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Thermodynamic origin of nonimaging optics 
 
Lun Jiang,a  and Roland Winston,a* 
a University of California, Merced  
 

Abstract. Nonimaging Optics is the theory of thermodynamically efficient1 optics and as such depends more on 
thermodynamics than on optics. Hence in this paper a condition for the "best" design is proposed based on purely 
thermodynamic arguments, which we believe has profound consequences for the designs of thermal and even 
photovoltaic systems. This new way of looking at the problem of efficient concentration depends on probabilities, 
the ingredients of entropy and information theory while “optics” in the conventional sense recedes into the 
background. Much of the paper is pedagogical and retrospective. Some of the new development of flowline designs 
will be introduced at the end and the connection between the thermodynamics and flowline design will be 
graphically presented. We will conclude with some speculative directions of where the new ideas might lead.   
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1 Introduction 

Nonimaging Optics is the theory of thermodynamically efficient optics and as such depends 

more on thermodynamics than on optics. It is by now a key feature of most solar concentrator 

designs. What is the best efficiency possible? When we pose this question, we are stepping 

outside the bounds of a particular subject. Questions of this kind are more properly in the 

province of thermodynamics which imposes limits on the possible (like energy conservation) and 

the impossible (like transferring heat from a cold body to a warm body without doing work). 

And that is why the fusion of the science of light (optics) with the science of heat 

(thermodynamics), is where much of the excitement is today. When the problem of maximal 

concentration from extended sources was first confronted2, the tools of Hamiltonian mechanics 

were utilized, because classical geometrical optics was concerned with “point sources”3,4.  In this 

paper we first present the failure of classical point source optics. The purpose to repeat the 

illustration of this paradox, is to show that, the conventional point and line understanding of 

geometric optics cannot fully represent the nature of the physics behind modern optical designs. 
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As the field (nonimaging optics) developed, it gradually became clear that the second law of 

thermodynamics was “the guiding hand” behind the various new designs. If we were asked to 

predict what currently accepted principle would be valid 1,000 years from now5, The Second 

Law would be a good bet. The purpose of this communication is to show how nonimaging optics 

can be derived from this principle. As a result, “optics” recedes into the background and we are 

left with abstract probabilities, the ingredients of entropy and information theory. This paper is 

organized as follows: section 2 to 4 provide a brief review of nonimaging optics with the 

emphasis on its connection to thermodynamics. Section 5,6 and 7 conclude with some 

speculative directions of where the new ideas might lead, particularly how flowline can illustrate 

the thermodynamic origin of nonimaging concentrators.  

2 The failure of the imaging optics. 

Conventional optics uses imaging ideas, or point sources, to represent the geometry of optical 

sources. This leads to conclusions in conflict with fundamental physics6 (Fig. 1). In this paradox, 

the point object A is at the center of a spherical reflecting cavity, and it is also one focus of an 

elliptical reflecting cavity. The point object B is at the other focus. If we start A and B at the 

same temperature, the probability of radiation from B reaching A is clearly higher than A 

reaching B, as shown by the arrows. So we conclude that A warms up while B cools off, in 

violation of the second law of thermodynamics (heat only goes from higher temperature to lower 

temperature). The paradox is resolved by making A and B extended objects, no matter how 

small. In fact, a physical object with temperature has many degrees of freedom and cannot be 

point-like.  Then the correct cavity is not elliptical, but a nonimaging shape that ensures efficient 

equal radiation transfer between A and B6.  It is worth mentioning that the correct nonimaging 



design does not converge to the ellipse/sphere configuration in the limit that the size of A and B 

tend to zero. 

 

 

 
Fig. 1 The ellipse paradox: the ellipse images “point” object B (right) at “point” object A (left) “perfectly” and the 

sphere images A on itself “perfectly”.  

3 Nonimaging optics, designing optimal optics according to thermodynamics. 

 



 
Fig. 2 Illustration of a concentrator, the optics between the aperture and the receiver is arbitrary. 

