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ABSTRACT

Stratocumulus clouds play an important role in climate cooling and are hard

to predict using global climate and weather forecast models. Thus, previ-

ous studies in the literature use observations and numerical simulation tools,

such as Large Eddy Simulation (LES), to solve the governing equations for

the evolution of stratocumulus clouds. In contrast to the previous works, this

work provides an analytic closed-form solution to the cloud thickness evolu-

tion of stratocumulus clouds in a mixed layer model framework. With a focus

on application over coastal lands, the diurnal cycle of cloud thickness and

whether or not clouds dissipate are of particular interest. An analytic solu-

tion enables the sensitivity analysis of implicitly interdependent variables and

extrema analysis of cloud variables that are hard to achieve using numerical

solutions. In this work, the sensitivity of inversion height, cloud base height

and cloud thickness with respect to initial and boundary conditions such as

Bowen Ratio, subsidence, surface temperature and initial inversion height are

studied. A critical initial cloud thickness value that can be dissipated pre

and post-sunrise is provided. Furthermore, an extrema analysis is provided

to obtain the minima and maxima of the inversion height and cloud thickness

within 24 hours. The proposed solution is validated against LES results under

the same initial and boundary conditions.
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1. Introduction27

Stratocumulus clouds (Sc) cover 21% of the earth’s surface on average annually and have a28

relatively high albedo resulting in a cooling contribution to climate (Klein and Hartmann (1993);29

Eastman and Warren (2014)). Sc also impact Photovoltaic (PV) generation output in coastal areas30

such as Southern California (Jamaly et al. (2013)). Sc are prevalent over the ocean and the coast31

line, but less so inland, yet there are also studies focusing on continental Sc (e.g. Kollias and Al-32

brecht (2000)). Their global abundance and the increase in coastal populations make it important33

to accurately model and forecast their behavior. However, global forecast models fail to accurately34

represent and forecast Sc (Bony (2005)).35

Sc generally form under a strong inversion layer and the resulting boundary layer (BL) is spa-36

tially homogeneous and well mixed day and night due to buoyant turbulence forcing from long-37

wave cooling at the cloud top (Lilly (1968); Bretherton and Wyant (1997)). In observational stud-38

ies, it has been shown that Sc can also form during the day under decoupled conditions, especially39

for deeper BLs and stronger winds, temperature and moisture gradients, yet they are less preva-40

lent to the well-mixed cases (Serpetzoglou et al. (2008); Rémillard et al. (2012)). Mixed layer41

models (MLM) are therefore an appropriate tool and have been widely applied to Sc since the42

groundbreaking work of Lilly (1968). Many studies improved physical model components such43

as entrainment (Stevens (2002); Fang et al. (2014); Caldwell et al. (2005)), radiation (Larson et al.44

(2007); Duynkerke (1999)), surface fluxes (Bretherton and Wyant (1997)), and advection (Seager45

et al. (1995)). MLM are typically numerically integrated, validated against other numerical simu-46

lations such as Large Eddy Simulation (LES), and applied to study specific cases or sensitivities in47

the Sc topped BL (Stevens et al. (2005) and references within). Numerical integration is required48

due to the fact that the MLM integro-differential equations are often very complex with multiple49
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feedback loops (Ghonima et al. (2016)). However, to understand interdependencies between vari-50

ables or sensitivity of the system to a parameter, multiple case studies and simulations need to be51

performed. Even then, hidden interdependencies or feedback effects may not be discovered using52

trial and error methods.53

There are also studies that use analytic models to understand the underlying behaviors (van der54

Dussen et al. (2014); Duynkerke et al. (2004); Stevens (2002)). However, these studies focus on55

the modeling of the physical phenomena with better analytic equations, rather than solving the56

time evolution of cloud variables analytically.57

In this work, we build up a physical MLM with radiation, buoyancy flux, and surface schemes58

and use mathematical approximations to obtain a closed-form analytic solution to inversion height,59

cloud base height, and ultimately cloud dissipation. The advantage of an analytic solution is that60

the dependencies and sensitivities are observable directly from equations. For example, and re-61

lated to our application of solar forecasting over coastal lands, the dependence of cloud thickness62

on Bowen ratio can be directly inferred, given the initial conditions of the system. The tempo-63

ral evolution of the system can be described without numerical approximations and steady state64

conditions or attraction points can be detected.65

We provide sensitivity and extrema analysis for inversion height, cloud base height and cloud66

thickness, to infer how they depend on the initial and boundary conditions, and understand when67

their minima and maxima occur during the diurnal cycle.68

This paper is structured as follows. Section 2 provides a background on the models that consti-69

tute the system of equations. In Section 3 the analytic solution is derived. In Section 4, closed-form70

analytic solution is verified against LES and is shown to closely follow the numerical results. Sec-71

tion 5 contains detailed analysis on the sensitivity of inversion height, cloud base height and cloud72
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thickness evolution in time with respect to the system parameters and initial conditions, and the73

timing of their extrema during the diurnal cycle.74

The radiation and surface models used in this work are similar as in Ghonima et al. (2016), who75

use numerical time-stepping to solve a similar single-column mixed layer model. Even though the76

authors show that the MLM results are close to a more complex simulation method (LES), the un-77

derlying connections and interdependencies between the cloud variables and the initial conditions78

are not analyzed. Such an analysis using numerical solution techniques is impractical due to the79

vast number of variables in the solution space as shown in Figure 2 later, motivating our analytic80

solution to this problem.81

2. Background82

In this section, we define the models that approximate the physical processes. Consider a well83

mixed single vertical column with a single cloud layer bounded by its base height, zb, and the84

inversion height, zi. An illustration is shown in Figure 1. We assume constant air density ρair and85

constant values for the jumps at the inversion layer for total water mixing ratio, ∆qT, i, and liquid86

potential temperature, ∆θl, i, (Lilly (1968)).87

The cloud thickness h is the primary parameter of interest and its tendency can be defined as:88

dh(t)
dt

=
dzi(t)

dt
− dzb(t)

dt
(1)

We use the inversion tendency definition from Caldwell et al. (2005) and Duynkerke et al.89

(2004), where the inversion height changes with the entrainment parameter, we and the subsi-90

dence, ws(zi). Subsidence is further approximated by a divergence (Caldwell et al. (2005)):91

dzi

dt
= we(t)+vH∇zi = we(t)+ws(zi) = we(t)+Dzi(t) (2)
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The cloud base height tendency expression (Ghonima et al. (2015)) depends on the conserved92

variables of liquid potential temperature, θl and total moisture, qT:93

dzb(t)
dt

=
RdTbase

gqT(t)

(
1− LvRd

cpRvTbase

)−1 dqT(t)
dt

+
cpπbase

g

(
1− cpRvTbase

RdLv

)−1 dθl(t)
dt

(3)

Rd and Rv represent the gas constants for dry air and water vapor, respectively, Lv is the latent heat94

of evaporation, cp is the specific heat, g is the gravitational acceleration, Tbase is the temperature95

at the cloud base, πbase is the Exner function evaluated at the cloud base. In the following sections96

the inversion height and cloud base height tendencies are derived based on the budget equations97

for heat and moisture.98

a. Budget Equations for Conserved Moisture and Temperature Variables99

The MLM budget conservation equations are given for the liquid potential temperature and the100

total moisture as (Lilly (1968)):101

dθl(t)
dt

=− ∂

∂ z

(
w′θ ′l (z, t)+

Frad(z, t)
cpρair

)
−θl, adv,

dqT(t)
dt

=−∂w′q′T(z, t)
∂ z

−qT, adv (4)

The large scale advection values of total moisture qT, adv and liquid potential temperature θl, adv102

are assumed to be zero throughout this work. While advection effects are important for the MBL103

over coastal lands, the advection terms complicate the integration of the equations and are left for104

future study. w′θ ′l (z, t) and w′q′T(z, t) represent the average liquid potential temperature flux and105

average total moisture flux, respectively. Frad represents the net radiation flux. Due to the well-106

mixed assumption, both conserved variables can be assumed to be independent of height. This107

forces the right hand side of the equations to be also independent of height, resulting in a linear108

height dependency for the partial derivatives. Representing the partial derivatives as E and W ,109

respectively, we can derive the full expressions using the boundary conditions at z = 0 and z = zi,110
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as given in Bretherton and Wyant (1997):111

dθl

dt
=−∂E

∂ z
dqT

dt
=−∂W

∂ z
(5)

E(z) = (1− z/zi)E(0)+(z/zi)E(zi) W (z) = (1− z/zi)W (0)+(z/zi)W (zi) (6)

The boundary conditions at the surface and inversion height are obtained as:112

E(0) = w′θ ′l (0, t)+Frad(0, t)/(ρaircp) E(zi) =−we∆θl, i +Frad(zi, t)/(ρaircp) (7)

W (0) = w′q′T(0, t) W (zi) =−we∆qT, i (8)

The final expressions for θl and qT tendencies are obtained as:113

dθl(t)
dt

=
w′θ ′l (0, t)

zi(t)
+

Frad(0, t)
ρaircpzi(t)

+
we(t)∆θl, i

zi(t)
− Frad(zi(t), t)

ρaircpzi(t)
(9)

dqT(t)
dt

=
w′q′T
zi(t)

+
we(t)∆qT, i

zi(t)
(10)

b. Radiation Model114

In this section we derive equations for the components of the net radiation flux and their at-115

tenuation through the cloud layer. Net radiation flux is decomposed into net longwave and net116

shortwave components:117

Frad(z, t) = Flw(z, t)−Fls(z, t) (11)

1) LIQUID WATER PATH AND OPTICAL DEPTH118

Both radiation terms are attenuated by an optical depth term designated as τ . This term depends119

on the total columnar liquid water content. We assume that the liquid water mixing ratio ql within120

the cloud increases linearly with height proportional to a constant Γl , which can be calculated from121
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thermodynamics or observations:122

ql(z, t) =


Γl(z− zb(t)), zb(t)≤ z≤ zi(t)

0, otherwise

(12)

The liquid water path (LWP) then becomes:123

LWP(z, t) =

zi(t)∫
z′=z

ρairql(z′, t)dz′ =



0, z > zi(t)

ρairΓl
(
(zi(t)− zb(t))2− (z− zb(t))2)/2, zb(t)≤ z≤ zi(t)

ρairΓl (zi(t)− zb(t))
2 /2, z < zb(t)

(13)

The optical depth τ is defined with respect to the optical depth at the cloud top which is assumed124

to be zero. τb is the optical depth at and below the cloud base:125

τ(z, t) =



0, z > zi(t)

3ρairLWP
2ReρW

=
3ρairΓl

(
h(t)2− (z− zb(t))2)

4ReρW
, zb(t)≤ z≤ zi(t)

τb(t),
3ρairΓlh2

4ReρW
, z < zb(t)

(14)

ρW is the density of water and Re is the effective droplet radius.126

2) LONGWAVE RADIATION127

For the longwave radiation, we utilize the model in Larson et al. (2007) which assumes isother-128

mal blackbody radiation and single scattering. The net radiative longwave flux is defined as:129

