] 52.02 100.0% 3.22E+04 0.002 1.45E+07
DeepCubeA 52.03 99.4% 3.85E+06 10.28 3.93E+05

15-Puzzleh
PDBs[30] 80.00 100.0% 1.53E+07 0.997 1.56E+07
DeepCubeA 82.82 17.65% 2.76E+07 69.36 3.98E+05

24-Puzzle PDBs[30] 89.41 100.0% 8.19E+10 4,239.54 1.91E+07
DeepCubeA 89.49 96.98% 6.44E+06 19.33 3.34E+05

35-Puzzle PDBs[30] - - - - -
DeepCubeA 124.64 - 9.26E+06 28.45 3.25E+05

48-Puzzle PDBs - - - - -
DeepCubeA 253.35 - 1.96E+07 74.46 2.63E+05

Lights Out DeepCubeA 24.26 100.0% 1.14E+06 3.27 3.51E+05

Sokoban

LevinTS[83] 39.80 - 6.60E+03 - -
LevinTS[83] (*) 39.50 - 5.03E+03 - -
LAMA[83] 51.60 - 3.15E+03 - -
DeepCubeA 32.88 - 1.05E+03 2.35 5.60E+01

Extended Table 2.1: Comparison of DeepCubeA with optimal solvers based on pattern
databases (PDBs) along the dimension of solution length, percentage of optimal solutions,
number of nodes generated, time taken to solve the problem (in seconds), and number of nodes
generated per second. The datasets with an “h” subscript represent the dataset containing the
states that are furthest away from the goal state. PDBs` refers to Rokiki’s pattern database
combined with knowledge of group theory[88, 89]. For Sokoban, we compare nodes expanded
instead of nodes generated to allow for direct comparison to previous work. DeepCubeA often
finds a shortest path to the goal, sometimes doing so much faster than the optimal solvers.
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Extended Figure 2.1: The performance of DeepCubeA vs pattern databases (PDBs)[55] when
solving the Rubik’s cube with BWAS. N “ 10, 000 and λ is either 0.0, 0.1, or 0.2. Each
dot represents the result on a single state. DeepCubeA is both faster and produces shorter
solutions.

only two moves longer than the optimal solution, while the remaining 3.3% are four moves

longer than the optimal solution. For the three states that are furthest away from the goal,

DeepCubeA finds a shortest path to the goal for all three states (see Table 2.2). We would

like to note that comparisons between DeepCubeA and shortest path solvers are not a direct

comparison to pattern databases because, in this instance, pattern databases are being used

to guarantee an optimal solution.

For a more direct comparison to pattern databases, we use Korf’s pattern database heuristic for

BWAS and compare the results to that of DeepCubeA. We perform BWAS with N “ 10, 000

and λ “ 0.0, 0.1, 0.2. We compute the pattern database heuristic in parallel across 32 CPUs.

Note that at λ “ 0.3 BWAS runs out of memory when using pattern databases. Figure 2.1

shows that performing BWAS with DeepCubeA’s learned heuristic consistently produces

shorter solutions, expands fewer nodes, and is overall much faster than Korf’s pattern database

heuristic.

In addition to performance when doing BWAS, we also compare the memory footprint and

speed of pattern databases and DeepCubeA. In terms of memory, for pattern databases, it

is necessary to load lookup tables into memory. For DeepCubeA, it is necessary to load
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Extended Figure 2.2: The performance of DeepCubeA. The plots show that DeepCubeA first
learns how to solve cubes closer to the goal and then learns to solve increasingly difficult
cubes. The dashed lines represent the true average cost-to-go.

the DNN into memory. Table 2.3 shows that DeepCubeA uses significantly less memory

than pattern databases. In terms of speed, we measure how quickly pattern databases and

DeepCubeA can compute a heuristic for a single state. We averaged performance across

1,000 states. Since DeepCubeA uses neural networks, which benefit from GPUs and batch

processing, we measure the speed of DeepCubeA on a single CPU and a single GPU, both

when doing sequential processing of the states and batch processing of the states. Table 2.4

shows that pattern databases almost always orders of magnitude faster than DeepCubeA.

However, in the case of using a single GPU and batch processing, while pattern databases are

still faster than DeepCubeA, DeepCubeA is on the same order of speed as pattern databases.

During training we monitor how well the DNN is able to solve the Rubik’s cube using greedy

best-first search; we also monitor how well the DNN is able to estimate the optimal cost-to-go

function. How these performance metrics change as a function of training iteration is shown

in Figure 2.2. The results show that DeepCubeA first learns to solve states closer to the

goal before it learns to solve states further away from the goal. Cost-to-go estimation is

less accurate for states further away from the goal; however, the cost-to-go function still
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Puzzle Solver Len % Opt Nodes Secs Nodes/Sec

Rubik’s Cubeh
PDBs[55] - - - - -
PDBs`[88] 26.00 100.0% 2.41E+10 13,561.27 1.78E+06
DeepCubeA 26.00 100.0% 5.33E+06 18.77 2.96E+05

Extended Table 2.2: Comparison of DeepCubeA with optimal solvers based on pattern
databases (PDBs) along the dimension of solution length, percentage of optimal solutions,
number of nodes generated, time taken to solve the problem (in seconds), and number of
nodes generated per second on the Rubik’s Cube states that are furthest away from the goal.
PDBs` refers to Rokiki’s optimal solver that uses pattern database combined with knowledge
of group theory[88, 89]. DeepCubeA finds a shortest path to the goal and does so much faster
than the optimal solver.

RC 15-p 24-p 35-p 48-p LightsOut Sokoban
PDBs 4.67 8.51 1.86 0.64 4.86 - -
PDBs` 182.00 - - - - -
DeepCubeA 0.06 0.06 0.08 0.08 0.10 0.05 0.06

Extended Table 2.3: Comparison of the size (in GB) of the lookup tables for pattern databases
(PDBs) and the size of the DNN used by DeepCubeA. The RC column corresponds to the
Rubik’s Cube and columns with a “-p” suffix correspond to n-puzzles. PDBs` refers to
Rokiki’s pattern database combined with knowledge of group theory[88, 89]. The table shows
that DeepCubeA always uses memory that is orders of magnitude less than PDBs.

correctly orders the states according to difficulty. In addition, we found that DeepCubeA

frequently used the conjugate patterns of moves of the form aba´1 in its solutions and often

found symmetric solutions to symmetric states. An example of this is shown in Figure 2.3

(see Methods for more details).

2.3.2 Generalization to Other Combinatorial Puzzles

The Rubik’s Cube is only one combinatorial puzzle among many others. To demonstrate the

ability of DeepCubeA to generalize to other puzzles, we applied DeepCubeA to four popular

sliding tile puzzles: the 15-puzzle, the 24-puzzle, 35-puzzle, and 48-puzzle. Additionally,

we applied DeepCubeA to Lights Out and Sokoban. Sokoban posed a unique challenge for

DeepCubeA because actions taken in its environment are not always reversible.
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RC 15-p 24-p 35-p 48-p LightsOut Sokoban
PDBs 2E-06 1E-06 2E-06 3E-06 4E-06 - -
PDBs` - - - - - -
DeepCubeA (GPU-B) 6E-06 6E-06 7E-06 8E-06 9E-06 7E-06 6E-06
DeepCubeA (GPU) 3E-03 3E-03 3E-03 2E-03 3E-03 4E-03 3E-03
DeepCubeA (CPU-B) 7E-04 6E-04 9E-04 9E-04 1E-03 1E-03 7E-04
DeepCubeA (CPU) 6E-03 6E-03 8E-03 8E-03 1E-02 2E-01 6E-03

Extended Table 2.4: Comparison of the speed (in seconds) of the lookup tables for pattern
databases (PDBs) and the speed of the DNN used by DeepCubeA when computing the
heuristic for a single state. Results were averaged over 1,000 states. DeepCubeA was timed on
a single CPU and on a single GPU when doing sequential processing of the states and batch
processing of the states (batch processing is denoted by the “-B” suffix). The RC column
corresponds to the Rubik’s Cube and columns with a “-p” suffix correspond to n-puzzles.
PDBs` refers to Rokiki’s pattern database combined with knowledge of group theory[88, 89].
The table shows that PDBs are always faster than DeepCubeA’s heuristic; however, when
computing DeepCubeA’s heuristic on a GPU with batch processing, the speed is on the same
order of magnitude as PDBs.

Sliding Tile Puzzles

The 15-puzzle has 1.0 ˆ 1013 possible combinations, the 24-puzzle has 7.7 ˆ 1024 possible

combinations, the 35-puzzle has 1.8 ˆ 1041 possible combinations, and the 48-puzzle has

3.0ˆ1062 possible combinations. The objective is to move the puzzle into its goal configuration

shown in Figure 2.1. For these sliding tile puzzles, we generated a test set of 500 states

randomly scrambled between 1,000 and 10,000 times. The same DNN architecture and

hyperparameters that are used for the Rubik’s Cube are also used for the n-puzzles with the

exception of the addition of two more residual layers. We implemented an optimal solver

using additive pattern databases[30]. DeepCubeA not only solved every test puzzle, but

also found a shortest path to the goal 99.4% of the time for the 15-puzzle and 96.98% of

the time for the 24-puzzle. We also test on the 17 states that are furthest away from the

goal for the 15-puzzle (these states are not known for the 24-puzzle)[52]. Solutions produced

by DeepCubeA are, on average, 2.8 moves longer than the length of a shortest path and

DeepCubeA finds a shortest path to the goal for 17.6% of these states. For the 24-puzzle, on

average, pattern databases take 4,239 seconds and DeepCubeA takes 19.3 seconds, over 200
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Puzzle Solver Len % Opt Nodes Secs Nodes/Sec

24-Puzzle PDBs[30] 89.41 100.0% 8.19E+10 4,239.54 1.91E+07
DeepCubeA 89.49 96.98% 6.44E+06 19.33 3.34E+05

35-Puzzle PDBs[30] - - - - -
DeepCubeA 124.64 - 9.26E+06 28.45 3.25E+05

Extended Table 2.5: Comparison of DeepCubeA with optimal solvers based on pattern
databases (PDBs) along the dimension of solution length, percentage of optimal solutions,
number of nodes generated, time taken to solve the problem (in seconds), and number of
nodes generated per second for the 24-puzzle and 35-puzzle. For the 24-puzzle, DeepCubeA
finds a shortest path to the goal the overwhelming majority of the time and does so much
faster than PDBs. For the 35-puzzle, no tractable optimal solver exists.

times faster. Moreover, in the worst case we observed that the longest time needed to solve

the 24-puzzle is 5 days for pattern databases and two minutes for DeepCubeA. The average

solution length for the 124.76 for the 35-puzzle and 253.53 for the 48-puzzle; however, we do

not know how many of them are optimal due to the optimal solver being intractably slow for

the 35-puzzle and 48-puzzle. The performance of DeepCubeA on the 24-puzzle and 35-puzzle

are summarized in Table 2.5.

The shortest path solver for the 35-puzzle and 48-puzzle was intractably slow; however, we

compare DeepCubeA to pattern databases method using BWAS. The results show that,

compared to pattern databases, DeepCubeA produces shorter solutions, generates fewer

nodes, and is, on average, faster for two out the three assignments of λ.

Lights Out

Lights Out is a grid-based puzzle consisting of an N by N board of lights that may be either

active or inactive. The goal is to convert all active lights to inactive from a random starting

position as seen in Figure 2.1. Pressing any light in the grid will switch the state of that

light and its immediate horizontal and vertical neighbors. At any given state, a player may

click on any of the N2 lights. However, one difference of Lights Out compared to the other
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environments is that the moves are commutative. We tested DeepCubeA on the 7 by 7 Lights

Out puzzle. A theorem by Scherphuis[92] shows that, for 7 by 7 Lights Out, any solution

that does not contain any duplicate moves is the optimal solution. Using this theorem, we

found that DeepCubeA found a shortest path to the goal for all test cases.

