Lawrence Berkeley National Laboratory

Recent Work

Title

PROGRAM BRAGG A FORTRAN-IV PROGRAM FOR CALCULATING BRAGG CURVES AND FLUX DISTRIBUTIONS

Permalink https://escholarship.org/uc/item/8s6804cp

Author

Litton, Gerald M.

Publication Date

1967-02-24

University of California Ernest O. Lawrence Radiation Laboratory

PROGRAM BRAGG A FORTRAN-IV PROGRAM FOR CALCULATING BRAGG CURVES AND FLUX DISTRIBUTIONS

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UCRL-17391 UC-34 Physics TID-4500 (49th Ed.)

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

5.1

PROGRAM BRAGG A FORTRAN-IV PROGRAM FOR CALCULATING BRAGG CURVES AND FLUX DISTRIBUTIONS

Gerald M. Litton^{*}

February 24, 1967

0

Printed in the United States of America Available from Clearinghouse for Federal Scientific and Technical Information National Bureau of Standards, U.S. Department of Commerce Springfield, Virginia 22151 Price: Printed Copy \$3.00; Microfiche \$0.65

PROGRAM BRAGG A FORTRAN-IV PROGRAM FOR CALCULATING BRAGG CURVES AND FLUX DISTRIBUTIONS

Contents

I.	General Description \ldots	1
II.	Mathematical Model	2
	A. Particle Energy Spectrum	2
	B. Number Density	4
	C. Dose	4
	D. Cross Sections	4
	E. Ionization-Energy Loss	5
	F. Straggling Parameter	5
	G. Multiple-Scattering Corrections	6
III.	Input Format	6
	A. Random Input System	6
	B. Notes on Control Card Use	9
		~
IV.	Output Format	0
	A. Standard Output \ldots \ldots \ldots \ldots \ldots 1	U A
	B. Optional Output	U
v.	Restrictions	2
	A. Mesh Size	2
	B. Initial Energy	2
	C. Target Components	2
	D. Input-Data Points	2
	E. Title Card	2
Anner	dives	
11ppc	A Numerical Procedures 1	2
	B Notes on Compatibility	ך ב
	C Sample Problem	5 6
	D. Fortran Listing	4
		-
Refer	ences	7
L		

PROGRAM BRAGG A FORTRAN-IV PROGRAM FOR CALCULATING BRAGG CURVES AND FLUX DISTRIBUTIONS

Gerald M. Litton

ð

Lawrence Radiation Laboratory University of California Berkeley, California

February 24, 1967

I. GENERAL DESCRIPTION

Program BRAGG calculates Bragg curves and number-distance curves for a beam of ions of arbitrary atomic number, atomic weight, and energy, incident on an absorber. This absorber is assumed to be homogeneous, but may consist of an arbitrary number of components, each specified by an atomic number, atomic weight, and atomic density. The geometry considered is that of a broad, well-collimated beam incident on a slab whose transverse dimensions are large compared to the distance travelled by the ions in the absorber.

The calculation takes into account the processes of ionization energy loss, energy straggling, and nuclear attenuation; but energy deposition from secondary particles is neglected. The ionization energy loss and nuclear attenuation processes are calculated by means of distinct subroutines, which are intended for use either with protons or with ionized nuclei of heavy atoms. This flexibility has been deliberately incorporated, so that the user may easily employ his own routines for the calculation of these processes for any desired ion.

Corrections for multiple scattering have been included. The calculation of these corrections also produces estimates of range shortening and beam spreading due to the scattering process. These estimates are included in the program output.

Various options for data output are available. Bragg and numberdistance curves may be printed in digital form, as on-line graphs, or as regular Cal-Comp plots. The Bragg curves may be normalized to an arbitrary quantity, either at the origin or at the Bragg peak. Similarly, the number-distance curve may be arbitrarily normalized at the origin.

For graphic display purposes, an option permits shifting the calculated Bragg curve so that the Bragg peak is set at a particular depth of penetration.

The program also calculates the particle energy spectrum at the Bragg peak. This may be printed out either in digital form or as a Cal-Comp plot. Other options are available. Some of these pertain to control of the numerical procedure employed in the calculations, although the standard options that the program uses have been carefully chosen to yield the best results for most cases. An option is available that allows the user to choose an arbitrary value for the multiplication factor used in the calculation of the straggling standard deviation. The standard option is the theoretical value. Still another option pertains to the value of the nuclear-attenuation crosssection parameter. The standard option chosen is one that has been found to give reasonable agreement with experimental data.

For comparison purposes, input data may be supplied to the program. This data is then plotted along with any Cal-Comp figures output by the program.

Decks for Program BRAGG may be obtained from the Computer Center Library, Department of Mathematics and Computing, Lawrence Radiation Laboratory, Berkeley, California.

II. MATHEMATICAL MODEL

A detailed derivation and discussion of the equations upon which Program BRAGG is based is contained in UCRL-17392.¹ The purpose of this section is to outline briefly the basic mathematical expressions evaluated by BRAGG. All terms used are defined in Table I.

A. Particle Energy Spectrum

The spectrum at a given distance S is written as

175

$$M(E, S)dE = \frac{1}{\sqrt{\pi}} \cdot N_0(E_0) \cdot \exp\left\{-A_p \int_E^{E_0} [\Sigma(E')/f(E')] dE'\right\} \cdot \exp[-U^2] \cdot [dU/dE] dE,$$
(1)

which is defined as the number of particles at S having energies within an interval dE about E. The function U is defined as

$$U = \left[S - \overline{S}(E) \right] / \alpha(E, E_{0}), \qquad (2)$$

and

$$\overline{S}(E) = A_{p} \int_{E}^{E_{0}} [1/f(E')] dE',$$
 (2a)

where S(E) is the mean distance travelled by particles slowing down from energy E_0 to energy E.

Table I. Nomenclature

٢

A _i	Atomic weight of the <u>i</u> th species of the target
A _p	Atomic weight of beam ions
CRIT1	Constant appearing in the equation describing validity of the delta-function approximation Electron charge in $(cm-MeV)^{1/2}$
Ē	Energy of beam ions in MeV per nucleon
EO	Initial energy of beam ions
f(Ĕ)	Specific ionization energy loss of ions of energy E, in $MeV/(g/cm^2)$
FR	Step-size criterion parameter, used in numerical integration scheme
IADJ	Input parameter used in calculation of f(E)
D(S)	Total energy deposition rate per unit distance of travel at position S, $MeV/(g/cm^2)/sec$
MoC ²	Nucleon rest mass ≈ 938 MeV
M(E,S)dE	dE about energy E, at S
n	Number of electrons per cm^3 in the target
N(S) $N_0(E_0)$	Initial number flux at target surface, in particles/cm ² -sec
N _i	Atom density of the <u>i</u> th species of the target, in No./cm ³
NT	Number of species in target
r ₀	Total reaction-cross-section parameter
S ₀	Parameter connected with range straggling calculation
১ ই(দ)	Distance of travel in the target, in g/cm ⁻
5(13)	to energy E
Zi	Atomic number of ith species of the target
Z'n	Atomic number of beam ions
ϵ^{P}	Total energy in the center-of-mass system
ρ,	Target density, in g/cm ³
σ(E) σ(E E)	Standard deviation of ions slowing down to zero from energy E
σ(E, E0)	Standard deviation of ions slowing down from energy E_0 to the energy E
η:(E)	Microscopic total-reaction cross section for beam ions with
.Т.	energy E with the <u>i</u> th target species
え(E)	Wavelength of beam ions with energy E
$\Sigma(E)$	Macroscopic total-reaction cross section for beam ions with
_በ (ጉ)	energy E with the target.
(名(上)	F.
ω(Ε, Ε ₀)	Straggling parameter of ions slowing down to energy E from energy E_0

B. Number Density

The particle number density, also denoted as the number flux, or simply flux, is given at a particular distance S by

$$N(S) = \int_{all E} M(E, S)dE, \qquad (3)$$

where M(E, S) is given by Eq. (1). The curve describing the variation of N(S) with S is called the number-distance curve.

C. Dose

The relative dose at a distance S is given by

$$D(S) = \int_{all E} M(E, S) \cdot f(E) dE.$$
 (4)
D. Cross Sections

The total microscopic reaction cross section for the ith component of the target at a particular energy E is calculated from an expression developed by $Evans^2$ and is given as

$$\eta_{i}(E) = \pi \left[r_{0} \times 10^{-13} (A_{p}^{1/3} + A_{i}^{1/3}) + \lambda \right]^{2} \left[1 - \frac{Z_{i} Z_{p} e^{2}}{\epsilon [r_{0} \times 10^{-13} (A_{p}^{1/3} + A_{i}^{1/3}) + \lambda]} \right], \quad (5)$$

where the particle wavelength is

$$\lambda = (\hbar c/A_p)[2E(MoC^2) + E^2]^{1/2}, \qquad (6)$$

and the CM energy is

$$\epsilon = \frac{A_i \cdot A_p}{A_p + A_i} E.$$
 (7)

The term r_0 is an input parameter chosen so as to best fit the experimental data. Work has shown that a value of 1.06 for r_0 gives best agreement with many experimental results. This value is used by the program, unless the user specifies otherwise.

The total macroscopic cross section is given by the expression

$$\Sigma(E) = \sum_{i} \eta_{i}(E) N_{i}. \qquad (8)$$

E. Ionization Energy Loss

The function f(E) represents the specific energy loss of the ions due to ionization interactions with the atoms of the absorber. The calculation of this function is incorporated into a series of subroutines, and is based entirely on the work of Steward and Wallace.³

One important input parameter required for the calculation of f(E) is IADJ, which is related to the mean excitation energy for a particular absorber. The significance of this quantity is discussed by Barkas and Berger, and a tabulation of values for all elements is given by Turner.⁵

F. Straggling

The variance in the distance of travel of ions slowing down from energy E_0 to energy E is given as

$$\sigma^{2}(E, E_{0}) = \sigma^{2}(E_{0}) - \sigma^{2}(E),$$
 (9)

where $\sigma^2(E)$ is the variance for ions slowing down to zero from E. It is calculated by the following expression, a modification of that derived by Sternheimer.⁶

$$\sigma^{2}(E_{0}) = 4\pi Z_{p}^{2} e^{4}n \int_{0}^{E_{0}} \frac{1+H(E)}{H(E)} \frac{dE}{[f(E)]}, \qquad (10)$$

where

$$H(E) = \left(\frac{M_0 C^2}{E + M_0 C^2}\right)^2.$$
 (10a)

The straggling parameter α (E, E₀) is given by

 $\alpha (E, E_0) = S_0 \cdot \sigma(E, E_0). \tag{11}$

The theoretical value of S is equal to $\sqrt{2}$. However, the user may at his option choose a different value.

G. Multiple-Scattering Corrections

Because of small-angle multiple-scattering, slight corrections must be applied to the calculated dose and flux distributions. (Although the magnitude of these corrections is small, the expressions for them are long and tedious and will not be reproduced here. Reference is made instead to UCRL-17392.) One result of these calculations is an estimate of range shortening and beam spreading due to the scattering.

III. INPUT FORMAT

In the deck of input cards, the first card specifies the number of individual problems to be run, in (I10) format. Following this card is a separate data deck for each problem to be run. Each deck is arranged in the Random Input System, making input extremely easy and efficient.

A. Random Input System

The basic advantage of this system is that within a given data deck, the input cards may be arranged in any desired order, and one must supply only those cards necessary to the particular problem being run.

The deck consists of control cards and data cards. Data cards are seldom used, being necessary only when space on the associated control card is insufficient for the data being supplied by that control card. The first field on a control card indicates to the program which control card is being examined. In some cases, this field by itself specifies a particular option to be followed by the program. In other cases, the remaining fields supply data to the program. In a few cases, a control card will indicate that a number of specific data cards immediately follow.

The format of all control cards is (A10, 3E10.0, 2A10). The first field contains an alphanumeric identifier, always left-justified. The remaining fields may or may not contain data, depending on the card. Table II gives a complete list of the control cards available as input to BRAGG. For several cards, the standard option is indicated in the table. This is the option chosen by the program in the absence of a control card specifying otherwise. In many cases, the standard option is the opposite of the control card specification and is not indicated in the table. For example, the PRINT DOSE control card specifies the printing of certain information. In the absence of this card, the information will not be printed.

A blank control card indicates the end of card input for that problem. Upon termination of a problem, the program reads in another data deck the (last card again being blank). The program terminates after the number of problems specified by the initial data card has been run.

Table II. Control Cards

Columns 1 through 10	Function
BEAM	(a) Z_p and A_p in fields 2 and 3.
	(b) Beam designation (alphanumeric identifier) in fields 5 and 6.
ENERGY TITLE TARGET [*]	 Beam energy (MeV/nucleon) in field 2. Read the 80-character title from the next card. (a) NT, target specific gravity and value of IADJ in fields 2, 3, and 4.
	(b) Target designation (alphanumeric identifier) in fields 5 and 6.
	(c) Read (Z _J , N _I , A _J , J = 1, NT) from the next NT cards, in (3E10.0) format.
PRINT DOSE	Print the dose and particle-number density at all points calculated.
PRINT E	Print the energies at which computations are per-
PRINT SPEC	Print the particle energy spectrum at the Bragg
PRINT SIG	Print the particle survival fraction, straggle param-
LET NORM-P	Normalize the calculated dose distribution so that the dose at the Bragg peak is equal to the quan-** tity in field 2 (Standard option: unnormalized.)
LET NORM-I	Normalize the calculated dose distribution so that the initial dose is equal to the quantity in field 2. (Standard option: unnormalized.)**
FLUX NORM	Normalize the particle flux distribution so that the initial flux is equal to the quantity in field 2. (Standard option: normalize to 1.0.)**
X-ADJUST	Shift the calculated Bragg curve so that the peak oc- curs at the penetration distance value, in g/cm ² , given in field 2.
PLOT DOSE PLOT FLUX	Produce a Cal-Comp graph of the Bragg curve. Produce a Cal-Comp graph of the number-distance curve.
DATA	 (a) ND in field 2. (b) Read ND data points from the cards immediately following. The order of the input points is YDATA (I), XDATA (I), with one data point to a card in (2E10.0) format.
PLOT DATA	Plot the data points last read in with a DATA control card.
SAME CURVE	Plot the curve for the current problem on the same figure as that of the preceding problem.
PLOT SPEC	Produce a Cal-Comp graph of the spectrum at the Bragg peak.

Table II. (Continued)

Columns 1 through 10	Function
CRIT1	Set CRIT1 equal to the value in field 2. (Normal option: 0.01).
FR	Set FR equal to the value in field 2. (Normal option: 0.2).
QUICKPLOTD	Produce an on-line graph of the Bragg curve.
QUICKPLOTN	Produce an on-line graph of the number-distance curve.
RZERO	Set r ₀ equal to the value in field 2. (Normal option: 1.06).
SIGMULT	Set S_0 equal to the value in field 2. (Normal option: $\sqrt{2}$). **
PRINT SCAT	Print intermediate information produced in the multiple-scattering calculations
CALL TABLE	Print the information on file TAPE5 in tabular _{****} form and reqind the file (See Section B-3).

