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“There is science, logic, reason; there is thought verified by experience. And then
there is California.”

--Edward Abbey
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ABSTRACT

The aim of this thesis was to improve computational methods for structure

based drug design, particularly for RNA targets. For the first portion, we present

a critical evaluation of various computational drug design algorithms for their

ability to predict experimental binding poses and rank libraries of small molecules

against protein targets. In particular, we characterize the strengths and

weaknesses of the ligand sampling method for the DOCK suite of programs. In

the second portion of the thesis, we apply the lessons learned from protein

targets to the disruption of protein-RNA interactions critical to the life cycle of the

HIV virus. As a class, RNA historically has presented a difficult computational

challenge both due to its highly localized charge and flexibility. Therefore, we

have extended protocols and added new protocols in existing software packages

such as DOCK and AMBER to predict experimental binding poses, once again

validating our results using experimental data. Finally, we apply these protocols

both to develop libraries of small molecules against druggable RNA targets and

to establish a fragment-based library designed to find new scaffolds for RNA.
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"Where the world ceases to be the scene of our personal hopes and wishes,
where we face it as free beings admiring, asking and observing, there we enter
the realm of Art and Science.”

--Albert Einstein

INTRODUCTION

Humans have been looking for ways to understand and treat disease for

Centuries. In the past, doctors would use methods that we consider to be

barbaric to alleviate the suffering of their patients. Now, we understand that most

diseases have a specific molecular basis or are the result of an outside pathogen

disrupting normal biological behavior. We have drug treatments that target the

molecular basis of these diseases with exquisite specificity. However, the reality

of medical science and basic biological research is that the amount of information

We actually know about how the human body works in both the healthy and

diseased state is still a tiny, tiny drop in the bucket of the vastness of biology. As

an example, science is in the midst of revolution in the way it thinks about the

most basic principle of molecular biology.

When I was in high school, I learned the Central Dogma of Molecular

Biology—DNA begets RNA begets proteins—using a model that likened DNA to

the original architectural blueprint, the RNA to a photocopy, and the proteins to

the completed building (Downing PT, 1996). This original model, proposed by

Crick in 1958 (without the photocopier idea obviously), implied two main

Conclusions (Crick FHC, 1958). First, the flow of information in cells goes

"onodirectionally from DNA to proteins and, second, that DNA and proteins are

*main players, whereas RNA simply transports information from the nucleus to



the cytoplasm. Later, in college and then more in-depth in graduate school,

learned that both of these conclusions were not only over-simplified, but basically

incorrect.

In 1975, the Nobel Prize in Medicine was awarded to Drs. David

Baltimore, Renato Dulbecco and Howard Temin for determining that a protein,

later identified and named reverse transcriptase, was capable of transforming

Viral RNA into DNA that could then be incorporated into the host cell genomes

(Baltimore D, 1970; Temin HM and Mizutani S, 1970). In 1986, Nobel Prize

Winner Walter Gilbert proposed the “RNA World” hypothesis, which proposes a

stage in evolution in which all biological processes of cells are governed by RNA

Without the need for DNA or proteins (Gilbert W, 1986). Between the years 2000

and 2001, when I was entering graduate school, the structure of the ribosome

Was solved to atomic resolution, in which it was found that the protein component

of the machinery serves to stabilize the machinery structure, while the RNA

Component performs that actual peptide synthesis reaction through a mechanism

that is still under debate (Ban N et al., 2000; Harms J et al., 2001; Schluenzen F

et al., 2000; Wimberly BT et al., 2000; Yusupov MM et al., 2001).

These data, in conjunction with many others, contradict the models above

and point toward a Central Dogma in which information flows predominantly from

DNA through RNA to proteins, but where functionally important countercurrents

also exist. In addition, these data strongly suggest that RNA is not simply a copy

of DNA. Rather, RNA is a functionally critical part of many portions of the cellular

"*"ycle. As more information about RNA and its involvement in cellular



function, emerge, more interest arises in the possibility of utilizing RNA as a drug

target in diseases that have developed resistance to protein therapies, in

particular the human immunodeficiency virus (HIV).

According to World Health Organization estimates, 38.6 million people are

living with HIV/AIDS worldwide as of the end of 2005, with an estimated 2.8

million people newly infected each year. While the proportion of people living

With HIV/AIDS appears to have stabilized in the 1990s, due both to effective drug

treatment and social programs, the raw number of people living with HIV/AIDS

Continues to increase with the population and the ability of therapies to prolong

life (UNAIDS/WHO, 2006). Historically, HIV has been notoriously difficult to treat.

Drug resistant strains are rapidly generated due to the highly mutable character

of its genome. This results in failure of drug therapy and eventual death of the

patient. If we as a society hope to continue these trends, we need to continue to

Search for new treatments for the disease. One potential solution is to exploit

new RNA targets that are essential to the life cycle of the virus.

The Tat-TAR complex has been identified as an attractive target for the

inhibition of HIV (Hsu MC et al., 1991). In the first stages of HIV replication, the

Tat protein facilitates viral transcription from the promoter region of the provirus

incorporated into the DNA of the host cell. In order to form this interaction, Tat

binds specifically to an RNA hairpin known as trans-activating response element

(TAR) at the 5' end of the newly formed viral transcripts (Calnan BJ et al., 1991).

Once transcription is complete, the viral proteins are produced in the cell, virus

*sembly and budding occur, and progeny virions are released to infect other



cells. The Tat-TAR complex has been found to enhance the overall rate of viral

mRNA production by as much as 100-fold (Calnan BJ et al., 1991; Frankel AD

and Young JA, 1998). It has been shown that disruption of this complex prevents

elongation of the RNA genome by RNA polymerase, reducing viral replication

(Karn J, 1999).

As the experimental interest in RNA as a drug target for HIV and other

diseases has increased, so has the need for computational tools that can be

used to model RNA in similar was to proteins. Traditionally, as a class, RNA

presents a difficult computational challenge as compared to proteins due to its

electrostatic density and flexibility. In my naiveté as a young graduate student, I

interpreted this to mean that using the long history of physics-based methods on

a new system would be relatively simple and had not been done in the past

simply from lack of practical interest. In line with this philosophy, the first several

projects of my graduate career, and thus the first several chapters of my thesis,

deal with the application and optimization of physics-based computational

methods to more traditional systems.

Chapter 1, entitled “Molecular Docking and Structure-based Design," was

Written as a review of the current status of the field of computational structure

based drug design. The various components of molecular docking, including

■ eceptor site identification and characterization, orientation of ligands in the

*ctive site, and scoring of the ligand-receptor interaction, are broadly described.

In addition, for each element of the process, several representative algorithms,

along with their source references, are provided. The chapter will appear in Drug



Discovery Research: New Frontiers in the Post-Genomic Era (John Wiley and

Sons), slated for publication in 2007.

Chapter 2, “Evaluating the High-Throughput Screening Computations,"

clescribes the results of the McMaster University High-Throughput Data-Mining

= no Docking Competition. The purpose of the competition was to perform a blind

e Nyaluation of the ability of computational algorithms to reproduce experimental

WTesults. In total, 32 separate groups participated using a wide variety of

Computational methods, of which four were identified as enriching the test set—a

library of small molecules screened against dihydrofolate reductase—by 15% or

EP'etter and three were identified as making useful comments about the nature of

th-he test set. The chapter also included lessons learned about the nature of this

type of blind evaluation from both the computational and experimental

Exerspectives. The manuscript was published, along with the experimental data

= r^* c several representative computational summaries, in the October 2005 issue

Cºf the Journal of Biomolecular Screening.

Finally, chapter 3, “Development and Validation of a Modular, Extensible

Docking Program: DOCK 5," presents the summary of several graduate

students' work. Version 5 of the DOCK suite of programs was written by Demetri

\houstakas, with help from Scott Pegg, Scott Brozell and me. The program was

OPtimized to predict binding poses for experimentally determined protein-ligand

Complexes using a test compiled by Natasja Brooijmans. In general, it was found

that the sampling algorithm could recreate the correct binding pose with the

optimized parameters. However, in many cases, the scoring function did not



rank the correct pose at the top of the list, suggesting that DOCK is sampling

adequately but that the scoring needs to be improved. The manuscript was

accepted and will be published in the Journal of Computer-Aided Molecular

Design.

Armed with experience in both code development and experimental

Nºr=lidation of protein-ligand interactions, I then refocused my efforts on RNA

targets, particularly to interrupting the Tat-TAR interaction described above.

According to structural studies, the binding interaction of the Tat-TAR complex is

thought to be dominated by a single Tat arginine, which interacts with the bulge

region of the TAR, and is stabilized by additional contacts between the protein

a rh d the phosphates on the RNA backbone (Aboul-ela Fet al., 1995; Puglisi JD et

a 1 - . 1992). Because TAR is located at the beginning of each viral transcript, an

ir-e Haibitor that targets the Tat-TAR interaction should prevent HIV transcription at

th-he earliest stages.

In a series of studies by the James lab, the small molecule

acetylpromazine, was shown to disrupt the Tat-TAR complex. In the first set of

*><periments, a subset of compounds from the Available Chemicals Directory,

filtered for “drug-like" molecules, was screened against the TAR bulge region

Nith DOCK using a modified scoring function. This resulted in several promising

Scaffolds that were then tested experimentally for binding. The acetylpromazine

was shown to interfere with the binding of Tat to TAR in vitro (Lind KE et al.,

2002). In a follow-up study, an NMR structure confirmed that acteylpromazine

interacted specifically with the bulge region of TAR (Du Zet al., 2002). However,



vvhen acetylpromazine was tested for specific interaction with TAR over other

FNA molecules, it was found that acteylpromazine was a promiscuous RNA

binder (Mayer M and James TL, 2004). It was therefore hypothesized that

clerivatives of the acetylpromazine scaffold would serve to both improve binding

vºvith the active site and to increase specificity for TAR over other RNA molecules.

In Chapter 4, “Synthesis and Testing of a Focused Phenothiazine Library

*For Binding to HIV-1 TAR RNA," Peter Madrid and Sabina Gerber synthesized a

library of phenothiazine—the base scaffold of acetylpromazine—derivatives.

This library was then screened against TAR using saturation transfer NMR,

vvhich monitors the shift of ligand peaks upon binding, by Moriz Mayer and Irene

G cmez-Pinto. It was found that binding could be nontrivially enhanced by

several-fold through modifications of the substituents. In addition, several areas

cº-f the molecule were identified that could be optimized in later studies. While

EP irTiding was not enhanced enough for a useful specificity study, it was

ci etermined that some areas of the active site were amenable to larger

substituents while others were not, suggesting that specificity based on the

shape of the inhibitor could potentially be obtained. The study was published in

the September 2006 issue of the journal of Chemistry & Biology.

In response to the acetylpromazine study and anticipating the need to

develop small molecules for other RNA systems, there is a need for

Computational tools that will allow scaffold hopping were required. As stated

above, RNA presents a difficult computational challenge because of its high

charge density and its flexibility. In the remainder of my thesis, I present



rrnethodologies that attempt to address these issues in the hopes of providing

tools for RNA structure-based drug design.

Chapter 5, “Optimization of DOCK for RNA Targets" discusses

Cºptimization of the DOCK suite of programs for the ability of DOCK to reproduce

experimental binding modes for a set of RNA-ligand complexes. As for the

EP rotein test set in Chapter 3, the sampling parameters were optimized to

reproduce experimentally determined binding poses of a test set of RNA-ligand

complexes. In addition, several modifications were made to the flexible ligand

algorithm in response to problems identified in the studies in Chapter 3. With the

Cºptimized parameters, DOCK is able to recreate the experimental binding poses

for 60% of the ligands in the test set with less than seven rotatable bonds, 41%

cf the test set with less than ten rotatable bonds, and 37% of the test set with

I ess than twelve rotatable bonds. In the next stage, we will explore the effect of

rTrì ore advanced methods for modeling solvation, various charge models, and

Nºr= riation protonation states on the docking success rates. I anticipate completing

thº is study and submitting a manuscript in the next few months.

Although the DOCK algorithm is fast, one of its limitations is that only the

Wigand is permitted to be flexible while the receptor remains rigid during the

docking process. This limitation is applied for time constraints, but, for RNA

Systems, restraining the target to one conformation may significantly influence

■ anking a library of small molecules. In Chapter 6. entitled “Steps Toward Fully

Flexible Docking to RNA Targets: Strengths and Weaknesses of Various Force

Fields in Generating Ensembles of RNA Structures," several sampling



algorithms—replica exchange, single temperature molecular dynamics,

rniniCarlo, and Path Exploration with Distance Constraints—were explored for

their ability to reproduce the experimentally determined ensemble of TAR RNA.

This survey points out the strengths in the tested algorithms and also identified

a reas of potential improvement, particularly for the molecular dynamics

s innulations. At this point in the analysis, we have found that all the simulations

senerate ensembles that are on par with the diversity of experimental structures

using RMSD as the criterion. However, more work needs to be done to validate

the sampling techniques using experimental NMR data. Once we are confident

irn the generated ensembles, we will explore the effect of cross-docking to the

cc nformations using a library of known inhibitors and decoys using Saturation

Transfer Difference NMR. I expect to continue work on this project during the

EP eginning of my post doctoral research and to submit the manuscript early in

2 CD O7.

The final chapter of my thesis, “A Fragment-Based Screening Method

Designed for RNA Targets," presents preliminary results for a slightly new spin

Sn the concept of fragment-based libraries, a technique that screens libraries of

structurally minimal functional groups against targets and then connects the hits

\\nto larger scaffolds. In this case, the fragments were selected to have the

Characteristics of known RNA binders, including hydrogen bond donors and

acceptors, aromatic rings, and electron driving groups. Each fragment was then

filtered for reasonable NMR Saturation Transfer Difference spectra and

Connected to a chemically reactive group for easy linking into pieces. Preliminary



results indicated that several of the bits interacted with TAR RNA. At this point,

the chemistry to connect the fragments into scaffolds is being optimized and will

be screened by NMR. Once the screening is complete, both docking and

rrn olecular dynamics simulations will be used to create structures of the bound

complexes. Because the synthesis is being optimized, it is not clear when this

EProject will be completed.

Taken as an entity, this thesis reflects the current status of the field of

Cleveloping drugs to target RNA based on the RNA structure. The majority of the

science, and thus basic guiding knowledge, has been derived from protein

targets. In theory, if we completely understand and have correctly modeled the

p Hysical and chemical principles behind protein-ligand binding, then transferring

th-nese models to RNA should be trivial. However, the reality is that our models for

EP roteins are based on basic assumptions about the underlying character of

EP roteins that are simply not transferable to RNA. Rather, in my opinion, it has

k-ecome increasingly apparent that RNA is an entity unto itself with its own new

Ci iscoveries, its own set of pitfalls. It is my hope that the pages of this thesis—

these naïve fumblings in the dark—will provide more specific insight into areas of

inprovement for the computational studies of RNA drug design.
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ABSTRACT

The discovery of new drugs is a complex process. Computational methods

have proved useful in many aspects. This chapter focuses on “structure-based

drug design" describing strategies which use the receptor structure to identify or

design ligands. These protocols include virtual screening, compound

optimization, and fragment-based design. We describe in a particular aspect of

structure-based design which makes use of molecular docking. We present the

underlying assumptions in this approach and summarize recent tests that

document pragmatic successes of the methodology. Finally, we point to the need

for better treatment of entropic terms and conformational sampling, especially

sampling receptor flexibility.

Keywords: Structure-based; Drug design; Ligand design; Molecular docking;

Drug discovery; Molecular mechanics; Virtual screening

Abbreviations: DHFR, dihydrofolate reductase; GB, Generalized Born; K,

experimental binding affinity, MCSS, Multiple Copy Simultaneous Search; MD,

molecular dynamics; PB, Poisson-Boltzmann; QSAR, quantitative structure

activity relationships; SA, surface area; vaW, van der Waals.
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INTRODUCTION

The discovery of new drugs is a complex process. It generally starts with

the identification of compounds that bind to a target or show efficacy in a simple

screen. Molecules that show good affinity are called “hits." The next step is to

find compounds that have attractive pharmaceutical properties, for example, low

toxicity and sufficient aqueous solubility to be orally active. Such compounds are

often called “leads." Traditionally, “hits" have been found by screening, while

“leads" are developed from “hits" through chemical synthesis. Screening normally

involves large numbers of compounds from natural products, corporate

databases, or organic chemistry companies that can be examined for biological

activity in high-throughput assays. Commercial systems can process a million

tests per day for enzyme targets. The best compounds are moved forward in a

process aimed at modifying their chemical structure to improve potency,

specificity, and in vivo activity while lowering toxicity and side effects. Synthetic

methods include combinatorial chemistry and library synthesis (Figure 1).

Computational methods have proved useful in many aspects of the

discovery process (Alvarez JC, 2004). A variety of strategies are available. If an

active “lead" is known, it is straightforward to query a database for molecules with

similar properties using pharmacophore searches or quantitative structure

activity relationships (QSAR). These methods typically use information available

for the ligand, inhibitor, or substrate rather than the receptor. However, there is

growing interest in mapping out receptor properties—either from known family

relationships with other members of the receptor family or through
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Figure 1: Example flow of drug design process from both experimental and
computational perspectives
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pharmacophore strategies applied directly to the receptor structures (Arnold JR

et al., 2004; Hajduk PJ et al., 2005). This chapter focuses on a set of strategies

in which direct knowledge of the receptor structure is used to identify or design

ligands that possess good steric and chemical complementarity to specific sites

on the target macromolecule. This process is referred to as "structure-based drug

design" (Brooijmans N and Kuntz ID, 2003).

The structure-based drug design paradigm is analogous to experimental

screening. Structures for the receptor or target are obtained either from the

literature or in-house operations. These structures come from crystallography or

NMR experiments, but there is increasing interest in high-quality homology

modeled structures (Chance MR et al., 2004). Computer analogs of ligands are

generated. These families are often called “virtual libraries" and may consist of

compounds from corporate, academic, or commercial holdings (Laird ER and

Blake JF, 2004; Webb TR, 2005). A virtual library might also include molecules

that are not physically available but might be obtained through chemical

synthesis, perhaps using combinatorial chemistry (Jorgensen WL, 2004, Kick EK

et al., 1997). Screening of the virtual library against the target structure involves

some form of positioning the putative ligand in three-dimensional space and

evaluating the intermolecular interactions for that particular geometry. Typically,

the process is an iterative one: the ligand is moved, and the new geometry is

evaluated. This cycle is repeated until some “best scoring" geometry is identified

for the particular ligand under test. Then, the next ligand in the list is chosen, and

the whole procedure begins again. The goal of virtual screening is to identify the

16



best binding candidates from the library for experimental testing. Because the

virtual libraries can be huge—upwards of a billion compounds—this triage

procedure is a critical step.

Once a binding candidate has been found, structure-based design can be

used to optimize binding affinity. For this operation, one starts with a "hit" or

"lead" with a known activity. Often, a structure for the ligand-target complex is

available. There are many computational methods available for evaluating

chemical variants of the “lead" that offer suggestions about the direction for the

next round of synthesis. Ideally, a number of such variants are prepared, and

their properties and structures obtained so that a selection of molecules are

available to take into further biological testing. Optimization methods are typically

much more computationally intensive than other virtual screening approaches.

There has recently been a merging of these two ideas. Virtual libraries

containing 1,000–10,000 molecular fragments (sometimes called “anchors" or

“scaffolds") are used in the initial screening. The most promising are then

expanded using computer synthesis in a combinatorial fashion (Jorgensen WL,

2004, Kick EK et al., 1997; Miranker A and Karplus M, 1991).

In this chapter, we will focus on a particular subset of molecular design

strategies called “docking," in which candidate molecules are matched to

receptor structures and evaluated for chemical and geometric complementarity.

We will not discuss the broad field of quantitative structure-activity relationships

(QSAR) that focus on the chemical structures of ligands alone (Bender A and

Glen RC, 2005).
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MOLECULAR DOCKING

Overview

The basis of molecular docking is the calculation or estimation of the free

energy of binding of a ligand to a specific receptor site in a fixed environment.

The free energy of binding yields, directly, an equilibrium binding constant and,

indirectly, the preferred binding mode of the ligand-receptor complex. There are

important scientific and mathematical issues involved. For example, it is currently

much easier to calculate the energy/enthalpy of interaction than to obtain the free

energy because we lack efficient ways to obtain the entropic contributions.

Second, the interactions of the ligand and receptor with the solvent (water, salts,

and other components) are not easy to quantitate. Third, searching through the

large number of conformations of the receptor and the ligand and their relative

positions are difficult computer science problems. The need to repeat these

calculations for large numbers of putative ligands and many possible targets

requires serious attention to the algorithms. Docking protocols have adopted a

variety of heuristics to make useful calculations with the knowledge that a

complete high-level calculation is not feasible for the systems of biological or

therapeutic interest.

What can we expect from current approaches? The best-case calculations

are accurate to within approximately 0.5 kcal/mol of experimental results, but

these are generally free energy differences obtained using perturbation

techniques on a related family of ligands (Jorgensen WL, 2004). Routine results
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are rarely within 1 kcal/mol of experimental results, and library searches of

diverse chemical types have larger inaccuracies. Work continues on improving

the force fields that model the enthalpic terms (Bernacki Ket al., 2005).

Estimates of entropic contributions are empirical, and adequate sampling of

configurations and conformations search is a complex combinatorial problem.

Consequently, searching large databases for new leads requires protocols that

deal with three specific tasks:

(i) receptor site identification;

(ii) receptor site characterization;

(iii) orientation of the ligand within the site; and

(iv) evaluation of the ligand.

These steps are described in turn in the succeeding sections, and

examples are given.

Receptor site identification

With the sequencing of the human genome and recent advances in

structural techniques, the number of publicly available biomolecular structures

has exploded over the last few years with over 30,000 in the Protein Data Bank

(Berman HM et al., 2000). The two main experimental sources for 3D structures

of biomolecules are X-ray crystallography and high-resolution NMR

spectroscopy. X-ray crystallography provides structures of biomolecules in the

crystalline states, and with the crystallization of the ribosome, the upper limit of

the experiment has been extended to the 1,000 kDa range. NMR spectroscopy
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is limited to approximately 50 kDa, but the method has the advantage of

providing additional information about the dynamics of the structure. As an

alternative, if the structure has not been solved experimentally, computational

techniques such as homology modeling can be used to predict 3D structures. We

next discuss some pros and cons of each of these sources for structure-based

drug design.

For X-ray crystal structures to be sufficiently accurate for drug designing

purposes, a resolution of approximately 2 A, an R-factor below 20%, and an Rites

factor below 30% are preferred. It is important to note that the majority of 3D

crystal structures of biomolecules do not have hydrogens or highly flexible

residues included in the file. The missing atoms must be considered before

structure-based drug design can begin. In addition, crystal packing forces may

locally influence protein conformation, particularly for nucleic acids and surface

active sites.

The result of structure determination with NMR is an ensemble of

structures that agree equally well with experimental data. Although an averaged

structure can be derived, it has been shown that the entire ensemble provides a

more complete description of the system from an experimental perspective

(Staunton D et al., 2003). For structure-based drug design purposes, though,

there are several methods for choosing the appropriate structure, including

selecting the member of the ensemble closest to the average as measured by

some distance metric or cross-docking to all members of the ensemble.

Unfortunately, there is no generally accepted standard of accuracy for NMR
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generated structures. As a rough rule of thumb, a high-resolution NMR structure

should preferably have approximately 20 (distance or dihedral) restraints per

residue (Berman HM and Westbrook JD, 2004).

If no experimental structural information is available for the target

biomolecule, homology modeling can provide structures to guide the search for

novel lead compounds. It should be noted that, depending on the method,

homology modeling yields average errors of 3 A root mean square deviation of

proteins with greater than 50% sequence similarity, with larger errors for

increasing sequence dissimilarity (Nissen P et al., 2000). Nevertheless,

homology modeling has proven to be successful in several cases, including

discoveries of a highly potent DNA methylation inhibitor and a compound that

discriminates between two voltage-gated K+ channels with 20-fold accuracy

(Staunton D et al., 2003).

A number of more general issues associated with the selection and

preparation of a receptor structure should be noted. In many structures, ions are

required for structural or functional purposes. However, modeling this type of

chemistry is often difficult because the formal charge and associated desolvation

energy of ions are extremely complicated to compute accurately. The

protonation states of residues such as histidine, lysine, glutamic acid, or aspartic

acid are highly dependent on the environment in the active site and may even

change in response to the ligand (Hensen C et al., 2004). In particular for crystal

structures, critical water molecules may be present in the active site, and it is

often difficult to predict whether the water can be replaced or should be included
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in the model of the receptor. All these issues can affect the quality of the model

and should be carefully considered.

Receptor site characterization

Once an accurate structure has been determined for the target, ligands

are typically restricted to lie within one geometric region of the macromolecule,

generally known as the “binding site." This region is generally selected because,

upon ligand binding, normal function is altered. A given receptor can have one or

more binding sites, such as the active sites of enzymes, allosteric sites, the

binding or recognition sites of receptors, or even a dimer interface. The exact

location of the binding site may be well known through experiment. However, if

the binding site is not known, automated methods exist to identify potentially

interesting regions.

Experimental data that indicate the binding site is the best source, if

available. Experimentally derived structures of the biomolecule complexed with

the natural substrate or a known inhibitor directly indicate the binding site. The

Protein Data Bank and the Nucleic Acid Data Bank contain a large number of

these types of structures (Berman HM et al., 1992; Berman HM et al., 2000). The

Cambridge Crystallographic Data Centre/Astex has compiled a subset of

biologically relevant protein-ligand complexes identified as being reliable for

structure-based drug design purposes (Nissink JW et al., 2002). If direct

observations are not available, binding regions can be identified through

mutational experiments, such as alanine screening, or other biochemical assays.
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There are cases where binding site information is not available. In these

instances, computational tools can be used to indicate probable binding areas.

We will describe two methods: the first is based upon geometric features, and the

second uses chemical functionality of the receptor surface. For illustration, we

consider SPHGEN from the DOCK suite of programs and the Multiple Copy

Simultaneous Search (MCSS) approach (Ewing TJ et al., 2001; Kuntz ID, 1982;

Meng EC et al., 1992; Miranker A and Karplus M, 1991). In addition, an

interesting statistical characterization has been recently described (Hajduk PJ et

al., 2005).

SPHGEN automatically identifies a target site by computing a set of site

points or sphere centers, which serves to create a negative image of the surface.

The algorithm begins by mapping the geometric features of the receptor surface,

as defined by Lee and Richards, using the dms program (Richards FM, 1977).

Then, spheres of varying radii are analytically generated to touch the molecular

surface at two points, with the sphere center lying along the surface normal and

with no portion of the sphere intersecting with a receptor atom. These

overlapped spheres indicate various surface features, including invaginations

and clefts. A clustering protocol, using radial overlap as a metric, is then used to

indicate potential areas for ligand binding. The largest cluster is generally used

as the binding site, and, once generated, the cluster is used as a template for

possible ligand atom positions.

MCSS identifies binding sites by mapping the chemical properties of the

biomolecular surface. Thousands of copies of specific molecular fragments are
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distributed in the target region of the protein. Then, energy minimization is

performed on the ensemble, creating distinct local minima for each fragment.

This process is repeated on a variety of chemical functionalities until the surface

is adequately described. Although this method does not capture every geometric

detail of the binding site, it does provide a basic pharmacophore that can be used

in later studies (Arnold JR et al., 2004; Miranker A and Karplus M, 1991).

Orientation of the ligand in the target site

There are two basic strategies for exploring the orientational degrees of

freedom for putative ligands. The first uses a search grid for both the translational

space and the euler angle space. This brute-force method is feasible if one is

studying a few ligands in a restricted site. It can be extended to larger libraries if

parallel processing is available (Jorgensen WL, 2004). Alternatively, protocols

have been developed to prescreen orientation space. For example, the DOCK

program uses a geometric pairing algorithm, matching the sphere centers

(described above) with ligand centers (usually ligand atoms). The match criterion

is based on a comparison of inter-sphere and inter-atom distances. Exhaustive or

selective searches can be done over the match matrix. Careful placement of the

spheres is an important step in getting good-quality results. The second type of

method selectively samples all of orientation and conformation space using

search engines. For example, the Metropolis algorithm and simulated annealing

are used in QXP, and the genetic algorithm has been implemented an Autodock

(McMartin C and Bohacek RS, 1997; Morris GM et al., 1998). These algorithms
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have been studied extensively for many applications. Their strengths and

limitations are well understood.

Evaluation of ligand orientations

The many configurations (orientations and conformations) of the ligand need

to be evaluated with a scoring function to identify the energetically most favorable

ligand binding pose. Ideally, the scoring function would calculate the ligand free

energy of binding in aqueous solution (Beveridge DL and Dicapua FM, 1989;

Kollman P, 1993). However, the large computational expense of these

calculations leads to the introduction of scoring functions that calculate a range of

simplifications of the ligand binding free energy.

Scoring functions can be broadly classified into two categories: those

based on first-principles derived molecular mechanics force fields, and those

based on functions fit to empirically derived binding data. For the purposes of

this review, scoring functions that employ quantum mechanics are not

considered as the extreme computational cost of these calculations make them

prohibitive for use during small molecule docking.

Of the first-principles derived scoring functions, the most computationally

efficient are those that approximate AGbind as the molecular mechanics protein

ligand interaction energy. Molecular mechanics treats the molecule as a

collection of atoms governed by a set of classical mechanical potential functions

(Weiner PK and Kollman PA, 1981). Parameters for these potentials are derived

from small molecule experiments and refined to yield correct structural and
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thermodynamic quantities such as bond stretching frequencies or heats of

formation. The primary DOCK energy scoring function approximates the ligand

receptor binding energy using the AMBER molecular mechanics intermolecular

interaction energy, a sum of the Lennard-Jones 6-12 van der Waals (vdW)

potential, and the Coulombic potential, given in equation 1:

Lig Rec A. B. Q;4E =X X |+–4+K+. 1
| T \r, r; Dr. (1)

where i indexes the ligand atoms and jindexes the receptor atoms; A and B are

the vow attractive and dispersive parameters, respectively, q is the partial

charge on the atom; K is the scaling constant that converts electrostatic energy

into kcal/mol; D is the dielectric constant of the medium; and r is the distance

between ligand atom i and receptor atom j (Pearlman DA et al., 1995). This

scoring function is limited by its use of a distance-dependent dielectric screening

function to mediate all charge-charge interactions. This dielectric treatment

assumes that the dielectric value of the solvent is uniform between all charge

pairs.