If we take a general concentration problem, as shown in Fig. 2, and ask the question of, what can 

be done to achieve the “best concentration”? In another word, what optics should be put into the 

box to achieve the maximum ratio between the areas of the aperture and the absorber?  

𝐶 = 𝐴2/𝐴3 ( 1 ) 

Here 𝐶 is the geometric concentration ratio. 𝐴 is area. In order to answer such a question, we 

have to make a reasonable assumption; all the energy from the radiation source that enters the 

aperture should reach the absorber: 

𝑄12 = 𝑄13 ( 2 ) 

Here 𝑄 represents the radiative heat (watts) that goes from one surface to another. A concentrator 

that does not meet such a requirement will have not achieved what is possibly the “best”. In other 

word, if two concentrators can be both designed to achieve the maximum radiation flux at the 

absorber, we would naturally choose the “better” concentrator which passes all energy from the 

aperture to the absorber instead of the one that is not capable of doing the same.  

No other assumptions will be needed. We are considering only the geometric optics, i.e. the 

radiative heat transfer is determined by the geometric setup and the shape of the optics, 

independent of the wavelength of the photons. (Dispersion would have to be considered 

differently, or approximated with the major wavelength). We can choose the objects to be of any 

temperature, and the result of the heat transfer due to the geometric optics should always satisfy 

the thermodynamic laws. Here we pick a special case, i.e. the source and sink being both 

blackbody and at equal temperature. The aperture being a fully transmitting object can also be 

treated as a blackbody with the same temperature. The answer to the “best concentration” 

question can be found with the following thermodynamic arguments: 



Second law demands that: 

𝑄12 = 𝑄21  

𝐴1𝜎𝑇4𝑃12 = 𝐴2𝜎𝑇4𝑃21  

𝐴1𝑃12 = 𝐴2𝑃21 ( 3 ) 

Here 𝑃𝐴𝐴 is defined as the probability of heat from surface A reaching surface B, through any 

optical surface such as reflection, refraction etc. Or,  

𝑃𝐴𝐴 =
𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑛𝑟𝑟𝑟 𝑛𝑛𝑟𝑟ℎ𝑖𝑛𝑖 𝑟𝑛𝑛𝑜𝑟𝑟𝑛 𝐵 𝑣𝑖𝑟 𝑜𝑜𝑜𝑖𝑟𝑟

𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑛𝑟𝑟𝑟 𝑛𝑛𝑖𝑜𝑜𝑛𝑒 𝑛𝑟 𝑟𝑛𝑛𝑜𝑟𝑟𝑛 𝐴
 

( 4 ) 

It is a more general concept compared to the idea of view factor in radiative heat transfer 7, 

where only rays going from one surface directly to the other are considered.  

( 3 ) represents the reciprocity of the radiative heat transfer, or the second law of 

thermodynamics, which states that a cold object cannot heat up a hot object.  

Similar to ( 3 ), we can conclude: 

𝑄13 = 𝑄31  

𝐴1𝑃13 = 𝐴3𝑃31 ( 5 ) 

From ( 2 ), or the first law of thermodynamics which states that energy is conserved, we can 

derive that  

𝑄12 = 𝑄13  

𝐴1𝑃12 = 𝐴1𝑃13 ( 6 ) 

 

Combining ( 3 )( 5 )( 6 ) we conclude with 

𝐴2𝑃21 = 𝐴1𝑃12 = 𝐴1𝑃13 = 𝐴3𝑃31  

𝐴2𝑃21 = 𝐴3𝑃31  



𝐶 =
𝐴2
𝐴3

=
𝑃31
𝑃21

 
( 7 ) 

 

For a lot of problems 𝑃21 is predetermined due to the setup of the problem, e.g. solar 

concertation problems where the sun subtends a certain angle. However, 𝑃31 can be manipulated 

with proper optical design. From ( 7 ) we find that the 𝐶𝑚𝑚𝑚 is limited by 1/𝑃21 and 𝐶𝑚𝑚𝑚  can be 

reached when 𝑃31 = 1.  