Flw(z, t) = Llw(t)eαlwτ(z,t)+Mlw(t)e−αlwτ(z,t) (15)
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αlw represents the optical depth scale for longwave radiation. The coefficients L and M are ob-130

tained by solving the second order radiation differential equation in Goody (1995):131

Llw(t) = γ(t)
(
(Bcld(t)−Bsky(t))c1, lwe−αlwτb(t)+(Bsrf(t)−Bcld(t))c2, lw

)
(16)

Mlw(t) = γ(t)
(
(Bcld(t)−Bsky(t))c2, lweαlwτb(t)+(Bsrf(t)−Bcld(t))c1, lw

)
(17)

The coefficients are defined as:132

γ(t) =
−4π(1−ωlw)

c2
1, lwe−αlwτb(t)− c2

2, lweαlwτb(t)
(18)

c1, lw = αlw−2(1−ωlw) (19)

c2, lw = αlw +2(1−ωlw) (20)

αlw =
√

3(1−ωlw)(1−ωlwglw) (21)

ωlw designates the single scattering albedo and glw is the asymmetry factor. The Bcld,Bsky and Bsrf133

terms are blackbody radiation arising from Tcld, Tsky and Tsrf.134

Bcld(t) =
σ

π
Tcld(t)4, Bsky(t) =

σ

π
Tsky(t)4, Bsrf(t) =

σ

π
Tsrf(t)4 (22)

Tcld and Tsrf designate the effective radiation temperatures of the cloud base and ground surface,135

respectively. Tsky is the effective radiation temperature of the column above the cloud top.136

3) SHORTWAVE RADIATION137

We utilize the Delta-Eddington approximation in Duynkerke et al. (2004) and Shettle and Wein-138

man (1970) as shortwave radiation model. Using the Eddington approximation, the diffuse radi-139

ance can be divided into a linear combination of a term independent of the solar zenith angle (θ0)140

and a solar zenith angle dependent term, yielding the analytic solution for the net shortwave radi-141

ation flux as:142

Fls(z, t) = F0µ0(t)
(

4p
3

Lsw(t)ekτ(z,t)+
4p
3

Msw(t)e−kτ(z,t)+ e−τ(z,t)/µ0(t)(1− 4
3

βsw(t))
)

(23)
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ωsw designates the single scattering albedo for shortwave radiation, gsw is the asymmetry factor,143

µ0 = cos(θ0), A is the surface albedo and k is the optical depth scale for shortwave radiation. Note144

that the incoming downward shortwave radiation F0 is different from the net shortwave radiation145

at the cloud top (Fls(zi, t)) as the net radiation includes radiation reflected from clouds and/or the146

ground surface. The coefficients are:147

βsw(t) = 3ωsw
1+3gsw(1−ωsw)µ0(t)2

4(1− k2µ0(t)2)
(24)

Lsw(t) =
e−kτb(t) (αsw +2βsw/3)m1

ekτb(t)m2(1+2p/3)− e−kτb(t)m1(1−2p/3)

− (1+2p/3)e−τb(t)/µ0(t) (A(αsw +2βsw/3−1)− (αsw−2βsw/3))
ekτb(t)m2(1+2p/3)− e−kτb(t)m1(1−2p/3)

(25)

Msw(t) =
ekτb(t) (αsw +2βsw/3)m2

ekτb(t)m2(1+2p/3)− e−kτb(t)m1(1−2p/3)

− (1−2p/3)e−τb(t)/µ0(t) (A(αsw +2βsw/3−1)− (αsw−2βsw/3))
ekτb(t)m2(1+2p/3)− e−kτb(t)m1(1−2p/3)

(26)

m1 = A(1+2p/3)− (1−2p/3), m2 = A(1−2p/3)− (1+2p/3) (27)

k =
√

3(1−ωsw)(1−ωswgsw), p =

√
3(1−ωsw)

1−ωswgsw
(28)

αsw(t) = 3ωswµ0(t)
1+gsw(1−ωsw)

4(1− k2µ0(t)2)
(29)

c. Boundary Conditions148

To close the system of budget equations the boundary conditions at the ground surface and149

inversion are needed. Entrainment at the top can be expressed as a function of the virtual potential150

temperature flux, w′θ ′v, through a convective velocity scale w∗ defined as in Turton and Nicholls151

(1987), Caldwell et al. (2005) and Bretherton et al. (1999):152

w∗
3
=

2.5g
θv, 0

z=zi∫
z=0

w′θ ′v(z, t)dz, we(t) = w∗
Aw

Ri
, Ri =

gzi∆θv, i

θv, 0w∗2 (30)
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Aw is a tuning parameter, θv, 0 is a reference virtual potential temperature and Ri is the Richardson153

number. Combining the velocity scale equations and the Richardson number, we obtain:154

we(t) =
2.5Aw

zi(t)∆θv, i

zi(t)∫
z=0

w′θ ′v(z, t)dz (31)

Finally, we need the surface boundary conditions to close the system of equations. Surface155

fluxes of heat and water are connected to the net surface radiation through surface flux efficiency,156

αsrf and the Bowen Ratio, β as (Ghonima et al. (2016)):157

SHF(t) = w′θ ′l (0, t)cpρair =−αsrf

(
β

β +1

)
Frad(0, t) (32)

158

LHF(t) = w′q′T(0, t)Lvρair =−αsrf

(
1

β +1

)
Frad(0, t) (33)

αsrf = 0.88 is applied in all simulations while Bowen Ratio is also constant for a particular simu-159

lation, but will vary from simulation to simulation to investigate effects of soil moisture content.160

Interdependencies of atmospheric variables are abundant as illustrated in Figure 2 through a161

automatically generated dependency graph.162

3. Analytic Closed-Form Solution163

a. Inversion Height Tendency164

The objective of this section is to obtain a closed form solution for Eq. (2). This requires the165

entrainment velocity in Eq. (31) which depends on the virtual potential temperature flux w′θ ′v(z, t).166

The virtual potential temperature flux depends on the surface heat fluxes as (Bretherton and Wyant167

(1997)):168

w′θ ′v(z, t) = c1,3w′θ ′l (z, t)+ c2,4w′q′T(z, t) (34)
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From the surface to the cloud base height the coefficients c1,3 = c1 and c2,4 = c2 are used. For169

the cloud layer, spanning from the cloud base height to the inversion height, c1,3 = c3 and c2,4 =170

c4 (Bretherton and Wyant (1997)).171

We start by scaling Eq. (9) and Eq. (10) by c1,3 and c2,4, respectively and summing them up:172

c1,3
dθl

dt
+ c2,4

dqT

dt
=

w′θ ′v(0, t)+ c3we(t)∆θl, i + c4we(t)∆qT, i

zi(t)
+

c1Frad(0, t)− c3Frad(zi, t)
ρaircpzi(t)

(35)

The left hand side can also be expressed using Eq. (4):173

c1,3
dθl

dt
+ c2,4

dqT

dt
= −c1,3

∂

∂ z

(
w′θ ′l (z, t)+

Frad(z, t)
cpρair

)
− c2,4

∂w′q′T(z, t)
∂ z

= −c1,3
∂

∂ z

(
Frad(z, t)

cpρair

)
− ∂w′θ ′v(z, t)

∂ z
(36)

Eq. (35) and Eq. (36) are equal to each other. We use the fact that the left side of both Eq. (35)174

and Eq. (36) are independent of z due to the well mixed assumption, to take the integral of both175

equations from z = 0 to an arbitrary z. Leaving the virtual potential temperature flux on the left176

side of the equation, the expression becomes:177

w′θ ′v(z, t) = c1
Frad(0, t)

cpρair
− c1,3

Frad(z, t)
cpρair

+w′θ ′v(0, t)

+
z

zi(t)

(
c3Frad(zi, t)− c1Frad(0, t)

ρaircp
−w′θ ′v(0, t)−we(t)(c3∆θl, i + c4∆qT, i)

)
(37)

Utilizing the same scaling operation as in Eq. (35) for the surface flux definitions from Eq. (33)178

and Eq. (32):179

c1

cpρair
SHF+

c2

Lvρair
LHF = c1w′θ ′l (0, t)+ c2w′q′T(0, t) = w′θ ′v(0, t)

= −Frad(0, t)
β +1

(
αsrfβc1

cpρair
+

c2αsrf

ρairLv

)
(38)

Substituting Eq. (38) into Eq. (37), we obtain:180

w′θ ′v(z, t) =
Frad(0, t)

cpρair

(
c1−

αsrfβc1

β +1
− c2αsrfcp

Lv(β +1)

)
− c1,3

Frad(z, t)
cpρair

(39)

+
z

zi(t)

(
c3Frad(zi, t)

ρaircp
− Frad(0, t)

ρaircp

(
c1−

αsrfβc1

β +1
− c2αsrfcp

Lv(β +1)

)
−we(t)(c3∆θl, i + c4∆qT, i)

)

12



Next, we integrate w′θ ′v(z, t) over the boundary layer depth to obtain the entrainment velocity we181

in Eq. (31):182

we(t) =
2.5Aw

zi∆θv, i

 z=zi∫
z=0

(
1− z

zi

)
Frad(0, t)

(
c1

cpρair
− αsrfβc1

cpρair(β +1)
− c2αsrf

ρairLv(β +1)

)
dz

−
z=zi∫

z=0

c1,3

cpρair
Frad(z, t)dz+

z=zi∫
z=0

z
zi

(
c3Frad(zi, t)

cpρair
−we (c3∆θl, i + c4∆qT, i)

)
dz

 (40)

Combining all we terms on the left side, we obtain:183

we(t)
(

0.8∆θv, i

Aw
+ c3∆θl, i + c4∆qT, i

)
= Frad(0, t)

(
c1

cpρair
− αsrfβc1

cpρair(β +1)
− c2αsrf

ρairLv(β +1)

)

+
c3

cpρair
Frad(zi, t)−

2
zicpρair

z=zi∫
z=0

c1,3Frad(z, t)dz (41)

Substituting this result in Eq. (2) we obtain the inversion height tendency:184

dzi(t)
dt
−Dzi = ζ1Frad(0, t)+ζ2Frad(zi, t)+

ζ3

zi

z=zi∫
z=0

c1,3Frad(z, t)dz (42)

where ζ coefficients are employed to simplify the equation. This is a nonlinear differential equa-185

tion. Each net radiation term depends on the cloud thickness through the optical depth term.186

Furthermore, the columnar integral of the net radiation is called a Dawson function and is not an187

analytic function. Thus, an analytic solution requires approximations as explained in Section 3c.188

b. Cloud Thickness Tendency189

In addition to the inversion height tendency the cloud thickness tendency requires the cloud base190

height tendency. The solution strategy is to manipulate Eq. (3) into simpler variables analogous to191

the derivation of the inversion height tendency. The total moisture and liquid potential temperature192

tendencies appear in Eq. (3), but their tendencies given in Eq. (9) and Eq. (10), depend on z−1
i .193

Since inversion height is a complex expression itself, it would be difficult to solve the tendencies194

in their current form. To simplify the inversion height dependency, we multiply both differential195
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equations by zi and add θl
dzi
dt and qT

dzi
dt , respectively, so that the resulting expressions are the196

derivatives of the product of the conserved variables with the inversion height:197

d (θl(t)zi(t))
dt

= w′θ ′l (0, t)+
Frad(0, t)