- * See Section B-7. See Section B-1. See Section B-2. See Section B-3.

B. Notes on Control-Card Use

1. In certain cases, once a particular option has been chosen, it will remain in effect for all of the remaining problems in a set, or until another control card changes the option. The options for which this is true are indicated by a double asterisk in Table II. For example, insertion of the control card LET NORM-P, with a 1.0 punched in the second field, will cause the calculated Bragg curves for each of the remaining problems to be normalized to unity at the peak.

Control cards not asterisked must be inserted in the data deck of each problem for which that option is to be exercised.

2. In using options for producing Cal-Comp graphs, the following points shold be remembered. A PLOT DATA control card will cause the program to plot the data points with each figure produced during the execution of a given problem. Therefore, it would normally be used when only one graph is to be plotted during a given problem. Similarly, the SAME CURVE control card prevents frame-advancing and axis-labelling during a given problem. It is normally used to plot several Bragg curves or number-distance curves from successive problems on the same figure. Therefore, if either a PLOT DATA or SAME CURVE card is present in the data deck for a given problem, not more than one of the control cards PLOT SPEC, PLOT FLUX, or PLOT DOSE should be in that deck.

3. During execution, the standard printout consists of several key results, described in Section IV-A. These quantities are also written on the file TAPE5 at the completion of each problem. Insertion of a CALL TABLE control card during a particular problem causes the following sequence: (1) After successful completion of the problem, TAPE5 is rewound; (2) All results on TAPE5 are printed on the standard output file in convenient tabular form; (3) TAPE5 is rewound.

4. Regardless of the context, the quantities appearing in fields 2, 3, and 4 of any control card must have a decimal point or be right-justified within the field.

5. Data points supplied by the DATA control card may be either for Bragg or number-distance curves or for the Bragg-peak spectrum. Once read in, a set of data points remains in storage until a new set is read in.

6. The on-line plotting option, via the control cards QUICKPLOTN and QUICKPLOTD, can be used only if one or more data points have been supplied by a DATA card.

7. With the TARGET control card, NT is the number of components of the target; it is also equal to the number of data cards immediately following the TARGET card. Note that N_J is equal to the atom density times the factor 10^{-22} .

IV. OUTPUT FORMAT

A. Standard Output

Various output options are available to the user by means of control cards. In all cases a certain amount of standard output is produced. This consists of a synopsis of the input data and a summary of key results. The first section includes the following:

- 1. Beam atomic number, atomic weight, and initial energy;
- 2. Target specific gravity and value of IADJ;
- 3. Atomic number, atomic weight, and atom density of each component of the target;
- 4. Values to be used by program for CRIT1, FR, r_0 , and S_0 . In addition, messages are printed indicating the modes to be used for flux and dose normalization and for axis shifting.

The second section of standard output contains the following:

- 1. The peak-to-initial-dose ratio;
- 2. The depth of penetration at the Bragg peak;
- 3. The average energy at the Bragg peak;
- 4. The full width at half-maximum of the Bragg peak;
- 5. The mean range, defined as the penetration distance at which the dose has fallen to one-half that at the peak;
- 6. The percentage-detour factor, which is the percentage difference between the mean distance of travel and the corresponding penetration distance calculated at that point at which the dose is equal to ten percent of the peak dose;
- 7. The mean beam deflection, equal to the mean distance of travel in a direction perpendicular to the initial direction of travel of the beam. It is calculated at the same position as is the percentage-detour factor.

All energies are measured in units of MeV/nucleon, and all distances in units of g/cm^2 .

B. Optional Output

The PRINTE card causes the program to print a list of the particle energies at which calculations are performed. The relationship between a given energy and the corresponding mean distance of travel is given by Eq. (2a).

The PRINT SIG card causes the program to list, at each particle energy at which calculations are performed, the following quantities:

- 1. The energy;
- 2. The survival fraction, equal to the fraction of particles which have a survived to that energy without undergoing a nuclear interaction;
- 3. The corresponding straggle parameter, given by Eq. (11);
- 4. The corresponding penetration distance into the slab, equal to that

distance given by Eq. (2a) modified slightly to take into account the multiple-scattering correction.

The PRINT DOSE control card causes the following quantities to be listed:

- 1. The penetration distance (same as 4 above);
- 2. The normalized or unnormalized flux, given by Eq. (3);
- 3. The normalized or unnormalized dose, given by Eq. (4);
- 4. A calculation-mode indicator. If the indicator is "MON", at that point calculations were made using the delta-function approximation (see APPENDIX A). If the indicator is "SUM", then the dose and flux were calculated by standard numerical integration. Finally, if the indicator is "SUMI", the depth of penetration was greater than $\overline{S}(0)$, given by Eq. (2a).

The PRINT SCAT control card causes the printing of miscellaneous quantities associated with the calculation of the multiple-scattering corrections, including:

- 1. The energy;
- 2. The actual mean distance of travel corresponding to that energy given by Eq. (2a);
- 3. The corresponding penetration distance;
- 4. The mean angle of deflection made by the particles with respect to the initial direction of travel;
- 5. The mean beam deflection, a quantity expressing the mean distance travelled by the particles in a direction perpendicular to the initial direction of travel;
- 6. The quantity THETAS, equal to the mean angle of deflection of the particles per unit length of travel. Its significance is discussed in UCRL-17392.

The PRINT SPEC card produces a printout of the energy spectrum at the Bragg peak, calculated by use of Eq. (1). This spectrum is automatically normalized to unity at the peak. It should be mentioned that the average energy at the peak is calculated by using this spectrum as a weighting function.

Use of the QUICKPLOTD and (or) QUICKPLOTN control cards will produce a plot of the dose and (or) number-distance curve on the standard output unit.

Several options may be exercised in the printing of Cal-Comp plots. First, regular plots may be produced for any or all of the three calculated curves (Bragg, number-distance, and peak spectrum) within a given problem by use of one or more of the PLOT DOSE, PLOT FLUX, and PLOT SPEC control cards. In all cases, the axes are automatically labelled and numbered. Furthermore, a title is affixed to each figure produced. This is supplied by the TITLE control card. If a title is to be printed on a graph, it must not exceed 43 BCD characters. Any excess above this number will be lost. All plotted figures are sized to the standard $8\frac{1}{2}$ by 11-in. sheet. The DATA and PLOT DATA control cards may be used to plot experimental data along with either a Bragg, number-distance, or peak-spectrum curve. The SAME CURVE control card may be used to overlay curves from different problems on the same figure, for comparison and display purposes. (See Section III-C-2.)

V. RESTRICTIONS

A. Mesh Size

The maximum allowable number of mesh points for a problem is 500. The total number of mesh points used depends on many variables, the chief ones being FR and CRIT1. The standard options used for these variables will normally keep the number of mesh points well below 500. If different values are used, the number of points can in same cases exceed 500. If this occurs, an error message is printed, and the program goes on to the next problem.

B. Initial Energy

The maximum allowable initial energy is 1000 MeV/nucleon. This restriction is imposed by the routines that calculate f(E), and it can easily be modified.

C. Target Components

The maximum number of components of the target is set at 10.

D. Input-Data Points

The maximum number of data points that may be read in with a DATA control card is set at 300.

E. Title Card

The BCD characters on the card following the TITLE control card will be printed on any Cal-Comp plots produced. In this case, characters in excess of 43 will not be plotted. In all cases, the full 80-characters are printed along with the output.

APPENDIXES

A. Numerical Procedures

1. Delta-Function Approximation

We consider the evaluation of the expression given by Eq. (4), "and the associated expressions in Eq. (1) and (2). For sufficiently small values of α (E, E₀), the term $(1/\sqrt{\pi}) \cdot \exp{-U^2}[dU/dE]$ behaves like a deltafunction; and Eq. (4) reduces to

$$D(\overline{S}) = N_0(E_0) \exp\left\{-A_p \int_{E}^{E_0} \left[\Sigma(E')/f(E')\right] dE'\right\} f(E)$$
(12)

where \overline{S} is given by Eq. (2a). We wish to learn when this approximation is valid. This may be deduced by the following argument. Consider the exponential term

$$T = \exp\{-U^{2}\}, \tag{13}$$

where U is given by Eq. (2). For a given value of S, T is the controlling factor in determining how rapidly the total integrand in Eq. (4) goes to zero. Thus, for $U \ge 3$, the contribution to the total integrand will be negligible. Therefore, if each and every other factor in the integrand remains relatively constant over the energy interval within which the integrand differs significantly from zero, then the approximation of (4) by (12) is valid.

We state this mathematically as follows. Let D be the range covered by the variable $\overline{S}(E)$ over which the term T is significantly greater than zero. We may write

$$D = M \cdot \alpha(E, E_0), \qquad (14)$$

where M is some constant in the neighborhood of 2 to 3. We wish to calculate the change in energy, ΔE , corresponding to the distance D. From Eq. (2a), we find that for a change in $\overline{S}(E)$ equal to D, the corresponding change in energy is approximately

$$\Delta E \stackrel{\sim}{=} \frac{D}{A_{p}} \cdot f(E) = M \cdot \alpha (E, E_{0}) \cdot f(E) \cdot \frac{1}{A_{p}} .$$
 (15)

We now require that the percentage change in each other factor in the integrand be less than some fraction h over the energy interval ΔE given by (15). The two functions to consider are:

$$G_{1}(E) = \exp - \int_{E}^{E_{0}} A_{p} \cdot [\Sigma(E')/f(E')] dE',$$
 (16)

$$G_2(E) = f(E).$$
 (16a)

and

For a given function $G_{i}(E)$, the percentage change over an increment ΔE is approximately

$$\frac{\Delta G_{i}}{G_{i}} (E) \cong \frac{dG_{i}(E)}{dE} \cdot \frac{\Delta E}{G_{i}(E)} .$$
(17)

Taking the derivatives of both functions in (16), using the approximation in (17) and the expression for ΔE in (15), and requiring that the percentage change of each function over ΔE be less than h, we obtain the following criteria:

$$\Sigma(E) \cdot \alpha (E, E_0) < CRIT1$$
(18)

and

$$\frac{dF(E)}{dE} \cdot \alpha(E, E_0) < A_p \cdot CRIT1, \qquad (18a)$$

where

$$CRIT1 = h/M.$$
(19)

If both of these requirements are satisfied for a reasonable value of h/M, then Eq. (4) may be replaced by the much simpler Eq. (12). Similarly, if Eq. (18) holds, then Eq. (3) may be replaced by the following:

$$N(S) = N_0(x) e^{-\int_{E}^{E_0} \frac{\Sigma(E')}{f(E')} dE'}.$$
 (20)

Experiment has shown that a value of CRIT1 equal to 0.01 produces excellent results. For larger values, the delta-function approximation begins to break down.

Numerical Integration 2.

For those points at which the delta-function approximation is invalid, the integrals in Eq. (3) and (4) are evaluated numerically, using the simple trapezoidal rule. In this case, the procedure is basically as follows:

- Choose a set of energies $\{E_i\}$. 1
- Calculate the set $\{\overline{S_i}\} = \{\overline{S(E_i)}\}$ for each energy by using Eq. (2a). 2.
- 3.
- Calculate $\alpha(E, E_0)$ for each energy by using Eq. (11). Evaluate the integral $\int_{E}^{E_0} A_p[\Sigma(E')/f(E')] dE'$ at each energy. 4.

Finally, the numerical integration is performed for a set of values for the distance S. In fact, the evaluation is greatly simplified by choosing these values to coincide with the set $\{S_i\}$.

It remains to choose the energy set $\{E_i\}$ at which the numerical calculations are to be performed. Since the term T given by (13) is the most rapidly varying in both (3) and (4), we impose the requirement that in traversing the energy interval ΔE , which is the interval over which the trapezoidal rule is applied at any given step, the change in the quantity U be less than or equal to some fraction FR, where FR is a small fraction of unity. This ensures that the change in the exponential term T will likewise be small over the interval ΔE .

The change in U across ΔE is approximated by

$$\Delta U \stackrel{\simeq}{=} \Delta \overline{S} / \alpha (E, E_0), \qquad (21)$$

where $\Delta \overline{S}$ is the difference between two successive members in the set $\{\overline{S}_i\}$.

It is assumed that $\alpha(E, E_0)$ remains relatively constant over the interval. We require, then, that

$$\Delta S / \alpha (E, E_0) \leq FR.$$
 (22)

From Eq. (2a), the relation between the change in distance $\Delta \overline{S}$ and the corresponding energy change ΔE is

$$\Delta E = \frac{1}{A_{p}} \cdot f(E) \cdot \Delta \overline{S}.$$
 (23)

Substituting into (22), we obtain the restriction on ΔE :

$$\Delta E \leq \frac{1}{A_{p}} \cdot f(E) \cdot \alpha(E, E_{0}) \cdot FR.$$
(24)

Thus, for a given energy E_i , the next energy E_{i+1} at which the calculations are performed is given by (24) where the equality sign is chosen. Therefore we can write

$$E_{i+1} = E_i - \Delta E.$$
 (25)

Experimentally, it is found that a value for FR of 0.2 is satisfactory.

B. Notes on Compatibility

Program BRAGG is written in Fortran-IV language for the Control Data Corporation 6600 computer system at the Lawrence Radiation Laboratory (LRL) in Berkeley, California. It can be used with a minimum of modification on practically any system that accepts Fortran-IV and that has adequate storage capacity. The chief alterations that might have to be made are outlined below.

1. Word Size

The CDC-6600 operates on a word size of 60 bits, or ten BCD characters. For machines using different word sizes, all instructions depending on the word size would have to be modified. These would be primarily the DATA statements appearing at the beginning of the main program;

some of the WRITE or PRINT statements (and their associated FORMAT statements) that appear in the main program and in the subroutines GMPRINT and TABLE; and the series of LOGICAL IF statements appearing in the main program after statement 501.

2. Graphing Routines

BRAGG contains the option of producing Cal-Comp drawn figures; the control statements for this process are contained in SUBROUTINE GMPRINT, and many of them refer to subroutines peculiar to LRL Berkeley. At other installations, these statements might have to be removed or replaced.

3. ENCODE and DECODE Statements

These statements occur in the subroutines FIXLBL, CENTER, and GMPRINT. The easiest method of eliminating these statements is by a set corresponding WRITE and READ statements to a scratch file.

4. CALLADATE Statement

This occurs in the beginning of the main program and in subroutine TABLE. DATE is an LRL routine which supplied the current date.

5. Input-Output Statements

ţ

The input and output statements may each take any of several forms; not all of these forms may be allowed on other systems.

