Lawrence Berkeley National Laboratory

LBL Publications

Title

Improving the Accuracy of Nearest-Neighbor Classification Using Principled Construction

and Stochastic Sampling of Training-Set Centroids

Permalink

|https://escholarship.or&c/item/Bs?GsQ

Journal

Entropy, 23(2)

ISSN
1099-4300

Author
Whitelam, Stephen

Publication Date
2021

DOI
10.3390/€23020149

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California

https://escholarship.org/uc/item/8s76s22f
https://escholarship.org
http://www.cdlib.org/

arXiv:1809.02599v1 [cs.LG] 7 Sep 2018

Simple coarse graining and sampling strategies for image recognition

Stephen Whitelanf]
Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

A conceptually simple way to recognize images is to directly compare test-set data and training-
set data. The accuracy of this approach is limited by the method of comparison used, and by the
extent to which the training-set data covers the required configuration space. Here we show that this
coverage can be substantially increased using simple strategies of coarse graining (replacing groups
of images by their centroids) and sampling (using distinct sets of centroids in combination). We use
the MNIST data set to show that coarse graining can be used to convert a subset of training images
into about an order of magnitude fewer image centroids, with no loss of accuracy of classification
of test-set images by direct (nearest-neighbor) classification. Distinct batches of centroids can be
used in combination as a means of sampling configuration space, and can classify test-set data more
accurately than can the unaltered training set. The approach works most naturally with multiple

processors in parallel.

I. INTRODUCTION

Machine learning, used successfully for many years in
fields such as image recognition [IH4] and game play-
ing [B [6], is becoming established in the physical sci-
ences [7]. Machine learning has been used to calculate
thermodynamic quantities of molecular systems, both
classical [8, @] and quantum [I0HI2], and to predict
the outcome of nonequilibrium processes such as self-
assembly [I3]. Certain ideas, such as sampling by Monte
Carlo simulation, are widely used in both machine learn-
ing [14][15] and the physical sciences [16], and it is natural
to expect physical concepts, and methods developed in
the physical sciences, to be used increasingly to study
and improve machine-learning tools [I7]. Here we show
that simple physics-inspired ideas of coarse graining and
sampling can be used to improve the efficiency and accu-
racy of a simple memory-based classification algorithm.

A conceptually simple method of image recognition is
to assign to a test-set image the type of the most simi-
lar training-set image [I8H22]. The accuracy of such an
approach is limited by the method of image compari-
son, and by the extent to which the training-set data
“samples” configuration space. In Fig. (a) we show 36
examples of 3s and 5s taken from the MNIST training
set [23] 24], which makes clear that a single concept can
be represented by many different configurations. One
way to better sample configuration space is to synthet-
ically expand the set of training data, e.g. by effecting
elastic distortions of digits [23]. One drawback of such
approaches is that they require prior knowledge of the
concept to be classified.

Here we use the MNIST data set, which contains hand-
drawn digits or symbols of type 0 to 9, to show that
simple strategies of coarse graining and sampling can be
used to substantially reduce error rates of direct compar-
ison (memory-based, nearest-neighbor classifier) schemes
without requiring information beyond that contained in

*

swhitelam@lbl.gov

the test set. Combining symbols into groups allows us
to identify a set of coarse-grained symbols or memo-
ries [see Fig. b)]; these objects correctly classify the
training-set data by capturing the diversity of the set
of symbols while omitting redundant objects. In this
context “coarse graining” means combining symbols into
groups and identifying their centroids, in order to pro-
duce a sparse description of configuration space; it does
not mean sampling images at lower resolution.