Sokoban

Sokoban [28] is a planning problem that requires an agent to move boxes onto target locations.

Note that training states are generated by pulling instead of pushing (see Methods for more

details). Boxes can only be pushed, not pulled. To test our method on Sokoban, we train

on the 900,000 training examples and test on the 1,000 testing examples used by previous

research on single-agent policy tree search applied to Sokoban[8]. DeepCubeA successfully

solves 100% of all test examples. We compare solution length and number of nodes expanded

to this same previous research[83]. Although the goals of the aforementioned paper are

slightly different; DeepCubeA finds shorter paths than previously reported methods and also

expands, at least, 3 times fewer nodes (see Extended Table 2.1).

2.3.3 Conjugate Patterns and Symmetric States

Since the operation of the Rubik’s Cube is deeply rooted in group theory, solutions produced

by an algorithm that learns how to solve this puzzle should contain group theory properties. In

particular, conjugate patterns of moves of the form aba´1 should appear relatively often when

solving the Rubik’s Cube. These patterns are necessary for manipulating specific cubelets

while not affecting the position of other cubelets. Using a sliding window, we gathered all

triplets in all solutions to the Rubik’s Cube and found that aba´1 accounted for 13.11% of all

triplets (significantly above random) while aba accounted for 8.86%, aab accounted for 4.96%,

and abb accounted for 4.92%. To put this into perspective, for the optimal solver, aba´1, aba,
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Extended Figure 2.3: An example of symmetric solutions that DeepCubeA finds to symmetric
states. Conjugate triplets are indicated by the green boxes. Note that the last two conjugate
triplets are overlapping.

aab, and abb accounted for 9.15%, 9.63%, 5.30%, and 5.35% of all triplets, respectively.

In addition, we found that DeepCubeA often found symmetric solutions to symmetric states.

One can produce a symmetric state for the Rubik’s Cube by mirroring the cube from left to

right, as shown in Figure 2.3. The optimal solutions for two symmetric states have the same

length; furthermore, one can use the mirrored solution of one state to solve the other. To see

if this property was present in DeepCubeA, we created mirrored states of the Rubik’s Cube

test set and solved them using DeepCubeA. The results showed that 58.30% of the solutions

to the mirrored test set were symmetric to those of the original test set. Of the solutions that

were not symmetric, 69.54% had the same solution length as the solution length obtained

on the original test set. To put this into perspective, for the handmade optimal solver, the

results showed that 74.50% of the solutions to the mirrored test set were symmetric to those

of the original test set.
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2.4 Discussion

DeepCubeA is able to solve planning problems with large state spaces and few goal states

by learning a cost-to-go function, parameterized by a deep neural network, which is then

used as a heuristic function for weighted A* search. The cost-to-go function is learned by

using approximate value iteration on states generated by starting from the goal state and

taking moves in reverse. DeepCubeA’s success on solving the seven problems investigated in

this paper suggests that DeepCubeA can be readily applied to new problems given an input

representation, a state transition model, a goal state, and a reverse state transition model.

For the puzzles investigated in this paper, an effective cost-to-go function could be trained

on states obtained by randomly taking moves in reverse; however, there are other puzzles,

such as peg solitaire, in which randomly taking moves in reverse is most likely to generate

states relatively close to the goal state while very rarely generating states relatively far from

the goal state. This could cause the cost-to-go function to be ineffective when presented with

a starting state relatively far from the goal state. Future research may be able to improve

upon DeepCubeA by starting from the goal state and using the learned cost-to-go function

to search for difficult states.

With a heuristic function that never overestimates the cost of a shortest path (i.e. an

admissible heuristic function), weighed A* search comes with known bounds on how much the

length of a solution can deviate from the length of an optimal solution. While DeepCubeA’s

heuristic function is not guaranteed to be admissible, and thus does not satisfy the requirement

for these theoretical bounds, DeepCubeA nevertheless finds a shortest path to the goal in the

majority of cases (see Methods for more details).

The generality of the core algorithm suggests that it may have applications beyond com-

binatorial puzzles, as problems with large state spaces and few goal states are not rare in

planning, robotics, and the natural sciences.
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Chapter 3

Pipeline PSRO: A Scalable Approach for

Finding Approximate Nash Equilibria in

Large Games

3.1 Introduction

A long-standing goal in artificial intelligence and algorithmic game theory has been to

develop a general algorithm which is capable of finding approximate Nash equilibria in large

imperfect-information two-player zero-sum games. AlphaStar [107] and OpenAI Five [12]

were able to demonstrate that variants of self-play reinforcement learning are capable of

achieving expert-level performance in large imperfect-information video games. However,

these methods are not principled from a game-theoretic point of view and are not guaranteed

to converge to an approximate Nash equilibrium. Policy Space Response Oracles (PSRO) [60]

is a game-theoretic reinforcement learning algorithm based on the Double Oracle algorithm

and is guaranteed to converge to an approximate Nash equilibrium.
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PSRO is a general, principled method for finding approximate Nash equilibria, but it may not

scale to large games because it is a sequential algorithm that uses reinforcement learning to

train a full best response at every iteration. Two existing approaches parallelize PSRO: Deep

Cognitive Hierarchies (DCH) [60] and Rectified PSRO [9], but both have counterexamples

on which they fail to converge to an approximate Nash equilibrium, and as we show in our

experiments, neither reliably converges in random normal form games.

Although DCH approximates PSRO, it has two main limitations. First, DCH needs the same

number of parallel workers as the number of best response iterations that PSRO takes. For

large games, this requires a very large number of parallel reinforcement learning workers.

This also requires guessing how many iterations the algorithm will need before training starts.

Second, DCH keeps training policies even after they have plateaued. This introduces variance

by allowing the best responses of early levels to change each iteration, causing a ripple effect

of instability. We find that, in random normal form games, DCH rarely converges to an

approximate Nash equilibrium even with a large number of parallel workers, unless their

learning rate is carefully annealed.

Rectified PSRO is a variant of PSRO in which each learner only plays against other learners

that it already beats. We prove by counterexample that Rectified PSRO is not guaranteed

to converge to a Nash equilibrium. We also show that Rectified PSRO rarely converges in

random normal form games.

In this paper we introduce Pipeline PSRO (P2SRO), the first scalable PSRO-based method for

finding approximate Nash equilibria in large zero-sum imperfect-information games. P2SRO

is able to scale up PSRO with convergence guarantees by maintaining a hierarchical pipeline

of reinforcement learning workers, each training against the policies generated by lower levels

in the hierarchy. P2SRO has two classes of policies: fixed and active. Active policies are

trained in parallel while fixed policies are not trained anymore. Each parallel reinforcement

learning worker trains an active policy in a hierarchical pipeline, training against the meta
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Nash equilibrium of both the fixed policies and the active policies on lower levels in the

pipeline. Once the performance increase of the lowest-level active worker in the pipeline

does not improve past a given threshold in a given amount of time, the policy becomes fixed,

and a new active policy is added to the pipeline. P2SRO is guaranteed to converge to an

approximate Nash equilibrium. Unlike Rectified PSRO and DCH, P2SRO converges to an

approximate Nash equilibrium across a variety of imperfect information games such as Leduc

poker and random normal form games.

We also introduce an open-source environment for Barrage Stratego, a variant of Stratego.

Barrage Stratego is a large two-player zero sum imperfect information board game with an

approximate game tree complexity of 1050. We demonstrate that P2SRO is able to achieve

state-of-the-art performance on Barrage Stratego, beating all existing bots.

To summarize, in this paper we provide the following contributions:

• We develop a method for parallelizing PSRO which is guaranteed to converge to an

approximate Nash equilibrium, and show that this method outperforms existing methods

on random normal form games and Leduc poker.

• We present theory analyzing the performance of PSRO as well as a counterexample

where Rectified PSRO does not converge to an approximate Nash equilibrium.

• We introduce an open-source environment for Stratego and Barrage Stratego, and

demonstrate state-of-the-art performance of P2SRO on Barrage Stratego.

3.2 Background and Related Work

A two-player normal-form game is a tuple pΠ, Uq, where Π “ pΠ1,Π2q is the set of policies

(or strategies), one for each player, and U : Π Ñ R2 is a payoff table of utilities for each joint
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policy played by all players. For the game to be zero-sum, for any pair of policies π P Π, the

payoff uipπq to player i must be the negative of the payoff u´ipπq to the other player, denoted

´i. Players try to maximize their own expected utility by sampling from a distribution over

the policies σi P Σi “ ∆pΠiq. The set of best responses to a mixed policy σi is defined as

the set of policies that maximally exploit the mixed policy: pσiq “ argminσ1
´iPΣ´i

uipσ
1
´i, σiq,

where uipσq “ Eπ„σruipπqs. The exploitability of a pair of mixed policies σ is defined as:

Exploitabilitypσq “ 1
2
pu2pσ1, pσ1qq`u1ppσ2q, σ2qq ě 0. A pair of mixed policies σ “ pσ1, σ2q

is a Nash equilibrium if Exploitabilitypσq “ 0. An approximate Nash equilibrium at a

given level of precision ϵ is a pair of mixed policies σ such that Exploitabilitypσq ď ϵ [96].

In small normal-form games, Nash equilibria can be found via linear programming [82].

However, this quickly becomes infeasible when the size of the game increases. In large

normal-form games, no-regret algorithms such as fictitious play, replicator dynamics, and

regret matching can asymptotically find approximate Nash equilibria [34, 105, 110]. Extensive

form games extend normal-form games and allow for sequences of actions. Examples of

perfect-information extensive form games include chess and Go, and examples of imperfect-

information extensive form games include poker and Stratego.

In perfect information extensive-form games, algorithms based on minimax tree search have

had success on games such as checkers, chess and Go [97]. Extensive-form fictitious play

(XFP) [46] and counterfactual regret minimization (CFR) [110] extend fictitious play and

regret matching, respectively, to extensive form games. In large imperfect information games

such as heads up no-limit Texas Hold ’em, counterfactual regret minimization has been

used on an abstracted version of the game to beat top humans [20]. However, this is not a

general method because finding abstractions requires expert domain knowledge and cannot be

easily done for different games. For very large imperfect information games such as Barrage

Stratego, it is not clear how to use abstractions and CFR. Deep CFR [22] is a general method

that trains a neural network on a buffer of counterfactual values. However, Deep CFR uses
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external sampling, which may be impractical for games with a large branching factor such as

Stratego and Barrage Stratego. DREAM [102] and ARMAC [39] are model-free regret-based

deep learning approaches. Current Barrage Stratego bots are based on imperfect information

tree search and are unable to beat even intermediate-level human players [91, 50].

Recently, deep reinforcement learning has proven effective on high-dimensional sequential

decision making problems such as Atari games and robotics [65]. AlphaStar [107] beat top

humans at Starcraft using self-play and population-based reinforcement learning. Similarly,

OpenAI Five [12] beat top humans at Dota using self play reinforcement learning. Similar

population-based methods have achieved human-level performance on Capture the Flag

[48]. However, these algorithms are not guaranteed to converge to an approximate Nash

equilibrium. Neural Fictitious Self Play (NFSP) [45] approximates extensive-form fictitious

play by progressively training a best response against an average of all past policies using

reinforcement learning. The average policy is represented by a neural network and is trained

via supervised learning using a replay buffer of past best response actions. This replay buffer

may become prohibitively large in complex games.

