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Impact of mutations on the allosteric conformational equilibrium

Patrick Weinkama,1, Yao Chi Chenb, Jaume Ponsc, and Andrej Salia,1

aDepartment of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical
Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California,
San Francisco, San Francisco, CA 94158, USA
bInstitute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
cRinat Laboratories, Biotherapeutics and Bioinnovation Center (BBC), Pfizer Inc., South San
Francisco, CA 94080, USA

Abstract
Allostery in a protein involves effector binding at an allosteric site that changes the structure and/
or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding,
allostery involves a conformational equilibrium between one protein substate that binds the
effector and a second substate that less strongly binds the effector. We run molecular dynamics
simulations using simple, smooth energy landscapes to sample specific ligand-induced
conformational transitions, as defined by the effector-bound and unbound protein structures. These
simulations can be performed using our web server: http://salilab.org/allosmod/. We then develop
a set of features to analyze the simulations and capture the relevant thermodynamic properties of
the allosteric conformational equilibrium. These features are based on molecular mechanics
energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a
machine-learning algorithm on a dataset of 10 proteins and 179 mutations, we predict both the
magnitude and sign of the allosteric conformational equilibrium shift by the mutation; the impact
of a large identifiable fraction of the mutations can be predicted with an average unsigned error of
1 kBT. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted
from the initial training and testing of the machine-learning algorithm. We also assess which
calculated thermodynamic properties contribute most to the accuracy of the prediction.

Keywords
energy landscape; protein dynamics; machine learning; allostery

Introduction
Allostery is a type of protein dynamics in which microscopic motions of individual residues
determine a macroscopically observed allosteric mechanism. For allostery, a signal is
initiated by effector binding and then transmitted through structural and/or dynamic changes
involving a set of residues, known as the allosteric network. The allosteric network is
responsible for shifting the equilibrium between effector-bound and effector-unbound
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conformational substates (Figure 1). Allosteric regulation therefore occurs because the
substates have different levels of activity at a functional site distant from the effector. In
previous work, we presented a model in which the allosteric network’s size and connectivity
determine the cooperative motions and therefore the macroscopic allosteric mechanism1.
The concept of the allosteric network has involved different descriptions throughout many
decades of study.

Studies have attempted to characterize allosteric mechanisms, such as cooperative oxygen
binding in hemoglobin2; 3. Experimental methods characterize allosteric mechanisms by
probing for allosteric networks4; 5. Sites on the protein surface can be assessed using site-
directed ligands6; 7 and fluorophores8. All sites, including those internal to the protein, can
be assessed using time resolved NMR spectroscopy9, site specific FTIR spectroscopy10, and
room temperature X-ray crystallography11. Typically, allosteric networks are inferred from
mutations and/or sequence diversity due to evolution12. Mutations that perturb the allosteric
transition are thought to be in the allosteric network. However, mutations can cause
orthogonal effects, such as inducing aggregation or new conformational states. A physical
model is therefore needed to substantiate the data for characterizing the allosteric
conformational equilibrium. With a sufficiently accurate energy function and sufficient
conformational sampling, one can use variational/analytical models13; 14 or simulate
allosteric transitions directly15; 16; 17; 18; 19. In practice, however, most experimental and
computational techniques are limited by the size of the protein and the magnitude of
structural changes during the allosteric transition.

Our previous work established an efficient allostery model that predicts the magnitudes of
coupling for a rather diverse set of proteins1. The allostery model involves an atomistic
description of the protein simulated using constant temperature molecular dynamics on a
simplified, smooth energy landscape constructed to capture the essence of allostery. The
energy landscape corresponds to a dual basin structure-based/Gō
model20; 21; 22; 23; 24; 25; 26; 27; 28; 29, defined using the effector-bound and unbound crystal
structures. This energy landscape allows for a well-sampled, statistical description of the
relevant conformations and structural changes30; 31. Importantly, the crystal structures that
define the landscape also define the conformational substates within the landscape (CS1 and
CS2 in Figure 1). In our model, a conformational substate may be structurally diverse, which
is determined by the contact density patterns in the crystal structures1; 25. The model
therefore allows characterization of a specific allosteric conformational transition. If a
system involves multiple conformational states, we can run separate simulations for each
pair of conformational states.

Here, we apply our allostery model to further characterize how dynamics plays a role in the
allosteric conformational equilibrium. We create energy landscapes to sample transitions
between the effector-bound and the effector-unbound substates (CS2 and CS1, respectively).
In order to test the limits of the method, we run simulations for several proteins with
allosteric transitions that are observed using different types of data. Then, we predict the
magnitude and sign of the mutation effects on the allosteric conformational equilibrium. The
mutation effect predictions are dependent on the description of the energy landscape, in
particular the relative stability between substates CS1 and CS2 that can determine changes
in effector binding affinity. By using a large, diverse data set and different types of
calculations, we gain insight into allosteric transitions.

Results
Our approach for predicting impact of mutations on the allosteric conformational
equilibrium utilizes several different types of calculations. First, we use our allostery model,
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which is based on simplified energy landscapes1, to run simulations for a set of 10 proteins
(Table 1). Second, we develop a set of features to analyze the simulations and capture the
relevant thermodynamic properties of the allosteric conformational equilibrium (Table 2).
These features are based on molecular mechanics energy functions32, stereochemical
effects33, and structural/dynamic coupling between sites. Third, a boosted decision tree
machine-learning algorithm is trained on the features to predict the effect of 179 mutations
in the 10 proteins (Table 3)34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45. For a given protein, we train
the decision tree on the other 9 proteins. Fourth, we predict mutation effects for an 11th

protein, thrombin, to further test the generality of the method. We minimize overtraining by
using unrelated proteins.

The allosteric proteins in the benchmark vary in function, size, and oligomerization state.
The proteins also demonstrate rather diverse effector-induced structural changes. For
example, β-lactamase involves core disruption, glucokinase involves complete reorientation
between domains, hemoglobin involves twisting motions between domains, LFA-1 involves
an alpha-helix bend, and PDK1 involves only subtle side chain motions (Figure 2). Also, the
types of experimental data used to observe allosteric transitions vary significantly (Table 3)
and therefore a general definition of mutation effects is needed.