The process of coarse graining described here is similar
in spirit to the process enacted by particle-clustering al-
gorithms [25H27]; by a supervised k-means algorithm [28];
and by learning vector quantization classifiers [21I] such
as the growing neural gas [20] or growing self-organizing
network [22]. For MNIST data, using the algorithm de-
scribed here, a set of N training-set symbols can be
described by a set of about 0.15N memories. Memo-
ries classify unseen test-set symbols, via nearest-neighbor
classification, as accurately or slightly more accurately
than do the symbols from which they are derived; a nat-
ural expectation is the opposite [23]. Moreover, memory
sets created by drawing batches of symbols stochastically
from the training set can be used in parallel to classify
test-set data substantially more accurately than can the
original training set. In effect, memories can be used
to “sample” configuration space. The idea is similar in
principle to combining nearest-neighbor classifiers into
voting blocs [29]; however, here we perform sampling us-
ing objects not present in the original test set, and use
the process of sampling to identify new symbols to better
describe unseen data.

Using a rudimentary method of image comparison, a
nearest-neighbor classifier using the normalized vector
dot product applied to raw pixels, we show that coarse
graining and sampling can classify the MNIST test set
more accurately than can the unaltered training set. This
classification scheme is of only modest accuracy (= 1%
error rate) by present standards [30], but can likely be
improved in several ways (using a better method of image
comparison, or additional methods of combining symbols
to produce memories), thereby improving its accuracy.
Furthermore, while memory-based classification meth-

mailto:{\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OMS/cmsy/b/n/5 {\OT1/cmr/m/n/8 }\OMS/cmsy/b/n/5 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OMS/cmsy/b/n/5 {\OT1/cmr/m/n/8 }\OMS/cmsy/b/n/5 \size@update \enc@update swhitelam@lbl.gov}

(a) training set (b) coarse-grained memories

LR |

WS W ww NIl
INOYORGES

CENMDTES
R\ G AWy

(C) classification of test-set data
using memories

sE-BsB:HB
2B BB B

g o

FIG. 1. (a) A set of 36 examples taken from the MNIST
training set gives rise to 5 memories [panel (b)] upon coarse
graining according to the procedure described in this paper.
(b) Each of the 36 symbols is “stored” in a memory; memories
are the centroids of their constituent symbols. Memories are
colored so that red and green areas correspond to white and
black portions of symbols, respectively. These 5 memories
correctly classify the 36 symbols by direct (nearest-neighbor)
comparison: the coarse-graining algorithm “learns” to parti-
tion configuration. (c) Memories can be used to classify un-
seen test-set symbols as accurately as can the symbols from
which they are derived: here we show 8 correctly classified
test-set digits next to the memory they most closely resem-
ble. As we show in this paper, combinations of memories
derived from different symbol sets can be used to “sample”
configuration space and achieve more accurate classification,
of unseen symbols from the test set, than can the original
training-set symbols.

ods are generally much more computer memory-intensive
than e.g. neural networks [23], the present approach
is most naturally implemented using parallel processors.
The more processors used, the faster is training and clas-
sification, and (on the scales we have studied) the more
accurate is classification. In what follows we describe the
method and apply it to the MNIST data set.

II. IMAGE RECOGNITION VIA DIRECT
COMPARISON

A. Unaltered training set

The MNIST data set consists of M = 7 x 10* handwrit-
ten digits, of types 0 to 9 inclusive, divided into a training
set of size 6 x 10* and a test set of size 10*. Digits (here-
after called symbols) are grayscale images displayed on
a 28 x 28 pixel grid, and are represented as P = 784-
dimensional vectors, each entry of which is a scalar be-
tween 0 and 255. We divided each entry by 255 to pro-
duce a real number between 0 and 1. Let SY be symbol

number 6 of the MNIST set, where 6 € {1,..., M}, and
let SY be its i*" component, where i € {1,..., P}. Let
T(S%) € {0,...,9} be the type of symbol S?.