A class of scoring functions has been developed that utilizes implicit

models of solvation to calculate the electrostatic component of the molecular

mechanics intermolecular interaction energy in a more sophisticated fashion than

the simple Coulombic approach previously described. Both the Generalized

Born (GB) and Poisson-Boltzmann (PB) terms have been combined with an

empirically derived surface area (SA) term to include the energy of desolvating

non-polar atoms, and the resulting GB/SA and PB/SA methods have been
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implemented into molecular dynamics and docking methods (Feig M and Brooks

CL, 2004; Feig M et al., 2004; Honig B and Nicholls A, 1995). While these

functions are more computationally intensive than the Coulombic electrostatic

energy functions, their proper treatment of solvation effects yields more accurate

energy scores, and they are therefore frequently used in a hierarchical fashion to

rescore docked ligand poses. DOCK 5 implements a GB/SA scoring function

that is recommended for use in a rescoring capacity (Zou XQ et al., 1999).

The most computationally intensive class of first-principles derived scoring

functions combine molecular dynamics (Lingham RB et al.) simulations with

irriplicit or explicit solvation to average the interaction energies from a

E oltzmann-weighted ensemble of complex structures, yielding accurate

estimates of the binding free energy that takes into account protein flexibility. The

irrhplicit solvation methods, MM-PB/SA and MM-GB/SA, perform a short, explicit

s Clvent MD simulation from which a set of snapshots of the protein-ligand

*FSrmplex structure are saved (Gohlke H and Case DA, 2004; Wang JM et al.,

2- CO1; Zhou ZG and Madura JD, 2004). These snapshots, representing a

Es –, Itzmann-weighted ensemble of complex structures, are rescored with either

tº Te e PB/SA or GB/SA scoring functions, and the average interaction score of the

S r-e = pshots is taken as the free energy of binding for the ligand. Several research

Sea T ce. ups in academia and industry use these methods in a hierarchical fashion to

'*'s core ligands identified as potential binders (Kollman PA et al., 2000).

The second major class of scoring functions models the binding free

* The rgy as a weighted sum of several different types of interaction energies, with
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and without explicit vow and electrostatic terms. Many of these functions are

Pased upon a comparison of receptor-ligand complexes and experimental

Ex inding data (K). Programs such as AutoDock, FlexX, GOLD, and Glide

i rºmplement a variety of empirically derived energy score functions, including the

~~zell-known ChemScore and PLP functions (Eldridge MD et al., 1997; Friesner

FA et al., 2004; Gehlhaar DK et al., 1995; Halgren TA et al., 2004; Hoffmann D

et al., 1999; Morris GM et al., 1998; Verdonk ML et al., 2003).

LIGAND STRUCTURE GENERATION

To identify virtual screening “hits," databases consisting of three

G imensional structures of putative ligands are searched using the methodology

<described above. How are these structures obtained? In some cases, structures

*>=n be taken directly from a database of experimentally-determined structures,

*R*-s-, the Cambridge Crystallographic Database contains 325,709 small molecule

*-*Tystallographically determined structures as of November 2004. In cases where

F "Ti Iy the two-dimensional information is known, one can create computer

T*= E resentations of the covalent structure using conformation generation

R r-*S grams such as Concord (Tripos), Chemx (Accelrys), Rubicon (Daylight), and

G- *Trnega (OpenEye). These programs provide one or more conformers consistent

\"\rit H the chemical connectivity and general rules of physical organic chemistry.

Sºften, these conformers will be ranked by some energy formula. Finally, some

\’s Tadors make libraries of three-dimensional structures directly available,
i

*Tº si uding the Advanced Chemical Development (www.acdlabs.com), MDL Drug
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Data Report, National Cancer Institute Open Database Compounds

(cactus.nci.nih.gov), Tripos Discovery Research Screening Libraries

(www.tripos.com), InfoChem GmbH database (www.infochem.de), Thomson

Index Chemicus database (scientific.thomson.com), and ZINC

(blaster.docking.org/zinc).

Two strategies have emerged to study flexible ligands. The first, generally

referred to as incremental construction, breaks down the ligand into smaller

EP ieces and then rebuilds it during the docking calculation. One example of this

technique starts with a fragment of the compound (anchor) and then adds atoms

Frn layers during a docking or an optimization cycle. This approach has been

*E=lled "anchor and grow." In the alternate method, conformers for each

*E onpound can be pregenerated, stored in a database and then rigidly docked.

*N-Tolecular dynamics and Monte Carlo techniques offer a combination strategy

N--here the starting point is a single conformation of the ligand that then explores

= Iternatives during the dynamics phase. There have been some tests of the two

=t-rategies, but there is no strong consensus of which is better (Lorber DM and

S. ºnoichet BK, 2005; Moustakas D et al., in press).

Other important issues that influence ligand structure and docking are

*-Thoices of partial charges, tautomer preferences, and pKa values. A new

*R* =tabase (ZINC) that deals with many of these concerns is now available through

**Tº e Shoichet group at UCSF (Irwin JJ and Shoichet BK, 2005).
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DESCRIPTION OF DOCKING PROGRAMS

While we do not have the space to provide descriptions of the many

different approaches to molecular docking, Table 1 summarizes features of

several of the most frequently used programs (Anderson AC, 2003; Murcko MA,

1997). We also present a brief synopsis of DOCK 5, developed at UCSF.

DOCK 5, the current version of the DOCK program, is written in C++ and

EP rovides an object-oriented implementation in which each major component of

the DOCK algorithm is a class with a documented interface, allowing these

C OCK functions to be modified or replaced easily. As a result, it has been

EP ossible to independently validate and optimize the rigid body sampling, the

Tiexible sampling, the energy scoring functions, and our minimizers. DOCK 5

Teatures an energy scoring function based on a molecular mechanics force field,

s clvation corrections using implicit solvent models, integration with the complete

-** - IMBER force field score, rigid body docking, ligand conformational searching,

*R inding pose cluster analysis, and local minimization methods and also includes

s = ºpport for parallel computing using the MPI standard.

TESTS OF DOCKING AND STRUCTURE-BASED DESIGN

Despite well-known methodological weaknesses, structure-based

F =reening using molecular docking has had important successes. Pragmatically,

cil *Ecking has suggested new, non-obvious ligands for multiple targets; these have

E. *E=en subsequently tested and shown to bind experimentally. Hugo Kubinyi, in a
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Ligand Receptor
Sampling Sampling Scorin Solvation

Method Method" || Method” | Function** | Scoring” Reference(s)

| AutoDock | GA SE MM. ED |DDDDs ||...}º,
| (Lorber DM and Shoichet

DOCK 3 CE SE MM PBE, DS BK, 1998; Wei BQ et al.,
2004)

DDD (Ewing TJ et al., 2001;
DOCK 4/5 |C SE MM GB PB Moustakas D et al., in

3.
press; Zou XQ et al., 1999)

LTEUDOCK CE CE MM DDD (Pang YP et al., 2001a)
DTFlexXFlexETTIC SE ED NA (Claussen H et al., 2001)

(Eldridge MD et al., 1997,
-

Friesner RA et al., 2004;
Glide CE + MC TS MM + ED DS Halgren TA et al., 2004;

Sherman Wet al., 2006)
(Jones G et al., 1997,

GOLD GA NA MM + ED | NA Verdonk ML et al., 2003)
DDD (Abagyan R et al., 1994,

1 CM-Dock MC MC MM + ED PBE y DS Totrov M and Abagyan R,
1 1997)

TNMM-PBSA MD MD MM GB, PB (Kollman PA et al., 2000)

L exp TS + MC | MD MM + ED DDD (McMartin C and BohacekRS, 1997)

Table 1. Examples of Commonly Used Structure-based Drug Design Packages
= D Sampling methods are defined as Genetic Algorithm (GA), Conformational
Expansion (CE), Monte Carlo (MC), Molecular Dynamics(Lingham RB et al.),
* r *cremental Construction (IC), Merged Target Structure Ensemble (SE),

Torsional Search (TS)—see Ligand Structure Generation for more information.
E- Y If the package does not accommodate this option, the symbol NA (Not
-*-vailable) is used.
*>> Scoring functions are defined as either empirically derived (ED) or based on
*T*Taolecule mechanics (MM)—see Evaluation of Ligand Orientation for more
* - formation.

** > Additional accuracy can be added to the scoring function using implicit solvent
*T*Taodels. The most commonly used options are Distance Dependent Dielectric
C EDD), Poisson Boltzmann Dielectric (PBE), a parameterized desolvation term

< ES). Generalized Born (GB) and linearized Poisson Boltzmann (PB)—see
*R valuation of Ligand Orientation for more information.
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recent review, describes over 50 macromolecular targets for which ligands have

been discovered using docking-based approaches (see Table 2 for a partial list)

(Kubinyi H, in press). Most of these projects used experimental X-ray structures

to represent the protein. In several cases, homology-modeled structures were

employed (Evers A and Klebe G, 2004a; Schapira Met al., 2003).

In recent work, the structures of known ligands in complex with their

receptors have been predicted by docking, beginning with the structures of the

Frndependent molecules (Figure 2) (Rizzo RC et al., 2000; Rosenfeld RJ et al.,

-> 003). In these studies, where the binding affinity is known but the structure of

th-he complex is not, the docking predictions have been relatively accurate. The

*E==veat to this is that there are many cases where docking mis-predicts

secmetries in retrospective tests. Still, in published cases where the goal was

s enuine prediction, the docked geometry has often turned out to correspond

*E Iosely to the subsequent experimental result.

A more difficult test is comparing the predicted geometries of novel ligands

t HTiat emerge from the docking screens themselves. There are many examples of

s such predictions of ligand and geometry from docking screens against simple

*Tº Thodel cavity sites. These sites are small, completely enclosed by the protein,

*R rhd dominated by one particular type of interaction, such as hydrophobicity, a

R i ngle hydrogen bond acceptor or a single electrostatic interaction. These

* =atures have allowed for multiple predictions of new ligands that are tested

SR->perimentally, often including structure determination (Figure 3)
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■ Representative Lead Follow-Up ComplexTarget Hit Inhibitor ICso | Inhibitor ICso | Structure

-

jºp56 Lck SH2 domain H.N. is \s
(Huang N et al., 2004) 10 uM NR No

NO.

| neurokinin-1 receptor º–KX
(Evers A and Klebe G., Ö 0.25 HM NR NoH 2O0Ab)

| NH,
~ICAR Transformylase * Co 0.15 u■ / NR No| C Li C et al., 2004) sº

2 . I O Ll

T- *—i.
| <checkpoint Kinase 1 A 2)-Br

| < Lyne PD et al., 2004)
-

*O-3 || 011 HM NR No
Hi O o —
| o

| = 1 cºdose reductase z

K I wata Y et al., 2001) n 4.3 uM 0 p.M No|- C.
NH,

| *Trinatriptase º
KEnyedy IJ et al., 2001) *c. 0.92 uM 0 p.M No--~~~

º
| cl-2 10.4 u■ /M NR N.4 pl O| <=~ |J et al., 2001) • C •

| O= <lenovirus protease O.N NO,
| < Fang YP et al., 2001b) CTC 3.1 mM NR NoH No. No,

o

*T*E=tinoic acid receptor O| <=: Met al., 2001) ..º.º. 2 uM NR Nos

*--arbonic anhydrase II *s-NH.=rbonic anhydrase k Ssº
<<=runeberg Set al., 2001) tº *. & Jºo 0.0008 uM NR Yes

N Nsº
*-* PRTase on-sº No,| K =reymann DM et al., 2000) CTC 2.2 pm NR No

No. No,

Sº i hydro-dipicolinate º,
O| <+: AM et al., 2001) º lºo 7.2 pm NR Noo c.

*T=ble 2. Recent Examples of Novel Inhibitor Discovery Using Molecular Docking



Figure 2: Predicted complexes versus X-ray crystallographic structures that were
subsequently determined

A) Predicted (carbons in gray) and experimental (green) structures for sustiva in
HIV reverse transcriptase (Rizzo RC et al., 2000; Rosenfeld RJ et al., 2003)
B) Predicted (magenta) and experimental (white carbon atoms) structures of

2,3,4-trimethylthizole in the W191G cavity of cytochrome c peroxidase. (Rizzo
RC et al., 2000; Rosenfeld RJ et al., 2003)

C) Predicted (green) and experimental structure (carbons in gray) of an HIV
protease inhibitor (ligands with thick bonds, enzyme residues with thin bonds)
(Brik A et al., 2005; Brik A et al., 2003); courtesy of Art Olson, TSR
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Figure 3: Docking predicted ligands from virtual screening against simple cavity
sites.

A. The docked prediction (carbons in green) superposed on the crystallographic
result (carbons in cyan). The surface of the L99A/M1020 cavity of T4 lysozyme
(yellow) is cut away to reveal the complex. i. phenol; ii. chlorophenol; iii.
fluoroaniline; iv. methylpyrrole; v. difluorophenol
B. The docked prediction (carbons in green) superposed on the crystallographic
result (carbons in yellow) in the W191G cavity of cytochrome c peroxidase, i.
thiophene-amidine; ii. diaminopyridine; iii. 2-amino-5-methylpyridine; iv. 2
amino-4-methylpyridine; v. diaminopyrimidine; vi. hydroxymethyl-imidazole; vii.
3-methyl-n-methylpyridine; iix. 4-hydroxymethly-pyridine, ix. aminomethyl
cyclopentane; x. aminomethyl-benzene, xi, aminomethyl-furan
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(Brenk R et al., 2006; Graves AP et al., 2005; Wei BQ et al., 2002; Wei BQ et al.,

2004). Thus, X-ray crystal structures have been determined for about 25 ligands

bound to three different cavities; in every case, the docking prediction

corresponds closely to the X-ray crystallographic result. These results suggest

that current docking algorithms are adequate to capture first-order determinants

of binding fidelity (Figure 4) (Gradler U et al., 2001; Gruneberg Set al., 2002;

Powers RA and Shoichet BK, 2002; Wei BQ et al., 2002).

How does performance in simple sites translate into larger, more drug-like

sites? The consensus of many retrospective and prospective docking screens is

that the ability to predict ligands and their geometries diminishes considerably in

biology-relevant targets. In most cases, this failure reflects the increased

complexity of the binding sites and the greater opportunities to find decoy ligand

geometries. Nevertheless, there are examples of successful ligand prediction

followed by structural determination, and in these cases the docking prediction is

often close to the experimental result (Figure 4) (Gradler U et al., 2001;

Gruneberg Set al., 2002; Powers RA and Shoichet BK, 2002; Wei BQ et al.,

2002). These studies suggest that when the method does correctly predict a

new ligand, even for a complicated, drug-like binding site, it does so for the right

■ easons.

An important question is whether structure-based screening is worth the

effort, assuming groups have access to high-throughput screening for ligand

discovery. The two types of screens have been compared only a few times
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Figure 4: Predicted vs. experimental structures from virtual screening.
A) The docked (carbons in orange) vs. the crystallographic structure of the 4

aminophthalhydrazide bound to trNA guanine transglycosylase (Gradler U et al.,
2001)

B) The docked (carbons in green) versus the crystallographic structure (carbons
in orange) of 3-((4-chloroanilino)-sulfonyl)-thiophene-2-carboxylate bound to 3
lactamase (enzyme carbons in gray) (Powers RA et al., 2002)
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Number Hits With Hits With Rule of five Hit
Technique compounds tested IC50 < 100 HM ICso < 10 uM compliant hits” Rate"

HTS 400,000 85 6 23 0.021%

Docking 365 127 18 73 34.8%

Table 3. Hit rates and drug-like properties for inhibitors discovered with high
throughput and virtual screening against the enzyme PTP-1B (Doman TN et al.,
2002)

a) Number of 100 p.M or better inhibitors that passed all four "rule of five" criteria
(Doman TN et al., 1996; Paiva AM et al., 2001).
b) The number of compounds experimentally tested divided by the number with
IC50 values of 100 HM or less.
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publicly, though rather more in unpublished industrial work. In the few published

studies, the virtual screens had "hit rates" 10- to 1,700-fold higher than the

empirical screens (Table 3) (Doman TN et al., 2002; Kick EK et al., 1997, Oshiro

C et al., 2004; Paiva AM et al., 2001; Wyss PC et al., 2003). In the case with the

best hit-rate enhancement, that of the diabetes-associated enzyme PTP-1B, the

comparison was an imperfect one. Here, different libraries were targeted by the

virtual and high-throughput screen, and a slightly different assay was used. In

very recent work, Eric Brown and colleagues at McMaster University challenged

the virtual screening community to predict the affinities of 50,000 molecules,

none of which had been tested before but which were about to be tested in a

high-throughput screen against dihydrofolate reductase (DHFR). In this

experiment, the docking and HTS libraries were precisely the same, as were the

experimental conditions. One of the startling results of this experiment was the

very small number of hits to emerge from the screen. Indeed, whereas several

groups were able to enrich putative inhibitors among their high-scoring

molecules, the experimental group eventually concluded that they had no reliable

hits at all (Elowe NH et al., 2005; Lang PT et al., 2005). Intriguingly, several of

the computational groups were able to indicate the lack of binders as part of their

predictions (Brenk Ret al., 2005). Whereas the lack of experimental hits

prevents definitive conclusions from this study, what does seem clear is that

there is room for more of these comparative studies and “competitions."
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CONCLUSIONS AND FUTURE DIRECTIONS

We have described the general steps involved in docking as well as

typical algorithms for addressing each stage of the methodology. We have also

listed examples in which prepackaged programs have been successfully used to

discover novel inhibitors of a wide range of medically relevant applications. In

the future, these methods will become progressively more integrated in the drug

design process.

However, there are still several components of docking that need

improvement. The two most-debated open questions in the field involve

improving the scoring functions and developing algorithms for receptor flexibility.

For scoring functions, research focuses on improving the treatment of solvent

and the effects of entropy loss upon binding. Most docking approaches currently

include drastic approximations of both of these properties, which have shown

improvements over older methods. However, it is necessary to develop new

schemes that treat these issues more accurately while preserving the speed of

the calculation. Configurational entropy contributions are also difficult to

calculate. Techniques that use molecular dynamics simulations to generate

ensembles of ligand positions that are then rescored with high-accuracy scoring

functions generate very accurate free energies of binding; however, they are

computationally expensive (Kollman PA et al., 2000). It will be necessary to

develop sampling techniques able to generate Boltzmann-weighted ensembles of

ligand poses without requiring the use of expensive molecular dynamics

calculations. Similarly, for receptor flexibility, many prepackaged programs have
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recently begun to develop new algorithms that allow for some measure of

induced fit in the binding site. Several of these methods show great promise and

will be further perfected with time, allowing for more and more structural

rearrangement.
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“The strongest arguments prove nothing so long as the conclusions are not
verified by experience. Experimental science is the queen of sciences and the
goal of all speculation."

--Roger Bacon
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ABSTRACT

The judges evaluated the submissions for the McMaster University High

Throughput Data-Mining and Docking Competition based on 3 criteria:

identification of active compounds, percent enrichment, and overviewof the

competition. Using these metrics, 4 of the participating groups found meaningful

enrichment, and 3 groups made perceptive comments about the general nature

of the competition.

Keywords: high-throughput screening, docking, QSAR/MS, DHFR, judges'

review
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INTRODUCTION

The stated objective of the McMaster University High-Throughput Data

Mining and Docking Competition was for computational chemists and data

analysts to predict the results of a high-throughput screening (HTS) experiment.

The collected predictions were to then enable assessment of the utility of

computational approaches to identify compounds for follow-on screening. The

protocol called for a single target, Escherichia coli dihydrofolate reductase

(DHFR), and 2 small-molecule libraries to be screened: a training set whose

results would be given to the investigators and a test set that would be predicted

blind. The computational groups were asked to rank-order test set compounds or

otherwise indicate those compounds thought to be active.

Blind tests, in which investigators are asked to predict an unknown

outcome, have a long history in science and play an important role in the

advancement of methods. They are more powerful than a posteriori

rationalization because of their potential to expose random and systematic errors

in both computations and experiments. Such initiatives are especially useful if

they provide a forum for the evaluation and comparison of different types of

computational approaches.

DHFR catalyzes the NADPH-dependent reduction of 7,8-dihydrofolate

(DHF)into 5,6,7,8 tetrahydrofolate (THF).Because THF is essential for the

biosynthesis of purines, pyrimidines, and several amino acids, DHFR is an

established drug target for the treatment of bacterial infections, cancer, and

malaria (Anderson AC, 2005; Hitchings GH and Smith SL, 1980; Huennekens
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FM, 1994). In previous work, Zolli-Juran et al.(Zolli-Juran M et al., 2003)

identified 32 hit compounds—12 of which were found to be competitive

inhibitors—out of a diverse library of 50,000. For the contest, the participants

were given a 3-dimensional structure for each compound in this library (training

set) along with the measured levels of inhibition. They were free to use these

data to validate their methods or to develop predictive models of DHFR inhibition.

Each group was also given coordinates for a second, chemically diverse library

(test set), but the experimental results were withheld. Once the competitors

submitted their results and the judges completed their evaluation, the measured

levels of inhibition for the test set were released (Figure 1) (Elowe NH et al.,

2005).

The design of this competition has some similarity to the Critical

Assessment of Techniques for Protein Structure Prediction (CASP) competition,

a biennial effort in which competitors predict the 3-dimensional structures of

proteins from their amino acid sequences (Proteins, 1995; Proteins, 1997;

Proteins, 1999; Proteins, 2001; Proteins, 2003a). Here also, the experimental

structures are withheld until after the entries are submitted, and predictions are

judged using a variety of structure-based metrics. A protein-protein docking

competition, Critical Assessment of Predicted Interactions (CAPRI), in which

participants are asked to predict the mode of association of 2 proteins based on

their 3-dimensional structures, has also been established (Proteins, 2002;

Proteins, 2003b), Competitions such as CASP and CAPRI have had significant

impacts on their fields by setting standards that allow direct comparison of.
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Figure 1. Timeline and major events in the McMaster University High
Throughput Data-Mining and Docking Competition.
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different computational methodologies. In the spirit of these efforts, it was our

hope that a well designed screening contest would illuminate and perhaps

improve the computational and experimental aspects of HTS technology

EVALUATING THE ENTRIES

There was considerable interest in the computational community, yielding

a total of 32 independent submissions spanning a wide variety of approaches.

The methods can generally be classified as follows: quantitative structure-activity

relationship—based (QSAR), molecular similarity–based (MS), or target structure—

based (docking) approaches. QSAR and MS methods compare physicochemical

properties and structural features of known active and inactive compounds to

predict the activities of novel molecules. Docking methods predict 3-dimensional

structures of target-ligand complexes and employ scoring functions that capture

various physicochemical interactions such as electrostatics to rank the docked

compounds and identify potentially active ones. Of the submissions, about 50%

used only QSAR or MS techniques, 10% used only docking methods,

and 40%used some combination of both.

The basic task of the judges was to evaluate the performance of each of

the computational predictions on the test set compounds. However, after

obtaining the test set screening data and the submissions, 3 complications

emerged. First, although 96 test set compounds were considered active in the

primary screen (defined as 75% or less residual enzymatic activity for the

average of the replicates), including several compounds that showed partial-dose
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response, follow-up experiments failed to confirm that any of these compounds

were competitive inhibitors, suggesting that all these putative hits might function

by different mechanisms such as allosteric binding. Also, as noted in the

accompanying experimental article, preliminary data indicated that at least some

of the test set inhibitors were nonspecific aggregators (Brenk R. et al., 2005).

However, because none of the training set and only a small subset of the test set

compounds have been evaluated, we could not incorporate this information into

the judging. Finally, some of the computational groups ranked the entire library,

whereas others only submitted their predicted actives, making sophisticated data

analysis unproductive.

The judges decided to use a simple enrichment test based on the

predicted and reported inhibition levels. The 96 “active" test set compounds were

used to determine relative enrichment values. Each group was evaluated for the

ability to correctly identify actives in the top 1% (500 compounds) and the top 5%

(2500 compounds) of the ranked list (Table 1). Although more sophisticated

evaluation schemes could have been applied, the absence of confirmed

competitive inhibitors in the test set, as well as the variability of the submissions,

made such refinement impractical.

Interestingly, in addition to ranking compounds, several of the entrants

commented on what they perceived as major differences between the training set

and the test set. Specifically, these groups noted either that the 2 libraries

showed significant chemical differences, or they predicted that the test set would
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Group” # Submitted”. Top 1%. Top 5%
1 50,000 1 6

495 0 0
3 22 O 0
4 50 1 1
5 2000 1 3
6 127 0 0
7 50,000 1 7
8 150 0 0
9 20 0 0

10 200 0 O
11 30 0 0
12 77 O 0
13 59 O 0
14 294 0 0
15 46,901 0 4
16 344 0 0
17 10 O 0
18 21 0 O
19 105 0 O
20 50,000 0 1
21 59 0 0
22 44 O 0
23 6 1 1
24 40 0 O
25 28 0 O
26 21 0 0
27 121 O 0
28 601 2 2
29 46,720 2 13
30 439 1 1
31 26 0 0
32 1000 0 0

Table 1: Number of Active Compounds Identified in Each Group's Ranked List
Actives are defined as 75% or less residual enzymatic activity for the average of
the replicates. Using this criterion, the hit rate for the test set of compounds was
0.19%.

a) The judges were blinded throughout the competition. These numbers served
only to identify the groups and have no relation to either the performance in the
competition or the classification of the methods.
b) If group submitted a larger list, only the top 2500 ranked compounds were
used in the evaluation.

c) Actives for the top 1% (500 compounds) of the submitted ranked test set.
d) Actives for the top 5% (2500 compounds) of the submitted ranked test set.
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perform worse in the experimental screen than the training set. We feel these

groups deserve special recognition because they considered the overall

experiment and reached conclusions that would have had a substantial impact in

a drug discovery setting

IMPLICATIONS FOR EXPERIMENTAL DESIGN

Because this competition was aimed at assessing the utility of various

computational methods, the optimal experimental data would include

concentration data (ideally, Kis) and experimental structures of representative

protein-ligand complexes. Prediction of actual binding affinities and, for docking,

of the binding geometries would be more stringent measures of computational

methods. Although this level of effort is often expended for structure-based

design projects in industry, it is impractical for early stage screening involving

large libraries. Nevertheless, because it is desirable that experimental screening

data are as accurate as possible, the basic assays need to show statistical

reproducibility with low standard deviations. This level of data would also

facilitate analysis of the false-positive and false-negative rates in the

computational predictions. Finally, in analyzing the experimental data for this

particular screen, the definition of “active" compounds was statistically different

for the test set as compared to the training set because the experimental values

had a different distribution. To be fair to the competitors, the cutoff between

“active" and “inactive" should have remained constant regardless of the

composition of the library.
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IMPLICATIONS FOR COMPUTATIONAL METHODS

In general, no group predicted more than 15% of the apparent inhibitors in

the test set, and the best group showed a nominal enrichment of only 2-fold. A

contributing factor to such low success rates may have been the decision to

design the test set library to be structurally divergent from the training set library.

In particular, the difference between the two may have presented a significant

problem for QSAR and MS methods because these approaches rely on building

predictive models from training set data that are transferable. An analogy would

be if CASP offered a training set of proteins from a limited number of folding

classes and a test set consisting only of proteins not in those classes.

Of course, another major complication was that the test set contained very

few, if any, competitive DHFR inhibitors. However, in this case, a desirable

computational result would have been the prediction of “no inhibitors" in the test

set. In addition, we noted that many of the computational groups either did not

consider or had no way to judge the absolute level of their scores, and thus they

reported only the rank order. Extra credit was given to the 3 groups that noted

the qualitative difference between the training and test sets. However, we

suspect that an implicit assumption was made that there would be well

characterized inhibitors in the test set, which may also have influenced the

reporting process. It is important to note that a screen that finds no useful

inhibitors is often encountered in drug discovery programs, and the ability to

make reliable negative predictions would have real utility in the design of primary
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screens. Regardless, in the context of blind predictions, the screening data

situation was less than ideal.

RECOMMENDATIONS FOR FUTURE COMPETITIONS

We note that the choice of any specific target, library, or experimental

design will affect the outcome of the overall contest. However, for competitions of

this type to be useful to the community, it should address recognized needs. As

stated above, this first experience brought to light several important issues. For

example, the lack of competitive inhibitors made it extremely difficult to evaluate

the predictive ability of the different methods. Prescreening a library of 100,000

compounds and then using it to create training and test sets based on equal

distributions of experimental data and chemical properties would resolve this

issue and also remove the bias against QSAR- and MS-type methods. This

observation also points to the need for methods to identify those compounds for

which a QSAR or MS model can be applied and for those that lie beyond the

scope of the original training set, potentially through similarity-based methods, as

suggested by Sheridan et al (Sheridan RP et al., 2004).

In addition to the small-molecule libraries, another area of improvement

would be expanding the number and variety of targets screened. By presenting

at least 2 unrelated targets and evaluating predictions based on both sets of

rankings, any bias introduced by the characteristics of a particular binding site

(i.e., hydrophobic, polar, highly charged, critical hydrogen bond, etc.) can be

reduced. To further challenge the capabilities of the prediction methods, it would
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also be useful to present 2 targets from the same protein family. This type of test

would make it possible to evaluate the ability of the computational methods to

discriminate between selective inhibitors. Conversely, it may be useful to present

systems in which the target structure is unknown, but could perhaps be modeled,

to test the ability of docking algorithms to deal with this equally real type of

screening situation.

CONCLUSIONS

Although unintentional, this event has revealed 2 major areas for

improvements in the field of computational prediction. First, the aggregation

phenomenon manifests itself as false positives in the experimental screen.(Brenk

Ret al.) Computational procedures that could predict this property de novo

would be extremely useful in culling out these types of molecules from databases

before screening begins. Second, the experimental result that fails to find

competitive inhibitors is one that occurs frequently in real-life screens.

