
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Physically Aware Design of Generated Systems-on-Chip

Permalink
https://escholarship.org/uc/item/8s8167w2

Author
Wright, John Charles

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8s8167w2
https://escholarship.org
http://www.cdlib.org/


Physically Aware Design of Generated Systems-on-Chip

by

John Charles Wright

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Borivoje Nikolić, Chair
Professor Elad Alon

Professor Robert Leachman

Summer 2021



Physically Aware Design of Generated Systems-on-Chip

Copyright 2021
by

John Charles Wright



1

Abstract

Physically Aware Design of Generated Systems-on-Chip

by

John Charles Wright

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Chair

Generator-based integrated-circuit design flows are crucial for meeting the aggressive system-
on-chip development timelines demanded by rapidly changing modern workloads. Generators
allow chip designers to develop complex solutions to classes of problems rather than individ-
ual instances, allowing significant design changes late in the development cycle and enabling
incremental improvements to existing solutions. The philosophies of welcoming changing
requirements and steady, incremental development have been embraced by the software de-
velopment community for some time, but have only recently been incorporated into hardware
development. While this adoption of proven software development philosophies has decreased
the turnaround time of systems-on-chip, productivity has been limited by hard-to-automate
tasks like physical design. Each generated design instance requires a new human-generated
floorplan or other changes to the physical design flow, limiting the throughput of design
space exploration by the available engineering resources. Automation of physical design is
therefore critical for state-of-the-art generator-based system-on-chip design.

This work describes a series of generator-based integrated circuits manufactured in 28nm
FD-SOI and 16nm FinFET, outlines the physical design challenges encountered in their
development, and presents a physical design methodology purpose-built to solve these chal-
lenges. The integrated circuits presented include an 8192-point digital spectrometer in 28nm
FD-SOI, a dual-core RISC-V vector processor with on-chip fine-grain power management in
28nm FD-SOI, a dual-lane RISC-V vector processor with a dedicated on-chip power man-
agement core in 28nm FD-SOI, an eight-core RISC-V vector machine in 16nm FinFET,
and a 21-core RISC-V vector machine with a systolic array accelerator in 16nm FinFET.
The eight-core chip achieves a state-of-the-art energy efficiency of 209.5 GFLOPS/W on a
half-precision matrix multiplication (GEMM) kernel.

The physical design methodology presented uses a framework, Hammer, to provide reusable
physical design deliverables by decoupling the design-specific, tool-specific, and technology-
specific aspects of back-end design along with a novel floorplan generation framework for



2

Chisel designs. This physical design methodology has been incorporated into the Chipyard
framework, an open-source RISC-V system-on-chip development platform leveraging the
Chisel hardware construction language. The floorplan generation framework allows Chisel
programs, which generate RTL, to specify composable floorplans without modifying the
original source code. The flow solves common challenges associated with floorplanning gen-
erated RTL, such as SRAM mapping and placement, demonstrating the efficacy of floorplan
generation in reducing the overhead and cycle times of generator-based design.



i

To my wife, Xuân, and our unborn son.



ii

Contents

Contents ii

List of Figures v

List of Tables vii

List of Listings viii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Fundamentals of VLSI design . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Impact of technology scaling on system architecture . . . . . . . . . . 6
1.2.3 Generator-based design . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Chipyard: An Agile generator-based SoC flow . . . . . . . . . . . . . 9
1.2.5 Challenges with generator-based design . . . . . . . . . . . . . . . . . 13
1.2.6 Floorplanning concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.7 State-of-the-art placement and floorplanning . . . . . . . . . . . . . . 17

1.3 Dissertation scope and outline . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Integrated Circuit Designs in 28nm FD-SOI 19
2.1 Splash2: Digital ASIC Spectrometer . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.4 Physical design challenges . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Hurricane1: A Dual-Core RISC-V SoC with DVS . . . . . . . . . . . . . . . 28
2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Physical design challenges . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Hurricane2: A RISC-V SoC with Dual-Lane Vector Unit and DVS . . . . . . 38



iii

2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.4 Physical design challenges . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Generated Multicore Systems-on-Chip in 16nm FinFET 47
3.1 Eagle: An 8-core Generated RISC-V SoC . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.4 Physical design challenges . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 EagleX: A 21-core Generated RISC-V SoC . . . . . . . . . . . . . . . . . . . 66
3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.3 Physical design challenges . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.4 Results and future work . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Hammer: A Physical Design Generator Platform 79
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Hammer design philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Hammer design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Hammer IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Tool plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.3 Technology plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.4 Build flow generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Technology and EDA tool abstractions . . . . . . . . . . . . . . . . . . . . . 90
4.4.1 Power straps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Floorplanning for Generated RTL 96
5.1 Architecture of a Chisel floorplanning framework . . . . . . . . . . . . . . . . 97
5.2 Floorplan IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Floorplan IR design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Floorplan IR element descriptions . . . . . . . . . . . . . . . . . . . . 105

5.3 Floorplan compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.1 Floorplan compiler passes . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.2 SRAM replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Chisel floorplan API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Example floorplans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Conclusion 121



iv

6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 124



v

List of Figures

1.1 An example of metal layer design rules . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Cost per 100 million gates across process technologies as of 2016 . . . . . . . . . 7
1.3 Pareto-optimal frontier of compute acceleration . . . . . . . . . . . . . . . . . . 8
1.4 A comparison of Agile vs. waterfall development methodologies . . . . . . . . . 10
1.5 An example of a simple floorplan . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 An example of a hierarchical floorplan . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Annotated Splash2 die micrograph . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 The Splash2 generator flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 The Splash2 ADC interface using serial links . . . . . . . . . . . . . . . . . . . . 22
2.4 The Splash2 system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 The Splash2 spectrometer generator microarchitecture . . . . . . . . . . . . . . 23
2.6 The Splash2 polyphase filter and streaming FFT generator microarchitecture . . 24
2.7 Splash2 measured spectra at a 1 GHz sample frequency . . . . . . . . . . . . . . 25
2.8 Splash2 floorplan showing the highly congested twiddle factor ROM and SRAM

macro placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Annotated Hurricane1 die micrograph . . . . . . . . . . . . . . . . . . . . . . . 28
2.10 Hurricane1 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 Hurricane1 board photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.12 Hurricane1 DGEMM shmoo plot . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.13 Hurricane1 DC-DC mode transitions in response to cache activity for a matrix

multiplication workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.14 Hurricane1 architectural simulation of Linux boot and energy analysis at

0.9V/250MHz and 0.55V/50MHz operating modes . . . . . . . . . . . . . . . . . 34
2.15 Annotated Hurricane1 floorplan . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.16 Annotated Hurricane2 die micrograph . . . . . . . . . . . . . . . . . . . . . . . 38
2.17 Hurricane2 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.18 Maximum operating frequency versus core supply voltage on Hurricane2 . . . . 43
2.19 Comparison of Hurricane2 AVS algorithms . . . . . . . . . . . . . . . . . . . . . 44
2.20 Annotated Hurricane2 floorplan . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Annotated Eagle die micrograph . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Eagle chip generation flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



vi

3.3 Eagle block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Block diagram of the Hwacha vector unit on Eagle . . . . . . . . . . . . . . . . 51
3.5 Eagle test setup and block diagram . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Eagle test board on lab bench with labeled components . . . . . . . . . . . . . . 52
3.7 Eagle maximum frequency and GEMM energy efficiency . . . . . . . . . . . . . 53
3.8 Annotated Eagle chip floorplan . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.9 Physical design hierarchy of Eagle . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Eagle cluster and tile floorplans . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.11 Eagle serial link lane floorplan and layout . . . . . . . . . . . . . . . . . . . . . 59
3.12 Eagle PCB footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.13 Eagle clocking diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.14 An example of multi-voltage power straps on EagleX using a 1:3 supply ratio . . 63
3.15 Eagle crossbar topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.16 Low placement density in area with high routing density on Eagle . . . . . . . . 65
3.17 Example of routing congestion in a large crossbar on Eagle . . . . . . . . . . . . 65
3.18 Annotated EagleX die micrograph . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.19 EagleX block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.20 EagleX systolic array accelerator architecture . . . . . . . . . . . . . . . . . . . 68
3.21 EagleX chip floorplan (hierarchical) . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.22 EagleX chip floorplan (flat) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.23 Power strap alignment on mirrored tiles . . . . . . . . . . . . . . . . . . . . . . 71
3.24 EagleX bump designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.25 EagleX BGA package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.26 EagleX cluster and tile floorplans . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.27 EagleX system management core floorplan . . . . . . . . . . . . . . . . . . . . . 75
3.28 Floorplan of the EagleX systolic array accelerator with its CPU core . . . . . . 78

4.1 Hammer design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Simple power strap generation using the Hammer power strap generation API . 93
4.3 An example of sparse and dense power straps using ASAP7 . . . . . . . . . . . 95

5.1 Chisel SRAM floorplanning flow without automation . . . . . . . . . . . . . . . 97
5.2 Chisel SRAM floorplanning flow with automation . . . . . . . . . . . . . . . . . 97
5.3 Floorplan IR class hierarchy and levels . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Chisel floorplan compiler flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 Floorplan compiler passes and FPIR lowering flows . . . . . . . . . . . . . . . . 110
5.6 SRAM mapping using the floorplan compiler . . . . . . . . . . . . . . . . . . . . 111
5.7 SRAM legalization flow using the floorplan compiler . . . . . . . . . . . . . . . . 112
5.8 Annotated floorplan of a single-core ChipTop using the generators shown in List-

ing 5.6 and Listing 5.5 and visualized using Hammer . . . . . . . . . . . . . . . 119

6.1 Die micrographs of the chips presented in this dissertation to scale . . . . . . . . 121



vii

List of Tables

1.1 Examples of CAD tool applications . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Splash2 compared with state-of-the-art ASIC spectrometers . . . . . . . . . . . 25
2.2 Hurricane1 compared with prior art . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Hurricane2 compared with prior art . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Eagle compared with prior art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



viii

List of Listings

3.1 EagleX running Linux on the twenty main applications cores . . . . . . . . . . . 77

4.1 Example Hammer IR (YAML format) excerpt from EagleX . . . . . . . . . . . . 85
4.2 An example defaults.yml for Vivado synthesis . . . . . . . . . . . . . . . . . . . 86
4.3 An excerpt from the plug-in file for Vivado synthesis . . . . . . . . . . . . . . . 87
4.4 An excerpt from the ASAP7 technology JSON file . . . . . . . . . . . . . . . . . 88
4.5 An abridged Makefile for a hierarchical Hammer flow . . . . . . . . . . . . . . . 90
4.6 Hammer IR to specify power straps in ASAP7 using the by tracks power strap

generation API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Serialized floorplan IR example . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Example of a floorplan compiler memory instance map file . . . . . . . . . . . . 107
5.3 Example of an out-of-band annotation file setting memory dimensions . . . . . . 108
5.4 A simple example floorplan generator . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5 Floorplan generator code for RocketTile modules . . . . . . . . . . . . . . . . . 117
5.6 Floorplan generator code for a ChipTop modules . . . . . . . . . . . . . . . . . 118



ix

Acknowledgments

I am tremendously grateful for the help and support I received throughout my doctoral
studies. Berkeley is uniquely collaborative, and I am fortunate to have worked with numerous
brilliant minds during my time here. While I am appreciative of everyone I met throughout
this adventure, the following colleagues, mentors, faculty, staff, and friends deserve special
recognition. I apologize in advance to any deserving individuals that I may have missed.

First and foremost, I am grateful to have had Bora Nikolić as an advisor. Bora, you
are uniquely skilled in identifying problems that are simultaneously interesting to industry
and academia. I continue to be impressed by your breadth and depth of knowledge, your
ability to keep up with the state of the art, and your ability to drive projects of massive
scope to success. There is simply no way I could have had the opportunity to tape out so
many times, in such advanced process nodes, or such large chips without your leadership.
I believe your continuing push for agile hardware development is producing a generation of
ASIC designers who think so differently that we will feel the impact industry-wide. I will
miss your ComIC group meeting stories and will have to find some new way of keeping up
with the latest industry gossip.

I am thankful to have had additional guidance from Elad Alon and Krste Asanović. Elad,
your support throughout the Eagle project was incredibly helpful, especially when the hours
grew long and deadlines started passing. I appreciate your willingness to jump on Slack calls
at 4 A.M. to hack on RTL alongside the grad students to keep the tapeout moving. I also
enjoyed working with and learning from you and your students on the serial link generator
project. Krste, thank you for your support throughout all the tapeouts and project meetings
and for making me feel welcome to participate in projects with the Berkeley Architecture
Research group. I eagerly look forward to seeing what’s next for RISC-V. I would also like to
thank Vladimir Stojanović for serving on my qualifying exam committee, reading my M.S.,
and otherwise being available for discussion. Likewise, I thank Rob Leachman for serving on
my qualifying exam and dissertation committees and Jonathan Bachrach and Sophia Shao
for their help along the way.

I am indebted to a number of people in the broader engineering community for their
guidance as well. Todd Hastings and Bruce Walcott (University of Kentucky), thank you for
getting me started in research and sending me down this path. Scott Savage and Joseph Elias
(Infineon), thank you for providing recommendations and encouragement. It was a tough
decision to leave a full-time job to return to school, and I appreciate your candid advice and
assistance to do what you believed to be in my best interest. Mohamed Abu-Rahma and
Jared Zerbe (Apple), thank you for your mentorship and the thought-provoking technical
discussions. The opportunity to work on cutting-edge projects at Apple provided meaningful
insight and context to the work I did at Berkeley. Mark Rowland and Steve Burns (Intel),
your feedback at the many ASPIRE and ADEPT retreats was useful and entertaining. It’s
not always clear that we are moving in the right direction, and confirmation (bonus points)
from our industrial sponsors is always welcome. Rajeev Jain (Qualcomm), your affirmation
of the usefulness of many components of this dissertation was rewarding as well. I appreciate



x

the deep technical discussions I had with you and others at Qualcomm in the denouement
of my graduate career. Masood Qazi (Qualcomm), thank you for the advice you gave along
the way. I’m happy to have overlapped with you at Cypress and Apple and hope we’ll one
day overlap again.

Much of the work presented in this dissertation required custom fabrication and assembly
of chips, packages, circuit boards, et cetera. There are many who helped with this, but I
owe a few individuals special mentions; thank you. Mo Ohady (Digicom Electronics) was
available off-hours for special assembly requests to meet paper deadlines and always enthu-
siastic to work with Berkeley. Gary Thorne (MOSIS) helped with our GDS submissions,
and I would especially like to thank him for enduring so many slips and being available
for the final EagleX submission on the 4th of July holiday. Linton Salmon (DARPA) led
the CRAFT program, which made a large portion of this work possible. Andreia Cathe-
lin (STMicroelectronics) championed many of the earlier tapeouts in my graduate career
(Splash2, Hurricane1, Hurricane2). Hien Ly, Quyen Chu, and Sundar Sethuraman (Jabil
Blue Sky) helped by experimenting with aggressive die attach techniques and gave us a
lab tour. Didier Campos and Vince Mangion (STMicroelectronics) designed the Hurricane2
package. Pierre Brunet (EuroCan) designed the EagleX package when many others would
not. Darin Heckendorn (Cadence) provided invaluable support of the tool flow for Eagle and
EagleX.

Within Berkeley, we are lucky to have talented research staff to help ensure the success of
these projects. Brian Richards is a vault of tapeout knowledge and spent many hours helping
with every project I worked on. Thank you for all you do to keep the BWRC tapeout machine
running. Anita Flynn is a PCB wizard, human confusion detector, and bug catcher. Thank
you for all your hard work on the Hurricane2, Eagle, and EagleX boards; they are works
of art. James Dunn, your curiosity and excitement is enviable, and I hope you continue
to have such passion. Thank you for helping with sysadmin, lab, and PCB tasks over the
years. Shirley Salanio does so much behind-the-scenes work to help every EECS grad student
stay on track with program requirements. Thank you for all your help over the years, and
especially for helping with the flurry of questions about Summer filing procedures. Candy
Corpus and Yessica Bravo, thanks for organizing social events and generally making BWRC
a happy place. Greg Pearson and Jeff Anderson-Lee, thanks for keeping the compute servers
up and running despite my best efforts to fill up the file system. Chick Markley, thanks for
all the interesting discussions and scala whispering. I also thank Kostadin Ilov, Ria Briggs,
Tami Chouteau, Fred Burghardt, Mikaela Cavizo-Briggs, Ken Lutz, Melissa Trevizo, Olivia
Nolan, Amber Sanchez, and Erin Hancock.

A large portion of this work was done in collaboration with Colin Schmidt, who has
become a great friend and a colleague I hope to continue working with in the future. Somehow
after all of the all-night Slack calls, frustrating bring-up puzzles, and tapeout delays, you
still kept a positive attitude. I’m indebted to you for all the help you provided, all your code
reviews, and support throughout the whole process.

I also thank the following individuals for their technical contributions. Dan Werthimer
and Robert Jarnot contributed significantly to the Splash2 architecture and guided the



xi

project. Zhongkai Wang drove the SerDes generator development for the Eagle tapeout
with the help of Eric Chang, Paul Kwon, and Woorham Bae. Howie Mao wrote a large
number of RTL widgets we used for every tapeout. Adam Izraelevitz built Chisel Aspects,
which is an integral component of the floorplan generator. Albert Ou wrote RTL and soft-
ware and helped with bring-up for the Hurricane and Eagle tapeouts and was also willing
to answer many of my silly RISC-V and Linux questions. Edward Wang led the Hammer
project and designed and built much of its infrastructure, which made the Eagle, EagleX,
and floorplanning work in this dissertation possible. Vighnesh Iyer helped with many differ-
ent FPGA designs and automated the build flow. Jingyi Xu, Ryan Lund, Anson Tsai, and
Gary Choi were wonderful undergraduate and master’s researchers who helped with various
aspects of these projects.

I’m happy to have had the support of many other friends and colleagues at BWRC
throughout this journey as well. Antonio Puglielli, thank you for being a dependable back-
packing adventure-buddy and jib-trimmer. Krishna Settaluri, thank you for being a good
motivator and for all the lighthearted jokes. Luke Calderin, you are a fantastic co-skipper
of The Floating Node, even though we never did sail to a retreat, and for that I salute
you. Nathan Narevsky, thanks for always showing up early to help set up the party and
for enduring Zoom thesis-writing sessions with me. Ozzy LaCaille, thank you for the coffee
walks, the complaining sessions, and the Tide Pod. Sameet Ramakrishnan, thanks for all
the brainstorming sessions, entertaining sports bets, and, of course, getting me a job. Pavan
Bhargava, thanks for always bringing a delicious dish and for joining in our adventures. Stevo
Bailey, thanks for dragging me to Core Blast, for showing me the ropes in the early days, and
for your upbeat attitude. Ben Keller, thanks for your leadership on the Hurricane projects,
for your activism, and for taking all my extra tomato plants. Alon Amid, in addition to all
your help with paper writing and Chipyard, thanks for introducing us to Bamba and always
bringing an interesting story to Thanksgiving. Paul Rigge, thanks for always having an
interesting perspective and for explaining scala nuances in great detail. Keertana Settaluri,
thanks for being my over-the-divider buddy. Daniel Grubb and Harrison Liew, I appreciate
your senses of humor; thank you for joining us in the trenches of the 2019 tapeouts and for
carrying the baton to keep many of these projects alive. Rachel Hochman, thank you for
throwing fancy parties and always being supportive and positive. Nandish Mehta, thank
you for providing many laughs and, of course, your dal makhani. Mira Videnović-Mǐsić,
thank you for your genuine kindness and always bringing delicious treats to share. Ajith
Amerasekera, thank you for always being available for a quick chat at Triple Rock.

There are many other BWRC students and visitors who impacted my time here, and
I’d like to thank a few of them as well: Brian Zimmer, Jaehwa Kwak, Amy Whitcombe,
Milos Jorgovanović, Pi-Feng Chiu, Martin Cochet, Jarno Salomaa, Guillaume Bonnechère,
Angie Wang, Matthew Anderson, Lorenzo Iotti, Nick Sutardja, Katerina Papadopoulou,
Marko Kosunen, Sean Huang, Sam Steffl, Zhenghan Lin, Yue Dai, Zhaokai Liu, Vladimir
Milovanović, Emily Naviasky, Christos Adamopoulos, Sidney Buchbinder, Andy Zhou, and
Chris Yarp. Thanks for your help, and thanks for keeping BWRC lively. I’d also like to
acknowledge some additional members of the ASPIRE/ADEPT labs: Abe Gonzalez, Jerry



xii

Zhao, Sagar Karandikar, Albert Magyar, David Biancolin, Nathan Pemberton, Hasan Genc,
Ameer Haj-Ali, Eric Love, Kevin Laeufer, Yunsup Lee, Andrew Waterman, Palmer Dabbelt,
and Jack Koenig. Thanks for making my up-the-hill time enjoyable.

Outside of the Berkeley community, I have been fortunate to have the support of many
loving friends and family, most of whom are not explicitly named here but are appreciated
nonetheless. I would like to thank Alex Heilman specifically for his encouragement to pursue
a Ph.D. and his support throughout. My parents, Bonnie and Randy, instilled a respect
and admiration of higher education in me from a young age. I appreciate their unrelenting
encouragement throughout this long endeavor. I also think my brother, Clay, for coming to
visit and keeping me upbeat.

Finally, I owe all of this to my loving wife and life co-captain, Xuân. She not only
endured all of the all-nighters, the months-long tapeout pushes, retreats, quals, etc., but she
also provided much-needed graduate school advice, helped me edit papers, and critiqued my
figures along the way. I appreciate your sacrifices and understanding that helped get me
through this, and look forward to our next big step coming very soon. I love you and thank
you.

Funding

I thank the sponsors of this work for their financial support and for providing multiple op-
portunities to tape out on expensive process nodes. The Splash2 project was supported
by NASA’s Earth Science Technology Office Instrument Incubator Program as part of the
Compact, Adaptable Microwave Limb Sounder project, grant number NNX12AK39G. The
Hurricane1 and Hurricane2 projects were supported in part by Defense Advanced Research
Projects Agency (DARPA) Power Efficiency for Embedded Computing Technologies (PER-
FECT) award HR0011-12-2-0016 and in part by the Intel Science and Technology Centers
(ISTC) on Agile Design. Fabrication of Splash2, Hurricane1, and Hurricane2 was donated by
STMicroelectronics. The Eagle, EagleX, and Hammer projects were supported by DARPA
Circuit Realization at Faster Timescales (CRAFT) grant HR0011-16-C0052 and the Intel
ISTC on Agile Design. The Chipyard project was funded by NSF grant number 2016662.
I also thank the sponsors of the Berkeley Wireless Research Center, ASPIRE, and ADEPT
labs for additional funding that supported this work.

Contributions to this work

RocketChip is an open-source IP initially developed at UC Berkeley and now maintained by
SiFive. Chisel and FIRRTL are open-source projects developed and maintained by numerous
people at Berkeley and elsewhere. The Splash2 ASIC development was led by Stevo Bailey.
Vladimir Milovanović contributed the PLL design. Nandish Mehta contributed the serial link
receiver design for Splash2, Hurricane1, and Hurricane2. The Hurricane1 and Hurricane2
ASIC development was led by Ben Keller. Cadence Design Systems donated the DDR PHY
for Hurricane2, and the DC-DC converters were reused from prior projects. The Eagle



xiii

and EagleX projects were co-led with Colin Schmidt. Sean Huang built the PLL based on
previous work by Vladimir Milovanović. Zhongkai Wang, Eric Chang, and Woorham Bae
built the serial links for Eagle and EagleX. Colin Schmidt and Albert Ou developed the
Hwacha accelerator for Hurricane1, Hurricane2, Eagle, and EagleX. SiFive donated the L2
and L3 cache generator RTL for Eagle and EagleX. Hasan Genc, Ameer Haj-Ali, Vighnesh
Iyer, and Alon Amid developed the Gemmini accelerator for EagleX. The Hammer project
was led by Edward Wang.



1

Chapter 1

Introduction

1.1 Motivation

Throughout the second half of the twentieth century, integrated circuit (IC) designers enjoyed
a consistent improvement in process technology as famously predicted by Gordon Moore [1].
This period saw everything from the first integrated circuits with only a handful of transistors
visible by the naked eye to quarter-micron microprocessors running at sub-nanosecond clock
periods [2]. While Moore’s law continued into the early twenty-first century, another once-
dependable law authored by Robert Dennard began to break down. In his paper [3], Dennard
noted that the increases to power caused by increasing transistor density and frequency were
offset by decreasing supply voltage. In the mid-2000s, Dennard scaling began to slow due to
the increasing effect of leakage power at short channel lengths, a phenomenon also known as
the “Power wall” [4].

Reaching the power wall forced IC designers to improve performance in new and creative
ways—primarily via the introduction of multicore processor chips [5]. As state-of-the-art
transistor feature sizes approach fundamental limits, it is reasonable to assume the end
of Moore’s Law is also imminent and that similar creativity will be required to continue
advancing processing capability. This, along with the surge in compute-intensive workloads
like deep neural networks, has led to increased use of specialized compute accelerators on
modern systems-on-chip (SoCs) [6–9]. With the changes to these workloads outpacing typical
IC design cycles, it is becoming increasingly necessary to make improvements to IC design
methodology to shorten these design cycles [10–12].

Generators, software programs capable of producing instances from a larger class of
possible configurations, have been shown repeatedly to improve IC design productivity [13–
15]. When building digital components, the primary focus of generators thus far has been
to produce logical circuit descriptions (register-transfer level, or RTL) and any necessary
verification and integration collateral. When generating only a small component of a larger
system, this is often sufficient, as the generated component is not likely to require a custom
floorplan. However, when generating more complex components, components with large



CHAPTER 1. INTRODUCTION 2

numbers of memory macrocells, or full SoC designs, the overall cycle time improvement
offered by the RTL generator is limited by the manual back-end implementation cycle, which
is frequently dominated by the creation of an instance-specific floorplan. It is therefore
desirable that generators should not only produce logical descriptions of configured instances
but also produce a floorplan for each generated instance in order to maximize the productivity
gains afforded by generator-based design.

This dissertation presents multiple systems-on-chip manufactured in advanced process
nodes build using generator-based design flows. The lessons learned from these tapeouts
are motivate a physical design methodology, which is also presented. This physical design
methodology has been incorporated into the open-source Chipyard [16] framework and in-
cludes both a physical design generator framework, Hammer [17], and a novel floorplanning
framework for Chisel designs.

1.2 Background

1.2.1 Fundamentals of VLSI design

Very-large-scale integration (VLSI) is the process of manufacturing integrated circuits (ICs)
with large numbers of transistors and has existed in different forms since the 1970s. In a
traditional design flow, the VLSI design process begins with the creation a high-level ar-
chitectural description of the entire system, including both on-chip and off-chip elements.
The architectural description includes every aspect of the design required for software pro-
grammers to use the system without specific implementation details. Next, one or more
microarchitectures are created to implement the specified architecture. These microarchi-
tectures include the circuit-level implementation details, down to the signal level, needed
to create a functioning design. An implementation team uses this information to build a
logical schematic, a detailed description of devices1 and their connections, and a layout, a
representation of physical geometries that implements them.

The semiconductor integrated circuit manufacturing process consists of a series of steps
which manufacture the devices themselves, called front-end processing, and the metal wires
that connect them, called back-end processing. Each process step may use one or more
photomasks to restrict the affected area to the unique geometries for a specific design. The
set of geometries for a single photomask and processing step combination is often termed a
layer, or, less commonly, level. Thus, the layout for an integrated circuit design will consist
of geometries on multiple layers.

The layers in a layout are specific to a process technology, often shortened to process
or technology, meaning that the geometries on them are generally are not portable to other
process technologies2. A process technology is a series of repeatable recipes used to manufac-

1In digital designs, a device often refers to a transistor, but integrated circuits usually include other
classes of devices, including resistors, inductors, capacitors, fuses, and diodes.

2This has a number of implications on the reusability of design work, which are discussed in Chapter 4.



CHAPTER 1. INTRODUCTION 3

ture integrated circuits in a semiconductor fabrication plant (“Fab”). Many different circuit
designs will use the same process technology with different, unique photomasks to achieve
different functionality.

In the early years of semiconductor manufacturing, the integrated circuit design firm
would also own the fab. While this afforded circuit design groups the luxury of highly
customizable manufacturing processes, the economy of scale eventually drove a majority
of the industry to use what is known as the “Fabless” model, where integrated circuits
are designed and manufactured by separate entities through contract manufacturing. The
contract manufacturing companies offer a menu of process technologies, amortizing the cost
of research, development, and capital expenditure over a large volume of products from
multiple customers.

Modern VLSI design utilizes a wide range of computer-aided design (CAD) tools to
automate labor-intensive tasks that were previously performed manually. A modern tool
flow for digital design primarily focuses on three tasks: synthesis, placement, and routing.
A synthesis tool consumes a logical description of a circuit, typically Verilog, SystemVer-
ilog, or VHDL, and produces a gate-level netlist, which is a textual representation of logic
gate instances and their connections, called nets. These logic gates come from a process-
specific library provided by the fab, developed internally, or acquired from a third party.
These libraries contain combinational and sequential logic elements, standard cells, built
from transistors and are designed so that the cells fit into a grid and can be tiled easily by
an automated tool. The placement tool, or placer, will consume this netlist along with cell
layout information and use heuristics to determine the placement of each logic cell within
the specified die area. The placer will also replace cells with larger3, logically equivalent
cells to meet circuit timing goals specified by the user at the cost of additional power and
area. The router is then responsible for creating wires to connect the placed cells using the
available metal routing layers in the process technology. Placement and routing are often
implemented as steps within a single CAD tool, a place-and-route tool, which gives it the
ability to perform multiple iterations of incremental placement and routing to achieve area
and timing goals, the latter of which is colloquially termed “Closing timing.” Table 1.1 lists
common CAD tool types in a typical flow.

Floorplanning also includes creation of routing blockages and routing guides, which help
the tool avoid areas that create problematic routing congestion or design rule violations.
Floorplans can similarly include placement blockages to prevent the tool from placing stan-
dard cells in unwanted regions, often to prevent spacing-related design rule violations.

The synthesis and place-and-route tools require additional information for macrocells
included in the design. Macrocells, or macros, are circuit components that do not conform
to the standard cell tiling scheme and are usually much larger than any single standard cell.
Until recently, placement tools have required the user to manually determine placements for
macrocells, creating what is known as a floorplan. There is a research trend moving towards

3Larger in this context can either mean physically larger transistors in the drive stage or transistors with
a lower threshold voltage, or both.



CHAPTER 1. INTRODUCTION 4

Table 1.1: Examples of CAD tool applications.

Tool Purpose Input Output

Synthesis Convert RTL to gates RTL
Gate-level
netlist

Place-and-route
(P&R)

Create a physical layout of gates
Gate-level
netlist

Layout,
Gate-level
netlist

Design rule checker
(DRC)

Check manufacturability of layout Layout Report

Layout versus
schematic (LVS)

Check that layout matches
schematic

Layout,
Gate-level
netlist

Report

RTL Verilog
simulation

Simulate a design
RTL,
stimulus

Waveforms

Gate-level Verilog
simulation

Simulate a design
GL netlist,
stimulus

Waveforms

Power analysis
Analyze dynamic and leakage
power

GL netlist,
waveforms

Report

SPICE simulation
Analyze analog and mixed signal
circuits

SPICE
netlist,
stimulus

Waveforms

Characterization
Create timing models for library
cells

Waveforms .lib files

Static timing
analysis (STA)

Analyze digital circuit timing
Gate-level
netlist, .lib
files

Reports

applying machine-learning techniques to automate this process, with reinforcement-learning
techniques able to beat humans in some situations [18], but human experts are currently
still competitive. A system-on-chip will include many different types of macrocells, some
of which perform logical functions in the circuit and others that are necessary for electrical
functionality or manufacturability. The most common macrocell with logical functionality
in a digital design is a synchronous random-access memory (SRAM), which is an area- and
energy-efficient circuit for storing state within a design.

After a place-and-route tool has created a layout, designers begin what is known as “Sig-
noff,” the process of confirming that the layout is manufacturable and meets specifications.



CHAPTER 1. INTRODUCTION 5

Minimum spacing

≥ S.1

≥ L

Maximum parallel 
run length

≥ W Minimum width

Minimum area≥ A.1

≥ E
Minimum via 
enclosure

Maximum area

≤ A.2

≥ S.2
Maximum space to 
wide wire

Figure 1.1: An example of metal layer design rules.

Design rule checking (DRC) checks every shape in the layout against a set of procedural
rules, sometimes called a deck, to verify that the design is manufacturable. Simpler rules,
like checking minimum spacing between two polygons on the same layer or checking that a
single polygon meets a minimum area constraint, tend to be derived from the capabilities
of the lithography process. More complex rules check for hard-to-simulate electrical issues
like latch-up, an effect where parasitic bipolar transistors can cause positive feedback that
destroys the chip. An example of common DRC rules for metal layers is shown in Figure 1.1,
although modern process nodes have many more complex conditions than can be easily
shown in a single figure. DRC is very parallelizable, but even so can take from hours to days
for a full chip due to the vast number of polygons in a full chip layout. For digital flows,
DRC rules tend to be related to routing, but sometimes also involve standard cell or macro
placement. Placement issues are always solved with tool script changes, but routing issues
are sometimes fixed by hand by correcting the tool-generated paths with custom shapes.
However, most tool-generated routes for properly configured designs will have no violations.

Layout versus schematic (LVS) checks that the final layout matches the schematic, which
captures the intended functionality for a chip. This tool extracts a comparison schematic
from the layout and uses an algorithm to correlate the devices and nets between the two
schematics. Analog components on the chip will use a SPICE netlist for the schematic,
while digital components generally use Verilog to specify the gate-level netlist along with
the SPICE netlists for the standard cells instantiated within. Any unintended changes,
shorts, or other problems will be flagged in the tool report. When given a good floorplan
and proper constraints, the place-and-route tool will produce a layout that matches the
schematic, however routing congestion will lead to opens or shorts on nets that the tool



CHAPTER 1. INTRODUCTION 6

cannot route properly. Custom routing, power nets, or nets inside of black boxes can also
create LVS problems that the place-and-route tool is unable to fix. For these reasons, it
is imperative to audit the place-and-route tool output with LVS to ensure the design will
function as intended.