In Fig. [J[(a) we show the error rate, the number of in-
correct assignments divided by the test-set size of 10,
that results from direct comparison (nearest-neighbor
classification): we compare each test-set symbol with
each of the first N symbols of the training set, and as-
sign to each test set symbol the type of the most similar
training set symbol. A standard measure of similarity is
the Euclidean distance between vectors A and B,

P
D(A,B)=P "> (A; - B)?, (1)

=1

with smaller distances representing greater similarity.
This measure results in the red line shown in Fig. [[a).
Another measure of similarity is the normalized vector
dot product, the cosine of the angle between vectors A
and B,

i h >, AiB;
e a2 yK B

with larger values indicating greater similarity. This
measure results in the blue line shown in the figure.
There exist much more discriminating measures of the
similarity of two images [31, [32]. Here our aim is to show
how the accuracy of a classifier, using a simple measure
of similarity, can be improved by sampling. We shall re-
fer to the normalized vector dot product as the overlap
of vectors A and B,

(2)

O(A,B)=A-B. (3)

The error rate resulting from direct comparison, using
the normalized vector dot product as a measure of simi-
larity, is about 2.8%. This is not close to the error rates
produced by the most accurate methods [33] (= 0.2%),
but neither is it terrible: it is comparable to the rates
produced by some of the simpler neural networks of the
late 1990s [23]. However, the error rate shown in Fig. a)
decreases approximately algebraically with N (the plot
is log-log), and so it is clear that substantial additional
reduction in error rate would require orders of magnitude
more symbols in the training set.

Here we show that reduction in error rate by direct
comparison can be achieved instead by stochastic sam-
pling of the existing training set. The heart of this ap-
proach is the coarse-graining algorithm described below.
This algorithm turns a subset of training-set symbols into
a lesser number of coarse-grained memories, in such a
way that each member of the training subset is correctly
classified, via direct comparison, by the set of coarse-
grained memories.

= 0.2 .
g
Zg 0.15 F .
0.05 0'10 2'5 50
E 0'04 (©) N/10%
z o0 ' -
0.03 S 0k -
= 10°F T
0.02 ' R | T
. 1 - —92 1
2 10 , 60 10 100 101 102
N/10 N/10°

FIG. 2. (a) Error rate F for classification of the 10%-digit MNIST test set, by direct (nearest-neighbor) comparison with N
symbols from the training set (log-log plot). For red and blue lines the measure of similarity is the Euclidean distance and
normalized vector dot product , respectively. The green line was obtained by coarse graining N symbols of the training set
into Ncg < N memories. Classification accuracy is no worse and is often better upon coarse graining (compare blue and green
lines). (b) Ncg/N is typically about 15%. (c¢) The CPU time required for coarse graining scales roughly algebraically with N.

B. Coarse graining training-set symbols

We aim to coarse grain N symbols S to produce
Ncg < N memories M*, a € {1,...Ncg}. Each
memory has entries M2, i € {1,..., P}, and is of type
T(M*) € {0,1,...,9}. Memories are linear combina-
tions (centroids) of symbols. To facilitate the addition
and removal of symbols from memories it is convenient
to write

M® = M®/N*, (4)

where M is the un-normalized version of memory «, and
N® the number of symbols comprising memory «. Our
coarse-graining strategy proceeds as follows.

1. Consider a batch, an ordered collection of B sym-
bols S, 6 € {1,...,B}, taken from the training
set. Create a new memory M that is equal to the
first symbol # = 1 from this batch and is of the
same type:

M} = SH(vi); N'=1;, T(MY)=T(S"). (5)

Record the fact that symbol 1 is now stored in
memory 1. Create one memory for each additional
type of symbol in the batch (with each memory
consisting of one symbol), giving up to ten initial
memories. Record the memory in which each sym-
bol is stored (here and subsequently).

2. Return to the start of the batch of symbols and

pass through the batch in order. For each symbol,
compute its virtual overlap with all existing mem-
ories. If the symbol S¢ and memory M® are of
the same type, and if the symbol is not currently
stored in that memory, then the virtual overlap is
O(S?, M*+9) [see Eq. (3)]. Here M*+? is the vec-
tor that results if symbol S? is added to memory
M*; it has components M = (Mg +59) /(N +
1). Otherwise (i.e. if the symbol is currently stored
in the memory, or if symbol and memory are of dis-
tinct type) the virtual overlap is O(S?, M®).

. Let the largest virtual overlap between symbol S¢

and any memory be with memory M?.

(a) If S% is currently stored in M? then no action
is necessary.