Definition of Mutation Effects
We define mutation effects generally: θ log(Xwt / Xmut), where X is an experimental
observable of data type 1 through 3 (see below). For type 1 data, θ is 1 and for types 2 and 3
data, θ is 1 or −1 if the effector is an activator or inhibitor, respectively. The mutation effect
is therefore positive if the mutation increases the effector influence and negative otherwise.

Mutation effects are assessed with 3 types of experimental data grouped from the most
direct to the least direct probe of the allosteric conformational equilibrium. Type 1 data are
the ΔΔG of the effector dissociation reaction: ΔGmut − ΔGwt = RT log(Kd

wt / Kd
mut). The

effector dissociation constant can be expressed using only one of the two conformational
substates (Figure 1): Kd = [e][CS2] / [CS2·e]. Therefore, type 1 data directly measure the
mutations’ ability to shift the allosteric conformational equilibrium. Type 2 data are the
ΔΔG computed from IC50 or EC50: RT log(IC50wt / IC50mut). Type 2 data measure the
mutation effect on the functional strength of the effector, which is a combination of binding
affinity and strength of allosteric coupling. If the strength of allosteric coupling does not
change upon mutation, then types 1 and 2 data are similar. Otherwise, prediction of mutation
effects using type 2 data can only be qualitative. Type 3 data are the ΔΔG estimated from a
measurement of function at the regulated site: RT log(Awt / Amut), where A can be binding
affinity, catalytic efficiency, etc. Type 3 data are ambiguous because they measure how the
mutation site affects the regulated site, not necessarily how the effector binding site is
coupled to the allosteric conformational equilibrium.

Classifying Mutations
We model the energy landscape to study a specific allosteric conformational equilibrium,
which is defined by the input crystal structures. Mutations that perturb the energy landscape
can be classified into three groups: A) those that affect the allosteric conformational
equilibrium and effector binding, B) those that do not affect the allosteric conformational
equilibrium but do affect effector binding, and C) those that affect neither the allosteric
conformational equilibrium nor effector binding (Figure 1). We hypothesize that this
classification is related to whether or not the mutation is in the effector binding site and/or
the allosteric network.

Weinkam et al. Page 3

J Mol Biol. Author manuscript; available in PMC 2014 February 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We expect quantitatively accurate predictions for mutation types A and C (the AC set) and
qualitatively accurate predictions for remaining mutations (the B set). Predictions for the AC
set should be accurate because these mutation effects are exclusively dependent on the
region of the energy landscape sampled during an allostery model simulation, i.e. the
mutations that can affect the allosteric network. The remaining B mutations can be separated
into three subsets: B1) they affect the ligand binding site structure, B2) they cause
significant perturbations that can induce new conformational substates, and B3) they affect
more than one relevant conformational equilibria. These sets depend on details not included
in the energy landscape sampled during an allostery model simulation. For instance, the
energy function does not include protein-ligand interactions and cannot capture specific
ligand effects. Therefore, the method can be only qualitatively accurate for PDK1, which
has many ligands. Also, prediction error can stem from highly perturbing electrostatic
changes or the existence of multiple coupled processes. We therefore define the AC set more
precisely as those mutations that are not: 1) closer than 8 Å to a ligand, 2) involving a
charged residue and an increase of 4 or more side chain atoms, 3) monitored by
fluorescence, or 4) coupled to two or more allosteric sites. Here, we emphasize predicting
mutations in the AC set, but we include all mutations to gauge accuracy.

Mutation effect predictions in the training and testing sets
The mutation effect predictions are accurate, especially for the AC set, which is shown for
each protein (Figure 3). The AC set is predicted with an average unsigned error of 1 kBT and
59% of the predictions have an error of less than 1 kBT (Table 1). Mutations that change the
effector binding site structure cause most of the error and are often significant outliers
(Figure S1). Because of the machine learning algorithm used, much of the error originates
from a small number of significant outliers. These few outliers strongly influence correlation
scores and can give the appearance that there is only weak signal, but upon careful analysis,
we will explain that most of the outliers are caused by knowable factors (see following
sections). Nonetheless, all predictions remain qualitatively accurate as indicated by the
fraction predicted to have the correct sign: 0.74 for all data and 0.76 in the AC set (Table 1).
Accuracy can be further explained by considering the type of data used to observe allostery,
as follows.

The method most accurately predicts mutation effects for data types that directly measure
the allosteric conformational equilibrium (Figure 4). Type 1 data are predicted very
accurately (correlation of 0.83) while types 2 and 3 data are predicted less accurately (Table
1). The correlation for type 3 is 0.25 and becomes 0.42 if all mutations with charged
residues are omitted. The result indicates the importance of electrostatics in allosteric
conformational transitions for some mutations, which are not modeled well in this iteration
of the method. The use of types 2 and 3 data, however, causes an undetermined amount of
error because these data are not a direct measure of the allosteric conformational equilibrium
that we analyze in our calculations. The presence of multiple relevant equilibria contributes
to the error, which can make direct measurement of the allosteric conformational
equilibrium difficult.

Error from multiple conformational equilibria: solvation effects
The predictions for the calmodulin-GFP calcium sensor protein do not correlate with the
experimental data. Calmodulin-GFP is composed of two proteins, neither one of which is
allosteric independently. However, when a fluorescent GFP sequence is inserted into the
middle of the calmodulin sequence, calcium binding induces folding of calmodulin and
increases fluorescence due to the interface that is formed with GFP. We showed previously
that the model predicts coupling between the GFP fluorophore and a residue if the average
coupling at the site is used, i.e. by averaging all mutations effects at that site1. The effect for
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a specific mutation is not predicted, however, because fluorescence yield is more sensitive to
the solvation of the chromophore than the conformational equilibrium triggered by calcium
binding39. Therefore, the method requires data that measure the allosteric conformational
equilibrium and do not measure other processes such as solvation, aggregation, etc.