Static timing analysis (STA) calculates the timing paths in the design by summing the
incremental cell and wire delays using pre-characterized delay models. These timing paths
start from clocks or constrained inputs and end at sequential data pins or constrained out-
puts. Any paths that violate setup or hold constraints4 are reported so that the designer
can fix them with RTL or physical design changes. For production designs, STA is run at
multiple process, voltage, and temperature (PVT) corners to ensure the design has sufficient
margin to tolerate variations in manufacturing and a range of environmental conditions.

STA is also used to generate timing annotations, which are applied to gate-level Verilog
simulations to simulate the implemented design while modeling real delays. This is useful
for verifying that the gate level design still functions as the RTL intended and for generating
accurate waveforms for power simulation. Improper RTL structures or custom changes to
the netlist within the CAD tools can result in gate-level netlists which do not function
identically to the RTL. Logical equivalency checking (LEC) is another tool that uses formal
methods5 to prove equivalence between gate-level netlists and RTL. There are many other
signoff flows not discussed here; the specific concerns of the designers and goals for the design
will determine what additional signoff is required.

1.2.2 Impact of technology scaling on system architecture

Once the 28nm process node saw widespread adoption and volume production, per-transistor
costs in new nodes no longer continued to steadily and reliably decline [19, 20], shown in
Figure 1.2. This has the effect of decreasing margins for comparable designs, increasing
the volume required to amortize the non-recurring engineering (NRE) and capital expense
required to fabricate (tape out) a new design, exacerbated by the increasing number of
masks required for multiple patterning6 [21]. Designers of new low-volume, special-purpose
systems-on-chip must decide between staying at a cost-efficient process node like 28nm or by
increasing price to recoup margins, which may lose customers to cost-competitive, higher-
volume, general-purpose chips.

To bridge the gap between fixed-function ASICs and general-purpose processors, a grow-
ing trend is the use of highly specialized accelerators [22–24], which are compute engines
tuned to a specific workload or family of workloads that can be added to a conventional
system-on-chip platform to complement the general-purpose central processing units (CPUs).
These accelerators vary in programmability, with highly programmable accelerators offering

4There are other constraint types, including recovery, removal, and minimum pulse width, which are not
discussed here.

5Not to be confused with formal verification.
6Multiple patterning may be obviated by extreme ultraviolet (EUV) lithography, but this comes with its

own challenges and costs.



CHAPTER 1. INTRODUCTION 7

90nm 65nm 45/40nm 28nm 20nm 16/14nm 10nm 7nm
$0.00

$1.00

$2.00

$3.00

$4.00

$5.00

C
os

t p
er

 1
00

M
 g

at
es

 in
 U

S
D

 (E
st

im
at

ed
 a

s 
of

 2
01

6)

$4.01

$2.82

$1.94

$1.30 $1.42 $1.43 $1.45 $1.52

Figure 1.2: Cost per 100 million gates across process technologies as of 2016 [20].

more flexibility but lower cost and power savings than their less-flexible counterparts. While
accelerators have uses in all process nodes, they are increasingly being used to improve per-
formance in older nodes while avoiding the increased tapeout costs associated with cutting-
edge nodes. This is especially useful for medium- and low-volume parts, which have trouble
recouping these costs.

The CPU-with-accelerator approach is an important data point on a spectrum of solutions
that provide chip designers options for trading flexibility for cost, energy-efficiency, or both
for a given application. Figure 1.3 illustrates a set of design paradigms that span the range
of flexibility options. General-purpose CPUs are the least energy-efficient as they rely on
pure software implementations of workloads and are unable to exploit temporal locality as
efficiently as specialized accelerators, requiring many data to be transferred to and from
DRAM multiple times. Systems targeting aggressive workloads will also require multiple
or large CPUs to meet the equivalent performance of more specialized solutions, increasing
their cost. Graphics processing units (GPUs) can be more energy-efficient than CPUs on
tasks with high levels of data parallelism, but this caveat inherently renders them less flexible
than CPUs. Popular modern workloads like deep neural networks and blockchain technology
are examples of these tasks with high levels of data parallelism.

Like GPUs, field-programmable gate arrays (FPGAs) can provide advantages over CPUs
for specific workloads. Unlike GPUs and CPUs, FPGAs are not programmed with software,
rather relying on the user to provide a hardware description to create custom connections
on a pre-fabricated logic array. The maximum clock frequency of an FPGA is usually lower



CHAPTER 1. INTRODUCTION 8

Tasks per Watt (arbitrary units)

P
ro

gr
am

m
in

g 
fle

xi
bi

lit
y 

an
d 

re
us

ab
ili

ty

CPU

GPU

FPGA

CPU w/ Accelerator

ASIC

Optimality

Figure 1.3: Pareto-optimal frontier of compute acceleration.

than that of a CPU or GPU—hundreds of Megahertz versus Gigahertz—but FPGAs can be
configured with custom data paths that perform computation in a single cycle equivalent
to many CPU instructions. These FPGA designs can be used in products, but for a given
number of logic gates, FPGAs are much larger and more expensive than application-specific
integrated circuits (ASICs) due to the configuration overhead, so products which use FPGAs
tend to be very low volume. While FPGAs are technically very flexible by virtue of being
highly configurable, the difficulty of programming them and the relatively low number of
people with the required skill set makes them a more specialized approach than either CPU
or GPU software programming. Purpose-built ASICs offer the highest level of customization,
performance, and energy-efficiency by offering the same custom data paths available to
FPGAs but with much higher clock frequencies and lower power. ASICs, however, cannot be
reconfigured in the field like FPGAs, making them the least flexible of all design paradigms.
The CPU-with-accelerators scheme combines aspects of ASICs with general-purpose CPUs,
resulting in a design that is slightly more flexible than a pure ASIC, but with additional
software programmability. By effectively utilizing this gamut of design styles, chip designers
can design in process nodes behind the leading edge to produce high-performance parts that
meet specific needs while maintaining cost efficiency.



CHAPTER 1. INTRODUCTION 9

1.2.3 Generator-based design

Generator-based design has become increasingly popular as specialized ASIC designs have
become more prevalent. Generators have been shown to improve the productivity of ASIC
designers [13–15] and will be an important design component for specialized ASIC designs
as they become commonplace. Generator-based design differs from a traditional design
methodology by focusing on the development of large classes of designs rather than a single
design instance. The productivity gains by this may seem counter-intuitive at first, but
the ability to change significant design parameters rapidly allows designers to defer critical
decision-making until more information is available.

This acceptance of late-binding changes is one of the principles in the Agile Manifesto [25],
a collection of principles for improving the efficiency of software developers written in 2001.
In the time since the Agile Manifesto has been written, Agile software development has
become commonplace in the software development community, and its success has inspired
hardware developers to follow suit. Several Agile hardware development methodologies have
been developed in recent years [10, 12], which focus on improving ASIC design productivity
through the use of generators and repeated full design iterations, called by the tongue-in-
cheek term “Tape-in.” The goal of a tape-in is to go through the full VLSI design process
up to and including generation of layout data without manufacturing any masks. This
process encourages the designer to automate many design flow elements and pipe cleans the
generators and physical design automation used to build the chip. Tape-ins align with the
Agile principle to deliver a working product frequently. Unlike software products, which are
inexpensive to patch and deliver frequently, ASIC designs are very costly to manufacture, so
rather than delivering the tape-in results to end customers, this process allows the designers
to have a working minimum viable product (MVP) ready at all times to manufacture if
needed.

Agile stands in stark contrast to waterfall development, which has traditionally been
the model for the semiconductor industry. Waterfall development requires developers to
freeze specifications early and pass design information to other groups, like water moving
down a waterfall. This works well if the architecture and microarchitecture specifications
can be frozen easily and the team is large enough, with a large enough volume of designs, to
keep the pipeline of work full. However, with modern workloads like deep neural networks
changing so quickly that software can become obsolete within a typical ASIC design cycle, the
long latency of waterfall methodologies becomes less attractive than Agile flows. Figure 1.4
illustrates the differences in Agile and waterfall development methodologies.

1.2.4 Chipyard: An Agile generator-based SoC flow

Chipyard7 [16] is a platform developed specifically for developing RISC-V [26] systems-on-
chip using an Agile methodology. Chipyard combines many tools and intellectual property

7https://github.com/ucb-bar/chipyard



CHAPTER 1. INTRODUCTION 10

Waterfall development:

Agile development:

Specification
Architectural design

Implementation
Verification and test

Support and maintenance

> 1 year

S
A

I
V

S

< 1 yearS
A

I
V

S

S
A

I
V

S

Figure 1.4: A comparison of Agile vs. waterfall development methodologies [11] (© 2018
Steven Bailey).

blocks (IP) developed at The University of California: Berkeley, along with external contri-
butions, to provide a base SoC platform using the Rocket Chip generator [27], which includes
a highly configurable in-order RISC-V CPU core, interconnect fabric, and SoC subsystem
IP. Users can start with a base configuration and add custom generator IP, modify the ex-
isting generator configurations, or swap in new CPU cores. An example out-of-order core,
The Berkeley Out-of-Order Machine (BOOM), is included. Chipyard supports custom IP
written in Verilog, SystemVerilog, or Chisel.

Chisel [28] is a domain-specific language for constructing digital hardware embedded
within the Scala programming language. Hardware construction languages differ from more
traditional hardware description languages in that they are programs that call functions
to generate hardware rather than being descriptions of the hardware itself. Some features
of hardware construction languages are available in hardware descriptions languages. In
Verilog or SystemVerilog, generate statements provide the user with simple construction



CHAPTER 1. INTRODUCTION 11

functionality, but this is limited to basic program building blocks like numeric for loops or
conditional blocks. Because Chisel is embedded within a modern high-level language with
rich object-oriented programming support, strong typing, and powerful built-in functional
programming support, users are able to build construction programs that leverage these
features to build generators that are succinct and provide complex configuration options. For
example, by passing functions as arguments to modules, users can inject custom hardware
in a type-safe manner without messy module interface manipulation.

The current version of Chisel, chisel3, produces an intermediate representation of the gen-
erated hardware known as FIRRTL [29]. No commercial CAD tools can currently consume
FIRRTL, but it is nevertheless a powerful tool that improves the usability of chisel3 over
prior versions of Chisel. There are multiple levels of FIRRTL; these range from high to low
and progressively become more restrictive, reducing the number of supported abstractions
at lower levels. This allows advanced users and compiler writers to interact with FIRRTL
at different levels of elaboration, providing the opportunity to transform or analyze the de-
sign during its compilation. The lowest level of FIRRTL is directly translatable to Verilog
and avoids complex statements like generate to ensure support across the widest range of
commercial and open-source CAD tools. The FIRRTL compiler utilizes a series of trans-
formations or passes to elaborate the design. By default, FIRRTL preserves the cycle-level
behavior of the Chisel design in the elaborated Verilog using a bare-minimum set of passes.
However, there are many uses for custom transformations that modify the logical behavior
of the circuit, such as introducing redundancy for resiliency or modifying the hierarchy of
the design. One such transformation is the conversion of FIRRTL’s memory primitive into
SRAMs for use in a VLSI flow. Designing generators for an Agile flow using SRAMs can be
challenging because the SRAMs usually have process- and dimension-specific module names
and ports. There are also often different SRAM configurations within a process technology
to support a range energy and performance criteria. By decoupling the SRAM instance
information from the logical source, written in Chisel, designers can describe how to map a
set of sizes to process-specific SRAM modules, converting what is effectively an O(n ×m)
problem into an O(n+m) problem. This is further explored in Chapter 4 and Chapter 5.

In addition to RTL generation, Chipyard includes a number of additional built-in flows
for other design activities, such as simulation, emulation, and physical design. A stan-
dard simulation flow exists for standard all-digital Verilog simulations with the simulator of
the user’s choice. More interestingly, Chipyard incorporates FireSim [30], a cloud-FPGA-
based, cycle-accurate simulation engine, which cost-effectively accelerates large simulations
to Megahertz-speed, a large improvement over pure software simulators. This simulation
speed is crucial for the fast decision-making that is required of Agile flows.

Chipyard’s physical design flow incorporates Hammer [17], a framework for creating
reusable physical design components for generator-based systems-on-chip. Hammer is dis-
cussed in greater detail in Chapter 4. The Hammer framework provides tool, technology, and
design abstractions to facilitate reuse of physical design collateral for generator-based flows.
This reduces the effort associated with transitioning a design to a new CAD tool vendor or
process technology and encourages re-use of physical design inputs for multiple designs that



CHAPTER 1. INTRODUCTION 12

share common generators.
Physical design is the process of scripting and constraining the place-and-route tool8

to implement the synthesized design. Physical design includes floorplanning, which is the
placement of macros, including SRAMs, as described above, along with other physical con-
straints like routing and placement blockages and guides. Nearly all designs will have some
amount of macro placement. Hammer provides an application programming interface (API)
for creating a floorplan in a tool-agnostic format using JSON9- or YAML10-based interme-
diate representation, or HammerIR. Hammer floorplans are predominantly written by hand
or via rudimentary scripts, but the automation of floorplans is an area of active research [18,
31]. Chapter 5 of this dissertation describes a method for generating floorplan data alongside
RTL in generator-based design flows.

The tools in Chipyard adequately handle most facets of digital chip design; however,
many aspects of analog or mixed-signal design are not addressed. All systems-on-chip in-
clude analog or mixed-signal IP to function, such as a phased-locked loop (PLL) for clock
generation, a voltage regulator for power supply regulation, a double-data rate (DDR) mem-
ory interface, or other type of off-chip interface. The Berkeley Analog Generator (BAG) [32]
is a Python framework for building process-portable analog IP generators. BAG is not inte-
grated into Chipyard, but is used to build many of the analog and mixed signal IP used on
Chipyard-based designs, such as BEAGLE [33], and the non-Chipyard designs described in
Chapter 2 and Chapter 3.

To use BAG, the designer creates a schematic that connects platform-agnostic design
primitives in a manner similar to traditional analog design. These design primitives are
typically devices like transistors, resistors, capacitors, inductors, or diodes, but can also be
more complicated groupings of devices. A set of primitive generators is then built once per
process technology and re-used by all designers who generate designs on it. The layout of
BAG designs is generated using a python script which utilizes BAG API calls to place the
device primitives and route analog wires between them. BAG currently does not implement
automatic routing like digital tools; instead, it relies on the user to provide a specific algo-
rithm to plan the routes. The analog wires need to be larger than minimum width to reduce
parasitic resistance, and designs will often have varied wire widths to optimize layout effects
and parasitics. These design scripts are written so that layouts can be generated iteratively
in order to converge to a design that meets given specs or to pass DRC. Nascent efforts exist
to automate this process further using machine learning techniques, specifically reinforce-
ment learning [34], and it is likely this will become more commonplace as this technology
matures.

8In some flows, synthesis is also topologically aware and may need some physical design input.
9https://www.json.org

10https://yaml.org



CHAPTER 1. INTRODUCTION 13

1.2.5 Challenges with generator-based design

While generator-based design flows improve many aspects of the design process, there remain
many unsolved challenges that are unique to such flows. Verification and floorplanning are
two significant challenges among these and are of particular relevance to the integrated circuit
design component of system design.

1.2.5.1 Verification

Digital chips are often verified using the Universal Verification Methodology (UVM) [35]
or similar method, which relies on a scoreboard to compare transaction-level data from
directed or constrained random input vectors to the output generated by the device under
test (DUT). A scoreboard is effectively a module that incorporates a known-good reference
model, or “Golden” model, to produce the desired output from an input stimulus. Designers
rely on RTL coverage statistics, measurements of the percent of possible states wires and
registers enter throughout the simulation, to gauge confidence in a design, often requiring
minimum coverage metrics before allowing a design to be manufactured. This process is
time consuming and only builds confidence in the specific instance being verified.

Formal verification [36] is a technique that complements constrained random verification
by formally proving that user-specified properties hold for an RTL design. When used
successfully, this allows verification engineers to cover cases that would take a large number of
random or directed tests to verify, if even possible at all. Formal verification is more difficult
to use, however, and is only successful with high quality properties and assertions. Formal
verification is also only appropriate for smaller designs, as run time scales exponentially with
design size.

Verification for generators currently uses these traditional verification methodologies on
generated instances, which becomes a productivity bottleneck when designers are required
to intervene to create new test cases or modify test benches or models for the instance under
test. Generator concepts have been shown to benefit verification [37], but using verification
generators still fundamentally requires re-running verification on each generated instance.
Ideally the generator itself would be able to be verified, which would certify that all generated
instances are correct, allowing designers to bypass the verification step for generated designs,
thus increasing productivity. However, such flows have yet to be implemented and are outside
the scope of this dissertation.

1.2.5.2 Floorplanning

Historically, integrated circuit floorplans have been developed manually by skilled physical
designers, who work with the RTL designers to understand the data movement between com-
ponents in the design. With this knowledge, physical designers choose locations for SRAM
macros to optimize timing and power, often seeking to minimize the physical distance from
sequential elements (SRAMs, flip flops, or latches). Physical designers must also account for



CHAPTER 1. INTRODUCTION 14

electrical issues like power distribution, placement of power gating and tap cells, and place-
ment of input-output (IO) devices that impact the die-to-package interface. More so than
with verification, small changes to generator parameters can have profound effects on the
floorplan of a design, especially if the change modifies the number of macros in the design.
For example, even in a conventional Verilog flow, it is possible to parameterize a cache size
so that a generate statement instantiates the required number of SRAM macros. In this
flow, every parameterization of cache would require a unique floorplan. Generated instances
which add or remove large amounts of placed-and-routed logic will also require floorplans
which increase or decrease the available area accordingly. This issue is exacerbated by the
productivity improvement afforded by generators written in high-level languages like Chisel,
which allow for much more dramatic design changes with relative ease.

To add to this, floorplans are process-specific by nature, meaning a floorplan in a given
process technology is not usable in another, although they may share some topology. This
poses a challenge not just to generator-based designs, but to any design that a designer
wants to port to a new process technology. One of the most significant impediments to
process portability is the use of SRAM macros. For the same dimensions and port types,
SRAM macros will have different aspect ratios and physical dimensions in different process
technologies due to changing bit cell and periphery cell dimensions. While this is not always
significant enough to change floorplan topology, it can be important enough to require a
different macro arrangement. Furthermore, the timing characteristics of SRAMs change
with feature size, shifting the optimal banking of large memory arrays and changing the
number and dimensions of the SRAM macros.

1.2.6 Floorplanning concepts

In a VLSI flow, the floorplan refers to the set of physical design constraints that determine
the physical arrangement of components on the die. The floorplan is typically conveyed
through a series of EDA tool commands, most often using the Tcl language. Figure 1.5
shows a visualization of a simple floorplan. While most logic circuit components are placed
by using an automated place-and-route algorithm, larger macrocells are manually placed by
the designer in the floorplan file. These macrocells can include custom digital logic, analog
or mixed-signal circuits, memories (e.g. SRAMs), or manufacturing structures like fiducial
markers. Macrocell placement is the primary focus of the floorplanning effort, as it has
the largest impact on quality-of-results. Placing two macrocells that interact logically too
far apart creates long synchronous paths with long delays, making timing closure difficult.
However, placing macrocells too densely restricts the placement of synthesized logic or signal
routing between them. This is most commonly observed with SRAM cell placement, as
there are typically many SRAM instances in a single digital circuit design which form logical
memory banks that need to be clustered together.

Placement of top-level pins also contribute significantly to the quality-of-results produced
by the place-and-route tool. For a logic block that is not a top-level chip, these pins are just
metal wires to be connected at another level of hierarchy, but for full-chip designs, these pins



CHAPTER 1. INTRODUCTION 15

pin placements using vertical routing layers

pi
n 

pl
ac

em
en

ts
 u

si
ng

 h
or

izo
nt

al
 ro

ut
in

g 
la

ye
rs

ho
riz

on
ta

l S
RA

M
 p

in
s

ho
riz

on
ta

l S
RA

M
 p

in
s SRAM 

macro

SRAM 
macro

SRAM 
macro

SRAM 
macro ho

riz
on

ta
l S

RA
M

 p
in

s

ho
riz

on
ta

l S
RA

M
 p

in
s SRAM 

macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

mirrored
abutment

orientation 
marker

SRAM 
macro

SRAM 
macro

placement 
blockage and 
routing halo

hard placement 
boundary

Figure 1.5: An example of a simple floorplan.

are either wire bond pads or solder bumps. Pin placement affects the coarse clustering of cells
by the place-and-route tool, which must organize the design into logically connected groups
based on the graph connectivity of the synthesized design. Similar to macrocell placement,
pins must be grouped logically to avoid long routing delays to the relevant logic elements.
For example, bits from a large bus should usually be grouped together, and if the bus has
its own clock, it should be close as well. Placing pins too closely, however, regardless of
connectivity, can lead to routing congestion, which manifests as a result of the routing pitch
being significantly smaller than either dimension of a minimum-sized driver cell.

Beyond macrocell and pin placement, floorplans contain a number of additional physical
constraints necessary to produce high-quality designs. These tend to be even more process-
and design-specific than either macrocell or pin placement. They include, among others,
power strap placement, routing and placement blockages, routing guides, and placement



CHAPTER 1. INTRODUCTION 16

pin placements using vertical routing layers

ModuleA

pi
n 

pl
ac

em
en

ts
 u

sin
g 

ve
rti

ca
l r

ou
tin

g 
la

ye
rs

feedthrough paths

ModuleB

ModuleA
inst0

ModuleA
inst1

ModuleA
inst2

ModuleA
inst3

ModuleA
inst4

ModuleA
inst5

ModuleB

ModuleC

ModuleD

TopModule

ModuleC and ModuleD are not shown and consist of a single 
level of hierarchy.

ModuleA is a “Multiply Instantiated Module” (MIM).

Feedthroughs are shown from TopModule through ModuleB 
to ModuleC as an example. These would be timing critical 
signals for ModuleC.

TopModule/ModuleB/ModuleA demonstrates multiple levels 
of hierarchy. ModuleC and ModuleD demonstrate a single 
level of hierarchy with abutment. Hierarchical flows can use 
one or both of these techniques.

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

SRAM 
macro

soft placement guide
for interconnect

soft placement guide
for interconnect

flip-chip solder bumps

IO
 c

el
ls

seal ring

Figure 1.6: An example of a hierarchical floorplan.

boundaries. Power strap placement is discussed in Chapter 4 and is important for optimiz-
ing available routing tracks with voltage drop. Routing and placement blockages prevent
the automatic place-and-route tool from using regions of the die for routing or automatic
standard cell placement. This may be done to meet certain design rules, to prevent a patho-
logical congestion issue, or for signal integrity reasons. Routing guides provide the converse
effect; they encourage the tool to utilize specific routing tracks for specific routes to im-
prove quality-of-results. Placement boundaries may be hard or soft, meaning that they are
requirements or suggestions, respectively, and are guides to the tool to place logic of a spe-
cific placed-and-routed module in a given boundary. These are used in lieu of a hierarchical
boundary for smaller modules that need to be isolated from other modules to meet timing,
routing, or power requirements.



CHAPTER 1. INTRODUCTION 17

VLSI flows, and floorplans, are either flat or hierarchical. A flat flow means that the entire
design is placed and routed entirely in a single tool run. A hierarchical flow splits the design
into sub-designs which are individually synthesized, placed, and routed and subsequently
incorporated into higher levels of the design. A sub-design at or above one million gates is
generally considered to be a candidate for hierarchical place-and-route [38]. For a sufficiently
large design, a hierarchical flow improves tool runtime and quality-of-results at the expense
of flow complexity. Floorplans for hierarchical designs require knowledge of the hierarchical
boundaries and require additional constraints, like pin placement for sub-blocks. Hierarchical
floorplans also may include feed-through paths, which are paths that are logically unrelated
to the hierarchical sub-block itself but connect neighboring elements together. An example
of a hierarchical floorplan is shown in Figure 1.6.

1.2.7 State-of-the-art placement and floorplanning

Placement has been an active area of research since the earliest digital integrated circuits and
continues to be an important, unsolved area of research [39]. Until recently, placement re-
search has focused on methods of improving placement of standard cells on flat designs [40,
41] or by using hierarchical approaches [42], but automated placement of macrocells has
traditionally resulted in inferior quality-of-results when compared to human-created floor-
plans. State-of-the-art automated mixed-size placement results as recent as 2019 [43] have
been shown to be inferior to human experts [18]. Many research groups are actively inves-
tigating the applications of machine learning for physical design and floorplanning [18, 31,
44]. Of these, reinforcement learning approaches appear to have merit, with recent work
showing reinforcement learning techniques can produce better quality-of-results than human
experts [18]. Machine learning has also been shown to assist physical design in other ar-
eas such as IR drop estimation [45], layout parasitics and device parameter prediction [46],
timing prediction [47], and clock tree prediction and optimization [48].

However, machine learning approaches have yet to become widespread, as many face steep
compute costs, require large training datasets, or require rare engineers with deep technical
expertise in machine learning and physical design. Many high-quality production designs
continue to use human-generated floorplans, but some commercial products use generated
floorplans [49]. Floorplan generators bridge the gap between fully automated placers and
hand-written floorplans.

1.3 Dissertation scope and outline

While RTL generators have been shown to improve the productivity of design engineers
through their expressivity, the implementation consequences of their use has not been thor-
oughly explored. To address this, a study of integrated circuit designs using such gen-
erators is required. This dissertation presents a series of systems-on-chip that have been
designed, manufactured, and tested to demonstrate the efficacy of generator-based ASIC



CHAPTER 1. INTRODUCTION 18

design methodologies, along with the methods used to create them, focusing on solutions to
physical design challenges that come with generator-based design. Chapter 1 has provided
the motivation for this work.

Chapter 2 and Chapter 3 describe a set of systems-on-chip manufactured in 28nm FD-
SOI and 16nm finFET, respectively. This set comprises a digital ASIC spectrometer and
a series of increasingly complex RISC-V systems-on-chip, starting with a single-core RISC-
V system-on-chip demonstrating on-chip dynamic voltage scaling (DVS) and culminating
with a 22-core heterogeneous RISC-V system-on-chip with specialized compute accelerators.
Challenges faced in building each of these designs either motivate or validate components of
the proposed design methodology and are listed following each chip description.

Chapter 4 describes contributions to a physical design framework tool (Hammer) inspired
by some of the aforementioned systems-on-chip and used in building the others.

Chapter 5 presents a novel annotation-based floorplanning framework that leverages
Hammer to ease physical design for generator-based designs by solving some of the key
issues with such designs.

Chapter 6 summarizes the key contributions presented in this work and outlines future
research directions.



19

Chapter 2

Integrated Circuit Designs in 28nm
FD-SOI

A silicon-on-insulator (SOI) process technology is a planar complementary metal-oxide-
semiconductor (CMOS) technology with the addition of a buried oxide (BOX), which isolates
the source, drain, and channel regions from the bulk silicon underneath. In a fully-depleted
SOI (FD-SOI) process technology, the semiconductor film containing the source, drain, and
channel regions is thin enough that the depletion region covers the entire film. This has a
number of advantages over traditional bulk CMOS, including reduced leakage and parasitic
capacitance, but most importantly, this allows enables a very wide range of body biasing
because the bulk silicon is isolated from the diodes in the devices. Body biasing allows
circuit designers to implement both energy-efficient and high performance circuits in a sin-
gle chip [50]. The integrated circuits discussed in this chapter are implemented in the ST
Microelectronics 28nm ultra-thin body and BOX (UTBB) FD-SOI technology.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 20

2.1 Splash2: Digital ASIC Spectrometer

Figure 2.1: Annotated Splash2 die micrograph [51] (© 2018 IEEE).

2.1.1 Background

Earth observation satellites use digital spectrometers to measure the planet’s atmospheric
composition [51]. Because of the low number of total units required, these digital spectrom-
eters are typically implemented using field programmable gate arrays (FPGAs) [52], which
provide lower development cost and allow design changes in the field. However, compared
to an application-specific integrated circuit (ASIC), FPGAs consume more power and are
more massive. Because satellites have highly constrained power and mass budgets, ASIC
solutions are more appealing than FPGAs yet are prohibitively expensive due to their low
volume. However, generator-based design approaches can lower the cost of ASIC designs,
making ASIC-based solutions viable.

Splash21 [51] is a generator-based digital ASIC spectrometer implemented in 28nm FD-
SOI. The digital logic is constructed using an early version of Chisel, Chisel2, and analog
components like the serial links and PLL are implemented using a standard analog design

1Steven Bailey led the Splash2 tapeout and testing. The author contributed the serial link transmitter
design and transceiver back-end RTL and assisted with top-level integration and layout.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 21

Parameters:	
adc_bitwidth	
p2_bitwidth	
3_bitwidth	
accumula6on_bitwdith	
read_out_bitwidth	
parallelism	
pipeline_depth	
p2_taps	
3_size	
minimum_sram_depth	
use_single_port_srams?	

Chisel	
Design	

Generator	

Input	
Test	

Vectors		

Output	
Test	

Vectors		

MATLAB	
Valida6on	

Generated	
Verilog	

Analog	
Designs	

ASIC	
Toolflow	

GDSII	

User	
Input	
Files	

Generated	
Files	

CAD	
Tools	 Key	

FPGA	
Synthesis	+	
Verifica6on	

Bin #
0 500 1000 1500 2000 2500 3000 3500 4000

Am
pl

itu
de

 (a
.u

.)

10 -3

10 -2

10 -1

10 0
Spectrum of input sinusoid with 8192 point FFT

C++	
Verifica6on	

Verilog	
Verifica6on	

Verifica6on	Implementa6on	

Figure 2.2: The Splash2 generator flow [51] (© 2018 IEEE).

flow. An annotated die micrograph of Splash2 is shown in Figure 2.1, and the generator
development flow is shown in Figure 2.2. The ASIC is verified by generating directed test
vectors and using a Matlab model to verify the correctness of the output spectrum. The
source Chisel code is simulated using a C++ simulator2, while the generated Verilog is
verified via FPGA implementation and through direct simulation. The ASIC physical design
flow uses a standard reference methodology with Synopsys EDA tools.

,

2.1.2 Architecture

Splash2 computes the spectrum of a signed 4-bit data stream. This data can either be
generated by an internal test vector generator (TVG), used for bring-up and testing, or
provided via 8 high-speed serial links [53], shown in Figure 2.3. When provided over the
high-speed serial links, the input data format can be mapped using a runtime-programmable
4x4 look-up table (LUT), allowing compatibility with different external components. The

2The C++ simulator back-end is no longer supported in modern Chisel releases (3.0+), which instead
encourages Verilog simulation using a Verilator3 or a proprietary simulator. Alternatively, Treadle4 can be
used to simulate FIRRTL directly.

3https://veripool.org/verilator/
4https://github.com/chipsalliance/treadle



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 22

Preamp

Preamp

50 Ω

50 Ω

RXP

RXN

VCM

SR
Latch

SR
Latch

Delay

Retiming
2

Digital
Preamp

CML 
Driver

TXP

TXN

TX

RX (3 variants)

2:16
Deserializer

2:16
Serializer

2

2

2

2

2[0]

[1]

fast_clk / 8

…

16

16

…

x8

16x816

16x8

PRBS
Checker
(BERT)

16

Tunable
Delay

Lane 
Map

16

16

PRBS

Square

Inhibit

LUT Lane
Map

32x4

To
 S

pe
ct

ro
m

et
er

Figure 2.3: The Splash2 ADC interface using serial links [51] (© 2018 IEEE).

serial links use an external calibration loop to adjust the clock phase, which is configured
each time the system is powered on.

Figure 2.4 shows the connection between the Splash2 die and an external analog-to-digital
converter (ADC), which provides an unsigned 3-bit data stream plus over/under-range bit.
Two serial link transmitters are used to provide an XOR modulation signal and an inhibit
signal to the ADC. The XOR signal is driven by a pseudo-random binary sequence (PRBS)
circuit, which is used to generate edges in the data stream for approximate DC balance and
clock recovery. The inhibit signal prevents the ADC from producing data, which effectively
propagates the XOR signal to the outputs X and Y. This allows the Splash2 die to align
PRBS circuits in each data channel for demodulating the XOR signal from the data stream
once inhibit is deasserted. Data is interleaved between the two data channels X and Y to
reduce the necessary serial link frequency, with the channels offset by half a unit interval
(UI).

The microarchitecture of the Splash2 digital spectrometer is shown in Figure 2.5. The
spectrometer input is selected from either the ADC interface or TVG and fed into a 4-tap
polyphase finite impulse response (FIR) filter bank (PFB) with 8-bit coefficients. The PFBs
are used to condition the data before it is sent to the fast Fourier transform (FFT) logic in 8-
bit format. PFB coefficients are compressed using delta compression, reducing the coefficient
storage from 32 KiB to 8 KiB.

The FFT instance is an 8192-point split architecture, with parallel biplex FFTs driving a
direct FFT to reduce hardware overhead, as shown in Figure 2.6. The FFT outputs thirty-
two 16-bit real and thirty-two 16-bit imaginary data per cycle. Synthesis retimes the two
pipeline stages in each FFT stage to optimize the critical path.

The FFT drives 64-bit accumulators, which accumulate over a programmable number of
spectra. Once accumulated, the data is stored in an SRAM buffer for slow read-out through



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 23

4 4

ref_in

HMCAD5831LP9BE

DATAICLK

X Y OCLK

INH

XOR

RX[3:0] RX[7:4]

TX0

TX1
SerDes

8192-
point 
FFT

32x4-bit
(real)

32x8-bit
(real)

4-tap 
PFB

Power + 
64-bit x 4096 
Accumulator

32x16-bit
(complex)

PLL

TVG

/ 64

Scan

Opal Kelly Shuttle LX1 
FPGA Board

Power

Custom   Motherboard

FMC

FMC

FMC

ASIC
Spectrometer

4-bit data + clk

Differential
signals

fast_clk

Figure 2.4: The Splash2 system block diagram [51] (© 2018 IEEE).

Accumulator

ControlControl

. . . . . .

Accumulator

. . . . . .

shift
log2(fft_points/parallelism)sync

i_data_in ...
0

p-1

q_data_in ...

FSM

lsb_data_out

usb_data_out

new_spectrum

integration_time

accum_trigger readout_offset

calibration_coeff

calibration_coeff

parallelism

parallelism

1
2

0

p-1

1
2

accum_bitwidth
readout_bits

clock_out

readout_bitwidth

max_integration_bits
accum_bitwidth

readout_bits

log2(accum_bitwdith - readout_bits)

...PFB

...PFB

...

...

...

...

CMA

CMA

...

...

