
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Sequence modelling and an extensible data model for genomic databases

Permalink
https://escholarship.org/uc/item/8s85k8gg

Author
Li, Peter Wei-Der

Publication Date
1991

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8s85k8gg
https://escholarship.org
http://www.cdlib.org/

Sequence Modelling and an Extensible Data Model for Genomic Databases

by

Peter Wei-Der Li

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Medical Information Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

San Francisco

Approved: / ~. *-
A* skº

* * * * * * * * * *

Date University Librarian

Copyright 1991

by
Peter Wei-Der Li

Acknowledgments

I would like to thank my advisor, Dr. Arie Shoshani, whose wisdom and guidance have made this
work possible. The many hours of discussion with him were the most rewarding part of this under
taking. I would also like to thank my thesis committee members, Dr. Arie Segev, Dr. John Stark
weather, and Dr. Robert Langridge, for supporting my efforts in this work.

I would like to thank the late Dr. Marsden Blois, who gave me the opportunity to pursue this goal
back in 1984. I would also like to thank Dr. John Stewart and the late Dr. Jack Sadler and for advis

ing me and guiding my interests while I was a student in their laboratories at the University of Col
orado. It was at that time when the seeds of this work was formed.

I would like to especially thank my wife, Jin Jen, for her help on the molecular biology discussed
in this work. In addition, her total support and love helped to make this undertaking a pleasant and
rewarding experience. And of course, many thanks to my son, Jason, for providing the often
needed and refreshing distractions while I was working on this thesis.

iii

Sequence Modelling and
an Extensible Object Data Model

for Genomic Databases

by
Peter Wei-Der Li

ABSTRACT

The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the
next century. It will generate DNA sequences of more than 10 billion bases and complex marker
sequences (maps) of more than 100 million markers. All of these information will be stored in data
base management systems (DBMS's). However, existing data models do not have the abstraction
mechanism for modelling sequences and existing DBMS's do not have operations for complex
sequences. This work addresses the problem of sequence modelling in the context of the HGP and
the more general problem of an extensible object data model that can incorporate the sequence
model as well as existing and future data constructs and operators.

First, we proposed a general sequence model that is application and implementation independent.
This model is used to capture the sequence information found in the HGP at the conceptual level.
In addition, abstract and biological sequence operators are defined for manipulating the modelled
sequences. Second, we combined many features of semantic and object oriented data models into
an extensible framework, which we called the “Extensible Object Model”, to address the need of
a modelling framework for incorporating the sequence data model with other types of data con
structs and operators. This framework is based on the conceptual separation between constructors
and constraints. We then used this modelling framework to integrate the constructs for the concep
tual sequence model. The Extensible Object Model is also defined with a graphical representation,
which is useful as a tool for database designers. Finally, we defined a query language to support
this model and implement the query processor to demonstrate the feasibility of the extensible
framework and the usefulness of the conceptual sequence model.

iv

Table of Contents

Title..…............................... 1

Copyright.…........................... 11

Acknowledgments... 111

Abstract..…....................... 1V

Table of Contents... V

Overview.. 1

PART I. SEQUENCE ABSTRACTION.. 3

CHAPTER 1. BACKGROUND.. 3

1.1. Human Genome Project... 3

1.2. Nucleotides.. 4

1.3. Single Stranded DNA.. 5

1.4. Double Stranded DNA... 6

1.5. DNA Fragments... 7

1.6. Biological Organization... 11

CHAPTER 2. ABSTRACT SEQUENCES... 13

2.1. Current Sequence Models.. 13

2.2. Fundamental Sequences... 17

2.3. Initial Sequence Model Framework... 20

24. Resolving Complications... 22

2.5. Improved Sequence Model Framework... 27

2.6. Operations on Abstract Sequences.. 31

CHAPTER 3. MODELS OF BIOLOGICAL SEQUENCES.................................. 38

3.1. Nucleotides.. 38

3.2. Single Stranded Sequences.. 39

3.3. Double Stranded Sequences... 41

34. Fragment Markers.. 47

3.5. Fragment As Sequence.. 49

CHAPTER 4. SEQUENCE SUMMMARY.. 54

4.1. Conceptual Basis.. 54

4.2. HGP Sequence Models.. 55

4.3. Model Expressiveness.. 56

Table of Contents

44. Open Topics... 57

PART II. EXTENSIBLE OBJECT DATA MODEL.. 58

CHAPTER 5. BACKGROUND.. 58

5.1. Framework for Data Models.. 60

5.2. Common Characteristics.. 63

5.3. Unique Characteristics... 67

5.4. Model Characteristics Summary.. 72

CHAPTER 6. EXTENSIBLE OBJECT DATA MODEL....................................... 73

6.1. Definition of Object-Types.. 73

6.2. Definition of Instances... 74

6.3. Graphical Notation... 76

6.4. Object-Types in a Schema... 76

6.5. Other Characteristics.. 78

CHAPTER 7. CONSTRUCTORS... 79

7.1. Composition... 80

7.2. Set..….. 84

7.3. Sequence.. 88

74. IS-A Construction.. 93

7.5. Inheritance... 94

7.6. Subset... 99

7.7. Union.…….................. 100

7.8. General Characteristics.. 103

CHAPTER 8. CONTEXT DEPENDENCY.. 107

8.1. Instance Association Diagrams.. 109

8.2. Target Dependency.. 112

8.3. Source Dependency... 117

8.4. Peer Dependency... 119

8.5. Issues of Context Dependency Usage.. 124

CHAPTER 9. OBJECT MODEL SUMMARY... 126

9.1. Conceptual Basis.. 126

9.2. Goals of the Extensible Object Model... 129

vi

Table of Contents

9.3. Comparison with Other Data Models.. 130

9.4. Differences From Other Models.. 135

9.5. Open Topics... 140

PART III. EXTENSIBLE OBJECT QUERYLANGUAGE.. 144

CHAPTER 10. DESIGN OF A QUERY PROCESSOR... 144

10.1. Data Definition Criteria... 144

10.2. Data Manipulation Criteria.. 146

10.3. Implementation Criteria... 148

10.4. Design Limitations... 149

10.5. Backend Limitations.. 150

CHAPTER 11. QUERYLANGUAGE REFERENCE.. 152

11.1. Notations.…... 152

11.2. Expressions.. 153

11.3. Administration... 155

11.4. Type Definition.. 157

11.5. Instance Manipulation.. 160

11.6. Selection and Control Flow... 163

11.7. Operators.…... 165

Conclusions.. 167

Bibliography..….. 171

Glossary... 176

Appendix A. Context Interactions... 180

Appendix B. Ternary Relationships.. 188

Appendix C. Examples of EOM Schema.. 193

Appendix D. Query Language Syntax... 205

Appendix E. Query Processor Modules.. 211

vii

Overview

Overview

In the Human Genome Project (HGP), several types of sequences are encountered. These range
from simple sequences of bases to complex sequences of markers. However, current database tech
nology does not provide a conceptual model for sequences. Therefore, when creating a conceptual
schema for a genomic database, the simple sequence information is often forced into an implemen
tation-specific form, e.g. character string or binary image, and the complex sequence information
is re-modelled into available constructs, such as sets or arrays. These limitations remove the basic
notion of a sequence from the conceptual schema of genomic databases and force the users either
to give up sequence operations or to develop additional code to recapture the inherent sequence
information.