C. Sample Problem

The input and output for a typical problem are given here. The case chosen is for 125-MeV protons in water. Only the standard printed output is selected, but Cal-Comp plots are shown for all three calculated curves.

Figure 1 shows the input cards for the problem. The three pages following Fig. 1 show the standard output. Figures 2, 3, and 4 show the Cal-Comp plots of the Bragg curve, the number-distance curve, and the spectrum at the Bragg peak.

UCRL-17391

.

-]	-7-
----	-----

		· · · · · · · · · · · ·	04/27/67.
taun adar sista dipan-a-ana bis t		•	• • • • • • • • • • • • • • • • • • • •
	PROGRAM	BRAGG	· · ·
.			· · · · · · · · · · · · · · · · · · ·
······································	SAMPLE PROBLEM WI	TH PROGRAM BRAGG	· · · · · · · · · · · · ·
	· ·		· · · ·
			· · · · · · · · · · · · · · · · · · ·
	••••••••••••••••••••••••••••••••••••••	·	
	INPIIT	DATA	
			a to a solution of the solution
BEAM PARTICLES	BEAM AT. ND.	BEAM AT. WT.	BEAM INITIAL ENERGY
PROTONS	1	1.00	125.00
CRIT1	FR	SIGMULT	RZERO
1.0000E-02	2.0000E-01	1.414	1.0600E+00
· · · · · · · · · · · · · · · · · · ·	·· ··· ···· ·· ·· ·· ·· ·· ·· ·· ··		
	·		
NO ADJUSTMENT OF THE	ABSCISSAS HAS BEEN MADE		
THE LET-DISTRIBUTION	IS NORMALIZED TO 1.0000	E+00 AT THE BRAGG PEA	к

. .

• • • •

ON SI	PECIFIC 1.0 RGET MA	GRAVITY 000	IADJ 65.10
TS IN TA	I.I		65.10
TS IN TA	RGET MA	TCD 7 44	• • • • • • • •
		1 EK 1 AL • • • • •	2
IC A ER W	TOMIC EIGHT	ATOM DEN (ND. PER I	S IT Y C M**3)
1	6.000	3.3500	E+22
	IC A ER W 1	IC ATOMIC ER WEIGHT 16.000 1.000	IC ATOMIC ATOM DEN ER WEIGHT (ND. PER 16.000 3.3500 1.000 6.6900

UCRL-17391

	·- · · · · · · · · · · · · · · · · · ·	
	04/27/67.	
SUMMARY OF RESULTS		
SAMPLE PROBLEM WITH PROGRAM BRAGG		
(BRAGG PEAK/INITIAL) DOSE RATIO		
PENETRATION DEPTH AT BRAGG PEAK (G/CM**2) 11.1503		
AVERAGE ENERGY AT BRAGG PEAK (MEV/NUCLEDN) 10.1360		
BRAGG PEAK FULL WIDTH AT HALF-MAXIMUM 6.476E-01		
MEAN RANGE (G/CM**2) 11.3042		
PERCENTAGE DETOUR FACTOR		
MEAN LATERAL DISPLACEMENT OF BEAM (G/CM**2) 5.041E-01		

-19-

J-APLOT FLUX +1 + 2 3 4 5 17 | 6 9 19 11 12 13 14 15 | 16 17 19 19 20 21 22 22 24 25 26 27 28 29 20 31 22 23 24 25 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 58 51 58 56 57 58 59 58 51 58 57 58 59 58 51 58 PLOT DOSE , PLOT SPEC ,_, ÈNERGY [′] 125.0 + - 2 4 6 17 6 8 18 11 12 12 13 15 (16 17 16 16 20 21 22 23 24 25 26 27 20 29 30 31 32 30 43 55 36 37 30 29 40 41 42 43 44 45 46 47 48 48 50 51 52 53 54 55 50 51 54 55 50 61 62 63 64 65 66 (67 64 69 70 7) 172 + 74 75 76 77 18 79 80 6.69 ' J-1.0 1.0 j_∂.0 ́ 3.35 16.0 *1 |+ 3 4 5 8 |7 | 8 9 10 11 11 14 15 116 17 18 18 20 21 22 . 24 25 28 27 28 20 30 12 23 34 35 38 37 38 29 40 4 1 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 59 59 60 51 62 53 64 65 66 [87 18 10 20 71 72 | + 74 75 78 77 78 78 80 ,_, TARGET 5.0 1.0 65.1 WATER +1 + 3 8 7 8 8 18 11 2 13 14 15 [16 17 18 18 20 21 22 24 25 28 27 28 29 20 31 32 1 34 25 38 37 39 33 40 41 42 43 1 45 14 44 45 35 1 52 53 54 55 58 57 58 59 50 61 62 63 64 15 66 [67 68 69 70 71 72] + 74 73 75 77 78 79 80 🎝 BEAM i.0 1.0 PROTONS wi] • ⁻ 4 8 6 17 [8 8 10 11 : 13 16 15 16 17 18 16 20 21 · 22 24 25 24 27 28 20 30 23 25 25 35 35 36 04 1 42 43 44 56 47 4 45 56 15 25 55 55 55 55 55 55 55 56 56 16 46 56 617 46 16 56 17 17 17 | + 74 75 76 77 17 18 70 80 ""SAMPLE PROBLEM WITH PROGRAM BRAGG + 1 + 2 4 5 12 18 8 110 112 114 15116 18 120 21 22 22 125 127 28 130 12 134 53 36 37 38 35 40 41 42 43 44 45 85 47 44 48 30 51 52 53 44 56 56 7 38 55 06 61 42 43 46 56 56 7 38 55 06 61 42 43 56 56 7 38 55 06 61 42 45 56 56 7 38 55 06 61 42 56 56 7 38 55 06 61 42 56 56 7 38 55 06 61 42 56 56 7 38 55 06 61 42 56 56 7 38 55 06 61 42 56 56 7 38 56 7 38 56 56 7 38 56 7 38 56 56 7 38 56 J-P TITLE *1 + 3 4 6 7 6 8 10 11 12 13 14 15 (15 (15 17 18 18 20 21 22 23 24 25 26 27 28 28 20 3) 32 33 24 35 36 37 38 28 40 41 42 43 44 45 46 47 44 45 50 31 32 33 54 55 56 57 38 59 60 61 62 43 66 66 66 (17 68 69 70 71 72 + 14 75 76 77 78 70 1 + 1 + 2 3 4 5 6 | 7 | 6 9 10 11 12 13 14 15 16 17 18 19 20 27 22 23 27 25 26 27 25 26 30 31 32 23 34 35 36 37 38 25 44 14 24 34 44 45 46 47 46 45 50 51 52 53 54 55 56 57 54 59 60 61 62 63 64 67 66 69 76 71 72 | + 14 75 78 77 78 77 78 78 U.C.R.L. MULTI PURPOSE CARD

XBL 675-4000

Fig. 1. Input cards for sample problem.

Fig. 2. Cal-Comp plot of Bragg curve for sample problem.

XBL 675-4002

XBL 675-4003

.

D. Fortran Listing

This section contains the complete Fortran listing of Program BRAGG. All subroutines used are included, except for Cal-Comp plotting subroutines and system routines for input, output, and other standard functions:

PROGRAM BRAGG(INPUT,OUTPUT,TAPE2=INPUT,TAPE3=OUTPUT,TAPE98,TAPE99, 2 TAPE51 REAL M.INT.N.MAT.BEAM.LET.IADJ.NELECT LOGICAL EPRINT, SGPRINT, DPRINT, SPPRINT, PRTABLE, PRSCAT, KPLOTN, 2 KPLOTD, FRAME, PLOTD, PLOTN, PLOTSP, PLOTP DIMENSION MAT(2), BEAM(2), XNAME(15), FMT(2), TITLE(15) DIMENSION GG(500), SAVE1(500), CROSS(500), U(500), DUDE(500) COMMON ATTEN(500), SBAR(500), E(500), SIGMA(500), IND(500), LET(500), 2 N(500), SPECT2(500), THETAS(500), THETA(500), XBAR(500), Y(500), 3 XDATA(300), YDATA(300), F(500) COMMON/CHAIR/IADJ.Z.A.DENS.AT(10).ZT(2.10).NO.DUMMM(2) COMMON/DATA/NDTAPT.PLOTP COMMON /GMDATA2/TITLE, FRAME, INNP, KS1, KS2 COMMON/GMDATA1/IMAX.DIFF.I8.PD COMMON/GDATA2/RHO,RZERO (GG, SAVE1+THETA]+(U, THETAS)+(Y, CROSS, DUDE) EQUIVALENCE DATA / COM3 /9HCRIT1 / COM2 /4HBEAM 1.0 2COM1 /6HTARGET /,COM6 /10HLET NORM-P/, /,COM5 /6HENERGY 3COM4 /9HFR /.COM8 /8HX-ADJUST /.COM9 /10HPRINT SIG /. 4COM7 /9HFLUX NORM 5COM10/10HPRINT DOSE/, COM11/10HPRINT SPEC/, COM12/10HPRINT E 1. /,COM15/9HPLOT FLUX 6COM13/10HQUICKPLOTD/ COM14/9HPLOT DOSE 1. 7COM16/10HSAME CURVE/, COM17/5HTITLE /,COM18/10HPLOT SPEC /, 8COM19/10HQUICKPLOTN/,COM20/10HRZERO /,COM21/10HCALL TABLE/, 9COM22/10HLET NORM-I/, COM23/10HPRINT SCAT/, COM24/10HPLOT DATA /. 1COM25/10HSIGMULT / COM26/10HDATA 1 DATA TITLE/15*10H DATA JDEX1, JDEX2/10HMON .10HSUM DATA JDEX3/10HSUMI DATA (XNAME(I), I=1,15), XMASK/16*1H M(U)=(0.56419)*EXP(-(U**2)) H(E)=(921.3/(921.3+E))**2 G(E)=(1.3027E-25)*(Z**2/RHO)*NELECT*(1.0+H(E))/H(E) CALL COBGN **REWIND 5** ASSIGN 770 TO NNN1 ASSIGN 767 TO NNN2 LNORM=0 FR=0.2 CRIT1=0.01 CONST1=0.0 CONST2=0.0 CALL DATE(TTDATE) SIGMULT=1.414 RZER0=1.06 READ(2:100)NNP DO 1000 INNP=1+NNP WRITE (3+114) WRITE(3,110) TTDATE XADJ=0.0 FRAME= TRUE PLOTD=+FALSE+ PLOTN= FALSE PLOTSP=.FALSE.

PLOTP= FALSE KPLOTD=+FALSE+ KPLOTN=+FALSE+ PRTABLE= FALSE PRSCAT= FALSE DPRINT=.FALSE. SGPRINT= FALSE SPPRINT= FALSE EPRINT= FALSE . 501 READ (2,101) TEMP1, TEMP2, TEMP3, TEMP4, TEMP5, TEMP6, TEMP7, TEMP8 IF(TEMP1.EQ.XMASK)GO TO 515 IF(TEMP1.EQ.COM1)GO TO 502 IF(TEMP1.EQ.COM2)GO TO 503 IF(TEMP1.EQ.COM3)CRIT1=TEMP2 IF(TEMP1.EQ.COM4)FR=TEMP2 IF(TEMP1.EQ.COM5)GO TO 506 IF(TEMP1.EQ.COM6)GO TO 507 IF(TEMP1.EQ.COM7)GO TO 508 IF(TEMP1.EQ.COM8)XADJ=TEMP2 IF(TEMP1.EQ.COM9)SGPRINT=.TRUE. IF(TEMP1.EQ.COM10)DPRINT=.TRUE. IF(TEMP1.EQ.COM11)SPPRINT=.TRUE. IF (TEMP1.EQ.COM12) EPRINT=.TRUE. IF (TEMP1.EQ.COM13) KPLOTD=.TRUE. IF(TEMP1.EQ.COM14)PLOTD=.TRUE. IF(TEMP1.EQ.COM15)PLOTN=.TRUE. IF(TEMP1.EQ.COM16)FRAME=.FALSE. IF(TEMP1.EQ.COM17)GO TO 511 IF(TEMP1.EQ.COM18)PLOTSP=.TRUE. IF (TEMP1.EQ.COM19) KPLOTN=.TRUE. IF(TEMP1.EQ.COM20)RZERO=TEMP2 IF(TEMP1.EQ.COM21)PRTABLE=.TRUE. IF(TEMP1.EQ.COM22)GO TO 510 IF(TEMP1.EQ.COM23)PRSCAT=.TRUE. IF(TEMP1.EQ.COM24)PLOTP=.TRUE. IF(TEMP1.EQ.COM25)SIGMULT=TEMP2 IF(TEMP1.EQ.COM26)GO TO 504 GO TO 501 502 NO=TEMP2 RHO=TEMP3 IADJ=TEMP4 MAT(1) = TEMP5MAT(2) = TEMP6CALL CENTER(MAT+2+MAT+20) DENS=RHO NELECT=0.0 DO 5020 I=1+NO READ 102, (ZT(J,I), J=1,2), AT(I) ZT(2,I)=ZT(2,I)*1.0E22 5020 NELECT=NELECT+ZT(2,I)*ZT(1,I) ZT(1,I)=ATOMIG NUMBER OF COMPONENT I С ZT(2,1)=ATOMIC DENSITY OF COMPONENT 1, ATOMS PER CM**3 . С GO TO 501 503 Z=TEMP2 IZ=IFIX(Z) A=TEMP3

```
BEAM(1)=TEMP5
    BEAM(2)=TEMP6
    CALL CENTER(BEAM, 2, BEAM, 20)
    GO TO 501
504 NDTAPT=TEMP2
    READ 105+(YDATA(I)+XDATA(I)+I=1+NDTAPT)
    GO TO 501
506 E(1)=TEMP2
     GO TO 501
507 CONST1=TEMP2
    LNORM=1
    ASSIGN 768 TO NNN1
    GO TO 501
508 CONST2=TEMP2
    ASSIGN 765 TO NNN2
    GO TO 501
510 ASSIGN 768 TO NNN1
    CONST1=TEMP2
    LNORM=2
    GO TO 501
511 READ(2,104)(XNAME(I),I=1,8)
    CALL CENTER (XNAME, 8, TITLE, 43)
    CALL CENTER(XNAME + 8 + XNAME + 132)
    GO TO 501
515 WRITE(3,103)(XNAME(I), I=1,13)
    WRITE(3,111)
    PRINT 112, (BEAM(I), I=1,2), IZ, A, E(1)
    PRINT 113, CRIT1, FR, SIGMULT, RZERO
    IF(XADJ.EQ.0.0)GO TO 516
    WRITE (3,144) XADJ
    GO TO 517
516 WRITE(3,143)
517 IF(LNORM.EQ.0)GO TO 518
    IF(LNORM.EQ.1)WRITE(3.145)CONST1
    IF(LNORM.EQ.2)WRITE(3.157)CONST1
    GO TO 519
518 WRITE(3,146)
519 IF(CONST2.EQ.0.0)GO TO 520
    WRITE(3,147)CONST2
520 WRITE(3,148)
    PRINT 161, (MAT(I), I=1,2), RHO, IADJ
    PRINT 162.NO
    PRINT 163, (1, ZT(1, 1), AT(1), ZT(2, 1), I=1, NO)
       BEGIN CALCULATIONS
601 Z2=Z**2
    DE=0.01 \times E(1)
    CALL BEYE
    FR2=FR/A
    INT=0.0
    SIGMA2=0.0
    ATTEN(1)=1.0
    SIGMA(1)=0.0
    XBAR(1)=0.0
    SBAR(1)=0.0
    Y(1)=0.0
    THETA2=0.0
```