Error from multiple conformational equilibria: multiple binding sites
The allostery model is used to sample a specific allosteric conformational equilibrium as
defined by the input crystal structures. Some systems involve multiple conformational
equilibria triggered by different effectors46. For instance, hemoglobin couples at least 5
distinct ligand binding sites for oxygen delivery in the blood (Figure 2): 4 binding sites for
oxygen and 1 large, highly solvated binding site for diphosphoglycerate (DPG). Oxygen
binding is inhibited by binding of DPG but is activated by binding of oxygen. A mutation
can therefore have complicated effects by simultaneously influencing multiple ligand
binding sites. In the current simulations, hemoglobin has 4 oxygen effectors. Mutation
effects are well predicted for residues that primarily affect the oxygen binding sites, i.e.
those further than 20 Å from the DPG binding site (Figure 2). The mutation effects for
residues less than 20 Å to the DPG binding site (blue triangles in Figure 3,4C) are well
predicted using simulations with DPG as the effector. The mutations close to the DPG
binding site are not included in the present training and testing procedures, yet are predicted
with an average unsigned error of 1.0 kBT (Table 1). Therefore, the method seems to predict
which regions of the protein coupled to a specific allosteric site.

Many allosteric transitions involve systems without complete crystal structures, such as
lymphocyte function associated antigen 1 (LFA-1). LFA-1 plays a role in cell adhesion and
can be inhibited by effector binding to its i domain. Effector binding triggers a structural
change within the i domain that modifies its interface to the rest of LFA-1. This interface has
not been crystallized and is not well characterized35. Erroneous predictions are expected for
residues at the interface between the i domain and the rest of LFA-1, which is not present in
the simulations. The residues with large error (> 2 kBT) occur in a region near the N-
terminus of the i domain that is thought to interact with the rest of LFA-1 (Figure 2). Like
hemoglobin, the LFA-1 simulations predict the regions of the protein coupled to a specific
ligand-induced conformational equilibrium.

Thrombin and multiple conformational states
Thrombin is a serine protease that plays an important role in the blood coagulation pathway.
Thrombin forms when inactive prothrombin is cleaved by protease factor X. Thrombin’s
activity is further activated by binding of sodium to an allosteric site. A sodium bound
structure of thrombin is known as well as two different structures without sodium47; 48. The
biological relevance of these two low activity, sodium unbound structures is not clear. We
therefore run simulations for two sets of landscapes defined by the sodium bound structure
and either: 1) unbound structure 1SGI with minor structural change at the allosteric site
(Figure 5A) or 2) unbound structure 2GP9 with significant structural change at the allosteric
site (Figure 5C). We then predict the effect of mutations on sodium binding47, which is
directly coupled to the protein’s activity. The predictions are performed using the machine
learning algorithm trained on 37 features and the 10 other proteins in the current study.

The predictions are more accurate if using 2GP9 with significant structural change at the
allosteric site (R = 0.30 and average unsigned error of 0.9 kBT) than if using 1SGI with
minor structural change at the allosteric site (R = 0.11 and average unsigned error of 0.8
kBT). The calculations with 2GP9 more accurately capture the mutation effects that inhibit
sodium binding. This result suggests that the allosteric site of thrombin undergoes a
significant structural change in solution experiments and that 2GP9 is a biologically relevant
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structure. The result is also consistent with the observation that the 1SGI structure may be
strongly influenced by crystal packing contacts48.

While the mutation effect predictions with 2GP9 are more accurate than with 1SGI, the
pseudo correlation feature calculated from either set of simulations accurately captures the
coupling of the mutation site to the allosteric site (Figure 5E). Pseudo correlation measures
the likelihood that a residue’s local structure will couple to the structure of the allosteric site
(Methods and feature 3 in Table 2). Experimentally measured mutation effects correlate with
pseudo correlation in the 1SGI (R = 0.60) and 2GP9 (R = 0.66) simulations. In fact,
averaging the pseudo correlation feature from the two simulations yields a correlation of
0.71 with experiment. The 2GP9 calculations are most consistent with experiment and
therefore 2GP9 may be more populated than the 1SGI structure in solution.

The pseudo correlation calculations are more accurate than the mutation effect predictions.
The pseudo correlation calculations have few false positives (mutations predicted to but do
not inhibit sodium binding). The mutation effect predictions overestimate the mutation
effects of many solvent exposed electrostatic residues, likely because the electrostatics of the
sodium-thrombin interaction is omitted.

Discussion
The method accurately predicts mutation effects on the allosteric conformational
equilibrium. The average unsigned error is 1.0 kBT for the AC mutation set and 0.9 kBT for
data omitted from the training and testing procedure. For data type 1, which most directly
reflects the modeled conformational changes, the correlation is 0.83 for data in the training
and testing sets and 0.35 (up to 0.71 if considering pseudo correlation) for data omitted from
the training and testing procedure. To our knowledge, no previous method can predict
mutation effects on the allosteric conformational equilibria as accurately. There are
successful qualitative predictions, i.e. whether or not a mutation influences ligand binding
and/or the allosteric communication network12; 49; 50; 51; 52; 53; 54. Mutation effects on
distant ligand binding sites have been characterized in terms of free energy shifts (ΔΔG’s)
for ligand binding16; 55, but typically ΔΔG’s for ligand binding are reported for binding
sites with proximal mutations56; 57. Alternatively, methods that predict ΔΔG’s for protein
unfolding can in principle also predict mutation effects on the allosteric conformational
equilibrium: by using the difference between the ΔΔG’s calculated from the effector-bound
and unbound crystal structures. A study using a filtered set of mutations determined that the
average unsigned error for these methods is approximately 2 kBT, with the best method
giving an average unsigned error of 1.7 kBT58. This would imply an error of 2.9 kBT,
approximated using the reported standard deviations. Therefore, our method represents a
significant improvement over such calculations. Even though the current method was
assessed on a diverse benchmark, it also improves over previous studies of individual
systems16; 57.

The 37 features that give rise to the method’s accuracy reflect both global and local
structural/energetic properties important for allosteric transitions. The importance of a
feature can be gauged by the decrease of prediction accuracy in its absence (Figure 6),
although overlapping information and coupling between features must also be considered.
Local features, sensitive to a residue’s local environment, account for 84% of the features.
Local features sensitive to energetic changes are particularly important for accuracy. Global
features, reflecting the entire protein, are also important. The most important global feature,
entropy bias, indicates a preference of one conformational substate over another due to an
increase in disorder (Figure 7). The entropy bias correlates well with the average mutation
effect in each protein (R = 0.88); in comparison, the global energy bias does not contribute
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significantly to the accuracy (R = 0.03). A mutation can therefore affect populated
ensembles by changing local disorder. For example, mutation to glycine not only destroys
favorable energetic interactions but also increases the degrees of freedom for neighboring
residues. By this increase of local disorder, the mutation can shift the entire population
towards a conformational substate with more entropy than the conformational substate
populated without mutation. Our results suggest that there is an interplay between local
energetic effects and entropic effects in the allosteric conformational equilibrium, an idea
also supported by experimental evidence59.