Computational methods that can move beyond ranking actives to predicting

whether actives even exist would be of great utility.
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ABSTRACT

We report on the development and validation of a new version of DOCK.

The algorithm has been rewritten in a modular format, which allows for easy

implementation of new scoring functions, sampling methods and analysis tools.

We validated the sampling algorithm with a test set of 114 protein-ligand

complexes. Using an optimized parameter set, we are able to reproduce the

crystal ligand pose to within 2A of the crystal structure for 79% of the test cases

using our rigid ligand docking algorithm with an average run time of 1 minute per

complex and for 72% of the test cases using our flexible ligand docking algorithm

with an average run time of 5 minutes per complex. Finally, we perform an

analysis of the docking failures in the test set and determine that the sampling

algorithm is generally sufficient for the binding pose prediction problem for up to

7 rotatable bonds; i.e. 99% of the rigid ligand docking cases and 95% of the

flexible ligand docking cases are sampled successfully. We point out that

success rates could be improved through more advanced modeling of the

receptor prior to docking and through improvement of the force field parameters,

particularly for metal-based cofactors.

Keywords: automated docking, scoring functions, structure-based drug design,

flexible docking, binding mode prediction, incremental construction, validation
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INTRODUCTION

Transient non-covalent interactions are critical for biological processes.

The sequencing of a variety of genomes and the development of proteomics

techniques have enabled scientists to study these interactions on the widest

scales (Kopec KK et al., 2005). Advances in X-ray crystallography, nuclear

magnetic resonance spectroscopy, and other experimental structure techniques

provide the ability to study these interactions at an atomic level of detail

(Congreve M et al., 2005). One important application of these advances is the

design of small molecules that interact with cellular processes to modify

biological activity and treat disease.

The drug discovery process typically requires between 10-15 years from

early discovery until FDA approval (Kraljevic Set al., 2004). Computational

tools—such as virtual screening, homology modeling and cheminformatics—are

applied both to facilitate various stages of research and to create models that

explain experimental data (Hillisch A et al., 2004; Posner BA, 2005; Schnecke V

and Bostrom J, 2006). Molecular docking, which can broadly be defined as the

prediction of the orientation of two molecules with respect to one another, is a

computational technique that has been successfully used in both of these

capacities (Alvarez JC, 2004). In drug design applications, one molecule is

typically a protein or nucleic acid drug target--the receptor—and the other is a

potential ligand. In these applications, docking is used to identify novel ligands

that interact with a biomolecular target and to predict the geometric position

(binding mode) of ligands with respect to the target of interest.
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DOCK Background

DOCK is one example of a family of molecular docking packages

available, which includes Glide, FlexX, and GOLD (Table 1) (Friesner RA et al.,

2004; Halgren TA et al., 2004, Kramer B et al., 1999; Verdonk ML et al., 2003).

Each of these programs consists of two key parts: a search algorithm and a

scoring function. The search algorithm samples both the relative orientations of

the two objects as well as their conformations. It must be thorough enough to

ensure adequate coverage of the binding free energy landscape in order to find

the global minimum of the scoring function. The scoring function ranks the

various geometries generated by the search algorithm, proposing the top-scoring

pose as the global minimum. It must rapidly evaluate receptor-ligand complex

stability with sufficient accuracy such that the global minimum of the scoring

function agrees with experimental data.

The number of degrees of freedom in receptor-ligand interactions is very large,

and several approximations must be made to ensure that the docking problem is

tractable. Many different approaches, ranging from freezing non-essential

motions to the use of preferred conformations, have been developed to reduce

the number of degrees of freedom sampled (Kitchen DB et al., 2004). In the

DOCK algorithm, for example, the receptor is considered to be conformationally

rigid, requiring only the ligand conformational, translational and rotational

degrees of freedom to be sampled during complex formation. This assumption is

reasonable in docking applications in which either the receptor conformation

does not change dramatically upon ligand binding or in which the aim is to

63



Ligand Receptor
Sampling | Sampling Scoring Solvation

Method Method” | Method” | Function” Scoring”
DOCK 4/5 |C SE MM DDD, GB, PB
FlexX/FlexE ||C SE ED NA
Glide CE + MC | TS MM + ED | DS
GOLD GA GA MM + ED NA

Table 1: Summary of scoring functions and sampling algorithms for commonly
used docking programs. (a) Sampling methods are defined as Genetic
Algorithm (GA), Conformational Expansion (CE), Monte Carlo(Smith GM et al.),
Incremental Construction (IC), Merged Target Structure Ensemble (SE),
Torsional Search (TS). (b) Scoring functions are defined as either empirically
derived (Hillisch A et al.) or based on molecule mechanics(Case DA et al.). (c) If

the package does not accommodate this option, the symbol NA (Not Available) is

used. (d) Additional accuracy can be added to the scoring function using implicit

solvent models. The most commonly used options are Distance Dependent

Dielectric (DDD), a parameterized desolvation term(Richards FM), Generalized

Born (GB) and linearized Poisson Boltzmann (PB).
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stabilize a particular receptor conformation.

In order to guide the search for ligand orientations with respect to the

receptor, a negative image of the active site volume is created by placing

spheres on the solvent accessible surface area of the receptor, thus restricting

the ligand orientational sampling to the most relevant region on the surface of the

receptor (Shoichet BK et al., 1992). To sample the internal degrees of freedom

of the ligand, DOCK uses the incremental construction algorithm, anchor-and

grow, which separates the ligand flexibility into two steps (Ewing TJA and Kuntz

ID, 1997; Leach AR and Kuntz ID, 1992), (Figure 1). First, the largest rigid

substructure of the ligand (anchor) is identified and rigidly oriented in the active

site by matching its heavy atoms centers to the receptor sphere centers

(orientation). The anchor orientations are evaluated and optimized using the

scoring function and the energy minimizer. The orientations are then ranked

according to their score, spatially clustered by heavy atom root mean squared

deviation (RMSD), and prioritized (pruning). Next, the remaining flexible portion

of the ligand is built onto the best anchor orientations within the context of the

receptor (grow). It is assumed that the shape of the binding site will help restrict

the sampling of ligand conformations to those that are most relevant for the

receptor geometry.

In order to evaluate a large number of ligand poses in a reasonable

amount of time, approximate scoring functions must be used. Once again,

numerous solutions to this problem have been proposed, including a variety of

empirical and physics-based terms (Kitchen DB et al., 2004). DOCK uses an
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Figure 1. The "anchor and grow"
conformational search algorithm.
The algorithm performs the following
steps: (1) DOCK perceives the
molecule's rotatable bonds, which it

uses to identify an anchor segment
and overlapping rigid layer

segments. (2) Rigid docking is used
to generate multiple poses of the
anchor within the receptor. (3) The

first layer atoms are added to each
anchor pose, and multiple

conformations of the layer 1 atoms

are generated. An energy score
within the context of the receptor is

computed for each conformation.
(4) The partially grown
conformations are ranked by their
score and are spatially clustered.

The least energetically favorable
and spatially diverse conformations
are discarded. (5) The next rigid
layer is added to each remaining
conformation, generating a new set
of conformations. (6) If all layers
have been added, the set of

completely grown conformations
and Orientations is returned
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energy scoring function based on the AMBER molecular mechanics force field

(Ewing TJA and Kuntz ID, 1997). Only the interactions between the ligand and

protein are considered, leaving only intermolecular van der Waals (VDW) and

electrostatic components in the function. Since the receptor is considered to be

rigid, the receptor contribution to the potential energy can be pre-calculated and

stored on a grid (Meng EC et al., 1992). These approximations enable the

program to evaluate large libraries of small molecules against a receptor in a

reasonable period of time.

This paper describes a new version of the DOCK program and explores

the critical variables that control its ability to find correct binding modes in a suite

of test problems. Our motivation is to provide a modular docking package that

permits the easy development of new scoring functions, search algorithms, and

analysis tools. Thus, each functional unit of the DOCK algorithm was

implemented as a self-contained and portable module that interacts with the user

through a well-defined interface (Figure 2). The object-oriented language C++

was chosen to allow each component of the DOCK algorithm to be implemented

as a class, which encapsulates both the data structures and functions (Lischner

R, 2003). DOCK5 incorporates several new routines, including parallelization of

the algorithm through an external library, modification of the ligand structural

class to enable greater user control over sampling, and clustering of the final

results by root mean square deviation. The implications of these additions will be

discussed in this paper. Additional scoring functions and alternate sampling
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File I/O

DOCK Orientation Conformation
Molecule Search Search

| Anchor & Grow | Clustering

Analysis

MasterAMBER
Force Field

Master Scoring
Function Optimizer

Grid Bump Filter D C Simplex Minimizer D–

Figure 2. The major DOCK 5 classes and their interconnections. The bold
arrows denote the connections between the classes that implement the DOCK

sampling algorithm. The path traced by the arrows illustrates the sequence of
operations performed upon a ligand molecule during docking. The bold lines
(without arrowheads) denote functional connections between classes. These
connections allow one class to call functions implemented in another. This

diagram demonstrates that the classes implementing the DOCK sampling
methods are heavily connected to a layer of classes that implement the physics
engine: the force field, the scoring functions, and the energy minimizers. The
thin lines denote hierarchical relationships between a master class and modular

subclasses. These hierarchical arrangements allow new functional classes
(scoring functions, energy minimizers, etc...) to be plugged into the existing
DOCK algorithm in a modular fashion.
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techniques have been implemented as well and will be discussed in future

papers (http://dock.compbio.ucsf.edu).

Previous studies have examined the scoring function and the matching

algorithm of DOCK in detail ((Ewing TJA and Kuntz ID, 1997; Meng EC et al.,

1992) and equations 1-6 in (Meng EC et al., 1992)). In this paper, wepay

particular attention to the robustness of the anchor-and-grow portion of the

DOCK algorithm. We seek to maximize the success of complex structure

prediction by independently optimizing the various steps in the anchor-and-grow

algorithm. In the process, we also quantify and bound the errors for cases in

which flexible docking fails and provide direction for potential areas of

improvement.

Overview of Test Set

The validation of any software program requires careful testing of all

aspects of the algorithm and assessment of its utility in all anticipated

applications of the software. Molecular docking is commonly used in several

modes, namely ligand binding mode prediction, virtual screening, and

prioritization of a set of related compounds based on their affinity. However,

predicting the correct binding mode of a ligand-receptor complex is a requisite

step for the successful comparison of different ligands and therefore will be the

focus of this paper. It is important to note, however, that predicting binding

orientations is not the only metric for the accuracy and utility of docking

algorithms. Optimizing DOCK for applications, including ranking libraries of small
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molecules and calculating absolute free energies of binding, will be addressed in

other papers (http://dock.compbio.ucsf.edu).

Large-scale validation of docking algorithms was long hampered by the

lack of a large number of high quality protein-ligand complex crystal structures.

Thanks to advances in automation in molecular biology and crystallography, the

number of structures in the Protein Data Bank (PDB) continues to grow at a rapid

pace (Berman HM et al., 2000). The developers of GOLD were first to test their

program on a large number of available structures (Jones Get al., 1997). Their

test set was compiled using a number of criteria to select candidate protein

ligand complex structures. The protein must be of pharmacological interest and

the ligands must be drug-like. In addition, complexes were chosen that exhibited

interesting and unusual interactions between the ligand and the protein. The

final set of 100 (more recently expanded to 134) protein-ligand complexes has

served as the basis for other, larger test sets (Kramer B et al., 1999; Nissink JW

et al., 2002; Pang YP et al., 2001; Perola E et al., 2004).

More recently, the CCDC/Astex set compiled 305 protein-ligand complex

structures by expanding the original GOLD test set (Nissink JW et al., 2002).

However, the authors note that many of the new entries contain larger ligands

that have more rotatable bonds, making this set less drug-like. The crystal

structures in the CCDC/Astex set were evaluated for crystallographic errors and

inconsistencies, yielding a “clean" set of 224 protein-ligand complexes. To

create the test set for the DOCK validation studies, we filtered out 84 complexes
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Protein Data Bank Identifier l

1A28 1COM 1FLR 10KL 1TYL 2MCP
1A6W 1COY 1HAK 1PBD 1UKZ 2PCP
1A9U 1CPS 1HDC 1PDZ 1ULB 2PHH
1ABE 1 D3H 1HSL 1 PHD 1 WAP 2PK4
1ABF 1D4P 1HYT 1 PHG 1XID 2TMN
1ACJ 1DBB 11MB 1PTV 1XIE 2XPI
1ACM 1DBJ TVB 10CF 1YDR 3CPA
1ACO 1DG5 1LAH 10PE 2AAD 3ERD
1A15 1DID 1LCP 10PQ 2ACK 3GPB
1AOE 1 DOG 1 LDM 1 RNT 2ADA 3HVT
1AQW 1 DR1. 1 LST 1 ROB 2AK3 4AAH
1AZM 1 DWB 1 LYL 1RT2 2CHT 4COX
1 BYG 1 EBG 1 MDR 1SNC 2CMD 4CTS
1C5C 1ETT 1 MLD 1 SRJ 2CPP 4FBP

125X 1F9R 1MRG IPB 2CIC 4.BP
1C83 1FOS 1MRK 17NG 2DBL 5ABP

| 1QBx 1F3D 1MUP 1TNH 2GBP 5CPP
| 1QL 1FG 1NGP 17N 2H4N 6RNT

1CKP 1FK 1NIS 1TNL 2LGS 7TIM

Table 2: Complexes used in the test set (total of 114 complexes)

Tetra-coordinated Zincº
Radius 1.700 A
Well depth 0.067 kcal/mol

Penta-coordinated zinc:
Radius 1.100 A
Well depth 0.0125 kcal/mol

Table 3: Zinc VDW parameters used to generate grids (a) Parameters used for
receptors with tetra coordinated zinc ions (Aqvist J and Warshel A, 1990) (b)
Parameters used for receptors with penta coordinated zinc ions (Merz KM et al.,

1991)
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with 8 or more rotatable ligand bonds. In addition, several of the complexes had

properties that we felt made them inappropriate for a validation set. These

issues included ligands that were covalently bound to the receptor (PDB code

1ASE), ligands with missing electron density (PDB code 1EED), and known

sequence misregistry in the receptor (PDB code 3HVT). Ligands with vanadium

that required VDW types in which we were not completely confident were also

removed. The final test set contained 114 drug-like complexes (see Methods,

Table 2).

METHODS

DOCK 4 to DOCK 5 Conversion

The new DOCK rigid body orienting code was written as a direct

implementation of the isomorphous subgraph matching method of Crippen and

Kuhl (Kuhl FS et al., 1984). All receptor sphere pairs and atom center pairs are

considered for inclusion in a matching clique. This is more computationally

demanding than the clique matching algorithm implemented in previous versions

of DOCK that used a distance binning algorithm to restrict the clique search, in

which pairs of spheres and atom centers were binned by distance. Only sphere

pairs and center pairs that were within the same distance bin were considered as

potential matches (Ewing TJA and Kuntz ID, 1997). The new DOCK clique

matching implementation avoids bin boundaries that prevent some receptor

sphere and ligand atom pairs from matching, and, as a result, it can find good

matches missed by previous versions of DOCK. The rigid body rotation code was
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also corrected to avoid a singularity that occurred if the spheres in the match lay

within the same plane. Both of these changes improved orientational sampling.

The anchor-and-grow algorithm in the new version of DOCK was also

modified to prevent premature pruning of the growth tree. The DOCK 5 anchor

and-grow code was completely rewritten with several differences in the

implementations between DOCK 4 and 5. The anchor-and-grow implementation

in DOCK 5 fixed a series of bugs that caused some branches of the search to be

pruned when they should have been preserved for the next round of growth. The

mechanism of minimization of partially grown conformers was also changed to

allow the entire partial conformer to move, instead of just the latest layer,

enabling more accurate ranking and pruning of the partially grown conformers.

In addition, the simplex minimizer was re-coded based on the original

Nelder and Mead algorithm (Nelder JA and Mead R, 1965). The new minimizer

implementation consistently found lower energy minima when using the same set

of 1000 ligand orientations in a receptor, indicating that it was performing better

than the previous version (data not shown). In addition, we changed the

mechanism of minimization of partially grown ligand conformers to allow all

atoms in the partial conformer to be minimized, rather than only the outermost

layer of atoms. These changes may explain why DOCK 4 performs more poorly

when run with the DOCK 5 optimized parameters (see below).

The final version of the new DOCK code, including all functions described

below and all bug fixes, was posted to the DOCK web site as version 5.4.0

(http://dock.compbio.ucsf.edu). All experiments performed with the new
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implementation of DOCK used this version and will be referred to as DOCK 5 for

convenience. All experiments performed with the previous version of DOCK

used version 4.0.1 and will be referred to as DOCK 4.

Conversion of the DOCK Codebase from C to C++

The design of the new DOCK 5 architecture balances the speed of the

code, or computational performance, against its modularity and extensibility. The

code was developed using ANSI C++ to ensure portability across multiple

platforms (Lischner R, 2003). The only external library used by DOCK5 is

MPICH for parallel processing (Gropp W et al., 1996). To enable easy

modification or replacement of DOCK 5 algorithm components, the DOCK 5

class structure was designed so that there are classes for each major DOCK

algorithm function, and these classes interface with each other by passing

instances of the DOCK 5 molecule class. Within the major functions, there are

two layers of classes: those that implement the ligand sampling functions--rigid

orienting, conformational searching, and minimizing--and those that implement

the underlying physics engine--the force field definitions and the scoring

functions. The sampling classes are applied sequentially to the ligand molecule;

the physics engine classes are utilized by the sampling classes to score the

ligand-receptor interaction after each step.

As a specific example of modularity, the DOCK 5 scoring functions are

implemented as a master score class with five scoring function subclasses. The

master score class acts as an interface to the scoring subclasses, enabling the
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user to designate primary and secondary scoring functions at runtime. This

design was chosen because the individual scoring functions were best

implemented as individual classes; they each require different input and use

different internal data structures. While they could have been implemented into

one large scoring class, the result would have been quite large and disjoint. This

solution was also applied to the ligand conformational search, energy

minimization and post-docking analysis classes.

The DOCK 5 molecule class was designed to contain the minimum

information required to specify a three-dimensional ligand conformation (atom

coordinates, bond connectivity, atom partial charges, atom types and bond types)

to minimize the memory required to store a molecule, allowing large arrays of

molecules to be stored in RAM. Standard C-style arrays were used to store the

molecular data to maximize the speed of accessing this information.

Test Set Preparation

The proteins and ligands were extracted from the PDB files, which were

downloaded from the PDB website (http://www.rcsb.org, Table 2). The ligands

were assigned atom types and bond types manually, and hydrogens were added

using Sybyl. Subsequently, AM1-BCC partial electrostatic charges were

calculated using the Antechamber package distributed with Amber 8 (Case DA et

al., 2004; Jakalian A et al., 2000). The number of rotatable bonds of each of the

ligands was measured using DOCK, and ligands with >7 rotatable bonds were

eliminated from the test set. We choose 7 or fewer bonds to give a reasonable
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representation of DOCK's performance using compounds similar to those of most

interest in drug discovery (Hann MM and Oprea TI, 2004; Oprea TI, 2002; Oprea

TI et al., 2001). The final test set that was used consisted of 114 non-covalent

protein-ligand complexes (Brooijmans N, 2003) (Table 2).

For the proteins, we removed all waters, covalently linked sugars, sulfates,

and halogens that were not part of the ligand. Co-factors, such as heme, ATP,

and NADPH, were kept, atom and bond types were assigned manually, and

Gasteiger-Hückel partial electrostatic charges were calculated using the

“Compute" module in Sybyl (Gasteiger J and Marsili M, 1980; Lorber DM and

Shoichet BK, 2005; Purcell WP and Singer JA, 1967). Ions, such as calcium and

zinc, were considered to be part of the protein and the correct charge was

assigned manually. Different VDW parameters for zinc were used depending on

the coordination state of the zinc atom in the protein-ligand complex (Table 3).

Hydrogens were added to the protein residues using the “Biopolymer" module in

Sybyl, as were AMBER partial charges and VDW parameters (Cornell WD et al.,

1995; Lorber DM and Shoichet BK, 2005). No additional optimization of the

protein structure was carried out at this point.

The GRID accessory program of DOCK was used to pre-calculate scoring

function potential grids(Meng EC et al., 1992). All parameters were set to default

parameters, except for the "energy_cutoff distance," which was set to 9999,

resulting in the inclusion of all protein atoms in the energy calculation. For

matching, the dms program was used to generate a molecular surface for each

receptor (Richards FM, 1977). The SPHGEN accessory program of DOCK was
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used to create a negative image of the surface using spheres (DesJarlais RL et

al., 1988; Kuntz ID et al., 1982). For the purpose of this validation study, a

general procedure was established to generate a sphere cluster for every protein

in the test set. In this procedure, we select all the spheres found within 10 A of

any ligand atom. The receptor box delimiting the active side was calculated with

the accessory program SHOWBOX using the sphere set with an additional 5 A

boundary. We have explored additional box sizes ranging from 1 A – 9 A

padding and found that there is little sensitivity to the exact padding amount (ie

success rate for rigid ligand docking of 80% + 1%, time increase 10% with

padding size increase, and an average test set energy of -50+0.1 DOCK units).

The final procedure creates sphere sets with an average of 101 docking spheres

and boxes of ~20 A*. These receptor sphere sets are larger than what one

would typically use in most docking applications. This adds stringency to our

testing of DOCK5 by increasing the orientational and translational space that it

must search.

Optimized Hydrogen Locations for Test Set Receptors

To assess the effect of hydrogen placements on docking outcomes, we also

optimized the hydrogen atom placement and hydrogen-bonding network for the

receptor using the “Dock Prep" module in Chimera (Pettersen EF et al., 2004). In

this module, the hybridization states of the nonhydrogen atoms of a PDB

structure are determined by an enhanced version of the IDATM atom-typing

algorithm (Meng EC and Lewis RA, 1991). Then, all hydrogens that can be
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unambiguously positioned are added to the file. To assist in positioning

ambiguous hydrogens, hydrogen-bonding interactions are examined. The

definitions of hydrogen-bonding donors and acceptors as well as hydrogen

bonding angle and distance criteria are based on the values found in Mills et al

(Mills JEJ and Dean PM, 1996). Relevant hydrogen bonds (H-bonds) are

examined from shortest to longest, with satisfaction of shorter bonds having

priority. For H-bonds where it is unclear which end is acting as the donor (e.g.

Water-water), use of that bond is postponed until either end is resolved further,

though any lower-priority bonds that conflict geometrically with the postponed

bond are eliminated from consideration at that time. If neither end is resolved by

Other interactions, the ambiguity is decided arbitrarily. Should examination of H

bond interactions not completely determine the positions of all of the hydrogens

bound to a heavy atom, they are positioned to first satisfy potential H-bond

interactions, then any remaining hydrogens are positioned to avoid steric clashes

With other atoms. For histidine residues, normally one nitrogen will be protonated

(chosen based on H-bond/steric considerations); however if both ring nitrogens

are H-bond donors, they will both be protonated.

Selection of Active Site Waters

All waters within 3 A RMSD of any ligand heavy atom were selected.

These waters were included as part of the receptor. The new receptor-water

complexes were then subjected to the same hydrogen bonding optimization as

above.
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DOCK Parameter Optimization

To characterize the performance of DOCK 5 in regenerating known

complex structures, we explored the optimum parameters for use with rigid and

flexible ligand docking strategies (see Appendix). Unless otherwise stated, all

docking experiments were carried out on 2.2 GHz dual processor Opteron 828s

running Linux Fedora Core 3. The code was compiled using open-source GNU

compilers (http://www.gmu.org). The optimized parameters have been

implemented as the defaults. We note that our primary criterion for optimization

was success in finding the proper ligand geometry and not the CPU time required

per compound. Unless otherwise stated, these parameters were used for all

experiments in this paper.

Greedy Clustering of Conformational Ensemble

The greedy clustering algorithm is designed to eliminate redundant ligand

orientations from consideration. DOCK generates a set of ligand orientations

that are ranked by the scoring function. The RMSD between each ligand

orientation in the list is calculated. If the RMSD between two ligand orientations

falls within the clustering threshold, the second orientation is assigned to a

cluster with the first. The first ligand orientation is selected and compared to all

subsequent unclustered orientations in the list; this process is repeated until the

last unclustered orientation has been selected. Once the entire list has been

processed, only the best scoring ligand pose in each cluster, designated as the

cluster head, is retained.
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Evaluation of MPI Functionality

Parallel Processing is fully integrated into the DOCK calculation. The

DOCK program starts a single master node and a set of processing nodes. The

master node performs file processing and molecule input/output, whereas the

processing nodes perform the actual docking calculations. If the number of

processors is set to 1, the code defaults to non-MP■ behavior. As a result of this

configuration, there will be minimal difference in performance between 1 and 2

processors. Improved performance will only become evident with more than 2

nodes. It should be emphasized that the primary benefit in using DOCK 5 in

parallel mode is to reduce bookkeeping tasks associated with manually splitting

up a database into multiple chunks. which then must be submitted to different

processors individually. DOCK 5 automatically partitions out subsets of a

database to various nodes, collates and ranks the final results, and takes care of

all intermediate bookkeeping.

To gauge the performance of parallelization of the DOCK5 algorithm, two

small subsets of the NCI database from the ZINC database were constructed

(Gropp Wet al., 1996; Irwin JJ and Shoichet BK, 2005). The two subsets, one

containing 500 and the other 1000 small molecules, were filtered to have <5 and

< 14 rotatable bonds, respectively. The receptor used as a target for this study

was HIV-1 reverse transcriptase in complex with nevirapine (PDB code 1VRT).

Because the receptor was not part of the test set, nevirapine was flexibly

redocked using the optimized parameters, which yielded a ligand orientation 0.28

A RMSD from the crystal structure orientation. In addition, a library consisting of
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1000 copies of neviripine was generated to remove dependence on the order

and size of the compound library. All parallelization study calculations were

executed at the Computational Science Center at Brookhaven National

Laboratory (http://www.bnl.gov/csc) on a cluster consisting of 34 nodes with dual

3.2GHz Xeon processors running Linux. Tests were performed using between 2

and 68 nodes. The code was compiled using open-source GNU compilers and

MPI software mpich version 1.2.7 from Argonne National Laboratory (http://www

unix.mcs.anl.gov/mpi/mpich).

RESULTS

We first consider the results of rigidly docking ligands, which used a

conformation taken directly from the complex crystal structure, to the complex

crystal structure conformation of the receptor. We then present the results of

flexible ligand docking tests. In each case, we consider a) the overall

performance of each sampling algorithm, b) the ability of each algorithm to

reproduce the crystal ligand orientation as the top-scoring pose, c) the effect of

the initial ligand conformation on the performance of the algorithm, d) any

additional information contained in the set of all sampled ligand orientations, and

e) the ability extract additional information by clustering docking results. We

also compare the performance of DOCK 5 to equivalent DOCK 4 experiments.

Finally, we analyze the cases in which DOCK 5 fails to reproduce the crystal

structure and propose some directions for improvement of both the DOCK

algorithm and our test set preparation method.
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Rigid Ligand DOCKing

Overall Performance

Unless otherwise noted, all experiments described in this section involved

rigid docking of the complex crystal structure ligand conformation to the receptor

complex crystal structure. For each case in the test set, the heavy atom RMSD

between the top-scoring docked ligand pose and the complex crystal structure

ligand pose was evaluated. A DOCK 5 run was considered to be successful for

cases in which the RMSD between for the top-scoring ligand orientation and the

crystal ligand orientation was less than 2.0 A. DOCK5 selects the correct pose

as the lowest energy structure for 79% (90/114) of the test cases using the rigid

docking protocol with an average time of 55 seconds per complex.

Dependence on Ligand Conformation

An ensemble of ligand conformations was generated using the anchor

and-grow algorithm to apply changes of each of the ligand's rotatable bonds.

This expansion generated a conformation ensemble for each ligand that covered

all torsional parameters that DOCK samples. Each generated conformation was

rigidly docked to the receptor, and the results from all the dockings were binned

according to the magnitude of the ligand's conformational perturbation (Figure

3a). The curve shows dramatic and continual decrease in the success rate as

the perturbation magnitude increases with little success for any ligand

conformations greater than 0.5A heavy atom RMSD away from the crystal

conformation. Therefore, any conformation generation method must generate
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ligand conformations within 0.5A heavy atom RMSD of the crystal conformation

for rigid docking to have a reasonable chance to succeed.

Analysis of Total Orientational Ensemble

To this point, we have disregarded “near misses," which we define as any

generated orientations within 2 A RMSD from the crystal structure that are close

to the top of the ranked conformation list, but are not the best scoring poses. We

can examine the remaining poses either by including all poses that differ by a

fixed energy unit from the most favorable geometry or by including those that

differ by a fixed number of ranked poses from the most favorable energy. In

order to quantify the extent of these partial successes, all generated ligand poses

for each test case were preserved and sorted by their energy scores.

An energy gap is defined as the difference between the DOCK score of

the top scoring ligand orientation and the score of a ligand ranked further down

the list. Considering all docked ligand orientations with an energy gap of 2.5

DOCK units—an average of 5 ligand orientations—increases the rigid ligand

docking success rate to 90% for the entire test set, while an average of 50

orientations increase the rigid docking success rate to 99% (Figure 4a and b).

These results indicate that the orienting method samples near-crystal ligand

orientations well, but the current energy scoring function cannot discriminate well

between the top-ranked orientations.
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Figure 3. (a) Rigid docking success rates (m)--as calculated by any
conformation being within 2A heavy atom RMSD of the complex crystal
orientation--shown as a function of the ligand internal conformation perturbation
magnitude (RMSD) (b) Flexible growth success rates (*)--as calculated by any
conformation being within 2A heavy atom RMSD of the complex crystal
orientation--shown as a function of the magnitude of the anchor perturbation
(RMSD)
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Geometric Clustering of Poses

Each ligand conformational ensemble was spatially clustered according to

inter-pose RMSD values (see Methods section for algorithm details). After

examining a range of potential cut-offs, an optimal value of 1.0 A was chosen

(Figure 5). Using this clustering threshold, only 15 clusterheads are required to

achieve a success rate of 99%, compared with the top 50 ranked unclustered

orientations. This result is encouraging, suggesting that the clustering helps sort

through the conformers efficiently.