Part I of this work develops a conceptual model for sequences. This model is application and
implementation independent so that a user can focus on modelling domain information and not to
be bound by implementation restrictions. This is achieved by separating the sequence information
into two components: position and content. This is extended into a framework of several sequence
models based on the following characteristics of position: order, metric, granularity, atomicity, and
density. Although the focus of this conceptual sequence model is on the types of sequences encoun
tered in the HGP, it was developed with sufficient generality for other applications.

Unfortunately, a sequence model, by itself, is insufficient to handle other modelling requirements
associated with a complex enterprise such as the HGP. Therefore, a general purpose conceptual
data model is also required. Furthermore, this general model must be able to subsume the concepts
from the sequence model in a consistent and coherent fashion. Current conceptual data models are
closed in their characterization, i.e. it is very difficult to extend these models with our sequence
concepts in the prescribed fashion. In addition, each model has its own drawbacks in semantic rich
ness, uniformity, and implementation independence.

Part II of this work develops an extensible conceptual data model, which we call the “Extensible
Object Model”, that addresses the above concerns. The result is an organized framework that inte
grates concepts from semantic and object oriented data models. The reason for a framework,
instead of only one model, is because we cannot anticipate all the specific constructs and relation
ships found in different application domains. Therefore, this approach permits the organized exten
sion for future modelling requirements. The basic components of the framework are constructors
and contexts. The constructors define the structure of the information modelled: composition, set,
sequence, inheritance, and union. The contexts define the constraints of values placed on other val
ues: target, source, and peer dependency. Under this framework, it was straightforward to integrate
the sequence model from Part I.

Overview

Since the Extensible Object Model is a framework, not all features are needed in order to demon
strate its capability. In particular, we implemented a query language interface for three constructors
in the model: composition, set, and sequence, with some of the contexts. This combination is suf
ficiently powerful to subsume the relational model, the basic Entity-Relationship model, most
Non-First Normal Form models, and most temporal sequence models. It is also sufficient for most
applications in the domain of the HGP In Part III, we describe this query language and its imple
mentation design. The main design goals are its independence of the underlying system and the .
robustness of the framework for future extensions. For this demonstration, a relational database

management system with large binary object support serves as the underlying system.

In Appendix A, we describe the interactions among the context dependencies defined in Chapter
8. In Appendix B, we present the details of a generalized constraint introduced in Part II (Section
8.4.1). In Appendix C, we provide several examples of the Extensible Object Model schema. In
Appendix D, we list the full language syntax of the query language introduced in Part III. Finally,
in Appendix E, we describe the major modules of the query processor.

1. BACKGROUND

PART I. SEQUENCE ABSTRACTION

CHAPTER 1. BACKGROUND

The main purpose of Part I is to formulate a well-defined conceptual sequence model and define a
set of necessary operations. One of the weaknesses of current database technology is the lack of
support for modelling and manipulating sequences [25]. As a result, the available genomic
sequence databases [21] implement simple sequences as text strings, binary images, or references
to an external file store. This use of implementation specific models reduces the portability and the
evolvability of any given database schema. In these databases, complex sequences, such as maps
(described in Section 1.5), are coerced into sets or arrays. Consequently, sequence information,
such as order and distance, are lost because these characteristics are not present in non-sequence
constructs. The development of a conceptual sequence model would address these problems by
capturing domain sequence information at the conceptual level, i.e. independent of physical imple
mentation. It also provides a set of operations which takes in account of the sequence specific char
acteristics. This permits operations to be defined independent of implementation strategies.

Part I is divided into four chapters. Chapter 1 describes the scope of the Human Genome Project
(HGP) and a brief background of the biology associated with the project. Chapter 2 reviews the
current sequence models and their limitations and proposes an abstract sequence model in terms of
sequence structures and operations. Chapter 3 uses the abstract model and operations to capture the
real-world HGP sequence information. Finally, Chapter 4 presents a summary of sequence model
ling.

1.1. Human Genome Project
The Human Genome Projects are based on multinational research teams with the objective to
sequence the human genome by 21st century [47,67]. In addition to the human genome, genomes
from Escherichia coli (bacteria), Mycoplasma Capricolum (mycoplasma), Saccharomyces cerevi
siae (yeast), Caenorhabditis elegans (nematode), Drosophila melanogaster (fruit fly), Mus muscu
lus (mouse), and Arabidopsis thaliana (a mustard plant) will also be sequenced. The concerted
effort will be performed in several major genome centers and laboratories around the world. In the
US, the HGP's are collectively termed “Human Genome Initiative” (HGI) for Congressional fund
ingreasons and major funding will be provided by the Department of Energy, the National Institute
of Health, the National Science Foundation, and the Howard Hughes Medical Institute.
The Initiative is broken down into three five-year phases. The first phase will emphasize develop
ment of biochemical mapping technology and exploratory efforts in large scale mapping. The sec
ond phase focuses on the completion of maps, sequencing technology, and exploratory efforts in
large scale sequencing. The third phase completes the genomic sequencing. This approach is essen

1. BACKGROUND

tially a top-down successive refinement methodology. Currently, we are in the middle of the first
phase [68]. Analysis and application of information gathered will be conducted throughout all the
phases.

There are several sequence databases that act as central clearing houses for discovered deoxyribo
nucleic acid (DNA) sequences. In addition to DNA and ribonucleic acid (RNA) sequences, there
are also protein sequences and structure databases which are commonly used by the scientists in
the HGP. Although this work focuses on genomic sequence information, the results also have appli
cation in these other sequence-related databases. In the US, Genbank is the major database for
genomic sequences [14]. The following graph shows the amount of raw sequence information
stored in Genbank over the last three years:

70 —

60

50

40i
30

20

12/88 12/89 12/90

The current growth rate is approximately 15 million bases per year and it does not include the anno
tations that contain important biological information. As the HGP reaches the second phase, the
expected rate can be as high as 500 million bases per year. It is this data generation that motivates
this work in developing a sequence-based data model.

In the next sections, we describe briefly the biological structures that we wish to support. This is
necessary in order to develop the functionality required of a HGP sequence data model. For more
detailed information, see [4,70].