3.2.1 Policy Space Response Oracles

The Double Oracle algorithm [77] is an algorithm for finding a Nash equilibrium in normal

form games. The algorithm works by keeping a population of policies Πt Ă Π at time t. Each

iteration a Nash equilibrium σ˚,t is computed for the game restricted to policies in Πt. Then,

a best response to this Nash equilibrium for each player pσ˚,t
´i q is computed and added to the

population Πt`1
i “ Πt

i Y tpσ˚,t
´i qu for i P t1, 2u.

Policy Space Response Oracles (PSRO) approximates the Double Oracle algorithm. The

meta Nash equilibrium is computed on the empirical game matrix UΠ, given by having each

policy in the population Π play each other policy and tracking average utility in a payoff
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matrix. In each iteration, an approximate best response to the current meta Nash equilibrium

over the policies is computed via any reinforcement learning algorithm. In this work we use a

discrete-action version of Soft Actor Critic (SAC), described in Section 3.3.1.

One issue with PSRO is that it is based on a normal-form algorithm, and the number of

pure strategies in a normal form representation of an extensive-form game is exponential

in the number of information sets. In practice, however, PSRO is able to achieve good

performance in large games, possibly because large sections of the game tree correspond

to weak actions, so only a subset of pure strategies need be enumerated for satisfactory

performance. Another issue with PSRO is that it is a sequential algorithm, requiring a full

best response computation in every iteration. This paper addresses the latter problem by

parallelizing PSRO while maintaining the same convergence guarantees.

DCH [60] parallelizes PSRO by training multiple reinforcement learning agents, each against

the meta Nash equilibrium of agents below it in the hierarchy. A problem with DCH is

that one needs to set the number of workers equal to the number of policies in the final

population beforehand. For large games such as Barrage Stratego, this might require hundreds

of parallel workers. Also, in practice, DCH fails to converge in small random normal form

games even with an exact best-response oracle and a learning rate of 1, because early levels

may change their best response occasionally due to randomness in estimation of the meta

Nash equilibrium. In our experiments and in the DCH experiments in Lanctot et al. [60],

DCH is unable to achieve low exploitability on Leduc poker.

Another existing parallel PSRO algorithm is Rectified PSRO [9]. Rectified PSRO assigns

each learner to play against the policies that it currently beats. However, we prove that

Rectified PSRO does not converge to a Nash equilibrium in all symmetric zero-sum games.

In our experiments, Rectified PSRO rarely converges to an approximate Nash equilibrium in

random normal form games.
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Extended Figure 3.1: Pipeline PSRO. The lowest-level active policy πj (blue) plays against
the meta Nash equilibrium σ˚,j of the lower-level fixed policies in Πf (gray). Each additional
active policy (green) plays against the meta Nash equilibrium of the fixed and training policies
in levels below it. Once the lowest active policy plateaus, it becomes fixed, a new active
policy is added, and the next active policy becomes the lowest active policy. In the first
iteration, the fixed population consists of a single random policy.

3.3 Pipeline Policy Space Response Oracles (P2SRO)

Pipeline PSRO (P2SRO; Algorithm 2) is able to scale up PSRO with convergence guarantees

by maintaining a hierarchical pipeline of reinforcement learning policies, each training against

the policies in the lower levels of the hierarchy (Figure 3.1). P2SRO has two classes of policies:

fixed and active. The set of fixed policies are denoted by Πf and do not train anymore, but

remain in the fixed population. The parallel reinforcement learning workers train the active

policies, denoted Πa in a hierarchical pipeline, training against the meta Nash equilibrium

distribution of both the fixed policies and the active policies in levels below them in the

pipeline. The entire population Π consists of the union of Πf and Πa. For each policy πj
i in

the active policies Πa
i , to compute the distribution of policies to train against, a meta Nash

equilibrium σ˚,j
´i is periodically computed on policies lower than πj

i : Πf
´i Y tπk

´i P Πa
´i|k ă ju

and πj
i trains against this distribution.
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The performance of a policy πj is given by the average performance during training Eπ1„σ˚,j
1

ru2pπ1, π
j
2qs`

Eπ2„σ˚,j
2

ru1pπ
j
1, π2qs against the meta Nash equilibrium distribution σ˚,j. Once the perfor-

mance of the lowest-level active policy πj in the pipeline does not improve past a given

threshold in a given amount of time, we say that the policy’s performance plateaus, and

πj becomes fixed and is added to the fixed population Πf . Once πj is added to the fixed

population Πf , then πj`1 becomes the new lowest active policy. A new policy is initialized

and added as the highest-level policy in the active policies Πa. Because the lowest-level policy

only trains against the previous fixed policies Πf , P2SRO maintains the same convergence

guarantees as PSRO. Unlike PSRO, however, each policy in the pipeline above the lowest-level

policy is able to get a head start by pre-training against the moving target of the meta Nash

equilibrium of the policies below it. Unlike Rectified PSRO and DCH, P2SRO converges to

an approximate Nash equilibrium across a variety of imperfect information games such as

Leduc Poker and random normal form games.

In our experiments we model the non-symmetric games of Leduc poker and Barrage Stratego

as symmetric games by training one policy that can observe which player it is at the start of

the game and play as either the first or the second player. We find that in practice it is more

efficient to only train one population than to train two different populations, especially in

larger games, such as Barrage Stratego.

3.3.1 Implementation Details

For the meta Nash equilibrium solver we use fictitious play [34]. Fictitious play is a simple

method for finding an approximate Nash equilibrium in normal form games. Every iteration,

a best response to the average strategy of the population is added to the population. The

average strategy converges to an approximate Nash equilibrium. For the approximate best

response oracle, we use a discrete version of Soft Actor Critic (SAC) [40, 26]. We modify the
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Algorithm 2 Pipeline Policy-Space Response Oracles (P2SRO)
1: Input: Initial policy sets for all players Πf

2: Compute expected utilities for empirical payoff matrix UΠ for each joint π P Π
3: Compute meta-Nash equilibrium σ˚,j over fixed policies pΠf q

4: for many episodes do
5: for all πj P Πa in parallel do
6: for player i P t1, 2u do
7: Sample π´i „ σ˚,j

´i

8: Train πj
i against π´i

9: if πj plateaus and πj is the lowest active policy then
10: Πf “ Πf Y tπju

11: Initialize new active policy at a higher level than all existing active policies
12: Compute missing entries in UΠ from Π
13: Compute meta Nash equilibrium for each active policy
14: Periodically compute meta Nash equilibrium for each active policy
15: Output current meta Nash equilibrium on whole population σ˚

version used in RLlib [66, 79] to account for discrete actions.

3.3.2 Analysis

PSRO is guaranteed to converge to an approximate Nash equilibrium and doesn’t need a

large replay buffer, unlike NFSP and Deep CFR. In the worst case, all policies in the original

game must be added before PSRO reaches an approximate Nash equilibrium. Empirically,

on random normal form games, PSRO performs better than selecting pure strategies at

random without replacement. This implies that in each iteration, PSRO is more likely than

random to add a pure strategy that is part of the support of the Nash equilibrium of the

full game, suggesting the conjecture that PSRO has faster convergence rate than random

strategy selection. The following theorem indirectly supports this conjecture.

Theorem 1. Let σ be a Nash equilibrium of a symmetric normal form game pΠ, Uq and let

Πe be the set of pure strategies in its support. Let Π1 Ă Π be a population that does not cover

Πe Ę Π1, and let σ1 be the meta Nash equilibrium of the original game restricted to strategies

in Π1. Then there exists a pure strategy π P ΠezΠ1 such that π does not lose to σ1.
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Proof. σ1 is a meta Nash equilibrium, implying σ1⊺Gσ1 “ 0, where G is the payoff matrix for

the row player. In fact, each policy π in the support Π1e of σ1 has 1⊺πGσ1 “ 0, where 1π is the

one-hot encoding of π in Π.

Consider the sets Π` “ tπ : σpπq ą σ1pπqu “ ΠezΠ1 and Π´ “ tπ : σpπq ă σ1pπqu Ď Π1e.

Note the assumption that Π` is not empty. If each π P Π` had 1⊺πGσ1 ă 0, we would have

σ⊺Gσ1
“ pσ ´ σ1

q
⊺Gσ1

“
ÿ

πPΠ`

pσpπq ´ σ1
pπqq1⊺πGσ1

`
ÿ

πPΠ´

pσpπq ´ σ1
pπqq1⊺πGσ1

“
ÿ

πPΠ`

pσpπq ´ σ1
pπqq1⊺πGσ1

ă 0,

in contradiction to σ being a Nash equilibrium. We conclude that there must exist π P Π`

with 1⊺πGσ1 ě 0.

Ideally, PSRO would be able to add a member of ΠezΠ1 to the current population Π1 at each

iteration. However, the best response to the current meta Nash equilibrium σ1 is generally

not a member of Πe. Theorem 1 shows that for an approximate best response algorithm with

a weaker guarantee of not losing to σ1, it is possible that a member of ΠezΠ1 is added at each

iteration.

Even assuming that a policy in the Nash equilibrium support is added at each iteration, the

convergence of PSRO to an approximate Nash equilibrium can be slow because each policy

is trained sequentially by a reinforcement learning algorithm. DCH, Rectified PSRO, and

P2SRO are methods of speeding up PSRO through parallelization. In large games, many

of the basic skills (such as extracting features from the board) may need to be relearned

when starting each iteration from scratch. DCH and P2SRO are able to speed up PSRO

by pre-training each level on the moving target of the meta Nash equilibrium of lower-level

policies before those policies converge. This speedup would be linear with the number of

parallel workers if each policy could train on the fixed final meta Nash equilibrium of the
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policies below it. Since it trains instead on a moving target, we expect the speedup to be

sub-linear in the number of workers.

DCH is an approximation of PSRO that is not guaranteed to converge to an approximate

Nash equilibrium if the number of levels is not equal to the number of pure strategies in the

game, and is in fact guaranteed not to converge to an approximate Nash equilibrium if the

number of levels cannot support it.

Another parallel PSRO algorithm, Rectified PSRO, is not guaranteed to converge to an

approximate Nash equilibrium.

Proposition 1. Rectified PSRO with an oracle best response does not converge to a Nash

equilibrium in all symmetric two-player, zero-sum normal form games.

Proof. Consider the following symmetric two-player zero-sum normal form game:

»

—

—

—

—

—

—

—

–

0 ´1 1 ´2
5

1 0 ´1 ´2
5

´1 1 0 ´2
5

2
5

2
5

2
5

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

This game is based on Rock–Paper–Scissors, with an extra strategy added that beats all

other strategies and is the pure Nash equilibrium of the game. Suppose the population of

Rectified PSRO starts as the pure Rock strategy.

• Iteration 1: Rock ties with itself, so a best response to Rock (Paper) is added to the

population.

• Iteration 2: The meta Nash equilibrium over Rock and Paper has all mass on Paper.

The new strategy that gets added is the best response to Paper (Scissors).
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• Iteration 3: The meta Nash equilibrium over Rock, Paper, and Scissors equally weights

each of them. Now, for each of the three strategies, Rectified PSRO adds a best response

to the meta-Nash-weighted combination of strategies that it beats or ties. Since Rock

beats or ties Rock and Scissors, a best response to a 50 ´ 50 combination of Rock and

Scissors is Rock, with an expected utility of 1
2
. Similarly, for Paper, since Paper beats

or ties Paper and Rock, a best response to a 50 ´ 50 combination of Paper and Rock

is Paper. For Scissors, the best response for an equal mix of Scissors and Paper is

Scissors. So in this iteration no strategy is added to the population and the algorithm

terminates.