Flexible Ligand DOCKing

Overall Performance

Unless otherwise noted, all experiments described in this section involved

flexible docking of the ligand to the receptor complex crystal structure. As with

the rigid docking tests, the heavy atom RMSD between the top-scoring docked

ligand pose and the complex crystal structure ligand pose was evaluated for

each complex in the test set. The success rate over the entire test set using the

optimized flexible ligand anchor-and-grow protocol was 72% (82/114) with an

average time of 314 seconds per complex.

Dependence on Anchor Position

The anchor-and-grow algorithm belongs to the set of incremental

construction algorithms for searching ligand conformational space (Ewing TJA

and Kuntz ID, 1997; Leach AR and Kuntz ID, 1992). It uses a rigid docking step
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for the "anchors" to identify likely anchor positions (anchor orienting), and a

torsion angle search step to generate ligand conformations rooted at the

previously identified anchor positions (flexible growth). In order for flexible

docking to succeed, both of these individual steps must be successful.

To measure the dependence of success rate on the precision of the

anchor location, the crystal position of the anchor for each complex in the test set

was perturbed randomly from 0 A to more than 10 A. Each perturbed anchor

position was then considered as the starting point for flexible growth (Figure 3b).

With the anchor starting less than 0.5A heavy atom RMSD from the crystal

orientation, the growth algorithm can find the experimental orientation 99% of the

time. However, the results demonstrate a rapid decrease in success rate as the

anchor is moved further away from its crystal structure position, decreasing to

76% at 1.0 A perturbation down to 54% at 2.0 A. These data imply that if the

flexible ligand docking algorithm can place the anchor within 0.5A heavy atom

RMSD of the crystal anchor position, DOCK5 has a very high probability of

successfully predicting the full binding mode correctly.

Analysis of Total Conformational Ensemble

We examined the entire ensemble of conformers generated by flexible

docking, as we described previously in the rigid ligand docking analysis.

Considering all docked ligand conformations with a 2.5 DOCK unit energy gap—

an average of 5 ligand orientations—increases the success rate to 82%, while an

average of 100 orientations increasing the success rate to 95% (Figure 4a and
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b). Again, these results indicate that the sampling density produced by the

optimized parameters is quite high, but there is little discrimination between very

similar poses by the current scoring function.

Geometric Clustering of Poses

As with the rigid ligand docking tests, each conformational ensemble was

spatially clustered according to interpose RMSD (see Methods section for

algorithm details). A clustering threshold of 1.0 A, as determined in the rigid

docking section, was used (Figure 5). Using this clustering threshold, only 50

clusterheads must be examined to reach a success rate of 95% as compared to

100 purely ranked orientations. Once again, this result is encouraging, as it

requires a small number of ligand poses to be retained for rescoring with more

advanced scoring functions that are better at discriminating between very similar

ligand poses.

Comparison to DOCK 4

Using the optimized DOCK 5 parameters, we performed the same rigid

and flexible ligand docking experiments on the entire test set using the last

available version of DOCK 4. The performance of the current implementation of

DOCK 5 compared favorably with the DOCK 4 performance (Table 4). We

attribute the improved accuracy in performance to improvements outlined in the

Methods Section. However, when comparing the speed of docking experiments

between DOCK 4 and DOCK 5, DOCK 4 is five-fold faster for rigid docking and
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thirty-fold faster for flexible ligand docking than DOCK 5 (Table 5). We attribute

this increased calculation time to extra stages of minimization and sampling in

DOCK 5, as well as additional overhead necessary to preserve the modularity of

the code (see Methods).

Comparison to Other Docking Methods

Developers of Glide, GOLD and Flexx have also evaluated their methods

using similar test sets and made some of their analyses available (Friesner RA et

al., 2004; Hoffmann D et al., 1999, Wagoner J and Baker NA, 2004). Based on

this data, we note that DOCK's flexible docking success rate of 70% is

comparable to Glide's and FlexX's success rates of 82% and 61%, respectively

(Table 6). Unfortunately, GOLD has not posted the results for the entire

CCDC/Astex test set, so a complete comparison could not be made. However,

for the subset of the test set they did report, DOCK's success rate of 67% is once

again reasonable as compared to the success rate of 77% for GOLD,

considering that the DOCK scoring function does not use either empirically

weighted parameters or adjustable parameters.

Analysis of Successes and Failures of DOCKing Protocols

Docking failures can be categorized into two categories: sampling

(soft) and scoring (Richards FM) failures (Verkhivker GM et al., 2000). For

scoring failures, an orientation near the crystal structure was sampled in the

course of the DOCK run, but the scoring function failed to rank it at the top of the
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DOCK Version Rigid Ligand |Flexible Ligand
4.0.1 71.9% 42.1%
5.4.0 79.0% 71.9%

Table 4: Success based on DOCK version (see Methods)

Average (sec) Minimum (sec) Maximum (sec)
DOCK 4 Rigid Lig 10.9 + 12.1 0.99 66.8
DOCK 4 Flexible Lig 7.1 + 6.04 0.44 33.5
DOCK 5 Rigid Lig 55.4 + 37.5 6.0 198.0
DOCK5 Flexible Lig 314.7 ± 449.8 2.0 2638.0

Table 5: Average length of time in seconds for docking calculation using the
optimized parameter set (see Appendix)

Program #Complexes | Success DOCK Success
GOLD 43 77% 67%
Glide 71 82% 70%
Flexx 71 61% 70%

Table 6: Comparison of DOCK success rates to other docking programs for

flexible ligand docking
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list. A sampling failure indicates that the DOCK run failed to sample any

orientations within 2 A RMSD of the crystal structure. The major caveat of this

classification scheme is the assumption that the model of both the receptor and

the ligand, including the VDW parameters, electrostatics, and hydrogen

orientations and protonation states, reflect those that occur in the experimental

structure (Kuntz ID and Agard DA, 2003). Here, we analyze the flexible docking

ligand failures within the sampling-scoring classification scheme.

Failures Resulting from Receptor Modeling/Structural Problems

The original CCDC/Astex test set was filtered for experimental errors

using a variety of metrics (Nissink JW et al., 2002). We plotted the flexible ligand

success rate as a function of various metrics of the quality of the x-ray structures

to determine if the selection criteria were appropriate for testing the DOCK

algorithm (Figure 6). There appears to be at best a weak correlation between the

RMSD of the best scoring DOCK pose and either crystal resolution or b-factor of

active site or backbone atoms, indicating that the cut-offs chosen for the original

set were reasonable for docking purposes.

We next explored whether specific atom types caused problems with the

DOCK force field terms by correlating the test set success rate with the presence

and type of active site cofactor (Table 7). The only clear problem involved metal

ions in the receptor. These structures showed a much lower success rate,

accounting for nearly half of both the rigid and flexible ligand docking failures.

However, there still are a number of failures in the portion of the test set without
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Figure 6. Correlation of flexible ligand success (filled) and failure (striped) rates
with crystallographic resolution (A) and experimental B-factor (A*). For active site
B-factors, the active site was defined as any atom within 9 A of the experimental
ligand orientation.
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Figure 7. Rigid and flexible docking success (filled) and failure (striped) rates as
a function of the number of rotatable bonds in each ligand in the CF test set
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cofactors in the active site that require further characterization. Unless otherwise

mentioned, all studies below were performed on this subset, referred to as the

Cofactor Free (CF) subset.

For all members of the test set, the experimental resolution of the crystal

structures was too poor to identify hydrogen atom locations. We originally

modeled the hydrogen atom positions using a rule-based method. To test this

scheme, we applied a more advanced hydrogen addition procedure that

accounted for steric clashes and hydrogen-bonding networks to the CF subset

(see Methods). As a follow-up, we assumed all crytallographically bound waters

found within 3A of any ligand heavy atom were critical for binding and included

them in the receptor model as well. We found that both of these procedures

improved the flexible ligand docking success rate (Table 8).

Failures Resulting from Ligand Flexibility

In addition to the selection criteria imposed on the original test set, we also

filtered out complexes in which the ligand had greater than seven rotatable bonds

(see Methods). We reexamined this choice on the CF subset by plotting the rigid

and flexible ligand docking success rate as a function of the number of flexible

bonds (Figure 7). As expected, the results show a decrease in the success rate

with increasing ligand size, but with no dramatic drop-off.
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Total Rigid Lig Flexible Lig
Count | Success Success

Entire Test Set 114 79.0% 71.9%
CF Subset 76 81.6% 76.3%
Active Site Cofactor 38 73.7% 63.2%

|Active Site Metal Cofactor 28 64.3% 50.0%

Table 7: Flexible ligand success as function of active site cofactor

Test Set Preparation Technique Success
Standard 76.3%
Hydrogen Optimization 78.9%
Active Site Waters + Hydrogen Optimization 80.3%

Table 8: Flexible ligand success as function of CF test set preparation (total of
76 complexes)

Rigid Rigid
Sampling Failure Scoring Failure Rigid Success

Flexible Sampling Failure O O 2
Flexible Scoring Failure 0 9 3
Flexible Success 0 1 23

Table 9: Comparison of success and failure cases of both rigid and flexible
docking for complexes in test set with cofactors in active site (total of 36
complexes)

Rigid Rigid
Sampling Failure Scoring Failure Rigid Success

Flexible Sampling Failure 1 1 2
Flexible Scoring Failure 0 7 7
Flexible Success O 5 53

Table 10: Comparison of success and failure cases of both rigid and flexible
docking for complexes in CF subset (total of 76 complexes)
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Sampling Versus Scoring Failures

We now return to classification of DOCK failures based on scoring and

sampling classifications (Verkhivker GM et al., 2000). First, we examined the

test set failure cases with active site cofactors (Table 9). Within this set, nine

examples were scoring failures for both rigid and flexible ligand docking,

indicating that new VDW and electrostatic parameters need to be developed for

magnesium, heme groups, and some coordination states of zinc. In addition,

there were three flexible ligand scoring failures that were rigid successes, thus

suggesting that the flexible algorithm was able to identify additional orientations

with better scores than the experimental ligand orientation. Only two flexible

ligand docking cases were sampling failures. We expected flexible ligand

docking sampling failures due to the increased ligand degrees of freedom

compared with rigid ligand docking, but it does not appear to be a severe

problem in this test set containing ligands with less than eight rotatable bonds.

Finally, one of the rigid ligand docking scoring failures was a flexible ligand

success. In this case, there was a large VDW clash between one of the ligand

atoms and the receptor. The anchor-and-grow algorithm was able to build the

ligand in the active site to avoid this clash which the rigid ligand docking

algorithm could not accommodate.

We repeated this analysis with the CF subset (Table 10). Here, there was

one rigid ligand docking sampling failure, which also failed for flexible ligand

docking. Upon closer examination of the receptor site, a residue making critical

interactions with the ligand was not resolved in the experimental complex

96



structure (PDB code 1A6W). We anticipate that there may not be enough

contacts to correctly place the molecule. Seven examples were scoring failures

for both rigid and flexible ligand docking. In this subset, though, we cannot

attribute the failure to unusual atom types, indicating that the scoring function is

incorrectly modeling some portion of the energy landscape. There were also

seven scoring failures for flexible ligand docking that were successes for rigid

ligand docking, once again suggesting that the flexible docking algorithm

identified additional orientations that scored better than the experimental

Orientation.

As in the cofactor set above, there were only three additional flexible

ligand docking sampling failures. One of these was also a scoring failure in rigid

ligand docking, implying that this failure case may actually be due to a

combination of both sampling and scoring factors. The remaining two flexible

ligand docking sampling failures once again indicate that the flexible algorithm

was able to identify alternative orientations that scored better than the crystal

complex orientation. Finally, five rigid ligand docking scoring failures were

flexible ligand dockings successes, signifying that the flexible ligand docking

algorithm is able to compensate for intermolecular clashes in the active site of

the experimental structure that the rigid ligand algorithm simple cannot

accommodate (data not shown).
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Analysis of DOCK Score for DOCKing Protocols

To analyze the ability of DOCK to reproduce the ligand-receptor

interaction energy as measured by the DOCK scoring function, we plotted the

score from the top-ranking pose for both rigid and flexible ligand docking that

were successful against the DOCK score of the complex crystal structure (Figure

8 a-b). Each crystal structure ligand was minimized with 1000 steps of the

DOCK simplex minimizer. The significant feature of both plots is that the docked

pose generally scores more favorably than the minimized crystal structure.

When rigid ligand docking is compared with flexible ligand docking, the flexibly

docked ligand conformations almost always have a lower score (Figure 8c).

These results indicate that increasing the amount of ligand orientational and

conformational sampling increasingly identifies deeper wells in the binding

energy landscape. When we plotted the flexible ligand success rate against the

minimized crystal score, there was little correlation, though DOCK was observed

to perform better using crystal structures with scores more negative than -20

DOCK units (Figure 8d). This lack of correlation indicates that, while having a

negative interaction energy for the crystal structure will increase the probability of

DOCK finding the correct binding orientation, this metric is not a good predictive

indicator of DOCKing success.
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Database DOCKing using MPl

Substantial speedup is observed for up to about 14 processors for the 500

compound library and 18 processors for the 1000 compound library (Figure 9).

Interestingly, the library with 1000 copies of neviripine shows almost perfectly

parallel behavior up to 68 processors. We hypothesize that the speedup for the

heterogeneous libraries will continue to approach ideal as larger libraries with

increased numbers of rotatable bonds are used, but will never be completely

linear due to overhead from input and output and lag resulting from

Communication between the nodes.

DISCUSSION

In this paper we have described a new version of the DOCK program. Our

main purpose was to develop modular code that was straightforward to modify

and which showed improved performance over the old version. By using an

object-oriented language for DOCK 5, we were able to accomplish this goal, and

* demonstrate, here, how routines such as the simplex minimizer and the

clustering algorithm can be added or replaced without changes in other parts of

* Program. The successful parallelization of the calculation and the addition of

post-prOCessing clustering were simple but useful modifications to the algorithm,

which °ncourages further investigations and algorithm experimentation.

The Performance of DOCK5 on a curated test set of 114 protein-ligand

Complexes Froved to be superior to DOCK 4, with an over-all success rate of
79% * - -“for rigic ligand docking and 72% for flexible ligand docking, compared with
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72% and 42% respectively for DOCK 4. We ascribe the improvements to

significant changes in the flexible search sampling and pruning procedures and

to code corrections. The difference in performance of DOCK5 for rigid and

flexible docking is relatively modest (79% vs 72%) even though the search for

flexible ligands includes both configurational and conformational spaces. Using

the receptor structure to prune the conformational search tree is clearly a

reasonably efficient procedure. Although, the DOCK 5 code takes longer on

average to run a calculation than DOCK 4, we feel this drawback is balanced by

the improved results and the modularity of DOCK 5. Efforts to increase

throughput are underway.

We also wish to stress the importance of having a high quality test set for

evaluation of docking programs. Xray crystallography typically provides essential

but incomplete data for the calculations we wish to carry out. For example, in the

majority of cases, hydrogen positions must be determined. In other cases,

°ritical water molecules must be placed and some residues need to be modeled

Where experimental data is lacking. The ligand conformations may also contain

significant uncertainties. Finally, we must be aware of the inherent assumptions

underlying the force field parameters used in the molecular modeling steps. All

of these Considerations speak to the need for careful inspection of test set

*"Pºes. Our results demonstrate this issue: the success rate for

*onstitution of the complex geometries was shown to depend on the nature of

the cofactors, the optimization of hydrogen placements, and the inclusion of
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The primary result that emerges from the analysis of the docking failures

is that the current force field requires improvement, particularly in the treatment

of metal-containing cofactors. We also note that binding conformations and

configurations are determined by the free energy of the system while we are

Only, at best, estimating the enthalpy. Finally, we do identify a few situations in

flexible ligand docking where the conformational sampling is insufficient. A test

Set with ligands containing more than 7 rotatable bonds would, presumably, show

an increase in these sampling failures. We hypothesize that the key weakness is

the pruning algorithm, which we will explore in future studies.

What are the routes to improvement? An obvious starting point is the use

of more accurate methods for preparing experimental structures, including tools

for accurate pKa prediction and de novo identification of critical waters. For the

docking calculation itself, it would be helpful to improve VDW and electrostatic

Parameters for all atoms heavier than oxygen, particularly for metal atoms.

ideally, one would directly include charge polarization and ligation geometry in

the force field. In addition, modifications to the force field to better approximate

the free energy – e.g. generalized Born or Poisson Boltzmann implicit solvation

electrostatics with surface area corrections to account for the hydrophobic

effect—would also improve modeling accuracy. The DOCK 5 platform is

Positioned to enable future developments and work is underway to incorporate

them into future releases.
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CONCLUSIONS

In this study, we have evaluated a new version of DOCK. We have found

that it predicts binding geometries of a structurally diverse test set comparably to

similar algorithms and better than the previous version of DOCK.

Simultaneously, we have thoroughly explored the sampling portions of the

algorithm and found that the majority of binding pose prediction failures is a result

of scoring function deficiencies. In further exploration of these failures, we have

determined that the docking success seems to be a function of whether there are

alternative orientations that score well—as defined by the scoring function—

rather than the interaction energy of the experimental structure itself. Finally, we

have implemented new functionalities and shown that they improve the success

rates of both rigid and flexible ligand docking. In general, we have a new tool

that not only performs well on a typical test set but is an ideal tool to explore any

number of new algorithms in the context of the molecular docking problem.
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APPENDIX

Rigid DOCKing Parameter Optimization

The parameters listed in Table 11 control the sampling of ligand poses

Within the receptor active site during rigid ligand docking. The parameters that

Control the step sizes for the simplex minimizer (simplex_trans step,

simplex_rot step, and simplex_tors step) were optimized in a previous study

and were held at those values (Ewing TJA and Kuntz ID, 1997, Gschwend DA

and Kuntz ID, 1996). For the remaining parameters—the number of orientations

(max orientations) and the number of minimization steps

(simplex fi nal_max_iterations)--a series of rigid ligand docking experiments were

performed to optimize the DOCK score for the top ranking pose averaged over

the entire test set and the success rate, defined as the orientation of the top

■ anking pose being within 2 A heavy atom RMSD from the crystal ligand. The

*cess rate and DOCK scores initially improved as the number of orientations

* the amount of minimization increased and then converged (Figure 10). We

*elected the lowest converged values—1000 orientations and 1000 minimization

*Ps—as optimal
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Figure 10. Optimization of parameters for rigid ligand docking. Parameters of 50
(D), 100 (O), 1000 (V), and 10000 (DX) minimization steps
(simplex final_max_iterations) are examined as a function of the number of
orientations (max_orientations).

Parameter Na me Parameter Description Value

max_Orientations The number of ligand poses sampled 1000
by the rigid orienting algorithm

Simplex score converge The score threshold used to 0.1
determine simplex convergence

-

Si mplex_trans step The maximum initial translation step 1.0 A
size for the simplex minimizer

-

simplex rot step

simplex to rs_step

Si
- -"** final max_iterations

The maximum initial rotational euler 0.1
angle step size for the simplex radian
mln Inlzer

The maximum initial dihedral angle 10°
step size

The maximum number of simplex 1000
iterations

Table 11:

"d ligand Glocking
Fescription of and optimized default values for parameters that affect
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Flexible DOCKing Parameter Optimization

For the more complex flexible ligand algorithm, the parameter optimization

was performed first on the anchor docking, and the best parameters were then

used for optimizing the growth. The parameters that control the sampling in both

these steps are listed in Table 12. As for rigid ligand docking, the parameters

that control step sizes for the simplex minimizer were set to the previously

defined optimal values.

The first step in the anchor-and-grow algorithm is ring identification or

anchor segmentation. All bonds within molecular rings are treated as rigid. This

classification scheme is a first-order approximation of molecular flexibility, since

some amount of flexibility can exist in non-aromatic rings. To treat such

phenomena as sugar puckering and chair-boat hexane conformations, the user

needs to supply each ring conformation as a separate input molecule. If the

molecule does not have a ring, the largest rigid segment is specified as the

anchor. Additional bonds may be specified as rigid by the user. For simplicity,

all runs in this study used the default of largest anchor only. If the molecule had

multiple anchors of the same size, the first anchor on the anchor list was used.

Once the anchor had been identified, the parameters that control the number of

anchor orientations (max_orientations), the number of anchor minimization steps

(simplex anchor_max_iterations), and the cutoff for the anchor pruning

(num_confs_for_next growth) were explored. Because the anchors are

substructures of the ligand, the parameter convergence was monitored as a

function of the RMSD between the anchor orientation and the corresponding
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Substructure of the crystal ligand averaged over all generated orientations before

the pruning function. When the number of anchor orientations and minimization

steps were varied systematically, the number of minimization steps converged at

500 (Figure 11). We expected this optimized value to be lower than rigid docking

because anchors are typically smaller than the final ligand.

Because the anchor orientations are pruned before the growth step, we

used the optimized number of minimization steps while exploring the number of

anchor orientations and the pruning cutoff. The optimal anchor pruning cutoff of

100 was chosen as a balance between convergence and the length of the

calculation, which remained fixed for the final exploration of the number of

orientations. The optimal number of orientations was selected to be 500

because the combination of these three variables generated the highest number

of anchors near the crystal structure (Figure 11a). Note that if the number of

orientations was increased beyond the selected value, the number of anchors

near the crystal structure dropped dramatically. We hypothesized that this

resulted from a combination of increased sampling and pruning. The pruning

function was designed to identify a representative orientation from each energy

well that the matching algorithm finds (see Introduction: DOCK Background). As

sampling increased, the ranked orientations began to converge toward the

bottom of the deepest energy wells, sampling less of the alternative high energy

wells. Because the pruning function is designed to supply the most diverse

ligands, fewer orientations made it through the pruning step as the sampling is
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increased. We felt that this effect was reducing the potential sampling for the

algorithm and plan to explore alternatives in future studies.

The next step in the anchor-and-grow algorithm is flexible bond

identification. Each flexible bond is associated with a label defined in an editable

file. The parameter file is identified with the flex_definition_file parameter. Each

label in the file contains a definition based on the atom types and chemical

environment of the bonded atoms. Typically, bonds with some degree of double

bond character are excluded from minimization so that planarity is preserved.

Each label is also associated with a set of preferred torsion positions. The

location of each flexible bond is used to partition the molecule into rigid

segments. A segment is the largest local set of atoms that contains only non

flexible bonds.

Using the optimal anchor parameters, we varied number of minimization

steps for each layer of growth (simplex grow_max_iterations) and the cutoff of

number of conformers for the growth pruning function

(num_confs_for_next growth). Because the dock run now creates a complete

pose, we return to using a combination of the score for the top ranking pose

averaged over the entire test set and the success rate to monitor convergence.

As with rigid ligand docking, the success rate improves modestly with improved

sampling and eventually converges (Figure 11). However, although DOCK

scores improved as the number of orientations and the amount of minimization

increased, the values do not converge. We once again attribute this

phenomenon to the pruning function. Therefore, we used the success rate to
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select the lowest converged values—500 minimization steps and the cutoff for

the number of conformers for the growth section as 100—as optimal.
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Figure 11. Optimization of parameters for flexible ligand docking. (a)
Parameter optimization for anchor sampling portion of flexible ligand docking.
TOP: Parameters of 0 (D), 50 (O), 100 (A), and 500 (V) anchor minimization
steps (simplex_anchor_max_iterations) are plotted as a function of the number of
orientations (max_orientations). BOTTOM: Parameters of 50 (vertical stripes),
500 (filled), and 5000 (diagonal stripes) anchor orientations (max_orientations)
are compared using an anchor pruning cutoff (num_confs_for_next growth) of
100. (b) Parameter optimization for growth sampling portion of flexible ligand
docking. Growth pruning cutoffs (num_confs_for_next growth) of 25 (O), 50
(A), 100 (V), and 200 (Ö) are plotted as a function of the number of growth
minimization steps (simplex grow_max_iterations).
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Parameter Name Parameter Description Value

The number of anchor poses
max_orientations sampled by the rigid orienting 500

algorithm
The maximum number of

num_anchor orients_for_growth anchor orientations promoted 100
to the conformational search

The number of partially grown
ligand conformers stored at
each stage of the flexible
growth procedure

num_confs_for_next growth 100

The maximum number of
simplex iterations applied to
the ligand anchor during
anchor docking

simplex_anchor_max_iterations 500

The maximum number of
simplex iterations applied to
the ligand during the flexible
growth procedure

simplex_grow_max_iterations 500

The maximum number of
simplex iterations applied to
the complete ligand by the
secondary scoring function

simplex_final_max_iterations

Table 12: Description of and optimized default values for parameters that affect
flexible ligand docking
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SUMMARY

We have synthesized a series of phenothiazine derivatives, which were

used to test the structure-activity relationship of binding to HIV-1 TAR RNA.

Variations from our initial compound, 2-acetylphenothiazine, focused on two

moieties: ring substitutions and n-alkyl substitutions. Binding characteristics were

ascertained via NMR, principally by saturation transfer difference spectra of the

ligand and imino proton resonance shifts of the RNA. Both ring and alkyl

substitutions manifested NMR changes upon binding. In general, the active site,

while somewhat flexible, has regions that can be capitalized for increased

binding through van der Waals interactions and others that can be optimized for

solubility in subsequent stages of development. However, binding can be

nontrivially enhanced several-fold through optimization of van der Waals and

hydrophilic sites of the scaffold.
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INTRODUCTION

Synthesis and evaluation of focused libraries of small molecules for

binding to specific targets are crucial for generating leads in the drug discovery

process. During the knowledge-based drug design process, repeated cycles of

synthesis and testing of smaller libraries while optimizing for a desired specificity

or affinity is an efficient way to generate high-quality lead compounds (Hajduk PJ

et al., 2000; Rees DC et al., 2004). Although RNA is a potentially valuable drug

target, few compounds specifically targeting RNA are currently on the market;

some antibiotics in current clinical use provide a precedent for targeting RNA

since they bind to conserved microbial rRNA structural motifs. One advantage of

targeting RNA compared to developing drugs against protein receptors is that it

can open new fronts in the fight against diseases (Hermann T., 2000).

According to World Health Organization estimates, 42 million people are

living with HIV/AIDS worldwide. With growing resistance of the retrovirus HIV-1

(human immunodeficiency virus, type 1) to current drugs, there is need for

research on other HIV-1 targets. The HIV-1 genomic RNA itself presents

possibilities. One of the more prominent RNA targets is the HIV-1 TAR RNA

motif, which plays an important role in the life cycle of HIV (Aboul-ela F et al.,

1995; Cheng AC et al., 2001). Use of a selective inhibitor that blocks the

interaction of TAR and the virus-encoded protein Tat, which regulates RNA

transcriptase processivity, is one possible way of keeping the virus from

proliferating (Hamy F et al., 1997). A number of recent studies have identified

small-molecule ligands that bind to TAR RNA, thus inhibiting Tat binding or Tat

º
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transactivation (Davis B et al., 2004; Hwang Set al., 2003; Lind KE et al., 2002;

Renner S et al., 2005).

We have previously identified a series of “hits,” i.e., compounds that

specifically bind HIV-1 TAR RNA, by using a sequential combination of virtual

screening followed by limited experimental screening (Lind KE et al., 2002).

Some of these hits belong to a class of compounds called phenothiazines, which

have been used as antipsychotic agents for many years. Besides its proven high

bioavailability and low toxicity, relative to other RNA binding drugs, phenothiazine

is an attractive scaffold for potential lead development due to its low molecular

weight and single positive charge, which afford ample room to build in enhanced

binding affinity.

By testing a small set of commercially available phenothiazines against

the TAR RNA structure, we were able to establish that this class of compounds is

an interesting scaffold for further derivatization (Mayer M and James TL, 2004).

NMR is especially useful at this stage of the optimization process because the

tested compounds do not yet have a high affinity, thus requiring methods that are

able to identify and classify weak interactions. NMR is also quite robust in that no

false positives or negatives are found in NMR screening, where a hit is defined

as a small molecule interacting specifically with the active site of the biomolecule.

NMR also allows us to determine the affinity and specificity of the small

molecules tested by monitoring imino proton chemical shifts of the RNA target

(Mayer M and James TL, 2005; Yu Let al., 2003). Differential line broadening

(DLB) has been used for many years to identify ligand moieties involved in
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binding interactions (Fejzo J et al., 1999). Similarly, saturation transfer difference

(STD) NMR has proven to be efficient in identifying and characterizing weakly

binding compounds even to small RNA constructs (Mayer M and James TL,

2002).

The initial testing of commercial phenothiazines showed that substitutions

around the phenothiazine ring and the presence of a basic amine functionality

were important structural features for binding activity (Mayer M and James TL,

2004). An NMR structure of acetylpromazine complexed with the HIV-1 TAR

RNA construct has also been solved in our lab (Du Zet al., 2002), and we used

this structure to illuminate the SAR data obtained (Figure 1). The same 27 nt

RNA construct used in structural elucidation of the acetylpromazine TAR RNA

complex is utilized for the binding studies reported here. The objective was to

generate derivatives of the known ligand basic phenothiazine scaffold in order to

ascertain some aspects of a structure-activity relationship. To identify the crucial

binding interactions of the original scaffold, two libraries were designed: the first

one to probe substitutions of the phenothiazine ring system, and the second one

to probe aliphatic side chain substitutions.

RESULTS AND DISCUSSION

Chemistry

We set out to evaluate structure-activity relationships for binding of a

series of compounds with the phenothiazine scaffold to TAR RNA. A concomitant

goal was to explore the ability to moderate the potency of the commercially.
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Figure 1. Binding Site of TAR RNA with Acetylpromazine Bound.
See Compound 6 in Figure 3. The NMR structure has PDB code 1LVJ(Du Zet
al.).

A) Perspective of the phenothiazine scaffold from the minor groove.
B) Perspective of the phenothiazine scaffold from the major groove.
C) Perspective of the entire compound. The second half of RNA was removed for
visualization purposes.

