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Introduction

Ewing sarcoma (EWS) is an aggressive malignancy of bone and soft tissues with a peak

incidence in adolescence. Outcomes for patients with localized disease have improved over

the past 20 years, with approximately 70% of patients disease-free 5 years from initial

diagnosis 1 In contrast, outcomes for patients with initially metastatic disease remain poor.

Only 20-25% of these patients survive disease-free 5 years from initial diagnosis.1,2

Outcomes for patients with recurrent disease are also generally poor.3-5 As a result, targeted

therapies are being increasingly evaluated in these populations.

The insulin-like growth factor type 1 (IGF-1), epithelial growth factor (EGF) and mTOR

pathways have been shown to play important roles in the growth of EWS.6-9 Multiple

preclinical models have shown EWS growth is inhibited by agents that interrupt these

pathways by blocking IGF-1 receptor (IGF-1R) and mTOR.10-12 Inhibition of epithelial
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growth factor receptor (EGFR) has been shown to be cytotoxic to EWS cells in vitro and

increased EGFR expression may be one mechanism of resistance to IGF-1R inhibition.13,14

In the case of IGF-1R inhibitors, only a subset of patients has a clinical response, though

with significant improvements in disease burden.15,16 Many groups have noted the need for

improved use of biomarkers to identify patient subgroups who are most likely to respond to

these targeted therapies.17-19 Furthermore, there is evidence that tumor expression of some

growth signaling proteins is correlated to overall survival and thus quantified measurements

of these proteins may be useful as prognostic biomarkers.20 However, the optimal modality

for quantifying expression of these proteins in the type of tumor material most commonly

available for evaluation, formalin-fixed paraffin embedded tissue, has not been determined.

Several methods are available for quantifying clinically-relevant signaling pathway proteins

in archival paraffin-embedded tumor material: standard immunohistochemistry (IHC);

automated quantitative analysis (AQUA) immunohistochemistry;21 and mass spectrometry

quantification.22 While standard immunohistochemistry is widely available, it is only semi-

quantitative and cannot be multiplexed. AQUA immunohistochemistry and mass

spectrometry have the benefit of being both fully quantitative and can be tested as a

multiplex assay. However, neither assay has been compared to IHC for use with signaling

proteins in EWS.

The primary aim of the current study was to compare the performance characteristics of

these techniques in tissue from EWS patients in quantifying IGF-1R, EGFR, and mTOR

signaling pathway proteins. A secondary aim was to track expression of these antigens over

the disease course. The results could then be used to inform the adoption of new

technologies for use in clinical trials of targeted agents for EWS and potentially other

childhood cancers.

Materials and Methods

Patients

Tissue samples were obtained by evaluating the records of 129 patients with confirmed

EWS who had been previously treated at the University of California, San Francisco. From

the potential pool of 129 patients, our study population was limited to those patients who

had open diagnostic biopsies or surgical resection of their tumor and excluded patient

samples obtained by needle biopsy. Patients who underwent open biopsy or resection at the

time of relapse were also included. The presence of viable tumor cells readily visible

microscopically was also required for inclusion. These criteria were designed to ensure

sufficient tumor material for analysis. 63 patients were screened based on available material.

46 blocks of formalin-fixed tissue with viable tumor were available from 40 patients of the

original 63. 34 blocks of skeletal origin were decalcified using EDTA and dilute HCL

(Decal Stat, Decal Chemical Corporation, Tallman, NY). 28 of the 46 samples were

obtained at time of initial diagnosis, 11 after initial neoadjuvant chemotherapy during

primary surgical excision and seven from patients with relapsed disease. The remaining 23

patients were excluded because of insufficient viable tumor, typically as a result of

chemotherapy effect (n=18). Five patients had tissue blocks that could not be located. Six of

the 40 patients had samples at both time of diagnosis and after initial therapy. Five of these
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patients had tissue obtained after initial neoadjuvant chemotherapy and one after treatment

relapse. One pathologist (AEH) reviewed all cases to confirm the diagnosis of EWS based

on histology, immunohistochemistry, and/or cytogenetic/molecular data.

Study Overview

The initial study design included evaluation of protein expression of IGF-1R, phospho-

IGF-1R, phospho-AKT, PTEN, EGFR, and phospho-P70S6 kinase. These proteins were

chosen as they are involved in signaling pathways of potential interest for targeted therapy

for EWS, including IGF-1R, EGFR, and mTOR pathways.