^2

^2Split FFT
fft_points

real_inputs?
pipeline_depth

Split FFT
fft_points

real_inputs?
pipeline_depth

twiddle factors,
 mux control

sync, reset, hold,
readout_offset

adc_bitwdith

adc_bitwdith

pfb_bitwidth

pfb_bitwidth

fft_bitwidth

fft_bitwidth readout_bitwidth

num_taps
coeff_bitwidth

coeff_compression

num_taps
coeff_bitwidth

coeff_compression

Figure 2.5: The Splash2 spectrometer generator microarchitecture [51] (© 2018 IEEE).



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 24

coeffcoeff X X coeff

(n/p)
delay

(n/p)
delay

X

x(p)

data_in

coeff reg

+
 1
 0
-1

coeff

2 by (n/p) 
LUTcounter

2

coeff_bitwidth

PFB Coefficient Compression Scheme

fft_points (n)

parallelism (p)

...

num_taps

...

adc_bitwdith

pfb_bitwdith
Polyphase Filter Biplex FFTs

...stage 
1

stage 
log2(n/p)

twiddle

X

FFT Butterfly

twiddle factor gets
same bitwidth as
butterfly inputs

(n/p)/i 
delay

(n/p)/i 
delay

Switch (rate = (n/p)/i)

Biplex FFT Stage (i = 2^(stage number))

for real inputs, PFB outputs go to real 
and imaginary inputs of Biplex FFTs, 
halving their number but requiring the 

reorder block

bitwidths grow 1 bit per stage =>

Reorder (only for real inputs)

x(p/2) for complex inputs, 
x(p/4) for real inputs x(p/4)

...

stage 
0

stage 
log2(n/p)-1

...
(n/p)/4 
delay

(n/p)/2 
delay

i 
delay

Reorder Stage (i = 2^(stage number))

Direct FFT

x(1)

bitwidths grow 1 bit per stage => fft_bitwdith

p inputs...

stage 
1

stage 
log2(p)......

p outputs

... ...

MUX control generated from LUT
and cycle counter

stage 1 stage 2

FFT butterfly
Direct FFT Stages

example for p = 4,
twiddle factors get
same bitwidth as
butterfly inputs

pipeline_depth

pipeline
this

stage?
(pipeline
registers

not shown)

Figure 2.6: The Splash2 polyphase filter and streaming FFT generator microarchitecture [51]
(© 2018 IEEE).

the chip I/O, which occurs in parallel with the accumulation of the next result.

2.1.3 Results

The Splash2 die is fabricated in 28nm FD-SOI, measuring 1.8 mm by 2.3 mm. The serial
link receivers function with a bit error rate (BER) below 10-7 at 5 GHz double-data rate
(DDR) using a novel modified StrongARM architecture [54]. When using two separate 4-bit
channels, this corresponds to a maximum ADC frequency of 20 GS/S or a 10 GHz Nyquist
bandwidth. Using the internal TVG, the spectrometer logic functions up to 530 MHz, which
corresponds to 17 GS/s or an 8.5 GHz Nyquist bandwidth. The overall system is limited
to 1.5 GS/s due to clock noise injected into the serial link receivers when both circuits are
powered on. The Splash2 ASIC dissipates 1.0 W at 530 MHz and the ADC dissipates 4.2 W.

Figure 2.7 plots an unaccumulated output spectrum alongside an accumulation of 800
spectra, demonstrating both the correctness of the ASIC and the reduction in noise power
with longer accumulations. Table 2.1 compares Splash2 with state-of-the art ASIC spec-
trometers at the time of its publication.

2.1.4 Physical design challenges

The Splash2 ASIC contains a large amount of on-chip SRAM which is difficult to place
optimally. Figure 2.8 shows the floorplan of the ASIC. The cross-hatched rectangles repre-
sent macrocell placements, while the amorphous shapes surrounding them indicate areas of
standard cells which have been placed and routed by the EDA tool. With the exception of
the serial links, PLL, clock receivers, I/O cells, decoupling capacitors (decap), and fiducial
markers, which are annotated in the figure, all macrocells in this design are SRAMs. The
large number and varied dimensions of SRAMs in this design relative to its size require a
custom floorplan. Given that Splash2 is an instance of a generator with a wide parameteri-
zation space, the creation of this custom floorplan requires additional engineering overhead



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 25

Table 2.1: Splash2 compared with state-of-the-art ASIC spectrometers [51] (© 2018 IEEE).

Reference Splash2 [51] CICC ’15 [55] CICC ’09 [56]

Technology 28nm FD-SOI 65nm CMOS 90nm CMOS

Bandwidth 8.5 GHz 1.1 GHz 0.75 GHz

FFT Size 8192 pts 512 pts 8192 pts

Integrated ADC No Yes No

Total Power 5200 mW 188 mW 1500 mW†

FOM (pts·GHz)/mW 13.4 3.0 4.1

†Excludes ADC

A bold cell indicates the best metric in each category.

1E-4	

1E-3	

1E-2	

1E-1	

1E+0	

0	 125	 250	 375	 500	

Sp
ec
tr
um

	P
ow

er
	(n

or
m
.)	

Frequency	(MHz)	

1	Spectrum	
800	Spectra	Accumulated	

Figure 2.7: Splash2 measured spectra at a 1 GHz sample frequency [51] (© 2018 IEEE).



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 26

for each generated instance that is linear with the number of instances created. For example,
changing the number of points in the FFT or the size of the output buffer would change
the dimension and counts of the SRAMs present in the design. This overhead would be
dramatically reduced with a floorplan generator.

A second significant physical design challenge with the Splash2 ASIC is the placement of
the twiddle factor ROM, which is an array of constant coefficients used in the FFT algorithm.
This ROM is implemented using combinational logic gates, which creates a logic circuit with
high wiring density. Without intervention, this causes significant routing congestion during
the route step. A solution to this problem is the creation of a hard boundary for the twiddle
factor ROM module which is larger than the area of the otherwise unconstrained ROM
module, which allows the placement tool to relax placement to decrease wiring density. An
alternate solution is the use of a hardened ROM macro, which is similar in architecture to
an SRAM but with constant bit cells, but this solution is not generalizable to all instances
of combinational logic with similar routing issues. A floorplan generation platform must
therefore support this type of placement constraint.

All eight serial links back-ends on Splash2 are synchronous to each other because of the
requirement to assemble four bits of data striped across four lanes into a single word. This
makes timing closure difficult, as the clock skew across the entire die, even a relatively small
die, can be substantial. A better solution is to place the serial links closer together or to use
an ADC which outputs serial data rather than parallel data, which would allow the serial
links to operate in their own asynchronous clock domains.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 27

Twiddle 
Factor
ROM

Serial Link

PLL

SRAM

Decoupling
Capacitors

etc.

Clock 
Receiver

Fiducial markers

I/O cells

Figure 2.8: Splash2 floorplan showing the highly congested twiddle factor ROM and SRAM
macro placement.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 28

2.2 Hurricane1: A Dual-Core RISC-V SoC with DVS

SC-DCDC
Unit	Cells

Tile	1Tile	0

Vector	I$

Vector	RF

Rocket	D$ Rocket	I$

L2	Cache

Resiliency
Test	Site

SERDES	Lanes	(8x)

Thermal	Sensors

Digital
PLL

Figure 2.9: Annotated Hurricane1 die micrograph [57] (© 2020 IEEE).

2.2.1 Background

Consumers of modern technology have grown accustomed to steady improvements in perfor-
mance and functionality with each product release cycle without having to sacrifice battery
life. Battery life is a driving factor in device purchases, e.g. smart phones [58], because
needing to charge a device more than once a day, typically while its owner is sleeping, is a
major inconvenience. Absent a major advancement in battery technology, this imposes a re-
striction on device power consumption. This is a challenge for system-on-chip designers, who
must continue to improve compute performance for edge applications while staying within a
fixed power envelope.

The end of Dennard scaling [3] has reduced the ability to continue making performance
and power improvements by simply waiting for the next advancement in process technology.
Instead, the incremental power cost of increasing circuit performance must be offset using



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 29

architectural or circuit-level techniques, with the end goal of reducing energy per task irre-
spective of peak power. Dynamic voltage scaling (DVS) [59] is a technique to improve energy
efficiency in digital systems. The use of DVS translates an approximately linear reduction
in system performance into quadratic savings in switching energy and more-than-quadratic
savings in leakage energy, significantly lowering the energy per task as a result. Use of DVS
during periods of low application performance allows compute demand to be met at lower
energy operating points. This has been shown to improve overall system efficiency when
used in a system with a bounded throughput requirement [60].

The overall energy efficiency of a DVS system depends on both the conversion efficiency
of the voltage regulators and the ability of the system to predict and to react to upcoming
changes in the workload. An ideal DVS system transitions as quickly as possible when a
workload changes its compute performance requirements, as energy is wasted for the duration
of time the system remains in a sub-optimal DVS state.

DVS can also be applied to multiple regions on a chip simultaneously. Recent mainstream
products use platform-level regulators and per-core integrated low dropout linear regulators
(LDOs) to achieve 19% power savings [61]. In typical DVS applications, the voltage regula-
tion is performed off-chip. The number regions, or voltage-frequency domains, is therefore
limited by the available number of distinct supply connections allowed by the chip pinout and
packaging strategy. An alternate approach is to include the voltage regulators on-chip, but
this can be costly owing to the large amount of area necessary for passive devices like capac-
itors and inductors. One approach that mitigates this issue is the inclusion of passives in the
package [62]. An alternate approach foregoes a fixed direct current (DC) supply to obviate
the need for expensive on-die capacitors by using rippling, on-die switched-capacitor DC-
DC converters [63]. Voltage scaling can also be augmented with circuit-level error-detection
techniques to recover supply voltage margin [64].

Hurricane12 [57], shown in Figure 2.9, is a dual-core RISC-V system-on-chip implemented
in 28nm FD-SOI with integrated on-die DC-DC voltage converters and a high-speed serial-
link memory interface. The digital logic is constructed using Chisel2, as described in Sec-
tion 2.1, and analog components like the serial links and PLL are implemented using standard
analog design flow.

2.2.2 Architecture
3 Hurricane1, shown in Figure 2.10, comprises a dual-core, 64-bit RISC-V processor with a
custom vector accelerator, manufactured in a 28nm fully-depleted silicon-on-insulator (FD-
SOI) technology. Hurricane1 is the first reported RISC- V multi-core design to place each
core in its own voltage domain and utilize high-speed serial links for memory traffic. The
supply voltage for each core is provided by a bank of 24 on-chip switched-capacitor DC-DC

2Benjamin Keller led the Hurricane1 tapeout. Others contributed the DC-DC converter design and vector
accelerator design. The author contributed the serial link transmitter design and transceiver back-end RTL;
assisted with system-level RTL, integration, layout; and led testing for the manuscript.

3This section contains text that is © 2020 IEEE [57].



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 30

Async. FIFOs and level shifters between domains

CORE0 (0.5V-1V)

UNCORE
(1V fixed)

32KB Scalar
Inst. Cache

(Custom 8T 
SRAM Macros)

To/from 
off-chip 
FPGA 

SerDes 
ports 
and 

DRAM

Rocket Core

Vector Accelerator
Vector Issue Unit

Vector Memory Unit

int int int int

(16KB Vector RF uses eight 
custom 8T SRAM macros)

Crossbar
Scalar

RF FPU

int

ArbiterCounters Vout waveform 
reconstruction

Back-bias generator

FPU with Mixed-
Precision Support

Branch Prediction
1.0V
1.8V

24 switched-capacitor
DC-DC unit cells 

DC-DC controller

Vout

...

DCDC toggle

+

FSM
Vref

core clk

To scope

To scope

℃

32KB Scalar
Data Cache

(Custom 8T 
SRAM Macros)

16KB Vector
Inst. Cache

(Custom 8T 
SRAM Macros)

℃

℃

℃

TILE0
TILE1 CORE1 (0.5V-1V) Core voltages vary independently

Adaptive clock gen.

RX

TX

℃

℃

256KB Shared L2 Cache

Thermal sensors distributed 
throughout the die

Bank0 Bank1 Bank7...
Memory-mapped control 

registers are globally accessible

NWELL
PWELL

8 high-
speed 
serial 
links

S
E
R
D
E
S

Figure 2.10: Hurricane1 block diagram [57] (© 2020 IEEE).

converter cells [60] which can be bypassed if needed. This system includes the same DC-DC
conversion subsystem as [65], which is capable of switching modes within 2 µs. Each core
can be clocked by an externally-supplied clock or an on-chip adaptive clock generator [66].
The clock selection is made by writing the select value to a memory-mapped register using
the off-chip memory interface while the cores are in reset. The two cores share a 256KiB
L2 cache, which is in a separate, fixed voltage and clock domain [60]. The L2 cache is also
responsible for routing memory traffic to memory-mapped control and status registers. It
includes a set of counters that track how many total memory accesses have hit and missed.
The L2 cache has two possible paths for backing memory: a custom, low-speed, eight-bit
parallel interface or a bank of eight high-speed serial links. Consistent with our goal of
innovating at the circuit level while maintaining a functional system, the parallel interface is
included as a backup to the experimental high-speed interface. Each of these paths forwards
memory transactions to a separate FPGA board which contains the backing DRAM for the
system. The system also contains multiple, distributed ring-oscillator-based temperature
sensors [67] and a body-bias generator [68].

The Rocket applications processors are scalar, in-order, single-issue cores with five
pipeline stages [27]. This version of Rocket supports version 2.1-draft of the RISC-V RV64G
ISA variant with supervisor mode. These Rocket instances were generated from param-



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 31

Figure 2.11: Hurricane1 board photo.

eters chosen for a typical in-order, general-purpose core. It has a 64-entry branch target
buffer, a 256-entry two-level branch predictor, a return address stack, a two-cycle latency
on single-precision fused multiply-add (FMAs), a three-cycle latency on double-precision
FMAs, and separate 32KiB instruction and data caches. The Rocket core contains a set of
performance counters that track how many instructions have been retired and the number
of cycles executed.

The custom vector accelerator, Hwacha [69], is a configurable, multi-lane decoupled vector
pipeline optimized for an ASIC process that executes the Hwacha ISA version 3.8.1 [70]. In
this design, each core is configured with a single-lane variant. Hwacha more closely resembles
traditional Cray [71] vector pipelines than the SIMD units in SSE or AVX [72]. Hwacha
improves efficiency by offloading vector instructions from the scalar core to the vector unit,
allowing the scalar core to continue to execute in parallel and enabling the vector unit to
prefetch its own data from memory [73] effectively. Hwacha is connected to the scalar core
via the Rocket Custom Coprocessor (RoCC) interface [27]. This instance of Hwacha includes
four banks of 256x128 dual-port SRAMs for the vector register file, per-bank integer ALUs,
four double-precision FMA units, eight single-precision FMA units, sixteen half-precision
FMA units, eight master sequencer slots, a 16KiB vector instruction cache, and a single
128-bit wide port to the L2.

The cores operate independently and are cache-coherent. The SoC can execute programs
with multiple concurrently running threads with each core capable of performing its own
power management, which is done by setting its DC-DC configuration register to one of three
switching modes: 1/2 1V, 2/3 1V, or 1/2 1.8V [65]. These registers are memory-mapped



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 32

Frequency (MHz)

25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

V
ol

ta
ge

(V
)

1.10
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

Pass Fail

Figure 2.12: Hurricane1 DGEMM shmoo plot [57] (© 2020 IEEE).

and accessible by either core or the external memory interface. When adaptive clocking [66]
is enabled, the clock will automatically transition along with the changing voltage profile.

It is possible to write customized power management code for a specific application, but
this either requires building a specialized toolchain or embedding power management code
into the application code. A more productive approach is to use the standard, open-source
RISC-V toolchain to build the application and provide autonomous power management code
separately. To demonstrate such autonomous power management in this system, one core
is used as an applications core and the second core is programmed to act as a power man-
agement unit (PMU) for the first. The PMU can execute independent power management
code which monitors the performance and power utilization of the system by reading a set
of memory-mapped counters and control registers.

Switched-capacitor DC-DC converters offer the ability to perform direct power measure-
ments by monitoring the toggle rate of the switches within the converter [65]. In a contrasting
approach used by this work, architectural counters offer a prediction of near-future work-
loads [62, 74–76]. The set of counters implemented in this chip enables power management
by measuring the short-term off-chip memory bandwidth used by the L2 cache, the rate of
instruction execution, and the rate of energy consumption by the DC-DC converters. Prior
work has identified multiple classes of counters to observe the state of each core, queues, and
the memory system [62, 75]. This work utilizes cache miss counters to provide insight into
near-term core activity, as a cache miss will cause a core to be idle for hundreds of cycles.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 33

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
or

e 
Vo

lta
ge

 (V
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

0 20 40 60 80 100 120 140 160

In
st

ru
ct

io
ns

 re
tir

ed
 p

er
 c

yc
le

C
ac

he
 M

is
se

s 
pe

r 1
00

0 
In

st
ru

ci
to

ns

Time (ms)

Cache Miss Rate
Miss Rate Threshold
Instruction Retired Rate

Threshold =	1	miss	per	1000	
instructions

Memory-dominated phase

Figure 2.13: Hurricane1 DC-DC mode transitions in response to cache activity for a matrix
multiplication workload [57] (© 2020 IEEE).

Therefore, by using on-chip DC-DC converters with small response times, the core supply
can be lowered until the data is retrieved without losing state, after which the voltage can
be quickly increased to achieve the desired throughput. Although not demonstrated in this
work, other energy-saving techniques, such as reverse body biasing [68], can also be actuated
in a similar manner.

The PMU is programmable using standard C with header files that define the locations of
the performance and system monitor counters. The fully-featured PMU architecture enables
many experiments and studies on effective power management strategies in this system.
However, a more production-level system might instead include a tiny, feature-reduced core
as a dedicated PMU or, alternatively, use the OS or interrupts to run power management
code on one of the applications cores only a fraction of the time.

2.2.3 Results

Hurricane1 is fabricated in 28nm FD-SOI, measuring 2.8mm by 2.8mm. To run tests, the
chip is connected to an FPGA board for tethering, control, and backing memory. A photo of
the test setup is included in Figure 2.11. The chip is capable of running complex workloads
including booting Linux and running applications under operating-system support, through
both the slow parallel interface and a high-speed link. This system includes many features
of embedded systems that enable it to be an effective test platform for fine-grain adaptive



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 34

0 500 1000 1500 2000 2500 3000 3500
Millions of cycles

0

20

40

60

C
ac

he
 m

is
se

s
pe

r 1
00

0 
cy

cl
es

0.00

0.25

0.50

0.75

1.00

In
st

ru
ct

io
ns

 re
tir

ed
pe

r c
yc

le

0 25 50 75 100 125
Wall time increase (%)

25

30

35

40

45

50

55

60

65

70

75

D
yn

am
ic

 e
ne

rg
y 

re
du

ct
io

n 
(%

)

Poll frequency
1,000 cycles
10,000 cycles
50,000 cycles

Miss threshold
(per 1,000 cycles)

0.5
1.0
2.0
5.0
10.0
20.0
50.0

Figure 2.14: Hurricane1 architectural simulation of Linux boot and energy analysis at
0.9V/250MHz and 0.55V/50MHz operating modes [57] (© 2020 IEEE).

dynamic voltage and frequency scaling experiments. Table 2.2 demonstrates the efficacy of
this system compared to prior work.

The chip is tested by running a double-precision matrix multiplication and verifying
correctness while sweeping voltage and frequency to determine the optimal operating points
for the available power states. Figure 2.12 displays the results of the sweep of operating
points, outlining the optimal voltage-frequency curve. The non-monotonic behavior around
175 MHz is attributed to a small supply resonance observed on-die.

The most energy-efficient operating point at which the system operates error-free is
525 mV at 28.3 MHz and results in a core energy efficiency of 19.6 GFLOPS/W4. When
compared to our previous work [65], this work is less efficient in this application because the
cores are not clock gated and its larger die requires slightly higher minimum operating volt-
age. 5 This operating mode uses the second, full-featured core as a PMU. This core contains
inactive hardware like vector and floating-point units and is clocked at a fixed frequency; it
is therefore a pessimistic efficiency model for a comparable single-core system.

The effectiveness of the fully-programmable PMU is demonstrated with a program that
monitors the rate of L2 cache misses and the average number of instructions-retired-per-cycle
(IPC) of the compute core, changing the voltage mode of the compute core in response, while
keeping the L2 supply constant. In this experiment, the frequency is held constant, although
it is possible to implement adaptive clocking as in previous designs [65]. The PMU polls
these counters every 100 µs and records their values while the voltage of the compute core is
monitored with an external oscilloscope, as shown in Figure 2.13. Each time the counter is
polled, the current and prior cumulative cache miss counts are subtracted to determine the
miss rate. When the program detects fewer than one cache miss per 1000 cycles, it infers
that the compute core is in a compute-bound section of the application and thus increases
the voltage mode to the maximum, 900 mV. Otherwise, the program infers that the compute
core is in a memory-bound section and reduces the operating voltage.

Figure 2.13 illustrates this PMU program executing mode transitions while the compute
core performs a matrix multiplication, sized to fit in the L2 cache. This compute kernel is

51 GFLOPS = 1 Giga (109) floating point operation per second.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 35

Table 2.2: Hurricane1 compared with prior art [57] (© 2020 IEEE).

Reference
Hurricane1
[57]

JSSC ’17
[77]

IBM JRD ’15
[78]

Hot Chips ’11
[79]

Technology
28nm
FD-SOI

28nm
FD-SOI

22nm SOI 32nm

Off-chip
components

No No Yes Yes

AVS response time < 2 µs < 2µs 32µs ≈ 1000µs

Workload-
dependent DVS
algorithm

Yes No Yes Yes

Energy efficiency
(GFLOPS/W)

19.6 DP 41.8 DP - 3 DP*

*Estimated.

chosen to highlight two distinct program phases: A memory-dominated phase arising from
compulsory cache misses at the start of the program and a compute-driven phase after the
L2 is full. The behavior of workloads with more complex memory access patterns can be
extrapolated from the phases in this example.

The threshold of one miss per 1000 cycles has been set empirically for this application but,
given its programmable nature, can be tuned for different workloads. Using FireSim [30],
an architectural simulation of a similarly-configured core demonstrates this technique during
Linux boot, shown in Figure 2.14. While this first stage bootloader implementation spins in
a loop, causing IPC to stay near 1, the subsequent activity is shown to benefit from DVS.
From the simulated cache miss counter data and measured voltage and frequency data, the
relative changes to wall time, ∆t%, and dynamic energy, ∆E%, are modeled with the following
formulas. The time spent in the low voltage and frequency state, cycleslo,rel, is calculated
relative to the cycles in the high state, cycleshi, by scaling the instructions retired per cycle
when the miss rate is below the threshold, IPClo, by the ratio of high and low frequencies.
This calculation is shown in equation 2.1, equation 2.2, and equation 2.3.

cycleslo,rel = IPClo · cycleslo ·
fhi
flo

+ (1− IPClo) · cycleslo (2.1)

∆t% =
cycleshi + cycleslo,rel
cycleshi + cycleslo

− 100% (2.2)

∆E% = 100%−
cycleshi + cycleslo,eff · ( vddlo

vddhi
)2 · flo

fhi

cycleshi + cycleslo
(2.3)



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 36

Figure 2.15: Annotated Hurricane1 floorplan [80] (© 2017 Benjamin Keller).

A range of thresholds and polling frequencies, shown in Figure 2.14, allows for control
between a 69% relative energy savings for 113% additional wall time and a less aggressive
34% energy savings for only 6% additional wall time. By increasing the miss rate threshold,
the voltage state is changed less frequently and only when more or larger memory accesses are
performed, leading to an increase in idle time while the core voltage is high. Decreasing the
miss rate threshold causes the voltage state to be more sensitive to memory activity, which
may increase the non-idle time spent at the lower voltage state, thus hurting performance.

2.2.4 Physical design challenges

At 7.84 mm2, the Hurricane1 die is 89% larger than the Splash2 die at 4.14 mm2. For a
flat design, additional area increases tool runtime superlinearly. Hurricane1 contains two
identical CPU cores, which make it a good candidate for hierarchical design, as this can be
used to divide the design into three roughly equally-sized areas. Hierarchical design therefore
reduces the size of the design implemented in a single tool flow to one that is smaller than



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 37

Splash2.
However, this Hierarchical design methodology adds additional tool flow complexity

which is exacerbated by the use of Chisel2 for RTL generation. In a Verilog or SystemVerilog
design, it is known whether or not a particular hierarchical instance is modified in each design
iteration, which allows designers to re-implement only the modified design components to
save tool runtime. In a generated design, and in particular one using Chisel2, it is not always
easy or possible to modify the design in a way that deliberately preserves a given hierarchical
module. This means that the entire tool flow must be re-run for a given RTL change or the
user must manually run logical equivalency checking to guarantee a hierarchical cell has not
changed between physical design iterations.

The Hurricane1 floorplan is shown in Figure 2.15. The eight high-speed serial links6 add
multiple complexities to the physical design of Hurricane1, which are listed below.

• Each serial link requires a bias current. The chip receives a bias current externally
which is mirrored in a current mirror circuit and distributed to each serial link instance.
This routing requires special handling in the place-and-route tool to ensure it is shielded
and sized properly. This can be avoided by generating bias currents on-die using current
digital-to-analog converters (DACs), if the tolerance allows it.

• Each serial link macro corresponds to a memory channel that is driven by the L2 cache.
Because of the available pin locations, the serial links must be placed a certain distance
apart, which causes some to be further from the L2 cache than others. This results
in a design that either has a long critical path determined by the furthest macro
or an imbalance in the memory request latency if the design adds buffer registers
asymmetrically.

• The L2 cache is placed and routed hierarchically in this design. However, this causes a
large routing blockage to the serial links on the bottom edge of the die. This problem
can be avoided by placing and routing the L2 cache at the top level of the design.

6The serial links are labeled SERDES in Figure 2.15.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 38

2.3 Hurricane2: A RISC-V SoC with Dual-Lane

Vector Unit and DVS

DDR4
PHY

4x SerDes

4x SerDes

Scalar
Core

Vector
Unit

D
C

-D
C

 U
ni

t C
el

ls

L2$

PM
U

DC-DC
Control

DC-DC
Control

Figure 2.16: Annotated Hurricane2 die micrograph [81] (© 2020 IEEE).

2.3.1 Background

Hurricane1 demonstrated effective use of multi-core fine-grain dynamic voltage scaling, but
lacked key components necessary to fully realize its potential. The Hurricane2 system-
on-chip expands upon this technique with the addition of dedicated power management
hardware to control the voltage states of the on-die voltage converters. In lieu of a second
applications core, Hurricane2 includes a smaller RISC-V core which can actuate voltage
state transitions in response to observed behavior on die. To facilitate this, Hurricane1



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 39

includes additional microarchitectural counters to indicate patterns in cache activity and
power consumption [80].

Like Hurricane1, Hurricane27 [81] targets edge device applications. To maintain an equiv-
alent vector compute throughput to Hurricane1 with a single applications core, Hurricane2
includes a dual-lane vector unit, which can perform the same maximum number of floating
point operations per cycle as the two vector units on Hurricane1. Hurricane2 also includes
a DDR physical layer (PHY) macro and controller to allow the test chip to have realistic
DRAM latency when compared with a real productized SoC. Unlike Splash2 or Hurricane1,
Hurricane2 was built using an early beta version of chisel38, which provided many additional
features like multiple clock domain support. Native multi-clock support is an important
feature when building modern digital systems, especially ones with multiple voltage-clock
domains and high-speed off-chip I/O.

2.3.2 Architecture

Hurricane2 is a single-core, 64-bit RISC-V machine implementing the RV64G ISA9 with
the Xhwacha vector extension to program the included dual-lane vector accelerator. A
die micrograph is shown in Figure 2.16. This core and the vector accelerator are powered
independently by on-chip rippling switched-capacitor DC-DC converters [60] The clock for
each rippling domain is generated using an adaptive clock generator [66]. A reduced-feature
power management core is included to actuate voltage state transitions in these domains.
A system block diagram is presented in Figure 2.17.

The scalar core contains separate 16 KiB L1 instruction and data caches and the system
includes a unified 256 KiB L2 cache. The scalar core is capable of computing a single- or
double-precision fused multiply-add (FMA) each cycle. A dual-lane instance of the Hwacha
vector accelerator [70] is connected to the applications core using the Rocket custom co-
processor interface (RoCC). Each vector lane contains a 16 KiB vector register file (VRF),
a mixed-precision (half, single, double) FPU, integer support, a vector memory unit, and
a 4 KiB vector instruction cache. The vector register file is organized into four banks of
4KiB SRAMs, and the vector memory unit has a 128-bit bus which can fully saturate the
vector lane, allowing up to 16 bytes of data to be processed each cycle, corresponding to 4
double-precision, 8 single-precision, or 16 half-precision FMAs10 per cycle.

8Benjamin Keller led the Hurricane2 tapeout. Others contributed the DC-DC converter design and
vector accelerator design. The DDR PHY was donated by Cadence Design Systems. The author contributed
the serial link transmitter design and transceiver back-end RTL; assisted with system-level RTL, integration,
layout; and led testing for the manuscript.

8https://github.com/chipsalliance/chisel3
9Hurricane2 implements version 2.1 of the base ISA and version 1.9 of the privileged specification.

10One FMA is two floating point operations: multiply and add.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 40

All cores and accelerator lanes share the 4-bank, 8-way 256 KiB L2 cache. The backside
of the L2 cache can support one of three off-chip memory interfaces:

1. A low-speed, 4-bit parallel interface using standard I/O cells (LBWIF).

2. A high-bandwidth interface (HBWIF) [53] using 8 5 Gb/s serial links.

3. A DDR4 controller test site.

The configurable memory traffic switcher is able to select between these three interfaces at
runtime, allowing experimental memory interface test sites to be disabled in the event that
there is a functionality or power issue.

2.3.2.1 Power management

The power management unit (PMU) included on the Hurricane2 system-on-chip is an integer-
only Rocket core with separate 4KiB instruction and data caches and no privilege modes.
This core has access to the entire system memory map, allowing it to read counters measuring
a variety of data and control the voltage states of the scalar applications core and vector
unit. The L2 cache includes microarchitectural counters which count the number of L2
hits and misses and the number of outstanding transactions. Additionally, the system-on-
chip includes an array of novel ring-oscillator-based temperature sensors, NORTHS [67],
which provide spatial temperature information. The Hwacha vector unit also tracks the
type and number of instructions pending, the count of instructions in flight, and the number
of outstanding memory transactions, which allow the PMU to monitor the utilization of
the vector lanes. Along with the standard architectural control and status registers (CSRs)
mandated by the RISC-V specification, these registers provide visibility into all aspects of
the system utilization.

2.3.3 Results

The chip test environment is identical to that used for Hurricane1 except with a Hurricane2-
specific daughter card, which includes the packaged die and DRAM components. To deter-
mine the maximum operating frequency at various voltage levels, the DC-DC converters are
bypassed while the voltage is held at a fixed DC value. The core and vector unit are clocked
via an external clock generator while the clock frequency is increased until a self-checking
vector DGEMM test program fails. This frequency is recorded for each voltage level and
plotted in Figure 2.18.

The total energy per task is recorded by sampling current throughout a series of DGEMM
loops to determine the total energy. The most energy efficient operating point is found
to be 780 mV at 115 MHz. At this operating point the vector accelerator achieves 22.3
double-precision GFLOPS/W and runs 13× faster than on the scalar core alone. This is



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 41

Regulation and Clocking for 
Hwacha Voltage Domain

28 switched-capacitor DC-DC unit cells 

To DDR4 DRAM

Async. FIFOs + level shifters

Rocket Domain (0.5V-1V)

Uncore 
Domain

(1V fixed)

To FPGA GTX ports

Lane 0

Vector Memory Unit

int int int int

16KB Vector RF

FPU with Mixed-
Precision Support

1.0V
1.8V

DC-DC controller

Vout...

D
C

D
C

 to
gg

le

+

FSM

gen clk

1.0V

Adaptive clock gen.

Regulation and Clocking for 
Rocket Voltage Domain

Clock Counters

8 switched-capacitor DC-DC unit cells 

gen clk

Vout

RoCC

ArbiterDMA 
Engine

Rocket Core

X

F
D

M
W

16KB
ICache

FPU

RF

16KB
DCache

Branch Pred.
RoCC

4KB 
Vector
ICache

Hwacha Domain
(0.5V-1V)

Ve
ct

or
 C

on
tro

l U
ni

t

Lane 1

Vector Memory Unit

int int int int

16KB Vector RF

FPU with Mixed-
Precision Support

L1-to-L2 Crossbar

As
yn

c.
 F

IF
O

s 
+ 

le
ve

l s
hi

fte
rs

MMIO Router
Read/write all counters

and control registers

Power 
Management 

Unit

X

F
D

M
W

4KB
ICache

4KB
Scratch

pad

256KB Shared L2 Cache
Bank0 Bank1 Bank2 Bank3

SERDES

μArch
Counters

μArch
Counters

μArch
Counters

...
x8

SERDES

JTAG To Rocket Core 
Debug Unit

Digital 
IO Pads

Configurable Memory Traffic Switcher

DDR Controller/PHY

To FPGA GPIO

DAC

x2

Figure 2.17: Hurricane2 block diagram [81] (© 2020 IEEE). Note that the previously pub-
lished version of this diagram contains an error: The Rocket L1 caches are both 16 KiB.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 42

a 12.6× energy efficiency improvement over the scalar core, which achieves 1.76 double-
precision GFLOPS/W at this operating point11. 12 The vector unit also achieves 36.5 half-
precision GFLOPS/W at this operating point, but the scalar unit does not support native
half-precision arithmetic. A comparison of this system-on-chip with other state-of-the-art
chips is shown in Table 2.3.

The efficacy of the power management approach is demonstrated by comparing three
adaptive voltage scaling (AVS) algorithms, along with a control group with no AVS, across
three synthetic benchmarks. Each benchmark alternates between computing a median filter
and performing a general matrix multiply (GEMM) on either 24-, 64-, or 128-element square
matrices. The results of this experiment are shown in Figure 2.19 The first, Simple, replicates
the adaptive voltage scaling technique used in [65]. This algorithm observes the toggle rate
of the DC-DC converters, which is proportional to average current draw, and increases the
voltage mode when the toggle rate becomes more frequent than a programmable threshold.
Conversely, it decreases the voltage state once the toggle rate decreases below a separate
threshold, giving the control loop a programmable level of hysteresis.