We see that the algorithm terminates without expanding the fourth strategy. The meta Nash

equilibrium of the first three strategies that Rectified PSRO finds are not a Nash equilibrium

of the full game, and are exploited by the fourth strategy, which is guaranteed to get a utility

of 2
5

against any mixture of them.

The pattern of the counterexample presented here is possible to occur in large games, which

suggests that Rectified PSRO may not be an effective algorithm for finding an approximate

Nash equilibrium in large games. Prior work has found that Rectified PSRO does not converge

to an approximate Nash equilibrium in Kuhn Poker [80].

Proposition 2. P2SRO with an oracle best response converges to a Nash equilibrium in all

two-player, zero-sum normal form games.

Proof. Since only the lowest active policy can be submitted to the fixed policies, this policy

is an oracle best response to the meta Nash distribution of the fixed policies, making P2SRO

with an oracle best response equivalent to the Double Oracle algorithm.

Unlike DCH which becomes unstable when early levels change, P2SRO is able to avoid this

problem because early levels become fixed once they plateau. While DCH only approximates

38



(a) Leduc poker (b) Random Symmetric Normal Form Games

Extended Figure 3.2: Exploitability of Algorithms on Leduc poker and Random Symmetric
Normal Form Games

PSRO, P2SRO has equivalent guarantees to PSRO because the lowest active policy always

trains against a fixed meta Nash equilibrium before plateauing and becoming fixed itself.

This fixed meta Nash distribution that it trains against is in principle the same as the one

that PSRO would train against. The only difference between P2SRO and PSRO is that the

extra workers in P2SRO are able to get a head-start by pre-training on lower level policies

while those are still training. Therefore, P2SRO inherits the convergence guarantees from

PSRO while scaling up when multiple processors are available.

3.4 Results

We compare P2SRO with DCH, Rectified PSRO, and a naive way of parallelizing PSRO that

we term Naive PSRO. Naive PSRO is a way of parallelizing PSRO where each additional

worker trains against the same meta Nash equilibrium of the fixed policies. Naive PSRO

is beneficial when randomness in the reinforcement learning algorithm leads to a diversity

of trained policies, and in our experiments it performs only slightly better than PSRO.

Additionally, in random normal form game experiments, we include the original, non-parallel

PSRO algorithm, termed sequential PSRO, and non-parallelized self-play, where a single
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policy trains against the latest policy in the population.

We find that DCH fails to reliably converge to an approximate Nash equilibrium across

random symmetric normal form games and small poker games. We believe this is because

early levels can randomly change even after they have plateaued, causing instability in higher

levels. In our experiments, we analyze the behavior of DCH with a learning rate of 1 in

random normal form games. We hypothesized that DCH with a learning rate of 1 would be

equivalent to the double oracle algorithm and converge to an approximate Nash. However, we

found that the best response to a fixed set of lower levels can be different in each iteration due

to randomness in calculating a meta Nash equilibrium. This causes a ripple effect of instability

through the higher levels. We find that DCH almost never converges to an approximate Nash

equilibrium in random normal form games.

Although not introduced in the original paper, we find that DCH converges to an approximate

Nash equilibrium with an annealed learning rate. An annealed learning rate allows early levels

to not continually change, so the variance of all of the levels can tend to zero. Reinforcement

learning algorithms have been found to empirically converge to approximate Nash equilibria

with annealed learning rates [100, 16]. We find that DCH with an annealed learning rate

does converge to an approximate Nash equilibrium, but it can converge slowly depending on

the rate of annealing. Furthermore, annealing the learning rate can be difficult to tune with

deep reinforcement learning, and can slow down training considerably.

3.4.1 Random Symmetric Normal Form Games

For each experiment, we generate a random symmetric zero-sum normal form game of

dimension n by generating a random antisymmetric matrix P . Each element in the upper

triangle is distributed uniformly: @i ă j ď n, ai,j „ Uniformp´1, 1q. Every element in the

lower triangle is set to be the negative of its diagonal counterpart: @j ă i ď n, ai,j “ ´aj,i.
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Extended Figure 3.3: Valid Barrage Stratego Setup (note that the piece values are not visible
to the other player)

The diagonal elements are equal to zero: ai,i “ 0. The matrix defines the utility of two

pure strategies to the row player. A strategy π P ∆n is a distribution over the n pure

strategies of the game given by the rows (or equivalently, columns) of the matrix. In these

experiments we can easily compute an exact best response to a strategy and do not use

reinforcement learning to update each strategy. Instead, as a strategy π "trains" against

another strategy π̂, it is updated by a learning rate r multiplied by the best response to that

strategy: π1 “ rpπ̂q ` p1 ´ rqπ.

Figure 3.2 show results for each algorithm on random symmetric normal form games of

dimension 60, about the same dimension of the normal form of Kuhn poker. We run each

algorithm on five different random symmetric normal form games. We report the mean

exploitability over time of these algorithms and add error bars corresponding to the standard

error of the mean. P2SRO reaches an approximate Nash equilibrium much faster than the

other algorithms. Additional experiments on different dimension games and different learning

rates are included in the supplementary material. In each experiment, P2SRO converges to

an approximate Nash equilibrium much faster than the other algorithms.
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Extended Figure 3.4: Barrage Best Response Payoffs Over Time

3.4.2 Leduc Poker

Leduc poker is played with a deck of six cards of two suits with three cards each. Each player

bets one chip as an ante, then each player is dealt one card. After, there is a a betting round

and then another card is dealt face up, followed by a second betting round. If a player’s card

is the same rank as the public card, they win. Otherwise, the player whose card has the

higher rank wins. We run the following parallel PSRO algorithms on Leduc: P2SRO, DCH,

Rectified PSRO, and Naive PSRO. We run each algorithm for three random seeds with three

workers each. Results are shown in Figure 3.2. We find that P2SRO is much faster than the

other algorithms, reaching 0.4 exploitability almost twice as soon as Naive PSRO. DCH and

Rectified PSRO never reach a low exploitability.

3.4.3 Barrage Stratego

Barrage is a smaller variant of the board game Stratego that is played competitively by

humans. The board consists of a ten-by-ten grid with two two-by-two barriers in the middle

(see image for details). Each player has eight pieces, consisting of one Marshal, one General,

one Miner, two Scouts, one Spy, one Bomb, and one Flag. Crucially, each player only knows
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Name P2SRO Win Rate vs. Bot

Asmodeus 81%
Celsius 70%
Vixen 69%

Celsius1.1 65%
All Bots Average 71%

Extended Table 3.1: Barrage P2SRO Results vs. Existing Bots

the identity of their own pieces. At the beginning of the game, each player is allowed to place

these pieces anywhere on the first four rows closest to them.

The Marshal, General, Spy, and Miner may move only one step to any adjacent space but

not diagonally. Bomb and Flag pieces cannot be moved. The Scout may move in a straight

line like a rook in chess. A player can attack by moving a piece onto a square occupied by

an opposing piece. Both players then reveal their piece’s rank and the weaker piece gets

removed. If the pieces are of equal rank then both get removed. The Marshal has higher

rank than all other pieces, the General has higher rank than all other beside the Marshal,

the Miner has higher rank than the Scout, Spy, Flag, and Bomb, the Scout has higher rank

than the Spy and Flag, and the Spy has higher rank than the Flag and the Marshal when it

attacks the Marshal. Bombs cannot attack but when another piece besides the Miner attacks

a Bomb, the Bomb has higher rank. The player who captures his/her opponent’s Flag or

prevents the other player from moving any piece wins.

We find that the approximate exploitability of the meta-Nash equilibrium of the population

decreases over time as measured by the performance of each new best response. This is shown

in Figure 3, where the payoff is 1 for winning and -1 for losing. We compare to all existing bots

that are able to play Barrage Stratego. These bots include: Vixen, Asmodeus, and Celsius.

Other bots such as Probe and Master of the Flag exist, but can only play Stratego and not

Barrage Stratego. We show results of P2SRO against the bots in Table 1. We find that P2SRO

is able to beat these existing bots by 71% on average after 820, 000 episodes, and has a win rate

43



of over 65% against each bot. We introduce an open-source environment for Stratego, Barrage

Stratego, and smaller Stratego games at https://github.com/JBLanier/stratego_env.
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Chapter 4

XDO: A Double Oracle Algorithm For

Extensive-Form Games

4.1 Introduction

Policy Space Response Oracles (PSRO) [60] is a reinforcement learning (RL) method for

finding approximate Nash equilibria (NE) in large two-player zero-sum games. Methods based

on PSRO have recently achieved state-of-the-art performance on large imperfect-information

two-player zero-sum games such as Starcraft [107] and Stratego [74]. One major benifit of

PSRO versus other deep RL methods for two-player zero-sum games is that it is naturally

compatible with games that have continuous actions. The only other deep RL method

compatible with continuous actions, self play, is not guaranteed to converge to a Nash

equilibrium even in small games like Rock Paper Scissors. Despite the empirical success of

PSRO, in the worst case, PSRO may need to expand all pure strategies in the normal form

of the game, which grows exponentially in the number of information states (infostates).

The reason for this is that PSRO is based on the Double Oracle algorithm for normal-form
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games [77], and a mixture of normal-form pure strategies is an inefficient representation of

extensive-form policies.

In this work, we propose a new double oracle algorithm, Extensive-Form Double Oracle

(XDO), that is designed for extensive-form (sequential) games. Like PSRO, XDO keeps a

population of pure strategies. At every iteration, XDO creates a restricted game by only

considering actions that are chosen by at least one strategy in the population. This restricted

game is then approximately solved via an extensive-form game solver, such as Counterfactual

Regret Minimization (CFR) [110] or Fictitious Play (FP) [17], to find a meta-NE, which is

extended to the full game by taking arbitrary actions at infostates not encountered in the

restricted game. Next, a best response (BR) to the restricted game meta-NE is computed

and added to the population. XDO can be viewed as a version of PSRO where the restricted

game allows mixing population strategies not only at the root of the game, but at every

infostate.

XDO is guaranteed to converge to an approximate NE in a number of iterations that is linear

in the number of infostates, while PSRO may require a number of iterations exponential in

the number of infostates. Furthermore, on a worst-case family of games for the lower bound

on the number of PSRO iterations, we show that XDO converges in a number of iterations

that does not grow with the number of infostates, and grows only linearly with the number

of actions at each infostate.

We also introduce a neural version of XDO, called Neural XDO (NXDO). NXDO can be used

in games that are large enough to benefit from the generalization over infostates induced by

neural-network strategies. NXDO learns approximate BRs through any deep reinforcement

learning algorithm. The restricted game consists of meta-actions, each selecting a population

policy to play the next action. This restricted game is then solved through any neural

extensive-form game solver, such as NFSP [45] or Deep CFR [22]. In our experiments, we

use PPO [95] or DDQN [106] for the approximate BR and NFSP as the restricted game
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solver. Although convergence guarantees may not apply in such cases, like PSRO, NXDO is

compatible with continuous action spaces.

In games with a large number of actions, NXDO and PSRO effectively prune the game

tree and outperform methods such as Deep CFR and NFSP, which cannot be applied at all

with continuous actions. Additionally, because PSRO might require an exponential number

of pure strategies, NXDO outperforms PSRO on games that require mixing over multiple

timesteps. To demonstrate the effectiveness of our approach on these types of games, we

run experiments on two sets of environments. The first, m-Clone Leduc, is similar to Leduc

poker but with every call, fold, and bet action duplicated m times. The second, the Loss

Game, is a sequential continuous-action multidimensional optimization game in which agents

simultaneously adjust parameters to maximize or minimize a complex loss function. We show

that tabular XDO greatly outperforms PSRO, CFR, and XFP [46] on m-Clone Leduc. We

also show that NXDO outperforms both PSRO and NFSP on m-Clone Leduc and on the

continuous-action Loss Game, where NFSP is provided a binned discrete action space.