ρaircp
+we(t)θl, inv−we(t)θl(t)−

Frad(zi(t), t)
ρaircp

+θl(t)
dzi

dt
d (qT(t)zi(t))

dt
= w′q′T(0, t)+we(t)qT, inv−we(t)qT(t)+qT(t)

dzi

dt

This manipulation simplifies the right side of the differential equation by eliminating the inversion198

height term. Only its tendency remains. Using the inversion tendency (Eq. (2)) and the surface199

fluxes (Eq. (32), Eq. (33)) we obtain:200

d (θl(t)zi(t))
dt

−D(θl(t)zi(t)) =
(

β +1−αsrfβ

ρaircp(β +1)

)
Frad(0, t)−

Frad(zi(t), t)
ρaircp

+we(t)θl, inv (43)

d (qT(t)zi(t))
dt

−D(qT(t)zi(t)) =−
αsrf

Lvρair(β +1)
Frad(0, t)+we(t)qT, inv (44)

Note that we again need the net radiation expressions as in the inversion height expression to solve201

these differential equations. Finally, we use the cloud thickness tendency in Ghonima et al. (2015)202

to obtain the cloud thickness:203

dh
dt

=
dzi(t)

dt
− RdTbase

gqT(t)

(
1− LvRd

cpRvTbase

)−1 dqT(t)
dt
− cpΠb

g

(
1− cpRvTbase

RdLv

)−1 dθl(t)
dt

(45)

c. Approximation of Net Radiation Flux Term204

The net radiation flux appears in three forms: 1) surface Frad(0, t), 2) inversion height205

Frad(zi(t), t), and 3) columnar average 1
zi(t)

z=zi(t)∫
z=0

Frad(z, t)dz. We start with the approximations206

for the net longwave expressions at z = 0 and zi based on Eq. (15). Then we continue with the207

net shortwave expressions at z = 0 and zi. Finally, we approximate the columnar integral of net208

radiation as a linear combination of the net radiation at z = 0 and zi.209

Flw(z = 0, t) = Llw(t)eαlwτb(t)+Mlw(t)e−αlwτb(t) (46)
210

Flw(z = zi, t) = Llw(t)+Mlw(t) (47)
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We simplify these expressions by neglecting higher order (<−1) exponential optical depth terms211

(exp(−αlwτb)) as follows:212

Flw(z, t) '
4π(1−ωlw)(Bsrf−Bcld)

c2
+

8παlw(1−ωlw)(Bcld−Bsky)

c2
2

e−αlwτb (48)

Flw(zi(t), t) '
4π(1−ωlw)(Bcld−Bsky)

c2
+

8παlw(1−ωlw)(Bsrf−Bcld)

c2
2

e−αlwτb (49)

Even though this simplification is not required for the analytic solution, it simplifies the sensitivity213

analysis in Section 5 and the error is less than 1%. Specifics for the error estimation are provided214

in Appendix B.b215

To permit integration of net shortwave radiation into the cloud tendency expressions, we need216

to simplify solar zenith angle dependent terms, since solar zenith angle changes with time in217

a sinusoidal shape and complex nonlinear dependencies on µ0 such as in Eq. (29) or the third218

exponential in Eq. (23) are difficult to integrate. We use the following approximations for αsw and219

βsw in Eq. (29) and Eq. (24), with less than 2% and 1% error, respectively (see Appendix B.c).220

αsw ' 3µ0ωsw
1+gsw(1−ωsw)

4
, βsw ' 3ωsw/4 (50)

To approximate the net shortwave radiation at the inversion height, we use its mathematical221

bounds at: clear sky, τ = 0, and infinite depth, τ → ∞.222

Fls(z= zi,τb = 0)=F0µ0(1−A), Fls(z= zi,τb→∞)=F0µ0(1−
4βsw

3+2p
)+F0µ0

4pαsw

3+2p
(51)

The following approximation assumes an exponential dependence of net shortwave radiation on223

optical depth between these limits. The error of approximation is less than 6% (see Appendix B.c):224

Fls(z = zi)' Fls(z = zi,τb→ ∞)+(Fls(z = zi,τb→ ∞)−Fls(z = zi,τb = 0))e−2kτb (52)

The net shortwave radiation at the surface is approximated in terms of the value at the inversion225

height scaled by a factor of attenuation depending on the optical depth, with an error of less than226
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7% (see Appendix B.c):227

Fls(z = 0)' Fls(z = zi)e−kτb (53)

The columnar integral of net (shortwave and longwave) radiation flux can be approximated by228

a linear combination of net radiation values at the surface and inversion height with an error of229

6% (see Appendix B.d):230

1
zi

zi∫
z=0

Frad(z, t)dz' s1Frad(z = 0)+ s2Frad(z = zi), s1 = 0.99,s2 = 0.04 (54)

d. Inversion Height Solution231

Using the simplified, integrable approximations for the net radiation terms a closed-form so-232

lution for the inversion height in Eq. (42) can be obtained. The columnar integral expression in233

Eq. (54) is employed to write Eq. (42) as a combination of net radiation terms at the surface and234

inversion height.235

dzi(t)
dt
−Dzi(t) = ψ1(t)Frad(0, t)+ψ2(t)Frad(zi, t) (55)

ψ1 ,

c1
cpρair
− αsrfβc1

cpρair(β+1) −
c2αsrf

ρairLv(β+1) −
2s1

cpρair

0.8∆θv, i
Aw

+ c3∆θl, i + c4∆qT, i
, ψ2 ,

c3−2s2
cpρair

0.8∆θv, i
Aw

+ c3∆θl, i + c4∆qT, i
(56)

The solution strategy is to find all time dependent variables inside the net radiation expressions236

and then solve the differential equation. For net longwave (Eq. (15)) the blackbody radiations are237

time dependent and for net shortwave (Eq. (52) and (53)) the solar zenith angle is time dependent.238

Furthermore, both radiation terms depend on the optical depth exponentially and optical depth239

depends on the square of the cloud thickness given in Eq. (14). We use two approximations, which240

are further discussed in the following paragraphs: 1) Surface, cloud base, and cloud top effective241

temperatures are constant over a 24 hour period. As a result the blackbody radiation terms are242

constants. 2) The change in cloud thickness h is negligible compared to the radiation length243

scales. This means that the effect of change in optical depth can be ignored only for radiation244
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terms resulting in constant exponential optical depth terms. The actual cloud thickness solution,245

h(t), is not a constant and the actual time-dependent expression is presented in Section 3e.246

The first approximation can be supported as follows: 1) The model is only valid in overcast247

conditions. In overcast conditions, the daily range in surface temperature compared to the ac-248

tual temperature is small, where the root mean square error (RMSE) of the constant temperature249

assumption is about 6%, 2) Surface and cloud base temperatures follow similar diurnal patterns250

decreasing the error of the difference of blackbody radiation differences in Eq. (16) and Eq. (17).251

The RMSE of a constant blackbody difference assumption is about 4%. 3) The change in surface252

and cloud base temperatures is largest near solar noon due to the peak in net shortwave irradiance253

at small solar zenith angle. However, at noon the net longwave radiation is only ∼ 10% of the254

net shortwave radiation and therefore the longwave balance does not contribute significantly to the255

overall net radiation. In conclusion, it is justifiable to approximate the differences in blackbody256

radiations as constant. To further reduce the error, rather than using the initial temperatures at257

midnight, the mean temperatures of the previous day are used.258

For the second approximation, we need to investigate the exponential optical depth terms for259

net longwave (exp(αlwτb)) and net shortwave (exp(kτb)) expressions separately. Using the optical260

depth expression in Eq. (14), the exponent of the shortwave radiation can be written in the form of:261

(h(t)/hsw)
2, where hsw ,

√
(4ReρW)/(3ρairΓlk), and hsw ∼ [250,500] m for k taken from Shettle262

and Weinman (1970), Re from Larson et al. (2007), and for Γl between [0.5,2]×10−6 m−1. The263

cloud thickness has to change on the order of hsw to cause a significant change in the value of the264

exponent. The same notation for longwave yields the exponent in the form of: (h(t)/hlw)
2 with265

hlw =
√
(4ReρW)/(3ρairΓlαlw). hlw >> hsw, resulting in an even smaller exponent value than the266

shortwave. For a cloud thickness of 250 m, the RMSE of keeping the exponential optical depth267

term constant with respect to a varying numerical optical depth solution is ∼ 7% as demonstrated268
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in Appendix B.e. The appendix also provides comparisons of daily model runs for constant and269

variable optical thickness under different Bowen Ratios and Γl values. The constant optical thick-270

ness results follows the variable optical thickness results, but differences increase for greater Γl271

and smaller Bowen Ratios. Large Γl result in smaller hsw scales, causing larger deviation from272

the constant optical thickness assumption, whereas smaller Bowen Ratios delay cloud dissipation273

resulting in the accumulation of errors over longer time horizons.274

Using both approximations, the only time dependent terms are the solar zenith angle terms, µ0(t)275

and µ2
0 (t), and the inversion height tendency equation simplifies into:276

dzi(t)
dt
−Dzi(t) = a1 +a2µ0(t)+a3µ

2
0 (t). (57)

The solution of differential equations of type dy
dx −Dy = f (x) is:277

y(x) = y(0)eDx + eDx
x∫

x′=0

e−Dx′ f (x′)dx′ (58)

Assuming that u1(t), u2(t) and u3(t) are the solutions of278

du1

dt
−Du1 = 1,

du2

dt
−Du2 = µ0,

du3

dt
−Du3 = µ

2
0 (59)

we can write the inversion height as:279

zi(t) = zi(0)eDt +a1u1(t)+a2u2(t)+a3u3(t) (60)

We use the solar zenith angle definition of µ0 = max(µ1 + µ2 cos(tπ/H − π),0), where µ1 =280

sin(lat)sin(dec), µ2 = cos(lat)cos(dec), lat is the local latitude, dec is the declination and H is 12281

hours. We solve for the functions u1, u2 and u3 using Eq. (58). The equations for a single day are282
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given below. The general forms for multiple days are more complex and provided in Appendix C.283

u1(t) =
eDt−1

D
(61)

u2(t) = µ2
πH−1 sin(tπ/H−π)−Dcos(tπ/H−π)

D2 +π2H−2

+ eDt−Dt1
πH−1

(√
µ2

2 −µ2
1

)
+µ1D−1π2H−2

D2 +π2H−2 −µ1D−1 (62)

u3(t) = 2µ1µ2
πH−1 sin(tπ/H−π)−Dcos(tπ/H−π)

D2 +π2H−2

+ 2µ1eDt−Dt1
πH−1

√
µ2

2 −µ2
1 −µ1D

D2 +π2H−2

+
µ2

2
2

2πH−1 sin(2tπ/H)−Dcos(2tπ/H)

D2 +4π2H−2

+ eDt−Dt1
πD(µ2

1 −µ2
2/2)−2µ1πH−1

√
µ2

2 −µ2
1

D2 +4π2H−2 (63)