(b) If S? is not currently stored in M#, and M”?
is of the same type as S?, then add S% to M5:

MP = MP+ 8% NP NP (6)

If Y is currently stored in a different memory
M® then remove S? from M:

M — M —S% N = N* 1. (7)

If SY is not yet stored in a memory then @
is not necessary.

ROV AYNARAO LN e YQWwIBV~0WANAIARL—WNO<
CoNpPpuwnsosorMu~WwoPbnue e sy N~
RN YPR/WO NPV e P RO UL NN A
BUNAPA~ L CTRNDLNLANGENOIWO =00V >N §
BVVINVORLTOOMUADLONW - WD UeWwEARATH KO
DewRAWIANRNPL =N WL GPAaGBU PRITrANHWOILT D
OO SENNVISROCA L« r VI VPVAGANOLNL NG T
VORI WNIP VRO LT RNENNIIT —0 = 0 & &
SUEONQGANR-~AVUINDNY o Voo B~ 4§ oNnn
WO RNS NI NN 0T RNWOWw My — QR QS D
NNFOEIOMROYONNOIQAO P 0~ —W 20 B &I W
NS~V W EONB O RN U NNIWNN - -0 VAN ~0ON
NWOL—A NP NS PCTONANQAD—NL P AN ~PA D
WW~RORERVI-—OVLA~ S NN PDB— v oo A
Do W QI PNRANTION T MAVT PN PUVPD S @D || 00
CPPORNLNING A= O ~UNSRNO=INQAPY S
NenUMNEAIR200~NaYywIshugoasessRo®Ow
FL WSS T RO PVNB R W~ =W\ 7N
—RULRETOMNRIVQIP O eaplayguoanWldrrasy
PEA NG~ N AW E—DNI N DNRAV AW RN 4SO NS
TE-R RPN RDALNL LN POR PN = OW QWP
CoNUVWR-—I2 R POUPRLNYLAORNANOFE-—WNO WL
BNV 2= RO LR 2ANOAN S — T VNN ANOL M~
POENNAAD QDo JooanMWPAWER R NY 00NN
I —PParPONA LAY IO O ~—NNE Y R
MR ERUR-RLELWANNO—9PDF IV G Wl &% & —
L~ W md O SN =YW N =B FRRY rod v ed we
Lo ELLANRN N WACOIRN O ALY IT NG od W
~LPONOOATNANUWI RV YrEarsWNEN2YER O

(®)

103-
r 102-
101 - all types
1s and 9s
100 1 1 1 1 1

0 10 20 30 40 50
passes

ONL o UNR~CONSUPONNRONI~CNQNIRN PN

30 40 50
passes

FIG. 3. Coarse-graining algorithm. (a) This 900-symbol batch (left) taken from the MNIST training set yields 144 memories
(right) under coarse graining. Both the symbols and the memories achieve a 10% direct-comparison error rate on the MNIST
test set. (b) Number of rearrangements r required upon each pass through a batch of 3000 symbols taken from the MNIST
training set, versus number of passes through the batch. The blue line refers to a batch composed of all types of symbol; the
green line refers to a batch composed of 1s and 9s. (c¢) For the same batches, we show the number of coarse-grained memories
produced by the algorithm as a function of the number of passes.

(c) If S% and M” are of different type then S% has
been misclassified. Create a new memory M"”
equal to the symbol S? and of the same type:

M) =S NY=1; T(M")=T(S"). (8)

If S? is currently stored in a different memory
M® then remove SY from M [per Eq. @)] If
5% is not yet stored in a memory then step
is not necessary.

4. Continue until we have considered all symbols in
the batch. Return to 2 and pass through the batch
in order again. Note the number of memory in-
creases or symbol relocations that occur on each
pass. If the number of each is zero then the al-
gorithm is finished; if not, return to 2 and pass
through the batch in order again.