All samples were evaluated by standard immunohistochemistry and AQUA

immunohistochemistry including six patients with samples from both diagnosis and after

treatment. 25 samples were also selected for mass spectrometry analysis using tissue from

20 patients. Each of the selected patients had their diagnostic sample tested by mass

spectrometry. Five of these patients had paired samples from a second time point, four after

chemotherapy and one at time of relapse that were evaluated to better understand the

changes in these biomarkers after treatment.

Sample Preparation and Evaluation

Tissue microarrays (TMAs) were prepared for both standard and AQUA

immunohistochemistry. Positive and negative controls included normal liver, kidney and

tonsil tissue.

Immunohistochemical staining was performed on the DAKO Autostainer (DAKO,

Carpinteria, CA) using DAKO LSAB+ or polymerized detection system (Envision+,

DAKO) and diaminobenzadine (DAB) as the chromogen as noted in Supplementary Table

1. Serial sections of de-paraffinized TMA sections were labeled with antibodies listed in

Supplementary Table 1. Microwave citric acid epitope retrieval was used for all antibodies

with the exception of EGFR. Appropriate negative (no primary antibody) and positive

controls were stained in parallel with each set of tumors studied and yielded expected

positive and negative staining

Protein expression by standard immunohistochemistry was evaluated using a 0-8 scale, 8

being the strongest staining using a modified Allred scoring schema.23 Standard IHC results

were also categorized as low (0-2), medium (3-5) and high (6-8). Samples were evaluated by

a single pathologist (DT). Scoring was done blinded to results from AQUA or mass

spectrometry to prevent bias.

Double immunofluorescence staining for AQUA was performed as previously described.24

Briefly, after deparaffinization and rehydration, TMA slides were subjected to microwave

epitope retrieval in 1 mM EDTA buffer, pH8. After rinsing several times in 10 mM Tris

HCL buffer, pH 8 containing 0.154 M NaCl (TBS), endogenous peroxidase activity was

blocked with 2.5% (v/v) H2O2 in methanol for 30 mins. Non-specific binding of the

antibodies was extinguished by a 30 min incubation with ‘Background Sniper” (BioCare

Medical, Concord, CA). The TMA slide was then incubated with the tumor specific

antibody, CD99 (species noted in Supplementary Table 2) overnight at 4C and each
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antibody noted in Supplementary Table 2. Slides were then washed as described above and

incubated with a combination of goat anti-mouse IgG conjugated to AF555 (Molecular

probes, Carpinteria, CA, A21424, 1:200) in goat anti rabbit Envision+ (DAKO, Carpinteria,

CA) or goat anti rabbit IgG conjugated to AF555 (Molecular Probes, Carpinteria, CA,

A31630, 1:200) in goat anti mouse Envision+ (DAKO, Carpinteria, CA) for 60 minutes at

room temperature in a dark humidity tray. The slides were then washed as described above

and the target image is developed by a CSA reaction of Cy5 labeled tyramide (PerkinElmer,

Waltham, MA, 1:50). The slides were washed with 3 changes of TBS and stained with the

DNA staining dye 4′,6-diaminodo-2-phenylindole (DAPI) in a non-fading mounting media

(ProLong Gold, Molecular Probes, Carpinteria, CA). The slides were allowed to dry

overnight in a dark dry chamber and the edges were sealed.

The AQUA system (HistoRx, New Haven, Connecticut) was used for the automated image

acquisition and analysis. Briefly, images of each TMA core were captured with an Olympus

BX51 microscope at 3 different extinction/emission wavelengths. Within each TMA spot,

the area of tumor was distinguished from stromal and necrotic areas by creating a tumor

specific mask from the anti-CD99 protein, which was visualized from Alexafluor 555 signal.

The DAPI image was then used to differentiate between the cytoplasmic and nuclear

staining within the tumor mask. Finally, the fluorescence pixel intensity of the protein/

antibody complex was obtained from the Cy5 signal and reported as mean pixel intensity.

Expression by AQUA was therefore measured as a continuous variable in arbitrary units.