𝐶 ≤ 𝐶𝑚𝑚𝑚 =
1
𝑃21

 
( 8 ) 

 

The physical meaning of this is that an ideal concentrator limits all the “light” coming from the 

absorber to be within the range of the source. In other word, an ideal concentrator is also a 

perfect illuminator where the illumination pattern has a sharp cut off edge. 

 
4. Tools to design thermodynamically efficient concentrator/illuminators. 



 
Fig. 3 The Hottel’s strings of the source and aperture pair. 

Hoyt Hottel, an MIT engineer working on the theory of furnaces7,8, showed a convenient method 

for calculating radiation transfer between walls in a furnace using “strings”.  We now recognize 

this was much more than a shortcut to a tedious calculation, but instead the basis of an elegant 

algorithm for thermodynamically efficient optical design. In order to calculate the 𝑃21 from 

previous section, we use the Hottel’s strings on the radiation source 1 and aperture 2. 

𝑃21 =
(𝐴𝐴���� + 𝐵𝐶����) − (𝐴𝐶���� + 𝐵𝐴����)

2𝐶𝐴����
 

 

( 9 ) 

 



As the source 1 recedes into infinitely far away, Δ𝜃 approaches 0 and 𝐴𝐶���� = 𝐴𝐴����. If we keep the 

setup symmetric, i.e. 𝐴𝐴���� = 𝐵𝐶���� and 𝐴𝐶���� = 𝐵𝐴����, then: 

𝑃21 =
2(𝐴𝐴���� − 𝐴𝐶����)

2𝐶𝐴����
=
𝐴𝐴����
𝐶𝐴����

= sin (𝜃) 
 

 

 

𝐶𝑚𝑚𝑚 =
1
𝑃21

=
1

sin(𝜃) 
( 10 ) 

( 9 ) is exactly the same as the 𝐶𝑚𝑚𝑚  derived with the etendue conservation2,9, implying a 

relationship between the nonmiaging optics and the thermodynamically optimal designs. 

5 String and flowline 

 
Flowline is a vector field that can be defined in 3D as9  

 

𝐽 = (∫ 𝑒𝑜𝑦𝑒𝑜𝑧 ,∫ 𝑒𝑜𝑚𝑒𝑜𝑧 ,∫ 𝑒𝑜𝑦𝑒𝑜𝑚) ( 11 ) 

 

Here 𝐽 is the flowline vector10 11.With a simple treatment of infinitely extrusion of a 2D cross 

section, one can find that the 2D flowline vector is always bisecting the two extreme rays of the 

flowline source9 12 (Fig. 4). In Fig. 5, a radiation source/sink pair (red line and green line) are 

shown. If we trace back the flowline from the edge of the other object to itself, the corresponding 

length ℎ, which represents the etendue volume of the radiation heat transfer, are the same on 

either side. This also echoes the Kirchhoff’s law, that the 2nd law of thermodynamics forbids the 

geometry of radiative heat transfer, from being asymmetric.  

 



 
Fig. 4 Flowline of a line source in 2D is parabola due to its property of always bisecting the two foci directions. 

 

 

Fig. 5 Tracing the flowline between two lines. 

Another look at the problem shows us that, because of the well-known property of hyperbola, the 

difference of the distances to the foci remains constant (Hottel’s string). The etendue between the 

radiation source and sink is also represented by the differences to the foci by Hottel’s string 

formula ( 9 ). The reader might wonder how the Greek mathematicians would feel about this 

connection between geometry and thermodynamics. To our knowledge, flowline is the closest 

realization of a 3D Hottel’s strings. At least some of the 2D flowlines, generalize to ideal 3D 

systems.  



6 Asymmetric nonimaging design 

Although equation ( 9 ) is limited to the symmetric case of nonimaging design, however, many13–

16 have pointed out that the concept of nonimaging designs, or the thermodynamically optimal 

design that satisfies that 𝐶𝑚𝑚𝑚 = 1
𝑃21

, is not limited to the symmetric cases. (Fig. 6) 

 
Fig. 6 The asymmetric application of the string method in CEC. 