We address the balancing act between energy and entropy in a protein’s energy landscape by
combining different types of calculations. Our structure-based simulations use approximate
energies in order to increase sampling efficiency and allow for an accurate description of
entropy changes. We then use detailed molecular mechanics energy functions to rescore the
trajectory snapshots from our simulations. Rescoring the simulation trajectories effectively
creates a new energy landscape that is based on a molecular mechanics energy function
(Amber ff03)32. As a result, the method can benefit from a reasonably accurate assessment
of substate entropies (Figure 7) without significantly sacrificing accuracy of the energy
landscape.

The features were designed using the assumption that mutations only modestly perturb the
energy landscape. Therefore, the calculations rely on simulations that do not explicitly
include mutations, but due to thorough sampling, the simulation may include conformations
not highly populated by the wild-type protein but perhaps accessible via mutation. To
account for side chain modifications, features involving allosteric frustration measure
properties of the entire ensemble. The allosteric frustration set of features measures whether
or not a residue is biased, either energetically or stereochemically, towards either
conformational substate (Methods). The features are related to local energetic frustration
used to study protein crystal structures60. Allosteric frustration indicates that mutating an
energetically biased residue, which is likely to destroy favorable interactions, can shift the
equilibrium in the opposite direction of the bias. Allosteric frustration also accounts for
stereochemical bias. Mutation to a larger side chain can shift the equilibrium towards the
substate that allows the residue to occupy more space. Mutation effects are also captured
using smoothing calculations, in which a local feature is averaged with the features of the
surrounding residues. Smoothing identifies cooperative regions, as indicated by clusters of
similarly biased residues (energetically or stereochemically).

The method suggests that protein energy landscapes may be robust to perturbations like
point mutations and ligand binding because the predictions, which depend on a simple
landscape, are accurate without explicitly accounting for all these effects. Perturbations can
affect the energy landscape by changing: 1) the relative heights of the energy minima and/or
2) the configurations populated within the energy minima (we ignore barrier heights as an
approximation). Through the two input crystal structures, both of these landscape changes
are used to model effector binding, but we do not explicitly account for mutations.
Nonetheless, the method accurately predicts mutation effects, even for type 3 data that
measure perturbations from mutations but not from effector binding. The results suggest that
a point mutation causes modest changes to the energy landscape allowing the protein to
explore slightly different conformations likely populated by the wild-type protein.
Correspondingly, highly perturbing mutations that likely change the energy landscape are
often predicted inaccurately. An interesting question is how much of the natural motions of
the effector-unbound protein also occur in the presence of different perturbations like
effector binding and mutation. Our success predicting type 3 data, in which we predict
mutation-induced perturbations from simulations based on effector-induced perturbations,
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suggests that effector-induced motions may indeed occur in the absence of the effector. This
idea has been suggested based on other simplified descriptions of energy landscapes61.

The method utilizes a general approach based on a diverse dataset and different calculations.
The predictions are most accurate for proteins in which the allosteric conformational
equilibrium can be directly observed and is dominated by intra-protein interactions. Based
on the importance of features in the prediction, local energetic and stereochemical effects as
well as substate entropy changes play a dominant role in the allosteric conformational
transition. Because effector binding and mutations can have similar effects on the protein
energy landscape, the method can help predict new allosteric sites by focusing on binding
pockets. The method can also guide biochemical experiments by predicting functionally
important residues, such as for hemoglobin and LFA-1. With the use of comparative
modeling, we can study dynamics for proteins without crystal structures. The method could
therefore be used for de novo design of allosteric proteins. The method’s success depends on
the complementary strengths of individual features that are combined using a machine-
learning algorithm. Thus, there is potential for improvement by including protein-ligand
energies, explicit electrostatics effects for mutants, and more experimental data. With these
improvements, we hope to decrease the number of significant outliers that can cause
reduction of correlation scores. Our future work will incorporate more information such as
binding site flexibility and coupling between multiple ligand binding sites.

Materials and Methods
Allostery Model Simulations

The simulations can be performed as described in our previous work1 and via our web server
at http://salilab.org/allosmod/. For a given protein, the allostery model defines several
effector-bound and unbound landscapes that differ by the size of the allosteric site (defined
by parameter rAS, see below). Each landscape is given by a potential energy function that is
a sum of bonded and non-bonded terms implemented using MODELLER62:

. Correct stereochemistry is achieved by the same terms
MODELLER uses for standard comparative modeling: Ebonded = Ebond + Eangle + Edihedral +
Eimproper. To induce allostery, we add a truncated Gaussian distance term and a soft-sphere
atom overlap term, to obtain the total non-bonded energy: Enon-bonded = Esoft sphere +
Edistance. This distance term is given by a sum over all heavy atom pairs more than two
residues apart in sequence and with side chain centers of mass less than 11 Å apart. The
energy for the distance term is distributed differently depending on the distance to the
effector, rAS: Edistance = EAS + ERS (Figure S2). The energy for interactions less than rAS

from the effector (EAS) is based on distances in either the effector-bound or unbound
structure. The energy for interactions greater than rAS from the effector (ERS) is based on
distances in both the effector-bound and unbound-structures.