To summarize, our contributions are as follows:

• We present a tabular extensive-form double oracle algorithm, XDO, that terminates in

a linear number of iterations in the number of infostates.

• We present a neural version of XDO, NXDO, that outperforms PSRO and NFSP on

both modified Leduc poker and sequential continuous-action games. NXDO is the

first method that can find an approximate NE in high-dimensional continuous-action

sequential games.
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4.2 Background

4.2.1 Extensive-Form Games

We consider partially-observable stochastic games [41] which correspond to perfect-recall

extensive-form games (from here on referred to as extensive-form games). An extensive-form

game progresses through a sequence of player actions, and has a world state w P W at each

step. In an N -player game, A “ A1 ˆ ¨ ¨ ¨ ˆ AN is the space of joint actions for the players.

Aipwq denotes the set of legal actions for player i P N “ t1, . . . , Nu at world state w and

a “ pa1, . . . , aNq P A denotes a joint action. At each world state, after the players choose a

joint action, a transition function T pw, aq P ∆W determines the probability distribution of

the next world state w1. Upon transition from world state w to w1 via joint action a, player i

makes an observation oi “ Oipw, a, w
1q. In each world state w, player i receives a reward

Ripwq.

A history is a sequence of actions and world states, denoted h “ pw0, a0, w1, a1, . . . , wtq,

where w0 is the known initial world state of the game. Riphq and Aiphq are, respectively,

the reward and set of legal actions for player i in the last world state of a history h. An

infostate for player i, denoted by si, is a sequence of that player’s observations and actions

up until that time siphq “ pa0i , o
1
i , a

1
i , . . . , o

t
iq. Define the set of all infostates for player i to be

Ii. The set of histories that correspond to an infostate si is denoted Hpsiq “ th : siphq “ siu,

and it is assumed that they all share the same set of legal actions Aipsiphqq “ Aiphq.

A player’s policy πi is a function mapping from an infostate to a probability distribution

over actions. A policy profile π is a tuple pπ1, . . . , πNq. All players other than i are

denoted ´i, and their policies are jointly denoted π´i. A policy for a history h is denoted

πiphq “ πipsiphqq and πphq is the corresponding policy profile. We also define the transition

function T ph, ai, π´iq P ∆W as a function drawing actions for ´i from π´i to form a “ pai, a´iq
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and to then sample the next world state w1 from T pw, aq, where w is the last world state in

h.

The expected value (EV) vπi phq for player i is the expected sum of future rewards for

player i in history h, when all players play policy profile π. The EV for an infostate si is

denoted vπi psiq and the EV for the entire game is denoted vipπq. A two-player zero-sum

game has v1pπq ` v2pπq “ 0 for all policy profiles π. The EV for an action in an infostate is

denoted vπi psi, aiq. A Nash equilibrium (NE) is a policy profile such that, if all players

played their NE policy, no player could achieve higher EV by deviating from it. Formally, π˚

is a NE if vipπ˚q “ maxπi
vipπi, π

˚
´iq for each player i.

The exploitability epπq of a policy profile π is defined as epπq “
ř

iPN maxπ1
i
vipπ

1
i, π´iq. A

best response (BR) policy BRipπ´iq for player i to a policy π´i is a policy that maximally

exploits π´i: BRipπ´iq “ argmaxπi
vipπi, π´iq. An ϵ-best response (ϵ-BR) policy BRϵ

ipπ´iq

for player i to a policy π´i is a policy that is at most ϵ worse for player i than the best

response: vipBRϵ
ipπ´iq, π´iq ě vipBRipπ´iq, π´iq ´ ϵ. An ϵ-Nash equilibrium (ϵ-NE) is a

policy profile π in which, for each player i, πi is an ϵ-BR to π´i.

A normal-form game is a single-step extensive-form game. An extensive-form game induces

a normal-form game in which the legal actions for player i are its deterministic policies
Ś

siPIi Aipsiq. These deterministic policies are called pure strategies of the normal-form

game. Since each deterministic policy specifies one action at every infostate, there are an

exponential number of pure strategies in the number of infostates. A mixed strategy is a

distribution over a player’s pure strategies. Two policies π1
i and π2

i for player i are said to be

realization-equivalent if for any fixed strategy profile of the other player, both π1
i and π2

i ,

define the same probability distribution over the states of the game.

Theorem 2 (Kuhn’s Theorem [58]). Any mixed strategy in the normal form of a game is

realization equivalent to a policy in the extensive form of that game, and vice versa.
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4.3 Related Work

There has been much recent work on non-game-theoretic multi-agent RL [32, 69, 86, 10]. Most

of this work focuses on games with more than two players such as multi-agent cooperative

games or mixed competitive-cooperative scenarios. In cooperative environments, self-play

has empirically been shown to find an approximate NE [69, 70], but can be brittle when

cooperating with agents it hasn’t trained with [60]. Self-play reinforcement learning has

achieved expert level performance on video games [107, 12, 48], but is not guaranteed to

converge to an approximate NE.

Extensive-form fictitious play (XFP) [46] and counterfactual regret minimization (CFR) [110]

extend Fictitious Play (FP) [17] and regret matching [43], respectively, to extensive-form

games. Deep CFR [22, 101, 64] is a general method that trains a neural network on a buffer of

counterfactual values. However, Deep CFR uses external sampling, which may be impractical

for games with a large branching factor, such as Stratego and Barrage Stratego. DREAM

[102] and ARMAC [39] are model-free regret-based deep learning approaches. DREAM and

ARMAC have achieved good results in poker games, but since they are based on MCCFR,

like Deep CFR, they will not scale to games with continuous actions.

Our work is related to pruning approaches [18, 21]. These methods start with all actions

and sequentially remove actions that have low expected value. XDO instead starts with no

actions and sequentially adds actions. Our work is also related to methods that automatically

find abstractions [19, 25].

Close to our work, [15] develop a sequence-form double oracle (SDO) algorithm. The SDO

algorithm iteratively adds sequence-form BRs to a population and then computes a meta-Nash

on a restricted sequence-form game where only sequences in the population are allowed. In

contrast, XDO iteratively adds extensive-form BRs to a population and then computes a

meta-Nash on a restricted extensive form game where only actions in the population are
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allowed. DO, SDO, and XDO are fundamentally different because they operate on the normal

form, sequence form, and extensive form, respectively. We give a detailed description of the

difference between XDO and SDO in the supplementary materials.

4.3.1 Neural Fictitious Self Play (NFSP)

Neural Fictitious Self Play (NFSP) [45] approximates XFP by progressively training a best

response against an average of all past policies using reinforcement learning. The average

policy is represented by a neural network and is trained via supervised learning using a replay

buffer of past best response actions. Each episode, both players either play from their best

response policy with probability η “ 0.1 or with their average policy with probability 1 ´ η.

This experience is then added to the best response circular replay buffer and is used to train

the best response for both players with off-policy DQN. If a player plays with their best

response policy, the data is also added to the average policy reservoir replay buffer and is

used to train the average policy via supervised learning.

4.3.2 Policy Space Response Oracles (PSRO)

The Double Oracle algorithm [77] is an algorithm for finding a NE in normal-form games.

The algorithm works by keeping a population of policies Πt at time t. Each iteration a

meta-Nash Equilibrium (meta-NE) π˚,t is computed for the game restricted to policies in Πt.

Then, a best response to this meta-NE for each player BRipπ
˚,t
´i q is computed and added to

the population Πt`1
i “ Πt

i Y tBRipπ
˚,t
´i qu for i P t1, 2u.

Policy Space Response Oracles (PSRO) [60] approximates the Double Oracle algorithm. The

meta-NE is computed on the empirical game matrix UΠ, given by having each policy in the

population Π play each other policy and tracking average utility in a payoff matrix. In each
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iteration, an approximate best response to the current meta-NE over the policies is computed

via any reinforcement learning algorithm. Pipeline PSRO parallelizes PSRO with convergence

guarantees [74].

PSRO Hard Instance

A primary issue with PSRO is that it is based on a normal-form algorithm, and the number

of pure strategies in a normal-form representation of an extensive-form game is exponential in

the number of infostates. In contrast, our approach implements the double oracle algorithm

directly in the extensive-form game, overcoming this problem and terminating in a linear

number of iterations in the number of infostates. The following example helps illustrate this

point.

Consider the game in Figure 4.1. In this game, first, player 1 chooses which Rock Paper

Scissors (RPS) game both players play. After player 1 chooses the RPS game, both players

know which RPS game they are playing. Then both players simultaneously play an action in

that RPS game. There are 6 pure strategies for player 1, denoted R1, P1, S1, R2, P2, S2.

But there are 9 pure strategies for player 2. A pure strategy for player 2 specifies what move

they play at each infostate. If player 2 played Rock in the first infostate and Paper in the

second, that pure strategy is denoted RP. Note that if we generalize this game by including

more RPS games and more actions in each game, the number of pure strategies for player 2

will be |A||I|, where |A| is the number of actions and |I| is the number of RPS games.

We conduct an experiment where we run PSRO with oracle BRs on this game with a random

starting population each time. We find that PSRO expands all 9 row (player 2) pure strategies

the majority of the time, expanding all 9 strategies in 122 out of 150 trials. These results

are shown in Figure 4.1c. We also find that the column player (player 1) expands all 6 pure

strategies in all 150 trials.
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(a) (b) (c)

Extended Figure 4.1: PSRO hard instance. (a) Player 1 first chooses which RPS game both
players play. Both players know which RPS game they are playing. Then both players
simultaneously make their move. (b) The normal form game. Player 2 has 9 pure strategies.
(c) The proportion of PSRO trials that expanded each possible number of pure strategies for
player 2. In the majority of trials, PSRO had to expand all possible pure strategies.

4.4 Extensive-Form Double Oracle (XDO)

We propose Extensive-Form Double Oracle (XDO), a double-oracle (DO) algorithm designed

for two-player zero-sum extensive-form games (Algorithm 3). As in other DO algorithms,

XDO maintains a population of pure strategies, and in each iteration computes a meta-NE of

this population. Then the algorithm finds a best response (BR) to the meta-NE and adds it

to the population.

In XDO, the population induces a different restricted game, and therefore a different popula-

tion meta-NE, than in PSRO [60]. In PSRO, a restricted normal-form game is induced by the

empirical payoff matrix of population strategies. In XDO, a restricted extensive-form game is

induced through a transformation on the original base extensive-form game that restricts the

allowed actions at each infostate to only those suggested by any strategy in the population.

XDO uses a tabular method such as CFR [110] or XFP [46] to solve the restricted game.

The algorithm terminates after an iteration in which neither of the players finds a BR that

outperforms the meta-NE. When this happens, the meta-NE policies are approximate BRs

to each other in the original game as well, and the meta-NE is therefore an approximate NE
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of the original game.

Importantly, at each but the final iteration of XDO, at least one player adds some new action

at some non-terminal infostate, because a BR cannot outperform the meta-NE with only

restricted-game actions. The number of iterations that XDO takes to terminate is therefore at

most the number of infostates, including terminal ones. In contrast, the best known guarantee

for the number of iterations that PSRO takes to terminate (Proposition 4) is exponential in

the number of infostates, because PSRO may need to add all pure strategies to the population.

Moreover, computing the meta-NE in PSRO may become intractable in later iterations as

the population size increases, while in XDO it is bounded by the unrestricted game.