The two other AVS algorithms, AVS1 and AVS2, demonstrate the efficacy of the mi-
croarchitectural counters included on the Hurricane2 system-on-chip by monitoring the L1
and L2 cache miss rates, respectively. When the monitored cache miss rate increases above
a programmable threshold, the power management code infers that the application core is
in a memory-bound execution phase and lowers the core voltage. Similar logic is applied for
low cache miss rates: Once the miss rates cross below a threshold, the application core is
assumed to be in a compute-bound phase, and the core voltage is increased. Low numbers
of cache misses can be caused either by heavily-compute bound phases or by idle loops.
The RISC-V instructions retired (instret) CSR can be used to differentiate between an idle
phase and a compute-bound phase.

The 24-element matrices fit entirely within the L1 cache, which quickly leads to no cache
misses once the cache has warmed. Because of this, the Simple AVS algorithm performs
worse than no algorithm at all, since there is no need to lower the core voltage due to cache
misses. The AVS1 and AVS2 algorithms effectively do no voltage state changing once the
cache has warmed, so it is unsurprising that they perform similarly to no AVS algorithm.
The 64-element matrices fit in the L2 cache, but not the L1, which causes all L1 cache
misses to hit in the L2 after warming, leading to mispredictions of low activity and causing
the AVS1 algorithm to perform worse than AVS2. As the 128-element matrices fit in neither
cache, L1 misses translate more frequently to L2 misses, which causes the AVS1 and AVS2
algorithms to perform similarly. The Simple AVS algorithm only performed better than no
AVS at all for matrices of this size.

12This calculation includes the leakage from the vector unit, which is unused during the scalar core
measurement, so the improvement, while real, is artificially high.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 43

Figure 2.18: Maximum operating frequency versus core supply voltage on Hurricane2 [81]
(© 2020 IEEE).

Table 2.3: Hurricane2 compared with prior art [81] (© 2020 IEEE).

Reference
Hurricane1
[57]

Hurricane2
[81]

JSSC ’16
[65]

JSSC ’15
[60]

APEC ’14
[82]

ISSCC ’17
[83]

Technology
28nm
FD-SOI

28nm
FD-SOI

28nm
FD-SOI

28nm
FD-SOI

22nm
FinFET

28nm
FD-SOI

Die size
(mm2)

7.84 16.7 3.03 2.37 160 1.87

Off-chip
compo-
nents

No No No No Package N/A

Peak
energy
efficiency

19.6 GD-
FLOPS/W

36.5 GH-
FLOPS/W

41.8 GD-
FLOPS/W

26.2 GD-
FLOPS/W

Unspecified
10
TOPS/W †

DVS
transition
time (µs)

0.5 0.5 0.5 N/A 0.5 Unspecified

Voltage
domain
granularity

2.5 mm2 0.5 mm2 3.03 mm2 2.37 mm2 < 0.5 mm2 0.9 mm2

† 1 four-bit MAC = 2 operations



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 44

1.00 1.00 1.00

1.19
1.07

0.89

1.05
0.93

0.77

0.99

0.85
0.77

0

0.2

0.4

0.6

0.8

1

1.2

1.4

DGEMM 24 DGEMM 64 DGEMM 128

N
or

m
al

iz
ed

 E
ne

rg
y/

Ta
sk

None

Simple

AVS L1

AVS L2

Figure 2.19: Comparison of Hurricane2 AVS algorithms [81] (© 2020 IEEE).

2.3.4 Physical design challenges

The Hurricane2 floorplan is shown in Figure 2.20. The Hurricane2 physical design flow fixes
a number of issues present in the Hurricane1 flow. The L2 cache is no longer a hierarchical
cell, fixing challenges with memory bus routing to the serial links. The serial link lanes
are individually placed and routed as hierarchical cells that are integrated into the top-level
design, allowing the floorplan of the individual lanes to be optimized separately from the
top-level and reducing the complexity of the top-level place-and-route. The serial links are
split into two dense banks with individual bias currents, reducing the amount of analog
routing in the top level of the design and reducing the spatial distribution of memory bus
wiring.

However, Hurricane2 is significantly larger than Hurricane1 at 16.77 mm2and 7.84 mm2,
respectively, an increase of 113%. Much of this area is contributed by the DDR PHY, which
is 35% of the total area of the Hurricane2 die and roughly half of the additional area relative
to Hurricane1. The addition of the DDR PHY and controller adds significant complexity to
the physical design flow, as it requires additional clock constraints, boundary I/O constraints,
and power connections13.

The L2 cache in Hurricane2 is 256 KiB, despite the floorplan being sized for a 512 KiB
L2 cache, as can be seen in Figure 2.20. This is because the routing congestion between the
cache and the compute modules (scalar core and vector unit) becomes significant enough to

13The DDR PHY power connection was a specific problem for Hurricane2: A misunderstanding with the
integration of the third party DDR PHY led to a disconnected analog power supply within the PHY which
rendered it inoperable. An attempt was made to use a focused ion beam (FIB) to repair a small number
of parts to no avail. It is for this reason that all measurements in this document use the other memory
interfaces.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 45

prevent the routing tool from producing a correct design14.
Hurricane2 is assembled by using a flip-chip process and a ball grid array (BGA) pack-

age15, unlike Splash2 or Hurricane1, which use wirebond processes. In a wirebond process,
a machine attaches small wires to bond pads on the chip and bond pads on either a package
substrate or the printed circuit board (PCB) itself. For many academic chips, wirebonding
directly to a PCB is the most logical option due to its low cost. However, bond wires have
significant inductance which limit data rates and cause supply voltage to drop (or spike)
when there is a large increase (or decrease) in activity due to Faraday’s Law. Wirebonding
also requires the chip I/Os to be placed along the perimeter of the die. For large dies this
has two consequences:

1. The center of the chip is far away from the power connections, increasing the effective
power grid resistance and causing an unwanted voltage drop gradient.

2. The number of I/Os becomes severely limited relative to the logic complexity. This is
demonstrated in equation 2.4, which indicates that the I/O count is proportional to
the die perimeter. By comparison, the I/O count of a flip-chip circuit is proportional
to the area, as demonstrated in equation 2.5.

NIO,wirebond ∝ Wdie +Hdie (2.4)

NIO,flip−chip ∝ Wdie ×Hdie (2.5)

In a flip-chip assembly process, the die is manufactured with small solder bumps across
the entire surface. The die is “Flipped” solder-side down onto a package and heated to melt
the solder. The package has a larger pin pitch that is more suitable for PCB assembly than
the fine solder ball pitches on the die. By using a lower cost fabrication process than the die
itself for the package, this technique compromises I/O density with cost. The large number
of I/Os in the DDR PHY required the use of flip-chip on Hurricane2.

14Routing tools will abort after a certain number of iterations, leaving a design with open or short circuits.
15It was unknown at the time of tapeout if Hurricane2 would be packaged. To de-risk the project, a subset

of I/Os were also connected to wirebond pads, which can be seen in the die micrograph in Figure 2.16.



CHAPTER 2. INTEGRATED CIRCUIT DESIGNS IN 28NM FD-SOI 46

Figure 2.20: Annotated Hurricane2 floorplan [80] (© 2017 Benjamin Keller).



47

Chapter 3

Generated Multicore
Systems-on-Chip in 16nm FinFET

The FinFET is a three-dimensional transistor developed to solve problems with the perfor-
mance and manufacturing of SOI devices [84]. FinFET technologies saw commercial use
starting at the 16nm node and, at the time of this writing, are planned for nodes through
3nm [85]. The FinFET transistor provides significantly more control over the channel due to
its geometry, leading to lower leakage than a planar technology with an equivalent gate ca-
pacitance. Systems-on-chip manufactured in FinFET technologies are ubiquitous in products
today.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 48

3.1 Eagle: An 8-core Generated RISC-V SoC

Ti
le

 4

Ti
le

 5

Ti
le

 6

Ti
le

 7

256 KiB 
L2 

Cache

256 KiB 
L2 

Cache

Ti
le

 0

Ti
le

 1

Ti
le

 2

Ti
le

 3

256 KiB 
L2 

Cache

256 KiB 
L2 

Cache

3 MiB
L3 Cache

Crossbar

Ser
Des

Ser
Des

Ser
Des

Ser
Des

Ser
Des

Ser
Des

Ser
Des

Ser
Des

Core 
8

Scratch
-Pad

4.
9 

m
m

4.9 mm

Figure 3.1: Annotated Eagle die micrograph [86] (© 2021 IEEE).

3.1.1 Background

Prior Chisel-based test chip designs demonstrate the efficacy of a generator-based approach
to building systems-on-chip, but these designs lack the size and complexity of productized
edge systems-on-chip needed to run modern workloads like deep neural networks (DNNs).
Eagle1 [86], shown in Figure 3.1, is a multicore edge system-on-chip generated using Chisel
and the Berkeley analog generator (BAG) to prove the scalability of this methodology. In
addition, Eagle includes many system features absent in the prior academic test chips pre-
sented in this work, including a boot ROM, standard I/O peripherals like SPI and I2C,
JTAG, and 3 levels of cache hierarchy.

1Eagle was co-led by the author and Colin Schmidt. Zhongkai Wang led the serial link development with
the help of others. SiFive donated the multi-level cache generator.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 49

Hammer

BAGChisel Generators PD Collateral

GDSII

PCB Design

FPGA Config

Chip Bringup

Firrtl Passes

Chip
Cluster

Tile

Synthesis

Floorplan

Place & Route

Meet
PPA?

Harden Macro

Synthesis

Floorplan

Place & Route

Harden Macro

Synthesis

Floorplan

Place & Route

Harden Macro

Hammer Configuration

RocketChip

SiFive Blocks

Custom Chip RTL

SiFive Cache

TestChipIP HBWIF

Hwacha

Group Dedupe Memory 
Mapping

Floorplan

Timing 
Constraints
Hierarchy

Adjustment
PPA

Tuning

Top Level
Specifictation

Design 
Equations & 
Parameters

Device Sizing

Schematic Gen

Layout Gen

Extract & Sim

No Meet
Spec?

Yes

Verification &
Macro

Hardening

Macro Integration Macro Integration Signoff

Meet
PPA?

Meet
PPA?

I/O
Config

Figure 3.2: Eagle chip generation flow.

Eagle is developed using a novel physical design framework, Hammer [17], which is de-
scribed in greater detail in Chapter 4. This design flow is presented in Figure 3.2. A key
contribution is the automated approach to hierarchical design, which augments commer-
cial EDA tools with a technique to modify the design hierarchy and create build rules for
streamlining the implementation and integration of hierarchical cells within the flow.

3.1.2 Architecture
2 The Eagle system-on-chip is manufactured in TSMC 16nm finFET and measures 4.9 mm
by 4.9 mm, as shown in Figure 3.1. Eagle contains eight application cores, one system

2This section contains excerpts that are © 2021 IEEE [86].



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 50

Figure 3.3: Eagle block diagram [86] (© 2021 IEEE).

management core, eight serial links, and three levels of cache, as shown in Figure 3.3. The
application cores comprise one scalar RISC-V processor and a decoupled vector accelerator.
The application cores measure 332 mm by 1658 mm with a routed gate density of 64.1%.
The scalar processor is a single-issue, in-order, 5-stage processor implementing the RV64GC
ISA and is capable of up to 2 floating point operations per cycle. The cores additionally
support a non-standard Hwacha extension to interface with the vector accelerator, which
is shown in Figure 3.4. This vector accelerator supports double-, single-, and half-precision
floating point operations, with a maximum of 8, 16, and 32 operations per cycle, respectively,
per lane. Such variable precision is useful for both inference and training [87]. Each lane
uses a banked memory structure with bank-local compute units for simple arithmetic, and
longer latency functional units shared amongst banks as shown in Figure 3.4. The lanes
are computationally balanced such that a fully saturated memory interface can match the



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 51

Hwacha Decoupled Vector Accelerator
Scalar Unit

Scalar 
Execution
Unit (SXU)

Vector Lane 0

Vector Execution
Unit (VXU)
Sequencer/
Expander

v p

Vector Memory
Unit (VMU)

Master Sequencer

To
 R

oc
ke

t

Scalar
Memory

Unit
(SMU)

s

a

8 KiB
L1 
VI$

To L2 Cache

O
pe

ra
nd

 X
ba

r

Pr
ed

 X
ba

r

Operand
Latches

Predicate
Latch

A
LU

A
LU

PL
U

PL
U

Bank0

Bank1

Bank2

Bank3

BRQ

BWQ

BPQ

Scalar
Operands

Bank µops

Bank0
Ctrl

Bank1
Ctrl

Bank2
Ctrl

Bank3
Ctrl

R W Fn
Expander

To VFU0, VFU1

From Master
Sequencer

LRQ

LPQ

FMA0
FConv

IMul

FMA1
FCmp

VFU0

VFU1

VFU2

VGU

VSU

VLU

VVAQ VSDQ VLDQ

V
P
U

To
VMU

Operands
Predicates

Sequencer

From Expander

FDiv/FSqrt
IDiv

Reduce

To/From Master Sequencer

VPQ

PRF

VRF

Lane

Figure 3.4: Block diagram of the Hwacha vector unit on Eagle [86] (© 2021 IEEE).

arithmetic throughput of two ongoing FMAs that each use a single scalar input and two
vector inputs, as would be found in the inner loop of a matrix multiplication kernel. The
different precisions supported by the programmable-precision vector unit can be intermixed
freely in code and fully interoperate. Each register in the machine has an assigned precision
that determines the functional units used, how memory accesses should be performed, and
what conversions, if any, should be applied. The registers can be reassigned a precision by
the programmer at any point, and the vector unit will repack the register file to preserve
efficient access patterns under the new assignment. The overall throughput of the vector
unit is determined by the precision of its operand registers, with the machine supporting
multiple precisions simultaneously at the cycle-level.

The application cores have a 16 KiB L1 instruction cache, a 16 KiB L1 data cache, and
an 8 KiB L1 vector instruction cache. These L1 caches and the vector memory unit are
backed by an inclusive, unified 256 KiB L2 cache that is shared between two cores, which
collectively form a cluster. Within a cluster, the L2 cache runs at half the core frequency
and communicates synchronously with the cores. Each cluster operates in its own individual
voltage and frequency domain, which is asynchronous with the rest of the chip. There are
a total of four clusters, and all are backed by an inclusive, unified 3 MiB L3 cache. The
system also contains a ninth core, the system management core, which is a different generator



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 52

Test Chip

VITA 57.1 FMC

DRAM

DRAM

GPIO TSI

TSIJTAG

GTY
(links)

Arbiter DDR
PHY

UART

SerDes UART

DDR
PHY

Rocket Core
running Linux

FPGA
FPGA Board (VCU118)

Custom Test Board

Clock 
Generatror

SMA 
Clocks

Voltage 
regulatorsI2C

µSD Card

µSD CardSPI

UART UART-USB
Bridge

USB

SPI

Reset 
Button

Figure 3.5: Eagle test setup and block di-
agram [86] (© 2021 IEEE).

Reset

µSD 
card

Uncluster
clock

Settings
jumpers

SerDes 
clock

Non-core 
VDD 

jumpers

Core VDD 
probe points

FMC

FPGA

FPGA 
board

Die

Figure 3.6: Eagle test board on lab
bench with labeled components [86]
(© 2021 IEEE).

configuration that supports a less complex ISA, RV64IMAC, has only 4KiB L1 caches, no
L2 cache, no vector accelerator, and lacks user mode. Its L1 caches are backed directly by
the L3 cache. The system management core has access to all the system control registers
and memory space and is responsible for bringing the application cores out of reset and
controlling on-board regulators over I2C and GPIOs. All of the cores are debuggable over
JTAG. An on-board scratchpad memory is used by the system management core to load a
bootloader from a microSD card over the SPI interface.

The L3 accesses main memory over the 8 serial links or a low-speed 4-bit-wide backup
interface. The selection of a main memory interface is made at runtime through memory-
mapped registers. Both of these interfaces communicate with a host FPGA board, a Xilinx
VCU118, through a custom VITA57.1-compatible PCB with an FMC connector. The FPGA
is programmed with logic that transforms the custom memory protocols used by these in-
terfaces into memory requests to the host FPGA’s DRAM controllers. The FPGA contains
additional dedicated logic to access the chip’s debug interfaces, including UART, JTAG,
and GPIOs, which is controlled by a generated soft RISC-V core running Linux on the host
FPGA.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 53

Figure 3.7: Eagle maximum frequency and GEMM energy efficiency [86] (© 2021 IEEE).

3.1.3 Results

The development of Eagle took 3 full-time and 4 part-time students approximately 7 months
from concept to tapeout using an agile design methodology as shown in Figure 3.2. The SoC
is a generated instance from a chip generator written in Chisel leveraging many pre-existing
open-source Chisel RTL generator components in addition to new RTL generator components
developed for this project. The clock generators, PLL supply regulators, and SerDes TX
and RX blocks were generated using BAG. The Chisel generators use FIRRTL to produce
synthesizable RTL and other ASIC design collateral, including memory map files, technology
SRAM wrappers, and a Linux device tree string. Several additional FIRRTL passes are
included to perform the technology SRAM mapping and to reorganize the logical hierarchy of
the chip into the desired physical hierarchy, which is desirable when reusing existing RTL and
for separating the logical definition of a circuit from underlying physical implementations.
The physical design and physical verification flow is built using Hammer [17] on top of
commercial synthesis and place-and-route tools. Hammer consumes physical design inputs
such as floorplan files, timing constraints, and flow configurations in high-level, tool-agnostic



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 54

Table 3.1: Eagle compared with prior art [86] (© 2021 IEEE).

Ref.
Eagle
[86]

ESSCIRC ’16
[65]

VLSI ’19
[88]

VLSI ’19
[89]

Technology 16nm FinFET 28nm FD-SOI 16nm FinFET 16nm FinFET

Die size (mm2) 24.01 3.03 25 15.25

Total Cores 9 2 3 496

ISA
RV64IMAFD
Xhwacha4

RV64IMAFD
Xhwacha3

Armv8-A RV32IM

Total SRAM 4.5 MiB 80 KiB 9 MiB 2MiB

# Transistors 125M gates 568K std cells >0.5 B 385M

Theoretical Peak
Perf.†

368.4
GH-FLOPS

3.188
GD-FLOPS

16
GS-FLOPS

695 GRVIS

Peak energy
efficiency†

209.5
GH-FLOPS/W

41.8
GD-FLOPS/W‡

58.7
GOPS/W

93.04
GRVIS/W

Floating-point
Precisions Supported

Half, Single,
Double

Single, Double
Half, Single,
Double

None

Max Clock Frequency 1.44GHz 797MHz >1 GHz 1.4 GHz

†Software programmable

‡No variable precision; GH-FLOPS/W will be similar

1 GRVIS = 1 Giga (109) RISC-V instructions per second.

data structures and uses APIs to generate scripts and other collateral needed to run a
full physical design flow. The high-level APIs allowed different generator designs to be
built quickly and evaluated for their power, performance, and area characteristics. Hammer
provides mechanisms to give the user full control over the generated scripts by inserting
custom command sequences before or after flow API steps or by replacing the steps entirely.
As the generator design matures, this enables fine-tuned physical design optimizations to
be put into place to produce an equally optimal design as a traditional, non-Hammer flow.
Because the entire flow supports generators, smaller versions of the SoC were built and tested
early in the design process, which allowed all team members to work on their contributions
simultaneously. This enabled many iterations of each component to be elaborated, tested,
and pushed through physical design and allowed collection of partial results to drive flow
enhancements after each run.

A block diagram of the test setup is shown in Figure 3.5, and a photo of the test board
with annotated components is shown in Figure 3.6. The maximum measured operating fre-
quency of the cores is 1.44 GHz at 1.00 V. Figure 3.7 illustrates the maximum operating



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 55

frequency and energy efficiency across the range of functional supply volatges. Per-cluster
energy-efficiency is measured by running a dual-core matrix multiplication (GEMM) bench-
mark in a loop which transmits cycle and iteration counts over UART, while measuring
cluster supply current. The cluster supply voltage and frequency are swept until failure
while the uncluster (L3 and peripherals) is kept at 0.8 V and 100 MHz. GEMM is chosen
as a benchmark because static timing analysis shows that the core critical path is through
the vector floating point unit. In this design, the vector data bandwidth is limited to 50% of
theoretical peak by L2 cache frequency division. A wider vector data L2 port would correct
this, doubling the energy efficiency over these results for long vectors. At the most efficient
operating point, 339 MHz at 0.55 V, the chip runs double-precision matrix multiplication
(DGEMM) at 56.5 GFLOPS/W, single-precision (SGEMM) at 92.3 GFLOPS/W, and half-
precision (HGEMM) at 209.5 GFLOPS/W, which correspond to 34.4%, 34.5%, and 33.0% of
theoretical peak vector performance, respectively. This beats the state of the art, as shown
in the comparison in Table 3.1.

3.1.4 Physical design challenges

3.1.4.1 Floorplan

While Hurricane1 and Hurricane2 were small enough to not strictly require hierarchical
physical design, Eagle is sufficiently large at 125 million gates and 24.01 mm2in 16nm FinFET
that hierarchical design is mandatory to implement the chip. Eagle’s chip-level floorplan is
shown in Figure 3.8. As shown in Figure 3.2, Eagle uses a multi-level hierarchical design
flow. The hierarchical relationships are illustrated in the diagram in Figure 3.9. The top-
level contains 4 cluster cells, 8 serial link lane cells, 1 system controller cell, and 1 boot
ROM cell3. Eagle uses a custom FIRRTL transform, GroupAndDedup, to modify the
design hierarchy during FIRRTL compilation. This is very useful as it allows the designer to
continue to write code with logical hierarchies that are intuitive, while keeping the generated
hierarchy that makes sense for physical design. The cluster, tile, and serial link lane modules
all make use of this feature.

The cluster and tile floorplans are shown in Figure 3.10. The serial link floorplan is
shown in Figure 3.11.a, alongside a GDSII4 in Figure 3.11.b), which shows in greater detail
the power grid and inductor layouts in the serial link transmitter and receiver. The serial
links are placed along the left and right edges of the chip to allow the differential signal traces
to escape without requiring a vias on the board, which can add transmission line stubs and
cause unwanted reflections. Using only the left and right edges and excluding the top and
bottom allows a single layout of the serial link lane, which is mirrored on the right side. This

3While the boot ROM is small, making it a hierarchical cell allows it to be replaced without re-
implementing the entirety of the top-level design. This is useful if the boot ROM code is under development
and needs to be replaced. This accomplishes a similar goal to that of a via-programmable ROM, except that
it cannot be replaced after tapeout. A via-programmable ROM would be a superior choice for this purpose,
but one was not available at the time of Eagle’s construction.

4GDSII is the file format for mask data



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 56

Serial 
Link 
Lane

Serial 
Link 
Lane

Serial 
Link 
Lane

Serial 
Link 
Lane

Serial 
Link 
Lane

Serial 
Link 
Lane

Serial 
Link 
Lane

Serial 
Link 
Lane

SMC

Ti
le

 0

Ti
le

 1

Ti
le

 2

Ti
le

 3

Ti
le

 4

Ti
le

 5

Ti
le

 6

Ti
le

 7
Cluster 

0
Cluster 

1
Cluster 

2
Cluster 

3

3 MiB L3 Cache

Bank 0

Data
SRAMs

Directory
SRAMs

Bank 1 Bank 2 Bank 3

Scratchpad
SRAM

Crossbar

PLLPLL

I/O Cells

I/O Cells

5000 µm

50
00

 µ
m

Figure 3.8: Annotated Eagle chip floorplan. Dimensions shown are as drawn before a 98%
optical shrink.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 57

Cluster Serial Link

System Control
Unit Boot ROM

Serial LinkSerial LinkSerial LinkSerial LinkSerial LinkSerial LinkSerial Link
Lane

ClusterCluster

Eagle Top-Level

Cluster

Tile Tile
x4 x8

Figure 3.9: Physical design hierarchy of Eagle.

is important because FinFET processes do not allow ninety degree rotations of cells due to
its unidirectional polysilicon requirement, unlike many planar technologies, including 28nm
FD-SOI5.

The Eagle die is assembled onto the PCB by soldering the bare die directly to a compatible
footprint without a package6, called chip-on-board (COB). Figure 3.12 shows the PCB
footprint compatible with Eagle. The purple circles represent via locations on the board;
this is a variant of via-in-pad, which places vias underneath a pad. Because of the size of the
via’s annular ring (9 mil or 228.6 µm) and the minimum spacing requirement in the chosen
PCB manufacturing process, a single via must connect to multiple bumps on the die, which
are 80 µmin diameter at a pitch of 170.05 µm. To facilitate this, the Eagle bump assignments
are chosen with all interior bumps ganged into 2 by 4 groups, which are all power and ground
signals. Bumps are removed above the inductors to improve their Q factor, and a region
of bumps is removed at the bottom of the die to make room for five additional board vias,
which are used for signal routing instead of power. All other signal routes are placed on
the periphery of the bump-out to avoid the cost of fine-pitch PCB traces between bumps.

5In the Hurricane1 die micrograph, the rotated serial links are visible on the bottom edge of the chip.
6This assembly process was chosen to reduce cost.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 58

Tile 2N Tile 2N+1
(Mirrored)

694 µm

256 KiB L2 Cache

Data
SRAMs

Data
SRAMs

Di
re

ct
or

y

ESD
clamp

I/O to Uncluster

22
77

 µ
m

Ba
nk

 0

Ba
nk

 1

Ba
nk

 2

Ba
nk

 3

(a) Cluster

347 µm

16
59

 µ
m

I/O to Cluster

Da
ta

 c
ac

he
 S

RA
M

s

In
st

ru
ct

io
n 

ca
ch

e 
SR

AM
s

Ta
gs Ta

gs
Hw

ac
ha

 I$
 

SR
AM

s
Ve

ct
or

 re
gi

st
er

 fi
le

 (V
RF

) S
RA

M
s

ESD 
clamp

Hwacha

Rocket

(b) Tile

Figure 3.10: Eagle cluster and tile floorplans. Dimensions shown are as drawn before a 98%
optical shrink.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 59

RX-

VSS

RX+

VSS

TX-

TX+

Inductor

Inductor

Inductor

RX

TX

CDR

Digtal
Back-end

ESD
clamp

VDDA VDDA

VDDA VDDA

VDDA VDDA

VDDA VDDA

680 µm

10
41

 µ
m

I/O
 to

 U
nc

lu
st

er

(a) Floorplan

RX-

VSS

RX+

VSS

TX-

TX+

Inductor

Inductor

Inductor

RX

TX

CDR

Digtal
Back-end

ESD
clamp

VDDA VDDA

VDDA VDDA

VDDA VDDA

VDDA VDDA

680 µm

10
41

 µ
m

I/O
 to

 U
nc

lu
st

er

(b) Layout

Figure 3.11: Eagle serial link lane floorplan and layout. Dimensions shown are as drawn
before a 98% optical shrink. For clarity, only the upper metal layers are shown in the layout.

Differential signals connected to the serial links and clock receivers are shielded on either
side with ground bumps (GSSG).

The groups of 8 power or ground bumps tie directly into the power grid below. The power
grid strategy uses the top two layers for a dense power grid with sparser grids on lower layers.
The top level power grids in the design connect by abutment, which provides superior uti-
lization of routing layers and lower parasitic resistance than ring-based approaches. Because
the entire chip shares a ground, all ground straps on the top two metal layers are directly
connected. Supply voltage straps occupy the same tracks, but are left with a gap when tran-
sitioning between rails. In areas where two supplies are needed, the power rails alternate
between the two supplies. Electrostatic discharge (ESD) clamps are placed throughout the
design to prevent damage to the circuitry and comply with DRC rules.

Because each cluster is in its own voltage domain, the cluster supplies are present only
above their respective cluster, while all share a common ground. This creates a requirement
that the cluster widths be a multiple of the bump pitch for the physical voltage domains



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 60

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

170.05
µm

170.05
 µm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

155.1 µm

155.1 µm

4901.5
µm

4901.5 µm
Board Via Solder Bump 

Ø = 80 µm

Figure 3.12: Eagle PCB footprint.

to line up with the bumps above, which contributes to the shape of the cluster and tiles.
This indirectly ties the power strap X dimension pitch to the bump pitch, because the power
strap pitch must evenly divide the tile width for multiple tiles to align with the top level
grid when abutted. A similar constraint is imposed on the Y dimension pitch by the serial
link lanes. An added complexity with the serial link lanes is that the BAG-generated power
grid must match in order for the grounds to connect (the serial links have separate voltage
rails). BAG requires all geometries to be on a common grid, usually the fin grid, further
constraining the pitch. These series of power strap requirements are conceptually simple,
but difficult to perfect in practice, making automation of power strap pitches and offsets a
very useful feature of Hammer.

As with Splash2, Hurricane1, and Hurricane2, SRAM placement is a critical floorplan-
ning task for Eagle, which is also made difficult by the necessary hierarchy manipulation in
addition to the known challenges with floorplanning for generator-based designs. Figure 3.8
shows the SRAMs placed in the 3 MiB L3 cache, while Figure 3.10.a) shows the SRAMs
placed in the 256 KiB L2 cache, and Figure 3.10.b) shows the Hwacha and Rocket L1 and



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 61

VRF SRAMs.

3.1.4.2 Clocking

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
or

e 
cl

oc
k 

in
se

rti
on

 d
el

ay
 (n

s)

0

5000

10000

15000

20000

25000

0.0
0
0.0
5
0.1
0
0.1
5
0.2
0
0.2
5
0.3
0
0.3
5
0.4
0
0.4
5
0.5
0
0.5
5
0.6
0
0.6
5
0.7
0
0.7
5
0.8
0
0.8
5
0.9
0
0.9
5
1.0
0
1.0
5
1.1
0
1.1
5
1.2
0
1.2
5
1.3
0
1.3
5

N
um

be
r o

f c
lo

ck
 s

in
ks

Insertion delay (ns)

Core Insertion Delay Histogram

Clock sink

Root / H-tree endpoint

Core 2N Core 2N+1

Core clock
(≤1.44 GHz)

4-bank 256 KiB
L2 cache

L2 clock
(≤720 MHz)

2:1 Rational 
crossing

2:1 Rational 
crossing

Divide-by-2

PLL + 
dividers

Cluster N

Cu
st

om
 H

-tr
ee

 c
lo

ck
 n

et
w

or
k 

in
 e

ac
h 

co
re

 ti
le

0
1

2
3

Au
to

m
at

ic
 c

lo
ck

 tr
ee

 s
yn

th
es

is

PLL + 
dividers

Uncluster/L3 clock
(≤250 MHz)

As
yn

ch
ro

no
us

 
C

ro
ss

in
gs

As
yn

ch
ro

no
us

 
C

ro
ss

in
gs

As
yn

ch
ro

no
us

 
C

ro
ss

in
gs

As
yn

ch
ro

no
us

 
cr

os
sin

g

4-bank 3 MiB
L3 cache

System 
Management 

Core

CMOS IO

CMOS IO

CMOS IO

Off-chip
debug clocksLVDS

LVDS

LVDS

PLL

TX

RX

Digital Back-end

As
yn

ch
ro

no
us

 
C

ro
ss

in
gs

As
yn

ch
ro

no
us

 
C

ro
ss

in
gs

As
yn

ch
ro

no
us

 
C

ro
ss

in
gs

As
yn

ch
ro

no
us

 
cr

os
sin

g

Right SerDes bank 
reference
(875 MHz)

Left SerDes bank
reference
(875 MHz)

Left

Right

01

7
…

28 Gbps
DDR

14 GHz

28 Gbps
QDR

7 GHz

UART

SPI

I2C

LBWIF

DebugCMOS IO
JTAG clock

GPIO

Pe
rip

he
ra

ls 
w

ith
 in

te
rn

al
 d

ivi
de

rs

32:2 
serializer

FLL+
CDR

4:32 de-
serializer

Asynchronous 
crossing

Slow clock domainFast clock domain

Synchronous 2:1 rational crossing

widx
logic

Binary 
to Gray

widx

widx_valid

out_data

ridx
logic

Binary 
to Gray

wen

in_data

ridx

out_valid
ridx_valid

out_ready

FIFO  
register 
array

Sink clock domainSource clock domain

in_valid

in_ready

Asynchronous crossing

3-stage synchronizer

3-stage synchronizer

f2s_in_data

f2s_out_valid

f2s_out_ready

f2s_in_valid

f2s_in_ready
write
logic

read
logic

en

src_ptr

sink_ptr

valid
ready

s2f_in_datas2f_out_data

Shift-register-based 
FIFO

s2f_out_valid

s2f_out_ready

s2f_in_valid

s2f_in_ready
write
logic

read
logic

src_ptr

sink_ptr

valid
ready

en

Fast-to-slow

Slow-to-fast

ABCDE

f2s_out_data

Shift-register-based 
FIFO

Figure 3.13: Eagle clocking diagram.

The tall and narrow aspect ratio of the tiles causes automatic clock tree synthesis (CTS)
to introduce significant unwanted clock skew from the bottom to the top of the tile, because
the clock input pin is placed along the bottom edge with the other pins. To combat this
clock skew, a semi-custom H-tree is implemented using the Innovus place-and-route tool, as
shown in Figure 3.13. This technique involves placing specific clock buffers in a fractal-like
H pattern up to a certain number of levels; on Eagle, the tile H tree has six levels. After
this, the placement tool inserts multiple smaller clock trees rooted at the H-tree sinks. The
clock sink insertion delay histogram in Figure 3.13 shows the distribution of insertion delays
across flip flop sinks in the design. The insertion delay has a mean of 1040 ps and a standard
deviation of 37.8 ps, meaning that 99% of cells (±3σ) are within 227 ps or 24% of the
1.05 GHz (952 ps) clock period. This is not particularly impressive, but it is significantly
better than the roughly one nanosecond of skew present without H-trees. A square tile
floorplan would resolve this issue, but the decoupled nature of the Hwacha unit, which is
placed at the top side of the tile, allows the design to tolerate some clock skew.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 62

The insertion delay becomes more significant at the tile-cluster boundary. Because the tile
is a hierarchical module within the cluster, the tile insertion delays are added to the insertion
delay to the tile clock pin within the cluster. This adds significant skew between logic
clocked in the tile and cluster, which can be as large or larger than the desired clock period,
destroying any chance of closing timing. Such problems are difficult to fix as they necessitate
re-implementing the tiles with new I/O timing constraints to force the tile optimizer to reduce
the insertion delay. By design, these problems are avoided by ensuring that logic driven by
the tile is sunk directly into a flip flop with no combinational logic in between. In the Eagle
design, this flip flop is part of a 2:1 ratiosynchronous crossing, which allows the L2 logic to
be clocked at half the frequency of the tile. This issue does not exist at the cluster-uncluster
interface as this interface is asynchronous, as is the interface between the serial link lanes
and the uncluster.