Constant temperature molecular dynamics simulations at 300 K are used to sample each
landscape. In each simulation, a random structure is generated by interpolating between the
input crystal structures, which is then equilibrated and simulated for 6 nanoseconds using
three femtosecond time steps and velocity rescaling every 200 steps. 30 simulations were
run for the effector-bound and unbound landscapes at 3 different values of rAS (each value
spaced 3 Å apart and starting at a value between 6 and 15 Å corresponding to the value with
the minimum number allosteric site residues). The total sampling for each protein is
completed in about 1 day (1 processor per simulation) and involves more than 1.08
microseconds of simulation time and over 2 million structures.
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Features
The features used to analyze the simulations can be categorized as local when applied to a
single residue or global otherwise. Local features tend to correlate with the mutation effects
for a single protein. Global features improve the quantitative accuracy of the predictions.
Many features include a calculation of the ensemble average of a property, 〈 X 〉. In other
words, X is weighted by the Boltzmann probability for each structure (Pi) as calculated from

the protein’s total energy: . The total energy is either the allostery model energy
(EAllosmod) or the Amber energy (EAmber), as specified. The features are listed in Table 2
and explained here:

Local features
1. QIdiff(i) is a pairwise distance similarity metric that describes the local environment

of residue i; it is positive if a residue’s configuration is closer to the effector-bound
structure than to the effector-unbound structure and negative otherwise1. For a
given structure, an overall fold similarity to any other structure is given by Q,
reflecting the fraction of similar contacts. To determine if a simulated structure is
more similar to the effector-bound (e+) or the effector-unbound (e−) crystal
structures, we calculate QIdiff = (Qe+ − Qe−) / (1 − ΔQ) where ΔQ is the structural
similarity (Q) between the effector-bound and unbound crystal structures. QIdiff(i)
indicates if a residue (or set of residues) is in the CS1 or CS2 substates, i.e. QIdiff(i)
< 0 and QIdiff(i) > 0, respectively (Figure 1 and S2).

2. 〈EAmber (i)〉 is the ensemble average of a residue energy calculated from the
simulation trajectories. As in previous work63, we recalculate energies of each
simulation snapshot using Amber by: 1) adding hydrogen atoms to the structure
(simulations include only heavy atoms), 2) minimizing the structure with a fixed
backbone using the Amber ff03 force field32, and 3) decomposing the energy into
residue specific contributions. The ensemble average uses sampling from the
allostery model simulations at maximum rAS and the Boltzmann-weighted

probability distributions using the Amber energy function ( ).

3. 〈C(i)〉 is the ensemble average of a residue’s stereochemical crowding calculated
using HBPlus33. Stereochemical crowding is defined as the number of atoms less
than 4 Å from any side chain atom in residue i divided by the greater of: 1) the
number of side chain atoms in residue i not including the Cβ or 2) the value 1. The
ensemble average uses sampling from the allostery model simulations at maximum
rAS and the Boltzmann weighted probability distributions using the allostery model

energy function ( ).

4. AFX(i) is a general form for allosteric frustration. This term indicates if the local
environment of residue i is biased towards either substate.

X represents a property such as Amber energy or stereochemical crowding. CS1
and CS2 means that the property is calculated for structures with QIdiff(i) < 0 or
QIdiff(i) > 0, respectively. σ2 is the variance. Brackets imply an ensemble average
of property X calculated using the Boltzmann-weighted probability distributions.
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5. PC refers to pseudo correlation. Pseudo correlation maps are used to determine
which subsets of residues have correlated motions1. We first analyze the simulation
trajectories, for all values of rAS, and classify residues into the effector-bound
(CS2) or unbound substate (CS1). Pseudo correlation is determined using the log
odds ratio of the probability that a residue j is in CS1 if another residue i is also in
substate CS1, given by P(j is CS1 | i is CS1), to the probability given by P(j is CS1 |
i is CS2). This expression gives a likelihood that j will be affected by the substate
of i: PCCS1(j,i) = log ( P(j is CS1 | i is CS1) / P(j is CS1 | i is CS2) ).

6. LIC refers to ligand-induced cooperativity. LIC is large if a residue’s local
environment differs significantly between the effector-bound and unbound
simulations1. Monitoring the coupling of residues along an order parameter for
allostery, from low to high rAS, provides a measure of ligand-induced

cooperativity:  where N is either
the total number of residues in the protein or 1 (corresponding to a single residue),
a low rAS is defined as the smallest radius sampled (typically 6 Å), and a high rAS

is the value that spans approximately half the distance to the regulated site.

7. rsmooth refers to the radius for smoothing a feature over conformational space. The
feature for residue i is averaged with the feature for all residues with side chain
centers of mass closer than rsmooth, as defined by the effector-bound and unbound
crystal structures.

8. Δ refers to the change of a feature from rsmooth = 0 to rsmooth = 5 Å. Δ for a feature
indicates proximity to cooperative or uncooperative regions.

Global Features
1. 〈E〉 is the ensemble average of the entire protein’s Amber energy based on the

Boltzmann-weighted distributions using .

2.
AFX is global allosteric frustration: , in which AFX(i) is
local allosteric frustration averaged over all residues Nres.

3.  is the free energy change from CS1 to CS2 calculated from trajectories
based on the effector-bound (or unbound) landscape.

The free energy is calculated using the probability that a residue is in a substate:
CS1 and CS2 are defined by QIdiff(i) < 0 or QIdiff(i) > 0, respectively.

4. The entropy bias ( ) is composed of terms for
the entropy change from CS1 to CS2 as well as the free energy of bond cleavage
(only for caspase 7 because allosteric activation includes cleavage of the protein at

two sites). This expression can be deduced from  and  because the
allostery landscapes are defined in a particular manner (Figure S2). As an
approximation, we set the free energy of the CS1 substate in the effector-unbound
landscape equivalent to the free energy of the CS1 substate in the effector-bound
landscape. An exception occurs if there is bond cleavage of the protein, in which an
offset is used64: ΔFbond break = −0.7 Nbond break. The entropy bias simplifies to an
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expression composed of easily computed terms ( )

because our landscapes have the property that  and  are equivalent.

As a result, the entropy bias is negative if the CS1 substate has more entropy than
the CS2 substate and positive otherwise.

Machine Learning
We use the “Toolkit for Multivariate Data Analysis” as part of Root65, which contains a
regression algorithm for boosted decision trees. In contrast to classification decision tree
algorithms that assign labels to a set of features (i.e. signal or background), the regression
decision tree algorithm involves trees that assign prediction values to a set of features66 (in
this case ΔΔG). The default parameters were used (BDTG): number of trees = 2000,
gradient boosting = true, learning rate = 0.1, gradient bagging = true, bagging fraction = 0.5,
number of node cuts during optimization = 20, max tree depth = 3, and max nodes = 15. The
predictions are fairly stable, due to the use of the gradient boost algorithm, as indicated by
the minimal change of accuracy when a single, unimportant feature is omitted (Figure S3).