1.2. Nucleotides

The molecular biology of the HGP starts nucleotides, which form the basis for DNA. Four types
of nucleotides can be found in DNA, namely: adenine (A), cytosine (C), guanine (G), and thymine
(T). Each nucleotide is oriented by molecular structures labelled as 5’ and 3’ ends. In the context
of this work, nucleotides and bases are synonymous, although, a nucleotide is a base with the deox

1. BACKGROUND

yribose and phosphate backbone. In some situations, there is incomplete information about a
sequence because of the experimental nature of science. In these cases, a base value is not fully
specified: a pyrimidine (Py) can represent either C or T, a purine (Pu) for A or G, and nucleotide
(N) for any nucleotides.

1.3. Single Stranded DNA
Single-stranded DNA (ssDNA) is the next level of organizational complexity in DNA, which is
formed by chemical bonding the 5’ end of a base to the 3’ end of the previous base. Although, the
bulk of the information used in the HGP will be double-stranded sequences (dsDNA), ssDNA does
exist in nature and can serve as a fundamental building block for modelling dsDNA. Because of
the orientation of the bonding, a ssDNA has a direction based on the molecular 5’ and 3’ ends,
which correspond to the beginning and the end of the molecule, respectively. A ssDNA can be cut
into two sequences while keeping the same orientation. For example:

5' – ACGTTAGTC – 3'

Cut COInCatenate

5' – ACGT -3',5' – TAGTC -3'

Two sequences can be joined, i.e., concatenated, with the 5’-end of one sequence linked to the 3'-
end of the other. In the example above, this will result in either the original molecule or the follow
ing sequence:

5’ – TAGTCACGT -3', by placing the second sequence first.

Nucleotides can form complementary pairs by hydrogen bonding: A with T and C with G, but in
the opposite orientation. A dsDNA is formed by building the complementary strand from a given
ssDNA and “anneal” them by hydrogen bonding:

Seq A: 5’- ACGTTAGTC -3’ (given strand)

!
Seq B: 5’- AgglºGº -3’ (given strand)

eq 3’ – Ass!!M&As –5’ (complimentary strand)

II II - represent hydrogen bonds, by default, this will not be shown

Therefore, a complement strand is not only a base-by-base complement, but also in reverse order
relative to the given strand. Each paired nucleotides is called a base-pair.

1. BACKGROUND

Given two ssDNA, we can check for equality, overlap, and complementation, for example:

Seq A: 5’ – ACGTTAGTC – 3’ equality
Seq B: 5 * – ACGTTAGTC – 3'

Seq A: 5 * – ACGTTAGTC –3' overlap
Seq B: 5' – TAGTCATG – 3’

Seq A: 5 * – ACGTTAGTC – 3 * complementation
Seq B: 3 * – TGCAATCAG – 5'

There are two types of complementation. First is full complementation, as seen in the above exam
ple. Another type is partial, where single stranded ends protrude from the area of complementation:

Seq A: 5’- ACGTTAGTC--- -3’ partial complementation
Seq B: 3’ — — — — —ATCAGATG – 5'

We use “-" to indicate the missing complementary base.
1.4. Double Stranded DNA

Double-stranded DNA (dsDNA) is the basic structure of nuclear DNA, i.e. inside the nucleus of a
cell. It is organizationally more complex than ssDNA and is the basis for all the information in the
HGP While ssDNA has specific orientation (5° and 3’), dsDNA is “symmetric” because of the
complementary orientation, for example:

-

dsDNA A: 5 * – ACGTTAGTC––– – 3'
3’ — — — — —ATCAGCTG – 5'

5’ — GTCGACTA— — — — — 3'dsDNA A':
3’ — — — —CTGATTGCA – 5'

Therefore, in a solution where molecules freely rotate, dsDNA A and A' are copies of the same
molecule. The typical representation of a dsDNA is a sequence with the top strand in 5’-to-3’ ori
entation and is assumed to be rotationally free or symmetric. Under certain situations, a dsDNA is
bound to a specific context (part of another dsDNA) or physical orientation (another molecule),
then explicit 5’ and 3’ ends must be denoted.

When looking for a subsequence on a ssDNA, only one direction is read, namely 5’-to-3°. On the
other hand, looking for a subsequence on a dsDNA requires both directions. A dsDNA can be cut
and concatenated, but also denatured (split into component single strands), annealed (forming
dsDNA from ssDNA), and filled (complements added to single stranded ends).

1. BACKGROUND

These are shown in the following:

ACTAATGCCATGC Cut ACTAATGC ——CATGCDS Seq A: –P- and
eq TGATTACGGTACG TGATTA—— CGGTACG

DS Seq A: ACTAATGC
and TGATTA—— COnCat ACTAATGCCATGC

DS Seq B: --CATGC TGATTACGGTACG
CGGTACG

- - -
SS Seq X: ACTAATGCCA

DS Seq A: ACTAATGCCA denature—P-
—-ATTACGGTACG +- and

SS Seq Y: GCATGGCATTA
SS Seq Y is in the correct orientation for ssDNA, which is the reverse
of the DS direction with respect to SS Seq X.

SS Seq X: TAATGCCA
and anneal DS Seq A: ——TAATGCCA–––

SS Seq Y: GCATGGCATTAGT TGATTACGGTACG

The rotational symmetry of dsDNA creates certain problems in modelling biological operations.
For example, several results are possible from a single concatenate:

--TCCAGAGC ——TATGCATA

can form both:

(I) ATAGGTCTCGATACGT-- and (II) CGATACGTATAGGTCT--
— —TCCAGAGCTATGCATA — —TATGCATATCCAGAGC

Depending on whether the single stranded ends are complementary, many results are possible. In
the extreme, up to the number of bases in the single stranded ends are possible:

Ds seq.A. GTACAAAAAAA and DS Seq B: ~~~~~~~ GTAC
CATG--— — — — — TTTTTTTCATG

can form the following:

GTACAAAAAAAGTAC > GTACAAAAAAA-GTAC , GTACAAAAAAA--GTAC ,
CATGTTTTTTTCATG CATG-TTTTTTTCATG CATG--TTTTTTTCATG

and so on, down to a minimum overlap determined by biophysical stability.

1.5. DNA Fragments
In the first phase of the HGP fragments of genomic DNA are created. These fragments of dsDNA
have known lengths, but unknown base sequence. These DNA fragments are labelled with “mark
ers” (described in the next two sections) and become “maps”, which form a crucial portion of orga

1. BACKGROUND

nized biological information for the HGP. The name “map” derives from its use as providing
reference landmarks for navigation. In biology, DNA maps provide biological landmarks for
exploration. Unlike the 2-D cartographic maps, DNA maps are in one dimension and only contain
information on marker names and lengths of the intervening sequences. For example, in the fol
lowing representation, the distance between marker M1 and marker M2 is 4 kilobases (kb):

M1 M2 M3 M4
1 I I I

4 kb 2kb 3 kb

The process of placing markers on fragments to generate “maps” of human DNA is one of the fun
damental tasks in the HGP. There are two directions in map constructions: a) constructing higher
resolution maps from low resolution maps (over the same coverage) and b) constructing larger
maps from smaller maps (increasing the coverage).