For mass spectrometry analysis, 10 μm unstained sections of each sample were prepared on

proprietary Director slides (OncoPlex Diagnostics, Rockville, MD – formerly Expression

Pathology, Inc.). Liquid Tissue lysates were prepared from these slides according to the

manufacturer's recommendations (OncoPlex Diagnostics).22 Total protein content for each

Liquid Tissue lysate was measured using a Micro BCA assay (Thermo Fisher Scientific Inc,

Rockford, IL). Endogenous EGFR was quantitated using selected reaction monitoring

(SRM)-MS by targeting the peptide IPLENLQIIR, which spans residues 98-108 of the

EGFR extracellular domain. Likewise, IGR-1R was quantitated through the peptide

GNLLINIR, which spans residues 358-365 of the protein's extracellular domain. A known

amount of synthetic isotopically-labeled internal standard (5 fmol) for each peptide

(IPLEN[13C15N]LQIIR and GNL[13C15N]LINIR) was added to the samples. The sample

(1 mg total) was analyzed using a nanoAcquityLC system (Waters, Milford, MA) coupled

directly on-line with a TSQ Vantage triple quadrupole mass spectrometer (Thermo

Scientific, San Jose, CA). The SRM-MS assays were acquired using the following mass

spectrometer conditions: Q1(FWHM);0.2, Q2(FWHM):0.7, dwell time;10 ms. The precursor

and product ions monitored for SRM-MS analysis of EGFR and IGF-1R have been reported

previously.22 Each sample was analyzed in triplicate. PTEN was not included in the mass

spectroscopy panel for technical reasons. The area under the curve (AUC) for the

endogenous and isotopically-labeled standard peptide was used to calculate the absolute

abundance of EGFR and IGF-1R in each sample. The concentration of endogenous SPARC

peptide was calculated using the following formula:
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*Quantity of spiked isotopically-labeled internal standard (amol) injected

**Quantity of total protein injected

Statistical Methods

Correlation coefficients were calculated by linear regression. One-sided ANOVA analysis

was used to compare the mean AQUA expression for each analyte between categories of

expression by IHC using single sample from each patient at the earliest time point in their

disease. Two sided unpaired t-tests were used to compare means between groups at initial

diagnosis and after initiation of chemotherapy. All statistical analyses were performed using

STATA, version 11.

Results

Patient Characteristics

Samples were available from 40 patients whose characteristics can be seen in Table 1. The

mean age of patients was 14 years (range 1-49 yrs) at time of diagnosis. 67.5% were male

and 57.5% had localized disease. Overall survival for this cohort was 72.5% with a median

follow up time of 51 months.

Protein Expression by Standard IHC, AQUA IHC and Mass Spectrometry

AQUA and standard immunohistochemistry were attempted for EGFR, IGF-1R, phospho-

AKT, phospho-IGF-1R, phospho-70S6k and PTEN. Due to technical issues, results were

only available for IGF-1R, EGFR and PTEN, an inhibitor of the Pi3K/AKT/mTOR pathway.

One sample per patient was analyzed, with the sample from initial diagnosis included in the

primary analysis if multiple samples were available in a given patient. Overall expression

results can be seen in Table 2. Standard IHC yielded expression results in 35 of 46 samples

for IGF-1R (76.1%), 36 samples for EGFR (78.3%) and 35 samples for PTEN (76.1%).

AQUA yielded expression results in 34 of 46 samples for IGF-1R (73.9%), 37 samples for

EGFR (80.4%) and 42 samples for PTEN (91.3%). A representative image for AQUA

IGF-1R staining can be seen in Figure 1. Mass spectrometry yielded expression results in 7

of 25 samples (25%) for IGF-1R and 8 of 25 samples (32%) for EGFR. PTEN expression

was not available using this methodology. To account for the possible loss of protein from

decalcification, we compared samples from both skeletal and non-skeletal origin and saw

similar ranges for all proteins and methodologies.

AQUA IHC Compared to Standard IHC

Mean IGF-1R expression by AQUA did not differ significantly between standard IHC

expression categories (mean IGF-1R expression by AQUA for low IHC = 11,255, medium

IHC = 11070, high IHC = 11023; p = 0.98) (Figure 2A). Mean PTEN expression by AQUA

was higher in the medium and high IHC categories (mean PTEN expression by AQUA for
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low IHC = 1229, medium IHC = 2715, high IHC = 2940; p = 0.064) (Figure 2B). Only two

samples expressed EGFR by standard IHC (Figure 2C). These samples qualitatively had

higher AQUA expression levels, but there were too few samples for a reliable determination

of statistical significance.