The unit of these functions is seconds due to the time-integration. Using these functions, the284

inversion height can be calculated for any t without numerical integrations that would be required285

in mixed-layer models. The functional forms as plotted in Figure 3 directly reveal the following.286

At night time, when µ0 = 0, u2 and u3 follow the same exponential trend as u1 as in exp(Dt)287

with additional oscillatory terms, therefore u2 and u3 decrease during the night. u1 also follows288

a negative exponential trend due to the negative sign of D. This means that the combined effect289

of all three functions causes the inversion height to change exponentially and the exponent is the290

subsidence divergence parameter, D. D is hard to determine and difficult to measure; it typically291

assumes values on the order of −[10−6,10−5] s−1. During the day, u2 and u3 increase, dominate292

over u1 and behave like a sigmoid function. The signs and magnitudes of the coefficients for the u293

functions also determine the trends for the cloud base height as will be shown in Section 5.294

Since the initial condition zi(0) is scaled by exp(Dt), the analytic solution also shows that the295

e-folding time for the effect of the initial condition zi(0) on the inversion height to approach zero296
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is 1/D∼ 3 days. This means that the initial inversion height has a negligible effect on the solution297

in ∼ 3 days. Furthermore, since all u functions have the same exponential trend of exp(Dt),298

zi(t) converges within 5% of steady state in approximately 1/3D ∼ 9 days. Once zi(t) reaches299

the steady state solution, the inversion height oscillates with sinusoids of periods 12 hours and300

24 hours. However, in practice this finding is largely irrelevant as the synoptic meteorological301

conditions induce change over shorter time scales rendering the mixed layer model results not302

applicable.303

e. Cloud Thickness Solution304

In order to obtain the final cloud thickness expression, the cloud base height expression is sub-305

tracted from the inversion height expression. In Eq. (3) only qT and θl tendencies vary in time as306

the other terms are either constant or assumed constant due to the assumption of constant effective307

radiative temperature. We integrate Eq. (3) to obtain:308

zb(t)− zb(0) =
RdTbase

g

(
1− LvRd

cpRvTbase

)−1

ln
(

qT(t)
qT(0)

)
+

cpΠb

g

(
1− cpRvTbase

RdLv

)−1

θl(t) (64)

Assuming the change in qT(t) to be small compared to its initial value, we use ln(x+ 1) ' x to309

linearize the expression and denote the coefficients of the time-varying terms as δ1 and δ2:310

zb(t)− zb(0) = δ1(qT(t)−qT(0))+δ2(θl(t)−θl(0)) (65)

dzb(t)
dt

= δ1
dqT(t)

dt
+δ2

dθl(t)
dt

(66)

In Eq. (43) and Eq. (44) the ziqT and ziθl differentials are of the same functional form as the311

inversion height tendency. Thus, we manipulate the cloud base height expressions to obtain the312

same format so that the total moisture and liquid potential temperature results can be substituted313

directly. To achieve this, we multiply Eq. (65) by dzi/dt and Eq. (66) by zi and sum them up to314
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obtain:315

d(zizb)

dt
= δ1

d(ziqT)

dt
+δ2

d(ziθl)

dt
+

dzi

dt
(zb(0)−δ1qT(0)−δ2θl(0)) (67)

Scaling Eq. (65) by Dzi and subtracting it from Eq. (67) yields:316

dzizb

dt
−Dzizb = δ1

(
d(ziqT)

dt
−DziqT

)
+δ2

(
d(ziθl)

dt
−Dziθl

)
(68)

+

(
dzi

dt
−Dzi

)
(zb(0)−δ1qT(0)−δ2θl(0)) (69)

The ziqT and ziθl differentials can be substituted from Eq. (43) and Eq. (44):317

dzi(zb− zadj)

dt
−Dzi(zb− zadj) =

δ2 (β +1−αsrfβ )Lv−δ1αsrfcp

ρaircpLv(β +1)
Frad(0, t)−

δ2Frad(zi(t), t)
ρaircp

(70)

where zadj , zb(0) + δ1∆θl, i + δ2∆qT, i. Aggregating all constant coefficients in ψ3 and ψ4 we318

obtain:319

dzi(zb− zadj)

dt
−Dzi(zb− zadj) = ψ3Frad(0, t)+ψ4Frad(zi(t), t) (71)

ψ3 ,
δ2(1−αsrf)

ρaircp
+

δ2αsrfLv−δ1αsrfcp

ρaircpLv(β +1)
, ψ4 ,−

δ2

ρaircp
(72)

Eq. (70) depends only on the radiation terms which already had been derived for the inversion320

height expression:321

zi(t)(zb(t)− zadj) = zi(0)(zb(0)− zadj)eDt +b0u1(t)+b1u2(t)+b2u3(t) (73)

where the constants are combined into b1, b2 and b3 for convenience. Solving for the cloud base322

height, we obtain:323

zb(t) =
b1u1(t)+b2u2(t)+b3u3(t)+ zi(0)(zb(0)− zadj)eDt

a1u1(t)+a2u2(t)+a3u3(t)+ zi(0)eDt + zadj (74)

And finally, the cloud thickness is obtained from h(t) = zi(t)− zb(t).324

4. Validation against LES325

We verify our solution against Large Eddy Simulation (LES) specifically the UCLA-326

LES (Stevens et al. (2005)) on a 100× 100 grid with 193 vertical levels. The horizontal reso-327
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lution is 25 m and the vertical resolution is 5 m resulting in a domain of 2.5 km×2.5 km×960 m.328

The LES land surface model is a constant Bowen Ratio model that converts the incoming net329

radiation into SHF and LHF according to Eqs. (32) and Eq. (33). Initial conditions are CGILS330

s12 from Zhang et al. (2012) and initial profiles of qT and θl are shown in Figure 4. The initial331

inversion height is 677 m, the initial cloud thickness is 238 m and LWP is 72.4 g m−2. LES is332

initialized at 03:00 LST. The results for the first hour of integrations are considered spin-up time333

and not shown. LES is run for 23 more hours with samples taken every 20 seconds and averaged334

over 10 minutes. LES inversion height, cloud base height, inversion jumps for total moisture and335

liquid potential temperature, total moisture at the surface, and the effective radiative temperatures336

at the surface (Tsrf) and the cloud base (Tcld) at 04:00 LST serve as initial conditions for the ana-337

lytic model. The effective cloud top temperature (Tsky) is obtained from the LES longwave flux,338

the constant value of the exponential optical depth (exp(kτb)) is calculated from LES shortwave339

flux and the subsidence divergence (D) is extracted from LES using Eq. (2).340

The validation consisted of two sets of sensitivity experiments: 1) Varying Bowen Ratio and 2)341

Varying ∆qT, i jump at the inversion. Bowen Ratio sensitivity results in Figure 5 show agreement342

in the inversion height and cloud thickness time series, and cloud dissipation time; the inversion343

height RMSE compared to LES is less than 1.5% and the cloud thickness RMSE is less than 9%.344

At this time, the cloud base height can also be compared against the lifting condensation345

level (LCL) - the level, where the moisture in air is expected to saturate based on surface tem-346

perature and relative humidity (Bolton (1980)). The LCL results for β = 0.1 and β = 0.2 in347

Figure 5 agree with our cloud thickness formulation. The small difference is due to the approx-348

imate nature of the LCL formulation. We use the current formulation (Ghonima et al. (2015))349

for the rest of this paper, since it is integrated with the simulated MLM profiles. In contrast, the350
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LCL formulation depends on near-surface temperature and relative humidity, which would require351

additional equations to obtain the closed-form results.352

Both inversion height (Eq. (56)) and cloud base height (Eq. (73)) were shown to depend on the353

inversion jump, including the total moisture jump, ∆qT, i. Furthermore, the inversion jump also354

affects entrainment and the turbulent fluxes through the boundary conditions (Eqs. (7), (8)). Even355

though multiple interdependent variables depend on ∆qT, i, we are able to infer how ∆qT, i affects356

the cloud thickness through our analytic solution. A detailed sensitivity analysis is presented357

in Section 5, where the analytic solution suggests that the inversion height decreases and cloud358

thickness increases with smaller magnitude inversion jumps. For the validation, LES were run for359

Bowen Ratios of 0.3 and 1 and the qT jump was varied by ∓0.5 g kg−1 (moister and drier air in360

the free troposphere), while keeping the boundary layer value at 9.43 g kg−1. Figure 6 shows that361

the analytic solution closely follows LES results in both trend and dissipation times. The inversion362

height RMSE compared to LES is again less than 1.5% and the cloud thickness RMSE is less than363

5%. The cloud dissipates only for β = 1 and the time of dissipation differs only by 5 minutes.364

5. Sensitivity Analysis365

a. Inversion Height Sensitivity366

In section 3, we found that the inversion height tendency is a linear combination of 3 functions:367

u1,u2 and u3. The common property of these functions is that they generally increase exponentially368

and the exponent is the subsidence divergence (D). The evolution of the inversion height in time369

then depends on the coefficients of these functions given in Eq. (57), where the coefficients were370

kept in their compact forms to emphasize the linear combination of the three functions. Now, we371
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write out these coefficients and analyze their dependence on the initial and boundary conditions.372

a1 =
4π(1−ωlw)

c2
2, lw

((c2, lwψ1 +2elwαlwψ2)(Bsrf−Bcld)

+ (c2, lwψ2 +2elwαlwψ1)(Bcld−Bsky)
)

(75)

a2 =−(ψ2 + e1ψ1)F0

(
1− 4βsw

3+2p
+ e2

(
4βsw

3+2p
−A
))

(76)

a3 =−(1− e2)(ψ2 + e1ψ1)F0

(
3pωsw(1+gsw(1−ωsw))

3+2p

)
(77)

ψ1 ,

c1−αsrfc1−2s1
cpρair

+
αsrf(c1Lv−c2cp)
cpρairLv(β+1)

0.8∆θv, i
Aw

+ c3∆θl, i + c4∆qT, i
, ψ2 ,

c3−2s2
cpρair

0.8∆θv, i
Aw

+ c3∆θl, i + c4∆qT, i
(78)

where for convenience, we defined em , exp(−mkτb) and elw , exp(−αlwτb) and remember that373

the exponential optical depth value (exp(−kτb)) was assumed to be constant in Section 3d.374

The turbulent flux coefficients in Eq. (34), c1 = 1,c2 = 108 K,c3 = 0.5,c4 = 970 K, and the375

convective surface efficiency of αsrf = 0.9 in Eq. (32) and Eq. (33) are obtained from Ghonima376

et al. (2016). Aw = 0.2 in Eq. (30) is from Turton and Nicholls (1987). Constants related to377

longwave radiation are from Larson et al. (2007) and shortwave radiation from Duynkerke et al.378

(2004). The coefficients become:379

a1 '
(
39.55×10−12 m s−1 K−3)

ζD

((
1

β +1
−2.29+0.52elw

)
(T4

srf−T4
cld)

+

(
elw

β +1
−2.31elw +0.51

)
(T4

cld−T4
sky)

)
(79)

a2 '
(0.23 m s−1 K)(0.23+ e2)

