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MODEL EQUATIONS FOR HIGH CURRENT TRANSPORT* 

EDWARD P. LEE 
Lawrence Berkeley Laboratory, University of California, Berkeley, 
CA 

Abstract The use of distribution functions to model transverse 

beam dynamics is discussed. Emphasis is placed on envelope 

equations, moments, the Vlasov equation, and the 

Kapchinski-Vladimirskij distribution. 

INTRODUCTION 

A beam transported by a linear focal system is commonly treated using 

the well-known approach of the transport matrix. In situations involving 

the transport of high currents the matrix approach is of limited value 

because the evaluation of interparticle forces depends on details of the 

time-dependent distribution function. Some of the analytical tools used 

in this situation are described here, along with their limitations in 

practice. The dominant emerging tool for the study of high current beams 

is particle-in-cell simulation. This trend results from the availability of 

high speed computers and simulation techniques developed in plasma 

physics, as well as the limitations of analytical methods described here. 

LINEAR FORCES 

We start the discussion by considering a single particle subject to a linear 
force(l) 

d2x _ 
- K(s) X . 

ds 2 -
( 1) 

*This work was supported by the Office of Energy Research, Office of 
Basic Energy Sciences, Department of Energy under Contract No. 
DE-AC03-76SF0098. 



There are two independent solutions of Eq. ( l ), from which the 2x2 

transfer matrix M( s) can be formed, which generates the general 

solution (x,x 1 ) resulting from initial conditions (x0 ,x0): 

(2) 

This may be viewed as an incompressible mapping of phase space, with an 

ellipse of conserved phase area 11'£ (emittance) rotated and elongated by 

the action of M. 

Even though there is as yet no mention of distribution functions or 

even a beam described by Eq. ( 1), there is an envelope formulation for the 

phase ellipse dynamics given by the Twiss or Courant-Snyder parameters 

(01,B,y)(l). A particle coordinate within the ellipse is given by 

x(s) = V£B(s) c 0 s (ljJ ( s ) +1!1) (3) 
with 

s 

ljJ(s) I ds = B(s 1 ) 

so 

(4) 

The quantity a = '\{;6 is the maximum x contained in the ellipse, and it 

satisfies the envelope equation 

( 5) 

The parameter 01 = -B 1 12 is related to the rate of (spatial) contraction 

of the envelope, and y = ( 1 +01
2 ) /B is used to obtain x~ax = ~ 

Several features of the transfer matrix formulation are stressed 

here: 

1. ( 01, B, y) can be advanced in time using only the transfer matrix 

constructed from K ( s ) . The particle distribution is not needed. 

2. The formulation is essentially a single particle one. 

3. Emittance is a phase space area. 
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Despite these limitations this approach is an adequate basis for much 

design work and also motivates the multiparticle, finite current 

Kapchinski-Vladimirskij (K-V) model. 

THE K-V DISTRIBUTION 

A particle distribution in (4-d) phase space satisfies the Vlasov equation: 

df af af af af af 0 =- =- + x' - + y' - + x" - + y" -ds as ax ay ax• ay' · (6) 

Therefore f can be constructed from particle constants of the motion. 

In general (time varying, non-linear force) no constants can be found. 

However for particles satisfying the linear equation ( l ), the 

Courant-Snyder invariant(!) applies: 

2 2 r = yx + 2axx' + Bx' 
X 

is conserved. The analogous quantity 

The K-V distribution(Z) is 

N (r r ) f= cS .....!+.Jl.-1 
2 ~X ~y ., ~x~y 

(7) 

ry exists for the (y ,y') space. 

( 8) 

where N is the number of beam particles per unit length, and the beam's 

spatial profile is an upright ellipse of uniform density n = Nf.trab, where 

a and b are the x and y radii. 

The K-V distribution is valid with finite line charge density (} •. ) 

because the single particle equations are linear; we have 

d
2x 20 - = - K(s) X +X 

ds2 a(a+b) ·' 

where 

Q = 2e~ _1_ 

B2y3Mc2 4no 

(9) 

( 1 0) 
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is a dimensionless measure of line charge or current called perveance (B 

and y are relativistic factors), and K( s) is any externally applied force 

(focal elements). The envelope equation for a is 

2 
£ 2n 

a 11 = - Ka + .....! + ~ 
3 a+b a 

( 11) 

Significant features of the K-V distribution with space charge include: 

l. All the given relations involving the Twiss parameters are valid. 

2. The transfer matrix ( M) depends on the envelope radii a ( s) 

and b( s). Therefore the envelope equation must be solved in advance of 

a determination of any particle orbits, and there is a loss of general 

predictive power -- each set of initial conditions requires a new solution 

of the envelope equation. 

3. The envelope equation is intrinsically non-linear when space 

charge is included and therefore requires numerical solution in most 

cases, even with simple focal elements. This is not the case in the 

absence of space charge despite the apparent non-linearity of Eq. (5). 