This algorithm produces a set of memories that cor-
rectly classifies, by direct (nearest-neighbor) comparison,

each digit of the batch of symbols from which it is made.
All symbols from the batch are stored in a memory, and
some memories contain many symbols. For a wide range
of batch types and sizes we observed the algorithm to con-
verge [34]. With batches made from the MNIST training
set we observed a compression rate of almost an order of
magnitude: the number of coarse-grained memories Ncg
produced from a batch of N symbols is typically ~ 0.15N
[Fig.[2(b)]. The CPU time taken for the algorithm to run
scales roughly algebraically with N [Fig. 2f(c)].

Unless otherwise stated we made batches by drawing
symbols without replacement from the training set, with
frequencies designed to produce, on average, equal num-
bers of symbol types within the batch (symbol types in
the training set are not equally numerous). We picked at
random a symbol S? from the training set. With proba-
bility M_ /M, we moved that symbol to the batch. Here
a = T(8%) is the type of symbol S%; M, is the num-
ber of symbols of type a € {0,...,9} in the training set

training set
symbol symbol symbol
batch | batch 2 batch n
memory memory memory _,
set | set 2 setn

test set

FIG. 4. Coarse graining and sampling. Batches of symbols
are constructed by drawing symbols from the training set.
Each batch is coarse grained to produce a set of memories.
Each set of memories is used to classify the entire test set,
and results from all batches are compared.

prior to the move; and M_ = min, M,. If the move
was successful then we reduced M, by 1 and removed
SY from the training set. We then chose another symbol
from the training set, and repeated the procedure until a
given batch size was obtained. (When constructing many
batches for use in parallel we allow each batch to draw
from the entire training set, without replacement.)

Significantly, sets of coarse-grained memories are no
less accurate than their constituent symbols in classi-
fying the MNIST test set [via direct comparison, using
Eq.]: compare the blue and green lines in Fig. [2l In-
deed, in most cases the memories are slightly more accu-
rate than their constituent symbols. In a simple sense the
coarse-graining algorithm “learns” to partition configu-
ration space, respecting the diversity of the symbol batch
and at the same time combining similar-looking symbols.
The result is an efficient sampling of that space.

In Fig. [3[(a) we show 1000 symbols that yield 144 mem-
ories upon coarse graining; both classify the MNIST test
set at 10% error rate [35]. In panels (b) and (c) we
show the number of rearrangements made by the coarse-
graining algorithm during each pass through a batch of
3000 images, and the total number of memories as a func-
tion of the number of passes.

C. Sampling

Thus coarse graining achieves a significant compres-
sion of information with no loss (and often some slight
gain) of direct-comparison classification accuracy with
unseen data. Used in this way the algorithm can be re-
garded as a computer memory-saving measure, similar
to prototype-identification methods [36] such as the con-
densed nearest-neighbor approach [37, [38], or to adaptive
versions of learning vector quantization [20H22]. Because
memories are objects not present in the original test set,

memory sets can be used in combination to classify un-
seen data more accurately than can the original training
set. If batches are made by drawing stochastically from
the training set then each batch is in general different,
and will produce different memories upon coarse grain-
ing. Such variation can be regarded as a simple means
of “sampling”, in that memories in each set cover differ-
ent portions of configuration space. This idea is related
to that described in Ref. [29], in which combinations of
sub-sampled data are used to improve the accuracy of a
nearest-neighbor classifier by constructing voting blocs.
Here, coarse graining provides a means of accessing re-
gions of configuration space not present in the original
test set.

Fig. [4] shows a simple way in which memory sets can
be combined. n batches are built by drawing symbols
stochastically from the training set, and each set is coarse
grained to produce a set of memories. Each set of mem-
ories is used to classify the entire test set by direct
(nearest-neighbor) comparison. By comparing all mem-
ory sets we assign to each test-set symbol the type of
memory with which it has largest overlap. This scheme
is naturally carried out using n processors in parallel.