The 14 GHz (TX) and 7 GHz (RX) high-frequency serial link clocks are synthesized
by phased-locked loops (PLLs) and frequency-locked loops (FLLs), respectively, from an
875 MHz reference as shown in Figure 3.13. These loops contain LC tanks that are internal
to the IP and digital logic that is placed-and-routed. The high-frequency clocks are divided
and used to clock the digital serial link back-end. This creates a source-synchronous interface
at each serial link macrocell which must be characterized by the designer. While BAG does
not natively support this procedure, Eagle used a manual characterization flow with some
additional guardband to ensure no timing violations occur at the serial link interfaces

The Eagle PLL design is based on a similar PLL architecture [90] used in the Splash2 and
Hurricane chips. The DCO supply is regulated by a BAG-generated low-dropout regulator
with an N-channel pass element to attenuate supply noise, which requires a 1.8 V supply to
provide enough supply voltage headroom. This adds complexity to the power grid, which
does not have 1.8 V available across the entire chip. To combat this, a local 1.8 V power
island is connected to bumps on the interior of the chip to provide access to 1.8 V. The
power strap arrangement for the region containing both the nominal 0.8 V supply and 1.8 V
supply is shown in Figure 3.14.

3.1.4.3 Interconnect design

Each cluster has a set of TileLink primary ports and a single TileLink secondary port. The
secondary port provides access to the configuration and status registers within the L2 cache
and conforms to the uncached lightweight (TL-UL) level. The primary ports all use the
cached variety of TileLink (TL-C), which is required for the clusters to be coherent. Each
cluster has 5 TL-C ports, one for each L3 memory bank and an additional for connecting to
the system bus (sbus). This fully connected topology is known as a crossbar, and the Eagle
configuration is illustrated in Figure 3.15. Each TL-C connection is configured to have 128
bits of data and each TL-UL connection is configured to have 64 bits of data. Four of the
TL-C channels can carry data (A, B, C, D), while only two TL-UL can do so (A, D). The
B channel of the cluster-to-sbus connection is optimized away by the synthesis tool, as the
sbus has no cache behind it and therefore cannot initiate any coherency transactions itself.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 63

VSS
VDD1P8

VSS
VDD0P8

VSS
VDD0P8

VSS
VDD0P8

VSS
VDD1P8

M9
M8

M8-M9 via

M7-M8 via

Figure 3.14: An example of multi-voltage power straps on EagleX using a 1:3 supply ratio.
Only metal 8 (M8, horizontal) and metal 9 (M9, vertical) are shown.

Therefore, there are a total of 16 · 4 · 128 + 4 · 3 · 128 + 4 · 2 · 64 = 10240 data wires crossing
between the clusters and the L3 cache and system bus. This does not include address wires
or other metadata, which account for a significant fraction of the total size of the bus. This
number depends highly on the configuration of the bus and the overall SoC, but it is roughly
40% of the data bus size. This results in over 14,000 wires. Assuming a minimum vertical
metal pitch of 50 nm, this corresponds to 0.7 mm of horizontal space required to route this
many wires vertically within the crossbar.

This number is large; it is on the order of the die length, and larger than the cluster
floorplan width. This logic limited the maximum clock frequency of the L3 cache to 250 MHz
in place-and-route, but runs with more aggressive bus configurations did not even finish
routing successfully. Figure 3.16 shows that the area between the clusters and the L3 cache
does not have high placement density, while Figure 3.17 shows significant routing congestion
in this area7.

For designs of this size, networks-on-chip [91, 92] may be more appropriate topologies
than crossbars, as they reduce the number of wires by requiring some paths to take multiple
“Hops” to route. This increases the latency of some transactions, but generally allows the
crossbar clock frequency to increase, resulting in a net throughput improvement. Another
approach is to use DNN-based routing congestion prediction [93] to predict the congestion

7This congestion map is from a run that was not taped out.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 64

Cluster 0 Cluster 1 Cluster 2 Cluster 3

L3
Bank 

0

L3 
Bank 

1

L3 
Bank 

2

L3 
Bank 

3

sbus

TL-C

TL-UL pbus
Primary

Secondary
Error and MMIO 

Devices

Cache 
MMIO
SCRs

Figure 3.15: Eagle crossbar topology.

issues before running placement. This does not solve the hardware architecture problem,
but gives early feedback to the designer to allow the designer to make changes earlier in the
development cycle.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 65

Figure 3.16: Low placement density in area with high routing density on Eagle.

Figure 3.17: Example of routing congestion in a large crossbar on Eagle.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 66

3.2 EagleX: A 21-core Generated RISC-V SoC

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Systolic array 
core

(core 20)

8 MiB L3 cache

SMC
(core 21)

Crossbar

256 KiB
L2 

cache

C
or

e 
0

C
or

e 
1

256 KiB
L2 

cache

C
or

e 
2

C
or

e 
3

256 KiB
L2 

cache

C
or

e 
4

C
or

e 
5

256 KiB
L2 

cache
C

or
e 

6

C
or

e 
7

256 KiB
L2 

cache

C
or

e 
8

C
or

e 
9

256 KiB
L2 

cache

C
or

e 
10

C
or

e 
11

256 KiB
L2 

cache

C
or

e 
12

C
or

e 
13

256 KiB
L2 

cache

C
or

e 
14

C
or

e 
15

256 KiB
L2 

cache

C
or

e 
16

C
or

e 
17

256 KiB
L2 

cache

C
or

e 
18

C
or

e 
19

Scratch-
pad

7.35 mm

7.
35

 m
m

Figure 3.18: Annotated EagleX die micrograph.

3.2.1 Background

Eagle effectively demonstrates the efficiency and flexibility of vector accelerators for edge
machine learning applications, but its incapability of running an operating system limits its
utility. EagleX8expands upon the Eagle architecture with updated vector accelerators and
a memory system that can boot a multicore operating system like Linux. Additionally, the
Hammer design methodology co-developed with Eagle allows for easy design space explo-
ration of new accelerator IP like systolic arrays. Systolic arrays, first described in 1982 [94],
have seen a surge in popularity because of the ease with which dense two-dimensional com-
pute patterns like deep neural networks (DNNs) map to their spatial structure.

8Eagle was co-led by the author and Colin Schmidt. Zhongkai Wang led the serial link development with
the help of others. SiFive donated the multi-level cache generator.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 67

Cluster0 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 Cluster8 Cluster9

SystemBus

8-Bank 8MiB L3
PeripheralBus

ControlBus

L2
SCRs

Boot
ROM

Debug
JTAG

CLINT PLIC

GPIO SPI

I2CUART

PLLs Chip
SCRs

64KiB
RAM

SerDes
SCRs

FrontBus
SMC

GEMINNI

Tether

MemoryBus

TLSwitcher

Se
rD

es

Se
rD

es

Se
rD

es

Se
rD

es

Se
rD

es

Se
rD

es

Se
rD

es

Se
rD

es

LBWIF
L3

SCRs

Tile{0…19}
Rocket Hwacha

Cluster{0..9}

Tile0 Tile1

4-Bank 256KiB L2

Arbiter

16KiB 
VRF
8KiB 
VI$

System Management
Core

Systolic Array Core

Arbiter

Gemminni Accelerator

16x16
Int8

Systolic
Array256KiB

Scratchpad

Controller

Accumulator

2x128b
FMA

16KiB 
I$

16KiB 
D$

64bit
FMA

Int/FP
RF

Rocket

16KiB 
I$

16KiB 
D$

64bit
FMA

Int/FP
RF

/2

Clk

Rocket

Ar
bi

te
r4KiB 

I$
4KiB 
D$

Int/FP
RF

Figure 3.19: EagleX block diagram.

3.2.2 Architecture

The EagleX system-on-chip is manufactured in TSMC 16nm FinFET and measures 7.35 mm
by 7.35 mm9, as shown in Figure 3.18. The EagleX architecture is presented in Figure 3.19
and closely follows the Eagle architecture, but with some noteworthy deviations. EagleX
has twenty in-order RV64GC applications cores built with the Rocket core generator and
configured to include separate 16 KiB instruction and data caches, a memory management
unit (MMU), and privilege levels. Each core has a dedicated Hwacha vector accelerator
which uses a non-standard Hwacha extension and includes additional integer fused-multiply
add (FMA), truncation, merge, max, and min instructions not implemented on Eagle. The
twenty applications cores are organized into ten clusters, with two cores sharing a 256 KiB,
2-bank, inclusive, directory-based L2 cache. Each L2 cache runs at half the frequency of
its cores and communicates across a ratiosynchronous 2:1 crossing. Each cluster on the
chip can be clocked independently from one of three separate PLL clock sources or their
references. Unlike Eagle, the clusters are not in independent power domains, which reduces
the complexity of the on-die power grid.

9In TSMC’s 16FFC process, 7.35 mm is 7.5 mm in drawn dimensions with a 98% shrink factor.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 68

CPU

Core

L1 I+D

L2

DRAM

Gemmini 

Controller

DMA Engine

Local TLB

Scratchpad
Bank 0…

Transposer

Spatial
Array

++++++
Accumulator

SRAM

Bank K

Bitshi

ReLU

Dependency Mgmt

RoCC Cmd

RoCC PTW

Matrix Scalar
Multiplier

Pooling
Engine

im2col

Figure 3.20: EagleX systolic array accelerator architecture [9].

EagleX includes two additional differently configured Rocket cores in the system. The
first is a system management core, like Eagle, used to manage system boot, handle clock se-
lection, and perform other system management tasks This core implements the RV64IMAC,
which is a reduced feature-set ISA variant from RV64GC without floating point support, and
has separate 4 KiB instruction and data caches. The core has no L2 cache and is instead
backed directly by the L3 cache via the system bus.

The final Rocket core in the EagleX system has the same base configuration as the
twenty main applications cores. However, this core includes a new systolic array accelerator,
Gemmini [9], targeted at processing deep neural networks (DNNs) energy-efficiently. Like
Hwacha, Gemmini uses the Rocket custom co-processor (RoCC) interface to extend the base
RISC-V ISA with custom instructions and a decoupled microarchitecture. The architecture
of this core and accelerator is shown in Figure 3.20. This core has no L2 cache and is backed
directly by the L3 cache. Instead, the Rocket configuration includes a 256 KiB scratchpad for
use by Gemmini, which can improve the utilization of the systolic array versus an L2 cache
because it never has to handle misses. The systolic array includes 64 KiB of accumulator
memory for storing partial sums. The inclusion of heterogeneous compute accelerators allows
easy direct comparison of the two accelerator architectures.

The EagleX system-on-chip includes an 8 MiB, 16-bank, inclusive, directory-based L3
cache that is shared among all twenty clusters, the system controller, and the systolic array
core. The L3 is backed by either a low speed off-chip interface or eight high speed serial
links, as on the Eagle SoC. EagleX also includes GPIOs, a UART, SPI, I2C, an on-chip



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 69

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Serial 
link 
lane

Systolic array 
core

(core 20)SMC
(core 21)

Crossbar

256 KiB
L2 

cache

C
or

e 
0

C
or

e 
1

256 KiB
L2 

cache

C
or

e 
2

C
or

e 
3

256 KiB
L2 

cache

C
or

e 
4

C
or

e 
5

256 KiB
L2 

cache

C
or

e 
6

C
or

e 
7

256 KiB
L2 

cache

C
or

e 
8

C
or

e 
9

256 KiB
L2 

cache

C
or

e 
10

C
or

e 
11

256 KiB
L2 

cache

C
or

e 
12

C
or

e 
13

256 KiB
L2 

cache

C
or

e 
14

C
or

e 
15

256 KiB
L2 

cache

C
or

e 
16

C
or

e 
17

256 KiB
L2 

cache

C
or

e 
18

C
or

e 
19

Scratch-
pad

7500 µm

75
00

 µ
m

Boot
ROM

PLLs

8 MiB L3 cache

PLIC

Data
SRAMs

Di
ct

io
na

ry
 S

RA
M

s

Figure 3.21: EagleX chip floorplan (hierarchical).

memory-mapped SRAM bank, and a boot ROM.

3.2.3 Physical design challenges

At 54 mm2, EagleX is more than double the area of Eagle and just over half the size of
the Apple A9 [95], the first iPhone SoC to use TSMC 16nm FinFET. Because of this,
appropriate management of hierarchy and area are even more critical on EagleX than on



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 70

Crossbar

Scratch-
pad

7500 µm

75
00

 µ
m

Boot
ROM

PLLs

8 MiB L3 cache

PLIC

Data
SRAMs

Di
ct

io
na

ry
 S

RA
M

s

TX 0

L2 cache
SRAMs

L1 cache
SRAMs

Tiles

Systolic array
memory

L1
cache

SRAMs
SCU

L1 cache
SRAMs

Note: Some Tile SRAMs are not
visible at this level

RX 0

TX 1

RX 1

TX 2

RX 2

TX 3

RX 3

TX 7

RX 7

TX 6

RX 6

TX 5

RX 5

TX 4

RX 4

Figure 3.22: EagleX chip floorplan (flat).



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 71

Tile Tile
(Mirrored)

VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD

Figure 3.23: Power strap alignment on mirrored tiles.

Eagle. Fortunately, the physical design automation developed for the Eagle project enables
subsequent projects like EagleX to reuse significant portions of the implementation flow and
avoid many early pitfalls in the design process. The main applications tiles and cluster
used very similar floorplans to their Eagle counterparts, so it is unsurprising that these
have significantly fewer up-front physical design challenges than during Eagle development.
However, the systolic array is completely new IP, taped out for the first time on EagleX.
Using technology-specific hooks in Hammer, discussed in Chapter 4, the systolic array was
able to be implemented with dramatically fewer timing and design rule violations early in the
physical design process. This floorplan is entirely new to EagleX, including the Rocket core
floorplan, which, despite being similarly configured to the applications cores, has a different
aspect ratio due to the topology of the systolic array accelerator. This motivates the need
for floorplan generators that can produce ideal floorplans in multiple aspect ratios.

While the crossbar is significantly larger and has more endpoints than the one on Eagle,
the additional area, improved floorplan, and RTL optimizations led to significantly easier



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 72

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

42 REM GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND REM 42

41 GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND 41

40 GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND 40

39 GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND 39

38 GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND 38

37 GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND 37

36 GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND 36

35 GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND 35

34 spi_dq_3 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND 34

33 spi_dq_2 VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND 33

32 spi_dq_1 VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND 32

31 spi_dq_0 VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND 31

30 spi_cs_0 VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND
gpio_
pins_4 30

29 spi_sck GND GND GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND
gpio_
pins_3 29

28 i2c_sda GND GND GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND
gpio_
pins_2 28

27 i2c_scl GND GND GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND
gpio_
pins_1 27

26 GND REM REM REM GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND REM REM REM GND 26

25 tx_0_p VDDA0 VDDA0 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND VDDA1 VDDA1 tx_7_p 25

24 tx_0_n VDDA0 VDDA0 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND VDDA1 VDDA1 tx_7_n 24

23 GND REM REM REM GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND REM REM REM GND 23

22 rx_0_p VDDA0 VDDA0 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND VDDA1 VDDA1 rx_7_p 22

21 rx_0_n VDDA0 VDDA0 GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDDA1 VDDA1 rx_7_n 21

20 GND REM REM REM GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND REM REM REM GND 20

19 tx_1_p VDDA0 VDDA0 GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDDA1 VDDA1 tx_6_p 19

18 tx_1_n VDDA0 VDDA0 GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDDA1 VDDA1 tx_6_n 18

17 GND REM REM REM GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND REM REM REM GND 17

16 rx_1_p VDDA0 VDDA0 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND VDDA1 VDDA1 rx_6_p 16

15 rx_1_n VDDA0 VDDA0 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND VDDA1 VDDA1 rx_6_n 15

14 GND REM REM REM GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND REM REM REM GND 14

13 tx_2_p VDDA0 VDDA0 GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDDA1 VDDA1 tx_5_p 13

12 tx_2_n VDDA0 VDDA0 GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDDA1 VDDA1 tx_5_n 12

11 GND REM REM REM GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND REM REM REM GND 11

10 rx_2_p VDDA0 VDDA0 GND GND GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDDA1 VDDA1 rx_5_p 10

9 rx_2_n VDDA0 VDDA0 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND VDDA1 VDDA1 rx_5_n 9

8 GND REM REM REM GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND REM REM REM GND 8

7 tx_3_p VDDA0 VDDA0 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND VDDA1 VDDA1 tx_4_p 7

6 tx_3_n VDDA0 VDDA0 GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND VDD VDD GND GND GND GND VDDA1 VDDA1 tx_4_n 6

5 GND REM REM REM GND GND GND VDD1P8 VDD1P8 GND GND VDD VDD GND GND VDD VDD GND GND VDD1P8 VDD1P8 GND GND VDD1P8 VDD1P8 GND GND VDD VDD GND GND VDD VDD GND GND VDD1P8 VDD1P8 GND REM REM REM GND 5

4 rx_3_p VDDA0 VDDA0 GND GND GND GND VDD1P8 VDD1P8 GND GND VDD VDD GND GND VDD VDD GND GND VDD1P8 VDD1P8 GND GND VDD1P8 VDD1P8 GND GND VDD VDD GND GND VDD VDD GND GND VDD1P8 VDD1P8 GND GND VDDA1 VDDA1 rx_4_p 4

3 rx_3_n VDDA0 VDDA0 GND GND GND GND VDD1P8 VDD1P8 GND GND VDD VDD GND GND VDD VDD GND GND VDD1P8 VDD1P8 GND GND VDD1P8 VDD1P8 GND GND VDD VDD GND GND VDD VDD GND GND VDD1P8 VDD1P8 GND GND VDDA1 VDDA1 rx_4_n 3

2 GND REM REM REM GND GND GND VDD1P8 VDD1P8 GND GND VDD VDD GND GND VDD VDD GND GND VDD1P8 VDD1P8 GND GND VDD1P8 VDD1P8 GND GND VDD VDD GND GND VDD VDD GND GND VDD1P8 VDD1P8 GND REM REM REM GND 2

1 REM GND
refclk
_0_p

refclk
_0_n GND

tl_serial
_out_
bits[0]

tl_serial
_out_
bits[1]

tl_serial
_out_
bits[2]

tl_serial
_out_
bits[3]

tl_serial
_in_
bits[0]

tl_serial
_in_
bits[1]

tl_serial
_in_
bits[2]

tl_serial
_in_
bits[3]

tl_serial
_out_
ready

tl_serial
_out_
valid

tl_serial
_in_
ready

tl_serial
_in_
valid

tl_serial
_clock boot reset GND

refclk
_2_p

refclk
_2_n GND

pllclk_
out

uart_
rxd

uart_
txd cclk_0 cclk_1 cclk_2

clk_
sel[0]

clk_
sel[1]

jtag_TC
K

jtag_T
MS

jtag_TD
I

jtag_TD
O

gpio_
pins_0 GND

refclk
_1_p

refclk
_1_n GND REM 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Figure 3.24: EagleX bump designations. A blue circle indicates a potential location for a
via-in-pad if no package is used.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A VSS SPI_CS_0
SPI_DQ_

1
VSS VSS VSS VSS VSS VSS VSS VSS VSS

GPIO_PIN
S_4

GPIO_PIN
S_2

I2C_SDA I2C_SCL VSS VSS VSS A

B VSS VSS SPI_SCK
SPI_DQ_

0
VSS VSS VSS VSS VSS VSS VSS VSS

SPI_DQ_
3

SPI_DQ_
2

GPIO_PIN
S_3

GPIO_PIN
S_1

VSS VSS VSS VSS B

C VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS C

D VSS VSS
HBWIF_R
X_7_P

VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS
HBWIF_R
X_0_P

VSS VSS D

E VSS VSS
HBWIF_R
X_7_N

VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS
HBWIF_R
X_0_N

VSS VSS E

F
HBWIF_T
X_7_P

VSS VSS VSS VSS VSS VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VSS VSS VSS
HBWIF_T
X_0_P

F

G
HBWIF_T
X_7_N

VSS VSS VSS VDDA0 VDD VSS VDD VSS VDD VSS VDD VSS VDD VSS VDDA1 VSS VSS VSS
HBWIF_T
X_0_N

G

H VSS VSS
HBWIF_R
X_6_P

VSS VSS VDDA0 VDD VSS VDD VSS VDD VSS VDD VSS VDDA1 VSS VSS
HBWIF_R
X_1_P

VSS VSS H

J VSS VSS
HBWIF_R
X_6_N

VSS VDDA0 VSS VSS VDD VSS VDD VSS VDD VSS VDD VSS VDDA1 VSS
HBWIF_R
X_1_N

VSS VSS J

K
HBWIF_T
X_6_P

VSS VSS VSS VSS VDDA0 VDD VSS VDD VSS VDD VSS VDD VSS VDDA1 VSS VSS VSS VSS
HBWIF_T
X_1_P

K

L
HBWIF_T
X_6_N

VSS VSS VSS VDDA0 VSS VSS VDD VSS VDD VSS VDD VSS VDD VSS VDDA1 VSS VSS VSS
HBWIF_T
X_1_N

L

M VSS VSS
HBWIF_R
X_5_P

VSS VSS VDDA0 VDD VSS VDD VSS VDD VSS VDD VSS VDDA1 VSS VSS
HBWIF_R
X_2_P

VSS VSS M

N VSS VSS
HBWIF_R
X_5_N

VSS VDDA0 VSS VSS VDD VSS VDD VSS VDD VSS VDD VSS VDDA1 VSS
HBWIF_R
X_2_N

VSS VSS N

P
HBWIF_T
X_5_P

VSS VSS VSS VSS VDDA0 VDD VSS VDD VSS VDD VSS VDD VSS VDDA1 VSS VSS VSS VSS
HBWIF_T
X_2_P

P

R
HBWIF_T
X_5_N

VSS VSS VSS VDDA0 VSS VSS VDD VSS VDD VSS VDD VSS VDD1P8 VSS VDDA1 VSS VSS VSS
HBWIF_T
X_2_N

R

T VSS VSS
HBWIF_R
X_4_P

VSS VSS VDDA0 VDD1P8 VSS VDD1P8 VSS VDD1P8 VSS VDD1P8 VSS VDD1P8 VSS VSS
HBWIF_R
X_3_P

VSS VSS T

U VSS VSS
HBWIF_R
X_4_N

VSS VDDA0 VSS VSS VDD1P8
UART_TX

D
PLLCLK_O

UT
TL_SERIA
L_CLOCK

TL_SERIA
L_IN_REA

DY
VSS VDD1P8 VSS VDDA1 VSS

HBWIF_R
X_3_N

VSS VSS U

V
HBWIF_T
X_4_P

VSS VSS VSS
GPIO_PIN

S_0
JTAG_TD

O
JTAG_TCK CCLK_2

UART_RX
D

BOOT RESET
TL_SERIA
L_IN_VAL

ID

TL_SERIA
L_IN_BIT
S[3]

TL_SERIA
L_IN_BIT
S[0]

TL_SERIA
L_OUT_BI
TS[1]

TL_SERIA
L_OUT_BI
TS[0]

VSS VSS VSS
HBWIF_T
X_3_P

V

W
HBWIF_T
X_4_N

VSS VSS VSS VSS JTAG_TDI
CLK_SEL[

1]
CCLK_1 VSS VSS VSS VSS

TL_SERIA
L_OUT_R
EADY

TL_SERIA
L_IN_BIT
S[1]

TL_SERIA
L_OUT_BI
TS[2]

VSS VSS VSS VSS
HBWIF_T
X_3_N

W

Y VSS VSS
REFCLK_2

_N
REFCLK_2

_P
VSS

JTAG_TM
S

CLK_SEL[
0]

CCLK_0 VSS
REFCLK_0

_N
REFCLK_0

_P
VSS

TL_SERIA
L_OUT_V
ALID

TL_SERIA
L_IN_BIT
S[2]

TL_SERIA
L_OUT_BI
TS[3]

VSS
REFCLK_
1_N

REFCLK_1
_P

VSS VSS Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3.25: EagleX BGA package pinout.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 74

Tile 2N Tile 2N+1
(Mirrored)

694 µm

256 KiB
L2 cache

data

ESD
clamp

I/O to Uncluster

23
42

 µ
m

Ba
nk

 0

Ba
nk

 0

Ba
nk

 1

Ba
nk

 1

Di
re

ct
or

y

Di
re

ct
or

y

(a) Cluster

347 µm

16
59

 µ
m

I/O to Cluster

Da
ta

 c
ac

he
SR

AM
s

In
st

ru
ct

io
n 

ca
ch

e
SR

AM
s

Ta
gs

Ta
gs

Hw
ac

ha
 I$

 
SR

AM
s

Ve
ct

or
 re

gi
st

er
 fi

le
(V

RF
) S

RA
M

s

ESD 
clamp

Hwacha

Rocket

(b) Tile

Figure 3.26: EagleX cluster and tile floorplans. Dimensions shown are as drawn before a
98% optical shrink.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 75

300 µm

25
0 

µm

4 KiB L1
instruction

cache

4 KiB L1
data

cache

Ta
gs

Ta
gs

I/O to Uncluster

Figure 3.27: EagleX system management core floorplan.

timing closure and routing than on Eagle. The additional amount of SRAM and number
of instances and wires in the uncluster of EagleX increased tool runtime significantly, but
improved hierarchical flow automation in Hammer reduced the total number of top-level
runs that were necessary throughout the construction of EagleX.

3.2.3.1 Floorplan

The top-level hierarchical EagleX floorplan is shown in Figure 3.21. Figure 3.22 shows a
flattened floorplan, where all levels of the hierarchy are visible at once. In this view, the
mirrored instances of the tiles are clearly visible. Mirroring the tiles allows the SRAMs in
the vector unit and L1 caches to be abutted at the boundary, which maximizes the available
horizontal span within the narrow tile floorplan. Consequently, this mirroring requires that
the tile width be a multiple of the vertical power strap group pitch and that the vertical
power strap x-offset be one half of the power strap width so that straps of the same net
will overlap. This requirement is demonstrated in Figure 3.23. The L3 cache bank count is
increased to 16 from 4 on Eagle to improve memory bandwidth off-chip. However, the L2
cache bank count is reduced to 2 from 4 on Eagle to reduce the amount of wiring between
the L2 and L3 caches.

The ten clusters and twenty tiles are placed along the top edge of the chip. Unlike Eagle,
there is sufficient area to place all chip I/O cells along the bottom edge, which allows the tiles
and clusters to be placed along the top edge, allowing for more optimal die utilization and
fewer long routes. To accommodate the preferred geometry of the systolic array accelerator,
the systolic array core is arranged in a more square aspect ratio than the applications cores.
To avoid blocking the routing between the cluster L2 caches and the L3 cache, the systolic



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 76

array core is placed along the bottom edge of the chip. The system control core and the
scratchpad SRAM are also placed along the bottom edge. The PLLs are placed physically
close to their differential clock receivers to reduce jitter from noise in the clock network.
They are grouped closely together to avoid the requirement to have a 1.8V supply across
large portions of the die. Although EagleX is packaged, the supply bumps are grouped in
gangs of eight, like Eagle, to allow chip-on-board if necessary. The bump designations on
the die are shown in Figure 3.24, and the BGA package pins are shown in 3.25.

The tile, cluster, and system management core (SMC) floorplans are shown in Fig-
ure 3.26.b, Figure 3.26.a, and Figure 3.27, respectively. The serial link lane floorplan is
similar to that on Eagle and can be seen in Figure 3.11.a. The systolic array core floorplan is
shown in Figure 3.28. In the floorplan, the systolic array accelerator is placed in the left half
of the cell, with the SRAMs spread out to allow room for the routing to the systolic process-
ing elements (PEs), which are placed and routed automatically below and to the left of the
systolic array SRAMs. This placement produces satisfactory results, but a custom-placed
regular structure would improve QoR and reduce overall area [96]. The Rocket CPU core is
placed towards the rightmost edge of the cell along with the pins, with the L1 cache SRAMs
placed in the top right corner. This arrangement essentially creates a topology that is sim-
ilar to the Hwacha tiles rotated by ninety degrees, as both the RoCC accelerators should
be placed far away from the pins because they communicate through the Rocket core. This
stresses the importance of understanding the logical design when floorplanning.

3.2.4 Results and future work

At the time of this writing, testing of EagleX is ongoing. The use of a package improves
assembly yield significantly, with all assembled boards functioning normally. Preliminary
testing shows that the physical design bug in the L2-L3 cache interface found on Eagle is
not present on EagleX, which enables multicore operating systems to boot and run parallel
workloads. The chip has been verified to boot Linux on the twenty applications cores, as
shown in Listing 3.1. The system control unit and the systolic array accelerator core have
yet to be tested

The primary objective in testing EagleX is to demonstrate the energy efficiency of
the vector units when running a real edge neural net workload, like SqueezeNet [97] or
SqueezeNext [98]. Work is ongoing to use ONNX10 to map neural net workloads to Hwacha
and Gemmini for independent and comparative testing.

10https://onnx.ai/



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 77

1 # cat /proc/cpuinfo

2 processor : 0

3 hart : 0

4 isa : rv64imafdc

5 mmu : sv39

6 uarch : sifive,rocket0

7

8 processor : 1

9 hart : 1

10 isa : rv64imafdc

11 mmu : sv39

12 uarch : sifive,rocket0

13

14 processor : 2

15 hart : 16

16 isa : rv64imafdc

17 mmu : sv39

18 uarch : sifive,rocket0

19

20 ...

21

22 processor : 19

23 hart : 15

24 isa : rv64imafdc

25 mmu : sv39

26 uarch : sifive,rocket0

Listing 3.1: EagleX running Linux on the twenty main applications cores.



CHAPTER 3. GENERATED MULTICORE SYSTEMS-ON-CHIP IN 16NM FINFET 78

Ta
gs

Ta
gs

16
 K

iB
 L

1 
Da

ta
ca

ch
e 

SR
AM

s

16
 K

iB
 L

1 
In

st
ru

ct
io

n
ca

ch
e 

SR
AM

s256 KiB Scratchpad SRAMs

Ba
nk

 0

Ba
nk

 1

Ba
nk

 2

Ba
nk

 3

64 KiB Accumulator SRAMs

1410 µm

Rocket

FPUSystolic array

95
0 

µm

I/O
 to

 U
nc

lu
st

er

Figure 3.28: Floorplan of the EagleX systolic array accelerator with its CPU core.



79

Chapter 4

Hammer: A Physical Design
Generator Platform

4.1 Motivation

Traditional physical design flows typically require users to combine multiple orthogonal sets
of information into a single stream of tool commands and specifications in a manner that
decreases reusability of the flow, resulting in longer design cycles, higher non-recurring en-
gineering (NRE) expenses, and lower designer productivity. This effect is more noticeable
in generator-based design flows, which, by Amdahl’s Law, are limited in their maximum
productivity improvement by such long-latency manual tasks. Despite the recognition of
this challenge by academic and industrial ASIC design teams [99], progress is stymied by
a lack of shared development between teams isolated at their respective institutions. To
combat this, an open-source EDA tool chain, OpenROAD [100], has been developed, aiming
to lower barriers to entry for hardware designers. While commercial EDA tool flows cur-
rently outperform their open-source counterparts, the democratization of ASIC design flows
afforded by open-source movements is critical for the hardware design community to achieve
the productivity levels that software designers have been enjoying for decades.

4.2 Hammer design philosophy

Hammer 1,2 [17] is an open-source physical design platform that aims to improve reusability of
physical design components. Rather than implement the underlying EDA tools themselves,
which is sufficiently covered by the OpenROAD project, Hammer implements a flow which
can be used with any open-source or proprietary tool set. Hammer focuses on identifying and
isolating all aspects of physical design inputs, categorizing each into one of three categories:

1The Hammer framework was initially developed by Edward Wang. The author contributed features for
physical design, physical verification flows, hierarchical build flows, PCB design features, and other features.

2https://github.com/ucb-bar/hammer



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 80

1. Design-specific inputs, like I/O definitions, module hierarchy, and floorplan topology

2. Tool-specific inputs, like file formats, command syntax, and internal data flow

3. Technology-specific inputs, like routing layer information, standard cell libraries, and
design rules

The Hammer development community refers to this as the “Separation of concerns.” The
guiding philosophy is to isolate all aspects of design intent into one of the three categories,
when possible. Some types of design inputs, like the floorplan, invariably must contain two
categories of input, as the floorplan must be driven by the logic in the specific design, but
it also must take into account the sizing of SRAMs and the total gate area for the desired
technology node.

Because of the complexity of ASIC design flows, it is frequently necessary to work around
occasional bugs or optimize a troublesome design component. These are often done through
esoteric EDA tool commands or scripts, which are usually tool- and technology-specific
by nature. To enable this, “Incremental adoption” is a cornerstone design philosophy of
Hammer. This essentially requires that any technique available to a traditional flow must be
easily implementable within Hammer. However, this does not mean that Hammer supports
a union of all possible EDA tool subroutines or commands. Instead, Hammer natively
supports “Hooks,” which allow the user to inject custom code at any point in the tool flow
in a reusable manner. Once mature, and if appropriate, hooks can be brought into the core
Hammer repository to improve reuse across designs.

4.3 Hammer design flow

The Hammer design flow is shown in Figure 4.1. The primary inputs to Hammer are Ham-
mer IR, tool plugins written in Python, technology plugin hooks written in Python, and
technology JSON files. The Hammer driver configures its internal database from a sequence
of one or more Hammer IR files and then loads relevant tool and technology plugins dynami-
cally in Python. These plugins augment or implement methods within the HammerDriver
and HammerTool classes to build a custom tool flow and emit the tool commands that
implement the design. In addition to the scripts required to drive the tools, Hammer emits
a robust, configurable Makefile infrastructure tailored to the specific design hierarchy de-
scribed in the Hammer IR. This technique allows extremely large designs to be implemented
quickly without the need to set up complicated build flows. As hierarchical design has be-
come ubiquitous for modern systems-on-chip, this feature makes Hammer very attractive for
small academic and startup teams to ramp up quickly on complex designs.

4.3.1 Hammer IR



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 81

Hammer IR
*.yaml, *.json
Hammer IR

*.yaml, *.json
Tool plug-in

*.py
Tool plug-in

*.py
Hammer IR

*.yaml, *.json

EDA tool Tcl
*.tcl

EDA tool Tcl
*.tcl

EDA tool Tcl
*.tcl

Tool plug-in
*.py

Makefile

Technology 
plug-in hooks

*.py

Technology 
plug-in config.