С

TEMP9=DE*0.5*A
F(1)=DEDX(E(1))
CROSS(1)=XSEC(E(1))
GG(1)=G(E(1))
D0 603 I=2.500
LET(I)=0.0
DELTAE(I)=0.0
603 N(I)=0.0
603 N(1)=1.0
LET(1)=F(1)
IND(1)=JDEX1

С

С

DELTA-FUNCTION APPROXIMATION CALCULATIONS

```
JREG=1
    DO 615 I=2,500
    IF(I.EQ.500)GO TO 900
    E(I) = E(I-1) - DE
    CROSS(I)=XSEC(E(I))
    GG(I) = G(E(I))
    F(I) = DEDX(E(I))
    SBAR(I)=SBAR(I-1)+TEMP9 *(1.0/F(I-1)+1.0/F(I))
    INT=INT+TEMP9 *(CROSS(I-1)/F(I-1)+CROSS(I)/F(I))
    ATTEN(I) = EXP(-INT)
    SIGMA2=SIGMA2+TEMP9 *(GG(I=1)/(F(I=1))**3+GG(I)/(F(I))**3)
    SIGMA(I)=SQRT(SIGMA2)*SIGMULT
    N(I)=ATTEN(I)
    LET(1)=N(1)*F(1)
    IF(LET(I).LE.LET(I-1))GO TO 605
    IKEEP=I
605 IND(I)=JDEX1
    IF(CROSS(I)*SIGMA(I).GT.CRIT1)GO TO 620
    TESTP2=ABS((F(I)-F(I-1))/DE)
    IF(TESTP2*SIGMA(I).GT.A*CRIT1)GO TO 620
615 CONTINUE
620 I5=I
```

NUMERICAL INTEGRATION SECTION

F(J) = DEDX(E(J))

TEMP9=0.5*A*(E(J-1)-E(J))

```
16=15+1
    ASSIGN 641 TO NNN5
    ASSIGN 630 TO NNN6
    JREG=2
    DO 643 J=16,500
    IF(J.EQ.500)GO TO 900
    GO TO NNN6
630 IF(E(J-1).GT.10.0)GO TO 638
634 ASSIGN 639 TO NNN6
    DE=0.2
    GO TO 639
638 DE=FR2*SIGMA(J-1)*F(J-1)
    IF((DE/E(J-1)).GT.0.05)DE=0.05*E(J-1)
639 E(J)=E(J-1)-DE
640 IF(E(J)+LE++1)GO TO 646
    CROSS(J)=XSEC(E(J))
    GG(J) = G(E(J))
```

```
SBAR(J)=SBAR(J-1)+TEMP9 *(1.0/F(J-1)+1.0/F(J))
    GO TO NNN5
641 IF(SBAR(J)-SBAR(15).LE.3.0*SIGMA(15)) GO TO 642
    17=J+1
    ASSIGN 642 TO NNN5
642 INT=INT+TEMP9 *(CROSS(J-1)/F(J-1)+CROSS(J)/F(J))
    ATTEN(J)=EXP(-INT)
    SIGMA2=SIGMA2+TEMP9 *(GG(J-1)/(F(J-1))**3+GG(J)/(F(J))**3)
643 SIGMA(J)=SQRT(SIGMA2)*SIGMULT
646 I8=J-1
   E(18+1)=0.0
    DO 720 I=I7, I8
    IND(I)=JDEX2
    DO 713 J=I5,I8
713 U(J)=(SBAR(I)-SBAR(J))/SIGMA(J)
    U(18+1) = U(18)
    DO 715 J=16,18
    FACT=ATTEN(J)*M(U(J))
    FACT2=FACT*(U(J-1)-U(J+1))
   N(I)=N(I)+FACT2
715 LET(I)=LET(I)+FACT2*F(J)
    N(I) = N(I) / 2 \bullet
    LET(I) = LET(I)/2
716 IF(LET(I).GT.LET(I-1)) IKEEP=I
720 CONTINUE
    CALCULATIONS BEYOND THE RANGE
   DELTAS=0.1*SIGMA(18)
    I = I 8
    JREG=3
721 I=I+1
    IF(I.EQ.500)GO TO 900
    E(I) = 0.0
    SBAR(I)=SBAR(I-1)+DELTAS
    ATTEN(I)=ATTEN(I-1)
    SIGMA(I)=SIGMA(I-1)
    IND(1)=JDEX3
    DO 722 J=15,18
722 U(J)=(SBAR(I)-SBAR(J))/SIGMA(J)
    U(18+1) = U(18)
    DO 725 J=16+18
    FACT=ATTEN(J)*M(U(J))
    FACT2=FACT*(U(J-1)-U(J+1))
    N(I)=N(I)+FACT2
725 LET(I)=LET(I)+FACT2*F(J)
    N(I)=N(I)/2
    LET(I) = LET(I)/2 \bullet
    IF(LET(I).GT.LET(I-1))IKEEP=I
    TEMP11=LET(I)/LET(IKEEP)
    IF(TEMP11.GT.0.001) GO TO 721
    IMAX=I
    CALCULATE THE SPECTRUM AT THE BRAGG PEAK .....
    DO 727 J=15,18
727 U(J)=(SBAR(IKEEP)-SBAR(J))/SIGMA(J)
    U(I8+1) = U(I8)
```

Ċ

С

DO 728 J=16,18 FACT=ATTEN(J)*M(U(J)) $\mathsf{DUDE}(J) = (U(J-1) - U(J)) / (E(J-1) - E(J)) + (U(J) - U(J+1)) / (E(J) - E(J+1))$ 728 SPECT2(J)=FACT*DUDE(J) CALL SCATTER INTERNAL SHIFTING ROUTINE С JM=IMAX-I7 DO 730 K=0.JM E(16+K) = E(17+K)SBAR(I6+K)=SBAR(I7+K)Y(I6+K)=Y(I7+K)THETA(16+K)=THETA(17+K) THETAS(I6+K)=THETAS(I7+K) XBAR(I6+K) = XBAR(I7+K)ATTEN(16+K)=ATTEN(17+K) SIGMA(I6+K)=SIGMA(I7+K) N(16+K)=N(17+K)LET(I6+K)=LET(I7+K)730 IND(16+K)=IND(17+K) JM=18-17 DO 731 K=0,JM 731 SPECT2(16+K)=SPECT2(17+K) KS1=16 KS2=I6+I8-I7-1 IMAX = IMAX - I7 + I6IKEEP=IKEEP-I7+I6 С NUMBER DENSITY NORMALIZATION GO TO NNN2 765 DO 766 J=1, IMAX 766 N(J) = N(J) * CONST2767 GO TO NNN1 С LET NORMALIZATION 768 IF(LNORM.EQ.1)TEMP=CONST1/LET(IKEEP) IF(LNORM.EQ.2)TEMP=CONST1/LET(1) DO 769 I=1. IMAX 769 LET(I)=LET(I)*TEMP CALCULATION OF MEAN ENERGY AT BRAGG PEAK С 770 IF(IKEEP.GT.15)GO TO 771 EMEAN=E(IKEEP) GO TO 773 771 TEMP=0.0 DENOM=0.0 KS3=KS2-1 DO 772 J=KS1+KS3 XPP=0.5*SPECT2(J)*(E(J+1)+E(J-1))TEMP=TEMP+XPP*E(J) 772 DENOM=DENOM+XPP EMEAN=TEMP/DENOM 773 IF(XADJ.EQ.0.0)GO TO 775
с

С

С

С

C

ROUTINE FOR ADJUSTING THE ABSCISSAS TEMP5=XADJ-XBAR(IKEEP) DO 774 I=1, IMAX SBAR(I)=SBAR(I)+TEMP5 774 XBAR(I)=XBAR(I)+TEMP5 BRAGG PEAK SPECTRUM NORMALIZATION 775 JM=KS1 K1=KS1+1 DO 776 J=K1.KS2 IF(SPECT2(J).GT.SPECT2(JM))JM=J 776 CONTINUE DO 777 J=KS1, JM COMP=SPECT2(J)/SPECT2(JM) IF(COMP.GT.1.0E-4)G0 TO 778 777 CONTINUE 778 KS1=J TEM=SPECT2(JM) DO 779 J=KS1,KS2 779 SPECT2(J)=SPECT2(J)/TEM ROUTINE TO CALCULATE BRAGG PEAK WIDTH AT HALF-MAXIMUM 780 TEMP=0.5*LET(IKEEP) IT=IMAX-1 DO 781 J=1,IT I=IMAX-J 781 IF(LET(I).GT.TEMP) GO TO 782 782 X1=(XBAR(I)-XBAR(I-1))*(LET(I-1)-TEMP)/(LET(I-1)-LET(I)) 2+XBAR(1-1)RANGE=X1 J1=J+5 DO 783 J=J1,IT I=IMAX-J 783 IF(LET(I).LT.TEMP) GO TO 784 WIDTH=9.999E99 GO TO 786 784 X2=(XBAR(I)-XBAR(I-1))*(LET(I-1)-TEMP)/(LET(I-1)-LET(I)) 2+XBAR(I-1)WIDTH=X1-X2 ROUTINE FOR CALCULATING TEN-PERCENT ORDINATE AND CORRESPONDING SCATTERING QUANTITIES. 786 TEMP=0.1*LET(IKEEP) J1=IKEEP+1 DO 787 J=J1, IMAX IF(LET(J).LT.TEMP)GO TO 788 787 CONTINUE 788 J10=J FACTOR=(LET(J10-1)-TEMP)/(LET(J10-1)-LET(J10)) Y10=Y(J10-1)+(Y(J10)-Y(J10-1))*FACTOR X1=SBAR(J10-1)+(SBAR(J10)-SBAR(J10-1))*FACTOR X2=XBAR(J10-1)+(XBAR(J10)-XBAR(J10-1))*FACTOR PD=100*(X1-X2)/X1790 IF(EPRINT)CALL PRINTE(E, IMAX)

۰.-

IF(SGPRINT)CALL PRINTG(IMAX, XBAR, ATTEN, SIGMA, E) IF(DPRINT)CALL PRINTD(IMAX, XBAR, N.LET, IND) IF(XADJ.NE.O.O)WRITE(3.149)TEMP5 IF(SPPRINT)CALL PRINTSP(KS1,KS2,E,SPECT2) IF(PRSCAT)CALL PRSCATT TEMP1=LET(IKEEP)/LET(1) PRINT 107, TTDATE WRITE(3,150)(XNAME(1),1=1,13) WRITE(3,151)TEMP1 WRITE(3,153)XBAR(IKEEP) WRITE(3,154)EMEAN WRITE (3,155)WIDTH WRITE(3,156)RANGE WRITE(3,158)PD WRITE(3,159)Y10 E(1) +WIDTH+TEMP1+EMEAN+X1+XBAR(IKEEP)+PD+Y10 WRITE(5) IF(KPLOTD)CALL KWPLOT(1) IF(KPLOTN)CALL KWPLOT(2) IF(PRTABLE)CALL TABLE IF(.NOT.PLOTD)GO TO 800 IF(FRAME)CALL CONEXT CALL GMPRINT(1) 800 IF(.NOT .PLOTN) GO TO 810 IF(FRAME)CALL CONEXT CALL GMPRINT(0) 810 IF(NOT PLOTSP)GO TO 1000 IF(FRAME)CALL CONEXT CALL GMPRINT(3) GO TO 1000 ERROR ABORT 900 PRINT 160, JREG, E(499) IMAX=499 EPRINT= TRUE SGPRINT=.TRUE. DPRINT=•TRUE• SPPRINT= TRUE GO TO 790 1000 CONTINUE CALL CCEND RETURN FORMAT STATEMENTS 100 FORMAT(110) 101 FORMAT(A10.3E10.4.2A10.2E10.0) 102 FORMAT(8E10.4) 103 FORMAT(15A10) 104 FORMAT(8A10)

105 FORMAT(2E10.0)

С

C

- 106 FORMAT(100X+A10)
- 107 FORMAT(1H1+//100X+A10)
- 110 FORMAT(//100X+A10///49X+33H-----PROGRAM BRAGG-----////)
- 111 FORMAT (//////35X,61H------

INPUT DATA-----

NY JENN 2-----) 112 FORMAT(///22X+14HBEAM PARTICLES+12X+12HBEAM AT. NO. +11X+12HBEAM A 2T. WT. SX. 19HBEAM INITIAL ENERGY 3 //19X+2A10+14X+I2+17X+F7+2+17X+F8+2///) 19X,7HSIGMULT+17X,5HRZERO// 113 FORMAT(27X, 5HCRIT1, 21X, 2HFR, 2 24X,E11.4,13X,E11.4,14X,F7.3,15X,E11.4///) 114 FORMAT (1H1) 119 FORMAT(22X,2(F9.3,11X,E11.4)18X)) 141 FORMAT(A10,E12.5) 143 FORMAT(//22X,45HNO ADJUSTMENT OF THE ABSCISSAS HAS BEEN MADE 1 144 FORMAT(//22X,50HALL ABSCISSAS ARE SHIFTED TO PUT THE BRAGG PEAK AT 2,F7.3, 8HG/CM**2.) 145 FORMAT(//22X, 37HTHE LET-DISTRIBUTION IS NORMALIZED TO ,E11.4,18H A 2T THE BRAGG PEAK) 146 FORMAT(//22X,48HNO NORMALIZATION OF THE LET-DISTRIBUTION IS MADE) 147 FORMAT(//22X,48HTHE NUMBER-DENSITY DISTRIBUTION IS NORMALIZED TO . 2E11.4.24H AT THE INITIAL ORDINATE) 148 FORMAT(//22X,59HNO NORMALIZATION OF THE NUMBER-DENSITY DISTRIBUTIO 2N IS MADE) 149 FORMAT(// 22X,35H ALL ABSCISSAS HAVE BEEN SHIFTED BY \$F8.4, 2 8HG/CM**2•) 150 FORMAT (////55X,18HSUMMARY OF RESULTS//15A10////) 151 FORMAT(////30X,48H(BRAGG PEAK/INITIAL) DOSE RATIO...... 2 • 2F9•4) 153 FORMAT(//30X,48HPENETRATION DEPTH AT BRAGG PEAK (G/CM**2)...... 2F9.4) 154 FORMAT(//30X,48HAVERAGE ENERGY AT BRAGG PEAK (MEV/NUCLEON)..... 2F9.4) 155 FORMAT(//30X,48HBRAGG PEAK FULL WIDTH AT HALF-MAXIMUM..... 2E10.3) 2F9•4) 157 FORMAT(//22X, 37HTHE LET-DISTRIBUTION IS NORMALIZED TO E11.4, 2 24H AT THE INITIAL ORDINATE) 158 FORMAT(//30X)48HPERCENTAGE DETOUR FACTOR..... 2 F8.4) 159 FORMAT(//30X,48HMEAN LATERAL DISPLACEMENT OF BEAM (G/CM**2).... 2 E10.3) 160 FORMAT(1H1//5X, B2HPROBLEM ABORT....VARIABLE STORAGE REQUIREMENTS 2EXCEED ALLOWABLE LIMITS IN REGION 12// 3 5X,28HFINAL CALCULATED ENERGY....E11.4) 2 30X,20HMATERIAL DESIGNATION,5X,16HSPECIFIC GRAVITY,8X,4HIADJ/ 3 30X,2A10,10X,F6.3,12X,F6.2) 162 FORMAT(//30X,44HNUMBER OF COMPONENTS IN TARGET MATERIAL....I3//// 2 44X,6HATOMIC,5X,6HATOMIC,6X,12HATOM DENSITY / 3 30X,9HCOMPONENT,5X,6HNUMBE <>5X,6HWEIGHT,5X,15H(NO. PER CM**3)/) 163 FORMAT(33X+I2+10X+F3+0+6X+F7+3+7X+E11+4)