Mass Spectrometry Compared to Standard IHC and AQUA IHC

Qualitatively, there appeared to be a trend towards higher mass spectrometry values

correlating with higher standard IHC (Figure 3A) and AQUA (Figure 3B) expression, but

there were too few samples with available mass spectrometry data to merit formal statistical

analysis.

Protein Expression Levels over Time

In order to better understand the changes in these biomarkers after treatment, we compared

six post-treatment samples, five after chemotherapy and one at time of relapse, to those

obtained from the same patient at initial diagnosis by AQUA (Figure 4). Intra-patient

variability in expression as detected by AQUA was minimal as levels after initiation of

therapy were similar to those measured prior to treatment. There was also no difference in

mean expression by AQUA for all diagnostic samples compared to those obtained after

initiation of treatment for IGF-1R (10330 vs. 10947; p = 0.55), EGFR (2912 vs. 2238; p =

0.4) and PTEN (2317 vs. 2359; p = 0.93). These data suggest that individual tumors have

similar expression levels of these three proteins over time when patients are treated with

standard cytotoxic agents according to current therapeutic protocols and that chemotherapy

does not change expression significantly in residual viable tumor.

Discussion

In this study, we demonstrated the feasibility of quantifying protein expression of IGF-1R,

EGFR and PTEN in paraffin embedded tumor samples from patients with Ewing sarcoma.

AQUA immunohistochemistry showed that tumors express these proteins across a wide

range. Furthermore, although IGF-1R expression by AQUA was similar across a range of

standard IHC expression categories, increased expression of PTEN and EGFR by AQUA

showed a trend towards increased standard IHC expression.

In this initial descriptive study, it is not possible to determine if one approach should be

favored over the other approaches as a tool for quantifying these pathways in Ewing

sarcoma. Ultimately, a reliable quantitative method could be used for establishing relative

expression values that are clinically significant. It is not known whether there are critical

threshold levels of expression of these signaling proteins that correlate with clinical behavior

of Ewing sarcoma. Our work lays the groundwork for future studies that seek to determine

the clinical impact of expression of these proteins, particularly within the context of clinical

trials of targeted therapies.

Importantly, there is not a gold standard to which the results of each assay could be

compared. Therefore, other performance characteristics must drive selection of a particular

assay for use in future testing. For example, the low success rate for mass spectrometry in

this histology suggests that this platform may not be optimal for future study. AQUA may
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be preferred over standard IHC as more objective and more quantitative, though it is

important to note that correlation between these two approaches was poor for IGF-1R. These

two methods are also capable of determining nuclear versus cytoplasmic protein expression

levels and could be evaluated in future studies. 25

Similar to AQUA, mass spectrometry also demonstrated a wide range of protein expression

of IGF-1R and EGFR across samples. Higher mass spectrometric values appeared to

correspond to high levels of expression on standard IHC. Unfortunately, this technique was

not able to determine protein expression for a majority of the tumor samples tested.

However, the mass spectrometry technique does define a lower limit of sensitivity and it

may be that the low success rate also represents clinically insignificant levels of detection in

these samples. Given previous success with this technique in other tumor types using frozen

tissue 26,27, it is possible that the formalin fixation and, in a subset of cases, decalcification,

may have interfered with this approach. While the protein expression levels in our study

using tissue from skeletal and extraskeletal sources appeared similar, more samples would

be needed to confirm this finding.

Interestingly, we observed stable expression levels of IGF-1R, EGFR, and PTEN when

evaluated at multiple time points in therapy for an individual patient. This result is

noteworthy as many centers are utilizing core needle biopsies or fine-needle aspiration to

render an initial diagnosis of Ewing sarcoma. Therefore, paraffin-embedded tumor material

may be scarce at diagnosis, but more plentiful at the time of definitive surgical local control.

If our results are validated by other groups and in larger study cohorts, it may be feasible to

evaluate tumor material from later in the disease course to infer expression at initial

diagnosis.

The objective response rate of 10-15% for IGF-1R monoclonal antibodies in the treatment of

patients with relapsed Ewing sarcoma motivates studies to understand possible resistance

pathways to IGF-1R and other tyrosine kinase inhibitors. This experience also highlights the

need to consider the potential for combining inhibitors of multiple different signaling

pathways with each other and with conventional chemotherapy.28-31 While IGF-1R, EGFR,

and mTOR are all potential drug targets, it is yet to be fully determined if inhibition of any

of these pathways can be augmented by simultaneously targeting other pathways.32,33 The

ability to quantify pathway components and establish clinically relevant levels will be

important to determine how the expression of these proteins drive tumor growth, survival

and drug sensitivity. Ultimately, finding the optimal targeted strategy for an individual

patient may be informed by studies quantifying protein expression in that individual's tumor.