ζD

(
2.3e1−0.52− e1

β +1

)
, a3 ' (1− e2)

a2

1.53
(80)

ζD , 4∆θv, i +0.5∆θl, i +(970 K)∆qT, i (81)

where ζD aggregates the inversion jumps and has been defined for notational convenience. The380

unit of ζD is K, [ψ1] = [ψ2] = W−1 s−1 m3, and [a1] = [a2] = [a3] = m s−1.381

Furthermore, a2 is a scalar multiple of a3, so we can combine the u2(t) and u3(t) functions382

into a new function u4(t) = u2(t)+ u3(t)
1−e2
1.53 . Combining the coefficients, the inversion height383
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expression becomes:384

zi(t) = zi(0)eDt +a1u1(t)+a2u4(t) (82)

The functions u1 and u4 are always positive. Thus, their combined tendency in time depends385

on the sign and magnitude of their coefficients. ζD is the common denominator of all coefficients386

and its only negative term is the inversion jump in total moisture. However, given the strong387

temperature inversions for the stratocumulus-topped marine boundary layer, the total moisture388

jump would have to be unrealistically large to create a negative sign for ζD. For example, if389

∆θv, i = ∆θl, i = 10 K, the jump in total moisture would have to be 33 g kg−1 to reverse the sign,390

but typical values of qT in the boundary layer are only 10 g kg−1. Thus let us assume that ζD > 0 K.391

For the optical depth exponentials, e1 and elw, a thinner cloud ranging between [0,200] m392

thickness and a thicker cloud in the interval [200,400] m are analyzed. For the thinner cloud,393

the optical depth variables are calculated as: e1 = 0.9,elw = 0.39; and for the thicker cloud:394

e1 = 0.7,elw = 0.03. For the thin cloud case, a2 is positive for all Bowen Ratios. For a1, there is a395

balance between the cloud base-cloud top and surface-cloud base blackbody radiation differences,396

slightly weighted towards the latter. The effect of Bowen Ratio is small due to its coefficient being397

small relative to the rest of the terms. A low radiative temperature for the cloud base favors positive398

a1, whereas high surface or effective cloud top temperatures favor negative a1. Using the standard399

atmospheric lapse rate of −6.5 K km−1 and assuming that effective radiative temperature equals400

air temperature, a1 is always negative for the thin cloud case. A negative a1 means that the in-401

version height increases proportionally with the cloud top temperature and inversely proportional402

with the surface temperature. This sounds counter-intuitive at first, as a large cloud top tempera-403

ture would lead to a higher upwelling longwave radiation and thus faster cooling. However, for a404

thin cloud with low optical depth, a large proportion of the downwelling longwave radiation from405

the cloud top reaches the surface and contributes to the sensible heat flux. This leads to a tempera-406
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ture increase in the boundary layer, increasing the turbulent fluxes and entrainment, which results407

in increased inversion height.408

For the thick cloud case, a2 is positive for all Bowen Ratios. The sign of a1 depends on both409

the Bowen Ratio and the radiative temperature balance. However, only the sign of the cloud top410

temperature term (Tsky) is negative for all Bowen Ratios, thus the inversion height is inversely411

proportional to cloud top temperature. The change in the direction of the effect for a thicker cloud412

emerges since the cloud top net longwave radiation is attenuated through the cloud’s high optical413

thickness and only a negligible fraction reaches the surface.414

To infer the combined effect of the oscillating terms in Eq. (82), we need the numerical values415

of u1 and u4. For D = −3.75× 10−6 s−1, Julian day of 196 and latitude 32.85◦ N, u4 ≈ 8.2u1 in416

magnitude on average. For typical effective radiative temperatures, it is physically impossible for417

the weighted summation (a1u1 +a2u4) to be negative. For example, for thin clouds if Tcld = Tsky,418

Tsrf would have to be more than 560 K to cause a negative trend. Increasing Bowen Ratio increases419

a2. Since u4 is the dominant term, the combined trend increases with Bowen Ratio. To show this,420

we fix Tsrf, Tcld, ζD, D and vary the Bowen Ratio and Tsky, as shown in Figure 7.421

Before sunrise u4 = 0 such that the results represent only u1 and all lines for both thin and422

thick clouds show a downward slope since the negative term of a1 is dominant. This comes from423

the fact that a1 includes only net longwave radiation terms. During the night, the net longwave424

radiation causes the boundary layer to cool decreasing the inversion height. For the thin cloud425

case, throughout the day higher cloud top temperatures are associated with larger inversion height426

since the cloud’s optical thickness is small enough to admit net longwave radiation to the surface,427

which is converted into sensible heat flux and warms up the boundary layer. For the thick case, we428

see exactly the opposite, where higher cloud top temperature lead to lower inversion heights. A429
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large optical thickness attenuates the cloud top radiation before it reaches the land surface, which430

results in a cooler mixing layer and reduces surface turbulent fluxes.431

Larger Bowen Ratio causes zi to increase by a factor of 1/(β +1) as is illustrated by the spacing432

between the gray lines of constant Bowen Ratios for Tsky = 280 K. Decreased moisture content433

in the soil associated with larger Bowen Ratio increases the sensible heat flux and the warming434

increases the inversion height. Since the ratio of radiation flux converted into turbulent fluxes is435

fixed through αsrf, the rate of the increases in the sensible heat flux and inversion height slow with436

increasing Bowen Ratio as reflected in the closer line spacing. Finally, the trend of the inversion437

height is also affected inversely by ζD. A larger jump in potential temperature results in a smaller438

change in inversion height, whereas a larger jump in the magnitude of total water mixing ratio439

causes in contrast a greater change. This arises mainly from the fact that the turbulent fluxes are440

bounded by the negative of the inversion jumps at the inversion layer, as presented in Eqs. (7), (8).441

b. Cloud Base Height Sensitivity442

For the sensitivity analysis of the cloud base height from Eq. (74) it is enlightening to analyze443

zi(zb− zadj) as – similar to zi – its functional form is a linear combination of the three u functions444

in Eq. (73). The coefficients of u1, u2, and u3 are:445

b1 =
4π(1−ωlw)

c2
2, lw

((c2, lwψ3 +2elwαlwψ4)(Bsrf−Bcld)

+ (c2, lwψ4 +2elwαlwψ3)(Bcld−Bsky)
)

(83)

b2 =−(ψ4 + e1ψ3)F0

(
1− 4βsw

3+2p
+ e2

(
4βsw

3+2p
−A
))

(84)

b3 =−(1− e2)(ψ4 + e1ψ3)F0

(
3pωsw(1+gsw(1−ωsw))αsw

3+2p

)
(85)

with446

ψ3 ,
δ2(1−αsrf)

ρaircp
+

δ2αsrfLv−δ1αsrfcp

ρaircpLv(β +1)
, ψ4 ,−

δ2

ρaircp
(86)
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δ1 and δ2 from Eq. (66) are calculated using qT (0) = 9 g kg−1 as −211590 m K−1 and447

125 m K−1, respectively. The coefficients become:448

b1 '
(
9.2×10−9 m2 s−1 K−4)(( 1

β +1
+1.88−2.21elw

)
(T4

srf−T4
cld)

+

(
elw

β +1
+1.88elw−2.22

)
(T4

cld−T4
sky)

)
(87)

b2 ' (11 m2 s−1)(0.235+ e2)

(
7.33− e1−

12.43e1

β +1

)
, b3 = (1− e2)b2/1.53 (88)

The units of ψ3 and ψ4 are W−1 s−1 m4, and [b1] = [b2] = [b3] = m2 s−1. As for the inversion449

height (Eq. (82)), u2 and u3 are combined into u4:450

zi(zb− zadj) = zi(0)(zb(0)− zadj)eDt +b1u1(t)+b2u4(t) (89)

As in the inversion height analysis in Section 5a, we consider two cases of thin and thick clouds451

with e1 = 0.9, elw = 0.39 and e1 = 0.7, elw = 0.03, respectively.452

As with the coefficient of inversion height a1, for b1 there is a balance between the surface-cloud453

base and cloud base-cloud top radiation differences. Using a lapse rate for a standard atmosphere454

b1 is negative for any Bowen Ratio. The equation for b2 is very similar to a2, except that for Bowen455

Ratios β ≥ 0.74 for the thin cloud case and β ≥ 0.31 for the thick cloud case, b2 changes sign456

and becomes positive. The combined trend depends on the u1 and u4 functions. Since u4 ≈ 8.2u1457

and b2 is much greater than b1, b2 is the dominant term in the equality. Therefore the sign of458

zi(zb− zadj) changes with the sign of b2 during daytime. To show this, similar to the inversion459

height analysis, the sensitivity of β and Tsky is shown in Figure 8. The results for the daytime460

reflect sign and magnitude variation in u4 with Bowen Ratio. As expected, cloud base height starts461

to increase during daytime at a Bowen Ratio of 0.47 and the cloud base height increases with462

increasing Bowen Ratio. The sensitivity to cloud top temperature is small due to the dominance463

of u4. zi(zb− zadj) is only an intermediate expression that allows understanding cloud base height464
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trends, but it does not have a physical meaning; instead Eq. (74) is considered now:465

zb(t) = zb(0)+
(b1 +a1(δ1∆qT, i +δ2∆θl, i))u1(t)+(b2 +a2(δ1∆qT, i +δ2∆θl, i))u4(t)

zi(0)eDt +a1u1(t)+a2u4(t)
(90)

Using the values from the sensitivity analysis for zi(zb− zadj) and zi, and neglecting the u1 terms466

as u4 is the dominant term during daytime:467

zb(t)' zb(0)+(4.34 m2)(0.23+ e2)

(
15.6+13e1−

38.6e1

β +1

)
u4(t)

zi(0)eDt (91)

For the thin cloud case, cloud base height changes direction for β ≥ 0.27, whereas for the thick468

cloud case, the direction change occurs for β ≥ 0.1. The cloud base height for different Bowen469

Ratios is plotted in Figure 9. This result shows that the cloud base height trend changes direction470

depending on the Bowen Ratio. Only a single cloud top temperature is shown as the effect of u1 is471

negligible. Increasing Bowen Ratio causes a decrease in the latent heat flux and an increase in the472

sensible heat flux. The resulting drying and heating of the boundary layer increases the cloud base473

height more than the inversion height. The cloud then dissipates faster with increasing Bowen474

Ratios. The effect of Bowen Ratio decreases with increasing cloud optical thickness, as more475

radiation is absorbed or reflected within the cloud resulting in smaller surface turbulent fluxes.476

Furthermore, note that the cloud base height converges to a steady state:477

zb(t→ ∞)' zb(0)+δ1∆θl, i +δ2∆qT, i +
b2

a2
= zadj +

b2

a2
(92)

As shown earlier in this section, a2 is positive and b2 changes from negative to positive with higher478

Bowen Ratios. Therefore, larger Bowen Ratios lead to larger steady state cloud base height.479

c. Cloud Thickness Sensitivity480

Using inversion height and cloud base height trends, we can directly infer the cloud thickness481

sensitivity. In this section we study the maximum initial cloud thickness that can be dissipated 1)482

before sunrise, 2) before sunset or whether the cloud dissipates within 24 hours at all.483
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1) CLOUD THICKNESS EVOLUTION484