º,
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available compounds already tested. We dissected the scaffold into two parts:

substitutions of the phenothiazine rings and substitution of the n-alkyl linker

variations. We proceeded to synthesize chemical libraries with modifications in

each of those moieties

The phenothiazine ring system was constructed from diarylamine starting

materials by an iodine-catalyzed reaction with sulfur (Yale HL et al., 1957).We

performed many variations of this reaction in an attempt to improve the generally

low yields and found significant improvement by conducting the cyclization with

microwave irradiation. While microwave conditions have been briefly described

before for the synthesis of phenothiazines, they relied upon the use of strong

acid or Lewis acid catalysts or the use of dry conditions (Filip SV et al., 1998;

Villemin D and Vlieghe X, 1998). Under our optimized conditions, the reaction is

carried out in water in a sealed reaction vessel and is heated to 190°C for 20 min

under microwave irradiation (Figure 2A, Compounds 1 and 2). This method was

very convenient, since the hydrophobic product immediately precipitated upon

cooling and could easily be purified by filtration. This new, to our knowledge,

method for the synthesis of phenothiazines was successfully used to synthesize

a set of new substituted 10H-phenothiazines (Figure 2A, Compound 2). The 10H

phenothiazines were then alkylated by using sodium hydride and 1-chloro-3-

iodopropane (or appropriate chloroiodoalkane) to give the

chloroalkylphenothiazine (Figure 2A, Compound 3). This intermediate could then

be aminated with dimethylamine (or another secondary amine) in a sealed vessel

with microwave irradiation to afford the ring-substituted phenothiazine library
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Figure 2. Synthesis of a 10H-Phenothiazine Library
For more information, see Experimental Procedures (“Synthesis of Compounds")
and Results and Discussion (“Chemistry”).

A) Ring variant syntheses. The conditions for syntheses are: (A) 2 eq. Sa.

catalyst 12, water, 50 W microwave, 190°C, 20 min; (B) 1.2 eq. NaH, DMF, 0°C, 1
hr, (C) 5 eq. CI(CH2)3] (slow reverse addition), RT, 1 hr. (D) 4 eq. dimethylamine

(8(1}), 2M THF, DMF, 30 W microwave, 100°C, 40 min.
B) Side chain variations. The conditions for syntheses are: (A) 2.1 eq. NaH, THF,
DMSO; (B) 3 eq. CI(CH2)Al, (6a–60), reverse add., THF, DMSO, RT, 2 hr., (C) 5
eq. Kl, 2-methyl-4-propanone, 130°C, reflux, 40 hr. (D) 2 eq. HNR1R2, DMF,
60°C, 20 hr.
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(Figure 2A, Compound 4). The subset of these compounds that were soluble and

stable enough to be tested for binding by NMR is reported in Figure 3.

For evaluation of side chain substituents, we decided to fix the ring

scaffold as 2-acetylphenothiazine and 2-chlorophenothiazine and to vary the

length of the alkyl linkers and the substituents on the basic amine group (Figure

2B). We again alkylated the 10H-phenothiazine ring by using sodium hydride and

four chloroiodo alkyl chains, the length of which varied from 3 to 6 methylene

units (Figure 2B, Compounds 5–7). We found that the resulting alkyl chloride

intermediate was not sufficiently reactive to yield product with a diverse set of

amines, so we used the Finkelstein reaction to convert the chloroalkane to an

iodoalkane (Figure 2B, Compound 8). The iodoalkane intermediate then could be

reacted with a diverse set of primary and secondary amines to afford the

completed side chain variation library (Figure 2B, Compound 9). In general,

these reactions proceeded quite cleanly, with the major side reaction being the

elimination of the iodide in longer linkers. For this set, those compounds soluble

and stable enough to be tested by NMR are reported in Figure 4.

Library Screening

STD NMR experiments and differential line broadening (DLB) of proton

resonances on the ligand enabled assessment of ligand binding to the RNA

target (Fejzo J et al., 1999; Mayer M and James TL, 2002; Mayer M and James

TL, 2005). RNA imino proton chemical shifts were monitored to identify and
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characterize the location of small-molecule binding to the 27 nt construct of HIV-1

TAR RNA. Only stable, water-soluble compounds were utilized for these studies.

The affinities of the compounds for the RNA construct were divided into

three categories by a combination of DLB and STD effects. For binders deemed

more promising by ligand NMR results, RNA imino proton chemical shift

measurements were also carried out. We were able to classify 24 compounds

according to their RNA binding interactions manifest in resonance line

broadening and STD spectral intensities. Figure 5 shows reference and STD

spectra of two selected compounds from the libraries. Compound 17 exhibited

strong line broadening effects and substantial STD enhancements (Figure 5A).

Compounds with these characteristics were categorized as strong binders. On

the other hand, Compound 23 shows only weak broadening of the aromatic

protons, at similar ligand and RNA concentrations as for Compound 17 (Figure

5B). Compounds showing these characteristics were categorized as weak

binders.

Nine compounds were examined to determine the effects of aromatic ring

substitutions on binding affinity (Figure 3). For analysis, we divided the

substituents by location on the ring system (see Figure 1 for numbering). Note,

however, that the symmetry of the phenothiazine ring system requires us to

consider whether a substituent is exerting its influence on the minor groove or

major groove side of the complex. Bond rotation around the linker-N-to-alkyl-C

bond will enable almost the same conformation in the complex. As shown in

Figure 1, we have found that a hydrophilic group at position 7 (or 3) will be.
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Figure 3. Binding between Phenothiazine Ring Derivatives and TAR RNA
A–D) Binding was classified into three binding categories: affinities of ~0.1–1 mM
(+++), affinities of ~1–5 mM (++), and affinities weaker than ~5 mM (+). For all

panels, the compounds are at a concentration of 500 piM and the RNA is at a

concentration of 50 puM. Compounds are separated from left to right by the

location of substituents on the rings and are roughly ordered from top to bottom

by increasing hydrophilicity.
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Figure 4. Phenothiazine Scaffolds with Side Chain Substitutions Tested for
Binding to TAR RNA
A and B) As explained in the Results and Discussion (“Library Screening”), the
chlorine substituent causes the ring system to flip in orientation from the structure
in Figure 1. As a result, affinity comparisons can only be made within a particular
column. Binding categories and experimental conditions same as for Figure 3.
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exposed to solvent on the minor groove side of the complex. That being said,

TAR RNA has been shown to be extremely flexible in solution, and portions of

the active site can potentially distort to accommodate particular substituents

(Bayer Pet al., 1995; Davis B et al., 2004, Du Zet al., 2002; Ippolito JA and

SteitzTA, 1998; Murchie AIH et al., 2004)

In Figure 3A, we examine the effect of adding methyl groups. In

Compound 2, the methyl group is in position 2 on the ring scaffold. If a

substituent in this position is oriented toward the major groove side of the binding

pocket, as in position 6, it will sustain some amount of van der Waals (VDW)

clash. Therefore, we expect that the methyl orientation is toward the minor

groove, making room for the single methyl substituent. The double methyl

substituent supports this hypothesis with reduced binding affinity, which we

attribute to VDW clash from the second methyl group, which must be on the

major groove side.

In Figures 3B-3D, we have ranked the compounds by hydrophicility. In

Figure 3B, substituents in position 1 are solvent exposed but could also pack with

the top portion of the binding site. This orientation rationalizes the improved

binding for the more hydrophilic hydroxyl substituent as well as the additional

increase in affinity from VDW interactions with the methoxy substituent. The

carbon at position 7 in Figure 3C is completely solvent exposed. Therefore, we

propose that increasing hydrophilicity of the substituent in this position improves

binding in the series. Finally, the carbon 3 position is completely buried.

Therefore, the more hydrophobic compounds in Figure 3D still have reasonable
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binding. The methoxyl substituent has reduced binding in the series due to VDW

clashes in the major groove orientation.

For the side chain-substituted library, the ratio of the STD intensities of the

aromatic region resonances versus the aliphatic region resonances and line

broadening were used to rank the small library of compounds. From analysis of

the STD spectra of the originally discovered ligand acetylpromazine, we knew

that the aromatic rings of the heterotricyclic structure have a closer interaction

with the RNA protons than the aliphatic side chain (Mayer M and James TL,

2004). This is not apparent in the NMR structure of acetylpromazine in complex

with TAR RNA, where the side chain and ring system of the ligand appear to be

equally interactive with the RNA (Du Zet al., 2002). As discussed previously

(Mayer M and James TL, 2004), we believe that this apparent discrepancy may

be due to the fact that we are pinning down the relatively flexible side chain in the

structure calculation by intermolecular NOEs, whereas that particular

conformation with the side chain pinned down in the minor groove may represent

less than half of the population of the ligand in the bound form. The weaker STD

intensities of the side chain implied that optimization of that region of the ligand

would be beneficial. Phenothiazine derivatives with stronger STD intensities in

the aliphatic side chain may reflect a larger population of bound ligand with the

side chain immobilized in the minor groove.

For the side chain variation series, the relative STD enhancements of the

aromatic protons were larger than those of the side chains, providing strong

evidence that it is the phenothiazine ring that provides much of the binding
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energy. However, in the substituent comparison, the phenothiazine ring system

remained the same within each series. Therefore, it was possible to correlate

stronger aliphatic STD enhancements with higher affinity of the ligands because

the phenothiazine remained largely unchanged. In addition, stronger relative STD

signals of the aliphatic groups were reflected in stronger DLB effects. Detailed

epitope mapping of the ligands was not performed due to significant overlap in

some cases, especially of the aromatic protons.

The qualitative binding affinities for the side chain variations can be found

in Figure 4. In the solved structure, the minor groove portion of the lower half of

the binding site is largely comprised of an unpaired cytosine from the loop region

of the RNA. This cytosine closes over the ligand situated at the binding site; in

fact, the ligand cannot get into the structure determined without the bulge

cytosine being moved aside. While this cytosine is within hydrogen bonding

distance of the ribose of the following nucleotide, we hypothesize that this portion

of the binding site is somewhat malleable and thus able to accommodate larger

groups on the side chain region. For the acetylphenothiazine scaffold derivatives

in Figure 4A, we suggest that the cyclohexyl structure is intrinsically stable

enough to deform the active site when combined with additional VDW

interactions. Compound 14, however, has a bit too much bulk for the active site

as well as significant entropy loss upon binding, resulting in a decrease in

binding. For the remaining compounds in the list, the substituents have enough

bulk to cause little VDW clash, but too much internal flexibility to distort the active

130



3.

_2)…•ºi-----2)*,M.W

—º-"º
4."LJ)S-l-→~"
º

----l-tººp

109876543.2t0
ppm

Figure5.

RepresentativeNMRSpectra
of
PhenothiazineCompoundsfromFigure
4

Forallspectra,thecompound
isata
concentration
of500puMandtheRNAisata
concentration
of50puM.

(A)
Compound
17:(1)
Referencespectrum
of
compoundalone;anasteriskindicatesimpurities.(2)
Referencespectrum

of
compound
inthepresence
ofTARRNAshowingconsiderablelinebroadeninginducedbythe
oligonucleotide.
(3)STDNMRspectrum

ofthecompound
inthepresence
ofTARRNA.TheRNAis
irradiated
at5.8ppm,as
indicated
inthefigurebythearrow.Signalsof

Compound
17
indicatingthebindinginteractionareclearlyvisible,whilethoseoftheimpuritiesindicated

byasterisksaresubtracted.RNAsignalsarealsovisiblebecausethemolecularsizeisnotlargeenough
to

eliminatethe
backgroundsignalsbya
relaxationfilter.

(B)
Compound23:(1)
Referencespectrum
of
compoundalone.(2)
Referencespectrum
ofthecompound
inthepresence

ofTARRNAshowing
a
smallamount
oflinebroadeninglocalized
tothearomaticringprotons.(3)STDNMRspectrum
of

thecompound
inthepresence
ofTARRNA.TheRNAis
irradiated
at5.8ppm,as
indicated
inthefigurebythearrow.Inthiscase,signalsforthearomaticprotonsmanifestaneffect,whilethesidechainandtheimidazolegrouparesubtracted.



site. In addition, because these compounds are so flexible, the entropic penalty

to bind these molecules must be higher than the enthalpic gain.

For the choro-substituted phenothiazines in Figure 4B, the side chain will

be in a slightly different orientation in response to the flipped scaffold (relative to

the acetylphenothiazine series); thus, this series cannot be directly compared to

that in Figure 4A. However, many of the same conclusions can be drawn. For

Compounds 17 and 18, the single substituents have a thinner diameter than the

original dimethyl substituents, which we hypothesize enables these flexible

chains to adapt to the minor groove. The two cyclohexyl compounds most likely

have the same effect as what is shown in Figure 4A, they are intrinsically stable

enough to deform the active site while compensating with additional VDW

packing. The cyclopenty rings have a shorter chain length than any other

Substituent in the series. Because the active site does not widen until a bit further

down, these substituents are likely disrupting the upper portion of the active site.

Finally, for both of the aromatic compounds, the stacking interactions with bases

are not possible without significant rearrangement of the TAR structure, resulting

in entropic loss of binding. In this case, the substituents would be solvent

exposed, thus explaining their reduced binding.

For compounds that showed large STD intensities and exchange

broadening effects, the RNA imino proton resonances were monitored. Imino

proton chemical shift changes upon addition of ligand provide information about

the binding site on the RNA and also permit KD values to be determined (Figure

6). For Compound 11, the most potent of the tested molecules, the calculated KD
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value was 140 HM, or about twice that of the original ligand, acetylpromazine

(Mayer M and James TL, 2004). As shown for Compound 11 with the 3

hydroxymethylpiperidine ring (see Figure 7), the imino resonance that shifts most

upon addition of the ligand is that of G26 of the HIV-1 TAR RNA. The imino

proton resonance of G26 exhibits a large upfield shift due to ring current effects

from the stacked ligand benzene I. As with Compound 11, the other ligands

exhibited imino chemical shifts only for residues in the vicinity of the TAR bulge.

It should also be noted that there was no evidence that more than one of the

tested ligands binds to the RNA at the same time, as no significant imino

chemical shifts were observed outside of the binding site for any of the tested

compounds. From previous studies, which entailed several different kinds of

multinuclear and multidimensional NMR spectra, we also found that only

residues in the vicinity of the bulge experienced changes upon ligand binding,

and that there were no changes evident for other residues upon addition of a

large excess of ligand (Du Zet al., 2002; Lind KE et al., 2002).

We would like to emphasize that a well-defined SAR cannot be expected

from compounds with binding affinities in this range. However, the SAR

performed for the focused library of phenothiazines suggests a few avenues for

future developments. A side chain with 3–4 methylenes between the ring and the

heteroatom seems optimal (Figure 4). Consistent with the NMR structure, a

flexible linear chain will snake nicely along the minor groove. In addition to VDW

interactions, heteroatoms or functional groups with hydrogen bonding capabilities

may improve binding. Some rigidity in the side chain will decrease entropic loss
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upon binding, but the orientation and nature of further derivitization will become

more critical. Ring substituents may further enhance binding, and extension

beyond the methoxyl group in position 1 should gain additional VDW interactions.

The results of Figure 3 also imply that it might be of value to have a

phenothiazine with a hydrophilic substituent in position 7 and a small

hydrophobic substituent in position 3. These implications from the SAR are

entirely consonant with the structure.

SIGNIFICANCE

The synthesis of the focused library of phenothiazine derivatives—a class

of nontoxic, bioavailable RNA binders—and analysis of the SAR for binding to

HIV-1 TAR RNA reported here are important extensions of earlier work. The

study explores structural features affecting phenothiazine interactions with TAR

RNA. The observation that both moieties varied here—ring substituents and the

n-alkyl substitutions—affect binding agrees with our published structure of TAR

with acetylpromazine. In addition, the results described above suggest that the

binding site, while flexible, has regions that restrict growth. There are also

several areas of the binding site that are solvent exposed, which can be exploited

in later stages of development.

The most significant factor in the data is that compounds possessing a

four-atom linker between the tricycle and the distal base are among the tightest

binders. In the pharmacological literature, neuroleptic activity is strongly

associated with a three-atom linker, and antihistamine activity is associated with
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a two- or three-carbon linker. Obviously, any RNA binding compound would

require the ability to dissociate these undesirable activities from therapeutic

effects. Compounds with longer linkers provide an attractive potential route

toward that goal.

In future work, knowledge gained in this study can guide further

enhancement of specificity. The phenothiazines studied have a single positive

charge and relatively low molecular weight. In addition to modifications studied

here, increased affinity may be gained by combining the appropriate substituted

phenothiazine with other groups known to enhance RNA binding (e.g., amino

sugars, guanidino groups, and intercalating groups). However, as shown here,

binding affinity can be improved through optimization of VDW and hydrophilic

sites of the scaffold. This hypothesis is supported by the increase in binding from

the naked promazine scaffold to the final product from this study, which have

binding affinities of 5 mM and 140 puM, respectively.

EXPERIMENTAL PROCEDURES

NMR Experiments

Unlabeled RNA samples were prepared and purified as previously

described (Mayer M and James TL, 2004). NMR experiments were performed on

a Varian Inova 600 MHz spectrometer. Typically, a spectrum of the compound

alone at a 250 or 500 mM concentration was acquired, and then RNA was added

from a concentrated stock solution to produce a 25 or 50 puM final RNA

concentration. Reference and STD spectra were compared. STD NMR spectra
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For all spectra, the RNA is at a concentration of 50 mM.
A) Sequence of the TAR RNA construct used for testing the phenothiazine
derivatives.

B) Chemical shift monitoring of TAR RNA imino proton resonances upon addition
of Compound 11 in increasing concentrations, from 0 to 500 mM. The chemical
shift difference is plotted against the compound concentration to determine the
dissociation constant of the TAR-ligand complex.
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were acquired by internal subtraction via phase cycling. On-resonance irradiation

was set to 5.8 ppm, and off-resonance irradiation was set to ~30 ppm where no

RNA resonances are present. Typically, 256 scans were acquired for the STD

experiments. Presaturation of RNA resonances was achieved by an appropriate

number of band-selective G4 Gaussian cascade pulses to give a saturation time

of 2 s. The temperature was set to 15°C in all STD experiments. 1D-NMR imino

proton spectra were acquired by using hard-pulse WATERGATE water

suppression, and the excitation profile was optimized for maximum intensity at 13

ppm

For the qualitative ranking of compound binding affinities, spectra of

resonances from the ligand alone were compared with the same resonances in

STD spectra acquired with ligand in the presence of RNA (see Figure 5 for

representative examples). A classification of binding was made according to

observed STD intensities and line broadening effects (Figures 3 and 4).

For a select subset of derivatives, dissociation constant (KD) values were

determined by titrating the RNA with ligand and monitoring the RNA imino proton

chemical shift differences (Figure 6). Typically, five titration points were taken for

each compound for which we determined the Kp. In a previous study, the first

compound of this series, acetylpromazine, was found to have a binding affinity of

270 puM (Mayer M and James TL, 2004). The qualitative study described above

found the remaining compounds to be in the same binding range of ~0.1–1.0

mM. Substantial line broadening observed for some of the tested compounds

stems mostly from the broadening of resonances due to chemical exchange of
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the ligand either between free and bound species or, more likely, from multiple

conformations on the RNA; the latter may result from the symmetry of the ligand

binding in a similar fashion, but with the ring flipping 180°. Except for the parent

compound listed for comparison, for the compounds whose KD values were

determined (Figure 6), the symmetry was broken such that one orientation of

binding was strongly preferred; this was clearly evident in the quality of the

various spectra (primarily lineshapes) acquired for these complexes compared

with the others. For these three compounds, it appears that fast-exchange

conditions were obtained. As noted already, our NMR results indicate that these

ligands bind to only a single site on our TAR RNA construct. The equation for

single-site binding under the fast-exchange regime,

6 – 6

K, = C **)
D

(*, (1)

was used to obtain KDS as chemical shifts were observed for the complex (6), as

a function of the concentration of the ligand (CL), relative to the chemical shifts

for free RNA (6F) and ligand bound RNA (6E) (Peng JW et al., 2001).

Synthesis of Compounds

All reagents and starting materials were purchased from commercial

Sources and were used without further purification; solvents were anhydrous

HPLC grade. All parallel synthesis steps were carried out in polypropylene fritted

reaction tubes with the Bohdan Miniblock 48-position reaction blocks. Microwave
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reactions were done in a CEM Discover microwave reactor system. The reaction

schemes described below can be seen in Figure 2.

General Procedure for the Preparation of Substituted 10H-Phenothiazines

Each diphenylamine (Figure 2A, Compound 1) (2.0 mmol) was sealed in a

microwave reaction vessel with sulfur (128 mg, 4.0 mmol), a crystal of iodine,

and 2.5 ml doubly distilled water. The vessels were heated to 190°C for 20 min

and then cooled to room temperature. The crude mixture was extracted with 10

ml ethyl acetate and then purified by column chromatography (silica gel, 90%

ethyl acetate, 10% hexanes) to give the substituted 10H-phenothiazine product

(Figure 2A, Compound 2) (5%–45% yield).

General Procedure for the Alkylation of 10H-Phenothiazines

Sodium hydride (0.06 mmol) was added slowly at 0°C to each stirring

solution of 10H-phenothiazine (Figure 2A, Compound 2) (0.05 mmol) dissolved in

DMF (10 ml). The reaction was stirred for 30 min, and was then allowed to warm

to room temperature. This solution was then added dropwise into a stirring

solution of 1-chloro-3-iodopropane (27 pil, 0.25 mmol) in DMF and was stirred for

1 hr. The reaction mixture was extracted from a brine solution with ethyl acetate

(25ml, 3x) and was then evaporated under reduced pressure. The crude product

was purified by column chromatography (silica gel, 90% ethyl acetate, 10%

hexanes) to give the substituted 10H-phenothiazine product (Figure 2A,

Compound 3) (35%–85% yield).
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General Procedure for the Amination of 10-(3-lodopropyl)-Phenothiazines

Dimethylamine (4 eq., 40 pil of a 2 M solution in THF) was added to each

member of the substituted 10H-phenothiazine product (Figure 2A, Compound 3)

(0.02 mmol) dissolved in 1 ml DMF. The mixture was sealed into a microwave

reaction vessel and was heated at 100°C for 40 min. The crude reaction mixture

was then purified by silica gel prep-TLC by using a 94.9:5:0.1 ratio of

dichloromethane:methanol:triethylamine. Pure products (Figure 2A, Compound

4) were isolated in 60%–85% yields.

General Procedure for the Alkylation of (2-Chloro or 2-Acetyl)-10H

Phenothiazines

Sodium hydride (21 mmol, 60% dispersion in mineral oil) was slowly

added to a mixture of 2-chloro- or 2-acetyl-10H-phenothiazine (Figure 2B,

Compound 5) (10 mmol) stirring in a 1:1 solution of DMSO:THF at 0°C. The

mixture was allowed to warm to 25°C and was then added to a stirring solution of

iodochloroalkanes (Figure 2B, Compounds 6a–6d) (30 mmol) in N,N-

dimethylformamide (20 ml). The reaction mixture was stirred at room temperature

for 2 hr, and 100 ml brine was added to stop the reaction. The crude product was

extracted into ethyl acetate (3x, 20 ml) and then purified by column

chromatography (silica gel, 90% ethyl acetate, 10% hexanes) to give the title

compounds (Figure 2B, Compound 7) in 40%–80% yield.

General Procedure for the lodo Halogen Exchange Reaction

A mixture of potassium iodide (5 re, 5 mmol) and each member of the

alkylated (2-chloro or 2-acetyl-)10H-phenothiazines (Figure 2B, Compound 7) (1
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mmol) was heated until reflux in 2-methyl-4-propanone until the reaction had

reached completion as determined by NMR (about 3 days). The solvent was

removed under vacuum, and the product (Figure 2B, Compound 8) (95% yield)

was used without any further purification.

General Procedure for the Amination Diversity Step

Each iodoalkane intermediate (Figure 2B, Compound 8) (0.33 mmol) was

dissolved with N,N-dimethylformamide (5 ml) and divided into five portions (0.06

mmol each). Each portion was mixed with 0.13 mmol n-butylamine, benzylamine,

2-aminoethanol, piperidine, and imidazole. The crude reaction mixtures were

worked up by extracting into methylene chloride (40 ml) from a 10% NaOH

solution (40 ml). Solvent was removed under vacuum, and each compound was

then purified by silica gel prep-TLC by using a 94.9:5:0.1 ratio of

dichloromethane:methanol:triethylamine. Pure products (Figure 2B, Compound

9) were isolated in 60%–85% yields.
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ABSTRACT

With a continually increasing interest in using RNA for therapy and for

potentially targeting RNA to treat disease, there is a need for the tools used for

protein-based drug design, particularly docking algorithms, to be extended or

adapted for nucleic acids. Here, we have compiled a test set of RNA-ligand

complexes to validate the ability of the DOCK suite of programs to successfully

recreate experimentally determined binding poses. At this point, we have

characterized the ligand sampling algorithm and made a few improvements in

both success rate and length of calculation. With the optimized parameters, 60%

of a subset of the test set with less than 7 rotatable bonds in the ligand, 41% of

the test set with less than 10 rotatable bonds, and 37% of the test set with less

than 12 rotatable bonds can be successfully recreated. In the next stage, we will

apply the new scoring functions available in the latest version of DOCK, which

we hypothesize will further increase our success rates.
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INTRODUCTION

In the past few years, the role of RNA in cellular processes has been

greatly expanded. No longer is RNA simply for transporting genetic information

from the nucleus to the cytoplasm for translation. Rather, it has been shown to

be an integral part of biological processes. For example, in the ribosome, RNA

has been shown to be responsible for a wide range of function including

catalyzing the formation of the nascent peptide bonds (Frank J and Spahn CMT,

2006; Polacek N and Mankin AS, 2005). Other RNA molecules, like HIV TAR

and bacterial riboswitches, recruit and bind proteins to regulate reproduction of

the HIV genome and the production of various processes, respectively

(Bannwarth S and Gatignol A, 2005; Frankel AD and Young JA, 1998; Tucker BJ

and Breaker RR, 2005). These and other RNA-protein interactions are critical for

cellular function and thus make potential drug targets.

Several drug design efforts for RNA targets have already been attempted

with various levels of success, and, with the increasing evidence of the

importance of RNA in regulation of the cell, these efforts will increase as well

(see (Johansson D et al., 2005; Mayer M and James TL, 2005; Mayer M et al.,

2006; Nakatani Ket al., 2006; Renner S et al., 2005; Yu XL et al., 2005) for

example). As a result, there is a need for the same tools that are used in drug

design, in particular docking algorithms, for protein targets to be adapted and

extended for nucleic acids. Previous studies suggest that poor modeling of the

high localized charge in RNA targets through both the scoring function and the

estimation of charge may be limiting the success of docking algorithms (Lind KE
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et al., 2002). In addition, in a prior investigation, we explored the ability of the

docking algorithm DOCK to recreate experimentally determined binding poses for

a protein test set and also identified the limiting factor for success was the

scoring function (Moustakas D et al., in press). The newest release of the DOCK

suite of programs, version 6, is ideally suited to address the scoring function

issues for both RNA and protein targets.

New Features of DOCK

The release of DOCK version 6 is an important extension of previous

versions of the code. Version 5 was a reimplementation of version 4 algorithm in

a modular, extendable format. The purpose of this rewrite was to create the

basic scaffold of a docking algorithm, in which the algorithm for each major

component could be easily replaced by an alternate method without affecting the

overall workflow. This newest release is a direct application of the extensibility

with the addition of a number of new features, including DOCK 3.5 scoring,

Hawkins-Cramer-Truhlar Generalized Born with Solvent Accessible Surface Area

(GB/SA) solvation scoring with optional salt screening, Poisson Boltzmann with

Solvent Accessible Surface Area (PB/SA) solvation scoring, and AMBER scoring

with optional receptor flexibility. All of these new features, which are described

below in greater detail, were plugged into the basic core of the original docking

code.

The first new scoring function, originally implemented in DOCK version

3.5, is a variant of the grid-based scoring function implemented in version 5

(Meng EC et al., 1992; Moustakas D et al., in press). While the van der Waals
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(VDW) values used for both methods are the same, instead of using the AMBER

parmS3 partial charges for the biomolecular target, the DOCK 3.5 charges are

calculated using finite difference Poisson-Boltzmann equation as implemented in

the program DelPhi (Nicholls A and Honig B, 1991). The scoring function also

has the option to incorporate both ligand and receptor desolvation. For the

ligand alone, the atomic desolvation for each atom is precomputed, typically by

the program AMSOL, and is stored as an additional field at the end of the

standard ligand file (G.D. Hawkins et al., 2004). The desolvation of each atom is

then normalized by the extent to which the ligand is buried in the active site by

the SOLVMAP accessory distributed with DOCK. Alternately, for the receptor

and ligand together, the desolvation can alternatively be calculated using the

occupancy desolvation method, in which the desolvation energy is calculated as

the affinity of the ligand for solvent weighted by the volume of the solvent

displaced from the receptor atom due to binding and vice versa (Luty BA et al.,

1995). The desolvation energy for both the receptor and ligand are precomputed

using the SOLVGRID accessory also distributed with DOCK.

The next two scoring methods, GB/SA and PB/SA, are implicit solvent

models that account for the effect of solvent on the electrostatics of the complex.

In the GB/SA scoring function, the interaction between the ligand and receptor

are calculated using Coulomb's Law without distance dependent dielectric for

electrostatics and the Lennard-Jones potential for VDW energies as the grid

based scoring, but also adds the change in solvation for the formation of the

complex. The polar portion of the solvation term (GB) is calculated using the
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formalism developed by Hawkins et al using parameters developed by Tsui at el

(Hawkins GD et al., 1995; Hawkins GD et al., 1996, Tsui V and Case DA,

2000a). The nonpolar solvent accessible surface area (SA) is calculated using

the icosahedra algorithm (Weiser J et al., 1999). This method also offers the

option of incorporating the effect of salt screening into the polar term based on

the Debye–Huckel limiting law for ion screening described in Srinivasan et al (J.

Srinivasan et al., 1999). The PB/SA scoring function is an implementation of the

Zap Tool Kit from OpenEye (Gilson MK et al., 1985, Jean-Charles A et al., 1991;

Prabhu NV et al., 2004). Similar to the GB/SA function, this method calculates

the VDW interaction between the ligand and receptor using the Lennard-Jones

potential. The shielded electrostatics, on the other hand, are calculated using a

dielectric function based on atom-centered Gaussians, which avoids the pitfalls

of discrete dielectrics (Grant JA et al., 2001).