END

FUNCTION XSEC(E)

	FUNCTION XSEC COMPUTES THE MACROSCOPIC CROSS SECTION FOR A MATERIAL COMPOSED OF ONE OR MORE ELEMENTS. A AND Z ARE THE AT.WT. AND AT. NO. OF THE BEAM, AND AT(I) AND ZT(1,I) ARE THE CORRESPON- DING QUANTITIES FOR THE MATERIAL. ZT(2,I) ARE THE SCALED ATOMIC DENSITIES FOR THE MATERIAL.
	COMMON/GDATA2/RHO+RZERO
	COMMON/CHAIR/IADJ\$Z\$A\$DENS\$AT(10)\$ZT(2\$10)\$NO
	XSEC=0.0
	DO 100 I=1,NO
	IF(A.EQ.1.00)A3=0.0
	$IF(A \bullet NE \bullet 1 \bullet 0)A3 = A * * 0 \bullet 333333$
	BLAMBD=1.977E-11/(A*SQRT(1862.0*E+E**2))
	TEMP1≈R2ERO*1•0E-13*(A3 +AT(I)**0•333333+BLAMBD)
	TEMP2=A *AT(I)/(A +AT(I))
	IEMP3=1.437E-13*2*21(1,1)
	TEMP4=TEMP3/(TEMP2*TEMP1*E)
	IF(IEMP4.GE.1.0)GO TO 50
	S1G=3•14159*(TEMP1**2)*(1•U=TEMP4)
~ ^	GO 10 51
50	
100	XSE(=XSE(+S16*21(2))
100	CONTINUE
	XSEC=XSEC/RHO
	RETURN
	END

С

С

С

С

C C

С

C C

С

С

C

SUBROUTINE SCATTER SUBROUTINE SCATTER COMPUTES THE MEAN VALUES OF THE QUANTITIES (S-X) AND (Y) FOR ALL ENERGIES. IT THEN COMPUTES THE ARRAYS (X), N(X), AND LET(X)..... ALSO CALCULATED ARE THE ARRAYS OF THETA, THE MEAN ANGLE, AND THETAS, THE RATE OF CHANGE OF THE MEAN ANGLE. THE ROUTINE IS SUITABLE FOR SINGLE OR MULTIPLE COMPONENT TARGETS. Z=PARTICLE ATOMIC NUMBER A=PARTICLE ATOMIC WEIGHT ZM(I)=TARGET ATOMIC NUMBER. MATERIAL -I- . AM(I)=TARGET ATOMIC WEIGHT, MATERIAL -I- . REAL INT1, INT2, INT3 COMMON/CHAIR/IADJ,Z,A,DENS,AM(10),ZT(2,10),NO COMMON ATTEN(500), SBAR(500), E(500), SIGMA(500), IND(500), LET(500), 2 N(500), SPECT2(500), THETAS(500), THETA(500), XBAR(500), Y(500), 3 XDATA(300), YDATA(300), F(500) COMMON/GMDATA1/IMAX,DIFF,I8,PD COMMON/GDATA2/RHO,RZERO REAL LET N NATOM(10) DIMENSION TEMP1(10), TEMP2(10), ZM(10), TEMP3(10), GAMMA(10), THS(10) DIMENSION SAVE(10), THETAS2(500) EQUIVALENCE (THETAS2, THETAS) INT1=0INT2=0INT3=0THETA2=0.0 DIFF=0.0 $Y(1) = 0 \cdot 0$ THETA(1)=0.0 XBAR(1)=0.0DO 10 J=1,NO 5 SAVE(J)=0.0 NATOM(J) = ZT(2 + J)ZM(J) = ZT(1 + J)GAMMA(J) = A/AM(J)TEMP1(J)=(2.606E-25/RHO)*NATOM(J)*(Z*ZM(J)*(1.0+GAMMA(J))/A)**2 10 TEMP2(J)=(3.836E4)/(AM(J)*ZM(J))**0.333333 DO 300 I=1,I8 14 THETAS2(I)=0.0DO 120 J=1.NO TEMP5=842.2*A*SQRT(E(I)*(E(I)+1862.0))/((ZM(J)**0.333333)* 2(1.0+GAMMA(J))) RATIO=AMIN1(TEMP5,TÉMP2(J)) =(E(I)*(E(I)+1862.0)/(E(I)+931.0))**2 H TSCM2=(TEMP1(J)/H)*(ALOG((RATIO**2)+1.0)-1.0) TSCM=SQRT(TSCM2) THS(J)=ATAN2(SIN(TSCM)+COS(TSCM)+GAMMA(J)) 11 IF(THS(J).GE.SAVE(J))GO TO 12 THS(J)=THS(J)+3.14159265 GO TO 11 12 SAVE(J) = THS(J)120 THETAS2(I)=THETAS2(I)+THS(J)**2 IF(I.EQ.1)GO TO 300 28 DELTAE=E(I-1) \rightarrow E(I) TEMP=DELTAE*0.5*A 32 THETA2=THETA2+TEMP*(THETAS2(I-1)/F(I-1)+THETAS2(I)/F(I))

```
THETA(I)=SQRT(THETA2)
    IF(THETA(1).LT.0.785398)GO TO 31
    IN=I
    GO TO 302
 31 DIFF=DIFF+TEMP*((1.0-COS(THITA(I-1)))/F(I-1)
   2 +(1.0-COS(THETA(I)))/F(I))
    XBAR(I)=SBAR(I)-DIFF
    T1=(THETAS2(I-1)/COS(THETA(I-1))**2)/F(I-1)
    T_2=(THETAS_2(I) / COS(THETA(I)) * 2) / F(I)
    INT1=INT1+TEMP*(T1+T2)
    INT2=INT2+TEMP*(XBAR(I-1)*T1+XBAR(I)*T2)
    INT3=INT3+TEMP*((XBAR(I-1)**2)*T1+(XBAR(I)**2)*T2)
    YSQ=(XBAR(I)**2)*INT1-2*XBAR(I)*INT2+INT3
    Y(I)=SQRT(YSQ)
300 CONTINUE
    CALCULATIONS BEYOND THE RANGE
    IN = I8 + 1
302 DO 400 I=IN+IMAX
    DS2=(SBAR(I)-SBAR(I-1))*0.70711
    Y(I) = Y(I-1) + DS2
   XBAR(I) = XBAR(I-1) + DS2
   400 THETAS(I)=017770000000000 0000
   IN1=IN-1
   DO 405 I=1.IN1
```

```
405 THETAS(I)=SQRT(THETAS2(I))
RETURN
END
```

C C

С

```
SUBROUTINE BEYE
       COMMON/CHAIR/IADJ,Z,A,DENS,AT(10),ZT(2,10),NO,DUMMM(2)
       COMMON/GEN/LI,LAZ,NN,II,IEV,ANL
       COMMON/TABLE/ZEX.EV.R
       COMMON/ABLOK/AMN(3,3),ALPHA(4,4)/BBLOK/CE(10),CN(10),CN1(10),
      1DEN(10)/CBLOK/B(5)
       DIMENSION EV(200), ZEX(200)
       DIMENSION DR(22), TABLE(22,10),
                                                         BETA(3), EL(3), D(6,5)
      1. IL(5). EQ(22)
      REAL IADJ, LI, LAZ, LE, LL, LAMB2, LAMBDA
      DATA EQ/01, 015, 02, 03, 04, 05, 07, 1, 15, 2, 3, 4, 5, 7, 10, 15
      1,2.0,3.,4.,5.,7.,10./,TABLE/183.,230.,265.,320.,360.,390.,430.,440
     2.,410.,380.,330.,290.,265.,230.,172.,131.,109.,83.,69.,58.,45.,34.
     3279,118.,141.,164.,205.,235.,260.,285.,315.,325.,320.,290.,270.,
     4250••22<sup>0</sup>••170••131••1<sup>0</sup>9••<sup>3</sup>3••69••<sup>5</sup>8••45••<sup>3</sup>4•279•9<sup>5</sup>••114••132••164•
     5,187.,208.,230.,254.,264.,263.,243.,230.,215.,193.,156.,124.,105.,
     681.6,68.,58.,45.,34.279,71.,86.,99.,122.,140.,155.,175.,193.,203.,
     7206.,196.,189.,181.,166.,14?.,117.,101.,80.,67.,57.,45.,34.279,
     848.,58.,66.,80.,93.,103.,120.,132.,142.,149.,150.,149.,147.,140.,
     9129 • • 111 • • 98 • • 79 • • 67 • • 57 • • 45 • • 34 • 279 • 39 • • 47 • • 54 • • 65 • • 75 • • 83 • • 97 • • 1
     *11.,123.,130.,133.,133.,131.,128.,120.,107.,94.,78.,66.,57.,45.,
     134.279,34.,40.,47.,56.,64.,71.,32.,94.,108.,112.,121.,122.,122.,
     2120 • • 111 • • 100 • • 90 • • 75 • • 64 • • 56 • • 44 • • 34 • 279 • 28 • • 33 • • 38 • • 47 • • 54 • • 60 • •
     369••80••92••100••109••110••111••110••107••95•••86••73••62••55••43••
     434.279,23.,27.,32.,39.,46.,51.,59.,69.,80.,87.,96.,100.,101.,101.,
     598**90**81**70**60**54**42**34*279*19**23**27**32**38**43**50**60*
     6,70.,77.,87.,91.,93.,94.,90.,84.,76.,67.,58.,52.,41.,34.279/
      DATA AMN/
                                   -.75265,.73736E-1,.40556E-1,.25398E1,
     6 -• 312 •• 18664E-1 •• • 24598 •• 11548 •• • 99661E-2/ • ALPHA/
     7 -•80155E1,•36916,-•14307E-1,•34718E-2,•18371E1,-•1452E-1,
     8 -•30142E-1+•23603E-2+•45233E-1+-•95873E-3+•71303E-2+-•68538E-3+
     9--•59898E-2,-•52315E-3,-•33802E-3,•39405E-4/,D/30*0./
  100 IF(IADJ.EQ.0.) GO TO 999
      IF (NO.GT.1) GO TO 20
      NO=1
      DEN(1)=1.
      DENS=1.
C ZT(1+1) ARE THE AT. NOS. OF THE TARGETS.
C ZT(2,1) ARE THE RELATIVE ATOMIC ABUNDANCES OF THE TARGETS
      GO TO 54
   20 SAT=0.0
      DO 51 I=1,NO
   51 SAT=SAT+ZT(2,I)*AT(I)
      DO 52 I=1.NO
   52 DEN(1)=ZT(2+1)*DENS*AT(1)/SAT
      SUM=0.
      DO 53 I=1.NO
   53 SUM=SUM
                    +ZT(1,I)*DEN(I)/AT(I)
      ZAF=SUM
                 /DENS
      GO TO 55
   54 ZAF=ZT(1+1)/AT(1)
   55 LI=ALOG(IADJ)
      LAZ=ALOG(1./ZAF)
      IF(Z.GT.10.) GO TO 500
C Z LESS THAN 11
C LOW ENERGY DEDX
      NN=0
      R2=DIDX(2.)/112.3138
      R10=DIDX(10+)/34+279
```

-37-

÷.