Mutation effects are first predicted for the first 10 proteins in Table 1. For these 10 proteins,
the testing set includes all mutations from the test protein and the training set includes all
mutations from the remaining 9 proteins (excluding mutations that are involved in multiple
conformational equilibria, i.e. blue triangles in Figures 3–4). While the final prediction
includes 37 features per mutation (Table 2), many more were first considered. Deletion of
features occurred after “one out” procedures in which training and testing is performed in
the absence of one feature (Figure 6). A feature is eliminated if the average unsigned error of
all mutations in the AC set (red points in Figures 3–4) improves or is not affected by
omitting that feature. The final set of features is obtained by repeating the “one out”
procedure until no more features can be eliminated. Eighteen mutations in hemoglobin were
omitted from the above procedure and predicted afterwards (Table 1).

Mutation effects are then predicted for thrombin using the 10 proteins and 37 features, as
described above, for the training set. Two sets of mutation effect predictions are made for
thrombin because there are two proposed sodium unbound structures, as described in
Results.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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• Allostery involves ligand-induced, long-range changes in structure and/or
dynamics

• We predict the effect of mutations on the allosteric conformational equilbrium

• A large identifiable fraction of the mutations are predicted with 1 kBT accuracy

• Several mutations omitted from the training/testing procedure are predicted with
1 kBT accuracy

• We identify important metrics that capture the thermodynamics of the allosteric
transition
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Figure 1.

The chemical equilibrium between effector-bound and unbound states ( ) should,
for an allosteric protein, be expanded to include the conformational equilibrium between
substates. One conformational substate binds the effector (CS2) and another substate less
strongly binds the effector (CS1). In most cases, our allostery model allows a
conformational substate to contain a diverse set of structures of similar energy1, i.e. a
substate may contain structurally diverse microstates. In some cases, CS1 and CS2 may be
structurally similar, for instance, if a protein has an entropically driven allosteric
mechanism67. (bottom) There are three types of mutations that differ in how they modify the
effector binding equilibrium and the conformational equilibrium. In reality, mutations can
bridge the different categories.
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Figure 2.
Crystal structures of the effector-bound (green) and effector-unbound (white) structures are
shown for A) β-lactamase, B) the i domain of lymphocyte function associated antigen, C)
glucokinase, and D) hemoglobin. Effectors are shown in black and regulated site ligands are
shown in blue, if applicable. For the i domain, poorly predicted residues (error > 2 kBT) are
shown in red and the remaining predicted residues are shown in yellow. For hemoglobin,
oxygen is shown in blue and diphosphoglycerate is shown in black in a large, hydrated
pocket.
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Figure 3.
Mutation effects determined by experiment are predicted using machine learning in units of
kBT. Each panel is a different protein. Red squares indicate mutation effects in the AC set.
The remaining mutations are either: 1) involving a charged residue and an increase of 4 or
more side chain atoms (yellow triangles) and/or 2) less than 8 Å from the effector (black
circles). Blue triangles indicate mutations that affect more than one relevant conformational
equilibria. Dashed lines represent a 1 kBT range of accuracy.
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Figure 4.
Mutation effects determined by experiment are predicted using machine learning in units of
kBT. Each panel is a different data type: A) type 1, B) type 2, and C) type 3. Red squares
indicate mutation effects in the AC set. The remaining mutations are either: 1) involving a
charged residue and an increase of 4 or more side chain atoms (yellow triangles) and/or 2)
less than 8 Å from the effector (black circles). Blue triangles indicate mutations that affect
more than one relevant conformational equilibria. Dashed lines represent a 1 kBT range of
accuracy. The correlation for type 1 is 0.83. The correlation for type 3 is 0.25 and becomes
0.42 if all mutations with charged residues are omitted.
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Figure 5.
Sodium binding to thrombin is modeled using two different sodium unbound (low activity)
crystal structures. The sodium bound crystal structure 1SG8 (green) is shown with A)
unbound crystal structure 1SGI (white) and C) unbound crystal structure 2GP9 (white).
Sodium is shown as a black sphere and an active site inhibitor is shown with blue sticks.
B,D) Mutation effect predictions are shown based on energy landscapes defined using A and
C, respectively. E) The negative of the Pseudo Correlation feature shows how each mutation
site is correlated with the allosteric site, i.e. −1 times feature 3 in Table 2 (average pseudo
correlation from the two simulations). The best fit line is shown in black (R = 0.71). F) The
average of the mutation effect predictions in B and D. As in Figures 3–4, red squares
indicate mutation effects corresponding to the AC set. The remaining mutations are either:
1) involving a charged residue and an increase of 4 or more side chain atoms (yellow
triangles) and/or 2) less than 8 Å from the effector (black circles). Dashed lines represent a 1
kBT range of accuracy.
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Figure 6.
The importance of a feature is tested by excluding one or more features during the
prediction: A) groups of features are excluded B) individual features are excluded. The
features are listed in Table 2. The left most data points in each panel represent the prediction
using all features. Blue lines are the averaged unsigned error (kBT) of all mutations in the
AC set (red squares in Figures 3–4). Green lines are the fraction of mutation effects in the
AC set correctly predicted to be positive or negative. Red and dashed lines are the
correlation coefficients for the AC set and for type 1 data, respectively.

Weinkam et al. Page 22

J Mol Biol. Author manuscript; available in PMC 2014 February 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Plots showing the relationship between the average mutation effect for each protein and
global features: A) the entropy bias and B) the energy bias (features 29 and 32 in Table 2).
Error bars represent the standard deviation of the mutation effects in each protein. The
calmodulin-GFP calcium sensor protein is shown with blue triangles. Black lines are the
linear fit. The correlation coefficients are 0.88 for the entropy bias and 0.03 for the energy
bias.
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Table 2

Features used in Machine Learning

Index Name Type Global/Local Description

1 side chain type (wild type)
side chain type local

Classified as either hydrophobic, polar, positive,

or negative1.2 side chain type (mutant)

3 PC(AS,i)
PC local Pseudo Correlation

4 PC(RS,i)

5 LIC(i)
LIC

local
Ligand Induced Cooperativity

6 LIC(all residues) global

7 distance to AS
distance local Distance between the average side chain

position and the closest atom in the ligand8 distance to RS

9 AF(i)Amber Energy (rsmooth = 0 Å) residue energy

local Allosteric Frustration - energy bias210 AF(i)Amber Energy (rsmooth = 5 Å)
residue energy, smoothing