In DNA maps, length values of DNA fragments are not exact until the whole fragment has been
sequenced. The reason is that some amount of uncertainty is always associated with the measure
ment methodology. The primary means of fragment length measurement is based on gel electro
phoresis, and to improve the resolution, one can change the composition of the gel. However, the
resolution is, at best, two-orders of magnitude below the length of the fragment on a given gel. For
example, if a gel is made to resolve a 100 kb (kilobase) fragment, its resolution is usually 1 kb or
larger. Consequently, all lengths measured from this gel have an uncertainty of > 1 kb.
1.5.1. Restriction Sites as Markers

Two types of DNA map markers are commonly used: restriction sites and probes. Restriction sites
are created by enzymes (endonucleases) that cut DNA at specific sequences. The length of the rec
ognition sequence varies from 4 to 15 base-pairs, depending on the enzyme. The newly formed
ends of a cutting site can be blunt or sticky (SS tails) and the recognition sequence can also include
“wildcard” bases. For example:

Restriction Enzyme “Eco RI” recognizes: TTC
CTT

The line denotes the cutting site and the separation of strands.

Therefore, the following dsDNA will be cut by Eco RI into two pieces with sticky ends:

ATAGAATTCATG ECO RI ATAG---- and AATTCATG—º-
TATCTTAAGTAC Cut TATCTTAA — — — —GTAC

1. BACKGROUND

Other enzyme recognition sites have other characteristics, such as:

Alu I #3; creates blunt endsTCGA

Bgl I GCCNNNNINGGC N matches any base value
CGGNNNNNCCG

Hae II PuGCGCPy Pu stands for Purines (A or C)
PyºGCGPú Py stands for Pyrimidines (T or G)

Some restriction enzymes have more than one specific recognition sequence. For example, Hae II
has the following four possible recognition sequences:

AGCGCT AGCGCC GGCGCT , or GGCGCC
TCGCGA ’ TCGCGG CCGCGA ’ CCGCGG

In general, restriction enzyme recognition sequences, with wildcard bases, are palindromes, i.e. the
sequence is the same reading forward or backward (on the complementary strand). Therefore, it is
common to represent these sequences using only a ssDNA and a separation bar (“I”).

Due to the statistical nature of short sequences, a fragment sufficiently long will be invariably cut
by some enzyme. Once cut, the lengths of the smaller fragments can be measured and marked, cre
ating a sequence of restriction markers for a fragment:

Eco RI Alu I Eco RI Hae II

' 4 kb '2 kb' 3 kb

Although single values for lengths are used, it is understood that uncertainty exists for almost every
value except for those DNAs whose composition has been completely sequenced. The diagram
below represents the current state of knowledge of the previous fragment:

AATTC AGCT GAATTC PuGCGC
c- rosa-crºss- ey

4 kb 2 kb 3 kb

where * represents unknown Sequence.

1.5.2. Probes as Markers

Probes are short DNA fragments that have been positively identified, but not necessarily
sequenced. Similar to restriction enzymes which recognize specific sequences in DNA, probes rec
ognize specific sequences via hybridization, a process where tagged single stranded copies of the
probe is hydrogen bonded to another DNA by complementation. Therefore, we can use the probe
as a marker and then find the locations where the probe hybridizes to in a large DNA fragment.

1. BACKGROUND

A fragment with mapped probes is shown as follows:
Pl P2 P3 P4

I l l

4 cM '2 cM' 3 cMi A distance of “1 cM” represents a genetic
distance of 1% recombination during

P1 to P4 are probes, cM is centiMorgan meiotic segregation between two markers.
It is approximately 1 Mb in length.

If the probes are 1 kb in length, the above map becomes:

t º -: º: where = represents a stretch of DNA
4 CM 2 CM 3 CM 1kb in length

While the latter diagram is more correct, it is not necessarily useful to the biologist, because 1 kb
fragments at cM resolution can be viewed as a point. This is similar to the representation of restric
tion sites as points.
1.5.3. Marker Information

Restriction sites and probe locations can be related experimentally. Typically, if both types of
markers are used on the same fragment, the restriction site marks the ends of fragment intervals
and the probe becomes an experimental “handle” for the interval itself. For example,

T I i u

4 kb 2 kb 3 kb

If fragment interval (B) hybridizes to probe P. for instance, we can use P to detect the presence of
(B) in a pool of DNA cut with Eco RI and Alul. However, hybridization does not provide the exact
location of Pin (B). In fact, if P extends past either ends of (B), then (A) or (C) could also be
“picked up” by P. On the other hand, P can be used to bridge maps of different resolution. If we are
given the cM map of the previous fragment and if P = P2, then we have additional information
around the region where P2 is marked. This becomes useful in restriction fragment length polymor
phism (RFLP), a technique that links individual uniqueness with the inheritance of genes.

When a fragment has been cut by an enzyme, all sites that correspond to that enzyme are usually
found, for example:

H Seq A: H
unknown fragment

_º Sº,Seq A (E1): Seq A (E2):
E1 El E2 E2

L- l 1 I l l l l

T i i l I I i I

all E1 sites on A found all E2 sites on A found

10

1. BACKGROUND

Superimposing the two maps, we get the following map:
E1 E2 E1 E2

Seq A (E1 and E2): . H H | combined E1 and E2 sites

If we have another map, Seq B:

E. E. E. E.
| where all E1 and E2 sites were found,

then we can tell that Seq A and Seq B are different by the fact that the first E2 site occurat different
position (assuming the difference is greater than the uncertainty). However, we would not have
made the distinction on the basis of the E1 information alone.
Therefore, as each new set of markers is placed on a fragment, all new information is grouped with
our current knowledge about that fragment. Negative facts about a fragment, such as a lack of cut
ting sites, are also useful for determining whether two fragments are equal when the available
information is limited.

1.5.4. Ordered Maps

In addition to sequences of markers, DNA fragments could also exist in the form of ordered clone
maps. These are collections of fragments where the ordering among them is known by determining
whether overlaps occurred, but distances among them are unknown. For example, if we are given
the fragments A, B, and C and we know A overlaps B, B overlaps C, but A does not overlap C,
then an order of A-B-C can be inferred, but the actual distances and lengths are undetermined. In
some situations, the overlap information is incomplete or insufficient to determine complete order
ing, which results in a partially ordered clone maps.