Here 1 and 3 are predetermined radiation source and sink. To form an ideal concentrator with 

𝐶 = 𝐶𝑚𝑚𝑚 , a string 𝑟𝑟′𝑟 is tightly pinned down on points 𝑟, 𝑟, point 𝑟′ is moved, following an 

elliptical path, to 𝑛′. Such a string method is consistent with the previous examples of CPC. 

7 The linkage between flowlines and mirrors.  

7.1 The usage of flowline as mirror in ideal concentrators. 

From equation ( 11 ), the flowline vector can be represented in a more suggestive form as   

𝐽 = ∫ 𝑛�𝑒Ω. Which is the average direction of the energy flow. This agrees with the flowline 

bisecting the rays from 2D source. This also agrees with the well-known Snell’s law of reflection 

(Fig. 7). 



 
Fig. 7 The mirror also bisects the original ray’s direction and its reflection direction 

 
This connection between mirrors and flowlines can be utilized to construct ideal concentrators. 

Refer to Fig. 8, the flowline inside an ideal concentrator can be traced out by evaluating the 

average direction of all the rays from the flowline source. These rays can be either directly from 

the source (blue arrows) or indirectly reflected by the mirrors (green arrows). The two extreme 

rays (red arrows) are noted and the direction bisecting them is the flowline direction. By tracing 

out these directions the flowline can be found to be controlled by the ideal concentrator (CEC in 

this case) to converge on the radiation source. 



 
Fig. 8 The flowline inside a CEC. 

We can pick any pair of such flowlines and form an ideal concentrator. As shown in Fig. 9, the 

yellow line represents the aperture, the black lines represent the reflecting walls, and the purple 

line represents the absorber. The intriguing result is, we can trace the flowline and see how the 

ideal concentrator “guides” the radiation absorber onto a section in the radiation source (red 

line).  Such a section has the same width of the radiation absorber, which implies that the 

etendue of the absorber is fully filled by rays coming from the source. Or, 𝑃31 = 1, as required 

by the maximum concentration ratio Eq. ( 8 ). 



 
Fig. 9 Flowline ideal concentrator. 

7.2 The thermodynamic implication of the flowline mirrors 

If we cover the full length of the flowline with mirrors from the radiation absorber to the 

radiation source, then the ettendue of the absorber is the same of the ettendue between the 

mirrors at the source, and both are fully populated. In other word, the “geometric capacity” of 

both the purple area and the red area, are fully occupied by the radiation coming from the other. 

Each of them sees only the other, not itself, not any other radiation source. This (as an ettendue 

guide), however, will not concentrate, but it has within it the element to construct concentrators. 

By cutting the aperture at the points where flowlines are crossing over the diagonal lines(the end 

points of the yellow line), we get the concentrators (black lines). The reason for such a cutting 

position, is still unknown to us. This is a new perspective of the ideal concentrators. This 

ettendue transferring is interesting in itself. 



One seemingly contradictory result of the flowline is the curious case of CPC flowline. The 

flowlines right above the aperture of CPC are all parallel. If they continue to be parallel all the 

way to the radiation source, then the projected area by the flowline pairs, on the radiation source, 

will be the same as the aperture, instead of being the same as the radiation absorber. This 

seemingly contradictory conclusion can be explained this way: the flowlines of CPC right above 

the aperture are, indeed, still hyperbolas. However, because it is far away from the radiation 

source, it appears to be “parallel”, just the same as the hyperbolas with parallel asymptotes. As 

the flowline goes closer to the radiation source, over the infinite distance between the aperture 

and the radiation source, it still narrows down between each other, or becomes denser, resulting 

in the same width as the radiation absorber. 

 
Fig. 10 flowlines of CPC, being parallel and vertical at the aperture. 

 



 

 

Fig. 11 The example of conventional nonimaging 
concentrator being unable to satisfy the restriction 

of building integrated PV modules. 