*.json

Hammer 
driver
*.py

Technology plug-in

EDA tool plug-ins

Design-specific input

function
calls

function
calls

syn

pnr

drc lvs

syn

pnr

drc lvs

syn

pnr

drc lvs

pcb

…

Hierarchy-specific
Make-based flow

…

Top/A Top/B

Top

Figure 4.1: Hammer design flow.

Hammer uses a database format called Hammer IR for both input and output. Hammer
IR can use either JSON3 or YAML4 for text-based serialization to files. JSON is commonly
used for machine-generated output due to its rigidity, while YAML is preferred for hand-
written files, as it is easier to read. An example of YAML-based Hammer IR is shown
in Listing 4.1. Hammer IR is used to express most aspects of design-specific information,
including timing constraints, floorplan information, power strap placement, Hammer IR is
used for design flow information, like setting up file paths and tool installation directories;
technology and tool plugin selection; and design-specific configurations, including timing
constraints, floorplan information, power strap placement, design hierarchy, et cetera.

Hammer can take multiple Hammer IR files as inputs, which enables modularization and
reuse. To facilitate this, Hammer IR includes a meta setting, which instructs the database
engine on how to handle conflicting entries or allows it to post-process the input in some
manner. Without a meta, subsequent definitions of a database key overwrite previous
entries. The current meta settings and their uses are as follows.

• The append meta will append additional items to an existing list and store it in the
specified key.

• The crossappend meta will cross-reference an existing list provided by the first ele-
ment and append to it the list in its second, storing the result in the specified key.

3https://json.org
4https://yaml.org



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 82

• The crossappendref meta will cross-reference all elements and concatenate them,
storing the result in the specified key.

• The subst meta will perform string substitution using other database elements on the
provided string and store the result in the specified key.

• The crossref meta will cross-reference one key to another, effectively copying the
contents of the key provided in the string.

• The transclude meta will read the file provided by the string and store it in the
specified key.

• The json2list meta converts the key into a list.

• The prependlocal meta is used to prepend the local path of the config dictionary
to the provided file path. This is useful for packaging IP, which allows the hammer
IR to be specified using relative file paths without requiring complicated environment
variable setups.

• The deepsubst meta is used to traverse a hierarchical set of keys and perform substs
on them. This also supports metas within the traversal.

The Hammer IR database is organized into namespaces hierarchically. For an example,
refer to Listing 4.1. Hammer includes a default namespace for each tool, e.g. syn, par, lvs,
drc, etc., and a global vlsi namespace for common settings among tools. Additionally, the
user may create additional namespaces for custom hook usage and design settings. These
are created automatically by Hammer if present in the Hammer IR file.

4.3.2 Tool plug-ins

Tool plug-ins are python packages that are dynamically loaded into the Hammer runtime
based on the specified configuration in the Hammer database. Each plugin contains a de-
faults.yml file, which is a Hammer IR file responsible for setting up any default settings
required by the plug-in. These are typically settings that most users will never change, which
allows the user-specific Hammer IR to focus on design-specific changes. Any required fields
are explicitly omitted from defaults.yml so that the Hammer driver will exit gracefully
with an error message if absent. An example of the Vivado synthesis defaults.yml is shown
in Listing 4.2, and an example of Python tool plug-in code is shown in Listing 4.3.

The Python code within the tool plug-in extends an abstract tool class specific to the tool
type (e.g. HammerSynthesisTool, HammerPlaceAndRouteTool, etc.). Each tool has
a specific set of abstract methods that the concrete class must implement, but tool plug-ins
may include additional methods. The end result of this process is to produce a set of scripts
and design collateral that the EDA tool uses to perform its task. Hammer also includes
a separate method to execute the tool with the generated inputs. In normal operation,



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 83

Hammer will perform these tasks serially, but Hammer’s driver supports running specific
tools in its invocation. This mode is used by the Makefile-based flow, which is the preferred
method for implementing hierarchical designs.

The tool execution procedure is broken down into steps, which each corresponding to a
specific code block within the generated tool script. Most often these scripts are written in
Tcl5, but there is nothing specific to Tcl within Hammer’s code base. Each base tool type
has its own set of steps which can be augmented by the plug-in using hooks. A hook is a
custom step that is tagged to run before or after another step in the flow and is implemented
as a Python function. Technology plug-ins and design-specific drivers may also add their
own hooks.

4.3.3 Technology plug-ins

At a minimum, a technology plug-in contains a technology JSON file. This file specifies
the locations of technology process development kit (PDK) files, such as the routing informa-
tion, design rule decks, SPICE models for LVS, layer map files, and other such collateral. The
technology JSON also contains useful technology-specific properties, like the optical shrink
factor, metal stack-up choices, database units, and corner definitions. These are loaded into
variables within the Hammer Python environment to be accessed by any built-in or custom
methods within the flow. An excerpt from the technology JSON file for an open-source 7nm
predictive technology, ASAP76 [101], is shown in Listing 4.4.

Technology plug-ins may optionally include a set of Python hooks to be injected into
specific EDA tool flows. This is very useful for creating a technology platform that can be
shared across multiple tapeouts, which drives reuse of solutions to common problems like
design rule fixes. One example of such reuse from the Eagle tapeout was a hook that modified
a specific standard cell to not be placed under a vertical metal 3 power rail. This particular
cell had a metal 2 pin that could only be accessed by dropping a via down from metal 3,
so placement under a metal 3 power strap creates an impossible routing task. Preventing
this placement using a custom metal 3 blockage prevents the need to re-place portions of
the design late in the cycle. This hook was reused by multiple tapeouts simultaneously. A
particular challenge with this approach is that each technology-tool pair requires a unique set
of hooks to accomplish a task. With proper abstractions, this interaction can be minimized,
but for many new features that have yet to be adopted into core Hammer, this is unavoidable.

4.3.4 Build flow generation

For hierarchical flows, Hammer generates a Makefile in a format that can be easily included
within a top-level project Makefile, which allows the build dependencies to be established
based on the Hammer IR itself. This is useful for generators which may have different

5https://www.tcl.tk/
6https://github.com/The-OpenROAD-Project/asap7



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 84

optimal hierarchies based on the generator configuration. An example of this type of Makefile
inclusion can be found in the Chipyard repository7. Listing 4.5 shows an excerpt of a
generated Makefile from the EagleX chip, abridged for readability.

In this example, line 1 sets up the Hammer driver executable, and line 2 sets the list
of prerequisite files based on the input configurations provided to the Hammer driver when
generating the Makefile. Lines 8 through 15 establish global tasks which happen once per
SoC. In this example, the only global task is to generate collateral for building a PCB and a
package. Lines 19 through 23 show aliases for tasks for a given hierarchical cell (Cluster).
The dependencies for these tasks are determined by the Hammer flow and the hierarchy.
For a given hierarchy level, physical verification tasks like LVS and DRC are dependent on
place-and-route, which is dependent on synthesis, which is dependent on place-and-route for
any sub-hierarchical cells. An example of this dependency graph is included in Figure 4.1.

Lines 43 through 48 show a set of redo- targets, which intentionally bypass the Makefile
dependencies to allow the user to rerun a task without invoking prior build rules. This
feature allows the user to perform interactive tasks on the design and is especially useful
while developing hooks, which can be tested easily by modifying local files and rerunning
specific steps.

7https://github.com/ucb-bar/chipyard



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 85

1 # Custom configuration keys used by hooks

2 eagle.num_lanes: 8

3 # Place-and-route keys

4 par.innovus.floorplan_mode: generate

5 par.innovus.power_straps_mode: generate

6 par.inputs.gds_merge: true

7 # Hierarchical flow keys

8 vlsi.inputs.hierarchical:

9 mode: hierarchical

10 top_module: EagleChipClockTopWithPads

11 config_source: manual

12 # Hierarchy specification

13 manual_modules:

14 - EagleChipClockTopWithPads:

15 - Cluster

16 - EagleTLLaneGroup

17 - TLROM

18 - RocketTile_20 # Systolic tile

19 - RocketTile_21 # System control unit

20 - Cluster:

21 - RocketTile

22 # Constraint specification

23 constraints:

24 - EagleTLLaneGroup:

25 - vlsi.inputs.pin_mode: "generated"

26 - vlsi.inputs.pin.assignments: [

27 {pins: "*", layers: ["M4", "M6"], side: "right"},

28 {pins: "tx_n tx_p rx_n rx_p VDDA", preplaced: true}

29 ]

30 - vlsi.inputs.clocks: [

31 {name: "clock", period: "2ns", "uncertainty": "0.1ns"},

32 {name: "ref_clock", period: "1.14ns", "uncertainty": "0.1ns"},

33 {name: "tx_clock", period: "1.14ns", "uncertainty": "0.1ns",

34 "path": "[get_pins pin:EagleTLLaneGroup/clock_tx_div]"},

35 {name: "rx_clock", period: "1.14ns", "uncertainty": "0.1ns",

36 "path": "[get_pins pin:EagleTLLaneGroup/clock_rx_div]"},

37 ]

Listing 4.1: Example Hammer IR (YAML format) excerpt from EagleX.



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 86

1 # Default settings for synthesis in Vivado

2 synthesis.vivado:

3 # Location of the binary.

4 binary: "vivado"

5 # Location of the vivado setup script

6 # type: Optional[str]

7 setup_script: "vivado_setup.sh"

8 # Location of the constraints file

9 # type: Optional[str]

10 constraints_file: "vc707.xdc"

11 # FPGA board files to add to board repository.

12 board_files: ""

13 # FPGA board name

14 board_name: "vc707"

15 # FPGA part name

16 part_fpga: "xc7vx485tffg1761-2"

17 # FPGA board part

18 part_board: "xilinx.com:vc707:part0:1.3"

19 # DCP macro files directory. Empty string for no DCP macro.

20 dcp_macro_dir: ""

21 # IP definition TCL file. Empty string for no IP.

22 ip_def_tcl: ""

23 # Generate the TCL file but do not run it yet.

24 generate_only: false

Listing 4.2: An example defaults.yml for Vivado synthesis.



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 87

1 class VivadoSynth(HammerSynthesisTool, VivadoCommon):

2 @property

3 def steps(self) -> List[HammerToolStep]:

4 return self.make_steps_from_methods([

5 self.setup_workspace,

6 self.generate_board_defs,

7 self.generate_paths_and_src_defs,

8 self.generate_project_defs,

9 self.generate_prologue,

10 self.generate_ip_defs,

11 self.generate_messaging_params,

12 self.generate_synth_cmds,

13 self.run_synthesis,

14 ])

15

16 # Method to implement the run_synthesis step

17 def run_synthesis(self) -> bool:

18 syn_tcl_filename = os.path.join(self.run_dir, "syn.tcl")

19 with open(syn_tcl_filename, "w") as f:

20 f.write("\n".join(self.output))

21 file_params = {

22 'env_setup_script':

23 self.get_setting('synthesis.vivado.setup_script'),

24 'work_dir': self.run_dir,

25 'vivado_cmd': self.get_setting('synthesis.vivado.binary'),

26 }

27 run_script = self.generate_run_script('run-synthesis', \

28 file_params)

29 # Run the executable

30 self.run_executable([run_script])

31 return True

32

33 # Other step implementations and fill_outputs go here

34 # ...

35

36 tool = VivadoSynth

Listing 4.3: An excerpt from the plug-in file for Vivado synthesis.



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 88

1 {

2 "name": "ASAP7 Library",

3 "grid_unit": "0.001",

4 "time_unit": "1 ps",

5 "tarballs": [

6 {

7 "path": "ASAP7_PDKandLIB.tar",

8 "homepage": "http://asap.asu.edu/asap/",

9 "base var": "technology.asap7.tarball_dir"

10 }

11 ],

12

13 "gds map file": "ASAP7_PDKandLIB.tar/.../asap7_fromAPR.layermap",

14

15 ...

16 }

Listing 4.4: An excerpt from the ASAP7 technology JSON file.



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 89

1 HAMMER_EXEC ?= eagle-hier-vlsi.py

2 HAMMER_DEPENDENCIES ?= eagle.yml eagle-pads-20T8H8M16BSysPMU.yml \

3 eagle-pll.json eagle-sealring.json # ...

4

5 ###################################################################

6 ## Global steps

7 ###################################################################

8 .PHONY: pcb

9 pcb: build/pcb-rundir/pcb-output-full.json

10

11 build/pcb-rundir/pcb-output-full.json: $(HAMMER_DEPENDENCIES)

12 $(HAMMER_EXEC) -e bwrc-env.yml -p eagle.yml \

13 -p eagle-pads-20T8H8M16BSysPMU.yml -p eagle-pll.json \

14 --obj_dir build pcb

15

16 ###################################################################

17 ## Steps for Cluster

18 ###################################################################

19 .PHONY: syn-Cluster par-Cluster drc-Cluster lvs-Cluster

20 syn-Cluster: build/syn-Cluster/syn-output-full.json

21 par-Cluster: build/par-Cluster/par-output-full.json

22 drc-Cluster: build/drc-Cluster/drc-output-full.json

23 lvs-Cluster: build/lvs-Cluster/lvs-output-full.json

24

25

26 build/syn-Cluster-input.json: build/par-Tile/par-output-full.json

27 $(HAMMER_EXEC) -e bwrc-env.yml \

28 -p build/par-Tile/par-output-full.json \

29 -o build/syn-Cluster-input.json \

30 --obj_dir build hier-par-to-syn

31

32 build/syn-Cluster/syn-output-full.json: build/syn-Cluster-input.json

33 $(HAMMER_EXEC) -e bwrc-env.yml -p build/syn-Cluster-input.json \

34 --obj_dir build syn-Cluster

35

36 build/par-Cluster-input.json: build/syn-Cluster/syn-output-full.json

37 $(HAMMER_EXEC) -e bwrc-env.yml \

38 -p build/syn-Cluster/syn-output-full.json \

39 -o build/par-Cluster-input.json --obj_dir build syn-to-par

40



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 90

41 # ...

42

43 # Redo steps (for intentionally ignoring the dependency graph)

44 .PHONY: redo-syn-Cluster redo-par-Cluster

45

46 redo-syn-Cluster:

47 $(HAMMER_EXEC) -e bwrc-env.yml -p build/syn-Cluster-input.json \

48 $(HAMMER_REDO_ARGS) --obj_dir build syn-Cluster

49

50 # ...

51

52 ###################################################################

53 ## Steps for Top

54 ###################################################################

55 syn-Top: build/syn-Top/syn-output-full.json

56 par-Top: build/par-Top/par-output-full.json

57 drc-Top: build/drc-Top/drc-output-full.json

58 lvs-Top: build/lvs-Top/lvs-output-full.json

59

60

61 build/syn-Top-input.json: build/par-Cluster/par-output-full.json \

62 build/par-EagleTLLaneGroup/par-output-full.json # ...

63 $(HAMMER_EXEC) -e bwrc-env.yml \

64 -p build/par-Cluster/par-output-full.json \

65 --obj_dir build hier-par-to-syn

Listing 4.5: An abridged Makefile for a hierarchical Hammer flow. Note that absolute paths
have been trimmed to relative paths for readability, and many rules and prerequisites have
been omitted, signified by an ellipsis.

4.4 Technology and EDA tool abstractions

Hammer provides IR abstractions for most concepts commonly used in digital ASIC flows,
like timing constraints, placement constraints, obstructions, blockages, pin placements, bump
placements, tap cell placement, power strap placement, et cetera. For the most part, these
are thin layers that abstract away the tool-specific commands used to perform these tasks,
as can be seen in Listing 4.1. However, physical design generators become more powerful
when layers are built on top of these to automate the engineering tasks that determine their
inputs. For such tasks, Hammer allows the user to select among the following options.

• The empty option will skip the given task.



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 91

• The manual option will use a manual specification provided by the user.

• The generated option will use a high-level generator API, with parameters provided
by the user, to perform the task. These APIs include a generate mode or gener-
ate method key to specify which technique to apply, if multiple are available.

Power straps are a good candidate for this type of approach, as they intermix all three
aspects of physical design: tool-specific commands, design-specific supply nets and low power
strategy, and process-specific routing information.

4.4.1 Power straps

The power distribution strategy is critical for modern ASIC designs, as the interconnect
scaling trends favor transistor density over wire resistance. As a result, proportionally more
effort and routing resources must be devoted to the on-chip power grid to meet electrical
reliability specifications like maximum IR drop. Compounded with the additional complexity
of modern low-power flows driven by the power wall and the end of Dennard scaling, power
grid design becomes a time-consuming engineering effort. However, specifying a power grid
often requires a lot of fine-tuning to achieve optimal resistance while leaving sufficient routing
resources for digital signals. The power grid in modern ASICs also must account for multiple
voltage and power domains used by low power design flows.

Standard EDA tool commands require the user to specify widths, offsets, and pitches of
power straps, which are often not easy to correlate with the routing tracks in the design.
There may also be additional pitch constraints in the design due to bump or macrocell
alignment requirements, as is the case in Eagle and EagleX.

Hierarchical cells which share a power domain must either have grids that connect exactly
by abutting them, or they must build their power straps in intermediate metal layers and
allow the top-level place-and-route job to create a top-level grid to connect them. The
latter technique unnecessarily consumes intermediate metal routing resources which can be
more efficiently utilized by clock and long-distance signal routing. However, abutment of
hierarchical power grids creates complex interdependencies among all IPs, which must take
into account their placement within the top level floorplan to align offsets correctly.

Hammer provides an API to generate power straps using a by tracks method to stream-
line this process. Listing 4.6 contains an example power grid specification using this method
for ASAP7. Rather than having the user specify specific sizing details, the by tracks
method, as its name suggests, allows the user to specify how many available routing tracks
to devote to power routing as a percentage, along with offsets and widths of the straps in
units of digital routing tracks. Because Hammer is aware of the metal design rules for each
layer, this allows the Hammer tool to perform the required math to optimize the straps while
allowing the engineer to reason about the design in a more intuitive and process-portable
way. Figure 4.2 demonstrates this concept with a 50% power strap utilization and 4-track-
wide straps. Figure 3.14 shows a multi-voltage top-level power strap plan used on the Eagle



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 92

and EagleX chips. Figure 4.3 shows two different power strap specifications in ASAP7. The
available options for the power strap by tracks API are as follows.

• strap layers specifies which layers shall contain power straps. Any layers that are
omitted will only be used to create DRC-clean vias between other specified layers.

• pin layers specifies which power strap layers shall contain pins, which is used by the
hierarchical flow when creating physical abstractions like LEFs.

• track width specifies the number of tracks to use for a single power strap of a single
net. This setting may be appended with a layer name to specify the track width for
that layer only.

• track spacing specifies the number of tracks to leave between two straps of different
nets within a power strap group. This is often zero. This setting may be appended
with a layer name to specify the track spacing for that layer only.

• track start specifies the first track on which to place a power strap, counting from
the left for vertical layers and from the bottom for horizontal layers. This setting may
be appended with a layer name to specify the track start for that layer only.

• power utilization specifies the power utilization as a fraction (1.0 = 100%, i.e. no
available signal routing tracks). This setting may be appended with a layer name to
specify the power utilization for that layer only.

4.5 Future work

Hammer has been integrated into Chipyard and is consequently seeing rapid adoption, having
reached over 100 Github stars and 200 unique cloners at the time of writing8. Support for
the open-source Skywater 130nm PDK9 is in development. Future work will involve the
implementation and refinement of additional signoff flows, like power analysis, static timing
analysis, and logical equivalency checking. While it is currently possible to run these flows on
Hammer-based designs, they too benefit from the abstractions and flow automation offered
by Hammer.

Timing and power analysis prediction [102] are interesting areas of research to integrate
into Hammer. These, along with other types of metrics collection as described in [103],
would allow closed-loop feedback to Chisel generators to enable autonomous design space
exploration of large digital systems.

8https://github.com/ucb-bar/hammer/graphs/traffic
9https://github.com/google/skywater-pdk



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 93

4 tracks
VDD

8 tracks
routing

repeat...
(utilization = 50%)

4 tracks
VSS

Figure 4.2: Simple power strap generation using the Hammer power strap generation API.



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 94

1 par.power_straps_mode: generate

2 par.generate_power_straps_method: by_tracks

3 par.generate_power_straps_options:

4 by_tracks:

5 strap_layers:

6 - M3

7 - M4

8 - M5

9 - M6

10 - M7

11 - M8

12 - M9

13 pin_layers:

14 - M9

15 track_width: 7

16 track_spacing: 0

17 track_spacing_M3: 28

18 track_start: 10

19 power_utilization: 0.25

20 power_utilization_M3: 0.6

21 power_utilization_M8: 1.0

22 power_utilization_M9: 1.0

Listing 4.6: Hammer IR to specify power straps in ASAP7 using the by tracks power strap
generation API.

Power strap automation can be further improved by calculating the offsets of each hier-
archical IP based on the top-level floorplan automatically, which is known at the time the
flow is built.

The printed circuit board (PCB) support in Hammer is limited to simple schematic
symbol and footprint outputs for a single PCB layout tool, Altium. The ramifications of
chip-level decisions at the board-level are not addressed by this feature. There is interest in
chip- and chiplet-package co-design [104] to ease board-level integration of generated systems-
on-chip. Hammer is a good candidate for this type of co-design, and future research should
consider incorporating this functionality.



CHAPTER 4. HAMMER: A PHYSICAL DESIGN GENERATOR PLATFORM 95

(a) Sparse (b) Dense

Figure 4.3: An example of sparse and dense power straps using ASAP7.



96

Chapter 5

Floorplanning for Generated RTL

The physical design automation framework described in Chapter 4 requires an externally-
supplied floorplan. While this framework is useful for developing EDA-tool-agnostic floorplan
specifications, these floorplans remain specific to a particular design instance. This poses a
problem for generator-based design flows, as relatively minor changes to the generator con-
figuration may require labor-intensive changes to the floorplan. This issue can be mitigated
by writing parameterized floorplan generators in a scripting language like Python, but this
approach is fragile and is limited to simple, high-level parameterizations like the number of
cores in a multicore CPU. Changes to the underlying generator or configurations beyond the
scope of the floorplan generator would produce incorrect and unusable floorplans.

The difficulty with building a robust floorplan generator stems from the need for rich,
deep knowledge of the parameterization space. It is possible to serialize the generator pa-
rameters into an external data structure that can be read by the floorplan generator, but
this essentially requires the floorplan generator to recreate the contexts in which those pa-
rameters are used when determining placements and sizing. This also leads to the repetition
of design intent, because the interpretation of the design parameters need to be described in
both the RTL generator and the floorplan generator. This not only doubles the maintenance
burden for a single generator, but it also creates a pathway for bugs to enter the design flow.
These bugs are often not immediately obvious; it may take a multiple long-running place-
and-route jobs, or ones with aggressive area or timing constraints, to highlight mistakes with
the floorplan generator.

It is therefore preferable to design a floorplan by using as much source configuration data
as possible. This chapter describes a novel floorplanning framework to enable floorplan gen-
eration for highly-parameterized Chisel designs. This framework aims to solve the problems
associated with external floorplan generators by building the floorplan with data available at
generator runtime, providing full access to the design configuration, type information, and
logical hierarchy of the elaborated instance.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 97

5.1 Architecture of a Chisel floorplanning framework

Change 
RTL

Generate 
Verilog

Inspect 
Verilog

Check 
SRAM 

names & 
counts

Update 
SRAM 
place-
ments

Update 
hierarchy 

& pins

Run flow

Iteration

Figure 5.1: Chisel SRAM floorplanning flow without automation.

Change 
RTL

Generate 
Verilog & 

FP
Run flow

Figure 5.2: Chisel SRAM floorplanning flow with automation.

Although Chisel has been demonstrated to improve productivity for RTL generation,
it is at the cost of increased floorplanning complexity. Figure 5.1 demonstrates the addi-
tional steps required when floorplanning Chisel-based designs. An ideal flow is shown in



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 98

Figure 5.2, which bypasses the labor-intensive steps of inspecting generated RTL. To close
the gap between these flows, a floorplan generation framework designed specifically for this
use is presented. To combat the challenges of constructing floorplans for generated RTL, an
effective Chisel floorplan generation framework should adhere to the following tenets.

1. The framework must have access to the Chisel data structures and parameters.

2. The framework must tolerate renaming and hierarchical manipulation in FIRRTL.

3. The framework must support abstract Mem constructs used by Chisel generators.

4. The floorplan code must exist separately from the RTL.

5. Floorplan generators must be composable.

6. The final floorplan data must be emitted separately from the RTL.

Tenet 1 requires that the floorplan has access to the Chisel data structures and parameters
so that the floorplan generator has access to the entire design without requiring serialization.
This allows the floorplan generator to make conditional decisions on any design parameter
without the overhead of explicitly tooling the RTL generator to emit the required information
and avoids duplication of design information. To accomplish this, the floorplan application
programming interface (API) is written in Scala so that it can execute in the same runtime
environment as the Chisel engine. By using Scala, the floorplanning framework also benefits
from its rich type system, improving type safety of the generator to prevent many classes
of type-related programming bugs. Changes to the RTL which would prevent compilation
also helps to keep the floorplan generator synchronized with the RTL generator, preventing
another class of bug to which external floorplan generators are vulnerable.

Tenet 2 requires that the framework must tolerate renaming and hierarchical manipula-
tion which occur naturally in the FIRRTL compiler. FIRRTL renames modules as they are
de-duplicated or uniquified as requested. Additionally, SoC flows using FIRRTL frequently
use passes to manipulate the hierarchy of the design, which allows for removal of extraneous
levels of hierarchy, like test harnesses, or for alteration of hierarchical boundaries for physi-
cal design. Because these tasks happen within the FIRRTL compiler, they are transparent
to the user at the Chisel level. It can be difficult to trace these events through the FIR-
RTL compiler to the generated output, especially when adding or removing FIRRTL passes
to manipulate names and hierarchy. An external floorplan generation script would require
specific knowledge of these transformations, and any updates to the sequence of FIRRTL
passes used to make them would necessitate a parallel update to the floorplan generation
script. However, a floorplanning API which interacts with the design within Chisel instead
of the generated Verilog is able to ignore these transformations. To enable this, the floor-
plan API uses FIRRTL annotations to encapsulate the floorplan information. This floorplan
information, called floorplan IR, or FPIR, contains geometric information about the desired
layout of modules and macrocells within the design. FPIR is attached to design elements via



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 99

FIRRTL annotations, which maintain their relationship with their annotated nodes through
renaming and hierarchy transformation. The resulting FPIR is emitted by the FIRRTL
compiler using a custom FIRRTL pass, which executes once the standard FIRRTL passes
have completed. At this point, the hierarchy transformation is complete, so the resulting
FPIR file contains correct-by-construction paths to floorplanned design nodes. Floorplan IR
is discussed in greater detail in Section 5.2.

Tenet 3 requires that the framework must support abstract Mem constructs, which Chisel
uses to represent memories. In Verilog-based designs, users instantiate technology-specific
SRAM macrocells directly, or by using wrapper modules. The modules which instantiate
macrocells directly are therefore tied to a specific process technology. By using wrappers,
designers can write RTL that is process-agnostic, but this requires that the designer create
a conforming wrapper for each process technology in which the design is used. Chisel, on
the other hand, has an abstract primitive type for memories, called a Mem, which rep-
resents multidimensional storage elements. The most common concrete class of Mem is
SyncReadMem, which matches the semantics assumed by most SRAM designs, in that
address and read enable are provided synchronously before the clock edge, and the corre-
sponding read data updates after the clock edge. Write data and read enable are supplied
along with address in the case of a write, and the write is committed after the clock edge.
Because this is handled natively in Chisel, VLSI flows use a custom FIRRTL pass to replace
Mem elements with groups of appropriately sized and connected SRAMs. This results in
information created by the FIRRTL pass that is not known to the designer at the floorplan
API level: the mapping of Mem constructs to SRAM groups.

To handle this, the floorplan API must be able to annotate chisel Mems, and the floor-
plan framework back-end must be able to replace these specific annotations with special
groups of macrocells, allowing the floorplan framework back-end to efficiently array the
memories based on process-specific constraints. This replacement suggests a “Pass”-based
architecture similar to FIRRTL, which is itself based on LLVM [105].

Tenet 4 requires that the floorplan generator code must exist separately from the RTL,
meaning that the floorplan generator code should not need to exist (and should actually
be discouraged from existing) in the same file or package as the RTL generator source
code. This is important for multiple reasons. First, co-locating the RTL generator code
and the floorplan generator code forces downstream users to use the floorplan generator
implementation included with the RTL. This locks users out from exploring new floorplan
ideas and prevents them from working around an issue with a floorplan generator that arises
in their specific use case. It also pollutes the generator RTL code, obfuscating both logical
intent and physical intent. Second, most systems-on-chip include some amount of third-party,
or external, intellectual property (IP). It is undesirable, and sometimes restricted by license,
to modify third-party IP to incorporate additional functionality like floorplan generation.
Even in cases where all IP is internal, it may be challenging to re-release a frozen design
to update the floorplan. Third, external floorplan code allows users to establish libraries of
reusable floorplan components which can be interchanged with alternate implementations
and published independently. This encourages a software-development-like ecosystem to



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 100

improve the productivity of the entire community with access to the libraries.
However, it is difficult to implement such a scheme using object-oriented programming

principles alone, as most object-oriented languages require the implementation for a single
class to exist entirely within a single file. It is sometimes possible to circumvent this using
inheritance, but generally it is difficult to re-inject the child class back into the context where
it is used in the third party or external code. Aspect-oriented programming (AOP) [106] is a
programming paradigm intended to solve this type of issue. Through the aspect construct,
AOP allows users to add arbitrary code in a separate location that is later injected into
specific points within the main code. There are many valid criticisms of AOP which make
it unsuitable for most tasks, but the benefits for this particular case are encouraging. The
Chisel language has a specific mechanism for supporting aspects [107]. This mechanism
allows the user to run arbitrary code on one or more elaborated chisel modules by matching
on their types. This is quite suitable for the floorplanning API as it guarantees type safety,
provides full access to each instance of all floorplanned modules, and ensures that elaboration
is complete, which guarantees that bit widths and port directions are finalized.

Tenet 5 requires that floorplan generators must be composable, meaning that multiple
floorplan generators may be combined together to form a larger, more complex floorplan.
This allows users to incorporate known-good floorplan generators from a floorplan generator
library into their own floorplan generators and modularize complex floorplans by referencing
sub-designs. This also enables the incorporation of hand-written floorplans into the gen-
erator to allow users to fine-tune portions of the floorplan or reuse existing arrangements
without losing the benefits of generators. Chisel’s AOP implementation also helps with this
requirement. The Chisel AOP mechanism uses a partial function to execute code on modules
for which that partial function is defined. By matching on type, aspects can be executed on
specific modules of that type. In scala, partial functions are composable, so the floorplan
API should encourage users to implement their floorplans using partial functions, which can
be composed within the Chisel aspect to produce the top-level floorplan.

Tenet 6 requires that the final floorplan data be emitted separately from the RTL. Because
large Chisel design have long run times, it is preferable to iterate on the floorplan, when
possible, without rebuilding Chisel. It is also important to be able to modify floorplan
parameters without touching the floorplan generator code, which requires the same run-time
environment as Chisel. This allows the user to produce multiple floorplans for design space
exploration or to annotate the floorplan with concrete design information like area, which
changes in each process node. This requirement leads to a standalone floorplan compiler
executable, which executes the “Passes” described previously. The Chisel API produces the
highest abstraction level FPIR, which is lowered by passes until the final concrete floorplan
is produced. Among these passes is a out-of-band annotation pass, which modifies the FPIR
with instance-specific information like area or length constraints. The floorplan compiler can
either emit concrete FPIR, with fixed sizes and placements, or hammerIR to be consumed
directly by Hammer.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 101

5.2 Floorplan IR

The Chisel floorplan compiler utilizes an intermediate representation called floorplan IR, or
FPIR, to store floorplan information. Components of FPIR are called Elements. During
Chisel elaboration, FPIR elements are attached to FIRRTL nodes via FIRRTL annotations,
which allows them to persist through renaming and hierarchy manipulation. Elements at-
tached to nodes that are removed by FIRRTL are also deleted; this may happen if the parent
circuit is changed manually or modules are deleted by dead code elimination. There are four
classes of floorplan annotations in the floorplan compiler framework:

• NoReferenceFloorplanAnnotation is used to annotate floorplan elements that are
not tied to specific hardware, like spacers.

• InstanceFloorplanAnnotation is used to annotate floorplan elements that describe
a module instance.

• MemFloorplanAnnotation is used to annotate Mem references.

• FloorplanIRFileAnnotation is used to specify the output FPIR JSON file.

NoReferenceFloorplanAnnotation extends the FIRRTL SingleTargetAnnotation
class, targeting a single InstanceTarget. This target is called the scope, and refers to the
scope of the current floorplan context. Scopes are discussed more in Section 5.4. Both
InstanceFloorplanAnnotation and MemFloorplanAnnotation extend the FIRRTL
MultiTargetAnnotation class, which allows a single annotation to have multiple targets.
In both cases, only two targets are allowed. The first target in the targets list is the scope
and the second target is the individual component described by the floorplan element. For
InstanceFloorplanAnnotations, this component must be a module instance. For Mem-
FloorplanAnnotations, this component must be a reference to a Mem node. While
both are two-element MultiTargetAnnotations, the underlying implementation of Mul-
tiTargetAnnotation does not preserve the typing of the underlying Targets, so separate
annotation types are used to preserve type safety within the FIRRTL pass.

These annotations are consumed by a custom FIRRTL pass, GenerateFloorplanIR-
Pass, which collects all remaining floorplan-related annotations after FIRRTL has emitted
Verilog and from them constructs a FloorplanState object. A FloorplanState is the top-
level container for serializing floorplan IR and contains a sequence of FloorplanRecords
and a level identifier. The level identifier is the maximum level of all elements within the
state–an element’s level refers to its level of abstraction. Levels range from 4, the most ab-
stract level, to 0, a fully concretized floorplan. A FloorplanRecord is a database entry that
records the floorplan element information, the scope, and the instance path and base module,
if applicable. By separating the floorplan element information from the hierarchical informa-
tion in the scope, instance path, and base module, this system is able to cleanly separate the
geometry-related information from the hierarchical information, which prevents the Chisel



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 102

API from needing to handle hierarchy. The created FloorplanState object is serialized to
a JSON string and written to the file specified by the FloorplanIRFileAnnotation. An
example of this file format with a single entry is shown in Listing 5.1.