1.6. Biological Organization
The organization of biologically significant objects in human genome is usually given in a top
down fashion. Briefly, the human genome is composed of 22 pairs of autosomal chromosomes and
one pair of sex chromosomes, XX for female and XY for male. Each chromosome is molecularly
one dsDNA, between 50 to 250 million base-pairs long. Biologically, each chromosome holds
between 1 to 5 thousand genes. Molecularly, a gene spans between one thousand to several million
base-pairs. A gene usually contains regulatory sections and structural sections for transcription into
ribonucleic acids (RNA). RNA differs from DNA in the type of sugar backbone (ribose vs. deox
yribose) and the substitution of the base uracil (U) for thymine (T). The transcript RNA may
undergo splicing and translation if the final product is a protein, which is a sequence of amino acids.
Although the splicing occurs at the RNA stage, the information which governs splicing is encoded
in the DNA sequence.

The types of sequences that are of interest in the HGP is not limited to DNA sequences nor maps.

11

1. BACKGROUND

RNA and protein sequences will become important in the analytical phases of the HGP because it
is in these forms that biological effects are observed. However, we will not focus on RNA and pro
tein sequence models because their characteristics are very similar to and can be subsumed by
DNA sequence models.

The following diagram is a schematic view of the biological events:

TZgene: 4% | | | |

Z : noncoding [T] : exon

º : regulatory/control _ : intron

transcription
primary
RNA : D_ | | T.
transcript

RNA splicing: introns removed

messenger RNA: [T]
(mRNA)

translation

protein: ()

folding, cutting, and bonding

mature protein:
©2.

2. ABSTRACT SEQUENCES

CHAPTER 2. ABSTRACT SEQUENCES

Given the three types of sequences (ssDNA, dsDNA, and maps) used in the Human Genome
Project, it is helpful to have a common model for all of them. This reduces the number of specific
sequence model characteristics and simplifies the complexity of database implementation. In addi
tion, if the abstract sequence model is sufficiently general, sequences from other application
domains can also be modelled effectively. An important example is the modeling of temporal
sequences used in business and scientific applications.

2.1. Current Sequence Models
For the remainder of the thesis, the definition of a sequence will be as follows: a sequence consists
of a set of ordered pairs. One component of the ordered pair is named “position” and the other is
named “content”. Other terminology for position and content include referent and variant, domain
and range, independent and dependent, or invariant and variant. We use the terms “position” and
“content”, because we do not consider causal relationships, on which the other terminologies are
based. There are additional restrictions on the values of position and content, these will be
described later.

2.1.1. Character String Model

One of the simplest sequence type is a character string. This is considered as a “primitive” type
supported by most DBMS’s, i.e. it is directly implemented with prespecified storage and opera
tions. The position values for character strings are sequential whole numbers starting from “1” (or
“0” for computer scientists) and the content value are encoded by a character, e.g. 7 bits in ASCII.
For example:

*The quick brown fox. . .” is represented as:

position: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .
character. T, h, e, , q, u, i, C., k, , b, r, o, W, . . .

In most DBMS’s, the length of a character string is limited to a predetermined maximum, e.g. 256.
While some DBMS’s now offer unlimited string length [30,63], which could be used to model
DNA sequences, the storage and access of such strings are implemented external to the query pro
cessor. Consequently, the DBMS does not support operations on these strings. One of the major
operations used in HGP is pattern or substring search, which is not currently supported by DBMS's
offering unlimited size string type. Furthermore, a character string cannot directly model map
information, as we shall show later.

2.1.2. List or Array Model

The next construct is a “list” or “array” of an arbitrary content type. These are found in so called

13

2. ABSTRACT SEQUENCES

NonFirst Normal Form (NFNF) [1,52] or extended relational implementations [53] and object-ori
ented DBMS [45]. This abstraction still maintains integer position values, but does permit more
complex values to be stored in place of characters. For example:

struct content x [5] is represented as:

position: 1 2 3 4 5
COntent: X1 X2 X3 X4 X5

where each xi is a value of “struct content”.

We can implement certain HGP sequences in this fashion, although they lack the appropriate posi
tion semantics, e.g. map sequences with fractional kilo-base (kb) position values cannot be mod
elled by sequential whole numbers. Therefore, we need to encapsulate the kb position and the
marker label into the “list” content value and change the “list” position into “marker order”:

Eco RI Alu I Eco RI Hae II

L + + | is represented as:
4 kb 2 kb 3 kb

T

marker order: 1 2 3 4 – “list” position
kb position: 0 kb 4 kb 6 kb 9 kb 4 & 1: - A-55nº. E.; º; e.g.) “ist” content

Unfortunately, such sequences cannot be correctly merged by looking at “list” positions alone. For
example, overlap can only be done by analyzing the internal data (kb position) of the content type
for a “list”.

2.1.3. Temporal Models

Genomic sequences have a close relative in the domain of temporal data [56]. The temporal model,
described in [56], is based on time and value components, which correspond to the position and
content components of a sequence model. However, each ordered pair has a specific interpretation
based on one of several variants of the temporal model. For example, in the discrete-event model,
each ordered pair is an independent event. In the stepwise or continuous model, each ordered pair
is a transition to a new content value. From these models, a more abstract temporal model can be
formed by removing all time interval interpretations. The resultant model would be a sequence
model, devoid of temporal characteristics. However, because the core temporal models already
have well-defined semantics and application domains, current research in temporal models are pre
dominantly directed at implementation strategies for collections of temporal sequences [57].
Specifically, if temporal models are directly applied to genomic sequences, we encounter concep
tual differences on how the two domains use sequence information. Temporal model operations
over multiple sequences assume an absolute time reference frame, i.e. the time values for the

14

2. ABSTRACT SEQUENCES

sequences are fixed while the content values are modified. For example, to compute the income
history from a salary and a bonus history, the time values are matched, but the income value (new
content) is the sum of salary and bonus values (old contents):

Salary History:

$10K $12K $15K

1/1/91 4/1/91 8/1/91 12/31/91
Date

Bonus History:

H

2/1/91 4/31/917/1/91 10/31/91
Date

Income History:

1/1/91 12/31/91
Date

Sººn the other hand, operations on genomic sequences have relative reference frames which change
Pºsition values but not content values. For example, to combine overlapping maps A and B, the
S*Srtents and relative positions are not changed, but the absolute positions in the resultant map C
*Te new:

ECO RI Alu I Eco RI Hae II
Map A: | H |

0 kb 4 kb 6 kb 9 kb

Eco RI Hae II Bam I Hind III

Map B: | } l |
0 kb 3 kb 6 kb 9 kb

Map C: Eco RI Alu I Eco RI Hae II Bam I Hind III
ap C: l | | | } |

0 kb 4 kb 6 kb 9 kb 12 kb 15 kb

Vf we start with the temporal models as a basis for genomic sequence models, we will need to spec
ify additional operations because of the conceptual differences on reference frames. However,