UCRL-17391

Q=ALOG(R10/R2)/ALOG(5+) P=R2/(2.**Q) Z23=Z**(2./3.) IF(NO.EQ.1)GO TO 403 SUM=0. DO 402 I=1+NO SUM=SUM+DEN(I)*ZT(1,I)/(DENS*AT(I)*(Z23+ZT(1,I)**(2./3.))**1.5) 402 CONTINUE F=2.08*(Z23+5.54)**1.5*SUM GO TO 404 403 F=2.08*ZAF*((Z23+5.54)/(Z23+ZT(1.1)**(2./3.)))**1.5 404 EP=(F/P)**(1./Q) EP=AMIN1(EP+10+) DO 406 I=1+21 EV(I) = EQ(I)E=EV(1)IF(EP.LE.E) GO TO 405 DR(I) = FGO TO 406 405 DR(1)=P*E**Q 406 CONTINUE JK=Z Z2=Z**2 DO 407 I=1+21 ZEX(I)=DR(I)*TABLE(I,JK)*Z2 407 CONTINUE C SET UP TABLE EV(22)=10. EV(23) = 10.4I=23 DO 408 J=12,50,2 I=I+1 408 EV(1)=JDO 409 J=55,200,5 I = I + 1409 EV(I) = JDO 410 J=210,1000,10 I = I + 1410 EV(I)=J IEV=I C HIGH ENERGY DEDX DO 411 I=22,IEV ZEX(I) = Z2 * DIDX(EV(I))411 CONTINUE GO TO 201 C Z GREATER THAN 10 C DEFINE ENERGY REGION BOUNDARIES AND SET UP TABLE 500 BETA(1)=(Z**(1./3.)/137.)**2 BETA(2)=2./465.5 BETA(3)=(3. *Z/137.)**2 DO 503 I=1:3 IF(BETA(I).GT...01) GO TO 501 EL(I)=465.5*BETA(I) GO TO 503 501 IF(BETA(1)+GT++9999) GO TO 502 GAMMA=1./SQRT(1.-BETA(I)) EL(I)=931.*(GAMMA-1.) GO TO 503

-38-

502 EL(I)=1.E10 503 CONTINUE EV(1)=.01 EV(2)=.015 DO 540 1=2,9 540 EV(I+1)=.01*FLOAT(I) EV(11) = .1EV(12)=•15 EV(13)=•2 EV(14)=•3 EV(15)=•4 EV(16)=+437 EV(17)=+489 EV(18)=.5 EV(19)=.6 EV(20)=.613 EV(21) = .7EV(22)=•8 EV(23) = .816EV(24)=1. EV(25)=1.12 EV(26)=1%5 JL=26 DO 541 I=2+10 JL=JL+1 541 EV(JL)=1 EV(36) = 10.4I=36 DO 504 J=12,50,2 I = I + 1504 EV(I)=J DO 505 J=55,200,5 I = I + 1505 EV(I)=J DO 506 J=210,1000,10 I = I + 1506 EV(I)=J IEV=I DO 507 I=1,IEV JK=I IF(EV(I).GE.EL(1)) GO TO 50) 507 CONTINUE 508 GO TO 900 509 IEL1=JK DO 510 I=JK,IEV JL=I IF(EV(I).GE.EL(2)) GO TO 512 510 CONTINUE 511 GO TO 901 512 IEL2=JL IF(EL(3).GE.EV(IEV)) GO TO 516 DO 513 I=JL+IEV JK = IIF(EV(I).GE.EL(3)) GO TO 515 **513 CONTINUE** 514 GO TO 902

515 IEL3=JK-1 GO TO 517

516 IEL3=IEV 517 CONTINUE C LOW ENERGY REGION Z23=Z**(2•/3•) Z876=7.39E4*Z**1.207 AOZ=A/Z DO 518 I=1:NO ZS23=Z23+ZT(1+I)**(2+/3+) ZTOAT=ZT(1+I)/AT(I) AS=A+AT(I) CE(I)=Z876*ZTOAT/ZS23**1.5 CN(I)=4.14281E6*(A/AS)**1.5*SQRT(Z*ZTOAT)/ZS23**.75 CN1(I)=45.1671*(AOZ/(ZTOAT*AS))**.27719/ZS23**.138595 518 CONTINUE NN=1ZEX(1)=DEDXL(EV(1)) DO 520 I=2.IEL1 ZEX(I)=DEDXL(EV(I)) 520 CONTINUE C MEDIUM-LOW ENERGY REGION SPL=DEDXL(EV(IEL1)) SQREL=SQRT(EV(IEL1)) SQRREL=EV(IEL1)**•22281 CL=ALOG(SPL) SUM=0. DO 521 I=1.NO EXPN=EXP(CN1(I)*EV(IEL1)**.27719) SUM=SUM+(.5*(CE(I)+CN(I)/EXPN)/SQREL-.27719*CN(I)*CN1(I)/SQRREL/EX 1PN)*DEN(I) 521 CONTINUE DSPL=SUM/DENS DCL=DSPL/SPL Z2=Z**2 RAT=RATIO(EV(IEL2)) RATSQ=RAT**2 DEX=DIDX(EV(IEL2)) SPH=Z2*RATSQ*DEX CH=ALOG(SPH) BEL=SQRT(EV(IEL2)/465.5) IF (BEL.LE.Z23/137.) GO TO 522 DRAT=ANL/EV(IEL2)*(1.-45.7* 3EL* ALOG(2)/(2.*2-223)) GO TO 523 522 DRAT=ANL/EV(IEL2) 523 CONTINUE IF(EV(IEL2).LT.7.) GO TO 535 SUM1=0. DO 526 M=1+4 SUM1=SUM1+ALPHA(M+3)*LI**(M-1) 526 CONTINUE SUM=0. DO 527 M=1+4 SUM=SUM+ALPHA(M+4)*LI**(M-1) 527 CONTINUE DPDE=2./EV(IEL2)*(SUM1+3.*ALOG(EV(IEL2))*SUM) GO TO 537 535 SUM=0. DO 536 M=1+3 SUM=SUM+AMN(M+3)*LI**(M-1)

536 CONTINUE DPDE=2./EV(IEL2)*SUM 537 CONTINUE XLAM=LAMBDA(EV(IEL2)) DXLAM=DEX*XLAM DCH=DRAT /RAT +1./EV(IEL2)-1./DXLAM-DXLAM/EV(IEL2)*DPDE ALE1=ALOG(EV(IEL1)) IF(ALE1.EQ.0.) ALE1=.001 DO 528 I=1+4 D(1,I)=ALE1**(I-1) 528 CONTINUE ALE2=ALOG(EV(IEL2)) IF(ALE2.EQ.0.) ALE2=.001 DO 529 I=1:4 D(2,I) = ALE2 * * (I-1)529 CONTINUE DO 530 I=1+4 D(3,I) = FLOAT(I-1) * ALE1 * * (I-2)530 CONTINUE DO 531 I=1+4 D(4,I)=FLOAT(I-1)*ALE2**(I-2) 531 CONTINUE D(1,5)=CL D(2,5) = CHD(3,5)=DCL*EV(IEL1)D(4,5) = DCH * EV(IEL2)CALL GLSQ(D,B,IL,4,4,SSSQ,0.,0.) K=IEL1+1 NN = 2DO 532 I=K IEL2 ZEX(I)=1./SPIML (EV(I)) 532 CONTINUE C MEDIUM-HIGH ENERGY REGION K=IEL2+1NN=3DO 546 I=K.IEL3 II=I ZEX(I)=Z2*RATIO(EV(I))**2*DIDX(EV(I)) 546 CONTINUE IF (IEL3.EQ.IEV) GO TO 201 K=IEL3+1C HIGH ENERGY REGION DO 534 I=K+IEV ZEX(I)=Z2 *DIDX(EV(I))534 CONTINUE C OUTPUT AND GO TO THE NEXT PROBLEM RETURN C DIAGNOSTICS AND SKIP TO THE NEXT PROBLEM 900 WRITE(3,351) 351 FORMAT(////+31H STATEMENT 508 WAS ENCOUNTERED.) RETURN 901 WRITE(3+352) 352 FORMAT(////.31H STATEMENT 511 WAS ENCOUNTERED.) RETURN 902 WRITE(3,353) 353 FORMAT(//////31H STATEMENT 514 WAS ENCOUNTERED.) RETURN 999 PRINT 1112

1112 FORMAT(5X,27HPROBLEM ABORT....IADJ=0.0) 201 RETURN END

FUNCTION DIDX(E) REAL IADJ.LI.LE.LAMBDA COMMON/CHAIR/IADJ+Z+A+DENS+AT(10)+ZT(2+10)+NO+DUMMM(2) COMMON/GEN/LI,LAZ,NN,II,IEV,ANL COMMON/ABLOK/AMN(3,3),ALPHA(4,4) LE=ALOG(E) IF(LE.EQ.0.) LE=.001 IF(E.LT.7.) GO TO 221 IF((E.EQ.7.).AND.(II.EQ.32)) GO TO 221 SUM=0. DO 220 N=2+4 DO 220 M=1+4 SUM=SUM+FLOAT(N-1)*ALPHA(M,N)*(LI**(M-1))*(LE**(N-2)) 220 CONTINUE DIDX=E/(SUM*LAMBDA(E)) RETURN 221 SUM=0. DO 223 N=2+3 DO 223 M=1+3 SUM=SUM+FLOAT(N-1)*AMN(M,N)*(LI**(M-1))*(LE**(N-2)) 223 CONTINUE DIDX=E/(SUM*LAMBDA(E)) IF (E.LT.1.) GO TO 224 RETURN 224 WRITE(3:1) E 1 FORMAT(37H ENERGY IN DEDX IS OUT OF RANGE E=E15.8) RETURN END

```
FUNCTION DEDX(X)
     COMMON/TABLE/YDATA(200) + XDATA(200) + R
     COMMON/GEN/DUM(4), IMAX
     M=IMAX
     L1=1
    L2=M
    K=1
    IF(X-XDATA(1))1,15,3
   3 K=M
    IF(XDATA(M)-X)1+15+9
   9 K≃M/2
    IF(X-XDATA(K))20,15,29
  20 L2=K
     GO TO 23
  29 L1=K
  23 IF(L2-L1-1)1,14,25
  25 M=L1+L2
    GO TO 9
             YDATA(L1)+ (X-XDATA(L1))* (YDATA(L2)-YDATA(L1))/
  14 DEDX=
    2 (XDATA(L2)-XDATA(L1))
    RETURN
  15 DEDX=YDATA(K)
    RETURN
  1 DEDX=0.0
    WRITE(3,7777)L1,L2,K,M
7777 FORMAT(2X, 36HERROR IN FUNCTION DEDX...JOB ABORTED /(10X, 18))
    CALL EXIT
    END
```

	SUBROUTINE GLSQ(A:X.IL:N:M.ALPHA:E1:E2) DIMENSION A(6:5): X(5): IL(5) MM=M+1
	DO 60J=1,MM
60	IL(J)=0
	I=1
	DO 3K=1,MM
	II=I+1
•	DO 4J=I19N
	$\frac{1}{(ABS(A(J)K))-(1)} + \frac{49490}{(1+K)}$
6	11=SQR + (1A(J)R) + *2 + (A(I)R) +
	S=A(J)K)/(1 C=A(T_K)/T1
	$T_2 = C + \Delta (T_{\bullet} + S + \Delta (J_{\bullet} +))$
	$A(J \bullet L) = -S * A(I \bullet L) + C * A(J \bullet L)$
5	A(I + L) = T2
-	LL=LL+1
4	CONTINUE
	IF (ABS (A(I,K))-E2)3,3,8
8	IL(K)=I
	I=I+1
3	CONTINUE
	$X(MM) = -1 \bullet 0$
25	
رز	$DO_{30} = 1 \cdot M$
	$IF (IL(II)) 30 \cdot 30 \cdot 31$
31	S≠0.
	LL=II+1
	I=IL(II)
	DO 32K=LL.MM
32	S=S+A(I)*X(K)
• •	X(11) = -S/A(1911)
30	11 = 11 = 1
5 1	
51	
50	T=TL (MM)
24	ALPHA=A(I,MM)
52	RETURN
	END

٠

FUNCTION RATIO(E) COMMON/GEN/LI,LAZ,NN,II,IEV,ANL COMMON/CHAIR/IADJ\$Z\$A\$DENS\$AT(10)\$ZT(2\$10)\$NO\$DUMMM(2) DIMENSION AN(5) DATA AN/.413253,1.63475,10.4782,2.21626,.847578/ Z23=Z**(2•/3•) IF (E.LE.4.65) GO TO 200 BETA=SQRT(1.-1./(E/931.+1.)**2) GO TO 201 200 BETA=SQRT(E/465.5) 201 IF (BETA.LE.Z23/137.) GO TO 202 IF (BETA.GE.2.*Z/137.) GO TO 204 G=(137.*BETA+4.*Z-3.*Z23)/(6.*Z-3.*Z23) GO TO 203 202 G=2•/3• GO TO 203 204 G=1. 203 X=137.*BETA/Z**G A1=AN(1)*X**(AN(2)**2)A2=AN(3)*X**AN(4)A3=AN(5)+1. RATIO=1.-EXP(-A1)/A3-AN(5)/A3/(A2+1.) IF(NN.EQ.1)ANL=A1*AN(2)**2*EXP(-A1)/A3+A2*AN(4)*AN(5)/A3/(A2+1.)** 12 IF((E.LT.1.5).OR.(BETA.GT.3.5*Z/137.))GO TO 205 RETURN 205 WRITE(3,1) E 1 FORMAT(37H ENERGY IN RATIO IS OUT OF RANGE E=E15.8) RETURN END

```
FUNCTION SPIML(E)
    COMMON/GEN/LI+LAZ+NN+II+IEV+ANL
    COMMON/CHAIR/IADJ+Z+A+DENS+AT(10)+ZT(2+10)+NO+DUMMM(2)
    COMMON/CBLOK/B(5)
    BETA1=Z**(1./3.)/137.**2
    BETA2=2.5/465.5
    IF (E.EQ.1.) GO TO 251
    XLE=ALOG(E)
    SUM=0.
    DO 250 I=1+4
    SUM=SUM+B(I)*XLE**(I-1)
250 CONTINUE
    SPIML=1./EXP(SUM)
    IF (E+LT+4+65)GO TO 253
    BEL=1.-1./(E/931.+1.)**2
    IF ((BEL.GT.BETA2).OR.(BEL.LT.BETA1)) GO TO 252
    RETURN
253 BEL=E/465.5
    IF ((BEL.GT.BETA2).OR.(BEL.LT.BETA1)) GO TO 252
    RETURN
251 SPIML=1./EXP(B(1))
    IF ((.002148.GT.BETA2).OR.(.002148.LT.BETA1)) GO TO 252
    RETURN
252 WRITE(3,1) E
  1 FORMAT(37H ENERGY IN SPIML IS OUT OF RANGE
                                                 E=E15.8)
    RETURN
    END
```

FUNCTION DEDXL(E) COMMON/CHAIR/IADJ+Z+A+DENS+AT(10)+ZT(2+10)+NO+DUMMM(2) COMMON/GEN/LI,LAZ,NN,II,IEV,ANL COMMON/BBLOK/CE(10), CN(10), CN1(10), DEN(10) SUM=0. SQRE=SQRT(E) SQRRE=E**•27719 DO 230 I=1.NO SUM=SUM+(CE(I)+CN(I)/EXP(CN1(I)*SQRRE))*SQRE*DEN(I) 230 CONTINUE DEDXL=SUM/DENS BETA=Z/137 +**2 IF (E.LT.4.65) GO TO 231 BEL=1.-1./(E/931.+1.)**2 IF (BEL.GT.BETA) GO TO 232 RETURN 231 BEL=E/465.5 IF (BEL.GT.BETA) GO TO 232 RETURN 232 WRITE(3,1) E

1 FORMAT(38H ENERGY IN DEDXL IS OUT OF RANGE E=E15.8) RETURN END

```
REAL FUNCTION LAMBDA(E)
   REAL IADJ,LAZ,LI,LE,LL
   COMMON/GEN/LI+LAZ+NN+II+IEV+ANL
    COMMON/CHAIR/IADJ,Z,A,DENS,AT(10),ZT(2,10),NO,DUMMM(2)
   COMMON/ABLOK/AMN(3,3),ALPHA(4,4)
   LE=ALOG(E)
    IF(LE.EQ.0.) LE=.001
    IF(E.LT.7.) GO TO 221
    IF((E.EQ.7.).AND.(II.EQ.32)) GO TO 221
    SUM=0.
   DO 210 N=1+4
   DO 210 M=1+4
    SUM=SUM+ALPHA(M,N)*(LI**(M-1))*(LE**(N-1))
210 CONTINUE
   LL=LAZ+SUM
   LAMBDA=EXP(LL)
   RETURN
221 SUM=0.
   DO 222 N=1.3
   DO 222 M=1:3
   SUM=SUM+AMN(M,N)*LI**(M-1) ((LE**(N-1))
222 CONTINUE
   LL=LAZ+SUM
   LAMBDA=EXP(LL)*.001
   IF (E.LT.1.)GO TO 211
   RETURN
211 WRITE(3:1) E
  1 FORMAT(39H ENERGY IN LAMBDA IS OUT OF RANGE
                                                    E=E15.8)
   RETURN
   END
```