11 AF(i)Amber Energy (rsmooth = 6 Å)

12 AF(i)crowding (rsmooth = 0 Å) stereochemistry

local
Allosteric Frustration - stereochemical crowding

bias313 AF(i)crowding (rsmooth = 5 Å)
stereochemistry, smoothing

14 AF(i)crowding (rsmooth = 6 Å)

15 AF(i)crowding if hydrophobic

stereochemistry local
Allosteric Frustration - stereochemical crowding
bias of hydrophobic, polar, positively charged,

or negatively chaged residues3

16 AF(i)crowding if polar

17 AF(i)crowding if + charged

18 AF(i)crowding if - charged

19 <E(i)Amber> (rsmooth = 0 Å) residue energy

local Ensemble average of energy per residue220 <E(i)Amber> (rsmooth = 5 Å)
residue energy, smoothing

21 <E(i)Amber> (rsmooth = 6 Å)

22 <C(i)> if QIdiff < 0 (rsmooth = 0 Å)
stereochemistry

local
Ensemble average of stereochemical crowding

per residue if in either the CS1 or CS2 substate3

23 <C(i)> if QIdiff > 0 (rsmooth = 0 Å)

24 <C(i)> if QIdiff < 0 (rsmooth = 5 Å)

stereochemistry, smoothing
25 <C(i)> if QIdiff > 0 (rsmooth = 5 Å)

26 <C(i)> if QIdiff < 0 (rsmooth = 6 Å)

27 <C(i)> if QIdiff > 0 (rsmooth = 6 Å)

28 <C(i)> if hydrophobic stereochemistry local
Ensemble average of stereochemical crowding

per residue if hydrophobic3

29 entropy bias

entropy terms global Entropy bias and terms used to obtain the
entropy bias

30 ΔFe−
CS1→CS2

31 ΔFe+
CS1→CS2
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Index Name Type Global/Local Description

32 AFAmber Energy of entire protein residue energy global
Allosteric Frustration - energy bias, calculated

over the whole protein2

33 <E> of entire protein residue energy global Energy calculated over the whole protein2

34 Δ AF(i)Amber Energy residue energy local Change in residue energy bias from rsmooth = 0
Å to rsmooth = 5 Å

35 Δ AF(i)crowding stereochemistry local
Change in stereochemical crowding bias from
rsmooth = 0 Å to rsmooth = 5 Å

36 Δ <E(i)Amber> residue energy local Change in average residue energy from rsmooth =
0 Å to rsmooth = 5 Å

37 side chain size change side chain size local Change in number of side chain heavy atoms
from wild type to mutant

1
Residues classified using Eisenberg hydrophobicity index and charge at pH 7,

2
Energy calculated using Amber with the ff03 force field,

3
Stereochemical crowding calculated using HBPlus

J Mol Biol. Author manuscript; available in PMC 2014 February 08.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Weinkam et al. Page 27

Ta
bl

e 
3

Pr
ot

ei
n 

D
et

ai
ls

 a
nd

 E
xp

er
im

en
ta

l D
at

a

P
D

B
 I

D
P

ro
te

in
 N

am
e

E
ff

ec
to

r
E

xp
er

im
en

ta
l D

at
a

M
ut

an
ts

1
M

ut
at

io
n 

E
ff

ec
ts

1P
Z

O
/ 1

JW
P

B
et

a 
L

ac
ta

m
as

e
N

,N
-B

is
(4

-C
hl

or
ob

en
zy

l)
-1

h-
1,

2,
3,

4-
T

et
ra

az
ol

-5
-A

m
in

e
K

i
−

0.
02

, −
0.

19

1R
D

4/
 1

Z
O

N
i D

om
ai

n 
of

 L
FA

-1
(L

eu
ko

cy
te

 F
un

ct
io

n
A

ss
oc

ia
te

d 
M

ol
ec

ul
e)

1-
A

ce
ty

l-
4-

(4
-{

4-
[(

2-
E

th
ox

yp
he

ny
l)

th
io

]-
3-

N
itr

op
he

ny
l}

py
ri

di
n-

2-
Y

l)
pi

pe
ra

zi
ne

Fr
ac

tio
n 

B
ou

nd
 to

IC
A

M
-1

1.
24

, 0
.8

2,
 0

.0
7,

−
0.

43
, 1

.3
4,

 1
.6

2,
0.

35
, 0

.0
7,

 1
.5

3,
−

0.
36

, −
0.

25
, 2

.0
7,

0.
74

, −
0.

02
, −

1.
79

,
−

0.
53

, −
1.

16
, −

1.
04

1.
49

, 2
.4

1,
1.

07
, −

0.
50

,
0.

70
,

1T
48

/1
PA

1
T

yr
os

in
e 

Ph
os

ph
at

as
e

3-
(3

,5
-D

ib
ro

m
o-

4-
H

yd
ro

xy
-B

en
zo

yl
)-

2-
E

th
yl

-B
en

zo
fu

ra
n-

6-
Su

lf
on

ic
 a

ci
d 

di
m

et
hy

la
m

id
e

C
at

al
yt

ic
 E

ff
ic

ie
nc

y
1.

98

1V
4S

/1
V

4T
G

lu
co

ki
na

se
2-

A
m

in
o-

4-
Fl

uo
ro

-5
-[

(1
-M

et
hy

l-
1h

-I
m

id
az

ol
-2

-Y
l)

 s
ul

fa
ny

l]
-N

-(
1,

3-
T

hi
az

ol
-2

-Y
l)

be
nz

am
id

e
K

d 
of

 g
lu

co
se

−
0.

30
, −

2.
48

,
−

0.
71

, 1
.4

5,
 3

.4
0,

0.
35

, −
0.

43
,

−
0.

75
, −

2.
62

, 1
.9

5,
−

1.
94

, 0
.1

4,
 −

1.
40

,
−

1.
35

,

−
1.

34
, −

0.
37

,
−

1.
26

, −
1.

58
, 0

.6
2,

−
0.

45
, −

0.
96

,

−
3.

56
,

−
3.

14
,

−
0.

89
,

−
1.

70
,

−
0.

35
,

−
0.

19
,

−
1.