15

2. ABSTRACT SEQUENCES

other aspects of genomic sequences will create additional problems. For example, position type in
genomic sequences could have a partial order if only incomplete information is available, or have
a circular order if information was derived from a circular DNA. Since temporal models presume
a complete and linear order for position type, this extension will take the temporal models to
beyond the original intent. Currently, there is no implementations, i.e. DBMS’s, that support non
traditional algebraic systems beyond boolean algebra and standard number theories.
2.1.4. Combination Model

One approach to genomic sequence modelling is to use two or more current models. A character
string model can be used for DNA sequences while a temporal model can be used for maps. How
ever, this approach fails to unify the basic concepts of sequences. For example, the abstraction
behind the operations “overlap” and “concatenate” is applicable to both models. Therefore, these

operations should be the same independent of the implementation model used, but in most data
models, these are considered distinct operations due to the different implementations of the data
types. The objective of this Part is to unify and organize the basic concepts of sequences so that
One set of operations can be applied to all sequence types.

16

2. ABSTRACT SEQUENCES

2.2. Fundamental Sequences
A formal abstract sequence model should bridge the database domain and the application domain.
It should include definitions for the basic components, operations, and semantic relationships. We
start by defining a very simple and abstract model of a sequence that has few components, opera
tions, and relationships. We then elaborate it in detail, adding characteristics to the starting model
until a semantically rich sequence model is achieved. Eventually, a framework of sequences with
varying complexity is created. Finally, this framework serves as the fundamental basis on which to
model application-specific sequence information.

2.2.1. Components of a Sequence

As described earlier, a sequence is built from position and content values. The position and content
values are collectively termed “types”; therefore, a sequence type is constructed from a position
type and a content type. Every position value of a sequence is associated with a value from the con
tent type, i.e. a word is a sequence of letters where each position is associated with a letter. Another

example is a sequence of markers where every position value of this sequence has an associated
rrnarker (could be null if no markers were found). The content type minimally requires the definition
Cºf the “equality” operator. If the content type is structurally or operationally more complex, then
its complexity can be made visible as new sequence structures or operations. For example, the
corrhplement operation of bases can be extended to a sequence of bases. But for now, we consider
<<>rntent type as a black-box structure that has some accessible operations, minimally “equality”.
The position-content pair can be considered as a unit, subsequently, a sequence is a set of these
PCPsition-content elements. However, the nature of the “order” associated with position values
Frnakes a sequence different from a set. For the following discussion, we will use the notation
below:

{...} denotes a set of “...
[a, b] is an ordered pair of a and b.

The general model for sequences based on sets is defined as follows:

A sequence type, S, is constructed from the types:
a) position type, P, whose instances are ordered, and
b) content type, C.

An instance, I, of S, satisfies the following:
I = {[p, c] }, i.e. a sequence instance is a set of ordered pairs, where
pe P, i.e. p is an instance of position type and
ce C, i.e. c is an instance of content type.

If I is empty, we have a null sequence.

17

2. ABSTRACT SEQUENCES

If [p1, C1) and [p,2, c2 le I and p1 = p.2, then c1 = C2,
i.e. for each position only one content value is allowed.

This is equivalent of a well defined mathematical function, i.e. for every value x within the domain,
there is one and only one value y in the range. We will use < [p, c] × as a notation for I, instead
of the set notation, {[p, c] }, because of the additional requirement of unique and ordered p val
UCS.

2.2.2. Characteristics of Position

There are five qualitative characteristics for position types: order, metric, granularity, atomicity,
and density, which are described as follows:

A. Order

The most basic sequence type is an “order sequence”, whose position type is a completely ordered
set of values, i.e. one can determine the order between any two position values. In addition, there
is a minimal position value. This makes a sequence behave similarly to a “ray” in plane geometry
or a “directional vector” in physics where we start at a “zero” and move in the “one” direction.
When speaking of “sequences”, this is the most commonly visualized type. By removing the min
imal value, one creates “bidirectional” sequences, where position values can extend in both direc
tions ad infinitum. While these do not have biological equivalents, they are useful for modelling
relationships between local sequences. The next abstraction is reducing complete order into partial
order and circular order. These sequences are more difficult to visualize because they are non-linear
and less intuitive. Nevertheless, they play an important role as models of partial maps and circular
plasmids in biology.
B. Metric

A metric assigns semantic significance to the differences in position values. Differences can exist
between position values in a sequence, however, they remain abstract and are devoid of semantics
until a metric is used to interpret the meaning. Once a metric is assigned, a difference in values is
called a “distance”. For example, the difference between position 1 and position 7 of a DNA
Sequence is 6 bases, only after a physical unit of measurement, e.g. base, is attached to its value.
Therefore, a metric is defined with a unit, e.g. inch, Kelvin, or kilobases, and the measured value
implies a complete order, i.e. 3 inches is greater than 2 inches. A sequence, whose position has met
ric characteristics, is called a “metric sequence”. Since comparable physical units can be intercon
Verted, e.g. inches to meters and pounds to kilograms, a sequence with one position metric unit can
be converted into another sequence with some other comparable position metric. Although the
interconversion of metric sequences are dependent on the specific application domain, the process
of conversion can be generalized to become a part of the abstract sequence model.

18

2. ABSTRACT SEQUENCES

C. Granularity
Granularity implies that multiple resolution levels can be used. For example, a geographic position
can have multiple values based on the context resolution. The granularity is expressed as a fraction
(or multiple) of the physical metric, e.g. 0.1, 10, 1/16, etc. We name a sequence whose position type
can take on multiple granularities a “fractional sequence”. The concept of a “fraction” properly
embeds the concept of granularity: the “denominator” of a fraction is the granularity of the mea
SUTC.

D. Atomicity
Atomicity is a consequence of metrics which are of counting type, e.g. nth letter in a word. There
fore, atomicity limits the finest level of resolution a metric can have. For example, in the context
of letter positions in words and sentences, it is not meaningful to talk about half a letter or a quarter
of a letter position. On the other hand, if we are concerned with physical positioning of letters in a
word, such as kerning, then “half a letter” is meaningful. However, this type of “letter” is really a
representation of a physical distance, not a representation of the “letter” concept in a word. To use
atomicity correctly, we must know the exact nature of the position in the application context.

E. Density
Density distinguishes between actual and potential position values. A sequence is dense if no posi
tion value can exist between two consecutive position values of a given sequence, i.e., all potential
Values are actual. Examples are DNA sequences or continuous functions where the position values
are over the whole numbers (or the reals). A sequence is sparse if there exists potential position
Value between two consecutive actual position values, i.e., not all potential values are filled. Exam
Plesare a sequence of physical measurements made in a temporal context or a sequence of markers
in the HGP. In general, density is not completely independent of the semantic characteristics of
granularity and atomicity, as a dense sequence at one granularity may become sparse in another, or
vice versa.