SUBROUTINE KWPLOT(KK)

```
C SUBROUTINE KWPLOT SETS UP THE DESIRED ARRAY FOR QUICKPLOTTING
```

```
DIMENSION TITLE(15),SET2(500)

COMMON ATTEN(500),SBAR(500),E(500),SIGMA(500),IND(500),LET(500),

2 N(500),SPECT2(500),THETAS(500),THETA(500),XBAR(500),Y(500),

3 XDATA(300),YDATA(300),F(500)

EQUIVALENCE (SET2,Y)

COMMON/GMDATA1/IMAX,DIFF,I8,PD

COMMON/DATA/NDTAPT,IPLOTP

COMMON /GMDATA2/TITLE,IFRAME,INNP,KS1,KS2

REAL N,LET

IF(KK.EQ.1)GO TO 20

IF(KK.EQ.2)GO TO 30

20 DO 21 I=1,NDTAPT

21 SET2(I)=XINTERP(XDATA(I),XBAR,LET,IMAX)

GO TO 50

30 DO 31 I=1,NDTAPT
```

31 SET2(I)=XINTERP(XDATA(I),XBAR,N,IMAX)

50 CALL YGRAPH(NDTAPT,XDATA,YDATA,SET2) RETURN END

FUNCTION XINTERP(X, XDATA, YDATA, IMAX)

```
С
С
      FUNCTION XINTERP INTERPOLATES WITHIN A SET OF DATA POINTS
С
      XDATA(I), YDATA(I), I=1, IMAX. THE QUANTITY X IS THE GIVEN
С
     VALUE OF THE INDEPENDENT VARIABLE, AND XINTERP IS THE INTERPOLATED
С
     VALUE OF THE DEPENDENT VARIABLE.
Ĉ
     DIMENSION XDATA(1), YDATA(1)
     M=IMAX
     L1=1
     L2=M
     K=1
     1F(X-XDATA(1))1,15,3
   3 K=M
     IF(XDATA(M)-X)8,15,9
   9 K=M/2
     IF(X-XDATA(K))20,15,29
  20 L2=K
     GO TO 23
  29 L1=K
  23 IF(L2-L1-1)1,14,25
  25 M=L1+L2
     GO TO 9
  14 XINTERP= YDATA(L1)+ (X-XDATA(L1))* (YDATA(L2)-YDATA(L1))/
    2 (XDATA(L2) - XDATA(L1))
     RETURN
  15 XINTERP=YDATA(K)
     RETURN
   1 XINTERP=YDATA(1)
     RETURN
   8 XINTERP=YDATA(IMAX)
     RETURN
     END
```

SUBROUTINE YGRAPH(M+X+Y+YFIT) DIMENSION X(1) ,Y(1),YFIT(1) DATA IFFF, IBBB, IOOO, IPPP/1HF, 1H , 1HO, 1HP/ YMIN=Y(1)YMAX=Y(1) DO 3 I=1.M IF(YMIN .GT . Y(I)) YMIN=Y(I) IF(YMAX .LT. Y(I)) YMAX=Y(I) IF (YMIN .GT. YFIT(I)) YMIN=YFIT(I) IF (YMAX .LT. YFIT(I)) YMAX=YFIT(I) 3 CONTINUE WRITE (3,1005) YMIN, YMAX 1IIIIIIII DO 1100 I=1.M IO=1.0+100.0*(Y(I)-YMIN)/(YMAX-YMIN) IO=MAXO(MINO(IO,100),1) IP=1.0+100.0*(YFIT(I)-YMIN)/(YMAX-YMIN) IP=MAXO(MINO(IP,100),1)IF (IO .NE. IP) GO TO 1030 1008 IF (IO .NE. 1) GO TO 1020 WRITE(3,1010)X(I), IFFF 1010 FORMAT (1X,E13.5,6H -,100Al) GO TO 1100 1020 K=10-1 WRITE (3,1010) X(I), (IBBB, J=1,K), IFFF GO TO 1100 1030 IPP=IPPP 100=1000 IF (IP .GT. IO) GO TO 1040 IPP=1000 IOO=IPPP IDUMMY=I0 IO=IP IP=IDUMMY 1040 IF (10 .GT. 1) GO TO 1060 K=1P-10-1 IF (K .GT. 0) GO TO 1050 WRITE (3,1010) X(1); IOO, IPP GO TO 1100 1050 CONTINUE WRITE (3,1010) X(I), IOO+(IBBB+J=1+K), IPP GO TO 1100 1060 K1=I0-1 K2=IP-IO-1 IF (K2 .GT. 0) GO TO 1070 WRITE(3,1010)X(I),(IBBB,J=1,K1),IOO,IPP GO TO 1100 1070 CONTINUE WRITE (3,1010) X(I), (IBBB; J=1,K1), IOO, (IBBB, J=1,K2), IPP 1100 CONTINUE WRITE (3,1110) YMIN, YMAX 2X+E13-5) WRITE (3,1120) 1120 FORMAT (33HOP REPRESENTS THE PREDICTED POINT/28HOO REPRESENTS THE 1DATA POINT/73HOF REPRESENTS BOTH THE DATA AND THE PREDICTED POINTS 2 IF THEY LIE TOGETHER) RETURN END

DIMENSION E(1) PRINTOUT SUBROUTINE FOR ENERGIES C 116 FORMAT (1H1//16X,92H-----113 2FV/NUCLEON) ----117 FORMAT (25X,4(9X,F9.3)) 10099 I=1 10100 IF(I-1+200-IMAX)10101,10113,10113 10101 WRITE(3,116) D010102J=1.50 K=I+J10102 WRITE(3+117)(E(K-1)+E(K+49)+E(K+99)+E(K+149)) I = I + 200GO TO 10100 10113 WRITE(3,116) LP=(IMAX-I+1)/50 LC=(IMAX-I+1)-50*LP LD=LC+1 IF(LC)10104+10103+10104 10103 L=LP LC = 50GO TO(1001,10033,10043,10044),L 10104 L=LP+1 GO TO (1001,1002,1003,1004). 1001 DO 10011 J=1.LC K = I + J10011 WRITE(3,117)(E(K-1)) GO TO 10046 1002 DO 10021 J=1.LC K = I + J10021 WRITE(3,117)(E(K-1),E(K+49)) LD=LC+110023 DO 10022 J=LD+50 K=I+J10022 WRITE(3,117)(E(K-1)) GO TO 10046 1003 D010031 J=1+LC K=I+J10031 WRITE(3,117)(E(K-1),E(K+49),E(K+99)) 10033 DO 10032 J=LD,50 K = J + I10032 WRITE(3+117)(E(K-1)+E(K+49)) GO TO 10046 1004 D010041 J=1,LC K=I+J10041 WRITE(3,117)(E(K-1),E(K+49),E(K+99),E(K+149)) 10043 DO 10042 J=LD.50 K=I+J10042 WRITE(3,117)(E(K-1),E(K+49),E(K+99)) GO TO 10046 10044 DO 10045 J=LD:50 K=I+J 10045 WRITE (3+117)(E(K-1)+E(K+49)+E(K+99)+E(K+149)) 10046 RETURN

END

SUBROUTINE PRINTE(E, IMAX)

ENERGIES (M

-54-

UCRL-17391

		SUBROUTINE PRINTG(IMAX)XBAR)ATTEN)SIGMA)E) DIMENSION XBAR(1))ATTEN(1))SIGMA(1))E(1)
С		PRINT SUBROUTINE FOR DISTANCES, ATTENUATION FACTORS, SIGMAS, ENERGIES
	130 131	FORMAT(1H1//27X+11HPENETRATION+13X+8HSURVIVAL+7X+ 20HMEAN SQUAR 2E STRAGGLE+11X+6HENERGY/24X+18HDISTANCE (G/CM**2)+9X+8HFRACTION 3 8X+19HPARAMETER (G/CM**2)+8X+13H(MEV/NUCLEON) ///) FORMAT(27X+E11+4+11X+E11+4+10X+E11+4+13X+F9+3)
		I = 1
	210	IF(I.GE.IMAX)GO TO 214
	211	IF((2+49).GT.IMAX)GO TO 214
	212	WRITE(3,130)
		DO 213 J=1.50
		K=I+J
	213	WRITE(3,131)(XBAR(K-1),ATTEN(K-1),SIGMA(K-1),E(K-1))
		GO TO 210
	214	WRITE(3)130)
		DO 215 JEIGIMAX
	215	WK11E(3)131)(XBAK(J))AIIEN(J)SIGMA(J)E(J))
	210	

		SUBROUTINE PRINTD(IMAX)XBAR)N(LET)IND) REAL N(LET DIMENSION XBAR(1))(ET(1))N(1),IND(1)
		DINERGION ADAR(I)/ELICIPARI/PIND(I)
С		PRINT SUBROUTINE FOR DISTANCES, FLUXES, LET-S
	120	FORMAT(1H1//27X,11HPENETRATION,12X,13HPARTICLE FLUX,10X, 214HENERGY RELEASE,12X,11HCALCULATION/24X,17HDISTANCE(G/CM**2),6X, 318H(NUMBER/SEC-CM**2),8X,131(MEV-CM**2/G),16X,4HMODE///)
	121	FORMAT(27X,E11.4,12X,E11.4,12X,E11.4,18X,A6)
	200	I = I $I = I = I = I = I = I = I = I = I = I =$
	201	$IF((1+49) \bullet GT \bullet IMAX) GO TO 204$
	202	WRITE(3,120)
		DO 203 J=1.50
		K=1+J
	203	WRITE(3,121)(XBAR(K-1),N(K-1),LET(K-1),IND(K-1))
		I=I+50
		GO TO 200
	204	WRITE(3,120)
		DO 205 J=I.IMAX
	205	WRITE(3,121)(XBAR(J),N(J),LET(J),IND(J))
	230	RETURN
		END

SUBROUTINE PRINTSP(KS1,KS2,E,SPECT2) DIMENSION E(1), SPECT2(1) С SPECTRAL PRINTOUT SUBROUTINE ENERGY SPECTRUM AT BRAG 136 FORMAT(1H1//20X,78H----- --///21X,2(15HPARTICLE ENERGY,7X, 2G PEAK-----38HRELATIVE,13X)/22X,2(13H(MEV/NUCLEON),5X,14HNUMBER DENSITY,11X) 4/13 137 FORMAT(22X+2(F9+3+10X+E11+4+13X)) 11110 I=KS1 11200 IF(I-1+100-KS2) 11201,11203,11203 11201 WRITE(3,136) DO 11202 J=1,50 K≠I+J 11202 WRITE(3,137)(E(K-1), SPECT2(K-1), E(K+49), SPECT2(K+49)) I = I + 100GO TO 11200 11203 WRITE(3,136) LP=(KS2-I+1)/50LC = (KS2 - I + 1) - 50 * LPLD=LC+1 IF(LC)11204+11204+11205 11204 L=LP LC=50 GO TO (1201,11224),L 11205 L=LP+1 GO TO (1201,1202),L 1201 DO 11211 J=1,LC K=I+J11211 WRITE(3+137)(E(K-1)+SPECT2(K-1)) GO TO 206 1202 DO 11221 J=1+LC K=I+J11221 WRITE(3,137)(E(K-1), SPECT2(K-1), E(K+49), SPECT2(K+49)) 11223 DO 11222 J=LD,50 K=I+J11222 WRITE(3,137)(E(K-1), SPECT2(K-1)) GO TO 206 11224 DO 11225 J=LD:50 K=I+J11225 WRITE(3,137)(E(K-1),SPECT2(K-1),E(K+49),SPECT2(K+49)) 206 RETURN END