In Fig. [ffa) we show the error rate achieved on the
MNIST test set using m memory sets in parallel, per
Fig. @] n batches of 5000 symbols are drawn from the
training set, in the manner described in Section [[TB]
Each batch is coarse grained, producing n sets of about
750 memories (coarse graining 5000 memories takes
about 5 minutes on single 3.1 GHz Intel Core i7 proces-
sor). No single memory set does better than about 5%
error rate on the MNIST test set (blue line). However,
used in combination (taking the closest match between
a test-set symbol and any memory from the n batches)
they are much more accurate (green line). 10 memory
sets (about 7500 memories in total) scores 2.8%, equal
to the rate achieved using all 6 x 10* unaltered training-
set symbols (see Fig. . With about 200 memory sets
the error rate falls to 1.6%. Further improvement should
be possible using larger n or a better choice of similarity
measure: in panel (b) we show data in which memories,
once obtained, were compared with test-set symbols by
translating memories up to 43 lattice sites in either di-
rection. The lowest error rate shown is 1.17%. When the
memory sets used to produce the data in panel (b) are
combined, they classify the MNIST test set at 1.14% er-
ror rate. Panel (c) shows the misclassified symbols: some
are clearly recognizable, and might be correctly classified
if e.g. symbol rotation was accounted for, while others
are hard to interpret and would be “correctly” classified
only if the training set contained a similar symbol of that
type.

The error rate is not a strictly decreasing function of
the number of batches n: adding more batches can in-
crease the error rate if the new batches contain a memory
of the wrong type that resembles a test-set symbol more
closely than any memory of the correct type. However,
the overall trend is that increasing n reduces the error

a b C
() T T T ()005 T T <) A719F158572
0.06 7 83qLc1934612 4
WMMMWW no shifts AVTEDESCTF
0.05 | 1 0.04 —shifts T 775¢148¢4 /(1
——ndvidual “U1@805L9+49%
o) | eigszsniyl
57389%1 129
0.03F 7 7168116574
b 17276459%3%890
0.02r 1 SI1pDsrybodsy
0.01 \ \ 2485854982757
0.01 . : . : A6 8%
0 50 100 150 200 10° 10' 107 10°
n n
FIG. 5. Sampling. (a) Error rate E achieved on the MNIST test set using n memory sets in parallel (see Fig. [4]). Each set

(which contains about 750 memories) was obtained by coarse graining batches of 5000 symbols drawn from the MNIST training
set. No single memory set does better than about 5% error rate on the MNIST test set (blue line). However, in combination
they are much more potent (green line). 10 sets (about 7500 memories in total) scores 2.8%, equal to the rate achieved using all
6 x 10* unaltered training-set symbols (see Fig.[2). With about 200 sets the error rate falls to 1.6%. (b) Further improvement is
possible with better measures of image similarity: the green line is reproduced from panel (a), while the blue line was obtained
using simple linear shifts of symbols. (¢) The memory sets used to produce panel (b) together classify the MNIST test at 1.14%

error rate; shown are the 114 misclassified symbols.

rate.

Coarse graining and sampling provide a way of im-
proving the efficiency and accuracy of direct-comparison
classification over that offered by unaltered training-set
data. This approach works best with processors used in
parallel, with each used to sample and coarse grain a sin-
gle batch of symbols. The load on any single processor
is then relatively light; in the example described, each
processor needs only to store 5000 symbols drawn from
the test set, and subsequently store about 750 memories.
Training can be done at the same time on all processors,
as can classification, with a final step being a comparison
between processors of their results.

D. Coarse graining as a genetic algorithm

The coarse-graining algorithm used here is a simple
method of clustering, resembling a particle-clustering al-
gorithm [25H27] or a supervised version of the k-means
algorithm [28]. It can also be considered to be a simple
genetic algorithm: two parents (a symbol and a mem-
ory) produce offspring (a memory) that is retained only
if it passes a fitness test (recognizing the parent symbol
better than does any other memory). This latter feature
suggests that memories can be specialized (made “fit-
ter”) for particular tasks by varying the environment in
which memories are made. In simulations described thus
far we have used batches that contain, on average, equal
numbers of symbols of all types. In “harsher” environ-
ments, i.e. batches that contain only symbol types that
are easily confused, we speculate that memories must be
“fitter” in order to survive. Some evidence in support of
this speculation is shown in Fig. b): a batch of 3000
symbols containing only 1s and 9s requires more passes of

the coarse-graining algorithm than does a similarly-sized
batch containing all symbol types, suggesting that the
coarse-graining algorithm has to work “harder” to par-
tition configuration space accurately when only similar
symbol types are present [39).