Element

Element
WithParent

Primitive

Hierarchical
Barrier

Abstract
RectPrimitive

MemElement

Abstract
Macro

Constrained
RectPrimitive

Constrained
LogicRect

Constrained
SpacerRect

Sized
RectPrimitive

Sized
LogicRect

Sized
SpacerRect

Sized
Macro

Placed
RectPrimitive

Placed
LogicRect

Placed
Macro

Group

Grid

Constrained
WeightedGrid

Constrained
ElasticGrid

Sized
Grid

MemElement
Array

MemMacro
Array

Top

Constrained
HierarchicalTop

Sized
HierarchicalTop

Placed
HierarchicalTop

Abstract class

IR level 4

IR level 3

IR level 2

IR level 1

IR level 0

Legend

Figure 5.3: Floorplan IR class hierarchy and levels.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 103

1 {

2 "records":[

3 {

4 "scope":"ChipTop",

5 "ofModule":"ChipTop",

6 "element":{

7 "class":"barstools.floorplan.ConstrainedHierarchicalTop",

8 "name":"ChipTop_0",

9 "topGroup":"unnamed_0",

10 "width":{

11 "class":"barstools.floorplan.Constrained",

12 "eq":500.0

13 },

14 "height":{

15 "class":"barstools.floorplan.Constrained",

16 "eq":500.0

17 },

18 "area":{

19 "class":"barstools.floorplan.Unconstrained"

20 },

21 "aspectRatio":{

22 "class":"barstools.floorplan.Unconstrained"

23 },

24 "margins":{

25 "left":0,

26 "right":0,

27 "top":0,

28 "bottom":0

29 },

30 "hardBoundary":true

31 }

32 }

33 ],

34 "level":4

35 }

Listing 5.1: Serialized floorplan IR example.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 104

5.2.1 Floorplan IR design

Figure 5.3 illustrates the class hierarchy of floorplan elements. The abstract class hierarchy
allows logical grouping of similar elements and reduces repeated code. Additionally, some
inter-element relationships imply specific abstract types for the relatives, but this is unen-
forceable by the type system, so the Chisel API must safeguard against violating types. The
descriptions for the abstract classes are as follows.

• Element is the common ancestor of all floorplan IR elements.

• Top represents the top-level of a scope.

• ElementWithParent is not the top-level of a scope and has a parent element.

• Group contains a group of one or more sub-elements.

• Grid specifies a two-dimensional grid arrangement of sub-elements.

• Primitive is neither a Top nor a Group and therefore has no children.

• AbstractRectPrimitive is a rectangular primitive that cannot have constraints.

• ConstrainedRectPrimitive is a rectangular primitive that can be constrained.

• SizedRectPrimitive is a rectangular primitive with a concrete width and height.

• PlacedRectPrimitive: is a SizedRectPrimitive with a fixed location.

The concrete floorplan IR elements are categorized into one of five levels. Each level
corresponds to a specific level of abstraction, with higher levels allowing more abstract com-
ponents. These levels are listed below.

Level 4: Abstract memories and macrocells may exist without any physical dimensions.

Level 3: All memories must be mapped to macrocell instances, and all macrocells must
have physical dimensions annotated via out-of-band annotations. Multiple *Hierar-
chicalTop elements are allowed as long as all but the topmost have a corresponding
HierarchicalBarrier.

Level 2: Only one *HierarchicalTop may exist, meaning that the entire floorplan
state is within a single scope. No HierarchicalBarriers may exist.

Level 1: All elements must have concrete sizes (i.e. no inequality constraints), but can
still exist within sized groups.

Level 0: All elements must have concrete sizes and fixed locations. Only Placed*
elements are allowed.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 105

5.2.2 Floorplan IR element descriptions

Some floorplan elements are able to take constraint parameters for width, height, area, or
aspect ratio. Floorplan IR includes a serializable constraints class hierarchy to specify these.
It includes Unconstrained, which is always satisfied, Impossible, which is never satisfied,
and Constrained, which has fields eq (equal to), leq (less than or equal to), geq (greater
than or equal to), and mof (multiple of). Each of these fields can be optionally set to specify
the constraint value.

Floorplan elements all have a name identifier that is unique to the scope of the floorplan
context. The Chisel API enforces this, but any manually generated FPIR must also guarantee
this property. These identifiers are used to link Group elements to their children and vice
versa. Because the final hierarchical path is not known at elaboration time, the name is the
only handle available to the floorplan IR elements for describing relationships. The FPIR for
all Group elements contains a list of strings for the sub-elements. The semantic meaning of
the ordering of this list is class-specific. When two floorplan scopes are combined, the child
scope converts all names into new unique names within the parent scope. Therefore, names
cannot be guaranteed to remain static throughout a floorplan compilation, but the names
will be guaranteed to remain coherent. The full list of concrete floorplan elements and their
uses is listed below.

Level 4

• MemElement describes a single Mem node that will be replaced with zero or more
SRAM instances by the FIRRTL compiler.

• AbstractMacro describes a macrocell with unknown sizing. All AbstractMacros
must be sized using out-of-band annotations or the floorplan compiler will error.

• MemElementArray is a Group container for one or more MemElements that
should be treated as a single bank of memories during floorplan compilation. This
is converted to a MemMacroArray once MemElements are replaced with Ab-
stractMacros, which signifies to the floorplan compiler that contained macrocells are
SRAMs and should be placed accordingly.

Level 3

• HierarchicalBarrier is used to reference a sub-floorplan in a different scope which is
annotated with a *HierarchicalTop element. The instance paths for both elements
must be the same (although the scopes will necessarily be different). This design
decision enables floorplans to be composable by not requiring a single floorplanning
context for the entire floorplan. This also allows the user to instantiate a hand-written
floorplan within the generator for fine tuning or design reuse.

Level 2



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 106

• ConstrainedHierarchicalTop describes the constraints on a top-level floorplan, in-
cluding dimensions and margins. A ConstrainedHierarchicalTop must have a single
child element, groupTop, that is a Group type. The groupTop covers the entire
floorplan at the scope of the described top module.

• MemMacroArray describes an array of SRAM macrocells that have no predeter-
mined arrangement but may have width, height, area, or aspect ratio constraints.

• ConstrainedLogicRect describes a logic module instance that contains no floor-
planned sub-components but must be encapsulated within a rectangle with the pro-
vided constraints.

• ConstrainedSpacerRect describes a filler element that is not attached to any hard-
ware. This element is used to provide spacing between floorplan components, but
is pruned before floorplan emission. It does not block un-floorplanned standard cell
placement or routing.

• ConstrainedWeightedGrid describes a grid arrangement of floorplan elements
where all rows are related to each other by given row weight constraints and all
columns are related to each other by given column weight constraints.

• ConstrainedElasticGrid describes a grid arrangement of floorplan elements where
all elements of a given row have the same height and all elements of a given column
have the same width, but there are no specified relationships among rows or columns.

Level 1

• SizedLogicRect describes a logic module instance that has no sub-components and
a fixed width and height.

• SizedSpacerRect describes a filler element that is not attached to any hardware and
has a fixed width and height. This element is used to provide spacing between floorplan
components, but is pruned before floorplan emission. It does not block un-floorplanned
standard cell placement or routing.

• SizedMacro describes a macrocell instance that has a fixed width and height.

• SizedGrid describes a grid arrangement of floorplan elements where all rows and
columns have specified dimensions.

• SizedHierarchicalTop describes the top-level floorplan dimensions and margins.

Level 0

• PlacedLogicRect describes a logic module instance that has no sub-components and
a fixed width, height, and placement location.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 107

• PlacedMacro describes a macrocell instance that has a fixed width, height, placement
location, and orientation.

• PlacedHierarchicalTop describes the top-level floorplan offset, dimensions, and mar-
gins.

5.3 Floorplan compiler

The floorplan compiler consumes one or more floorplan IR files, memory instance map
files, and out-of-band annotation files to produce a floorplan output, which can either be
level 0 FPIR or hammerIR. This flow is shown at a high level in Figure 5.4. The primary
mechanism for generating floorplan IR files is the Chisel floorplan API, but it is possible to
generate them by hand or through a script. An example of the contents of a floorplan IR
file is shown in Listing 5.1.

The floorplan compiler expects the memory instance map file to contain one line for
each MemElement. Each line begins with the module name of the MemElement that
has been replaced, followed by a whitespace-delimited list of macrocell instances. Each
macrocell instance contains the new instance name for the specific macrocell and its module
name delimited by a colon. Listing 5.2 illustrates an example memory instance map file.

Out-of-band annotations use the JSON format and describe modules rather than in-
stances, which is better suited for this type of annotation. An out-of-band annotation can
define any combination of the width, height, or area of a module. Currently only equality
constraints are supported. Any module can be annotated, but AbstractMacros require
that both width and height are specified, which is the mechanism by which the floorplan
compiler discerns their size. Generally this information is extracted from a physical view
of the macrocell, like a LEF file, but heuristic technique like a FIRRTL pass that approxi-
mates area [102] would also be appropriate. Listing 5.3 shows an example of an out-of-band
annotation file.

1 tag_array_ext mem_0_0:SRAM1RW64x22 mem_0_1:SRAM1RW64x22

2 tag_array_0_ext mem_0_0:SRAM1RW64x21 mem_0_1:SRAM1RW64x21

3 data_arrays_0_0_ext mem_0_0:SRAM1RW512x32 mem_0_1:SRAM1RW512x32

4 l2_tlb_ram_ext mem_0_0:SRAM1RW1024x44

Listing 5.2: Example of a floorplan compiler memory instance map file.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 108

1 [

2 {

3 "height": 180.46,

4 "ofModule": "SRAM1RW1024x17",

5 "width": 79.568

6 },

7 {

8 "height": 300.94,

9 "ofModule": "SRAM1RW1024x64",

10 "width": 173.728

11 },

12 {

13 "height": 75.38,

14 "ofModule": "SRAM1RW512x8",

15 "width": 47.008

16 },

17 {

18 "height": 56.528,

19 "ofModule": "SRAM1RW64x22",

20 "width": 24.128

21 },

22 {

23 "height": 56.556,

24 "ofModule": "SRAM1RW64x21",

25 "width": 23.248

26 },

27 {

28 "height": 150.568,

29 "ofModule": "SRAM1RW512x32",

30 "width": 89.248

31 },

32 {

33 "height": 301.048,

34 "ofModule": "SRAM1RW1024x44",

35 "width": 120.928

36 }

37 ]

Listing 5.3: Example of an out-of-band annotation file setting memory dimensions.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 109

Chisel Aspect

API 
call

API 
call

API 
call

FIRRTL 
Annotations

Floorplan 
IR

Floorplan 
Compiler

Mem
à

BlackBox

Floorplan

Verilog

Figure 5.4: Chisel floorplan compiler flow.

5.3.1 Floorplan compiler passes

The floorplan compiler transforms floorplan IR by permuting a FloorplanState object
through a series of passes as illustrated in Figure 5.5. Floorplan compiler passes must emit a
FloorplanState that is the same level or lower than its input state. These passes transform
FloorplanRecords by modifying or changing their elements as described in the list of
passes below. Most transformations preserve the instance and module information in the
FloorplanRecord, but some, namely ReplaceHierarchicalPass, modify the scope and
relative instance path of the records while preserving the absolute instance path.

• TransformMemsPass converts all MemElements in the state into Abstract-
Macros. A single MemElement may be transformed into zero, one, or multiple
AbstractMacros, depending on the mapping provided in the memory instance map
file. A MemElement which is mapped to a flip-flop-based memory is simply re-
moved from the design, while its parent container remains. This pass also converts
MemElementArrays into MemMacroArrays, while preserving the one-to-many
parent-child relationship each has with the newly transformed AbstractMacros.

• OutOfBandAnnotationPass adds additional constraints to FloorplanRecords
that match module names provided in the out-of-band annotation file. This is a
mandatory step for any AbstractMacro elements in the design.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 110

Abstract
Macro

MemElement

MemElement
Array

MemMacro
Array

Sized
Macro

MemMacro
Array

Abstract
Macro

Sized
Macro

Placed
Macro

Sized
Grid

Sized
Macro

1 N

 M
ac

ro
ce

lls

Placed
Macro

 Memories

 Other macrocells

Sized
HierarchicalTop

Constrained
HierarchicalTop

Constrained
ElasticGrid

Group

Constrained
HierarchicalTop

Group

Hierarchical
Barrier

Top module only

All others

 H
ie

ra
rc

hi
ca

l t
op

-le
ve

l m
od

ul
es

Constrained
LogicRect

Constrained
SpacerRect

Sized
LogicRect

Sized
SpacerRect

Placed
LogicRect

Constrained
WeightedGrid

Constrained
ElasticGrid

Sized
Grid

O
th

er
 lo

gi
c 

el
em

en
ts

TransformMemsPass

OutOfBandAnnotationPass

ReplaceHierarchicalPass

ConstraintPropagationPass

ReplaceMemMacroArrayPass

ResolveConstraintsPass

CalculatePlacementsPass

≤ level 4

≤ level 3

≤ level 4

Chisel API

≤ level 2

Concrete floorplan

≤ level 2

≤ level 2

≤ level 1

= level 0

Placed
HierarchicalTop

Figure 5.5: Floorplan compiler passes and FPIR lowering flows. All dotted lines represent
1:1 transformations unless otherwise noted.

• ReplaceHierarchicalPass consolidates all scopes in the design into a single floorplan
scope. A scope will always have a ConstrainedHierarchicalTop, SizedHierarchi-
calTop, or PlacedHierarchicalTop at its root. For modules other than the topmost
module, this must correspond to a HierarchicalBarrier at a higher level in the hi-
erarchy. Each ConstrainedHierarchicalTop or SizedHierarchicalTop contains a
single child called the topGroup, which is a Group element that represents the layout
of the entire module. This pass will stitch the two disjoint scopes together by replacing
the HierarchicalBarrier with a single-row, single-column ConstrainedElasticGrid
containing the topGroup. After this replacement, the scope of each element from the
child floorplan is replaced with the new scope and the element names are uniquified.

• ConstraintPropagationPass propagates constraints up and down the floorplan hi-



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 111

64
x

1024

64
x

1024

64
x

1024

64
x

1024

64
x

1024

64
x

1024OR OR128 x 1024
MemElement

Floorplan 
compiler 

pass

Figure 5.6: SRAM mapping using the floorplan compiler.

erarchy and to sibling elements of groups, if applicable. Any constraints which cannot
be met are replaced with Impossible constraint objects.

• ReplaceMemMacroArrayPass transforms MemMacroArray groups into Sized-
Grid groups that describe the concrete layout of the memory array using the available
constraints to determine topology. Figure 5.6 illustrates this process.

• ResolveConstraintsPass concretizes all constraints, optimizing for minimum area
when resolving inequalities.

• CalculatePlacementsPass replaces all Sized* elements with Placed* elements by
calculating absolute position within the floorplan. All Group and SizedSpacerRect
elements are removed after they are used to determine positioning.

5.3.2 SRAM replacement

Placing SRAMs is a top priority when building a floorplan. In most modern process tech-
nologies SRAM macrocells have signal pins on only one of its four sides. When floorplanning,
these pins must be unobstructed to be routable by the place-and-route tool. This typically
means the SRAM macrocells can be abutted along any of the three non-pin-bearing sides,
but not the fourth with pins. Depending on the implementation of the SRAM macrocell,
this abutment can either be direct, intentionally shorting the power and ground rails, or
require a small offset to meet design rules. Typically direct abutment allows for the most
compact layout, as many gaps in the layer geometries, like N-wells, can be eliminated.

Figure 5.6 demonstrates how the floorplan compiler can arrange a small set of memories
using these constraints. Figure 5.7 graphically illustrates the decision flow performed within
ReplaceMemMacroArrayPass to arrange these SRAMs inside a constrained rectangular
boundary.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 112

128 x 1024
Mem

128 x 1024
Mem

≤ 50

≤ 30

SomeModule

64
x

1024

Available SRAM:

20

10

20
64
x

1024

64
x

1024

64
x

1024

64
x

1024

SomeModule

≤ 50

≤ 30

10 10 10 10

64
x

1024

64
x

1024

64
x

1024

64
x

1024

SomeModule

20

20
≤ 30

Figure 5.7: SRAM legalization flow using the floorplan compiler.

5.4 Chisel floorplan API

A Chisel floorplan generator is constructed using a Chisel Aspect. In Chisel, an Aspect is
used to execute arbitrary code after a module of a specified type has been elaborated. This
allows the addition of arbitrary additional hardware or the execution of code that inspects
the design to perform a specific action.

Floorplans are created by providing a FloorplanFunction partial function to a Floor-
planAspect. An FloorplanFunction is a partial function which takes a single Chisel
BaseModule parameter and returns a Seq[ChiselElement], which is a list of Chisel
floorplan API components. The FloorplanFunction creates a FloorplanContext ob-
ject, which provides an API to create and modify floorplan information within the given
module instance, which becomes the scope of all floorplan components. These components
are returned by calling the commit method of the FloorplanContext object, which en-
sures that any mutable data structures, like grids, are resolved legally by inserting spacer
cells where required. The FloorplanAspect searches for modules for whose type the par-



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 113

tial function is defined and calls it on each. The resulting ChiselElements are collected
and converted into serialized floorplan IR, which is annotated to the design using one of the
floorplan annotations discussed in Section 5.2. Multiple partial functions can be composed
to combine floorplan generators from different packages using the orElse operator.

Within a FloorplanFunction, the user creates a floorplan context by calling the Floor-
plan apply method. This context sets the scope of the current floorplan to the provided
module, which is typically the input module to the function, and eventually creates a
ConstrainedHierarchicalTop when FPIR is emitted. All floorplan elements are created
through this floorplan context, or a child ChiselGroup created by the context, which pre-
vents the user from needing to maintain scope information. Any elements created within the
context are added to its elements list, which must be returned at the end of the floorplan
function. A simple example of this is shown in Listing 5.4.

All elements returned by this are objects are descendants of the ChiselElement class.
Once all floorplan functions have been executed, the concatenated sequence of ChiselEle-
ments is converted to a sequence of FIRRTL annotations containing the serialized FPIR.

Most FPIR Element types have analogous ChiselElement classes with a one-to-one
correspondence. For example, a ConstrainedLogicRect is created by a ChiselLogicRect
class within the Chisel API. This is also true for the class hierarchy, with ChiselGroup mir-
roring ChiselElement, et cetera. The Chisel API only emits the highest level of a particular
element type, meaning there is no mechanism to generate a SizedLogicRect FPIR element.
However, using EqualTo constraints allows the user to achieve equivalent behavior without
needing to add additional type support to the Chisel API. Chisel elements are created by
calling create methods on the floorplan context object, which applies the correct scope to
the element upon creation. To insert elements correctly into the hierarchy, ChiselGroup
classes provide placeAt methods, which places the given element at the specified index
within the group and creates the appropriate parent-child relationship necessary to produce
valid FPIR. The semantic meaning of the index is dependent on the concrete ChiselGroup
class.

Memories are treated differently than other floorplan components. Because a MemEle-
ment must be placed in a MemElementArray, no method exists within the floorplan
context to add a Chisel Mem directly. Instead, the MemElementArray class acts as
a mini-context, allowing the user to call addMem to create and attach the appropriate
element objects.

The Chisel API allows the user to provide meaningful names for all floorplan elements,
but this is optional. These names are treated as suggestions to avoid conflicts, and a singleton
name array is maintained at runtime to guarantee uniqueness by appending suffixes to the
suggestions if necessary.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 114

1 object ExampleFloorplans {

2

3 def apply(): FloorplanFunction = {

4 // floorplan for module named "Top"

5 case top: Top =>

6 val context = Floorplan(top, 100.0, 100.0)

7 val array = context.createElasticArray(2)

8 val topGrid = context.setTopGroup(array)

9 // Assign instance A to a rectangular area

10 topGrid.placeAt(1, context.createRect(top.instA))

11 // Cross-reference a separately defined floorplan of B

12 topGrid.placeAt(0, context.addHier(instB))

13 // return all elements from context

14 context.commit()

15 // floorplan for module named "Bar"

16 case bar: Bar =>

17 val context = Floorplan(bar)

18 val array = context.createElasticArray(3)

19 val topGrid = context.setTopGroup(array)

20 topGrid.placeAt(2, context.createRect(top.instC))

21 topGrid.placeAt(1, context.createSpacer())

22 topGrid.placeAt(0, context.createRect(instD))

23 // return all elements from context

24 context.commit()

25 }

26

27 }

28

29 case object ExampleFloorplanAspect extends FloorplanAspect[Top](

30 ExampleFloorplan()

31 )

Listing 5.4: A simple example floorplan generator.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 115

5.5 Example floorplans

Listing 5.5 and Listing 5.6 show floorplan generators for modules included in a default Chip-
yard build, RocketTile and ChipTop, respectively1. An instance of this floorplan generated
for a custom ChipTop RocketConfig instance with no L2 cache is shown in Figure 5.8.
This configuration includes a single rocket core with separate 16 KiB instruction and data
caches. This core is not configured with an instance of the Hwacha vector accelerator, but
the code shown includes a simple example to demonstrate the flexibility and composability
of the approach.

In Listing 5.5, lines 4 through 9 import the classes and objects from the source RTL
generators and the floorplan framework. Lines 14 through 58 define the floorplan generator
for a RocketTileModuleImp instance, which is a Rocket CPU tile, and lines 59 through
64 define the floorplan generator for HwachaImp, a Hwcha instance. For the Rocket tile
instance, line 15 creates the floorplan context. Next a 3-element vertical array is created,
which will contain any accelerators in the top cell, a spacer in the middle cell, and the
caches in the bottom cell. Line 18 places a 5-element horizontal array in the bottom cell,
which is subsequently filled with the data and tag arrays for the L1 instruction and data
caches separated by a spacer. Lines 30 through 34 of Listing 5.6 show the composition of
the ChipTop floorplan and RocketTile floorplan, which are written in separate files.

1Because Chipyard uses the Diplomacy [108] library, the floorplans annotate the lazy module imple-
mentations rather than the lazy modules themselves, which is why the ChipTop floorplan targets the
ChipTopLazyModuleImp module, which is the class that extends the Chisel hardware module class.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 116

1 // See LICENSE for license details

2 package chipyard.floorplan

3

4 import freechips.rocketchip.tile.{RocketTileModuleImp}

5 import freechips.rocketchip.rocket.{HasHellaCache, DCache}

6 import hwacha.{Hwacha, HwachaImp}

7 import barstools.floorplan.chisel.{FloorplanAspect, Floorplan}

8 import barstools.floorplan.chisel.{FloorplanFunction, Direction}

9 import barstools.floorplan.{GreaterThanOrEqualTo}

10

11 object RocketFloorplans {

12

13 def default: FloorplanFunction = {

14 case tile: RocketTileModuleImp =>

15 val context = Floorplan(tile)

16 val topArray = context.createElasticArray(3)

17 val topGroup = context.setTopGroup(topArray)

18 val cacheArray = topGroup.placeAt(0,

19 context.createElasticArray(5, Direction.Horizontal))

20

21 // Place I£ data

22 val icacheData = cacheArray.placeAt(0,

23 context.createMemArray(Some("l1_icache_data")))

24 tile.outer.frontend.icache.module.data_arrays.map { x =>

25 icacheData.addMem(x._1) }

26 // Place I£ tags

27 val icacheTags = cacheArray.placeAt(1,

28 context.createMemArray(Some("l1_icache_tags")))

29 icacheTags.addMem(tile.outer.frontend.icache.module.tag_array)

30

31 cacheArray.placeAt(2, context.createSpacer(

32 name = Some("cache_spacer"),

33 width = GreaterThanOrEqualTo(500)))

34

35 tile.outer match {

36 case x: HasHellaCache =>

37 val dcacheData = cacheArray.placeAt(4,

38 context.createMemArray(Some("l1_dcache_data")))

39 val dcacheTags = cacheArray.placeAt(3,

40 context.createMemArray(Some("l1_dcache_tags")))



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 117

41 x.dcache match {

42 case cache: DCache =>

43 cache.module.dcacheImpl.data.data_arrays.map { x =>

44 dcacheData.addMem(x._1) }

45 dcacheTags.addMem(cache.module.dcacheImpl.tag_array)

46 case _ =>

47 ???

48 }

49 case _ =>

50 // Do nothing

51 }

52

53 // Add optional accelerator placements

54 val hwacha = tile.outer.roccs.collectFirst { case h: Hwacha =>

55 topGroup.placeAt(2, context.addHier(h.module))

56 }

57

58 context.commit()

59 case hwacha: HwachaImp =>

60 val context = Floorplan(hwacha)

61 val topArray = context.createElasticArray(2)

62 val topGroup = context.setTopGroup(topArray)

63 // Hwacha floorplan goes here

64 context.commit()

65 }

66 }

67

68 case object RocketFloorplanAspect

69 extends FloorplanAspect[chipyard.TestHarness](

70 RocketFloorplans.default

71 )

Listing 5.5: Floorplan generator code for RocketTile modules.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 118

1 // See LICENSE for license details

2 package chipyard.floorplan

3

4 import chipyard.TestHarness

5 import chipyard.{ChipTopLazyRawModuleImp, BuildSystem, DigitalTop}

6 import freechips.rocketchip.config.{Parameters}

7 import barstools.floorplan.chisel.{FloorplanAspect, Floorplan}

8 import barstools.floorplan.chisel.{FloorplanFunction}

9

10 object ChipTopFloorplans {

11

12 def default: FloorplanFunction = {

13 case top: ChipTopLazyRawModuleImp =>

14 val context = Floorplan(top, 1500.0, 1000.0)

15 val array = context.createElasticArray(2)

16 val topGrid = context.setTopGroup(array)

17 val tiles = top.outer.lazySystem match {

18 case t: DigitalTop =>

19 t.tiles.map(x => context.addHier(x.module))

20 case _ =>

21 throw new Exception("Unsupported BuildSystem type")

22 }

23 topGrid.placeAt(1, context.createElasticArray(tiles))

24 topGrid.placeAt(0, context.createSpacer(Some("spacer")))

25 context.commit()

26 }

27

28 }

29

30 case object ChipTopFloorplanAspect

31 extends FloorplanAspect[chipyard.TestHarness](

32 ChipTopFloorplans.default orElse

33 RocketFloorplans.default

34 )

Listing 5.6: Floorplan generator code for a ChipTop modules.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 119

YiVXali]aWion mode: ÁooUplan
deVign Vi]e: 1500.0Xm [ 1500.0Xm ChiSTRS

16 KiB L1 I$
data SRAMs

16 KiB L1 D$
data SRAMs

Core place-and-route area

tag SRAMs tag SRAMs

Figure 5.8: Annotated floorplan of a single-core ChipTop using the generators shown in
Listing 5.6 and Listing 5.5 and visualized using Hammer.



CHAPTER 5. FLOORPLANNING FOR GENERATED RTL 120

5.6 Future work

The floorplan compiler presented in this dissertation is a promising step towards automating
floorplans for generator-based designs. The next step for this project is to be used in the
tapeout of a real, complex ASIC design. To achieve this goal, the following work is needed.

• The HierarchicalBarrier elements are designed to allow floorplan composability, but
they should also be allowed to serve as un-broken hierarchical boundaries for hierar-
chical place-and-route. With this, the floorplan compiler would be able to separate
floorplans for each hierarchical cell as required by most bottom-up hierarchical flows.

• The GroupAndDedup pass used to transform the logical hierarchy within FIRRTL
is not supported by the floorplan compiler. This pass is not used by all hierarchical
designs, but its support would extend the applicability of the floorplan compiler to
more complex architectures. To enable this, the floorplan compiler should be able to
target GroupAndDedup annotations themselves. While FIRRTL does not support
annotations of annotations, this can likely be implemented by annotating the module
targets with an additional floorplan annotation that contains metadata relating it to
the GroupAndDedup transformation.

• Modern systems-on-chip are built with many separate power domains which can affect
the floorplan. Integration of a framework for adding power domains [109] is needed to
improve the utility of the floorplan generation framework.

• The addition of custom element types will allow injection of custom floorplan compo-
nents that are not implemented by the base framework. This allows the floorplan to be
“Future-proof” by adding extensibility, much like Hammer allows arbitrary Tcl code
addition via hooks.

• Some Hammer IR primitives, like obstructions, are not currently supported in the
floorplan element set. These could be implemented with the custom element types
listed above, but most Hammer primitives are fundamental enough to merit direct
implementation in the floorplan framework.

• The constraint solving used in the floorplan compiler is rudimentary. Future work
should incorporate a more robust constraint solver that will converge over a wider
range of inputs.



121

Chapter 6

Conclusion

This dissertation presents a series of increasingly complex generator-based systems-on-chip
designed, manufactured, and tested in 28nm FD-SOI and 16nm FinFET, shown in Fig-
ure 6.1, along with a physical design methodology and framework used in their construction.
The physical design methodology and framework were developed in conjunction with the
systems-on-chip, improving the productivity of small teams of design engineers over the se-
ries of chips without sacrificing quality of results (QoR), achieving state-of-the-art general
matrix multiply (GEMM) energy efficiency of 209.5 GHFLOPS/W. Based on this success, a
floorplanning framework is presented which aims to solve some residual productivity issues
stemming from generator-based design flows by enabling generator-based floorplans to be
expressed in conjunction with the RTL design.

Splash 2

2.3 mm

1.
8 

m
m

Hurricane 1

2.8 mm

2.
8 

m
m

Hurricane 2

3.9 mm

4.
3 

m
m

Eagle

4.
9 

m
m

4.9 mm

EagleX

7.35 mm

7.
35

 m
m

28nm FD-SOI

16nm FinFET

2015-12-09 2016-03-16 2017-03-21 2018-06-11 2019-07-04Tapeout Date

Figure 6.1: Die micrographs of the chips presented in this dissertation to scale.



CHAPTER 6. CONCLUSION 122

6.1 Summary of contributions

This work includes the following contributions.

• Serial link design and integration into a digital ASIC spectrometer manufactured in
28nm FD-SOI [51] (Section 2.1).

• Serial link design, integration, and testing of a dual-core RISC-V vector system-on-chip
with on-chip fine-grain power management in 28nm FD-SOI [57] (Section 2.2).

• Serial link design, integration, and testing of a single-core RISC-V dual-lane vector
system-on-chip with on-chip fine-grain power management in 28nm FD-SOI [81] (Sec-
tion 2.3).

• An eight-core RISC-V vector machine in 16nm FinFET with state-of-the-art half-
precision DGEMM energy efficiency [86] (Section 3.1).

• A 21-core heterogeneous RISC-V vector machine with systolic array accelerator in
16nm FinFET (Section 3.2).

• A physical design framework that enables reusable physical design generators for im-
proving designer productivity [17] (Chapter 4).

• A floorplanning framework in Chisel for reducing the overhead of building floorplans
for RTL generator instances (Chapter 5).

6.2 Future work

There remains a large gap between software and hardware design productivity. Further
adoption of proven software design principles by hardware designers will close this gap,
especially in the areas of physical design and verification. To this end, the following future
research is needed.

• This dissertation does not address the verification of generated RTL, which continues
to be a challenge to generator-based system design. Of particular significance is verifi-
cation of generators themselves, which promises greater benefits to productivity than
instance-based generation. Further investigation into Agile verification methodology
is warranted.

• The EagleX chip is still being tested as of this writing. Early results show significant
usability improvements over the Eagle chip, including the ability to run multicore
Linux, enabling modern high-level machine learning frameworks to utilize the system’s
vector acceleration and systolic array. Measurements from EagleX will not only help
to validate the system architecture, but will also confirm the efficacy of the generator-
based RTL and physical design methodologies presented in this dissertation.



CHAPTER 6. CONCLUSION 123

• The Hammer framework is missing important signoff flows like static timing analysis,
IR drop analysis, power analysis, and others. Future work should include adding these
features, as it will both improve productivity of chip design in general and enable
additional work flows that use data generated by these analyses.

• Currently, BAG is not strongly to either Chipyard or Hammer, and most of the BAG-
generated circuitry that is included in Chipyard-based designs is integrated manually.
There is an opportunity to co-constrain the analog design through BAG with the floor-
plan implemented with Hammer and the RTL generated by Chisel. Further research
is needed to explore the feasibility of this approach and discover possible benefits of
this approach.

• Chipyard was recently updated to include the option to implement a ring NoC system
bus topology. However, further topology configuration options are needed to improve
quality of results on many real systems-on-chip generated using Chipyard. A robust
generator framework for networks-on-chip, especially one which includes physical de-
sign feedback from generated floorplans, is needed.

• The goal of Chipyard is to include a baseline system-on-chip generator for academic
and industrial use. Floorplans for the core set of generators included in Chipyard,
like the cores, caches, accelerators, and peripherals, would improve the reusability of
these components. Future work should include floorplan generators using the proposed
floorplanning framework, ideally with examples implemented in open-source process
technologies.

• Machine learning is commonly being applied to electronic design automation problems.
Additional research is needed to determine if machine learning can be used effectively
in conjunction with the proposed floorplanning and physical design flows.



124

Bibliography

[1] G. E. Moore. “Cramming More Components onto Integrated Circuits”. In: Electronics
38.8 (Apr. 19, 1965), pp. 114–117.

[2] J. G. Spooner. It’s official: AMD hits 1,000MHz first. Zdnet. Mar. 2000. url:
https://www.zdnet.com/article/its-official-amd-hits-1000mhz-first-

5000096067/.

[3] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc. “De-
sign of Ion-Implanted MOSFET’s with Very Small Physical Dimensions”. In: IEEE
Journal of Solid-State Circuits 9 (5 Oct. 1974), pp. 256–268.

[4] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. “Dark
Silicon and the End of Multicore Scaling”. In: 2011 38th Annual International Sympo-
sium on Computer Architecture (ISCA). San Jose, CA, USA: IEEE, June 4–8, 2011,
pp. 365–376.

[5] D. Geer. “Chip Makers Turn to Multicore Processors”. In: Computer 38.5 (May 2005),
pp. 11–13.

[6] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. “Efficient Processing of Deep Neural
Networks: A Tutorial and Survey”. In: Proceedings of the IEEE 105 (12 Dec. 2017),
pp. 2295–2329.

[7] Y.-H. Chen, J. Emer, and V. Sze. “Using Dataflow to Optimize Energy Efficiency of
Deep Neural Network Accelerators”. In: IEEE Micro 37 (3 2017), pp. 12–21.

[8] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J.
Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J.
Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N.
Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G.
MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R.
Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A.
Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A.
Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon. “In-Datacenter Performance Analysis of a

https://www.zdnet.com/article/its-official-amd-hits-1000mhz-first-5000096067/
https://www.zdnet.com/article/its-official-amd-hits-1000mhz-first-5000096067/


BIBLIOGRAPHY 125

Tensor Processing Unit”. In: 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA). Toronto, ON, Canada: IEEE, June 24–28, 2017,
pp. 1–12.