	SUBROUTINE PRSCATT PRSCATT PRINTS INFORMATION RELATED TO THE ATTENUATION DUE TO SMALL-ANGLE MULTIPLE SCATTERINGTHE INFORMATION PRINTED AT EACH POINT CONSISTS OF THE FOLLINGENERGY PER NUCLEON AT A POINT,XBAR,SBAR,THETA, AND Y.
с	COMMON ATTEN(500),SBAR(500),E(500),SIGMA(500),IND(500),LET(500), 2 N(500),SPECT2(50),THETAS(500),THETA(500),XBAR(500),Y(500), 3 XDATA(300),YDATA(300),F(500) COMMON/GMDATA1/IMAX,DIFF,I8,PD
	210 I=1 209 IF(I-IMAX)211,214,200 211 IF(I+49-IMAX)212,212,214 212 PRINT 130 DO 213 J=1,50
	<pre>K=I+J 213 PRINT 131, E(K-1),XBAR(K-1),SBAR(K-1),THETA(K-1),Y(K-1),THETAS(K-1 2) I=50+I G0 T0 209'</pre>
	214 PRINT 130 DO 215 J=I,IMAX 215 PRINT 131,E(J),XBAR(J),SBAR(J),THETA(J), Y(J),THETAS(J)
	<pre>130 FORMAT(1H1,8X,6HENERGY, 9X,11HPENETRATION,6X,16HMEAN DIST. TRAV- + 2 5X,13HMEAN ANGLE OF,7X, 13HMEAN BEAM DE-/ 3 5X,13H(MEV/NUCLEON),3X,18HDISTANCE (G/CM**2),3X,15HELLED (G/CM** 42) ,3X,16HDEFLECTION (RAD) ,4X,18HFLECTION (G/CM**2),3X, 5 6HTHETAS //)</pre>
	131 FORMAT(6X,F9.3,8X,E11.4,9X,E11.4,8X,E11.4,9X,E11.4,5X,E11.4) 200 RETURN END

```
SUBROUTINE TABLE(XNAME)
    DIMENSION XNAME(15)
    ENDFILE 5
    REWIND 5
    CALL DATE(DTE)
    PRINT 200, DTE
200 FORMAT (1H1/100X,A10)
    PRINT 1 + (XNAME(I) + I = 1 + 13)
  1 FORMAT(///13A10///1X+14HINITIAL ENERGY+4X+10HPEAK HALF-
   2 4X + 12 HPEAK / PLATEAU + 4X + 14 HAVE . ENERGY AT + 10X + 4 HMEAN +
   3 6X,8HDEPTH AT 5X,10HPERCENTAGE ,7X,9HMEAN BEAM/
   4 1X, 13H(MEV/NUCLEON) ,7X, 8HWIDTH
   5 5X,10HDOSE RATIO,4X,17HPEAK(MEV/NUCLEON),8X,5HRANGE,
                     ,3X,13HDETOUR FACTOR ,5X,10HDEFLECTION// )
   6 5X,9H PEAK
                  E,WIDTH, TEMP1, EMEAN, X1, XBAR, DT, YMAX
  5 READ (5)
    IF(ENDFILE 5)300,10
 10 PRINT 2, E, WIDTH, TEMP1, EMEAN, X1, XBAR, DT, YMAX
  2 FORMAT(4X, F7.2, 7X, E10.3, 5X, E11.4, 6X, E11.4, 8X, E11.4, 2X, E10.3,
   2 4X,E11.4,5X,E10.3)
    GO TO 5
300 REWIND 5
    RETURN
    END
```

```
SUBROUTINE GMPRINT(KT)
  REAL N .LET
  LOGICAL PLOTP, FRAME
   COMMON ATTEN(500), SBAR(500), E(500), SIGMA(500), IND(500), LET(500),
  2 N(500), SPECT2(500), THETAS(500), THETA(500), XBAR(500), Y(500),
  3 XDATA(300) . YDATA(300) . F(50))
   COMMON/GMDATA1/IMAX,DIFF,18,PD
   COMMON /GMDATA2/TITLE, FRAME, INNP, KS1, KS2
   COMMON/DATA/NDTAPT+PLOTP
   COMMON/CCPOOL/XMIN,XMAX,YMIN,YMAX,CCXMIN,CCXMAX,CCYMIN,CCYMAX
   COMMON/CCFACT/FACTOR
   EQUIVALENCE(TEM,Y),(STORE1,THETA)
   DIMENSION TEM(500), STORE1(500)
   DIMENSION YLABEL(13) + XLABEL(13) + YLABEL3(2) + XLABEL2(3)
   DIMENSION ROUND(10),XLABEL1(13),YLABEL1(2),YLABEL2(2),TITLE(15)
   DATA (ROUND(I), I=1,4)/1.0,2.0,3.0,5.0/,NROUND/4/
   DATA YLABEL1, YLABEL2/13HRELATIVE DOSE . 20HRELATIVE NUMBER FLUX/
   DATA XLABEL1/30HPENETRATION DISTANCE (G/CM**2)/
   DATA XLABEL2/24HENERGY (MEV PER NUCLEON) /
   XLABEL(4) = 10H
   YLABEL(3)=10H
   IF((.NOT.FRAME).AND.(INNP.GT.1))GO TO 9
   FACTOR=100.0
   CCXMIN=2.0
   CCXMAX=11.0
   CCYMIN=2.5
   CCYMAX=8.88
   PARTX=10.
   NX1=10
   PARTY=10.
   NY1=10
   KSIZE=2
9 IF(KT.EQ.0)GO TO 20
   IF(KT.EQ.3)GO TO 35
   SET UP THE X- AND Y-ARRAYS AND AXIS LABELS
   SET UP FOR LET PRINTOUT
   DO 30 I=1. IMAX
30 TEM(I)=LET(I)
   DO 31 I=1.2
31 YLABEL(I)=YLABEL1(I)
   DO 32 I=1.3
32 XLABEL(I)=XLABEL1(I)
   NPT=IMAX
   DO 33 I=1,NPT
33 STORE1(I)=XBAR(I)
   GO TO 4
   SET UP FOR SPECTRUM PRINTOUT
35 NPT=KS2-KS1+1
   DO 36 I=1.NPT
   STORE1(I)=E(KS1+I-1)
36 TEM(I)=SPECT2(KS1+I-1)
   DO 37 I=1,2
37 YLABEL(I)=YLABEL2(I)
```

С

С

С

DO 38 1=1.3 38 XLABEL(I)=XLABEL2(I) GO TO 4 C SET UP FOR FLUX PRINTOUT 20 DO 21 I=1.IMAX 21 TEM(I)=N(I) DO 22 I=1.2 22 YLABEL(I)=YLABEL2(I) NPT=IMAX DO 23 I=1.3 23 XLABEL(I)=XLABEL1(I) DO 24 I=1,NPT 24 STORE1(I)=XBAR(I) 4 IF((.NOT.FRAME).AND.(INNP.GT.1))GO TO 11 С SET UP DUMMY NUMBERS IN THE TWO ARRAYS FOR LINEUP С С IF(PLOTP)GO TO 25 NDT=NPT GO TO 80 25 DO 60 J=1.NDTAPT TEM(NPT+J)=YDATA(J) 60 STORE1(NPT+J)=XDATA(J) NDT=NPT+NDTAPT AXIS LABELS ADJUSTMENT C 80 CALL LINEUP(STORE1, NDT, ROUND, NROUND, PARTX, XMIN, XMAX) IF(XMIN.LE.0.0)GO TO 81 IF(KT.EQ.3)GO TO 70 81 NX1=NX1-INT(ABS(XMIN)*PARTX/(XMAX-XMIN)+1.0E-06) 3 XMIN=0.0 70 CALL LINEUP(TEM, NDT , ROUND, NROUND, PARTY, YMIN, YMAX) IF(YMIN.EQ.0.0)GO TO 10 NY1=NY1-INT(ABS(YMIN)*PARTY/(YMAX-YMIN)+1.0E-06) 5 YMIN=0.0 С PLOT CURVE 10 CALL CCGRID(NX1,6HNOLBLS,NY1) CALL FIXLBL(NX1,NY1,KSIZE,NXP,NYP) KX=-NXP KY=-NYP IF(NXP.NE.0)GO TO 50 40 IF(NYP.NE.0)GO TO 51 GO TO 41 50 ENCODE(10,100,XLABEL (4))KX 100 FORMAT(7H X10**(12+1H)) GO TO 40 51 ENCODE(10,100,YLABEL(3))KY GO TO 41 41 CALL CENTER(XLABEL +4+XLABEL +64) CALL CENTER (YLABEL, 3, YLABEL, 46) CALL CCLTR(2.1,9.08,0.3,TITLE,64) CALL CCLTR(2.1,1.7,0,2,XLABEL ,64)

CALL CCLTR(1.0,2.6,1,2,YLABEL,46)

11 CALL CCPLOT(STORE1, TEM, NPT, 4HJOIN) IF(PLOTP) CALL CCPLOT(XDATA, YDATA, NDTAPT, 6HNOJOIN, 7, 1) RETURN END

SUBROUTINE FIXLBL(NX1,NY1,KSIZE,NXP,NYP) COMMON/CCPOOL/XMIN,XMAX,YMIN,YMAX,CCXMIN,CCXMAX,CCYMIN,CCYMAX NFMT1=10H(F10.6) NFMT2=10H(F10+7) NFMT3=10H(F10.8) CCXINT=(CCXMAX-CCXMIN)/NX1 CCYINT=(CCYMAX-CCYMIN)/NY1 XTEM=MAX1F(ABS(XMIN),ABS(XMAX)) YTEM=MAX1F(ABS(YMIN),ABS(YMAX)) ASSIGN 60 TO NNN1 ASSIGN 87 TO NNN2 XSTEP=1.0 YSTEP=1.0 DO 51 I=1+3 51 IF(CCXINT*XSTEP+LT+0+35*KSIZE)XSTEP=XSTEP+1+0 IF(CCXINT*XSTEP.LT.0.35*KSIZE)ASSIGN 82 TO NNN1 DO 52 I=1.3 52 IF(CCYINT*YSTEP.LT.0.1*KSIZE)YSTEP=YSTEP+1.0 IF(CCYINT*YSTEP+LT+0+1*KSIZE)ASSIGN 100 TO NNN2 GO TO NNN1 X-AXIS NORMALIZATION AND LABELLING 60 NX=ALOG10(XTEM)+1.0E-10 NXP=NX-1 IF(NXP.GE.-2.AND.NXP.LT.1)GO TO 61 XFCTR=10.0**(FLOAT(NXP)) GO TO 62 61 XFCTR=1.0 NXP=0 62 XINT=ABS((XMAX-XMIN)/(NX1*XFCTR)) XM=XMAX/XFCTR -KSIZE*0.10 CCY=CCYMIN X=XMIN/XFCTR CCX=CCXMIN 70 AX=ABS(X)+1.0E-06 IF(AX.GT.XM+1.0E-06)GO TO 82 IF(AX+LT+0+001)G0 TO 78 IF(AX.GE.0.001.AND.AX.LT.1.0)GO TO 71 IF(AX.GE.1.0.AND.AX.LT.10.0)GO TO 75 IF(AX.GE.10.0.AND.AX.LT.100.0)G0 TO 77 GO TO 81 71 ENCODE(10,NFMT3,NTEMP)X XT=CCX-KSIZE*0.16 GO TO 80 75 ENCODE(10,NFMT2,NTEMP)X XT=CCX-KSIZE*0.16 GO TO 80 77 ENCODE(10,NFMT1,NTEMP)X XT=CCX-KSIZE*0.14 GO TO 80 78 XT=CCX-KSIZE*0.02 NTEMP=10H0 80 CALL CCLTR(XT, CCY, 0, KSIZE, NTEMP, 4) 81 CCX=CCX+CCXINT*XSTEP X=X+XINT*XSTEP GO TO 70 Y-AXIS NORMALIZATION AND LABELLING

С

С

```
82 GO TO NNN2
87 NY=ALOGIO(YTEM)+1.0E-10
NYP=NY-1
IF(NYP.GE.-2.AND.NYP.LT.1)GO TO 83
YFCTR=10.0**(FLOAT(NYP))
GO TO 84
83 YFCTR=1.0
NYP=0
```

```
84 YINT=ABS((YMAX-YMIN)/(NY1*YFCTR))
YM=YMAX/YFCTR
CCX=CCXMIN -4*KSIZE*0.07
CCY=CCYMIN-0.5*KSIZE*0.06
Y=YMIN/YFCTR
```

```
85 AY=ABS(Y)+1.0E=06
IF(AY.GT.YM+1.0E=06)GO TO 100
IF(AY.LT.0.001)NTEMP=10H 0
IF(AY.GE.0.001.AND.AY.LT.1.0)ENCODE(10.NFMT3.NTEMP)Y
IF(AY.GE.10.0.AND.AY.LT.10.0)ENCODE(10.NFMT2.NTEMP)Y
IF(AY.GE.10.0.AND.AY.LT.100.0)ENCODE(10.NFMT1.NTEMP)Y
IF(Y.EQ.YMIN/YFCTR)CCY=CCY+0.03*KSIZE
CALL CCLTR(CCX.CCY.0.KSIZE.NTEMP.4)
IF(Y.EQ.YMIN/YFCTR)CCY=CCY=0.03*KSIZE
CCY=CCY+CCYINT*YSTEP
Y=Y+YINT*YSTEP
G0 T0 85
```

```
100 RETURN
END
```

SUBROUTINE CENTER(NTEMP + N + NSAVE + M) DIMENSION NEMT (5), NMASK(10), NTEMP(15) DIMENSION NWORD(15), NSAVE(15), NHOLD(15), MASK(10) DATA (NFMT (I),I=1,5)/1H(,1H ,2HX, ,1H ,4HA10) /,MASK1/1H / DATA(NMASK(I),I=1,10)/0000055,000005500,000550000,05500000, **,055000000000000,05500000000000000**, 205500000000,05500 **,0550000000000000**00* 30550000000000000000 1 DATA (MASK(I),I=1,10)/00000077,000007700,0007700000,07700000, **,077000000000000,0770000000000000**, 207700000000,07700 ,0770000000000000000000 3077000000000000000 IF (N.GT.13.OR.N.LT.1.OR.M.LT.1.OR.M.GT.132) RETURN DO 110 I=1.N 110 NWORD(I)=NTEMP(I) JM=N+1DO 111 J=JM,15 111 NWORD(J)=MASK1 DO 100 J=1,15 100 NHOLD(J)=MASK1 NCOUNT=0 DO 10 I=1.N IF(NWORD(I) .NE.MASK1) GO TO 20 10 NCOUNT=NCOUNT+10 GO TO 239 20 DO 30 J=1+10 NCOMP=NWORD(I).AND.MASK(11-J) IF(NCOMP.NE.NMASK(11-J)) GO TO 35 30 NCOUNT=NCOUNT+1 35 NSTORE=NCOUNT DO 40 I=1.N J=N+1-I IF(NWORD(J).NE.MASK1) GO TO 45 40 NCOUNT=NCOUNT+10 45 DO 46 I=1,10 NCOMP=NWORD(J) . AND . MASK(I) IF(NCOMP.NE.NMASK(I)) GO TO 50 46 NCOUNT=NCOUNT+1 50 NCHAR=10*N-NCOUNT IF (NCHAR.GT.112.OR.NCHAR.GT.M) RETURN NBL = (M - NCHAR)/2IM=NCHAR/10 IF(MOD(NCHAR, 10) .NE.0) IM=IM+1 IK=NSTORE+10*IM IF(NSTORE.EQ.0)GO TO 210 ENCODE(10,70,NFMT(2))NSTORE 70 FORMAT(I10) GO TO 220 210 NFMT(3)=10H 220 ENCODE(10,70 ,NFMT(4))IM DECODE(IK, NFMT, NWORD)(NHOLD(I), I=1, IM) DO 229 J=1+15 229 NWORD(J)=MASK1 NFMT(2)=1HIF(NBL.EQ.0)GO TO 54 IF(NBL.LT.10)GO TO 55 ENCODE(10,3,NFMT)NBL 3 FORMAT(1H(+12+7HX+15A10) GO TO 231 54 NFMT(1)=10H(15A10 GO TO 231

þ.

55	ENCODE(10,5,NFMT)NBL
5	FORMAT(1H(,11,8HX,15A10)
231	IM=IM+2
	IK=NBL+10*IM-MOD(NBL,10)+10
	IF(MOD(NBL,10).NE.0)IK=IK+10
	ENCODE(IK,NFMT,NWORD)(NHOLD(I),I=1,IM)
239	JM=M/10
	$IF(MOD(M,10) \cdot NE \cdot 0) JM = JM + 1$
	DO 240 I=1,JM
240	NSAVE(I)=NWORD(I)
	NFMT(1)=1H(
	NFMT(2)=10H
	NFMT(3)=2HX+
	NFMT(4)=10H
	NFMT(5)=4HA10)
	RETURN
	END
	•
UCRL-17391

REFERENCES

- 1. G. M. Litton, R. W. Wallace, and C. A. Tobias, Penetration of Heavy Ions in Matter, (unpublished).
- 2. R. D. Evans, The Atomic Nucleus (McGraw-Hill Book Co., New York, N. Y., 1955).
- 3. P. G. Steward and R. W. Wallace, Calculation of Stopping Power and Range-Energy Values for any Heavy Ion in Nongaseous Media, UCRL-17314, December 1966.
- 4. W. H. Barkas and M. J. Berger, Tables of Energy Losses and Ranges of Heavy Charged Particles, NAS-NRC 1133, 1964.
- 5. J. E. Turner, Values of I and IADJ ····, NAS-NRC 1133, 1964.
- 6. R. M. Sternheimer, Phys. Rev. 117, 485 (1960).

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