Fig. 12 By adjusting the starting position of the flowline 
within the absorber CC’, we can adjust the angle of aperture 
BB’. 

7.3 The application of thermodynamic flowline. 

In certain solar concentrator applications, not only the position of the sun is predetermined 

relative to the absorber position, due to the local latitude; the tilting of the aperture of the 

concentrator is also limited to restrictions, such as shading, or the covering glass. In the example 

shown in Fig. 11, the building integrated PV module (BiPV) may require the concentrator 

aperture to be also parallel to the wall, in order to minimize the shading between concentrators. 

By searching among the flowlines within the ideal concentrator BC, B’C’, (Fig. 12), we can meet 

such a requirement by limiting the aperture to be parallel to the absorber. A simple binary search 

routine using starting points C0, C1,…for flowlines is shown in Fig.12. The tilting of aperture 

B’B0, B’B1… etc, is compared with the angle of CC’ and the program stops when the angle 

difference is within the tolerance of the design. This results in the concentrator shown in Fig. 13. 

In constructing an array of such concentrators, not only the relevant etendu at the aperture (the 

seasonal angle variation of the sun in this case according to the full area of the wall) is fully used, 

but the ideal concentration law of 𝐶𝑚𝑚𝑚 = 1/𝐹21  is also satisfied. The flowline in this case 



provided another degree of freedom to the ideal concentrator design by allowing the tilting angle 

of the aperture to be also variable. Such a result cannot be achieved by simply tilting the 

conventional CEC 17, or adding a secondary concentrator to the symmetric concentrator 13. The 

detailed ray tracing can be found at 18. 

 

  
(a) The concentrator constructed based on 

flowline, blue is a hyperbola curve, red and 
orange are elliptical curves.  

 

  
(b) The incident angle modifier shows that the 
transmittance response according to the angle 

is not symmetric, in this case, -60 to 0 
degrees. 18 

  
(c)Edge ray tracing at 0 degrees 

  
(d)Edge ray tracing at -60 degrees 

Fig. 13 The optical simulation of an ideal, nonimaging, asymmetric, flowline design, which meets the 
requirement of aperture being parallel to the absorber. 

 



 

8 Conclusion and further discussion  

This paper has discussed the essence of ideal concentration. Thermodynamically speaking, the 

flux at the absorber surface cannot exceed the flux at the source surface. This is a fundamental 

principle that we cannot violate according to the second law of thermodynamics, even within the 

framework of geometric optics. Under the assumption that the most efficient concentrators will 

allow all the energy arriving at the aperture to be transmitted onto the absorber, we observe that 

the probability of any “virtual rays” coming from the absorber will also reach and only reach the 

absorber. 

With the help of Hottel’s strings and geometric flowlines, we demonstrated that at least some of 

the ideal concentrators have such a property: the flowline along the ideal concentrators will 

“guide” the ettendue from the absorber to the source, the region between the flowline, both at the 

source and at the absorber, are geometrically equal. This shows that flowline itself, being only 

under the constraints of geometry, is able to predict if a concentrator is ideal. 

Furthermore, the flowline generated with the 2D ideal concentrator, can form infinitely more 

ideal concentrators. Specifically, any pair of such flowlines can construct a new ideal 

concentrator which meets the requirement of P31=1 and Cmax=1/P21. Using this additional degree 

of freedom we demonstrated how a flowline ideal concentrator can be designed according to 

additional requirements such as a certain tilting direction of the aperture. 

We have seen that the Hottel’s strings can be generalized with the geometric flowline. In some 

cases, this generalization prompts the question of its usage in 3D, because unlike the Hottel’s 

string, flowline is naturally three dimensional. If one can successfully solve the problem of 

generating Hottle’s string design using geometric flowline in the 2D cases, one may be able to 



reapply the same principles into 3D cases. In that sense the flowlines opens up the possibility of 

generalization of all current nonimaging optics 2D design, which are constructed conventionally 

by Hottel’s strings, into 3 dimensions. 
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