Formally, XDO keeps a population of pure strategies Πt at time t. Each iteration, a restricted

extensive-form game is created and a NE to the restricted game is computed. The restricted

game is created by taking the original game and restricting the actions at every infostate

si to be only the actions where there exists a policy in the population Πt that chooses that

action at that infostate:

Ar
i psiq “ ta P Aipsiq : Dπi P Πt

i s.t. πipsi, aq “ 1u. (4.1)

An ϵ-NE policy πr˚ is then computed in this restricted game via a tabular method such

as CFR and is extended to the full game by defining arbitrary actions on infostates not

encountered in the restricted game. Next, BRs to this restricted game meta-NE BR1pπ
r˚
2 q

and BR2pπr˚
1 q are computed via an oracle. These BRs are then added to the population of

policies: Πt`1
i “ Πt

i Y BRipπ
r˚
´iq for i P t1, 2u.

The algorithm terminates when neither player benefits more than ϵ from deviating from

the meta-NE to the BR, indicating that the meta-NE is an ϵ-NE also in the original game

(Proposition 3).
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Algorithm 3 XDO
1: Input: initial population Π0

2: repeat
3: Define restricted game for Πt via eq. (4.1)
4: Get ϵ-NE policy πr˚ of restricted game
5: Find BRipπ

r˚
´iq for i P t1, 2u

6: if vipBRipπ
r˚
´iq, π

r˚
´iq ď vipπ

r˚q ` ϵ for both i then
7: Terminate
8: Πt`1

i “ Πt
i Y BRipπ

r˚
´iq for i P t1, 2u

To illustrate how XDO works, we demonstrate a simple game in Figure 4.2. The algorithm

starts with empty populations. At the first iteration (left diagram), player 1 adds a BR that

plays Left at the first infostate (the root) and Right at the second one. Player 2 simultaneously

adds a BR that plays Right at their single infostate. The restricted game now consists of

only these added actions. At the second iteration (middle diagram), player 1 adds a BR

that plays Right at both infostates, and player 2’s BR still plays Right. The restricted game

now includes both actions for the root infostate, but only Right is in the meta-NE. Next, in

the third iteration (right diagram), player 1 keeps the same BR, while player 2’s BR plays

Left. In the meta-NE of this final restricted game, player 1 plays Left and Right with equal

probability at the first infostate, and player 2 plays Left with probability 0.37 and Right

with probability 0.63. Since the BRs to this meta-NE do not add any new actions, XDO

terminates, and the meta-NE is the NE for the full game. Note that in this example, most

actions are needed to find a NE. In games like this, it would be faster to simply solve the

original game from the beginning. However, certain games, such as those in our experiments,

have Nash equilibria that only need to mix over a small subset of actions [93], in which case

solving the XDO restricted game will be much faster than solving the original game.
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Extended Figure 4.2: Three iterations of XDO (left to right). In these extensive-form game
diagrams, player 1 (P1) plays at the root, then P2 plays without knowing P1’s action, and if
both played Left P1 plays another action. P1’s reward is number at the reached leaf. Actions
in the restricted game are solid, vs. dashed outside the restricted game. Meta-NE actions are
blue, vs. black not in the meta-NE.

4.4.1 Theoretical Considerations

In this section, we present a theoretical analysis of XDO and compare it with PSRO. Our

first proposition states that, when XDO terminates, the final meta-NE of the restricted game

is an approximate NE of the full game.

Proposition 3. In XDO with an ϵ1-BR oracle, let πr˚ be the final ϵ2-NE in the restricted

game. Then πr˚ is an pϵ1 ` ϵ2q-NE in the full game.

Proof. For each i P t1, 2u, let BRϵ1
i pπr˚

´iq be player i’s ϵ1-BR to πr˚
´i obtained in the last

iteration. By the termination condition

vipπ
r˚

q ě vipBRϵ1
i pπr˚

´iq, π
r˚
´iq ´ ϵ2 (4.2)

ě max
π1
i

vipπ
1
i, π

r˚
´iq ´ ϵ1 ´ ϵ2, (4.3)

where the last inequality follows from BRϵ1
i pπr˚

´iq being an ϵ1-best response to πr˚
´i.

The next two propositions show an exponential gap in the known guarantees for the number
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of iterations in which PSRO and XDO terminate. If each non-terminal infostate allows A

different actions, PSRO is guaranteed to terminate in
ř

i A
|Īi| iterations, where Īi is the

set of non-terminal infostates for player i, while XDO is guaranteed to terminate in
ř

i |Ii|

iterations.

Proposition 4. Normal-form DO terminates in at most
ř

i

ś

siPIi |Aipsiq| iterations.

Proof. In each iteration of DO, at least one player adds a new normal-form pure strategy

to the population. The space of pure strategies for player i has size
ś

siPIi |Aipsiq|, because

each normal-form pure strategy specifies an action at each infostate for that player.

Proposition 5. XDO terminates in at most
ř

i |Ii| iterations.

Proof. Consider an infostate s1
i “ pa0i , o

1
i , . . . , a

t
i, o

t`1
i q for player i as covered in the re-

stricted game if any of player i’s population policies chooses action ati in infostate si “

pa0i , o
1
i , . . . , a

t´1
i , otiq. At each but the final iteration, at least one player i has vipBRipπ

r˚
´iq, π

r˚
´iq ą

vipπ
r˚q ` ϵ. Since πr˚

i is an ϵ-BR to πr˚
´i in the restricted game, the BR BRipπ

r˚
´iq must be

choosing at least some action ai at some non-terminal infostate si that was not previously

chosen by any population policy. Adding this action to the restricted game covers at least

one previously uncovered infostate: all infostates s1
i “ psi, ai, oiq, for any observation oi. All

infostates will therefore be covered in at most
ř

i |Ii| iterations, at which point the next

iteration must terminate.

Tightness of the guarantees. The guarantees in Proposition 4 and Proposition 5 are

tight in the sense that they are achieved in some games, but more nuanced analysis is required

to identify easier cases where these bounds overestimate the complexity of the algorithms.

Both PSRO and XDO often outperform these guarantees and terminate in fewer iterations.

A case in which PSRO expands all pure normal-form strategies of an extensive-form game is

described in the supplementary materials.
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Extended Figure 4.3: A 2-
GMP game with n “ 3 ac-
tions. The chance node se-
lects uniformly at random
which generalized match-
ing pennies game is played.
Both players know which
stage game they play.

XDO can add multiple actions in each iteration. In

practice, XDO often outperforms the guarantee of Proposition

5 because it adds multiple actions in each iteration. Here we

present and analyze a family of games in which XDO terminates

in asymptotically fewer iterations than suggested by the bound

in Proposition 5.

In a generalized matching pennies (GMP) game, both players

simultaneously choose one of n actions. The payoff to player

1 is n ´ 1 if the actions match, or ´1 if they are different. In a

k-GMP game (Figure 4.3), a chance node first selects an index j between 1 and k, and then

the players play the j’th of k identical GMP games. The following proposition provides a

tighter performance bound for XDO in this case, 2n iterations instead of
ř

i |Ii| “ 2kpn ` 1q

(there are kn terminal infostates for each player). For PSRO on k-GMP, no tighter bound

than the 2nk indicated by Proposition 4 is known.

Proposition 6. In k-GMP with n actions, XDO terminates in 2n iterations.

Proof. In a given iteration, consider the restricted game for a single GMP game. If player 2

is allowed an action that player 1 is not, such an action will be player 2’s NE, and player 1’s

BR will add that action. If player 2 is not allowed an action unavailable to player 1, player 2’s

BR will be a new action unavailable to player 1, if one exists. Thus at least one of the players

add a new action in every GMP game in parallel, until both players add all actions.

Size of the restricted game. The number of iterations in each algorithm does not provide

the full picture of their performance, since iterations can require vastly different computation

times. Intuitively, the restricted game in XDO is much larger than in PSRO when both

algorithms have the same population size, because XDO induces an extensive-form restricted
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game with all discovered actions, while PSRO induces a normal-form restricted game with

population policies as actions. However, as both algorithms progress, the XDO restricted game

is bounded in size by the original game, while PSRO can induce a game with exponentially

many actions.

XDO for sparse-support policies. XDO is useful when the policies in the population do

not cover the full original game, because when they do, finding the restricted game meta-NE

is as hard as solving the original game. The motivation behind XDO is that, in games where

the NE policies are supported by few actions in most infostates, XDO has the potential to

quickly find these actions and terminate without expanding the full game.

To analyze this behavior, consider the m-clone GMP game, in which there are mn actions

partitioned into n equal classes. The actions of the two players are considered a match (with

payoff n ´ 1 to player 1) if they belong to the same class. In pk,mq-clone GMP, a chance

node selects among k identical m-clone GMP games. The following proposition states that

in pk,mq-clone GMP with n classes, XDO terminates after adding at most 2n actions for

each player, instead of the full game of kmn actions.

Proposition 7. In pk,mq-clone GMP with n classes, XDO adds at most 2n actions for each

player.

Proof. The proof repeats that of Proposition 6, but considering classes instead of actions,

because it does not matter which member of a class is added. Once at least one member of

each class is added to the restricted game, the meta-NE has full-game exploitability 0, and

XDO terminates. In iterations where a BR for a player does not add a new class, it may

add a new action member of an existing class. In total, 2n actions may be added for each

player.
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PSRO lower bound. Similarly to XDO, PSRO can also outperform the guarantee of

Proposition 4 in certain cases. Generically, however, the linear upper bound on XDO

established by Proposition 5,
ř

i |Ii|, is also a lower bound on the normal-form population

size of pure strategies that is needed to support a NE in PSRO. To show this, consider a

perturbed k-GMP game, in which the payoffs in each GMP game are slightly modified to

induce k distinct NE. The following proposition establishes a linear lower bound for PSRO in

perturbed k-GMP games.

Proposition 8. There exist perturbed k-GMP games with n actions in which PSRO cannot

terminate in fewer than kpn ´ 1q ` 1 iterations.

Proof. For each policy π2 P p∆pnqqk for player 2, consider the perturbed k-GMP game that

gives player 1 payoff 1
π2pj,aq

for matching action a in stage game j. In the NE for this game,

player 2 has policy π2. This implies that the set of policies that are NE of any perturbed

k-GMP game has positive kpn ´ 1q-dimensional volume.

Consider the space of stochastic policies that can be spanned by mixing a specific population

of at most kpn ´ 1q pure strategies. The dimension of this space is at most kpn ´ 1q ´ 1.

When we consider the union of all such spaces for the finitely many possible populations of

this size, this set has zero kpn ´ 1q-dimensional volume.

It follows that there exists a perturbed k-GMP game G, and a neighborhood around player

2’s policy in the NE of G, such that no policy in that neighborhood is spanned by any

population of kpn ´ 1q pure strategies. For sufficiently small ϵ, no ϵ-NE for G can be found

until PSRO adds at least kpn ´ 1q ` 1 pure strategies to its population.
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(a) SDO [15]

(b) XDO

Extended Figure 4.4

4.4.2 Comparison to SDO

To illustrate the difference between the two algorithms, we provide an example run of XDO

(Figure 4.4b) and SDO (Figure 4.4a) on the same game that is presented as an example in

section 4.1.3 in the SDO paper [15].

Like in that work, we represent actions that are in the restricted game by bold arrows. This

example demonstrates how SDO creates smaller restricted games than XDO because it only

considers infostates that can be reached by compatible sequences. In tabular games, SDO

results in a cautious approach that only considers a small subset of infostates in order to

prevent adding suboptimal actions to the restricted game. However, as we describe below,

this will cause obstacles when trying to scale SDO to large games.