Fig. 10 shows the thickness evolution of a cloud with 200 m initial thickness (top) and the485

resulting surface shortwave radiative fluxes, especially important from the solar forecasting aspect486

(bottom). The expected dissipation times using Eq. (94) and Eq. (96), later presented in this487

section, are tabulated in Table 1 for the cases in Fig. 10. The initial conditions used for the cases488

are also shown in Fig. 4.489

The dashed lines compare the effect of Bowen Ratio under normal subsidence for an initial490

inversion height of 1500 m. Under these conditions, Eq. (94) predicts that the cloud does not491

dissipate before sunrise, but Eq. (96) predicts that the cloud dissipates during the day if β > 0.3.492

As expected in the figure only β = 0.2 does not dissipate. The lines with markers compare the493

same Bowen Ratio scenarios for a lower initial inversion height of 500 m. Under these conditions,494

the cloud dissipates at about the same time as for the initial inversion height of 1500 m for β = 0.6495

and β = 5. Finally, the thick solid lines compare the effect of a strong subsidence for different496

initial inversion heights. As expected stronger subsidence decreases cloud thickness. For strong497

subsidence (−1.875× 10−5 s−1), Eq. (94) predicts that for zi(0) > 1050 m, the cloud dissipates498

before sunrise and Eq. (96) predicts that zi(0) = 500 m and β > 0.16 dissipates during the day.499

The results validate the analytically derived conditions.500

2) DISSIPATION BEFORE SUNRISE501

The expression for dissipation at tsunrise will be derived to determine the critical initial cloud502

thickness, hcrit. In order for the cloud to dissipate, the initial cloud thickness must be less than503

hcrit. Before sunrise, u4 = 0 and a1 is negligible compared to b1 such that:504

h(t) = zi(0)eDt− zb(0)−
b1(eDt−1)
zi(0)DeDt = h(0)eDt− (1− eDt)

(
zb(0)−

b1

eDtDzi(0)

)
(93)
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Since cloud thickness either monotonically increases or decreases during the night, the critical505

cloud thickness would dissipate exactly at sunrise. We manipulate Eq. (93) to obtain the maximum506

allowable initial cloud thickness for the dissipation condition to be satisfied:507

hcrit ≤
(
1− eDtsunrise

)(
zi(0)−

b1

eDtDzi(0)

)
'−tsunrise

(
zi(0)D−

b1

eDtzi(0)

)
(94)

We infer the following points from this condition: 1) Deeper boundary layers can dissipate thicker508

clouds. This comes from the fact that the contribution of the initial inversion height (zi(0)) de-509

creases in time through subsidence (Eq. (82)), whereas the initial cloud base height (zb(0)) is not510

multiplied by a subsidence term in Eq. (90). For example, if surface, cloud base, and cloud top511

radiative temperatures were the same such that the net longwave radiation and related coefficients512

(a1,b1) are zero, the inversion height would still decrease in time due to subsidence, whereas cloud513

base height would stay constant as shown in Eq. (90). Thus, a larger inversion height subsides514

faster, resulting in more dissipation. The physical mechanism behind this is a faster subsidence515

rate due to a high inversion height. A faster subsidence rate results in a faster decrease in the cloud516

thickness; 2) Stronger subsidence dissipates thicker clouds. This is expected due to the faster517

decrease in the inversion height. The physical process is the same as the previous item. As the518

subsidence divergence increases, the subsidence rate of the cloud top also increases, resulting in a519

thinner cloud; 3) The cloud base analysis showed that b1 is proportional to the cloud top tempera-520

ture. Thus, a higher cloud top temperature increases the maximum ”dissipatable” cloud thickness521

before sunrise. However, a 1 K increase in Tsky only leads to approximately a 7.5 m increase in522

hcrit, thus Tsky has a smaller effect compared to the initial inversion height. The maximum dissi-523

patable cloud thickness before sunrise for various cloud top temperatures, subsidence values, and524

initial inversion heights is presented in Figure 11.525
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3) DISSIPATION AFTER SUNRISE526

The second dissipation option materializes through a closing of the gap between inversion height527

and cloud base height during the day due to a faster increase in cloud base height. Previously,528

we observed that the dominant daytime term is u4. Dropping the u1 terms, the cloud thickness529

expression can be written as:530

h(t) = zi(0)eDt +a2u4(t)− zb(0)−
(b2 +a2(δ1∆qT, i +δ2∆θl, i))u4(t)

zi(0)eDt +a2u4(t)
(95)

The maximum dissipatable or critical initial cloud thickness at sunset is obtained as:531

hcrit ≤ zi(0)(1− eDtsunset)−a2u4(tsunset)+
(b2 +a2(δ1∆qT, i +δ2∆θl, i))u4(tsunset)

zi(0)eDtsunset +a2u4(tsunset)
(96)

Using ∆qT, i =−5 g kg−1,∆θl, i = 10 K,∆θv, i = 10 K, the critical thickness is obtained as:532

hcrit = 0.23zi(0)+
(13.96×106 m2)(0.14+0.6e2)

(
0.4+0.32e1− e1

β+1

)
1.31zi(0)+(103 m)(0.14+0.6e2)

(
2.3e1−0.52− e1

β+1

)
− (586 m)(0.14+0.6e2)

(
2.3e1−0.52− e1

β +1

)
(97)

For the thin cloud case, the critical thickness expression becomes:533

hcrit =
0.23

(
zi(0)+(500 m)

(
1.74+ 1

β+1

))2
+(5.61×106 m2)

(
0.72− 1

β+1

)
zi(0)+(430 m)

(
1.72− 1

β+1

) (98)

We infer the following points based on this condition: 1) The dominant term is the negative Bowen534

Ratio dependent term in the numerator of Eq. (98). hcrit increases with increasing Bowen Ratio.535

However, the dependence on Bowen Ratio weakens as 1/β consistent with Section 5a. When536

the Bowen Ratio increases the positive feedback on the inversion height is weaker compared to537

the positive feedback on the cloud base height and the combined effect is an increase in hcrit.538

Since the net radiation flux that is converted into turbulent fluxes is constant, the sensitivity to539

Bowen Ratio decreases for high Bowen Ratios. 2) The dominant term changes sign with Bowen540

32



Ratio, making dissipation impossible for small Bowen Ratios and possible for larger Bowen Ra-541

tios. Therefore there is a region of the parameter space without dissipation before sunset. The542

Bowen Ratio threshold that causes dissipation before sunset, is inversely proportional to the initial543

inversion height. 3) Larger initial inversion heights enhance dissipation (first quadratic term). As544

explained in the previous section for dissipation before sunrise, the term that contains the initial545

inversion height decreases exponentially with subsidence, whereas the term with the initial cloud546

base height persists in time. 4) Larger potential temperature inversion jumps and smaller magni-547

tudes of total moisture inversion jumps enable dissipation as they have been shown in Section 5a548

to limit inversion height growth (Eq. (96)). 5) Stronger subsidence enables dissipation, resulting549

directly from the decrease in inversion height. We plot the maximum cloud thickness that can550

be dissipated during the day for various Bowen Ratios, subsidence values, and initial inversion551

heights in Figure 12. Combining both night and day results, stronger subsidence, larger inversion552

height and higher Bowen Ratio enable dissipation and result in higher hcrit values.553

d. Extrema Analysis554

One of the advantages of an analytic solution is the ability to analyze derivatives for extrema555

determination. Extrema may be of interest, e.g. in solar forecasting where the thickest cloud con-556

ditions determine the maximum required amount of back-up generation. We performed extrema557

analysis on inversion height and cloud thickness to find out where their minima and maxima occur.558

To find the extrema points, we take the first and second derivative of the inversion height Eq. (82):559

dzi(t)
dt

= zi(0)DeDt +a1eDt +a2u′4(t) (99)

d2zi(t)
dt2 = zi(0)D2eDt +a1DeDt +a2u′′4(t) = a2(u′′4(t)−Du′4(t)) (100)
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The extrema points are obtained by solving the equation:560

dzi(t)
dt

= 0→ zi(0)D
a2

+
a1

a2
=−u′4(t)

eDt (101)

The terms of the equality are plotted in Figure 13. The extrema are close to sunrise and sun-561

set. A greater initial inversion height leads to extrema moving towards mid-day. Furthermore,562

since a1/a2� 1, the effect of Bowen Ratio and longwave and shortwave radiation terms is small563

compared to the initial inversion height.564

The second derivative determines whether these points are maxima or minima. We know that565

a2 > 0,D < 0 and u′′4(t)� Du′4(t). So the sign is determined by the sign of the second derivative566

of u4. The sign is positive until mid-day as the cosine of the solar zenith angle is increasing567

and it is negative after mid-day. This means that the first extremum after sunrise is a minimum568

and the second extrema before sunset is a maximum. This is an expected result as during night569

time longwave cooling decreases the inversion height. A minimum occurs when after sunrise net570

shortwave radiation counteracts longwave cooling and eventually becomes dominant to increase571

zi. Similarly in the afternoon, net shortwave radiation results in an increase in inversion height572

until longwave cooling dominates closer to sunset.573

We continue with the cloud thickness expression. The cloud base height was (Eq. (90)):574

zb(t) =
zi(t)zadj +b1u1(t)+b2u4(t)+ zi(0)(zb(0)− zadj)eDt

zi(t)
(102)

The cloud thickness is obtained by subtracting cloud base height in Eq. (102) from zi(t):575

h(t) =
z2

i (t)− zi(t)zadj−b1u1(t)−b2u4(t)− zi(0)(zb(0)− zadj)eDt

zi(t)
=

z2
i (t)+bzi(t)+ c(t)

zi(t)
(103)

The derivatives are:576

dh(t)
dt

=

(
1− c(t)

z2
i

)
dzi(t)

dt
+

dc(t)
dt

1
zi(t)

= 0 (104)

d2h(t)
dt2 =

2c(t)
zi(t)3

(
dzi(t)

dt

)2

+

(
1− c(t)

zi(t)2

)
d2zi(t)

dt2 +
d2c(t)

dt2
1

zi(t)
−2

dc(t)
dt

1
z2

i (t)
dzi(t)

dt
(105)
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The cloud thickness derivative contains the inversion height derivative. We expand the inversion577

height expression from Eq. (82) for the first derivative as:578

dzi

dt
z2

i = (b1u′1 +b2u′2 +b3u′3 +Dzi(0)(zb(0)− zadj)eDt)(a1u1 +a2u2 +a3u3 + zi(0)eDt)

−(b1u1 +b2u2 +b3u3 + zi(0)(zb(0)− zadj)eDt)(a1u′1 +a2u′2 +a3u′3 +Dzi(0)eDt) (106)

Using the fact that u′1−Du1 = 1, u′2−Du2 = µ0 and u′3−Du3 = µ2
0 , the expression becomes:579

dzi

dt
=

(a1b2−a2b1)u4(t)− zi(0)eDt ((b1 +b2µ0(t))+(a1 +a2µ0(t))(zadj− zb(0))
)

z2
i

∣∣∣∣∣
t=text

(107)