42

2B
R

K
/1

C
2P

H
ep

at
iti

s 
c 

Po
ly

m
er

as
e

3-
C

yc
lo

he
xy

l-
1-

(2
-M

or
ph

ol
in

-4
-Y

l-
2-

O
xo

et
hy

l)
-2

-P
he

ny
l-

1h
-I

nd
ol

e-
6-

C
ar

bo
xy

lic
 a

ci
d

K
i o

r 
IC

50
−

1.
87

, −
5.

04
, 2

.7
5,

−
5.

95
, −

5.
43

, −
1.

14
,

−
0.

07
, −

2.
62

, −
4.

20
−

0.
14

, 1
.9

3,

3H
R

F/
 3

H
R

C

PD
K

1 
(3

-
Ph

os
ph

oi
no

si
tid

e-
de

pe
nd

en
t P

ro
te

in
K

in
as

e 
1)

(2
z)

-5
-(

4-
C

hl
or

op
he

ny
l)

-3
-P

he
ny

lp
en

t-
2-

E
no

ic
 a

ci
d

E
C

50
−

1.
77

, 0
.0

0,
 −

0.
41

,
−

1.
77

, 0
.0

0,
−

0.
97

, −
1.

12
, −

1.
17

,
0.

82
, 0

.0
0,

−
1.

77
, −

1.
77

,
−

1.
10

, −
1.

65
,

−
1.

77
,

−
1.

67
, 0

.0
0,

−
0.

48
, 0

.0
0,

−
1.

42

1A
N

F/
1O

M
P

M
al

to
se

 B
in

di
ng

 P
ro

te
in

m
al

to
se

K
d 

of
 m

al
to

se
0.

40
, −

0.
10

−
0.

50
,

−
0.

20
,

−
0.

10
,

−
0.

80
,

J Mol Biol. Author manuscript; available in PMC 2014 February 08.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Weinkam et al. Page 28

P
D

B
 I

D
P

ro
te

in
 N

am
e

E
ff

ec
to

r
E

xp
er

im
en

ta
l D

at
a

M
ut

an
ts

1
M

ut
at

io
n 

E
ff

ec
ts

3E
K

H
/3

E
K

J
C

al
m

od
ul

in
-G

FP
C

al
ci

um
 S

en
so

r 
Pr

ot
ei

n
ca

lc
iu

m
 (

x4
)

Fl
uo

re
sc

en
ce

−
1.

76
, −

5.
61

,
−

2.
89

, −
0.

45
,

−
2.

44
,

−
1.

79
, −

1.
75

, −
5.

17
,

0.
19

, −
0.

39
,

0.
77

, −
4.

58
, −

4.
09

,
−

2.
74

, 2
.8

4
−

3.
79

, 0
.2

0,
2.

63
, −

1.
86

,

1F
1J

/1
G

Q
F

C
as

pa
se

 7
re

si
du

es
 1

91
-1

96
 a

nd
 2

12
-2

15
 (

x2
)

C
at

al
yt

ic
 E

ff
ic

ie
nc

y
−

1.
32

, −
0.

36
,

−
3.

58
, −

1.
23

, 0
.5

7,
−

0.
94

, −
6.

03
,

−
1.

78
, −

2.
69

, −
8.

80
, −

4.
65

, −
2.

80
, −

0.
33

,
−

0.
22

,

−
2.

82
,

−
3.

45
, 0

.3
5,

−
0.

20
, 0

.2
0,

−
0.

44
,

−
1.

25

2D
N

1/
2D

N
2

H
em

og
lo

bi
n

ox
yg

en
 (

x4
)

P5
02.

7
0.

95
, 0

.6
4,

 0
.8

6,
−

2.
57

, 1
.2

8,
 1

.9
9,

0.
00

, 1
.6

8,
−

0.
62

, 2
.1

9,
−

2.
16

, 0
.5

5,
2.

42
, 2

.0
2

1  R
ed

 in
di

ca
te

s 
in

cl
us

io
n 

in
to

 th
e 

A
C

 s
et

. U
nd

er
lin

e 
in

di
ca

te
s 

th
e 

si
te

 is
 le

ss
 th

an
 8

 Å
 f

ro
m

 th
e 

ef
fe

ct
or

. Y
el

lo
w

 in
di

ca
te

s 
th

at
 th

e 
m

ut
at

io
n 

in
vo

lv
es

 a
 c

ha
rg

ed
 r

es
id

ue
 a

nd
 a

n 
in

cr
ea

se
 o

f 
4 

or
 m

or
e 

si
de

 c
ha

in
 a

to
m

s.
 B

lu
e 

in
di

ca
te

s 
m

or
e 

th
an

 o
ne

 r
el

ev
an

t c
on

fo
rm

at
io

na
l e

qu
ili

br
ia

is
 a

ff
ec

te
d.

 x
2 

in
di

ca
te

s 
2 

co
pi

es
 o

f 
a 

si
te

 a
nd

 th
er

ef
or

e 
2 

pr
ed

ic
tio

ns
. T

he
 e

ff
ec

to
r 

fo
r 

ca
sp

as
e 

7 
is

 a
 p

ai
r 

of
 s

ite
s 

co
m

po
se

d 
of

 p
ep

tid
e 

fr
ag

m
en

ts
 th

at
 d

oc
k 

th
e 

pr
ot

ei
n 

af
te

r 
ch

ai
n 

cl
ea

va
ge

. T
he

 e
xp

er
im

en
ta

l d
at

a 
fo

r 
he

m
og

lo
bi

n 
is

 th
e 

m
id

po
in

t o
f 

th
e 

ox
yg

en
 d

is
so

ci
at

io
n 

cu
rv

e
ra

is
ed

 to
 th

e 
w

ild
 ty

pe
 h

ill
 c

oe
ff

ic
ie

nt
, w

hi
ch

 is
 a

pp
ro

xi
m

at
el

y 
eq

ua
l t

o 
th

e 
K

d 
of

 o
xy

ge
n.

 T
he

 w
ild

 ty
pe

 v
al

ue
 to

 u
se

d 
du

e 
to

 th
e 

la
ck

 o
f 

ac
cu

ra
te

ly
 d

et
er

m
in

ed
 m

ut
an

t h
ill

 c
oe

ff
ic

ie
nt

s.

J Mol Biol. Author manuscript; available in PMC 2014 February 08.