In Fig. [6] we show that memories produced by coarse
graining training-set batches that contain only two sym-
bol types can tell apart those two types with reasonable
accuracy. Two sets of memories, each coarse grained us-
ing 5000 symbols of types 0 and 1 or 0 and 6, achieve
an error rate of 1 in 2115 or 8 in 1938 on the (0,1)- or
(0,6)-MNIST test set, respectively.

0 cWbbOCrs

0.23
1 0.25 1
0(0)

oGt
o
(S8 AN

o)

FIG. 6. 2 batches of 5000 symbols, of type 0 and 1 or 0 and
6, are coarse grained and used to classify the (0,1)- or (0, 6)-
MNIST test set, respectively. Horizontal and vertical axes
show the largest overlap between a test-set symbol and the
relevant memory type (symbols of type 0 are shown blue).
Misclassified symbols are shown at the top of each plot.

IIT. CONCLUSIONS

Direct comparison of test-set data with training-set
data is a conceptually simple method of classification [I8-
22, 37, [38]. Given a measure of the similarity of two
images, we have shown that simple methods of coarse
graining and sampling can be used to achieve a more ef-
ficient and more accurate direct classification of test-set
data than can the unaltered training set. This process
creates new symbols from a training set that are a better
match for the test set than any of the original training-set
symbols. The approach described here, similar to other
sampling strategies [29], works naturally on parallel pro-
cessors: the more processors, the faster is training and
classification, and the lighter is the memory load on each
processor. The approach applied to the MNIST data
set, using nearest-neighbor classification and the simple
vector dot product, is not as accurate as state-of-the-art
methods [33], but can be improved upon in at least two
ways, leading (presumably) to a more rapid fall-off of
error rate with batch number than is shown in Fig.

First, a better measure of image similarity [311 [32] could
be used, or a better distance metric could be learned [40].
Second, the coarse-graining algorithm constructs the cen-
troids of symbols and memories, but other constructions
(e.g. splicing together pieces of symbols) are possible;
some of these may enable better sampling of configura-
tion space. More generally, memory-based methods are
used in e.g. reinforcement learning [41], and coarse grain-
ing and sampling schemes might find application there.

ACKNOWLEDGMENTS

I thank Marc Pons Whitelam for many discussions
about digit recognition, and thank Isaac Tamblyn and
Tess Smidt for comments on the paper. This work was
performed at the Molecular Foundry, Lawrence Berkeley
National Laboratory, supported by the Office of Science,
Office of Basic Energy Sciences, of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

[1] Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436
(2015).
[2] N. M. Nasrabadi, Journal of Electronic Imaging 16,
049901 (2007).
[3] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. E. Hubbard, and L. D. Jackel, in Advances
in neural information processing systems (1990) pp. 396—
404.
[4] G. E. Hinton, P. Dayan, and M. Revow, IEEE transac-
tions on Neural Networks 8, 65 (1997).
[5] J. R. Quinlan, in Machine learning (Springer, 1983) pp.
463-482.
[6] A. L. Samuel, IBM Journal of Research and Development
3, 210 (1959).
[7] A.L. Ferguson and J. Hachmann, Molecular Systems De-
sign & Engineering (2018).
[8] C. Desgranges and J. Delhommelle, The Journal of
Chemical Physics 149, 044118 (2018).
[9] N. Portman and I. Tamblyn, Journal of Computational
Physics 350, 871 (2017).
[10] K. Mills, M. Spanner, and I. Tamblyn, Physical Review
A 96, 042113 (2017).
[11] N. Artrith, A. Urban, and G. Ceder, The Journal of
Chemical Physics 148, 241711 (2018).
[12] A. Singraber, T. Morawietz, J. Behler, and C. Dellago,
Journal of Physics: Condensed Matter 30, 254005 (2018).
[13] B. Thurston and A. Ferguson, Molecular Simulation , 1
(2018).
[14] C. Andrieu, N. De Freitas, A. Doucet, and M. 1. Jordan,
Machine learning 50, 5 (2003).
[15] D. Levy, M. D. Hoffman, and J. Sohl-Dickstein, arXiv
preprint arXiv:1711.09268 (2017).
[16] D. Frenkel and B. Smit, Understanding molecular simu-
lation: from algorithms to applications, Vol. 1 (Elsevier,
2001).