Eq. (107) states that the cloud thickness extrema points exist when the derivative of the inversion580

height is equal to the right hand side (RHS) of the expression. We utilize the sensitivity results581

presented previously in this section for all coefficients to assess the extrema of cloud thickness.582

During night time for µ0 = u4 = 0 the RHS is positive. Therefore, no extremum is present before583

sunrise as the derivative of the inversion height was shown to be negative.584

During daytime for large Bowen Ratios that lead to the dissipation of the cloud before sunset, the585

RHS has a small negative value close to zero due to the quadratic term in the denominator, b2 > 0586

and a2 > 0. This means that the extrema, if they exist, are close to the extrema of the inversion587

height - right after sunrise and right before sunset - since the inversion height extrema are when the588

inversion height derivative is zero. Inversion height is increasing during the day, except between589

sunrise and the inversion height minimum and between the inversion height maximum and sunset.590

The extremum for cloud thickness must occur during these two intervals when the inversion height591

decreases and the RHS is negative.592

When smaller Bowen Ratios lead to persistence of the cloud, the RHS changes sign during593

the day from negative to positive. Since the initial sign of RHS is negative, the first extremum594

between sunrise and the minimum inversion height still exists, however the other extremum shifts595
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to the interval between the minimum inversion height and maximum inversion height, where the596

inversion height derivative is positive and matches the sign of the RHS.597

We check for cloud thickness minima and maxima conditions for the inversion height extrema598

points. The sign of the following expression determines the extrema condition:599

(
1− c(t)

zi(t)2

)
d2zi(t)

dt2 +
d2c(t)

dt2
1

zi(t)

The sign depends on the initial inversion height. The sign is the opposite of the second derivative600

of the inversion height for small initial inversion heights and the same for large initial inversion601

heights. Therefore for shallow boundary layers, the morning cloud thickness extremum is a maxi-602

mum and occurs between sunrise and the minimum inversion height and the afternoon extremum603

is a minimum. For higher boundary layers, the morning cloud thickness extremum is a minimum604

and the afternoon extremum is a maximum. However, since larger inversion heights were shown to605

increase hcrit in Section 5c, the afternoon maximum may not be observed as the cloud may already606

have dissipated before the extremum depending on the Bowen Ratio. Two examples are shown in607

Figure 14, where β = 0.2 and the only difference is the initial inversion height. As expected, the608

minimum and maximum switch intervals between the two examples.609

Combining this extrema result with the inversion height extrema, we have three scenarios for610

dissipation: 1) Cloud dissipation occurs before the minimum inversion height and then no cloud611

thickness maximum occurs as e.g. for the high subsidence and zi(0)≥ 1000 m cases in Figure 10.612

2) For larger initial inversion height, dissipation occurs after sunrise. 3) For small initial inversion613

height, dissipation occurs after sunrise and before sunset with a maximum after sunrise depending614

on the Bowen Ratio. Since the extrema analysis can only give the extrema of the cloud thickness615

and not the values at those points, it is possible that the cloud may dissipate before the minimum.616
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6. Conclusions617

We have provided an analytic closed-form solution to the cloud thickness evolution of stratocu-618

mulus clouds in a mixed layer model framework with a focus on application over coastal lands.619

This solution enabled sensitivity studies for inversion height, cloud base height and cloud thick-620

ness. While the parameter space was not explored exhaustively, for the typical base case chosen621

here, the following parameters influenced cloud thickness: Bowen Ratio, subsidence, and initial622

inversion height. Critical initial cloud thicknesses, that can be dissipated pre and post-sunrise623

were derived. Furthermore, we provided extrema analyses for inversion height and cloud thick-624

ness expressions to show when these variables reach their maximum and minimum values. Cloud625

dissipation can occur pre-sunrise, but this situation is unlikely in practice as such adverse condi-626

tions would likely have prevented cloud formation in the first place. If cloud does not dissipate627

pre-sunrise, then a morning maximum and afternoon minimum in cloud thickness is observed.628

For large initial inversion heights, this observation is reversed as a morning minimum for cloud629

thickness. If this minimum is associated with a cloud thickness of zero then the cloud deck breaks630

up during the day. If the minimum is associated with a cloud thickness greater than zero, then631

clouds are guaranteed to be maintained throughout the day.632

The work in this paper will be used as the fundamental building block for future research on633

physical effect on cloud lifetime. In the present analysis that does not consider advection, clouds634

are sustained only for unrealistically small Bowen Ratios. Even though our solution provided a635

good match against LES results, the models and assumptions that were required to solve the equa-636

tions, limit its application compared to the variable meteorological conditions in the real world.637

Examples include soil moisture change, precipitation, wind profiles, advection, and decoupling.638

Future work will include large scale advection effects to analyze more realistic scenarios over639
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coastal lands. We plan to create a multi-column structure, where the columns are coupled through640

large scale advection. The addition of moisture and cooling from the ocean is expected to increase641

the sustenance of the clouds over the coast, creating more realistic dissipation times. Furthermore,642

our current model does not consider the decoupling process. Even though decoupling occurs less643

frequently than the well-mixed conditions, multi-layer clouds can form in deep boundary layers644

that can result in the vertical column deviating from well-mixed conditions. Decoupling can occur645

under stronger winds and, stronger temperature and moisture gradients. We plan to extend our cur-646

rent model to study multiple cloud layers in a single column to observe the effects of decoupling647

on cloud dissipation.648
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APPENDIX A652

Nomenclature653

αlw Optical depth scale for longwave radiation654

αsrf Surface turbulent efficiency655

Aw Entrainment tuning parameter656

Bcld Cloud blackbody radiation657

β Bowen Ratio658

Bsrf Surface blackbody radiation659
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Bsky Cloud top blackbody radiation660

cp Specific heat constant661

∆qT, i Total water vapor mixing ratio jump at the inversion662

∆θl, i Liquid potential temperature jump at the inversion663

∆θv, i Virtual potential temperature jump at the inversion664

Flw Net longwave radiation flux665

Frad Net radiation flux666

Fls Net shortwave radiation flux667

glw Asymmetry factor for longwave radiation668

gsw Asymmetry factor for shortwave radiation669

Lv Latent heat of evaporation670

µ0 Cosine of the solar zenith angle671

ωlw Single scattering albedo for longwave radiation672

ωsw Single scattering albedo for shortwave radiation673

ql Liquid water mixing ratio674

qT Total water vapor mixing ratio675

qT, adv Horizontal advection of water vapor mixing ratio676

qT, inv Total water vapor mixing ratio at the inversion677

Rd Gas constant for dry air678
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Re Effective droplet radius679

ρair Density of air680

ρW Density of water681

Ri Richardson number682

Rv Gas constant for moist air683

τb Optical depth of the cloud684

Tbase Cloud base temperature685

Tcld Effective cloud temperature686

θl Liquid potential temperature687

θl, adv Horizontal advection of liquid potential temperature688

θl, inv Liquid potential temperature at the inversion689

θv Virtual potential temperature690

θv, 0 Virtual potential temperature reference691

Tsrf Surface temperature692

Tsky Effective cloud top cooling temperature693

vH Horizontal wind speed694

we Entrainment velocity695

w′q′T Mean turbulent flux for total water vapor mixing ratio696

ws Subsidence velocity697
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w′θ ′l Mean turbulent flux for liquid potential temperature698

w′θ ′v Mean turbulent flux for virtual potential temperature699

zb Cloud base height700

zi Inversion height701

D Subsidence divergence702

g Gravitational acceleration703

t Time704

APPENDIX B705

Error Calculations706

a. Error Calculation Methods and Metrics707

We use the root mean square error (RMSE) definition as:708

RMSE ,

√√√√ 1
N

N

∑
i=1

(xmodel(i)−xref(i))
2 (B1)

xmodel(i) represents the ith point generated by our model, whereas xref(i) is the ith point associ-709

ated with a reference (usually the ground truth). The percentage error is defined by normalizing710

the RMSE by the mean reference value:711

%Error =
RMSE

1
N

N
∑

i=1
xref(i)

(B2)

This percentage error model is only used for positive valued variables.712
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Throughout this section, errors are assessed by comparing the results of our approximations713

with their original forms. For longwave calculations, we use the parameters from Larson et al.714

(2007) and for shortwave calculations we use the parameters from Duynkerke (1999). The errors715

are calculated numerically over a range of parameter values and then averaged. For inversion716

height, the interval of zi ∈ [500 m,1000 m] with 50 m resolution is used, whereas for the cloud717

thickness h ∈ [50 m,400 m] is used. Since optical thickness depends on Γl , we use the interval718

Γl ∈ [0.1×10−6 m−1,2×10−6 m−1] with a resolution of 10−7] m−1. Longwave radiation depends719

on the surface, cloud, and cloud top effective radiative temperatures. The standard atmosphere720

adiabatic lapse rate of −6.5 K m−1 allows calculating the cloud and cloud top temperatures from721

the surface temperature. We use the interval Tsrf ∈ [285 K,295 K] with 1 K resolution. For solar722

zenith angle calculations, we use daytime with 100 s resolution.723

b. Longwave Error Calculations for the approximations in Eqs. (46) and (47)724

We set ωlw = 0.694 and glw = 0.83 for all longwave calculations. We performed more than 35725

million experiments, where we calculated the percentage error of our approximation in Eq. (49)726

and (48) with respect to the original formulation in Eq. (47) and (46). The maximum RMSE727

observed is 0.53 and the maximum percentage error is 0.05%, while the mean percentage error728

is 0.03%. The maximum error is observed for Eq. (47), zi = 500 m, Γl = 2× 10−6 m−1 and729

Tsrf = 285 K.730

c. Shortwave Error Calculations for the approximations in Eqs. (53) and (52)731

We set ωsw = 0.993 and gsw = 0.83 for all shortwave calculations. We calculate αsw and732

βsw (Eq. 50) and compare against Eq. (29) and Eq. (24), respectively to obtain the error per-733

formance. We performed more than 32 million experiments. The resulting mean percentage error734
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is 2%. The percentage error of our approximation at the inversion height in Eq. (52) is 6% and735

the maximum RMSE observed is 43 W m−2. The maximum error is observed for the zi = 500 m,736

Γl = 10−6 m−1 and zb = 335 m case. For the shortwave approximation at the surface in Eq. (53),737

the percentage error is 7% and the maximum RMSE is 44 W m−2. The maximum error is ob-738

served for the zi = 500 m, Γl = 10−6 m−1 and zb = 325 m case.739

d. Net Radiation Error Calculations for the approximations in Eq. (54)740

We use the same configurations as in the previous sections b, c. The mean percentage error of741

the columnar integral linear approximation in Eq. (54) is 6% and the RMSE is 41 W m−2.742

e. Constant Assumption Validations743

The first assumption states that the surface, cloud base and cloud top temperature variations744

are small compared to the actual temperature. Assuming a 30 K sinusoidal variation during the745

day from 265 K to 295 K and back to 265 K, the RMSE of assuming a fixed temperature is only746