-

19

2. ABSTRACT SEQUENCES

2.3. Initial Sequence Model Framework
Three basic sequence models can be developed based on the characterization of sequences in the
last section.

2.3.1. Order Sequence

The defining characteristics for order sequences are:

[* [p, c] - , D) where p e Position, c e Content, and D is density.

The position is of pure order only, therefore, characteristics of metric, granularity, and atomicity
are not applicable. For example, we have an ordered classification set of “very short”, “short”,
“average”, “tall”, and “very tall” people in a classroom. The position type is the ordered enumera
tion of height: {very short, short, average, tall, very tall}. The content type is the number of people
in each class. Then every classroom will be a sequence of 5 numbers without metric, granularity,
and atomicity properties

An example in the HGP for the dense order sequence is the ordered clone maps. In this situation,
the position is an ordering value that is devoid of metric or granularity information (see Section
1.5.4).

2.3.2. Metric/Fractional Sequence

A position type that has multiple granularities invariably also has a metric, since a “fraction” has
to be based on some “unit”. Therefore, a “fractional sequence” also has a defined metric attribute.
Similarly, a metric type also has a granularity, due to our limitation to precisely measure differences
in position. For metric/fractional sequences, the defining characteristics are:

[• [p, c || >, D, IM, G)) where M is metric unit, and G is granularity.
Note that M and G are bound together, since they must co-exist together. This is typical of
Scquences we encounter in the physical world of measurements. For example, a temporal sequence
has time as position, with multiple metrics and granularities, but does not have atomicity.

2.33. Atomic Sequence
The defining characteristic of an atomic sequence is:

[s [p, c] -, D, IM, G, All where A is atomic granularity.
Note that M, G and A are bound first, because atomicity exists only when both metric and granu
larities are present. A simple example is letter sequences: M is the letter position, and G and A are
both 1. In DNA, we use kilobases as M, then a given fragment can have G of 0.1 and A of 0.001.
Determining the atomicity is application dependent. For example, should time metrics such as
month or day be considered to be atomic? The determining factor is whether the units of position
are Counted or scaled. Real world measurement tools often convert a scaling factor to a counting

2. ABSTRACT SEQUENCES

number, therefore, making the distinction a matter of choice. In financial applications, a day is con
sidered to be atomic, while in physics, the same period of time is not atomic.

2.3.4. Examples of sequences

The initial sequence models fall into the following framework:

density M/G l M/G/A examples
dense :=

- -
ordered classes

dense +
-

continuous time and distance

dense + + DNA sequences, words

sparse
- -

incomplete ordered classes

sparse +
-

event sequences

sparse + + incomplete DNA sequences

The description of models is independent of the type of order. That is, sequences whose position
type are circular or partial order can still have metric, granularity, and atomicity characteristics.
While it is easier to visualize and discuss sequences of complete order, it is not a necessary require
ment. In the context of the HGP, the sequences discussed in Chapter 1 can be classified as follows:

Special
M/G/A Characteristics

SSDNA dense +

dsDNA dense + + symmetry

plasmid
-

dsDNA dense + + circular order

Ordered dense
- -

order onlyclone map

genetic map sparse + +

plasmid sparse + + circular order
map

in

complete |
sparse + + partial order| map

Note that only three types are found in the HGP: Dense, Dense/M/G/A, and Sparse/M/G/A.

21

2. ABSTRACT SEQUENCES

2.4. Resolving Complications
The three initial models provides a good coverage of all the sequences types encountered in the
Human Genome Project. However, several complications based on the interactions of metric, gran
ularity, atomicity, and density are observed. In order to construct a more coherent and uniform
framework, these complications must be resolved. These resolutions take on the form of transfor
mations that convert sequences of one type into another.

2.4.1. Semantic Interpretation and Abstraction

If a position type is measured by counting, then it is intrinsically atomic. In measurement theory,
this is termed “absolute” scale. Examples of these are letter positions in a word or base position in
a DNA sequence. Examples of non-atomic position types are scaled measurements such as seconds
or inches. In measurement theory, this is “ratio” or “interval” scale [54]. Another measurement
type that we encounter is the “ordinal” scale for pure order, as exemplified in order maps and in the
enumerated position sequence discussed in Section 2.3.1. A final measurement type is “nominal”
scale for arbitrary categorization, which as no corresponding sequence because there is no ordering
associated with this type.

In the real world, scalable (ratio or interval) physical measurements are often converted to some
form of counting prior to recording. For example, time delays are scaled, but a measurement
device, such as a stop watch or its digital equivalent, measures time by counting exact increments
at its granularity level. In addition, time periods, such as hours and days in the context of financial
domain, are often considered countable not scalable. In all cases, at the level of the granularity,
Scaled measurements can only take on discrete values, thereby, become countable. If the position
measurements, regardless of their countable or scalable nature, are equivalent to counting at the
level of its granularity, then position values of metric/fractional/atomic (semantic) sequences can
be mapped in 1-to-1 correspondence to the whole numbers. Consequently, the whole numbers can
be used for the position type of the “simple abstract” sequence.
There are two directions for the 1-to-1 mapping. In this discussion, we use the term “interpretation”
for the direction from abstract sequences to “real-world” sequences, because we attach semantics
to abstract position values (whole numbers) by interpreting them in a specific metric/fractional/
atomic context. We use the term “encoding” for the direction from “real-world” sequences to
abstract sequences, because we remove the semantics from real-world position values by abstract
ing out the metric/fractional/atomic context. Appropriately, these mappings are domain and appli
cation specific, limiting any commonality that we shall need to account for in the abstract sequence

22

2. ABSTRACT SEQUENCES

model.

semantic (metric/fraction/atomic) – real world

simple abstract — abstract

2.4.2. Metric and Granularity Conversions

In the real world, all operations over metric/fractional sequences can be viewed in two stages. First,
we convert the sequences into the same metric and granularity. Then, we can perform the operation,
independent of the metric and granularity.

For example, in order to test for “equality”:

Seq A: Seq B:
M = M1 M = M2
G = G1 G = G2

! ! convert to consensus type

M = M3 M = M3 typically, one type remains stable,
G = G3 G = G3

C.g. M3 - M1 and G3 – G1\ /
test for equality, this is operationally identical for all M3 and
G3, i.e. metric and granularity independent.

The above analysis provides the first major insight to a uniform model of sequences: the separation
of metric/granularity information from operational definitions. With this separation, operations can
assume that operand sequences are derived from the same position type regardless of different met
rics or granularities.