Extensive-form pure strategies specify an action at every infostate. In this example we will

refer to extensive-form pure strategies by concatenating the actions the strategy takes in

every infostate. For example, the pure strategy for the circle player in step 1 in our diagram

corresponds to ADFH. Sequence-form pure strategies specify a sequence of actions that must

be internally consistent. For example, tH, A,ADu is a valid sequence-form pure strategy but

tH, B,ADu is not.
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In step 0, both SDO and XDO start with an empty game tree. Let’s assume that the default

strategy for both algorithms is uniform random.

In step 1, both SDO and XDO add the same best responses to the default strategy for both

players. However, SDO adds actual sequences of actions, in particular tH, A,ADu for the

circle player and tH, yu for the box player. Since the AD sequence of actions for the circle

player is not compatible with the y action for the square player, the restricted game is the

game with A as the available action for circle and y as the available action for square. But

since neither AE nor AF are in the sequence population, the restricted game in SDO at this

step terminates in a temporary leaf at that point.

In contrast, XDO adds full extensive form strategies, in this case adding ADFH for the circle

player and y for the square player. Now the restricted game for XDO is as in step 1 in

the diagram. Since XDO adds full extensive form strategies, there is no need to create a

temporary leaf node.

After only one iteration, SDO and XDO result in a different restricted game. This is because

SDO adds sequences of actions (best responses in sequence form) to the population while

XDO adds a pure strategy defined at every infostate (best responses in extensive form). The

SDO restricted game is much smaller than the XDO restricted game because SDO only

considers infostates that can be reached by compatible sequences in the population. There

are three more steps for SDO, which are described in their paper. XDO has only two more

steps, which are described in the figure.

There currently exists one main algorithm that can scale up the double oracle approach

to large games through deep reinforcement learning, which is PSRO. We propose another,

Neural Extensive-Form Double Oracle (NXDO). Similarly extending SDO to large games via

neural networks is one possible direction for future work.
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Algorithm 4 NXDO
1: Input: initial population Π0

2: repeat
3: Define restricted game for Πt via eq. (4.4)
4: Get ϵ-NE policy πr˚ of restricted game via NFSP
5: Find BRipπ

r˚
´iq for i P t1, 2u via DRL

6: Πt`1
i “ Πt

i Y BRipπ
r˚
´iq for i P t1, 2u

4.5 Neural Extensive-Form Double Oracle (NXDO)

Neural Extensive-Form Double Oracle (NXDO) extends XDO to large games through deep

reinforcement learning (DRL). Instead of using an oracle best response, NXDO instead uses

approximate best responses that are trained via any DRL algorithm, such as PPO [95] or

DDQN [106]. Instead of representing the restricted game explicitly as the set of allowed

actions in every infostate, to create its restricted game, NXDO replaces the original game

action space with a discrete set of meta-actions, each corresponding to a population policy to

which the actual action choice is delegated.

Formally, NXDO (Algorithm 4) keeps a population of DRL policies Πt at time t. Each

iteration, a restricted extensive-form game is created and a meta-NE to the restricted game

is computed. The restricted game has meta-actions at every infostate that pick one policy

from the population

@si P Ii Ar
i psiq “ t1, 2, ..., |Πt

i|u. (4.4)

While the action space differs, the restricted game states, observations, and histories remain

the same as in the original game. After each player selects a meta-action that indicates a

population policy, an action is sampled from that population policy and used for the world

state transition. With π1
i , . . . , π

|Πi|

i the population policies for player i, the transition function
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in the restricted game satisfies

T r
ph, ar, w1

q “
ÿ

a

ź

i

π
ari
i psiphq, aiqT ph, a, w1

q. (4.5)

With the restricted game thus defined, an ϵ-meta-NE πr˚ is computed in this restricted game

via a DRL method for finding NE, such as NFSP [45] or DREAM [102]. Approximate BRs

BR1pπr˚
2 q and BR2pπ

r˚
1 q to this meta-NE are computed via a DRL algorithm, such as PPO or

DDQN. These BRs are then added to the population of policies: Πt`1
i “ Πt

i Y BRipπ
r˚
´iq for

i P t1, 2u. Provided that the DRL best responses are sufficiently close to oracle best responses

and the inner-loop solver finds a sufficiently close approximate NE of the restricted game,

NXDO inherits the same convergence properties as XDO. In practice, contemporary DRL

methods lack any guarantee of providing approximate NE or BRs. Nevertheless, we show

experimentally that exploitability can decrease through execution of NXDO faster than it

does for PSRO and NFSP.

Because the original game action space has no influence on the NXDO restricted game action

space, NXDO, like PSRO, is compatible with extremely large and continuous action spaces,

provided that the deep RL BRs can operate in such an action space well. We demonstrate

this capability in our Loss Game experiments, in which NXDO and PSRO use continuous-

action PPO BRs. While no convergence guarantees are known in continuous-action games,

NXDO and PSRO empirically produce meta-Nash strategies that are hard to exploit in our

experiments.

A drawback of meta-actions that delegate actions to population policies is that, as in PSRO,

the number of meta-actions grows linearly with the number of iterations. This can eventually

make the restricted game harder to solve than the original game. In our experiments, however,

NXDO achieves significant improvements in exploitability within a very small number of

iterations, such that the issue of action delegation does not become an obstacle. In discrete

64



action space games where it is tractable, we also consider a variant, NXDO-VA, where the

restricted game is explicitly calculated and defined with valid and invalid original-game

actions in the same way as with tabular XDO, using equation (4.1). Because its restricted

game action space size is at most equal to that of the original game, NXDO-VA does not

suffer from the aforementioned drawback.

4.6 Experiments

4.6.1 Game Descriptions

m-Clone Leduc poker: m-Clone Leduc poker is similar to Leduc poker but with every

action duplicated m times, such that instead of a single call, fold, and bet action there are m

identical call, fold, and bet actions. As the number of cloned actions increases, we expect the

performance of methods based on CFR and FP such as DREAM and NFSP to deteriorate,

while the performance of XDO and PSRO remains largely unchanged because the size of the

restricted games scale with the size of the meta-game population rather than the size of the

action space.

Oshi-Zumo Oshi-Zumo is a zero-sum two-player sequential game where both players try to

move a token to the other player’s side of the board. Both players start with an allotment of

coins and each step simultaneously bet an amount of coins. The player who bets the higher

amount gets to move the token toward the opponent. A player wins if they are able to move

the token off the board on their opponent’s side or if the token is on the opponent’s side

when either no more coins remain or the time horizon is reached. Reward is 1 for wining,

-1 for losing, and 0 for a tie, which can occur when the token is in the middle of the board

when the game ends. We consider a variant with 4 coins, and a board of 3 spaces with a
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time horizon of 6.

Loss Game: The Loss Game is a zero-sum two-player sequential continuous action game in

which agents simultaneously apply bounded adjustments to a real valued vector of parameters

x “ rx1, . . . , xds in order to optimize a fixed loss function’s scalar output L : Rd ÞÑ R . One

agent aims to maximize this output while to other aims to minimize it. Each timestep, agents

observe the current vector of parameter values along with the function’s scalar output value

and provide a bounded continuous action describing an adjustment vector to add to the

current parameters. The sum of both agents’ adjustments is applied and player 1 is rewarded

with the value of the function’s output while player 2 is provided with the negative of this

value. The game lasts 10 steps and the parameters’ adjusted values are preserved after each

step.

We consider a 2D action space variation with the loss function Lpx1, x2q “
ř

j sinpxjq and a

16D action space variation with Lpx1, . . . , x16q “ sinp
ř

j xjq `
ř

j sinpxjq{16. These functions

were chosen to demonstrate games in which it is advantageous to mix between multiple

strategies in many infostates. The 2 and 16 dimensional action spaces where chosen to

represent continuous spaces that, respectively, can and cannot be directly binned into a

tractable amount of discrete actions. We test the binned discrete action version of the 2D

continuous action space Loss Game with both 10 and 100 bins in each of the two dimensions

, totalling 100 and 10,000 actions respectively.

For the tabular experiments, we use XDO with an oracle best response (BR) and CFR` [104]

for the inner-loop meta-NE solver. We compare XDO with PSRO [60] and XFP [46], which

use oracle BRs as well. We also compare with CFR`, and for both CFR` and XFP we

follow the implementations in OpenSpiel [62]. We compare to SDO, using the same oracle

BR and meta-NE solver as XDO. Since CFR`, XFP, SDO, and XDO are deterministic, we

do not plot error bars for these algorithms. For the neural experiments, we use NXDO with
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(a) (b) (c)

Extended Figure 4.5: (a) Exploitability in Leduc poker of XDO vs. PSRO, SDO, and XFP
with oracle BRs throughout their iterations; (b) Exploitability in 2-Clone Leduc poker as
a function of the number of game states visited by XDO, SDO, CFR`, and MCCFR with
external sampling (ES); (c) Exploitability in Oshi-Zumo as a function of the number of game
states visited by XDO, SDO, CFR`, and MCCFR-ES

NFSP [45] as the meta-NE solver and PSRO with FP [17] as the meta-NE solver. NXDO

and PSRO share the same BR configuration, using DDQN [106] for discrete action spaces

and PPO [95] for continuous action spaces. We compare these algorithms on m-Clone Leduc

poker, Oshi-Zumo, and the Loss Game, described in the supplementary materials.

4.6.2 Tabular Experiments with XDO

Finding a normal-form meta-NE can be much less efficient and more exploitable than finding

an extensive-form meta-NE. This means that PSRO will often require many more pure

strategies to achieve a similar level of exploitability to XDO. Figure 4.5a summarizes the

results of running XDO, SDO, XFP, and PSRO with an oracle BR on Leduc poker. Even

after 150 iterations, PSRO remains significantly more exploitable than XDO is at 7 iterations.

XDO achieves exploitability of 0.1 in over 20x fewer iterations than PSRO. In large games

where calculating many approximate BRs via reinforcement learning is expensive, requiring

vastly more iterations can render PSRO infeasible. XFP performs similarly to PSRO in

Leduc, as its average policy is equivalent to uniformly mixing population strategies at the

root of the game. SDO takes more iterations than XDO to achieve low exploitability, because

it adds fewer actions to the restricted game per iteration.
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We compare XDO with SDO, CFR`, and MCCFR [59] in 2-Clone Leduc poker. In Figure

4.5b, we plot the exploitability of these algorithms as a function of the number of game states

visited by the algorithms. Since XFP and PSRO only use BR oracles, we do not include

them in this analysis. Since CFR` updates every infostate every iteration, as we increase the

number of cloned actions, the performance of CFR` will deteriorate. In contrast, XDO will

tend to not add cloned actions, which allows the inner-loop CFR` to expand fewer infostates.

These results for XDO are with a deterministic best response oracle. We found that if XDO

randomly chose a best response instead, then XDO would still outperform CFR`, but not

by as much. The results in Figure 4.5c suggest that on Oshi-Zumo XDO outperforms SDO,

MCCFR, and, to a lesser degree, CFR`. We do not include XDO with MCCFR as the inner

loop solver because it did not perform as well as XDO with CFR`.

Empirical Analysis of XDO Restricted Game Sizes

(a) (b)

Extended Figure 4.6: XDO exploitability compared to CFR`, SDO and MCCFR as a function
of states visited in (a) Leduc poker and (b) 2-Clone Leduc Poker.