4.5 K corresponding to less than 2% error. The errors are amplified to 6% in the black body radi-747

ation calculation due to the fourth-order temperature dependence. The second assumption states748

that similar trends in temperature will decrease the effective error since the equations depend on749

the difference of the black body radiations. To verify this claim we create a second tempera-750

ture timeseries at a height of 1 km. Under the standard atmosphere assumption, the lapse rate is751

−6.5 K km−1] so the second temperature timeseries therefore varies sinusoidally from 256.5 K752

to 286.5 K instead. The error of the difference of black body radiation drops to 5%. The third753

assumption states that the net shortwave radiation is greater than the net longwave radiation in the754

cloud layer during the day. Using the assumptions in the previous example, the average ratio of755

net shortwave to net longwave during the day is 8.7.756

43



The constant optical depth assumption with τb calculated once using the initial thickness and757

then set constant is validated against a model run with a variable (real) optical depth that is solved758

iteratively at every minute. Different optical depth variation were created through two scenarios759

with different Bowen Ratios of 0.2 and 1. Furthermore, since the optical depth depends on Γl , we760

analyzed two scenarios with Γl = 10−7 m−1 (Figure B1 - top) and Γl = 5×10−7 m−1 (Figure B1761

- bottom). The results in Figure B1 show that the iterative and constant solutions are close in all762

Bowen Ratio cases. In the case of Γl = 5×10−7 m−1, the distance between the solutions increase763

relative to the Γl = 10−7 m−1 case. The main reason is that the LWP and the cloud optical depth are764

5 times higher, resulting in the optical thickness scale (hsw) that is 5 times smaller. The difference765

is largest for β = 0.2, since the cloud does not dissipate within 24 hours and the error accumulates766

over a longer time.767

APPENDIX C768

Derivation of u1, u2, u3 functions769

We start the solution from u1(t):770

u1(t) = eDt
t∫

t ′=0

e−Dt ′dt ′ (C1)

=
eDt−1

D
(C2)

We continue with u2(t). This function involves the solar zenith angle and can be written in a771

general form as: µ0(t) = max
{

µ1 +µ2 cos
( tπ

H −π
)
,0
}

. The solution is as follows:772

u2(t) = eDt
t∫

t ′=0

e−Dt ′max
{

µ1 +µ2 cos
(

t ′π
H
−π

)
,0
}

dt ′ (C3)

Note that the expression in the maximum is a periodic expression. The non-zero region within773

a day spans from t1, sunrise, to t2, sunset. If t is greater than 1 day, then the solar zenith angle774
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expression will be repeated. The general solution for a time t on following days is:775

u2(t) = eDt

 t2∫
t1

e−Dt ′
µ0(t ′)dt ′+ . . .+

t2+2(n−1)H∫
t1+2(n−1)H

e−Dt ′
µ0(t ′)dt ′+

t∫
t1+2nH

e−Dt ′
µ0(t ′)dt ′


= eDt

n−1

∑
j=0

e−2DH j
t2∫

t1

e−Dt ′
µ0(t ′)dt ′+ eDt−2DHn

t−2nH∫
t1

e−Dt ′
µ0(t ′)dt ′ (C4)

= eDt
(

1− e−2DHn

1− e−2DH

) t2∫
t1

e−Dt ′
µ0(t ′)dt ′+ eDt−2DHn

t−2nH∫
t1

e−Dt ′
µ0(t ′)dt ′ (C5)

We start with the solution of the integral with a general bound:776

x∫
t1

eDx−Dt ′
µ0(t ′) = µ1eDx

x∫
t1

e−Dt ′dt ′+µ2eDx
x∫

t1

e−Dt ′ cos(t ′π/H−π)dt ′ (C6)

=
µ1

D

(
eDx−Dt1−1

)
+µ2eDx

x∫
t ′=t1

eit ′π/H−iπ−Dt ′+ e−it ′π/H+iπ−Dt ′

2
dt ′ (C7)

=
µ1

D

(
eDx−Dt1−1

)
+ µ2eDx eixπ/H−iπ−Dx− eit1π/H−iπ−Dt1

2iπ/H−2D

+ µ2eDx e−ixπ/H+iπ−Dt− e−it1π/H+iπ−Dt1

−2iπ/H−2D
(C8)

= µ2
πH−1 sin(xπ/H−π)−Dcos(xπ/H−π)

D2 +π2H−2

+ eDx−Dt1
πH−1

(√
µ2

2 −µ2
1

)
−µ1D

D2 +π2H−2

+ µ1D−1eDx−Dt1−µ1D−1 (C9)

= µ2
πH−1 sin(xπ/H−π)−Dcos(xπ/H−π)

D2 +π2H−2

+ eDx−Dt1
πH−1

(√
µ2

2 −µ2
1

)
+µ1D−1π2H−2

D2 +π2H−2 −µ1D−1 (C10)
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Using this result, we construct u2:777

u2(t) = eDt−Dt2

(
1− e−2DHn

1− e−2DH

)
πH−1

(√
µ2

2 −µ2
1

)
−µ1D−1π2H−2

D2 +π2H−2

+ eDt−Dt1

(
1− e−2DHn

1− e−2DH

)
πH−1

(√
µ2

2 −µ2
1

)
+µ1D−1π2H−2

D2 +π2H−2

+ µ2
πH−1 sin(tπ/H−π)−Dcos(tπ/H−π)

D2 +π2H−2

+ eDt−2DHn−Dt1
πH−1

(√
µ2

2 −µ2
1

)
+µ1D−1π2H−2

D2 +π2H−2 −µ1D−1 (C11)

The resulting equation has three components: a constant, an oscillatory component with a pe-778

riodicity of 24 hours and an exponentially decreasing component, which has subsidence as its779

exponent. As in the previous component, this means that the exponential term will vanish after780

roughly 10 days.781

We continue with u3(t). We now deal with the square of the solar zenith angle. Taking the782

square of the expression, we obtain a very similar expression as before:783

µ
2
0 = µ

2
1 +2µ1µ2 cos(tπ/H−π)+µ

2
2 cos2(tπ/H−π)

=
(
µ

2
1 +µ

2
2/2
)
+(2µ1µ2 cos(tπ/H−π))+

(
µ

2
2/2
)

cos(2tπ/H) (C12)
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We again start with the solution of the integral with a general bound for µ2
0 :784

=
(
µ

2
1 +µ

2
2/2
)

eDx
x∫

t1

e−Dt ′dt ′+2µ1µ2eDx
x∫

t1

e−Dt ′ cos(t ′π/H−π)dt ′

+
(
µ

2
2/2
)

eDx
x∫

t1

e−Dt ′ cos(2t ′π/H)dt ′ (C13)

=

(
µ2

1 −µ2
2/2
)

D

(
eDx−Dt1−1

)
+2µ1µ2eDx

x∫
t ′=t1

eit ′π/H−iπ−Dt ′+ e−it ′π/H+iπ−Dt ′

2
dt ′

+
(
µ

2
2/2
)

eDx
x∫

t ′=t1

e2it ′π/H−Dt ′+ e−2it ′π/H−Dt ′

2
dt ′ (C14)

=

(
µ2

1 +µ2
2/2
)

D

(
eDx−Dt1−1

)
+ 2µ1µ2eDx eixπ/H−iπ−Dx− eit1π/H−iπ−Dt1

2iπ/H−2D

+ 2µ1µ2eDx e−ixπ/H+iπ−Dt− e−it1π/H+iπ−Dt1

−2iπ/H−2D

+
(
µ

2
2/2
)

eDx e2ixπ/H−Dx− e2it1π/H−Dt1

4iπ/H−2D

+
(
µ

2
2/2
)

eDx e−2ixπ/H−Dt− e−2it1π/H−Dt1

−4iπ/H−2D
(C15)

785

=

(
µ2

1 −µ2
2/2
)

D

(
eDx−Dt1−1

)
+ 2µ1µ2

πH−1 sin(xπ/H−π)−Dcos(xπ/H−π)

D2 +π2H−2

+ 2µ1eDx−Dt1
πH−1

√
µ2

2 −µ2
1 −µ1D

D2 +π2H−2

+
µ2

2
2

2πH−1 sin(2xπ/H)−Dcos(2xπ/H)

D2 +4π2H−2

+ eDx−Dt1
D(µ2

1 −µ2
2/2)−2µ1πH−1

√
µ2

2 −µ2
1

D2 +4π2H−2 (C16)
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Using the respective x values we obtain:786

2µ1

(
1− e−2DHn

1− e−2DH

)eDt−Dt2
πH−1

√
µ2

2 −µ2
1 −µ1π2H−2

D2 +π2H−2

+ eDt−Dt1
πH−1

√
µ2

2 −µ2
1 +µ1π2H−2

D2 +π2H−2


−
(

1− e−2DHn

1− e−2DH

)eDt−Dt2
2πH−1µ1

√
µ2

2 −µ2
1 +D(µ2

1 −µ2
2 )

D2 +4π2H−2

− eDt−Dt1
D(µ2

1 −µ2
2 )−2µ1πH−1

√
µ2

2 −µ2
1

D2 +4π2H−2


+

(
µ2

1 −µ2
2/2
)

D

(
eDt−2DnH−Dt1−1

)
+

2µ1µ2
πH−1 sin(tπ/H−π)−Dcos(tπ/H−π)

D2 +π2H−2

+2µ1eDt−2DnH−Dt1
πH−1

√
µ2

2 −µ2
1 −µ1D

D2 +π2H−2

+
µ2

2
2

2πH−1 sin(2tπ/H)−Dcos(2tπ/H)

D2 +4π2H−2

+eDt−2DnH−Dt1
D(µ2

1 −µ2
2/2)−2µ1πH−1

√
µ2

2 −µ2
1

D2 +4π2H−2 (C17)

This is similar to the previous result and results in 3 different components: a constant, oscillatory787

and exponential component with subsidence as its exponent.788
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TABLE 1. Projected critical cloud thickness values for the cases in Fig. 10.

β = 0.2,zi(0) = 1500 m,Dn β = 0.6,zi(0) = 1500 m,Dn β = 5,zi(0) = 1500 m,Dn

Before sunrise 75 m 56 m 13 m

Before sunset 19 m 506 m 1401 m

Dissipation Time none 9.7 hours 7.9 hours

β = 0.2,zi(0) = 500 m,Dn β = 0.6,zi(0) = 500 m,Dn β = 5,zi(0) = 500 m,Dn

Before sunrise 0 m 0 m 0 m

Before sunset 0 m 500 m 500 m

Dissipation Time none 9.2 hours 7.7 hours

β = 0.2,zi(0) = 500 m,5Dn β = 0.6,zi(0) = 1000 m,5Dn β = 5,zi(0) = 1500 m,5Dn

Before sunrise 26 m 190 m 330 m

Before sunset 211 m 1000 m 1500 m

Dissipation Time 16.7 hours 5.3 hours 2.8 hours
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FIG. 5. Bowen Ratio sensitivity comparison between the analytic solution (dotted) and LES simulations (solid

lines). Simulations are shown until the cloud dissipated for the largest Bowen Ratio, i.e. until 0800 LST, because

the analytic model is not valid in clear conditions. Inversion height, zi, is plotted for (a) β = {0.1,0.3} and (b)
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196 were used for solar zenith angle calculations.
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