The last new scoring function, AMBER score, implements Molecular

Mechanics GB/SA (MM GB/SA) simulations with traditional all-atom AMBER

force field for protein atoms, and general AMBER force field for ligand molecules

(Pearlman DA et al., 1995; Wang J et al., 2004). Unlike the methods above, this

method calculates the energy terms for the entire AMBER force field, including

bond, angle and dihedral terms for both the ligand and receptor, as well as

Coulomb's Law and the Lennard-Jones potential as described above. The

solvation energy is calculated using the Generalized Born (GB) solvation models:

(1) Hawkins, Cramer and Truhlar model with parameters described by Tsui and

Case, (2) Onufriev, Bashford and Case model, and (3) a modified version of

150



model (2) (Feig M et al., 2004; Hawkins GD et al., 1995; Hawkins GD et al.,

1996; Onufriev A et al., 2000; Onufriev A et al., 2004; Tsui V and Case DA,

2000b). The surface area term is derived using a fast LCPO algorithm (Weiser J

et al., 1999). Because the entire scoring function is calculated, a full

thermodynamic cycle is employed (i.e., Score = Ecomplex – (Ereceptor + Eigand).

Because the entire AMBER force field is available, minimization using conjugate

gradient method is available in lieu of the simplex minimizer for the other scoring

functions. In addition, Langevin molecular dynamics (MD) simulations at

constant temperature can also be performed. As a result of both the new

minimizer and the molecular dynamics capabilities, the AMBER score function

now allows both ligand and receptor flexibility during minimization and MD

simulations.

Development of Test Set

As stated above, there have been several docking studies on RNA-small

molecule complexes (Barbault Fet al., 2006; Detering C and Varani G, 2004;

Lind KE et al., 2002; Moitessier N et al., 2006). Since these studies, though, a

number of additional structures have been solved through both NMR and

crystallographic techniques. To generate the test set used for this paper, we

collected all structures that were labeled as containing both an RNA molecule

and a ligand from the protein data bank (PDB). Crystal structures with resolution

worse than 3.0 A were removed to reduce the occurrence of experimental error.

All structures solved by NMR were kept. This set of structures was then filtered
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to remove all complexes where the ligands were either ions or artifacts of the

structural determination method (eg, ethanol). To bias toward biologically

relevant structures, all receptors with less than 15 bases were also removed.

This procedure left a total of 68 structures.

In the next stage, the complexes were prepared for docking. The

complexes with ligands containing cobalt and receptors with modified bases were

removed as these chemistries were not available in our parameter set. Of the

remaining complexes, ten had multiple active sites with multiple ligands bound.

One complex (PDB code 2ET5) actually had four ligands bound to the same

receptor, which led us to remove it from the test set due to nonspecific binding

(Francois B et al., 2005). For all other complexes with multiple ligands bound,

each site was treated as unique and prepared separately. Finally, once the test

set was prepared for docking (see Methods: Test Set Preparation), each ligand

was minimized while keeping the receptor rigid to detect complexes that were not

stable in our scoring function. The ligands that moved more than 2 A heavy

atom RMSD from the starting structure were removed from the set. The final set

had a total of 46 structures (36 structures without the multiple binding sites)

(Table 1).
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PDB Codes for Test Set
1AKX 1 LVJ 1QD3 2BE0
1AMO 1MWL 1TOB 2BEE
1 BYJ 1NEM 1U8D 2ESJ
1EHT 1NTA 1UTS 2ET3
1F27 1NTB 1UUD 2ET4

1FMN 1NY| 1UU| 2ET8
1FYP 1 O15 1XPF 2F4S
1J7T 1 O9M 1 Y26 2F4U
1LC4 1 PBR 1YRJ 2TOB

Table 1: List of PDB codes for all RNA-ligand complexes in test set. Codes in
bold indicate complexes with multiple active sites, which were modeled

independently. Codes in italics are structures determined by X-ray
crystallography; others were determined using NMR.
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METHODS APPLIED TO DATE

Test Set Preparation

A little less than half of the test set structures were determined using

NMR, and thus deposited to the PDB as an ensemble of structures. To select a

structure to use for docking, we first calculated the average structure from the

coordinates of the entire ensemble. Because this structure was likely to be

physically unrealistic, we then selected the structure in the ensemble that was

closest to the average by RMSD. For the crystal structures, all solvent and

counter ions were removed, and, if there was more than one location for a base,

the highest occupancy was selected. Hydrogens were added and optimized in

the presence of the bound ligand using the algorithm described in Moustakas et

al. (Moustakas DT, 2004). AMBER parmº% partial charges were used for the

bases (Cornell WD et al., 1995). Partial charges for receptor cofactors were

calculated using the AM1BCC model, and formal charges were modified by hand

(Jakalian A et al., 2000). The entire receptor preparation was completed using

the Dock Prep procedure in Chimera (Moustakas D et al., in press; Pettersen EF

et al., 2004).

To identify the active site for docking, all hydrogens were removed from

the receptor, and the molecular surface was calculated using the dms program

(Richards FM, 1977). Spheres were then created along the molecular surface to

create a negative image of the features. All spheres within 10 A of any atom of

the bound ligand were selected, resulting in an average of 123+22 spheres per

active site. Different distances from 1 – 10 A from the ligand were explored. We
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found that there was no change in the success rate using anything between 1

and 10 A and only minimal changes in the energy (-98.942.5 kcal/mol) and length

of calculation (1207+3 seconds). We therefore selected the 10 A radius from the

ligand for historical purposes to compare with the results from the protein test set

(Moustakas D et al., in press).

Next, to account for the receptor contribution to the score during docking,

grids that store the VDW and electrostatic values for the receptor were

calculated. The dimensions of the grids were calculated by padding the selected

spheres by 5A using the accessory SHOWBOX. Default parameters, except for

the energy cutoff distance set to 9999, were used in the GRID accessory

program to calculate the data for the grids themselves. The final grids averaged

~40,000 A* in volume.

The ligands were prepared using two different techniques. For the

sampling parameter optimization, the ligands were prepared once again using

the Dock Prep module in Chimera using the AM1BCC charge model (Jakalian A

et al., 2000; Pettersen EF et al., 2004). For the comparison and evaluation of the

scoring functions, only ligands with 12 or less rotatable bonds were prepared

(see Results and Discussion of Current Status: Flexible Ligand Sampling

Optimization). The ligands were first run through the standard ZINC database

preparation (Irwin JJ and Shoichet BK, 2005). In this method, the three

dimensional files are converted to canonical SMILE strings. Then, an energy

minimized three-dimensional structure is generated, and the stereochemical

centers are expanded. Because it is not clear what the local pH of the RNA
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active sites might be, the protonation states for each ligand were also expanded

between pH 4.5 - 9.5. The current version of ZINC does not allow for

monoanionic protonation states for phosphate groups, so these compounds were

protonated by hand. Once the ensembles of stereochemistry and protonation

states were generated for each ligand, Gasteiger-Hückel and AM1-BCC partial

charges were calculated using the ANTECHAMBER version in DOCK, AMSOL

partial charges were calculated using the AMSOL program, and RESP partial

charges were calculated using the ANTECHAMBER accessory in AMBER 8

(Bayly Clet al., 1993; Gasteiger J and Marsili M, 1980; Hawkins GD et al., 2004;

Jakalian A et al., 2000; Wang J et al., 2006; Wang J et al., 2004).

Modification of Pruning Algorithm

The ligand flexibility sampling algorithm is an incremental construction

method called anchor-and-grow. In this method, the ligand is first divided into the

largest rigid portion and layers of flexible regions (see Figure 1 for an example).

The largest rigid portion of the ligand, or anchor, is identified and then oriented in

the active site and minimized. All Orientations with scores above 1000 kcal/mol

were removed and the remaining ranked by score and then clustered by RMSD

using a greedy algorithm (pruning) (Moustakas D et al., in press). One layer of

flexible bonds is then grown from each cluster, minimized, ranked, and clustered

again. The growth phase is repeated until the molecule is fully built. In a

previous study, we had shown that the pruning portion of the algorithm was

limiting sampling during growth and preventing energy convergence
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Figure 1. Diagram of identification of rigid anchor (layer 1) and flexible layers for
growth.
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(Moustakas D et al., in press). Therefore, while we were optimizing the sampling

parameters for flexible ligands for the RNA test set, we also reworked the

algorithm.

After comparing several clustering algorithms, it was determined that the

clustering itself was limiting the sampling. In an ideal pruning algorithm for

anchor Orientation, the anchors that are close to the location of the

experimentally determined ligand should be moved on to growth. With clustering

by root mean squared deviation (RMSD), however, all anchors that are close to

the correct position will fall into the same cluster. Thus, in the worst case, only

one of these anchors would be propagated to the next stage even though several

were generated by the sampling algorithm. Instead of clustering, we found that

using a simple scoring cutoff of 25 kcal/mol and a hard limit of 100 orientations

increased the number of orientations near the active site that passed pruning for

56% of the test set (Table 2). Applying the new pruning algorithm and

parameters to the growth cycles as well improved the success rate of flexible

docking to match that of rigid docking (Figure 4 and Discussion: Comparison to

Older Versions of DOCK).

Scaling of Repulsive VDW Radii

In our previous study, we found that flexible sampling failures often

occurred as a result of minor clashes between the ligand and the protein receptor

(Moustakas D et al., in press). Because all but one of these failed ligands could

successfully be docked using rigid sampling, we hypothesized that those failures
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were the result of the flexible algorithms inability to build around the clashes due

to the overly coarse sampling. Due to this finding, we then hypothesized that

reducing the repulsive portion of the VDW term during docking and then

performing a final minimization under the standard scoring function would reduce

this problem. Many physics-based force fields address this type of problem by

reducing the exponent of the repulsive term in the Lennard-Jones Potential.

However, modifying the equation this way actually changes the overall shape of

the function, which was used to generate all the parameters in the force field

(Figure 2). Since we would like to retain the integrity of the force field as much

as possible, we have instead scaled the radius of each atom used for the

repulsive term only. This scaling factor shifts the graph to the left but maintains

the overall shape. In more practical terms, the energies are less affected, but the

new function has a huge impact on the number of anchors generated within 1.5 A

heavy atom RMSD of the crystal structure (Figure 4 and Discussion: Flexible

Ligand Parameter Optimization).

Modification of Bump Filter

In previous versions of DOCK, the bump filter could be applied to filter

orientations that significantly overlap with receptor atoms before minimization.

Because minimization is the most time-consuming portion of the calculation, this

filtering helps to increase the speed of the calculation by directing sampling

toward more productive routes. Here, we showed that implementation of the

bump filter in DOCK5 is significantly slower than earlier versions. To begin to
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Figure 2. Influence of different methods of softening the repulsive force for the
VDW term. The force is reduced either by reducing the exponent of the repulsive
term to 10 (dot) or by scaling the radii for the repulsive force back 10% (dash).
The graph is calculated using the radius and well depth for an aliphatic hydrogen.
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address this problem in the newer version of DOCK, we have implemented the

same filtering by bump during growth, in this case between torsional sampling

and minimization. Because the number of atoms in the anchor is much larger

than in each flexible layer, we have added user parameters to separately control

the maximum number of bumps allowed for both the anchor and the growth

stages.

Optimization of Parameters for DOCKing

Because the chemical characteristics of the RNA test set are different

from our protein test set, both due to the differences between proteins and

nucleic acids and due to the differences in the make-up of the ligand set, we

reoptimized the sampling parameters for both rigid and flexible ligand docking

(see Appendix). All docking experiments were carried out on 2.2 GHz dual

processor Opteron 828s running Linux Fedora Core 3. The code was compiled

using open-source GNU compilers (http://www.gmu.org). We note that our

primary criterion for optimization was success in finding the proper ligand

geometry and not the CPU time required per compound. Unless otherwise

stated, these parameters were used for all experiments in this paper.

The final version of the new DOCK code, including all functions described in

this paper, was posted to the DOCK web site as version 6.1.0

(http://dock.compbio.ucsf.edu). All experiments performed with the new

implementation of DOCK used this version and will be referred to as DOCK6 for
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convenience. All experiments performed with the previous versions of DOCK

used version 4.0.1 and version 5.4.0 and will be referred to as DOCK 4 and

DOCK 5, respectively.

RESULTS AND DISCUSSION OF CURRENT STATUS

Rigid Ligand Sampling Optimization

The parameters listed in Table 2 control the sampling during rigid ligand

docking. We selected these parameters based on a series of rigid ligand docking

experiments in which we monitored both the success rate, where success is

defined as the top-ranking orientation being within 2 A heavy atom RMSD of the

experimental structure, and DOCK scores averaged over the entire test set.

When we explored a range of values for the maximum number of orientations

(max_orientations), or matches between the ligand and spheres, in conjunction

with the maximum number of minimization steps (simplex_max_iterations), the

DOCK score decreased rapidly as the number of orientations and the amount of

minimization increased and then eventually plateaued (Figure 3). The success

rate did not converge as well. However, we attribute this instability to the

inherent shallow, bumpy energy surface of RNA. We selected values that

balanced between the length of time for each calculation and convergence of the

DOCK score—500 orientations and 1000 minimization steps—as optimal.

Throughout the optimization procedure, all other parameters were kept the same

as those optimized for DOCK 5 (Moustakas D et al., in press).
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Parameter Name Parameter Description Value
max_orientations The number of ligand poses sampled 500

by the rigid Orienting algorithm
simplex_max_iterations | The maximum number of simplex 1000

iterations
If Bump Filter is used
max_bumps Maximum number of clashes between 12

ligand and receptor
Table 2. Description of and optimized default values for parameters that affect

rigid ligand docking for RNA test set

i 50 %

00

100 1000 10000

Number of Orientations

Figure 3. Optimization of parameters for rigid ligand docking. Parameters of 50
(D), 100 (O), 1000(A), and 10000 (V) minimization steps
(simplex_max_iterations) are examined as a function of the number of
orientations (max_orientations).
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Once the sampling parameters were optimized, we then explored the use

of the bump filter to speed up the dock runs. Using the sampling parameters

from above, we explored a range of bump cutoffs (max_bumps), or the maximum

number of heavy atom clashes allowed for a particular orientation, and monitored

the binding pose success rates (data not shown). The optimal value — 12

bumps — was selected to be the fewest number of bumps that recreated the

same success rate as without the bumps.

Flexible Ligand Sampling Optimization

For the more complex flexible ligand algorithm, the parameter optimization

was performed first on the anchor docking, and the best parameters were then

used for optimizing the growth. The parameters that control the sampling in both

these steps are listed in Table 3. As for rigid ligand docking, the parameters that

control step sizes for the simplex minimizer were set to the previously defined

optimal values.

The first step in the anchor-and-grow algorithm is ring identification or

anchor segmentation. All bonds within molecular rings are treated as rigid. To

treat sugar puckering and chair-boat hexane conformations, we have left the

rings as they were in the experimental structure. If the molecule does not have a

ring, the largest rigid segment is specified as the anchor. For this stage of the

optimization, all runs used the default of the largest anchor only. If the molecule

had multiple anchors of the same size, the first anchor on the anchor list was

used. Once the anchor had been identified, the parameters that control the
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number of anchor orientations (max_orientations) and the number of anchor

minimization steps (simplex anchor_max_iterations) were explored. Because

the anchors are substructures of the ligand, the parameter convergence was

monitored as a function of the RMSD between the anchor orientation and the

corresponding substructure of the experimental ligand averaged over all

generated orientations before pruning. When the number of anchor orientations

and minimization steps were varied systematically, the number of minimization

steps converged to 1000 for ligands with more than twelve rotatable bonds (filled

shapes) (Figure 4a). For the ligands with less than twelve rotatable bonds (open

shapes), we found the same lack of convergence issue as we did for the rigid

ligand docking. Once again, we attribute this problem to the roughness of the

RNA energy landscape.

The anchor pruning parameters were comparatively easy to optimize.

Based on the DOCK 5 studies, we chose the maximum number of anchors

allowed to the growth phase (pruning_max_orients) to be 100 (Moustakas D et

al.). As stated in the Methods Section, the perfect pruning function would

maximize the number of anchors close to the experimental data while filtering out

those further away. Therefore, using the parameters optimized above, we

selected the scoring cutoff (pruning_orient score cutoff) for the orientations —

25 kcal/mol — to be the most negative DOCK score that did not affect the

percent of anchor orientations that were with 1.5 A of the experimental for each

individual structure in the test set (data not shown).
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_ParameterNameParameterDescriptionValue minanchor_sizeTheminimumnumber
ofheavyatoms
inarigidsegment
tobe40°

considered
ananchor5°

max_orientations
Thenumber
ofligandposessampledbytherigidorienting1000

algorithm

pruning_maxorientsThemaximumnumber
of
orientationsafterrankingbyscoretobe100

carriedtothegrowthphase
-

pruningorientscorecutoffTheDOCKscorecutoffabovewhichorientationsarenotcarried25kcal/mol

ontothegrowthphase

pruning_max_conformers
Themaximumnumber
of
conformationsafterrankingbyscoreto75

becarriedtothenextgrowthphase

pruningconformerscorecutoffTheDOCKscorecutoffabovewhichconformations
arenotcarried25kcal/mol”

ontothegrowthphase1000kcal/mol”

simplexanchor_max_iterations
|
Themaximumnumber
of
simplexiterationsforeachorientation500 simplexgrowthmax_iterations
|
Themaximumnumber
of
simplexiterationsforeachconformation500 simplexfinal

min_max_iterations
|

Themaximumnumber
of
simplexiterationsforthefullygrownset500

of
conformations

gridscorerep_rad_scaleScalingvalueforVDWrepulsiveradiusduringdockingcalculation0.9 simplexfinal_minrep_rad_scale
|

ScalingvalueforVDWrepulsiveradiusduringfinalminimization
1 If

BumpFilterisused - max_bumpsanchorThemaximumnumber
of
clashesbetweeneachorientationand12

receptor -

max_bumpsgrowthThemaximumnumber
of
clashesbetweenconformationand8 Table3.

Description
ofandoptimizedvaluesfor
parametersthataffectflexibleliganddockingforRNAtestset (a)Samplingparameter

forligandswithlessthan12rotatablebonds(b)Samplingparameters
forligandswithmorethanIfGridScoreisused

receptor

12
rotatablebonds

3.
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Figure 4. Optimization of parameters for flexible ligand docking. Values for
ligands with less and more than twelve rotatable bonds are open and filled,
respectively for a), b) and d). (a) Parameter optimization for anchor sampling
portion of flexible ligand docking. Parameters of 50 (D), 100 (O), 500 (A), and
1000 (V) anchor minimization steps (simplex_anchor_max_iterations) are plotted
as a function of the number of orientations (max_orientations). (b) Optimization
of scaling factor for atomic radii for repulsive VDW term
(grid_score_rep_rad_scale). The average percent of orientations that pass the
pruning filter that are within 1.5 A of the experimental structure (line), as well as
the count of structures with no orientations near the active site (bar), are plotted
as a function of scaling factor. (c) Parameter optimization for growth sampling
portion of flexible ligand docking. Maximum number of conformations allowed to

the next stage of growth (pruning_max_conformers) of 25 (D), 50 (O), 75 (A),
and 100 (V) are plotted as a function of the number of growth minimization steps
(simplex grow_max_iterations). (d) Parameter optimization for final
minimization (simplex_final_max_iterations) after docking is complete.
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Finally, once the sampling parameters had been fully optimized, we used

them to explore scaling the atomic radius used to calculate the repulsive VDW

term (grid_score rep_rad_scale). Once again, we explored a range of scaling

factors, monitoring both the percent of orientations that pass the pruning that are

within 1.5 A heavy atom RMSD of the experimental structure averaged over the

entire test set (line) as well as counts of the number of complexes in which no

orientations were generated within the distance cutoff (bar) (Figure 4b). The

percentage of orientations close to the experimental structure increases sharply

with only minimal scaling, quickly peaks at the optimal value of 0.9 and then

slowly tails off. We hypothesize that the left side of the graph accounts for

differences in the various force fields used to determine the experimental

structures. The less dramatic tailing on the right side of the graph simply

emphasizes the loss of balance between the repulsive term and attractive term.

The optimal scaling value of 0.9 was also applied for repulsive radii in the growth

phase (see below).

The next step in the anchor-and-grow algorithm is flexible bond

identification. Each flexible bond is associated with a label defined in the

flex_definition_file parameter. Each label in the file contains a definition based

on the atom types and chemical environment of the bonded atoms as well as a

set of preferred torsion positions. Typically, bonds with some degree of double

bond character are excluded from minimization so that planarity is preserved.

For convenience, the scoring cutoff for the conformations

(pruning_conformer score cutoff) was set to 25 kcal/mol, which is the same
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cutoff for the anchor score. Using the optimal anchor and pruning parameters,

we varied the number of minimization steps for each layer of growth

(simplex growth max_iterations) and the cutoff of number of conformers to be

carried on to the next phase of growth (pruning_max_conformers). We return to

using a combination of the score for the top ranking pose averaged over the

entire test set and the success rate to monitor convergence. As with rigid ligand

docking, the DOCK scores eventually converge for both subsets of the test set

(Figure 4c). We selected the converged values — 500 minimization steps and

the cutoff for the number of conformers for the growth section as 75 — as

optimal.

For the more flexible ligands, it was discovered in the process of

optimizing the sampling parameters that, in some cases, no conformations could

be generated. We determined that all molecules could be built if the scoring

cutoff for the conformations (pruning_max_conformers) was raised to 1000

kcal/mol and if all anchors with five or more atoms were tried. However, this

change in parameters greatly increased the length of the calculation time.

Therefore, we split the test set into two segments: those with less than 12

rotatable bonds and those with more than 12. While the parameters optimized

above were still used for the ligands with less than twelve rotatable bonds, these

more permissive parameters were used for the more flexible ligands for

optimization of the final parameter.

Because the radii for the repulsive term for the Lennard-Jones potential

were scaled throughout the docking process, the full set of grown conformations
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was reminimized using the unscaled scoring function

(simplex_final_min rep_rad_scale) and then reranked to determine the final

pose. We explored a range of the number of simplex steps

(simplex final_max_iterations), and the score for the entire test set converged at

500, which we selected as the optimal parameter (Figure 4d). This final

minimization and reranking step increased the success rate from 19% to 27% for

the subset with less than twelve rotatable bonds. While there was no effect on

the success rate of 5% for the subset with more than twelve rotatable bonds, the

location of each of the ligands changes by an average of 6.7 A heavy atom

RMSD.

For reasons explained below (see Success as a Function of the Number

of Rotatable Bonds), we only optimized the bump filter parameters for flexible

docking for the set of ligands with less than twelve rotatable bonds. For

convenience, the maximum number of bumps for the anchor

(max_bumps_anchor) was set to be the same as the optimized value for rigid

docking — 12 bumps. The maximum number of bumps for growth was explored

over a range of values. Once again, the optimal parameter was selected as the

minimum number of bumps that reproduced the docking success rate without the

filter (data not shown). For ligands with less than 10 rotatable bonds, the optimal

number of bumps was set to 6. For ligands with between 10 and 12 rotatable

bonds, the optimal parameter was 10. We hypothesize that the difference in this

parameters is actually a result of the nature of the more floppy molecules. The

molecules with more rotatable bonds are small aminoglycosides and many of the
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flexible layers are ring systems, which result in more clashes with the active site

during the coarse torsional sampling.

Success as a Function of the Number of Rotatable Bonds

In a drug design effort for targeting a protein, the number of rotatable

bonds is typically limited to eight to ten (Lipinski CA, 2000, Wunberg T et al.,

2006). This limit is used to reduce the loss of entropy of the ligand, as well as to

reduce desolvation penalties, upon binding. It also increases the possibility that

the molecule will be bioavailable as a drug. However, using aminoglycosides as

an example, this rotatable bond cutoff does not appear to apply to ligands that

bind to nucleic acids. Because we include aminoglycosides, our test set covers a

wide range of rotatable bonds. We examined the ability of DOCK to reproduce

the experimental binding pose within 2A heavy atom RMSD with flexible ligand

docking (Figure 5). Here, the success rate drops off dramatically after zero

rotatable bonds--there are no ligands in the test set with between one and four

bonds—and then levels off after twelve bonds. However, when looking at the

average length of the calculation, the less floppy molecules' time increases

relatively linearly, whereas the additional sampling required for the ligands with

more than 12 rotatable bonds results in a huge increase. Because the length of

time is so much greater for the larger molecules with such little return in success

rate, we will only be using the subset of the test set with less than twelve

rotatable bonds for the remainder of this chapter. In addition, we will be

subdividing this smaller set into a) all compounds with less than seven rotatable

bonds (L7) to enable direct comparison with our protein test set (total of 10
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complexes), b) all compounds with less than ten rotatable bonds (L10) to

indicate the types of success possible for drug-like molecules (total of 17

complexes), and c) all compounds with less than twelve rotatable bonds (L12 —

total of 26 complexes).

Comparison Between Versions of DOCK

To compare the performance with previous versions of DOCK, we

repeated both the rigid and flexible docking experiments both with and without

the bump filter using DOCK versions 4 and 5 (Table 4). For both types of rigid

ligand docking, the success rate and energy score were identical for versions 5

and 6. The times differ very slightly, with version 6 performing a bit faster for all

three test subsets. We anticipated this result, because we have not made any

changes in the rigid docking algorithm in the new release. The bump filter

increased the speed for the calculations by approximately 5-fold for all subsets.

The calculations for version 4 have similar energies and run faster than newer

versions both with and without the bump filter. In this case, the bump filter only

improved the docking speed by 2- to 3-fold. However, because the length of the

calculation is so fast without the bump filter, the application is a bit superfluous.

The success rates without the bump filter for version 4 were the same as

versions 5 and 6. However, one of the top-scoring poses had atoms that

extended beyond the edge of the grid. In version 4, if atoms extend beyond the

edge of the grid, the code simply loops over the atoms, only including the atoms

inside the grid. As a result, if the atoms outside the grid are clashing with the
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-L7SubsetL10SubsetL12Subset MethodScoreSuccessTimeScoreSuccessTimeScoreSuccessTime

RigidLigandDocking

DOCK4.0.1-57.7550%.”4.4–74.7241%.”8.4–96.6938%.”12.7 DOCK5.4.0
|

–58.7650%25.7–76.8941%38.3-100.3538%50.3 DOCK6.1–58.7650%24.1-76.8941%36.9-100.3538%48.9

RigidLigandDockingwithBumpFilter

DOCK4.0.1
|

–57.2050%2.2–75.4641%3.2–97.1131%4.1 DOCK5.4.0
|

–57.0460%5.1–74.4141%7.6–97.1538%10.4 DOCK6.1–57.0460%5.4|_-74.4141%7.9-97.1538%10.5

-FlexibleLigandDocking
-

DOCK4.0.1-76.1650%P8.7||-93.1329%"13.4T-117,78323%de17.5 DOCK5.4.0
|

–64.6550%298.2–84.4335%1099.9-113.0427%2437.7 DOCK6.1–59.8260%328.0–78.7841%656.5
||

-100.8227%1255.0

FlexibleLigandDockingwithBumpFilter ---

DOCK4.0.1-84.5740%P7.7
-

101.0024%'12.3|-118,68319%0916.3 DOCK5.4.0
|

–64.5440%298.1–84.5529%1099.2-113.4423%2336.4 DOCK6.1–58.7160%252.9–77.844.1%528.0-101.3627%1149.5 Table4.
Averagescore(kcal/mol),successrate(measured
aspercent
of
complexes
intestsetwherebestscoringpose iswithin

2A
heavyatomRMSDfromexperimentalstructure),andlengthof
calculation(sec)forvarioussubsets
oftestset usingdifferentversions

ofDOCK.(a)Onecomplexoutsidethegridbox.(b)Threecomplexesoutsidethegridbox.(c) Fivecomplexesoutsidethegridbox.(d)No
conformationscouldbe
generatedforonecompound.
(e)Tencomplexes outsidethegridbox.(f)Fourcomplexesoutsidethegridbox.(g)Sevencomplexesoutsidethegridbox
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receptor, this information is not included in the calculation. While not necessarily

a problem for binding pose prediction—the pose outside the box was in this case

was a failure—these poses may create difficulties when reranking with more

advanced scoring functions without grids. In addition to clash checking, the

bump filter performs a quick check to filter out all anchor orientations that are

outside the box before minimization, so this off-the-edge issue has been resolved

for version 4 with the bump filter. However, one can tell the sampling search has

been limited as well for version 4, because the success rate is lower for both

subset L7 and L12. For versions 5 and 6, a hard cutoff that does not score or

minimize anchors that extend beyond the grid box, even without the bump filter,

has been applied.

For flexible docking, the average scores for all version 4 subsets are the

lowest and the length of the calculation is the shortest. However, between three

and ten of the ligands in each subset extend beyond the edge of the grid, which

influences these scores. In version 4, because the bump filter only checks if the

anchors are off the edge of the grid, the growth and minimization phases can still

result in a final compound with portions beyond the grid box. More importantly,

though, the success rates for all of the subsets are lower for version 4 than for

versions 5 and 6, indicating that the sampling for the oldest implementation of

flexible docking is not adequate for these purposes. The average scores for

version 6 are the least negative, but the success rates are the highest across all

the subsets, attaining the same rates as rigid docking for both the L7 and L10

subsets. We hypothesize that this improvement in success can be attributed to
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scaling of the radii for the repulsive portion of the VDW component of the score.

This scaling guides the sampling algorithm to identify the correct pose, which is

often modeled by experimentalists a bit too close to the active site in tight-binding

ligands, while avoiding the other traps on the surface of the receptor.

In comparing the length of the calculation for version 5, the bump filter

does not seem to make much of a difference except for the L12 subset. This

lack of effect indicates that anchor orientation is not a time-consuming portion of

the algorithm. Profiling experiments demonstrated instead that the biggest time

sink in the calculation is actually in minimization (data not shown). Therefore,

assuming the minimizer is as optimized as possible, the best way to reduce the

length of the calculation would be to reduce the number of calls to the minimizer.

For version 6, the modified pruning algorithm serves to limit the number of

conformations for each stage of growth and minimization, thus making the

calculation twice as fast for both the L10 and L12 subsets. We also applied the

bump filter and outside-the-box check between torsional sampling and

minimization, resulting in an additional increase in speed. Even with these

changes, though, the version 6 calculations are still significantly slower than

version 4, indicating room for additional improvement.