MOMENT EQUATIONS 

The distribution of a real beam is not K-V, but is determined by source 

conditions, scrape-off, etc. However the K-V distribution is the only one 

known for the case of discontinuous focussing, so it is frequently used as 

an approximate solution. Fortunately, in the absence of an analytical 

distribution or even detailed experimental information about a beam an 

"equivalent" K-V distribution can be defined provided the rms values of 

radii and emittance are known. The important fact is that the envelope 

equation is unchanged, and in the absence of finite charge effects 

emittance is conserved. 

We return to Eq. (1) and take moments over an arbitrary (centered) 

profile, e.g. 

4 
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-2 - 2 1 
N 

x.2 a =X = N L: ( 12) 
1 

1 

-2 = x2 [ x ,2 <a'>2] ( 13) & 

Then the virial ( x) and velocity ( x •) moments of Eq. (1) are 

=- K i ( 14) 

( 15) 

Some algebraic manipulations yield 

( 16) 

d; -
ds - 0 · ( 17) 

The equivalent K-V beam has a = 2a, c = 4£. We may also 

define rms Twiss parameters: 

- -2- 2-B = a /c = X /c • 

-Q = (19) 

(20) 

When finite charge is considered the rms formulation is a useful 

guide, but is no longer exact except in special cases (such as K-V). If the 

beam and focal system are axisymmetric, then the envelope equation is 

-2 - c n Ka + - + -.::~. 
a3 4a 

( 21) 

This is exact; however the emittance ( £) varies with s. Analysis of the 

original moment equations has recently provided some guide to the 
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variations of ;, but there is no developed theory.(3,4,S) In general we 

expect some damping of envelope oscillations resulting from an initial 

mismatch of the distribution to the focal system -- because of the spread 

of oscillation frequencies in a rounded charge distribution. This suggests 

that & should oscillate 90° out of phase from a to produce a damping 

effect in Eq. (21 ), and a phenomenological model of -; has been based on 

this idea.(6) In general one must resort to particle-in-cell simulations to 

treat this situation. 

THE VLASOV EQUATION 

A plasma physicist might wonder why the Vlasov equation [Eq. (6)] does 

not play a large role in the study of transverse dynamics (it is very useful 

for longitudinal dynamics). The reasons of course are the absence of 

analytical equilibria other than K-V and the fact that particle orbits are 

not localized in the transverse plane by any adiabatic invariants (unlike 

most plasmas). The Vlasov equation has played an important conceptual 

role and is the starting point for some calculations, e.g. fluid and envelope 

models. 

The K-V distribution is also unrepresentative of physical beams 

because it is often unstable in a periodic focal system.(?) Growth of small 

amplitude perturbations is predicted for the K-V distribution over a wide 

range of lattice tunes (phase advance per lattice period) and degree of 

space charge loading (tune depression). Experiment has shown that 

laboratory beams are more robust, with a growing envelope mode 

observed for a lattice tune above 90° and stability observed otherwise. (B) 

CONTINUOUS AXISYMMETRIC SYSTEM 

The Vlasov equation is of considerable use in the special case of 

axisymmetry with focussing field independent of s. Physically this is 

achieved with a long solenoid, or as an approximation to alternate 

gradient focussing with low lattice tune (<< 60°). Other physical systems 

which meet these conditions · include a magnetically pinched beam 

propagating in a plasma and a spherical cluster of stars. 

6 
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A single particle in such a system satisfies: 

2 
d r: 2 
- = - k r - 'iltJ 

2 - -ds 
(22) 

where k is constant and tJ is determined from the Poisson's equation. 

In equilibrium tJ = tJ{ r) only, and 

E = (23) 

is a constant of the motion. Isotropic distributions are constructed from 

E: 

f{!,!') = F(E) • (24) 

The conserved angular momentum L = r 2e' can be used to construct 

non-isotropic distributions if desired. An assumed form for F( E) leads 

to a detailed calculation of beam properties. For example the waterbag 

distribution 

(25) 

where H is the Heaviside function, yields a rounded profile for number 

densit/9) 

[ 
I <~r>] 

n( r) a: 1 - I:{~a) . (26) 

Here a is edge radius and ~ is a constant depending on the degree of 

tune depression. 

An important result for distributions of the form (repulsive self 

forces) (24) is the sufficient condition of stability(lO) 

F'(E) ~ 0 . (27) 

The K-V distribution (known to be unstable) fails this condition while the 

waterbag is seen to be marginally stable. 

7 



A non-K-V distribtuion satisfying Eq. (27), but injected with a 

slightly mismatched radius is expected to undergo stable oscillations 

which eventually damp as the beam approaches an equilibrium state. This 

simple property is predicted on the basis of general considerations, but 

can only be examined by simulation. 
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