[9] H. Genc, A. Haj-Ali, V. Iyer, A. Amid, H. Mao, J. Wright, C. Schmidt, J. Zhao,
A. Ou, M. Banister, Y. S. Shao, B. Nikolić, I. Stoica, and K. Asanović. Gemmini:
An Agile Systolic Array Generator Enabling Systematic Evaluations of Deep-Learning
Architectures. Nov. 2019. url: http://arxiv.org/pdf/1911.09925v2.

[10] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli, J. Kwak, R.
Jevtić, S. Bailey, M. Blagojević, P.-F. Chiu, R. Avižienis, B. Richards, J. Bachrach,
D. Patterson, E. Alon, B. Nikolić, and K. Asanović. “An Agile Approach to Building
RISC-V Microprocessors”. In: IEEE Micro 36 (2 Mar. 2016), pp. 8–20.

[11] S. Bailey. “Rapid ASIC Design for Digital Signal Processors”. PhD thesis. EECS
Department, University of California, Berkeley, May 2020.

[12] R. Bahr, C. Barrett, N. Bhagdikar, A. Carsello, R. Daly, C. Donovick, D. Durst, K.
Fatahalian, K. Feng, P. Hanrahan, T. Hofstee, M. Horowitz, D. Huff, F. Kjolstad, T.
Kong, Q. Liu, M. Mann, J. Melchert, A. Nayak, A. Niemetz, G. Nyengele, P. Raina,
S. Richardson, R. Setaluri, J. Setter, K. Sreedhar, M. Strange, J. Thomas, C. Torng,
L. Truong, N. Tsiskaridze, and K. Zhang. “Creating an Agile Hardware Design Flow”.
In: 2020 57th ACM/IEEE Design Automation Conference (DAC). San Francisco, CA,
USA: IEEE, July 20–24, 2020, pp. 1–6.

[13] S. Bailey, P. Rigge, J. Han, R. Lin, E. Y. Chang, H. Mao, Z. Wang, C. Markley, A. M.
Izraelevitz, A. Wang, N. Narevsky, W. Bae, S. Shauck, S. Montano, J. Norsworthy,
M. Razzaque, W. H. Ma, A. Lentiro, M. Doerflein, D. Heckendorn, J. McGrath, F.
DeSeta, R. Shoham, M. Stellfox, M. Snowden, J. Cole, D. R. Fuhrman, B. Richards,
J. Bachrach, E. Alon, and B. Nikolić. “A Mixed-Signal RISC-V Signal Analysis SoC
Generator With a 16-nm FinFET Instance”. In: IEEE Journal of Solid-State Circuits
54 (10 July 17, 2019), pp. 2786–2801.

[14] C. Celio, P.-F. Chiu, K. Asanović, B. Nikolić, and D. Patterson. “BROOM: An
Open-Source Out-of-Order Processor With Resilient Low-Voltage Operation in 28-
nm CMOS”. In: IEEE Micro 39 (2 Mar. 2019), pp. 52–60.

[15] S. Galal, O. Shacham, J. S. Brunhaver, J. Pu, A. Vassiliev, and M. Horowitz. “FPU
Generator for Design Space Exploration”. In: (Apr. 2013).

[16] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew, A. Magyar,
H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt, J. Wright, J. Zhao, Y. S.
Shao, K. Asanović, and B. Nikolić. “Chipyard: Integrated Design, Simulation, and
Implementation Framework for Custom SoCs”. In: IEEE Micro 40 (4 July 2020),
pp. 10–21.

http://arxiv.org/pdf/1911.09925v2


BIBLIOGRAPHY 126

[17] E. Wang, C. Schmidt, A. Izraelevitz, J. Wright, B. Nikolić, E. Alon, and J. Bachrach.
“A Methodology for Reusable Physical Design”. In: 2020 21st International Sympo-
sium on Quality Electronic Design (ISQED). Santa Clara, CA, USA: IEEE, Mar. 25–
26, 2020, pp. 243–249.

[18] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee, E.
Johnson, O. Pathak, A. Nazi, J. Pak, A. Tong, K. Srinivasa, W. Hang, E. Tuncer, Q. V.
Le, J. Laudon, R. Ho, R. Carpenter, and J. Dean. “A Graph Placement Methodology
for Fast Chip Design”. In: Nature 594.7862 (June 2021), pp. 207–212.

[19] Z. Or-Bach. Moore’s Law Has Stopped at 28nm. Mar. 2014. url: https://sst.

semiconductor-digest.com/2014/03/moores-law-has-stopped-at-28nm/.

[20] EETimes. FD SOI Benefits Rise at 14nm. EETimes. June 13, 2016. url: https:
//www.eetimes.com/fd-soi-benefits-rise-at-14nm/.

[21] R. Pease and S. Chou. “Lithography and Other Patterning Techniques for Future
Electronics”. In: Proceedings of the IEEE 96.2 (Feb. 2008), pp. 248–270.

[22] Y. Lee and A. Waterman. “Managing Chip Design Complexity in the Domain-Specific
SoC Era”. In: 2020 IEEE Symposium on VLSI Circuits. Honolulu, HI, USA: IEEE,
June 16–19, 2020, pp. 1–2.

[23] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam,
and C. Kim. “DySER: Unifying Functionality and Parallelism Specialization for
Energy-Efficient Computing”. In: IEEE Micro 32.5 (Sept. 2012), pp. 38–51.

[24] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. “A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing”. In: (June 2015).

[25] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas. Manifesto for Agile Software
Development. 2001. url: http://www.agilemanifesto.org/.

[26] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović. The RISC-V Instruction
Set Manual, Volume I: User-Level ISA, Version 2.0. Tech. rep. UCB/EECS-2014-54.
EECS Department, University of California, Berkeley, May 2014.

[27] K. Asanović, R. Avižienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig,
Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman. The Rocket Chip Gen-
erator. Tech. rep. UCB/EECS-2016-17. EECS Department, University of California,
Berkeley, Apr. 2016.

[28] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,
and K. Asanović. “Chisel: Constructing Hardware in a Scala Embedded language”. In:
DAC Design Automation Conference 2012. San Francisco, CA, USA: IEEE, July 3–7,
2012, pp. 1212–1221.

https://sst.semiconductor-digest.com/2014/03/moores-law-has-stopped-at-28nm/
https://sst.semiconductor-digest.com/2014/03/moores-law-has-stopped-at-28nm/
https://www.eetimes.com/fd-soi-benefits-rise-at-14nm/
https://www.eetimes.com/fd-soi-benefits-rise-at-14nm/
http://www.agilemanifesto.org/


BIBLIOGRAPHY 127

[29] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt,
C. Markley, J. Lawson, and J. Bachrach. “Reusability is FIRRTL Ground: Hard-
ware Construction Languages, Compiler Frameworks, and Transformations”. In: 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Irvine,
CA, USA: IEEE, Nov. 13–16, 2017, pp. 209–216.

[30] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton,
E. Amaro, C. Schmidt, A. Chopra, Q. Huang, K. Kovacs, B. Nikolić, R. Katz, J.
Bachrach, and K. Asanović. “Firesim: FPGA-Accelerated Cycle-Exact Scale-out Sys-
tem Simulation in the Public Cloud”. In: Proceedings of the 45th Annual International
Symposium on Computer Architecture. ISCA ’18. Los Angeles, California: IEEE Press,
2018, pp. 29–42.

[31] A. B. Kahng. “Machine Learning Applications in Physical Design: Recent Results
and Directions”. In: Proceedings of the 2018 International Symposium on Physical
Design. ISPD ’18. Monterey, California, USA: Association for Computing Machinery,
2018, pp. 68–73.

[32] E. Chang, J. Han, W. Bae, Z. Wang, N. Narevsky, B. Nikolić, and E. Alon. “BAG2:
A Process-Portable Framework for Generator-Based AMS Circuit Design”. In: 2018
IEEE Custom Integrated Circuits Conference (CICC). San Diego, CA, USA: IEEE,
Apr. 8–11, 2018, pp. 1–8.

[33] A. Gonzalez, J. Zhao, B. Korpan, H. Genc, C. Schmidt, J. Wright, A. Biswas, A.
Amid, F. Sheikh, A. Sorokin, S. Kale, M. Yalamanchi, R. Yarlagadda, M. Flanni-
gan, L. Abramowitz, E. Alon, Y. S. Shao, K. Asanović, and B. Nikolić. “A 16mm2

106.1 GOPS/W Heterogeneous RISC-V Multi-Core Multi-Accelerator SoC in Low-
Power 22nm FinFET”. In: ESSCIRC 2021 - IEEE 47th European Solid State Circuits
Conference (ESSCIRC). 2021.

[34] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolić. “AutoCkt:
Deep Reinforcement Learning of Analog Circuit Designs”. In: 2020 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE) (Mar. 2020).

[35] IEEE Standard for Universal Verification Methodology Language Reference Manual.
1800.2-2017. IEEE.

[36] E. Seligman, T. Schubert, and M. V. A. K. Kumar. Formal Verification. Elsevier
Science & Techn., July 24, 2015. 408 pp.

[37] L. Truong, S. Herbst, R. Setaluri, M. Mann, R. Daly, K. Zhang, C. Donovick, D. Stan-
ley, M. Horowitz, C. Barrett, and P. Hanrahan. “fault: A Python Embedded Domain-
Specific Language for Metaprogramming Portable Hardware Verification Compo-
nents”. In: Computer Aided Verification. Springer International Publishing, 2020,
pp. 403–414.



BIBLIOGRAPHY 128

[38] B. West. Hierarchy Management for Million Plus Gate Counts. Design & Reuse. url:
https://www.design-reuse.com/articles/5171/hierarchy-management-for-

million-plus-gate-counts.html.

[39] I. L. Markov, J. Hu, and M.-C. Kim. “Progress and Challenges in VLSI Placement
Research”. In: Proceedings of the IEEE 103.11 (Nov. 2015), pp. 1985–2003.

[40] B. Bredthauer, M. Olbrich, and E. Barke. “STP - A Quadratic VLSI Placement Tool
Using Graphic Processing Units”. In: 2018 17th International Symposium on Parallel
and Distributed Computing (ISPDC) (June 25–28, 2018). Geneva, Switzerland: IEEE,
June 25–28, 2018, pp. 77–84.

[41] A. Al-Kawam and H. M. Harmanani. “A Parallel GPU Implementation of the Tim-
ber Wolf Placement Algorithm”. In: 2015 12th International Conference on Informa-
tion Technology - New Generations (Apr. 13–15, 2015). Las Vegas, NV, USA: IEEE,
Apr. 13–15, 2015, pp. 792–795.

[42] Y. Zhou, Y. Yan, and W. Yan. “A Method to Speed up VLSI Hierarchical Physical
Design in Floorplanning”. In: 2017 IEEE 12th International Conference on ASIC
(ASICON) (Oct. 25–28, 2017). Guiyang, China: IEEE, Oct. 25–28, 2017, pp. 347–
350.

[43] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang. “RePlAce: Advancing Solution
Quality and Routability Validation in Global Placement”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 38 (9 Sept. 2019),
pp. 1717–1730.

[44] B. Li and P. D. Franzon. “Machine Learning in Physical Design”. In: 2016 IEEE
25th Conference on Electrical Performance Of Electronic Packaging And Systems
(EPEPS) (Oct. 23–26, 2016). San Diego, CA, USA: IEEE, Oct. 23–26, 2016, pp. 147–
150.

[45] V. A. Chhabria, Y. Zhang, H. Ren, B. Keller, B. Khailany, and S. S. Sapatnekar.
MAVIREC: ML-Aided Vectored IR-DropEstimation and Classification. Dec. 2020.
url: http://arxiv.org/pdf/2012.10597v1.

[46] H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku. “ParaGraph: Layout Parasitics
and Device Parameter Prediction using Graph Neural Networks”. In: 2020 57th
ACM/IEEE Design Automation Conference (DAC) (July 20–24, 2020). San Fran-
cisco, CA, USA: IEEE, July 20–24, 2020, pp. 1–6.

[47] L. Bai and L. Chen. “Machine-Learning-Based Early-Stage Timing Prediction in SoC
Physical Design”. In: 2018 14th IEEE International Conference on Solid-State and
Integrated Circuit Technology (ICSICT) (Oct. 31–Nov. 3, 2018). Qingdao, China:
IEEE, Oct. 31–Nov. 3, 2018, pp. 1–3.

https://www.design-reuse.com/articles/5171/hierarchy-management-for-million-plus-gate-counts.html
https://www.design-reuse.com/articles/5171/hierarchy-management-for-million-plus-gate-counts.html
http://arxiv.org/pdf/2012.10597v1


BIBLIOGRAPHY 129

[48] Y.-C. Lu, J. Lee, A. Agnesina, K. Samadi, and S. K. Lim. “GAN-CTS: A Genera-
tive Adversarial Framework for Clock Tree Prediction and Optimization”. In: 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (Nov. 4–
7, 2019). Westminster, CO, USA: IEEE, Nov. 4–7, 2019, pp. 1–8.

[49] J. Cooley. Nvidia uses MENT Nitro Physical Floorplanning for ICC/ICC2. DeepChip.
Apr. 4, 2017. url: http://www.deepchip.com/items/0570-02.html.

[50] D. Jacquet, F. Hasbani, P. Flatresse, R. Wilson, F. Arnaud, G. Cesana, T. D. Gilio, C.
Lecocq, T. Roy, A. Chhabra, C. Grover, O. Minez, J. Uginet, G. Durieu, C. Adobati,
D. Casalotto, F. Nyer, P. Menut, A. Cathelin, I. Vongsavady, and P. Magarshack.
“A 3 GHz Dual Core Processor ARM Cortex TM -A9 in 28 nm UTBB FD-SOI
CMOS With Ultra-Wide Voltage Range and Energy Efficiency Optimization”. In:
IEEE Journal of Solid-State Circuits 49.4 (Apr. 2014), pp. 812–826.

[51] S. Bailey, J. Wright, N. Mehta, R. Hochman, R. Jarnot, V. Milovanović, D. Werthimer,
and B. Nikolić. “A 28nm FDSOI 8192-Point Digital ASIC Spectrometer from a
Chisel Generator”. In: 2018 IEEE Custom Integrated Circuits Conference (CICC).
San Diego, CA, USA: IEEE, Apr. 8–11, 2018, pp. 1–4.

[52] L. Dong, M. Wang, and S. Shi. “A New Digital Spectrometer for Low Frequency
Solar Radio Observation Based on FPGA”. In: 2010 2nd International Conference
on Signal Processing Systems. IEEE, July 2010.

[53] J. Wright. “Design of a Lightweight Serial Link Generator for Test Chips”. Master’s
thesis. EECS Department, University of California, Berkeley, Dec. 2017.

[54] N. Mehta, C. Sun, M. Wade, and V. Stojanović. “A Differential Optical Receiver With
Monolithic Split-Microring Photodetector”. In: IEEE Journal of Solid-State Circuits
54 (8 Aug. 2019), pp. 2230–2242.

[55] F. Hsiao, A. Tang, Y. Kim, B. Drouin, G. Chattopadhyay, and M.-C. F. Chang. “A
2.2 GS/s 188mW Spectrometer Processor in 65nm CMOS for Supporting Low-Power
THz Planetary Instruments”. In: 2015 IEEE Custom Integrated Circuits Conference
(CICC). IEEE, Sept. 2015.

[56] B. Richards, N. Nicolici, H. Chen, K. Chao, R. Abiad, D. Werthimer, and B. Nikolić.
“A 1.5GS/s 4096-Point Digital Spectrum Analyzer for Space-Borne Applications”.
In: 2009 IEEE Custom Integrated Circuits Conference. IEEE, Sept. 2009.

[57] J. Wright, C. Schmidt, B. Keller, D. P. Dabbelt, J. Kwak, V. Iyer, N. Mehta, P.-F.
Chiu, S. Bailey, K. Asanović, and B. Nikolić. “A Dual-Core RISC-V Vector Processor
With On-Chip Fine-Grain Power Management in 28-nm FD-SOI”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 28 (12 Dec. 2020), pp. 2721–
2725.

http://www.deepchip.com/items/0570-02.html


BIBLIOGRAPHY 130

[58] A. Villas-Boas. Two Simple but Major Problems with Smartphones Need to be Fig-
ured out Before Companies Focus on Making Foldable Smartphones. Business Insider.
Mar. 11, 2020. url: https://www.businessinsider.com/smartphone-battery-
life-durability-foldable-devices-samsung-galaxy-iphone-2020-3.

[59] T. Burd, T. Pering, A. Stratakos, and R. Brodersen. “A Dynamic Voltage Scaled
Microprocessor System”. In: IEEE Journal of Solid-State Circuits 35 (11 Nov. 2000),
pp. 1571–1580.

[60] B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtić, B. Keller, S. Bailey, M. Blago-
jević, P.-F. Chiu, H.-P. Le, P.-H. Chen, N. Sutardja, R. Avižienis, A. Waterman,
B. Richards, P. Flatresse, E. Alon, K. Asanović, and B. Nikolić. “A RISC-V Vector
Processor with Tightly-Integrated Switched-Capacitor DC-DC Converters in 28nm
FDSOI”. In: 2015 Symposium on VLSI Circuits (VLSI Circuits) (June 17–19, 2015).
Kyoto, Japan: IEEE, June 17–19, 2015, pp. C316–C317.

[61] S. Naffziger, K. Lepak, M. Paraschou, and M. Subramony. “2.2 AMD Chiplet Archi-
tecture for High-Performance Server and Desktop Products”. In: 2020 IEEE Interna-
tional Solid- State Circuits Conference - (ISSCC). San Francisco, CA, USA: IEEE,
Feb. 16–20, 2020, pp. 44–45.

[62] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Rajwan. “Power-
Management Architecture of the Intel Microarchitecture Code-Named Sandy Bridge”.
In: IEEE Micro 32 (2 Mar. 2012), pp. 20–27.

[63] B. Zimmer, Y. Lee, A. Puggelli, J. Kwak, R. Jevtić, B. Keller, S. Bailey, M. Blago-
jević, P.-F. Chiu, H.-P. Le, P.-H. Chen, N. Sutardja, R. Avižienis, A. Waterman, B.
Richards, P. Flatresse, E. Alon, K. Asanović, and B. Nikolić. “A RISC-V Vector Pro-
cessor With Simultaneous-Switching Switched-Capacitor DC–DC Converters in 28
nm FDSOI”. In: IEEE Journal of Solid-State Circuits 51 (4 Apr. 2016), pp. 930–942.

[64] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.
Austin, K. Flautner, and T. Mudge. “Razor: A Low-Power Pipeline Based on Circuit-
Level Timing Speculation”. In: Proceedings. 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003. MICRO-36. San Diego, CA, USA: IEEE,
Dec. 5, 2003, pp. 7–18.

[65] B. Keller, M. Cochet, B. Zimmer, Y. Lee, M. Blagojević, J. Kwak, A. Puggelli, S. Bai-
ley, P.-F. Chiu, P. Dabbelt, C. Schmidt, E. Alon, K. Asanović, and B. Nikolić. “Sub-
Microsecond Adaptive Voltage Scaling in a 28nm FD-SOI Processor SoC”. In: ESS-
CIRC Conference 2016: 42nd European Solid-State Circuits Conference (Sept. 12–15,
2016). Lausanne, Switzerland: IEEE, Sept. 12–15, 2016, pp. 269–272.

[66] J. Kwak and B. Nikolić. “A 550–2260MHz Self-Adjustable Clock Generator in 28nm
FDSOI”. In: 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC). Xiamen,
China: IEEE, Nov. 9–11, 2015, pp. 1–4.

https://www.businessinsider.com/smartphone-battery-life-durability-foldable-devices-samsung-galaxy-iphone-2020-3
https://www.businessinsider.com/smartphone-battery-life-durability-foldable-devices-samsung-galaxy-iphone-2020-3


BIBLIOGRAPHY 131

[67] M. Cochet, B. Keller, S. Clerc, F. Abouzeid, A. Cathelin, J.-L. Autran, P. Roche,
and B. Nikolić. “A 225 µm 2 Probe Single-Point Calibration Digital Temperature
Sensor Using Body-Bias Adjustment in 28 nm FD-SOI CMOS”. In: IEEE Solid-State
Circuits Letters 1 (1 Jan. 2018), pp. 14–17.

[68] M. Blagojević, M. Cochet, B. Keller, P. Flatresse, A. Vladimirescu, and B. Nikolić.
“A Fast, Flexible, Positive and Negative Adaptive Body-Bias Generator in 28nm
FDSOI”. In: 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits). Honolulu,
HI, USA: IEEE, June 15–17, 2016, pp. 1–2.

[69] C. Schmidt and A. Ou. “Hwacha: A Data-Parallel RISC-V Extension and Implemen-
tation”. RISC-V Summit. Dec. 2018.

[70] Y. Lee, C. Schmidt, A. Ou, A. Waterman, and K. Asanović. The Hwacha Vector-
Fetch Architecture Manual, Version 3.8.1. Tech. rep. UCB/EECS-2015-262. EECS
Department, University of California, Berkeley, Dec. 2015.

[71] R. M. Russell. “The CRAY-1 Computer System”. In: Communications of the ACM
21.1 (Jan. 1978), pp. 63–72.

[72] C. Lomont. Introduction to Intel Advanced Vector Extensions. Intel White Paper.
2011. url: https : / / software . intel . com / content / www / us / en / develop /

articles/introduction-to-intel-advanced-vector-extensions.html.

[73] Y. Lee, A. Ou, C. Schmidt, S. Karandikar, H. Mao, and K. Asanović. The Hwacha
Microarchitecture Manual, Version 3.8.1. Tech. rep. UCB/EECS-2015-263. EECS De-
partment, University of California, Berkeley, Dec. 2015.

[74] D. C. Snowdon, S. M. Petters, and G. Heiser. “Accurate On-Line Prediction of Proces-
sor and Memoryenergy Usage under Voltage Scaling”. In: Proceedings of the 7th ACM
& IEEE International Conference on Embedded Software. EMSOFT ’07. Salzburg,
Austria: Association for Computing Machinery, 2007, pp. 84–93.

[75] S. Eyerman and L. Eeckhout. “Fine-Grained DVFS Using on-Chip Regulators”. In:
ACM Trans. Archit. Code Optim. 8.1 (Feb. 2011).

[76] R. Rodrigues, A. Annamalai, I. Koren, and S. Kundu. “A Study on the Use of Perfor-
mance Counters to Estimate Power in Microprocessors”. In: IEEE Transactions on
Circuits and Systems II: Express Briefs 60 (12 Dec. 2013), pp. 882–886.

[77] B. Keller, M. Cochet, B. Zimmer, J. Kwak, A. Puggelli, Y. Lee, M. Blagojević, S.
Bailey, P.-F. Chiu, P. Dabbelt, C. Schmidt, E. Alon, K. Asanović, and B. Nikolić.
“A RISC-V Processor SoC With Integrated Power Management at Submicrosecond
Timescales in 28 nm FD-SOI”. In: IEEE Journal of Solid-State Circuits 52 (7 July
2017), pp. 1863–1875.

[78] T. Webel, P. M. Lobo, R. Bertran, G. M. Salem, M. Allen-Ware, R. Rizzolo, S. M.
Carey, T. Strach, A. Buyuktosunoglu, C. Lefurgy, P. Bose, R. Nigaglioni, T. Slegel,
M. S. Floyd, and B. W. Curran. “Robust Power Management in the IBM z13”. In:
IBM Journal of Research and Development 59 (4/5 July 2015), 16:1–16:12.

https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html


BIBLIOGRAPHY 132

[79] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann. “Power
Management Architecture of the 2nd Generation Intel Core Microarchitecture, For-
merly Codenamed Sandy Bridge”. In: 2011 IEEE Hot Chips 23 Symposium (HCS).
Stanford, CA, USA: IEEE, Aug. 17–19, 2011, pp. 1–33.

[80] B. Keller. “Energy-Efficient System Design Through Adaptive Voltage Scaling”. PhD
thesis. EECS Department, University of California, Berkeley, Dec. 2019.

[81] C. Schmidt, A. Amid, J. Wright, B. Keller, H. Mao, K. Settaluri, J. Salomaa, J. Zhao,
A. Ou, K. Asanović, and B. Nikolić. “Programmable Fine-Grained Power Manage-
ment and System Analysis of RISC-V Vector Processors in 28-nm FD-SOI”. In: IEEE
Solid-State Circuits Letters 3 (2020), pp. 210–213.

[82] E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J. Lambert, K. Radhakrishnan,
and M. J. Hill. “FIVR — Fully Integrated Voltage Regulators on 4th Generation Intel
Core SoCs”. In: 2014 IEEE Applied Power Electronics Conference and Exposition -
APEC 2014. Fort Worth, TX, USA: IEEE, Mar. 16–20, 2014, pp. 432–439.

[83] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst. “14.5 Envision: A 0.26-to-
10TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable Con-
volutional Neural Network Processor in 28nm FDSOI”. In: 2017 IEEE International
Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, Feb. 5–7,
2017, pp. 246–247.

[84] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Ander-
son, T.-J. King, J. Bokor, and C. Hu. “FinFET-a Self-Aligned Double-Gate MOS-
FET Scalable to 20 nm”. In: IEEE Transactions on Electron Devices 47.12 (2000),
pp. 2320–2325.

[85] I. Cutress. Where are my GAA-FETs? TSMC to stay with FinFET for 3nm. Anand-
Tech. Aug. 26, 2020. url: https://www.anandtech.com/show/16041/where-are-
my-gaafets-tsmc-to-stay-with-finfet-for-3nm.

[86] C. Schmidt, J. Wright, Z. Wang, E. Chang, A. Ou, W. Bae, S. Huang, A. Flynn,
B. Richards, K. Asanović, E. Alon, and B. Nikolić. “4.3 An Eight-Core 1.44GHz
RISC-V Vector Machine in 16nm FinFET”. In: 2021 IEEE International Solid- State
Circuits Conference (ISSCC). Vol. 64. San Francisco, CA, USA: IEEE, Feb. 13–22,
2021, pp. 58–60.

[87] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo. “7.7 LNPU: A 25.3TFLOPS/W
Sparse Deep-Neural-Network Learning Processor with Fine-Grained Mixed Preci-
sion of FP8-FP16”. In: 2019 IEEE International Solid- State Circuits Conference
- (ISSCC). San Francisco, CA, USA: IEEE, Feb. 17–21, 2019, pp. 142–144.

https://www.anandtech.com/show/16041/where-are-my-gaafets-tsmc-to-stay-with-finfet-for-3nm
https://www.anandtech.com/show/16041/where-are-my-gaafets-tsmc-to-stay-with-finfet-for-3nm


BIBLIOGRAPHY 133

[88] P. N. Whatmough, S. K. Lee, M. Donato, H.-C. Hsueh, S. Xi, U. Gupta, L. Pentecost,
G. G. Ko, D. Brooks, and G.-Y. Wei. “A 16nm 25mm2 SoC with a 54.5x Flexibility-
Efficiency Range from Dual-Core Arm Cortex-A53 to eFPGA and Cache-Coherent
Accelerators”. In: 2019 Symposium on VLSI Circuits. Kyoto, Japan: IEEE, June 9–
14, 2019, pp. C34–C35.

[89] A. Rovinski, C. Zhao, K. Al-Hawaj, P. Gao, S. Xie, C. Torng, S. Davidson, A. Amar-
nath, L. Vega, B. Veluri, A. Rao, T. Ajayi, J. Puscar, S. Dai, R. Zhao, D. Richmond,
Z. Zhang, I. Galton, C. Batten, M. B. Taylor, and R. G. Dreslinski. “A 1.4 GHz
695 Giga Risc-V Inst/s 496-Core Manycore Processor With Mesh On-Chip Network
and an All-Digital Synthesized PLL in 16nm CMOS”. In: 2019 Symposium on VLSI
Circuits. Kyoto, Japan: IEEE, July 9, 2019–July 14, 2017, pp. C30–C31.

[90] A. Rylyakov, J. Tierno, G. English, D. Friedman, and M. Meghelli. “A Wide Power-
Supply Range (0.5V-to-1.3V) Wide Tuning Range (500 MHz-to-8 GHz) All-Static
CMOS AD PLL in 65nm SOI”. In: 2007 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers. IEEE, Feb. 2007.

[91] K. Lee, S.-J. Lee, and H.-J. Yoo. “Low-Power Network-on-Chip for High-Performance
SoC Design”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
14 (2 Feb. 2006), pp. 148–160.

[92] S. Murali, L. Benini, and G. D. Micheli. “An Application-Specific Design Methodology
for On-Chip Crossbar Generation”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 26 (7 July 2007), pp. 1283–1296.

[93] R. Kirby, S. Godil, R. Roy, and B. Catanzaro. “CongestionNet: Routing Congestion
Prediction Using Deep Graph Neural Networks”. In: 2019 IFIP/IEEE 27th Inter-
national Conference on Very Large Scale Integration (VLSI-SoC) (Oct. 6–9, 2019).
Cuzco, Peru: IEEE, Oct. 6–9, 2019, pp. 217–222.

[94] H. Kung. “Why Systolic Architectures?” In: Computer 15.1 (Jan. 1982), pp. 37–46.

[95] R. Smith and J. Ho. The Apple iPhone 6s and iPhone 6s Plus Review. AnandTech.
Nov. 2015. url: https://www.anandtech.com/show/9686/the-apple-iphone-6s-
and-iphone-6s-plus-review/3.

[96] W. Dally and A. Chang. “The role of custom design in ASIC chips”. In: Proceedings
37th Design Automation Conference (June 5–9, 2000). Los Angeles, CA, USA: IEEE,
June 5–9, 2000, pp. 643–647.

[97] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer.
“SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and ¡0.5MB Model
Size”. In: (Feb. 2016).

[98] A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and K. Keutzer.
“SqueezeNext: Hardware-Aware Neural Network Design”. In: Design Automation
Conference 2018 (and CVPR 2018 workshop) (Mar. 2018).

https://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3
https://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3


BIBLIOGRAPHY 134

[99] B. Khailany, E. Krimer, R. Venkatesan, J. Clemons, J. S. Emer, M. Fojtik, A. Kline-
felter, M. Pellauer, N. Pinckney, Y. S. Shao, S. Srinath, C. Torng, S. L. Xi, Y. Zhang,
and B. Zimmer. “INVITED: A Modular Digital VLSI Flow for High-Productivity SoC
Design”. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)
(June 24–28, 2018). San Francisco, CA, USA: IEEE, June 24–28, 2018, pp. 1–6.

[100] T. Ajayi, D. Blaauw, T. Chan, C. Cheng, V. Chhabria, D. Choo, M. Coltella, S.
Dobre, R. Dreslinski, M. Fogaça, et al. “OpenROAD: Toward a Self-Driving, Open-
Source Digital Layout Implementation Tool Chain”. In: Proc. GOMACTECH (2019),
pp. 1105–1110.

[101] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy,
and G. Yeric. “ASAP7: A 7-nm FinFET Predictive Process Design Kit”. In: Micro-
electronics Journal 53 (2016), pp. 105–115.

[102] S. Burns. FIRRTL Pass for Area and Timing. Chisel Community Conference. Nov.
2018. url: https://www.youtube.com/watch?v=FktjrjRVBoY.

[103] S. Hashemi, C.-T. Ho, A. B. Kahng, H.-Y. Liu, and S. Reda. “METRICS 2.0: A
Machine-Learning BasedOptimization System for IC Design”. In: Workshop on Open-
Source EDA Technology 2018 (WOSET-2018). 21. Nov. 2018.

[104] M. A. Kabir and Y. Peng. “Holistic Chiplet–Package Co-Optimization for Agile Cus-
tom 2.5-D Design”. In: IEEE Transactions on Components, Packaging and Manufac-
turing Technology 11 (5 May 2021), pp. 715–726.

[105] C. Lattner and V. Adve. “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04). Palo Alto, California, Mar. 2004.

[106] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. “Aspect-Oriented Programming”. In: ECOOP’97 — Object-Oriented Pro-
gramming. Springer Berlin Heidelberg, 1997, pp. 220–242.

[107] A. Izraelevitz. “Unlocking Design Reuse with Hardware Compiler Frameworks”. PhD
thesis. EECS Department, University of California, Berkeley, Dec. 2019.

[108] H. Cook, W. Terpstra, and Y. Lee. “Diplomatic Design Patterns: A TileLink Case
Study”. In: Proceedings of First Workshop on Computer Architecture Research with
RISC-V. CARRV ’17. Boston, MA, Oct. 2017.

[109] A. Nayak, K. Zhang, R. Setaluri, A. Carsello, M. Mann, S. Richardson, R. Bahr,
P. Hanrahan, M. Horowitz, and P. Raina. “A Framework for Adding Low-Overhead,
Fine-Grained Power Domains to CGRAs”. In: 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, Mar. 2020.

https://www.youtube.com/watch?v=FktjrjRVBoY

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Background
	Fundamentals of VLSI design
	Impact of technology scaling on system architecture
	Generator-based design
	Chipyard: An Agile generator-based SoC flow
	Challenges with generator-based design
	Floorplanning concepts
	State-of-the-art placement and floorplanning

	Dissertation scope and outline

	Integrated Circuit Designs in 28nm FD-SOI
	Splash2: Digital ASIC Spectrometer
	Background
	Architecture
	Results
	Physical design challenges

	Hurricane1: A Dual-Core RISC-V SoC with DVS
	Background
	Architecture
	Results
	Physical design challenges

	Hurricane2: A RISC-V SoC with Dual-Lane Vector Unit and DVS
	Background
	Architecture
	Results
	Physical design challenges


	Generated Multicore Systems-on-Chip in 16nm FinFET
	Eagle: An 8-core Generated RISC-V SoC
	Background
	Architecture
	Results
	Physical design challenges

	EagleX: A 21-core Generated RISC-V SoC
	Background
	Architecture
	Physical design challenges
	Results and future work


	Hammer: A Physical Design Generator Platform
	Motivation
	Hammer design philosophy
	Hammer design flow
	Hammer IR
	Tool plug-ins
	Technology plug-ins
	Build flow generation

	Technology and EDA tool abstractions
	Power straps

	Future work

	Floorplanning for Generated RTL
	Architecture of a Chisel floorplanning framework
	Floorplan IR
	Floorplan IR design
	Floorplan IR element descriptions

	Floorplan compiler
	Floorplan compiler passes
	SRAM replacement

	Chisel floorplan API
	Example floorplans
	Future work

	Conclusion
	Summary of contributions
	Future work

	Bibliography