XDO outperforms CFR` in games where Nash equilibria require mixing over a small fraction

of actions. For example, XDO performs similarly to CFR` in standard Leduc poker, but

XDO significantly outperforms CFR` in 2-Clone Leduc poker. XDO scales better in this

transition because a restricted game sufficient to achieve a low exploitability can be induced

with only a portion of the game’s actions. Such a restricted game is much smaller in terms

of total game states and thus requires less computation to solve. The number of states in
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2-Clone Leduc poker is roughly 50 times that of standard Leduc poker, but when moving

from standard to 2-Clone Leduc poker, the number of states in the XDO restricted game

increases by a much smaller proportion.

(a) (b) (c)

Extended Figure 4.7: The size, in states, of the restricted game induced by the BR population
in XDO in various games.

In our XDO experiments, the final size (in states) of the restricted game in Leduc Poker is

roughly 85% of the size of the full game. The final size of the restricted game in 2-Clone Leduc

Poker is only approximately 43% that of the full game, so XDO performs proportionally less

computation to solve the restricted game meta-NE than it would take to directly solve the

full-game NE with all actions considered. XDO also outperforms CFR in Oshi Zumo, where

the final size of the restricted game is only half that of the full game.

Empirical Tests on Perturbed k-GMP

Extended Figure 4.8: Exploitability vs wall time hours with XDO, XFP, PSRO, and CFR in
Perturbed k-GMP as the number of subgames rises. XDO and CFR scale well even when
there are many subgames while PSRO becomes unable to reach a low exploitability.
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We run XDO, XFP, PSRO (DO) and CFR on the Perturbed k-GMP games. In perturbed

k-GMP, a chance node randomly selects one of the k stage games and the outcome is observed

by both players. A static perturbation uniformly sampled between p´1.0, 1.0q is added to

every GMP payoff where both players select the same action to create a unique equilibrium

solution for each of the k subgames. We see that as k is increased from 2 to 128, XDO and

CFR exploitability increases but remains relatively low, but PSRO performance relative to

computation time dramatically decreases. For this experiment, we use CFR as the meta-NE

solver for XDO.

Tabular Experiment Details

For calculating tabular BRs, we use an oracle implementation supplied by the OpenSpiel

framework [61].

For tabular PSRO, we use linear programming to solve each meta-NE. To calculate the

empirical payoff matrix, we play 100 games per policy combination.

For CFR`, CFR, MCCFR, and XFP, we use the default implementations and settings

provided by OpenSpiel.

For tabular XDO, we repeatedly improve the ϵ-NE (e.g. perform CFR iterations) for the

restricted game until both of the following conditions are met: a) the exploitability of the

meta-NE in the restricted game is less than ϵ, and b) the exploitability of the meta-NE in the

restricted game is less than the exploitability of the meta-NE in the full game. We initialize

ϵ to be 0.35, and each XDO iteration, we set ϵ to 0.98 ˚ ϵ.

This has two benefits: First, we guarantee that all BRs added to the population are useful, in

that they contain at least some out-of-restricted-game action, and thus expand the restricted

game. Second, if the restricted game already contains the actions necessary for a NE in the
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full game, we simply continue to improve the meta-NE ad infinitum, rather than add a new

BR and restart the meta-NE solver.

For SDO, we use CFR+ as an inner-loop solver, instead of a linear program as used in the

SDO paper [15]. The default pure strategy we use is to choose the first possible action. To

find best-response sequences, we compute a tabular BR in the full game.

Unless otherwise stated, all non-deterministic tabular experiments were run with 3 seeds

each.

4.6.3 Neural Experiments with NXDO

In Figure 4.9a, we compare the exploitability of NXDO and NXDO-VA with PSRO and

NFSP on 20-Clone Leduc poker. DDQN is used to train NXDO and PSRO BRs. Similar

to the tabular experiments, we find that NXDO outperforms both methods. However, we

find that the margin by which NXDO outperforms these methods is smaller than in tabular

experiments. This can be attributed to the large proportion of experience required by NFSP

to solve the restricted game relative to experience spent learning BRs. Training details and

an analysis on the proportion of experience spent in the inner vs outer loop of NXDO are

included in supplementary materials.

We also test NXDO and PSRO on the 2D and 16D continuous-action Loss Game, shown

in Figures 4.9b and 4.9c respectively. PPO is used to train NXDO and PSRO BRs. In the

2D action space game, we compare to NFSP with a binned discrete action space. Because

calculating exact exploitability is intractable for the Loss Game, for each algorithm checkpoint,

we measure approximate exploitability by training a continuous-action PPO best response

against it until saturation and measuring the BR’s final mean reward. NXDO outperforms

NFSP in the 2D game while operating in a continuous action space and outperforms PSRO
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(a) (b) (c)

Extended Figure 4.9: (a) Exploitability in 20-Clone Leduc poker of NXDO, NXDO-VA,
PSRO, and NFSP as a function of episodes gathered; (b and c) Approximate exploitability
as a function of episodes gathered in the continuous-action Loss Game of NXDO, PSRO, and
NFSP (with binned discrete actions).

in the 2D and 16D game which we conjecture is due to more effective use of population

strategies in its restricted game.

Neural Methods on Kuhn and Leduc Poker

(a) (b)

Extended Figure 4.10: NXDO, NXDO-VA, PSRO, and NFSP exploitability vs episodes
collected on Kuhn and Leduc Poker

We test NXDO, NXDO-VA, PSRO, and NFSP on Kuhn and Leduc Poker using the same

hyperparameters as used with 20-Clone Leduc. In these smaller games, NXDO performs less

competitively because the time spent computing the extensive-form meta-NE strategies is

large compared to the amount of time needed to train nearly all pure strategies for Kuhn

and Leduc. NFSP also reaches an initial low exploitability quickly in part due to the small

action-space sizes relative to other games tested.
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Additional Loss Game Experiments

We analyze the effect of different stopping condition schedules for the NFSP meta-NE solver

when training NXDO on the 16-Dimensional Loss Game. In figure 4.12c we compare a variaty

of warm start amounts (the number of initial iterations in which zero time is spent training

the meta-NE) and the coefficient at which we increase the number of episodes spent training

any meta-NE thereafter. The default parameters are a warm start of 5 and a coefficient of 1.5,

thus we spend 5 fixed NXDO iterations with a randomly initialized meta-NE solution, then

train our sixth iteration meta-NE for the starting amount of 1e6 episodes, and then train each

subsequent meta-NE for 1.5x the number of episodes in the previous iteration. Ablations

with other reasonable values considered show that the fine details of such a schedule have

only minor effects on performance in the Loss Game.

4.6.4 Costs and Benefits of Extensive-Form Restricted Games

(a) (b) (c)

Extended Figure 4.11: NXDO exploitability in 20-Clone Leduc (a) and approximate ex-
ploitability in the Loss Game (b and c) as a function of Double Oracle iterations in NXDO
and PSRO.

Shown in figure 4.11, we compare the exploitability of NXDO against that of PSRO in terms

of Double Oracle iterations. NXDO acheives a low exploitability in significantly less iterations

due to mixing population strategies at every infostate in the game rather than just the at root

like is done in PSRO. When both are limited to a small population of behavioral strategies,
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the extensive-form restricted game allows for much more expressive power in solving for a

meta-NE than a normal-form restricted game does.

(a) (b) (c)

Extended Figure 4.12: (a and b) In NXDO tests on the Loss Game, the cumulative amount
of experience in episodes to either train BRs or calculate meta-NE with NFSP as a function
of Double Oracle iterations. After the warm start phase, each NXDO iteration, we multiply
the amount of episodes we spend training NFSP by a coefficient of 1.5. (c) NXDO ablations
on the 16-Dimensional Loss Game. We vary the number of warm start iterations in which we
spend zero time training the NFSP meta-NE solver and the coefficient by which we multiply
the episodes spent training NFSP each iteration after the warm start.

This additional expressive power in the restricted game does come at an increased computa-

tional cost which needs to be taken into account. NXDO is most applicable when the need

to mix population strategies at many infostates outweighs the extra computation needed to

compute the extensive-form restricted game. Figures 4.12a and 4.12b show the cumulative

episodes spent training either BRs or meta-NE vs NXDO iterations. The time spent training

a meta-NE is gradually increased each iteration to trade quickly adding BRs for solving the

meta-NE at a high accuracy.

4.7 Conclusion

PSRO and NXDO are the only existing game-theoretic deep RL methods that can work on

large continuous-action games. In games where the NE must mix in many infostates, but

only a small fraction of all actions are in the support of the NE at each infostate, we expect

XDO and NXDO to outperform PSRO, because PSRO may require a superlinear, or even
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exponential number of pure strategies. We also expect XDO and NXDO to outperform CFR

and NFSP, respectively, on discrete-action games where the NE only needs to mix over a

small fraction of actions. This is because CFR and NFSP scale poorly with the number of

actions in the game, but XDO and NXDO tend to discover a set of relevant actions and

ignore actions that are dominated or redundant. We hypothesize that games with these

properties are prevalent across a number of domains such as large board games, video games,

and robotics applications.

4.8 Computational Costs

Experiments were performed on a shared local computer with 128 CPU-cores, 2 RTX 3090

GPUs, and 256GB of RAM. Due to small network sizes, most neural experiments were

performed without GPU acceleration. Neural experiments on 20-Clone Poker and the Loss

Game used 8 to 16 cores each and took between 2 and 4 days to complete using 10 to 40GB

of RAM. Tabular XDO experiments were run for up to 1 day, using a single core each and

between 1 to 10GB of RAM.

4.9 Experiment Code

Code for tabular experiments can be found at https://github.com/indylab/tabular_xdo

Code for neural experiments can be found at https://github.com/indylab/nxdo
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Chapter 5

Conclusion

In this thesis we introduce three projects related to sequential decision making. The first

combines deep reinforcement learning with search to solve single-agent planning problems.

The second and third projects combine deep reinforcement learning with the game-theoretic

double oracle algorithm to efficiently find approximate Nash equilibria in large games. In

particular, P2SRO parallelizes PSRO while maintaining convergence guarantees and achieves

state-of-the-art performance on Barrage Stratego, and NXDO uses a novel extensive-form

double oracle algorithm to achieve state-of-the-art performance on a continuous-action game.

Progress in the field of optimal sequential decision making will have many real-world applica-

tions. In particular, with more advanced algorithms we will one day be able to automate many

economic activities such as physical labor with robotics and work done on computers with

algorithms. As one example of future related work, we are currently applying DeepCubeA to

optimize multi-agent path-finding for warehouse robots [2, 3]. In future work I am interested

in making reinforcement learning methods more efficient and enabling them to generalize

over a wide range of tasks [109, 67, 63].

Two-player zero-sum games have long served as testbeds for artificial intelligence algorithms.
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Advances in algorithms have achieved landmark results against humans in checkers, chess, go,

and most recently, poker. Additionally, algorithms for two-player zero-sum games have many

applications in areas as diverse as cybersecurity, negotiation, robotics, and business strategy.

However, there still does not exist a general method that can reliably find Nash equilibria in

very large games with potentially continuous action spaces. Such an algorithm would be a

major contribution in this field and is what I will be focusing on in future research.

I am also interested in moving beyond two-player games to games with large numbers of

players. For example, the internet has enabled many new platforms that match supply

and demand through markets. But the design of modern markets is challenging because a

designer needs to learn agent preferences from large datasets while considering the strategic

behavior of those agents. Learning how to make optimal decisions in the presence of other

agents will have many applications in creating markets where humans can better compete

and collaborate with each other and with AI algorithms [76]. I have also done work on

independent reinforcement learning in Markov Potential Games [33] and plan to continue

this line of research.

Finally, I have done work on applications of deep learning in science [4, 36, 6, 5, 75]. I believe

there will continue to be an incredible opportunity to use deep learning to make predictions

from large data sets in science and I am excited to continue to work in this direction.
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