Prior studies have evaluated the clinical impact of some of these signaling proteins in Ewing

sarcoma. The IGFBP-3:IGF-1 ratio has been correlated to younger age at time of diagnosis

but this did not correlate to outcomes.34 A separate study evaluating 45 paraffin-embedded

samples showed higher standard IHC expression levels of p-mTOR and p27(KIP1) were

significantly associated with improved outcome.20 These levels were not compared to the

upstream drug targets evaluated in our study. A different report showed that patients whose

tumors only showed nuclear staining of IGF-1R had better overall survival in a group of

patients treated with an IGF-1R inhibitor.25 The extent to which more quantitative
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approaches, such as AQUA, might improve upon the predictive ability of these markers

remains to be established.

One limitation of our study was the pooling of data obtained from samples obtained before

and after initiation of chemotherapy. The samples obtained after start of treatment are likely

enriched for tumor cells that were not responsive to therapy and may have different biologic

properties compared to those cells that were sensitive to chemotherapy. Data suggest that

patients with poor chemotherapy induced necrosis, which are the specimens that likely had

adequate post treatment tumor samples, have worse overall outcomes.35 While our

immunohistochemistry assays for phospho-AKT and phospho-P70S were not successful,

other studies have been able to do so using formalin fixed paraffin embedded tissue from

other tumor types.36,37 This may be due either to biologic differences of the tumor type

and/or differences in laboratory techniques. In addition, our sample size and retrospective

study design make it difficult to determine the true correlation between quantitative methods

of expression and standard IHC. Larger prospective studies are needed to clarify the optimal

approach for each protein of interest.

Based on our findings, we conclude that growth signaling pathway proteins in Ewing

sarcoma can be measured in a quantitative fashion. The three assays evaluated each have

advantages and disadvantages that need to be considered in choosing an assay for a

particular indication. Larger samples and a defined gold standard for comparison will be

needed to determine the optimal approach for quantifying signaling proteins in Ewing

sarcoma. These methods can then be used to aid the development of targeted therapies and

evaluated as potential biomarkers predictive of response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Representative image of AQUA staining for IGF-1R.
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Figure 2.
Expression of signaling pathway proteins measured by AQUA immunohistochemistry

compared to standard immunohistochemistry for IGF-1R (A), PTEN (B), EGFR (C).
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Figure 3.
Expression of signaling pathway proteins measured by mass spectrometry compared to

standard immunohistochemistry (A) and AQUA immunohistochemistry (B) for IGF-1R and

EGFR.
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Figure 4.
Expression of signaling pathway proteins measured by AQUA immunohistochemistry in

matched patient samples before and after initiation of chemotherapy.

Applebaum et al. Page 14

Appl Immunohistochem Mol Morphol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Applebaum et al. Page 15

Table 1

Characteristics of 40 patients with Ewing sarcoma and available tissue for quantification of signaling proteins.

Characteristic All Patients n = 40 Patients with Tissue Evaluated by Mass Spectrometry n = 20

Median age at diagnosis (Range) 14 years (1-49 years) 13 years (1-45 years)

Median age at tissue collection (Range) 18 years (1-49 years) 15 years (1-46 years)

Male 67.5% 75.0%

Race

White 67.5% 60.0%

Hispanic 17.5% 30.0%

Asian 10.0% 10.0%

African American 5.0% 0.0%

Stage

Localized 57.5% 65.0%

Metastatic 30.0% 25.0%

Unknown 12.5% 10.0%

Tissue Origin

Skeletal 72.5% 75.0%

Extraskeletal 27.5% 25.0%

Year of Diagnosis

1990-1999 37.5% 40.0%

2000-2010 62.5% 60.0%
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Table 2

Expression levels of signaling pathway proteins in paraffin-embedded Ewing sarcoma samples using three

different methodologies.

Method IGF-1R PTEN EGFR

Standard IHC
Median Score (Range) 6 (0-8) 7 (0-8) 0 (0-3)

AQUA IHC
Mean (Range) 10702 (393 – 14424) 2250 (251 – 6557) 2750 (672 – 9798)

Mass Spectrometry
Mean (amol/μg) (Range) 246 (174 – 471) N/A 234 (60 – 1052)
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