[17] F. Y. K. Kossio, S. Goedeke, B. van den Akker, B. Ibarz,
and R.-M. Memmesheimer, Physical Review Letters 121,
058301 (2018).

[18] M.-L. Zhang and Z.-H. Zhou, Pattern recognition 40,
2038 (2007).

[19] N. Bhatia, arXiv preprint arXiv:1007.0085 (2010).

[20] B. Fritzke, in Advances in neural information processing
systems (1995) pp. 625-632.

[21] D. Nova and P. A. Estévez, Neural Computing and Ap-
plications 25, 511 (2014).

[22] S. Marsland, J. Shapiro, and U. Nehmzow, Neural net-
works 15, 1041 (2002).

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Pro-
ceedings of the IEEE 86, 2278 (1998).

[24] http://yann.lecun.com/exdb/mnist/.

[25] U. Wolff, Physical Review Letters 62, 361 (1989).

[26] J. Liu and E. Luijten, Physical Review Letters 92, 035504
(2004).

[27] S. Whitelam, Molecular Simulation 37, 606 (2011).

[28] K. Wagstaff, C. Cardie, S. Rogers, S. Schrodl, et al., in
ICML, Vol. 1 (2001) pp. 577-584.

[29] D. B. Skalak, Prototype selection for composite near-
est neighbor classifiers, Ph.D. thesis, University of Mas-
sachusetts at Amherst (1997).

[30] https://en.wikipedia.org/wiki/MNIST_databasel

[31] P. Simard, Y. LeCun, and J. S. Denker, in Advances in
neural information processing systems (1993) pp. 50-58.

[32] S. Belongie, IEEE Trans. Pattern Analysis and Machine
Intelligence 24, 509 (2002).

[33] http://rodrigob.github.io/are_we_there_yet/
build/classification_datasets_results.html.

[34] Occasionally we observed two symbols of the same type
to shuffle repeatedly between two memories of the same
type; at this point the algorithm can be terminated with
no loss of accuracy.

http://arxiv.org/abs/1711.09268
http://arxiv.org/abs/1007.0085
http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/MNIST_database
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

[35] Coarse-graining the memories themselves results in a set
of 36 new memories that achieves a 14% classification
error rate. Repeated coarse-graining eventually produces
10 memories (1 per symbol type) and a classification error
rate of about 50%.

[36] S. Garcia, J. Derrac, J. Cano, and F. Herrera, IEEE
transactions on pattern analysis and machine intelligence
34, 417 (2012).

[37] P. Hart, IEEE transactions on information theory 14,
515 (1968).

[38] F. Angiulli, in Proceedings of the 22nd international con-
ference on Machine learning (ACM, 2005) pp. 25-32.

[39] This batch of 3000 symbols was coarse-grained to pro-
duce 119 memories (in 23 seconds on a 3.1 GHz Intel
Core i7 processor); this set of memories achieves a direct-
classification error rate of 0.3% on the (1,9)-MNIST test
set, misclassifying 7 out of 2144 symbols.

[40] K. Q. Weinberger, J. Blitzer, and L. K. Saul, in Ad-
vances in neural information processing systems (2006)
pp. 1473-1480.

[41] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, arXiv
preprint arXiv:1511.05952 (2015).

http://arxiv.org/abs/1511.05952

	Simple coarse graining and sampling strategies for image recognition
	Abstract
	I Introduction
	II Image recognition via direct comparison
	A Unaltered training set
	B Coarse graining training-set symbols
	C Sampling
	D Coarse graining as a genetic algorithm

	III Conclusions
	 Acknowledgments
	 References