Examination of Ensemble of Generated Orientations

When rescoring with more advanced scoring functions, we hypothesize

that reranking some portion of the current ensemble will assist in the correct

binding pose rising to the top of the ranking list. However, because these scoring
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Figure 5. Success rate (closed) and average length of calculation (open) as a
function of the number of rotatable bonds in the ligand for flexible ligands. Both
the rate and time are calculated as a cumulative average over the test set.

176



functions take a nontrivial amount of time to rescore these poses, we want to

reduce the number of poses for rescoring. To this end, we looked at the entire

list of conformations that were generated by the sampling above to determine a

reasonable cutoff for rescoring (Figure 5). For the L7 subset, there is no

improvement by looking at the entire ensemble. However, for both the L10 and

L12 subsets, the success rate is improved if up to fifty conformations are

considered.

CONCLUSIONS

Up to this point, we have optimized the sampling parameters of the

newest version of the DOCK suite of programs. Compared to the optimization

procedures for DOCK 5, the sampling parameters are very similar to those for

the protein test set for the rigid docking (Moustakas D et al., in press). With

minor modifications to the algorithm, we have additionally improved the ability to

reproduce experimental binding poses for flexible ligand docking. However, the

success rates are still not as high as those for proteins. We hypothesize that this

failure is at least in part due to the shallow and bumpy nature of the energy

landscape of RNA molecules in comparison to proteins. We have once again

fully explored the sampling algorithm and plan to explore improvements in the

scoring function next. In general, we have found that DOCK can be successfully

employed for binding mode prediction for RNA-ligand complexes and, even with

the rudimentary grid-based scoring, should be useful in the drug design setting.
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FUTURE DIRECTIONS

At this point, we have completed the optimization and characterization of

the sampling portion of the DOCK algorithm for RNA. The next step will be to

explore the effect of the newly added scoring functions on the success rates for

binding mode prediction. In the drug design setting, ligands are not available in

the ideal conformation for binding as they are in this structure-based test set.

Therefore, at this point, we will switch to using the ligand sets prepared using the

ZINC procedure (see Methods). The DOCK 3.5 scoring function runs at

approximately the same speed as the Grid Score scoring function used for

sampling parameter optimization. Therefore, the first scoring method test will be

to repeat the flexible docking with the bump filter using the DOCK 3.5 and the

Grid Score scoring functions. The time for calculation, success rate based on

best scoring pose, and the distribution of conformations, both with and without

clustering, will be analyzed. For the DOCK 3.5 scoring function, because the

more advanced receptor-ligand desolvation method has not been tested on

nucleic acids, we will only be adding desolvation for the ligand. For both

procedures, we will also compare the Gasteiger, AM1BCC, AMSOL and RESP

charge models for the ligands. Finally, throughout this process, we plan to run

the same procedures on the protein test set used to validate DOCK version 5.

The sampling parameters for the protein test set were very similar and should

produce comparable results in DOCK 6. However, the secondary scoring

functions have not yet been explored and would provide a useful frame of

reference for the current state of success rate for the RNA set.
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Because the more advanced GB/SA and PB/SA scoring functions take

significantly more time to compute each point energy than either Grid or DOCK

3.5 score, they can only practically be used for rescoring previously generated

poses. Therefore, once the comparison between the Grid and DOCK 3.5 scoring

functions is complete, the top N scoring conformations or clusterheads will be

rescored using the GB/SA, PB/SA, and AMBER scoring functions. The value of

N will be chosen as a balance between the number of conformations to be

rescored, which determines the length of the calculation, and the possibility of a

successful pose being found in the list. For the GB/SA function, we will also

explore the effect of various salt concentrations on the docking success rates.

For the AMBER scoring function, we will use the sampling parameters and

procedure developed in the Case lab (unpublished communication). Once these

evaluations are complete, we will once again compare the success rate and

length of time for the calculations, as well as the effect of partial charge models.

Within this test set, we have several ensembles of similar structures. The

first type of ensemble — NMR structures — is the same ligand and receptor in

different conformations. The second type is multiple structures of the same

receptor with different ligands bound. We would like to perform cross-docking

experiments to both of these types of ensembles to get an idea of the use of

conformational expansion in RNA docking. In addition, there is an open question

about the effect of minimization of the receptor-ligand complex before docking on

both the docking results and the rescoring results. We plan to take a subset of

the test set and explore if this minimization further improves the success rate by
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resolving internal clashes in both the ligand and receptor, optimizing the

interaction between the ligand and receptor before docking, and regularizing the

structure if it was resolved using another scoring function. Finally, we have a

collaborator who is screening a library of approximately 5000 small molecules

against both BIVTAR RNA and HIV RRE RNA. Once the optimal procedure for

binding pose prediction has been identified, we will DOCK this library and

compare our ability to rank a library of small molecules to the experimental

values.

Once all of the above is complete, we plan to go through and characterize

where we are still failing. In this study, we have explored a wide variety of

variables that improved the success rates. Here, we will reflect on what is still

not working and try to make some useful suggestions for the most constructive

ways to further improvement.
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ABSTRACT

As a molecule, RNA has traditionally been very difficult to model due to its

high charge density and flexibility. In a previous study, we optimized the DOCK

suite of programs to model charges for RNA targets in order to best reproduce

the binding mode of known small molecule binders. Here, we extend the method

by incorporating multiple receptor conformations into the docking protocol. At

this point, we have explore several physics-based methods—molecular

dynamics, replica exchange, miniCarlo, and Path Exploration with Distance

Constraints—for generating an ensemble of RNA structures. A library of small

molecules will then be cross-docked to the ensemble using the optimized DOCK

protocol. To explore and optimize the sampling techniques, the procedure has

been applied to HIV TAR RNA, which has a number of published structures. To

validate the docking protocol, we will be screening a library of known inhibitors

and decoys using Saturation Transfer Difference NMR. The diversity and quality

of the generated RNA ensembles has been evaluated by comparing to

experimental ensembles and to the NMR data. Thus far, we have determined

that the simulations generate ensembles that are on par with the structural

diversity of published apo and holo structures using RMSD as a metric.

However, additional work needs to be done to evaluate the ensembles as well as

the docking methodology.
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INTRODUCTION

Inherent in its very nature, RNA has an extremely flexible tertiary

structure. In addition to the ability of the backbone helix to twist and untwist in

response to the environment, secondary structure elements like bulges and loops

contain unpaired bases that allow the structures to assume both kinked and more

open topologies. When in solution, RNA molecules are able to access a broad

range of conformations (see Figure 1a for example). However, when bound to

either a native protein binding partner or a small molecule, the RNA typically

adopts one conformation particularly suited for that interaction (Aboul-ela Fet al.,

1996; Du Zet al., 2002; Wang Set al., 1998). For drug design purposes, this

property can be capitalized by stabilizing structures that are different from the

conformation the RNA assumes when binding its native partner. It may also

enable several slightly different scaffolds to be developed to target different

conformations of the same RNA target. With these goals in mind, we combine

several commonly used sampling techniques to incorporate multiple receptor

conformations into the DOCK suite of programs for drug design for RNA targets.

A variety of different methods have been employed to incorporate multiple

receptor conformations into docking algorithms. These techniques fall into two

main categories: conformational expansion and flexibility on-the-fly. In the

conformational expansion technique, reasonable conformations for the receptor

are enumerated prior to the docking calculation. The ensemble of conformations

is then held constant and the small molecules are cross-docked to the ensemble.
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Figure 1. HIV-1 TAR RNA (a) Range of tertiary structure of TAR as determined
by NMR (PDB code 1ANR). The model selected to seed the enhanced sampling
techniques is circled. Image generated by Chimera (Pettersen EF et al., 2004).
(b) Sequence and secondary structure of TAR
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In the final stage, the ensemble score for each ligand is either combined or

weighted to provide the final ranking (Knegtel RMA et al., 1997; Sherman Wet

al., 2006). In the flexibility on-the-fly method, the receptor conformation is

sampled in conjunction with the ligand during the docking process. In most

cases, this sampling is an iterative process in which the ligand is placed in the

active site allowing some overlap with the receptor, and then both the receptor

and the ligand are sampled to relieve the clashes (Abagyan RA et al., 1994).

Currently, the only generally available algorithm that has reported successful

flexible RNA docking, Autodock, used the conformational expansion technique

(Moitessier N et al., 2006).

Because our docking algorithm is designed for a rigid receptor and

because others have attempted it successfully before, we have decided to focus

on conformational expansion (Knegtel RMA et al., 1997). In the original

implementation of flexible docking in the DOCK suite of programs, the receptor

ensemble came from structures that had been solved bound to a variety of

different ligands. The ligand-binding events resulted in rearrangement of the

active site, the new shapes of which could then be capitalized for designing novel

scaffolds. Unfortunately, structural information of this diversity is only known for

a handful of RNA targets, greatly reducing the transferability of this technique.

To get around this problem, we have tested a variety of physics-based sampling

techniques for creating ensembles of RNA structures using computational

methods that still comply with experimental data. This newly created ensemble

can then be used as the ensemble of receptor structures for cross-docking.
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The computational sampling techniques we will be exploring include

replica exchange molecular dynamics (REMD), standard molecular dynamics

(MD), Monte Carlo, and Path Exploration with Distance Constraints (PEDC).

Replica exchange simulation is an enhanced sampling technique, in which

multiple simulations are run simultaneously at increasing temperatures, and, at

set intervals, conformations are allowed to move between simulations of varying

temperatures based on the Metropolis criterion (Sugita Y and Okamoto Y, 1999).

If the data is analyzed by replica, or temperature, this technique has the benefit

of running multiple simulations simultaneously, thus providing for the possibility of

statistically less frequent events through the additional sampling. If the starting

conformation of each replica is followed instead, the simulation behaves as

annealing simulation, allowing conformations to climb energy barriers very slowly

while sampling at each temperature ramp. In the end, the replica exchange

simulation should provide ensembles of conformations from an ensemble of

energy wells. As a control, we have also performed a standard MD simulation,

which will help us determine whether the enhanced sampling method is an

unnecessary amount of work for our purposes.

The third method, a specialized form of Metropolis Monte Carlo called

miniCarlo, is specifically designed for nucleic acids. The move sets for the

method are based on internal coordinates that describe the typical movements

the sugar-phosphate backbone and base pairs (Zhurkin VB et al., 1991). We

anticipate this method will provide a different ensemble of structures because it

will focus sampling on the predominant motions of nucleic acids. In PEDC, a
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standard minimization is performed with a modified scoring function, in which a

biasing restraint moves the molecule a user defined distance from the starting

point (Guilbert C et al., 1995). Once again, this method should provide a

different ensemble because it explores the valley of the energy landscape,

typically the breathing motions of the molecule.

All of the sampling techniques described above will generate a huge

number of conformations, many of which will contain redundant information. In

the next stage, this large ensemble needs to be culled down to ten to fifteen

structures for docking to enable reasonable lengths of calculation, but still

represent the structural diversity of the entire group (see Figure 2). Because

many of these techniques sample both high and low portions of the energy

landscape, some of the conformations are no longer completely folded. As a first

coarse processing step, then, we filter the ensemble to ensure that the minimal

base pairing is still present. Those conformations that pass the filter are then

clustered to reduce redundant structures. Finally, the lowest ten scoring

conformations, where the score is based on the scoring scheme for the

associated sampling technique, are selected for docking.

Because we are attempting to validate the ability of the sampling and

culling techniques, we will be using HIVTAR RNA, a critical component of the

HIV life cycle, as a test system. Once the HIV DNA has been incorporated into

the host genome, it co-opts the cellular machinery and starts to replicate itself.

The TAR hairpin, located at the 5' end of the nascent RNA, binds to the HIV

protein Tat. This interaction then recruits a number of cellular proteins, which

190



Create conformations using
computational sampling methods

!
Filter out nontarget-like conformations

!
Cluster remaining

conformations

!
Perform docking to ensemble of

representative structures

Figure 2. General scheme of receptor conformation generation and selection.
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serve to facilitate production of the HIV genome (Calnan BJ et al., 1991; Frankel

AD and Young JA, 1998). Because TAR is involved in such a critical portion of

the life cycle, it has been the subject of numerous structural and drug design

studies over the years (Davis B et al., 2004; Mayer M et al., 2006; Murchie AIH et

al., 2004, Renner S et al., 2005; Yu XL et al., 2005; Zhao H et al., 2004). Thus,

there is a wealth both of NMR and crystallographic data, as well as some binding

data, available with which to evaluate the performance of our methods. Once the

final computational ensemble has been generated, it will be compared to

experimentally determined NOE restraints to determine whether the sampling

and culling methodologies have produced ensembles that agree with

experimental data (Aboul-ela F et al., 1995; Aboul-ela Fet al., 1996; Davis B et

al., 2004, Murchie AlH et al., 2004). Finally, these ensembles will be cross

docked with a library of small molecules, which have already been screened

against TAR and found to have both known inhibitors and known decoys

(unpublished data). Once we validate our methods with the TAR test system, we

will perform a prospective study on A site RNA, a ribosomal target, in which we

will use the method developed on TAR to attempt to identify a novel inhibitor.

METHODS EMPLOYED TO DATE

Selection of TAR Structure

The ensemble of unbound TAR structures (PDB code 1ANR) was used as

a starting point (Aboul-ela F et al., 1996). The average structure for the

ensemble was calculated, and then the all-atom root mean squared deviation

192



(RMSD) of the entire ensemble was calculated to the average. The conformation

closest to the average structure, model 14, was selected to seed all simulations

(see Figure 1a).

There are currently 4 additional structures of TAR RNA with the same

sequence available (PDB codes 1ARJ, 1UTS, 1UUD, and 1UUI) (Aboul-ela Fet

al., 1995; Aboul-ela Fet al., 1996; Davis B et al., 2004, Murchie AIH et al., 2004).

All of these structures were determined by NMR and are bound to a variety of

drug-like molecules. The experimental data from these complexes, in addition to

the apo structure, will be used to monitor and evaluate the various sampling

algorithms.

Molecular Dynamics Simulations

All MD simulations were carried out with the AMBER 8.0 molecular

dynamics package. The accessory program LEaF was used to prepare the

selected TAR structure for simulation with the parm.99 parameter set (Cornell WD

et al., 1995). The Hawkins, Cramer, Truhlar Generalized Born solvation model

with a salt concentration of 0.3 M and a surface area calculated using the LCPO

algorithm was used to account for solvation effects (Hawkins GD et al., 1995;

Hawkins GD et al., 1996; Srinivasan J et al., 1999; Tsui V and Case DA, 2000;

Weiser J et al., 1999). Before simulations were performed, the starting structure

was minimized using 250 steps of steepest descent energy followed by 1000

steps of conjugate gradient optimization. During MD simulations, hydrogen bond

stretching was restricted using the Shake algorithm (Ryckaert JP et al., 1977).
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restrained for MD simulations circled in red. (a) Distances of the adenine-uracil
base pair. (b) Distances of the guanine-cytosine base pair.
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Two single temperature MD simulations—one with restraints and one

without—were run. Both simulations were started from the minimized structure

and allowed to equilibrate for 2 ns at 300 K. The equilibration was followed by an

8 ns production run, and solute configurations and potential energies were saved

from the production run 1 ps. The restrained simulation was repeated using the

conditions above, but with square well restraints between the middle hydrogen

bonds of bases 3 and 27, 4 and 26, 11 and 22, and 12 and 21 (see Figure 1b

and Figure 3). If the heavy atoms of these bonds were between 1.8 and 4.0 A,

there was no penalty. If the distance was between 1.3 and 1.8 A or 4.0 and 4.5,

the scoring function was linearly penalized with a force constant of 5.0. If the

distance is less than 1.3 A or greater than 4.5 A, the scoring function was

penalized with a parabolic function with force constant of 10.0.

The REMD simulations were performed using a parallel per wrapper for

the SANDER program (Case DA et al., 2004; Chodera JD). For the first set of

simulations, twenty replicas were run with temperatures ranging exponentially

from 270 – 430 K. To evaluate whether conformations should be switched

between replica, the algorithm starts from the highest-temperature replica and

attempts to swap the configuration for the next-lowest temperature replica using

a Metropolis-like criteria, and proceeds down the temperatures in this manner.

On the next iteration, swapping attempts start from the lowest temperature and

proceed upward; this alternation in direction is continued in subsequent pairs of

iterations. All momenta were reassigned from the Maxwell
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Boltzmann distribution at the appropriate replica temperature after

each exchange attempt.

As with the single temperature MD, two REMD simulations were run—with

and without restraints. For the free simulation, all replicas were started from the

minimized conformation and equilibrated for 1 ns at 2 fs timesteps. This

equilibration run was followed by an 8 ns production run with 1 ps between

exchange attempts. The exchange acceptance probability between neighboring

temperatures was approximately 49.5%. Solute configurations and potential

energies were saved from the production run every 1 ps. Once again, the

restrained simulation was repeated using the same conditions and restraints

described for the single temperature MD simulations. The exchange acceptance

probability between neighboring temperatures for this simulation was

approximately 50.4%.

Path Exploration with Distance Constraints

All PEDC calculations were calculated using a modified version of the

CHARMM suite of programs (Foloppe N and MacKerell AD, 2000; Guilbert C et

al., 1995). Before the PEDC production run, hydrogens were added to the

starting structure using the Hbuild accessory and then prepared for the

simulation with the param27 parameter set. Generalized Born Molecular Volume

was applied to account for solvation (Lee MS et al., 2003; Lee MS et al., 2002).

The conformation was then gradually minimized within CHARMM using

incremental RMSD restraints on all atoms progressing from 0.1 — 1.6A in 0.1 A
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steps while monitoring the energy of the system. Once the energy had

equilibrated, a conformation was selected from the converged set. This

conformation, which was 0.55 A all-atom RMSD from the starting structure, was

used to seed the next calculation.

For the production runs, an RMSD-based biasing force was added to the

scoring function to push the minimized conformation up to 0.6 A away from the

minimized conformation in steps of 0.1 A. Once the 0.6 A target was obtained,

this conformation was reset as the reference. The biasing force was removed,

and the conformation was minimized for an additional 200 steps while being

restrained to stay with 0.6 A of the new reference conformation. To additionally

sample the bulge region, the PEDC simulation was repeated as above with NOE

restraints between all hydrogen bonds on bases 3 and 27, 4 and 26, 11 and 22,

and 12 and 21. Once again, all minimization was performed using the GBMV

solvation model.

MiniCarlo

In the last method, the structures were generated using Metropolis

Monte Carlo simulations with the miniCarlo program (Zhurkin VB et al., 1991).

The miniCarlo program performs minimization or Metropolis Monte Carlo

simulation of nucleic acid molecules using internal coordinates as independent

variables. The set of internal coordinates was designed specifically for nucleic

acid structures, and it includes generalized helical parameters defining the

relative position of nucleic bases in space and also the internal conformation of
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sugar moieties. Aromatic bases are treated as rigid bodies with idealized

geometry. The conformations of the backbones connecting adjacent bases are

calculated with a specialized chain closure algorithm (Zhurkin VB et al., 1978).

The conformational energy is calculated in vacuo with a distance-dependent

dielectric constant using an empirical force field optimized for nucleic acids

(Poltev VI and Shulyupina NV, 1986; Zhurkin VB et al., 1980). To take the

shielding effect of counterions into account, the phosphate groups are assumed

charge-neutral.

The selected TAR conformation was used to generate the starting

structure. Helical parameters were extracted from this structure as described in

Ulyanov et al. and input to miniCarlo (Ulyanov NB and James TL, 1995).

Structure was extensively energy minimized with miniCarlo and used as initial

conformation for Metropolis Monte Carlo simulations. No restraints were used in

any simulations. Two Monte Carlo chains were generated with 100

conformations in each chain; each conformation was stored after 10,000

Metropolis iterations. The first Monte Carlo chain was generated at 300 K. In the

second Monte Carlo chain, stems were simulated at 500 K, and the bulge and

the loop were simulated at 1500 K. For the high-temperature simulation, each of

the 100 generated structures was additionally energy-minimized with miniCarlo.

Culling the Conformations

To ensure that the conformations were still folded properly, we checked to

make sure the appropriate bases in both the upper and lower stem were still
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formed. We calculated the distance between bases 3 and 27, 4 and 26, 5, and

25, 11 and 22, and 12 and 21 for all conformations generated by the sampling

methods above; hydrogen-bonding angles were not considered to allow for some

movement between base pairs (see Figure 1b). Those conformations with

distances that violated ideal hydrogen bonding distances by more than 0.5 Å

were removed from each ensemble (see Figure 3). In addition, the distance

between each base pair, or rise, was calculated using the program 3DNA (Lu X

and Olson WK, 2003). Those conformations with negative rise, meaning that

melting occurred and resulted in shifting of the pairing, were also removed from

the ensemble.

All conformations that were statistically folded were then clustered to

remove redundant structures using the k-medoid clustering algorithm, a variation

of k-means (Hastie T et al., 2003). In the k-medoid algorithm, a user defined

number of centroids are randomly selected and then the data is divided into

clusters around the centroids. The initial centroids are then randomly shifted

within the cluster and the data is reassigned. If the standard deviation of the

cluster members to the new set of centroids is lower than the previous set, the

centroids and clusters are kept. The method continues until the standard

deviation converges to a user defined amount. Because we are not sure from

method to method what the optimal number of clusters should be, we monitor the

average variance and its derivative for a range of centroid values (Tibshirani R et

al., 2001). Once the slope of both graphs has stabilized, no more information is
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being gained by adding additional clusters, and that number of centroids is

selected as optimal.

TAR RNA Small Molecule Test Set

To validate both the generated structural ensemble and the docking

calculation, we needed a test set with consistently derived binding affinities as

well as structural information. At this time, there are four small molecules that

are known to bind to TAR RNA, are available for purchase and have solved

structures: Hoescht 33258, chlorpromazine, argininamide, and neomycin B

(Aboul-ela Fet al., 1995; Dassonneville Let al., 1997; Du Zet al., 2002; Faber C

et al., 2000). We have purchased these compounds, along with 46 randomly

selected, drug-like molecules selected from the drug-like subset of the ZINC

database (Irwin JJ and Shoichet BK, 2005). These compounds will be screened

against TAR using Saturation Transfer Difference NMR (Mayer M and James TL,

2005). This method, while often too slow to be used in screening large libraries,

has the dual benefit for our purposes of providing both binding affinity and

structural information for the bound structures.

RESULTS AND DISCUSSION OF CURRENT STATUS

Filtering

Once all the sampling simulations had completed, all generated

conformations were subjected to filtering (Table 1). To ensure that this stage did

not dramatically change the overall distribution of structures, the mean and
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Starting | Filtered
REMD 200,000 12,732

| Restrained REMD 200,000 40,560
| MD 10,000 5434

Restrained MD 10,000 5972
Room Temp miniCarlo 100 100
High Temp miniCarlo 100 44
PEDC 2000 2000
Restrained PEDC 2000 1963

Table 1. Total Number of Conformations at Each Stage of the Culling Process.
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standard deviation of heavy atom RMSD between each experimental structure

and each ensemble before and after filtering were calculated. Because these

structures will eventually be used in docking calculations, the heavy atom RMSD

of the active site, defined as bases 5 – 11 and bases 22–25 (Figure 1b), was

also monitored.

Looking at the number of conformations that survive filtering already

provides some useful insights (Table 1). For example, in the replica exchange

simulation, over 94% of the conformations did not pass. Because the filter is

designed to remove structures that are no longer properly folded, this dramatic

loss of structures indicates that the majority of the ensemble is at least somewhat

melted (see below for a more detailed analysis). Adding restraints to the upper

and lower stems appears to have reduced this problem, with approximately 20%

of structures passing the filter, but have not eliminated it completely. The same

trend appears for the single temperature molecular dynamics simulation,

although to a much lesser extent, indicating that the melting effect is at least

partly inherent in the force field. For our purposes, we are not sure at this point

what type of structural rearrangement, including partial refolding, is needed to

sample the space that is covered by the experimental data. We will therefore

carry the ensembles from both the standard and restrained simulations into the

clustering stage and future analysis.

For both the PEDC and miniCarlo calculations, all structures passed the

filter for the standard simulations. In the high temperature miniCarlo simulation,

over half of the conformations were filtered out. This loss was anticipated
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|

Ensemble
||AllHolo
||
1ANR1ARJ
|
1UTS
|
1UUD
||1UU -

Standard -
-

Starting9.09+2.09|9.21+2.07
||

8.86+2.11
||

9.92+1.99
||

8.40+1.829.02+2.12
||

8.41+2.15 Filtered7.17+1.39
||

7.21+1.267.09+1.60
||

7,594–1.436.894-0.776.31+1.255.80+0.98
-

Restrained
-

— -

Starting
|

8.42+1.87
||

8.54+1.84
||

8.20+1.909.23+1.72
||

7.76+1.63
||

8.18+1.78
||

7.55+1.88 Filtered7.86+1.67
||

8.01±1.64
||

7.58+1.70
||

8.85+1.56
||

7.06+1.06
||

7.63+1.56
||

6.75+1.60
Table2a.HeavyAtomRMSDandStandardDeviation(A)BetweenStructuresfromREMDSimulationsandAll

ExperimentalStructures
|

Ensemble
||AllHolo
||
1ANR1ARJ
|
1UTS
|
1UUD
||
1UU

Standard

Starting6.45+1.326.80+1.165.78+1.367.00+1.256.56+0.96
||

6.82+1.266.75+1.26 Filtered5.53+1.115.94+0.92
||

4.76+1.01
||

5.75+0.97
||

6.22+0.77
||

5.51+0.95
||

5.49+0.89

Restrained

Starting6.02+1.04
||

6.36+0.895.37+0.99
||

6.44+1.02
||

6.2940.696.23+1.006.18+0.96 Filtered5.85+1.05
||

6.22+0.89
||

5.14+0.96
||

6.32+1.01
||

6.11+0.676.08+1.006.01±0.97
Table2b.ActiveSiteHeavyAtomRMSDandStandardDeviation(A)BetweenStructuresfromREMDSimulations andAll

ExperimentalStructures
§



|

Ensemble
|
Apo(1ANR)
||AllHolo
||
1ARJ
|
1UTS
|
1UUD
||
1UU

Standard

Starting6.65+1.14
||

6.82+1.53
||

6.56+0.86
||

6.77+0.92
||

6.47+0.64
||

5.51+0.55
||

5.16+0.39 Filtered6.65+1.14
||

6.82+1.53
||

6.56+0.85
||

6.74+0.91
||

6.48+0.645.48+0.535.15+0.39

Restrained

Starting6.66+1.25
|

6,63+1.616.67+1.01
||

6.90+1.08
||

6.55+0.815.57+0.735.38+0.42 Filtered
|

6,66+1.25
|

6,64+1.61
||

6.68+1.01
||

6.91+1.08
||

6.55+0.80
||

5.57+0.73
||

5.37+0.42
Table3a.HeavyAtomRMSDandStandardDeviation(A)BetweenStructuresfromMDSimulationsandAll

ExperimentalStructures
|

Ensemble
|
Apo(1ANR)
||AllHolo
||
1ARJ
|
1UTS
|
1UUD
||1UU

Standard

Starting5.06+0.87
||

4.44+0.95
||

5.3940.61
||

5.00+0.35
|

5.96+0.39
||

4.74+0.26
||

4.73+0.23 Filtered5.064-0.87
||

4.44+0.95
||

5.38+0.61
||

4.994-0.35
|

5.96+0.39
||

4.73+0.25
||

4.73+0.23

Restrained

Starting5.16+0.92
||

4.37+0.925.57+0.605.37+0.605.89+0.435.10+0.555.08+0.44 Filtered5.16+0.92
||

4.37+0.92
||

5.57+0.605.37+0.605.89+0.435.09+0.555.08+0.44
Table3b.ActiveSiteHeavyAtomRMSDandStandardDeviation(A)BetweenStructuresfromMDSimulations andAll

ExperimentalStructures
§



||

Ensemble
|
Apo(1ANR)
||AllHolo
||
1ARJ
|
1UTS1UUD
||
1UUI

-RoomTemperature
--

Starting6.13+147
||

5.89+2.18
||

6.26+0.85
||

5.90+0.516.76+0.96
||

5.37+0.10
||

6.17+0.31 Filtered6.13+1.47
||

5.89+2.18
||

6.26+0.85
||

5.90+0.51
||

6.76+0.96
||

5.37+0.10
||

6.17+0.31
-
-

HighTemperature - Starting
|

7.74+2.10
8,
19+2.377.50+1.91
||

6.12+0.83
||

9.30+1.41
||

6.28+0.64
||

7.63+0.71 Filtered7.41+2.047.68+2.517.28+1.73
||

6.13+0.74
||

8.75+1.56
||

6.31+0.70
||

7.50+0.85
Table4a.HeavyAtomRMSDandStandardDeviation(A)BetweenStructuresfromminiCarloSimulationsandAll

ExperimentalStructures *-|
Ensemble
|
Apo(1ANR)
||AllHolo
||
1ARJ
|
1UTS
|
1UUD
||1UUI

RoomTemperature
-

Starting4.43+1.293.25+1.105.05+0.88
||

5.76+0.31
||

4.08+0.36
||

5.60+0.09
||

5.62+0.09 Filtered4.43+1.293.25+1.105.05+0.88
||

5.76+0.31
||

4.08+0.36
||

5.60+0.09
||

5.62+0.09

HighTemperature

Starting4.96+0.944.93+1.224.98+0.74
||

4.80+0.605.18+0.865.06+0.405.25+0.39 Filtered4.68+0.914.394-1.164.83+0.70
||

5.01-E0.71
||

4.56+0.605.16+0.49
||

5.21+0.45
Table4b.ActiveSiteHeavyAtomRMSDandStandardDeviation(A)BetweenStructuresfromminiCarlo SimulationsandAll

ExperimentalStructures
§



|

Ensemble
|
Apo(1ANR)
||AllHolo
||
1ARJ1UTS
|
1UUD
||1UUI

-Standard
-

Starting
|

7.3942.10
||

6.75+2.06
||

7.73+2.05
||

9.08+1.726.07+1.02
||

7.79:1.33
||

6.94+1.00 Filtered7.39:12.10
||

6.75+2.06
||

7.73+2.05
||

9.08+1.72
||

6.07+1.02
||

7.79:1.33
||

6.94+1.00

Restrained
-

Starting
|

7.32+1.90
||

6.75+1.78
||

7.62+1.89
||

9.05+1.31
||

5.86+0.81
||

7.78+0.87
||

7.21+0.56 Filtered7.32+1.916.75+1.78
||

7.63+1.909.06+1.315.85+0.80
||

7.794-0.887.21+0.56
Table5a.HeavyAtomRMSDandStandardDeviation(A)BetweenStructuresfromPEDCSimulationsandAll

ExperimentalStructures
|Ensemble
|
Apo(1ANR)
||AllHolo
||
1ARJ)1UTS
|
1UUD1UU|

Standard

Starting5.02+1.46
||

3.81+0.88
||

5.66+1.29
||

6.68+0.55
||

4.2940.55
||

6.48+0.42
||

6.34+0.40 Filtered5.02+1.46
||

3.81+0.885.66+1.29
||

6.68+0.554.294-0.556.48+0.42
|

6.34+0.40

Restrained
-

Starting5.07+1.524.11+0.815.57+1.566.87+0.513.83+0.436.76+0.406.51+0.39 Filtered5.07+1.52
||

4.11+0.815.58+1.57
|

6.87+0.51
||

3.83+0.43
||

6.77+0.406.52+0.39
Table5b.ActiveSiteHeavyAtomRMSDandStandardDeviation(A)BetweenStructuresfromPEDCSimulations andAll

ExperimentalStructures
§



Active Site
Heavy Atom | Heavy Atom

Ensemble 6.71+2.00 4.66+1.75
Apo (1ANR) 7.10+1.87 4.89+1.31
All Holo 6.51+2.03 4.54+1.94
1ARJ 6.65+2.08 4.49+2.10
1UTS 6.39-1-2.03 4,60+1.70
1UUD 5.88+1.63 4.46+2.05
1UU| 6.02+1.14 4.54+1.79

Table 6. Average RMSD and Standard Deviation (A) Between from All
Experimental Structures
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because the simulation was run without restraints, allowing the structure to melt.

Unfortunately, it also means that fewer structures are available for analysis (e.g.,

there are fewer structures remaining after filtering than in the experimental

ensemble). In the future, this simulation may need to be run again with restraints

similar to those used in the other simulations. For the restrained PEDC

calculation, about 2% of the conformations did not pass the filtering process.

Because this simulation is based on minimization instead of more rigorous

sampling methods, this statistic was slightly unexpected but not unreasonable.

Because of the restraints, the biasing force was required to act predominantly on

the free sections of the molecule. Therefore, because the base pairs that were

restrained were a subset of those that were used for filtering, some of the

conformations were able to expand beyond the acceptable range. As above, all

of the simulations will be carried to clustering and further analysis.

The heavy atom RMSD between all the experimental structures and all the

ensembles was monitored (Tables 2-5). There was no significant change in

either the mean or the standard deviation for the entire structure or active site for

any of the simulations with the exception of all the REMD simulations and the

high temperature miniCarlo simulation, which can be attributed to the shear

number of conformations removed. In addition, the mean heavy atom values for

the entire structure are a bit higher for the PEDC calculation. While we are not

able to completely identify the cause currently, the primary motion of nucleic

acids in this type of simulation is typically helical twisting and untwisting (data not

shown). Knowing this trend, we hypothesize that this motion explains the higher
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overall RMSD, while the bulge region in the active site, which does not belong to

a helix, has lower values.

The values for the computational ensembles can also be loosely

compared to the all-by-all RMSD values for the experimental structures (Table 6).

In both the computational and experimental ensembles, the active sites have

lower mean values than the entire structures, indicating that other portions of the

biomolecule (eg backbone twist or the hairpin) are more varied. When looking at

all the computational methods, the room temperature miniCarlo simulation

produced the lowest overall mean for the apo structure and for two of the bound

structures. It also produced the lowest active site mean for the apo structure.

However, the single temperature molecular dynamics simulation had lower active

site means for the majority of the bound structures. We hesitate to place too

much meaning on this data pending a more thorough analysis using

experimental NOE values. However, at this point, we suggest that the miniCarlo

technique may be more appropriate for simulating overall structure variability

whereas molecular dynamics may be more appropriate for bulge and loop

sampling.

Replica Exchange Simulation

Upon seeing the number of conformations that were failing the filtering

step for the replica exchange simulations, we wanted to understand what was

occurring in more detail. After spot-checking a few of the conformations from the

simulation, it was determined that, in many cases, all the base pairs for one or
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Figure 4. Average hydrogen bond distances for base pairs over course of
unrestrained REMD simulation. Averages are calculated for all hydrogen bonds
in each pair. Each row represents the average for the base pair of the secondary
structure pictured on left. The first column contains data for the starting structure

and the remaining columns contain averages over the course of the simulation in
1 ns intervals. Each block is colored by average distance, where white is less
than 4 A, light grey is 4 – 5 A, medium grey is 5–6 A, dark grey is 6–7 A and
black is greater than 7 A.
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both of the stems were no longer paired (data not shown). To obtain a more

holistic picture, the hydrogen bonding distances for all of the base pairs were

calculated over the course of the simulation (Figure 4). In this figure, the heavy

atom hydrogen bond distance was calculated and averaged over 1 ns intervals.

As can be seen by the increasing amount of violation over time, the RNA

structure appears to be melting as the simulation progresses, and, once melted,

does not refold properly. More interestingly, the melting appears to be starting

from the bulge region and then expanding to both the upper and lower stems.

While we have not determined the exact cause of the unfolding, many of

the bases in the spot checked structures appeared to be interacting with nearby

charged phosphate groups. Based on this analysis, we hypothesize that the

unpaired bases in the bulge region at the start of the simulation search for

hydrogen bonding partners. Because there is no water in the simulation, these

bases attach to whatever is nearby, tugging on the rest of the structure. This

sampling is not inherently problematic except that, when these unpaired bases

find the naked phosphate charge on the backbone, the interaction is so strong

they do not detach in the course of the simulation. The base pairs in the stems,

which are not strong enough to counter this tugging, are pulled apart, and then

start sampling the backbone themselves. In addition to our study, there is

anecdotal evidence of this type of base opening behavior (Cheng X et al., 2005).

In all of these simulations, as also shown here, this problem can be overcome

with extremely minimal constraints on the previously formed base pairs.
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However, it also points to an inherent weakness either in the force field or

solvation model of AMBER as applied to nucleic acids.

PRELIMINARY CONCLUSIONS

At this point in the project, we are still exploring the ability of the

simulations to produce reasonable ensembles of RNA structures. We have

shown that molecular dynamics simulations seem to have some serious issues

with simulating this system in implicit solvent, primarily due either to over

stabilization of unpaired base-backbone interactions or the under stabilization of

base pairs. While explicit solvent may alleviate some of this problem, it does not

solve it in cases where the counter-ion has traveled away from its partner

phosphate group. We are not in the business of modifying or developing force

fields, so we cannot make any definitive suggestions about how to address this

problem. However, we hypothesize that the partial charges in the AMBER

parmS 9 force field may not take the polarizing effect of the backbone into

account and may need to be reparameterized to reduce this effect.

For all simulations, the filtering step does not seem to be negatively

affecting the diversity of the ensembles using the crude metric of RMSD. It

appears that the miniCarlo and single temperature molecular dynamics

simulations are better able to reproduce the range of structure and active sites,

respectively, of the experimental ensemble. Clustering of these, and the other

computational ensembles, should serve to further reduce redundancy while

maintaining the current distribution. However, it remains to be seen whether
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Figure 5. Example of optimization of number of clusters for the replica exchange
simulation. Average variance (-) and standard deviation of average variance of

clusters (•) of all clusters is monitored over a range of centroids. The number of

centroids at the point in which the average variance has converged is selected
for the next stage of the culling process.
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these distributions contain ensembles that are reasonable according to

experiment, and, more importantly, if these ensembles will improve docking

SucCeSS rates.

FUTURE DIRECTIONS

Clustering

At this point, the exact details of the clustering algorithm are still being

finalized. We are using the structures from the MD simulations to prototype the

methodology and have begun preliminary work on methods for optimizing the

number of clusters that will capture the main features of the conformational

ensemble while removing redundancy (Figure 5). Finally, we will explore and

compare clustering based on the active site and backbone alone.

Analysis of Conformational Ensembles

There are two types of questions we can ask of the structural ensembles

that we have currently generated. First, we hope to explore the structureal

diversity of the ensembles by calculating various metrics including active site

volume, torsional sampling and nucleic acid helical parameters. For the

molecular dynamics simulations, which are time dependent, we will also explore

how long it takes to move between conformations. As an orthogonal question,

we will explore how these structures reproduce experimental data. While we are

currently comparing to structures based on RMSD, we anticipate that analyzing

the ensembles based on raw NOE and J coupling data will be a significantly
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more informative metric, as this type of data will provide information distributed

over the entire structure. We will also break the analysis down by the ability of

each ensemble to recreate the original apo structure ensemble from which the

starting structure was obtained as compared to the ability to reproduce the bound

Structures.

Cross Docking

Once we are comfortable with the ensembles of structures, we will begin

the cross docking experiments using the validation library of small molecules. As

a first pass, we will be computing the score for each receptor-ligand complex

using a thermodynamic cycle and then taking the best overall score. It is

anticipated that this conformational expansion, followed by cross docking and

minimization of the entire complex, will improve success rates in a library of small

molecules.
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ABSTRACT

This project represents the first steps toward the design of a fragment

based screening program for RNA targets. The fragments for the library have

been biased toward chemical moieties that resemble the major properties of

known RNA binders. Because fragments typically bind at lower affinity and

because RNA targets are so flexible, saturation transfer difference NMR is

initially used to screen for binding. If STD results imply binding, simple RNA

resonances, in particular, imino resonances, are monitored for line broadening

indicative of ligand binding to a specific moiety of the RNA. Once the fragments

are identified as interacting with the RNA target, the structure of the bound

complex will be modeled using docking, minimization and molecular dynamics

simulations in the DOCK6 suite of programs. Finally, the fragments that look the

most promising will be synthetically combined using "click" chemistry. To test

this new methodology, the HIV target TAR has been selected as a target.

Preliminary results indicate that many of the fragments bind to the target of

interest and may make good lead scaffolds. However, the "click" chemistry

reaction has been shown to be less general than originally anticipated, and, as a

result, may have to be removed from the general scheme. As a next step,

controls need to be run to fully characterize the fragments that have been shown

to bind, and the three-dimensional bound complexes need to be modeled.
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INTRODUCTION

In the last few years, it has become apparent that the role of RNA in

cellular systems is significantly more complicated than originally assumed. Along

with this new knowledge of RNA function, there is increasing amounts of

evidence that RNA may be a useful target for drug design, particularly in systems

like HIV and antibiotic-resistant bacteria where protein therapies have been less

successful (Barker JJ, 2006; Mayer M and James TL, 2005). However, because

RNA has so many physical and chemical characteristics that differ from proteins,

many of the traditional drug design techniques need to be adapted or extended

specifically to suite nucleic acids.

Fragment-based screening has become widely used to identify lead

scaffolds as an alternative to high-throughput screening of large libraries of small

molecules (Keseru GM and Makara GM, 2006; Zartler ER and Shapiro MJ,

2005). The basic principle is to screen a range of chemical moieties that

represents commonly occurring motifs in successful drugs (fragments), identify

the chemical moiety(ies) that bind to the target of interest, and then synthetically

combine them (scaffolds) (Figure 1). Typically, the fragments have a molecular

weight between 150-250 D and are selected to represent a wide range of

chemical space (Carr RA et al., 2005). The screening technique is generally

structure-based because the fragments tend to bind at lower affinity that would

be expected from larger molecules, making them difficult to detect using other

screening methods (Lepre CA, 2001).
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(Screen fragments against RNA using STD NMR)
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DOCK scaffolds using NMR data
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that are chemically similar to

identified scaffolds

Synthetically diversify
identified Scaffolds

Figure 1. Scheme for RNA-biased fragment based screening method
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As with other screening methods, fragment-based libraries have been

used to screen against RNA targets. However, the technique was not as

successful as when applied to protein systems (Fejzo J et al., 1999; Johnson EC

et al., 2003). We hypothesize that the primary reason for the lack of success is

because the fragments were designed to represent chemical moieties that

commonly occur in small molecules that interact with protein targets. If one

examines the molecules that have been shown to bind RNA, the most common

interactions include hydrogen binding, electrostatic, electron driving groups that

can react to the localized charge on the RNA backbone, and t-stacking (Francois

B et al., 2005; Kaul M and Pilch DS, 2002; Pilch DS et al., 2003; Vicens Q and

Westhof E, 2003). These properties are different from protein interactions, which

are dominated by shape complimentarity. Therefore, in addition to chemical

diversity, we have biased the fragments of our library toward chemical moieties

that encompass the properties of RNA binders.

Because RNA is so malleable, it often globally rearranges upon ligand

binding. Therefore, NMR is an appropriate technique for measuring binding

events because the biomolecule is in solution and free to move in reaction to its

environment. Saturation transfer difference (STD) has been proven to be

efficient in identifying and characterizing weakly binding compounds to small

RNA constructs (Mayer M and James TL, 2002). STD signals reflect the transfer

of saturation from the RNA to the ligand while in the bound state. This method

allows the determination of the binding epitope of the ligand. Therefore, ligand

protons which are close to the RNA surface exhibit high STD NMR signal
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intensities and are more likely to be involved in substrate binding. Subtracting a

spectrum, where the RNA is saturated, from one without RNA saturation

produces a spectrum where only signals of the ligand(s) remain in the difference

spectrum.

Once the NMR studies have identified the fragments, the structures of the

bound complexes need to be solved to determine which fragments should be

joined and which areas of the scaffolds would be most useful to derivatize. The

fragment will first be placed in approximately the correct location using docking.

In docking programs, the surface of the receptor is sampled to place a small

molecule in the most energetically favorable position as scored by a molecular

mechanics scoring function. Once each ligand is placed, the entire complex will

be relaxed in response to the binding event using minimization followed by

molecular dynamics. The newest release of DOCK, version 6, is particularly

suited for this purpose because it contains the capacity for docking, minimization,

and molecular dynamics in one package (see Chapter 5). If necessary, the data

from the NMR experiments can be applied to restrain both the docking and the

more sophisticated simulations and guide them to sample the most useful areas

of space.

Finally, to make it easier to combine the fragments once they have been

identified, we have made use of one of the "click" reactions. These reactions,

collected by Kolb et al (Kolb HC and Sharpless KB, 2003), are termed "click"

chemistry if they have simple reaction conditions with high yields, readily

available starting materials and reagents, and simple stereospecific product
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isolation. Since its inception, "click" chemistry has become commonly used for a

wide variety of synthetic applications (Aucagne V and Leigh DA, 2006; Choi WJ

et al., 2006; Montagnat OD et al., 2006). For our purposes, because we are

interested in ■ t-stacking interactions, we selected the [3+2] dipolar azido

cycloaddition reaction. Each of fragments, therefore, has also been selected to

contain either an azide or acetylene moiety to facilitate the reaction.

Finally, to validate this entire proposed scheme, we have chosen TAR

RNA as a test target. The Tat-TAR complex has been identified as an attractive

target for the inhibition of HIV (Hsu MC et al., 1991). In the first stages of HIV

replication, the Tat protein facilitates viral transcription from the promoter region

of the provirus incorporated into the DNA of the host cell. In order to form this

interaction, Tat binds specifically to an RNA hairpin known as trans-activating

response element (TAR) at the 5' end of the newly formed viral transcripts

(Calman BJ et al., 1991). The Tat-TAR complex has been found to enhance the

overall rate of viral mRNA production by as much as 100-fold (Calnan BJ et al.,

1991; Frankel AD and Young JA, 1998). It has been shown that disruption of this

complex prevents elongation of the RNA genome by RNA polymerase, reducing

viral replication (Karn J, 1999). In addition, the TAR system has been the focus

of a number of successful structure-based drug design efforts over the years

(Davis B et al., 2004; Mayer M et al., 2006; Murchie AIH et al., 2004, Renner Set

al., 2005; Yu XL et al., 2005). While none of the small molecules made it to the

clinic, these studies suggest it is possible to target TAR with a small molecule,

making it useful for exploring the design of a fragment-based library.
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METHODS EMPLOYED TO DATE

Design of Fragment Library

In order to design the first fragment library, a number of libraries,

including the MDL Available Chemical Directory and Screening Compounds

(http://www.mdl.com), the ZINC database (Irwin JJ and Shoichet BK, 2005), the

Bay Area Screening Center Database (http://www.ucsf.edu/basc), and the UCSF

Inventory, were screened using MDL Isis/Base (Elsevier MDL). Each fragment

was required to contain either an azide or acetylene functional group to make

them amenable for synthesis. Next, any fragment without at least one non

carbon heavy atom and a ring system with at least four heavy atoms were

removed to bias the compounds toward properties of known RNA binders. The

fragments were also loosely filtered for drug-likeness, in this case defined as less

than four rotatable bonds and a molecular weight of less than 230 D and less

than 200 D for the azide- and acetylene-containing compounds, respectively.

The fragments were then subjected to a Rapid Elimination of Swill filter

built in Pipeline Pilot (SciTegic) to remove chemical groups that have undesirable

reactivity in biological settings and clustered for diversity (Hann M et al., 1999;

Rishton GM, 1997; Walters WP and Murcko MA, 2002). Because the fragments

would be evaluated by STD NMR, the H'spectrum of each fragment was

calculated using ACD/HNMR Predictor, and those fragments whose peaks

almost completely overlapped with RNA signals were removed (Golotvin SS et

al., 2006). The remaining fragments were then combinatorially combined in silico
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Table 1. Binding of Original Fragment Library to TAR RNA. All values measured

using STD NMR with 500 mM of compound and 25 mM TAR RNA. Binding

values correspond to the following scheme: strong (+++), medium (++), weak
(+), and no (---) change in fragment NMR upon binding. Because there was not
enough compound for titration experiments, binding cannot be quantitatively
evaluated at this point. For more details, see Methods Section.
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in Pipeline Pilot into full scaffolds, and the scaffolds were filtered for soluability

between -7 and 7 using the SlogP metric in the program MOE (Chemical

Computing Group). The final set of scaffolds was broken back into fragments

and those that were available for purchase were obtained (Table 1).

Detection of Binding by STD NMR

Unlabeled RNA samples were prepared and purified as previously

described (Mayer M and James TL, 2004). All NMR spectra were acquired in a

Bruker DRX 500 MHz spectrometer equipped with a cryoprobe and a sample

changer. In all STD experiments, on-resonance irradiation was set to 5.5 ppm

and off-resonance irradiation was set to 30 ppm where no RNA resonances were

present. 256 scans were acquired for the STD experiments. To reduce molecular

motion, all experiments were performed at 15°C. STD experiments were

processed with the XWIN-NMR software (Bruker Biospin GmbH). Typically, a

spectrum of the compound alone at 500 puM concentration was acquired, and

then RNA was added to produce a 25 HM final RNA concentration. 256 scans

were acquired for STD experiments. Presaturation of RNA resonances was

achieved by an appropriate number of band-selective G4 Gaussian cascade

pulses to give a saturation time of 2 seconds.

Initial Optimization of Synthetic Conditions

To optimize the initial reaction conditions, 1-ethynyl-4-fluorobenzene, 4

azidoaniline hydrochloride, phenylacetylene, and 4-azidophenacylbromide were
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Figure 2. Synthesis of scaffolds from fragment library. For more information,
see Methods Section. (a) Scheme 1 for scaffold synthesis. The conditions for
synthesis are 1:1 azide: acetylene, 0.01 eq. CuSO4, 0.1 eq. ascorbic acid, water,

t-butanol, room temperature, 5-10 days. (b) Scheme 2 for scaffold synthesis.
The conditions for synthesis are 1:1 azide: acetylene, 1 eq Cul, 50 eq DIPEA,
toluene, dimethylformide, room temperature, 5 days. (c) Synthesis of azide from
bromide starting material. The conditions for synthesis are 0.9 eq. NaN3, DMSO,
50°C for 3 hours.
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chosen because they were inexpensive and available in large quantities. For

optimization purposes, two synthetic schemes were compared (Figure 2). In

scheme 1, the acetylene compounds were combined with the azide compounds

in equal portions with 0.01 eq of CuSO4 and 0.1 eq of Na ascorbate in a 50%

tert-butenol/H2O buffer (Sivakumar Ket al., 2004) (Figure 2a). In scheme 2, the

acetylene compounds were combined with the azide compounds in equal

portions with 1-2 eq. of Cul and 50 eq of DIPEA. A variety of solvents were

tested during optimization, including toluene, dichloromethane, ethyl acetate,

ethynol, t-butanol, and diisopropylethylamine (DIPEA) (Lee LV et al., 2003;

Tornoe CW et al., 2002) (Figure 2b). Reactions were run for up to 5 days with

approximately 75% yield by TLC for the best condition—scheme 2 in DIPEA.

Synthesis of Scaffolds from Fragment Library

For the library, all reactions were carried out on a polypropylene reaction

block with solvent-resistant rubber seals. The final conditions for each well were

2.3 mg Cul, 20 pil. DIPEA, equal amounts of azide and acetylene, 2.0 mL of

toluene, and 0.5 mL dimethyl formamide. Reactions were run for 4 days at room

temperature. Unfortunately, the rubber seals were dissolved by the solvent,

resulting in loss and contamination of product and preventing a full

Characterization of the reaction.

To avoid the issue with the seals, the second round of synthesis was

Carried out in 3 mL vials. Reactions were run for up to 14 days at room

termperature. The yield of each of the reactions was determined using LCMS
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(Table 2). Unfortunately, many of the compounds were lost during purification

due to a technical error. In the end, only seven compounds were collected, none

of which were soluble at the concentration needed for testing by NMR.

DISCUSSION OF CURRENT STATUS

Synthesis

In general, we found that the "click" chemistry reaction was not as widely

applicable as originally reported. From the original fragment library, we

determined that the products were stereoselective and easy to isolate. However,

over 40% of the reactions did not proceed, and, of those that completed, the

average yield was only 41%. When looking at those reactions that did complete,

some hypotheses can be made about what groups effect the reaction. For

example, electron-withdrawing groups seem to reduce the yield and vice versa

for electron-donating groups. Sterics seem to have an influence on the reactions

as well. At this point, we feel the best course of action is to take a step back from

the fragment-focused synthesis and fully characterize the reaction between

substituted azido-benzene and substituted ethylnyl-benzene using a Hammet

series (Hammett LP, 1937).

Binding of Fragments

For the original library of fragments, 67% of the fragments were shown to

have some interaction with the TAR RNA target. The fact that some of the

molecules did not bind serves as an indirect control that the interactions are real
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rather than the result of the interaction of the acetylene or azide groups.

However, because the reciprocal experiment of the effect of the ligand on the

RNA target has not yet been performed, it is difficult to determine whether the

fragments are binding in the active site of the RNA. In addition, because titration

experiments have not been completed, it is also inappropriate to quantify the

binding outside of the qualitative ranking that is currently being employed.

PRELIMINARY CONCLUSIONS

At this point, the project is still obviously in the "proof of principle" stage.

However, the results thus far are relatively encouraging. Many of the fragments

in the original library were shown to bind to the TAR target, indicating that biasing

the fragment library toward RNA binder-like characteristics may indeed improve

the success of fragment-based screening for RNA. Unfortunately, the synthetic

effort has met a number of obstacles along the way. We hope that the Hammet

series synthesis will provide light and direction for the limits of the reaction.

However, it is possible that the azido cyclization will prove too limiting for this

application. In this case, we will simply use the fragments as the most basic lead

for further derivatization.

FUTURE DIRECTIONS

Fragment Library

The fragments that resulted from the original search where from a wide

range of chemistry. However, due to the specialized requirement of having either
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an azide or acetylene group to facilitate synthesis, expanding the chemical space

will prove to be difficult. To address this issue, particularly for fragments

containing azides, the next search will have to encompass additional specialty

libraries. As an alternative, other synthetic steps may need to be utilized to

convert from another chemical group to the form needed for the click chemistry

reaction, for example converting bromides into azides, to expand the fragments

into more diverse chemical space. On the other hand, if the synthetic reaction

eventually approves untenable for this project, the options for fragment should

increase greatly.

Synthesis

At this point, we believe that the "click" reaction is viable as a synthetic

technique, and can be useful for library synthesis. However, our preliminary

results indicate that the reaction has some limits when used in combination with

aromatic compounds. The Hammet series study should provide some insight

into the exact limitations of the reaction in this setting (Hammett LP, 1937).

Additionally, synthesizing azides in-house from their corresponding bromides and

using these to test reaction conditions would probably result in an overall

improvement in performance.

Modeling

At this point, there has been little computational involvement in this project

beyond the design of the fragment library. However, recent advances in
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computational methods as applied to RNA systems by our group and others

should make modeling a useful part of this project. In addition, these

experiments will provide a unique opportunity to validate the computational

techniques with a set of chemically diverse fragments, some of which are

binders, all of which will have binding affinities determined using the same

assays and have structural data.

Binding

It is obvious that the fragments are binding to the TAR RNA. However, a

number of controls need to be run. For example, as stated in the Discussion

Section, there needs to be further study of where the fragments are binding on

the structure of the RNA. The affinity of the fragments that are shown to bind, of

course, will also need to be determined. While we are working on optimizing

generic chemistry that will enable use to easily combine the fragments, it is not

clear at this time that the final set of reactions will be able to generate scaffolds

that will align the fragments in their originally optimal positions. Even if the

chemistry does not work, though, the fragments themselves could be used to

generate lead-like molecules.

The specificity of the fragments may be a much larger, and in the end

much more critical issue. The good and bad news of the fragment library that we

have constructed is that so many members bind to the TAR. Having so many

fragments bind means that there are many chemical moieties for us to select

from as a starting point for the lead optimization. On the other hand, having such
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a high hit rate, even from a fragment library, may indicate that the fragment

library as designed may not result in lead compounds that are specific for the

target of interest. The extent of this situation can be determined by screening

against other RNA hairpins, like trNA, during the various stages of lead

optimization.
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“There are seven sins in the world: Wealth without work; pleasure without
conscience; knowledge without character, commerce without morality; science
without humanity; worship without sacrifice; politics without principle."

--Mahatma Gandhi

Conclusion

At this point in my thesis and in my graduate career, both Tack and Tom

thought it would be appropriate for me to take a step back to summarize the

lessons I have learned and to frame some open questions for the field. I am of a

few minds about the best way to address this task, so I have decided to answer

in a few ways:

From the perspective of senioritis:

Theory only works to predict the data that was used to build the model

and, even then, only works as a result of fortuitous cancellation of errors.

Experiments take too long and often are influenced by the questions asked and

the moons being in proper alignment. Give up and become an event planner; the

pay and the hours are better.

From the perspective of a scientist:

When I started my thesis work, I had hoped to address and solve some of

the issues pertaining to drug design in general and for RNA targets in particular.

While I have made some baby steps in that direction, I have perhaps more
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appropriately begun to identify where the current models fail. Many of the more

technical aspects of these issues have been addressed in one form or another in

the chapters of this thesis. For example, it appears as though the scoring

functions we are using are good enough to guide predictions but still have room

for improvement for both proteins and nucleic acids. From the various types of

sampling studies I have explored here, I would attribute this issue to improper

modeling of charge polarization. For example, in RNA molecules in particular,

the flexible backbone can modulate the local chemical environment and allow for

fairly specific regulation of changes in protonation states. Even in simple

interactions like hydrogen bonding, the charges are redistributed over the

interacting atoms. These phenomena are also present in proteins, particularly in

active sites. Modeling these types of interactions through the new polarizable

force fields will hopefully serve both to improve the stability of nucleic acid

simulations. It will then have to be determined how best to incorporate this type

of information into docking simulations.

For all models, continual validation using current experimental data is

critical to improving predictions. With the current technology, we can generate

orders of magnitude more data both experimentally and computationally than

even a few years ago. More information helps to generate statistics on the

reproducibility of events. With the drive for more information, important, although

seemingly mundane, details can be lost. Being able to predict the general trend

is useful. However, I have found that the most pertinent information often comes

from tracking down why the outliers do not fit the curve. For the future of
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modeling RNA in particular, a big limitation is the lack of diverse experimental

data. The vast majority of data collected to date is for HIV RNA molecules and

the ribosome, making models and future experiments biased towards these

systems. In addition, most RNA molecules are studied in their most minimal

states. Only the ribosome has been solved in its entirety, and it is still not clear,

for example, how the remainder of the HIV genome will affect the folding and

tertiary structure of the TAR hairpin.

Finally, I think there is an inherent trap in comparing the current status of

anything in the RNA world to that in the protein world. While it is useful to use

proteins as a benchmark, it is also useful to remember that the study of RNA is

truly in its infancy compared to proteins. To assume that the same experimental

assays will apply to both systems without significant adaptation has been shown

to be incredibly naïve (ask Nick Mills in the Guy Lab). The same is true for

modeling and, perhaps more subtly, for drug design. We need to adjust our

expectations away from “Let us find the nanomolar inhibitor of RNA," particularly

because we do not even know at this point if it is feasible to find a drug that is

specific to any one RNA target. I honestly believe that some day, the FDA will

approve a small molecule inhibitor of a protein-RNA interaction. However, I also

feel that a great deal of basic experimental and theoretical research must be

done into the biophysics of nucleic acids in order for drug design efforts to be a

true Success.
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Random Bits of Wisdom:

The results of both theory and experiment are continually made to be

more complicated than they need to be, particularly when the simple, logical

answer is usually the truth (e.g., “It's gotta be a bug."). In the case of two

competing models, the answer is usually some combination of both ends of the

spectrum rather than one over the other. A good systems administrator can

prevent years of frustration. It is critically important to know how to communicate

your ideas to a wide range of people. It is equally critical—the underpinning of

any successful collaboration—to understand not only other people's work but

their frame of reference. Always allow at least three times the amount of time

you think you need to complete something. If you cannot answer the question

"Why are you doing this?" at any point about your research, then you have gotten

off track.
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