The conversion to a consensus type also has two stages: one to convert metric and the other to con
Vert granularity. The two conversions can be categorized into different classes. Under metric con
Versions, there are multiplicative (e.g. inches/meters), linear (e.g. Fahrenheit■ Centigrade) and
nonlinear (e.g. exponential and Lorenz), which also correspond to “interval”, “linear”, and “non
linear” in measurement theory. Undergranularity conversions, there are averaging, minimum/max
imum, and random sampling, which correspond to various statistical methodologies. The separa
tion of metric and granularity conversions (more appropriately called transformations) simplifies
our abstract model by eliminating the need to be concerned about the granularity during metric

23

2. ABSTRACT SEQUENCES

transformations and vise versa. Such separation results in the “unbinding” of the two attributes:

metric/fractional — real world

!
- -

“pure” fractional (same metric) H independent

! lari ions <!—

abstract — pure sequence operations

2.4.3. Atomicity Constraints on Granularity

Atomicity, in addition to its countable nature, is an attribute that ensures the proper maximum res
olution is not surpassed. For example, in the HGP, a common way to measure DNA lengths is by
gel electrophoresis. When a given DNA fragment is measured at 1.4 kb with granularity of 0.1 kb,
one can improve the measurement to 1.46 kb with granularity of 0.01 kb by using higher resolution
gels and by comparison against markers of known sizes. However, DNA fragments are made of
integral number of bases, thus the absolute finest granularity is 0.001 kb or 1 base and it is not pos
sible to have a measurement of 1.4623 kb with granularity of 0.0001 kb. In this discussion, granu
larity is given as a fractional number, thus increasing its value is equivalent to make the granularity
coarser and decreasing its value is the same as making the granularity finer.

The granularity associated with a sequence can only be made coarser, never finer, because a
Sequence is either de novo constructed or a result of an operation. A de novo sequence is ensured
by real world semantics to have appropriate granularity, barring errors of transcription. All real
world operations do not “inject” information into a sequence. Therefore, they will not decrease the
granularity of the sequence and all resultant sequences are guaranteed to never have a granularity
less than its real world atomicity. In the unlikely event where an operation is found to “inject” infor
mation, it is usually based on the information that is previously constructed de novo (at a finer gran
ularity) or it is a violation of information theoretic foundations, i.e. getting more information out
of a sequence than what it contains.
In addition to this “entropic” property of granularity, the separation of metric and granularity infor
mation from abstract sequence operations, discussed in Section 2.4.2, would also separate atomic
ity from the “simple” abstraction. However, the atomicity constraint only restricts which metric
and granularity conversions are permissible, but does not affect the operations of the “simple
abstract” sequence.

2. ABSTRACT SEQUENCES

2.4.4. Changes in Density: Event Projection, Filtering, and Interpolation

In an abstract sequence, position values are based on whole numbers. Whole number are dense, i.e.
there are no whole numbers between any two consecutive whole numbers. In the real world, we do
not always have sequences whose position values are dense. Thus, when we relate and operate on
two sparse sequences, the gaps between the whole numbers in the “simple abstract” sequence need
to be filled in order for the abstract sequence operations to continue. There are two transformations
for the filling in the gaps.

First transformation is an interpolation function which converts a sparse sequence to a dense
sequence. The missing position-content pairs are filled by this function, resulting in a dense
sequence. This maintains synchronicity between position values of two sequences and keeps the
operations on abstract sequences independent of density. In this discussion, interpolation functions
are considered general, i.e. the default interpolation is filling the new content values with nulls.
Specific interpolation functions are dependent on the content types, which are domain specific, and
will not be elaborated here. In the real world, it is often useful to know which content values were

in existence prior to interpolation and which are derived from the interpolation. This can be han
dled in the abstract sequence model by adding to the content type a flag for this distinction.

A second transformation is a mapping, named “event order”, which only retains the ordinal value
of the actual position values. This projection of sequence positions maintains the countable number
of the actual position values, i.e. “events”. The result is a dense sequence that can be viewed as a
simple abstract sequence with the position type metric being “event number”.

There are also operations in the direction from a dense to a sparse sequence. They are collectively
termed “filter” transforms in this discussion. Examples are selection, averaging or sampling of con
tent values to generate a representative value. If the granularity has not been changed, then the
Sequence becomes sparse. However, in most cases of averaging and sampling, these transforms
also change the granularity, so the resulting sequence remains dense. Only the selection filter leaves
the granularity unchanged.
These transforms are summarized as follows:

sparse sequence

event order
interpolation filter

most likely for
dense sequence averaging and

sampling

—

25

2. ABSTRACT SEQUENCES

2.4.5. Summary of Transforms

When all the transforms are placed together, they creates the following framework:

semantic/sparse

event order filter interpolation

simple abstract semantic/dense

interpretation metric and
fractional
conversions

encoding

26

2. ABSTRACT SEQUENCES

2.5. Improved Sequence Model Framework
Consolidating the changes discussed in the previous section, we have the following new frame
work.

2.5.1. Order Sequence

An order sequence is defined as:

< [p, c] ×, where p e Position and c e Content.

It is simpler than the initial framework model, since it does not participate in density interactions.
Note that the position type is order only which distinguishes it from “simple sequences” (see
below) whose type is metric. Since the only operations defined are equality and order, the position
type is best represented by literals, i.e. “1”, “2”, etc. The danger of using whole numbers, e.g. 1, 2,
3, etc., as the supporting type is that arithmetic operations are permitted on whole numbers. This
is not appropriate for position values of order sequences, because differences are not meaningful
and users would erroneously “over-interpret” these differences as distances.

2.5.2. Simple Sequence

A simple sequence is defined as:

< [p, c] ×, where p e Position and c e Content.

The position type is whole number based. This is the abstraction typically used whenever
“sequences” are referred. The majority of the operations we define here fall into this category. A
difference between any two position values has a meaning in the simple sequence while it does not
in the order sequence. We use the LITERAL function to convert a simple sequence to an order
Sequence:

LITERAL: p → “p”
where p is a whole number, and “p” is the literal for that whole number.

Functions will be referenced in the discussion by a postfix “()” notation. Thus, LITERAL()
represents the function defined above. Symbols listed inside the parenthesis are the argu
ments to the function.

A simple sequence can be converted to an order sequence by applying the LITERAL() transform
to all its position values. The only characteristics of whole numbers that is preserved by the LIT
ERALO transform is order and equality. On the other hand, there is no direct conversion of an order
Sequence into a simple sequence.

All order and simple sequences are intrinsically dense, i.e. they have a content value forevery posi
tion value in the sequence. A sparse sequence would contain missing content values, these are often
denoted as “non-existent null's". However, there are other possible interpretations, e.g. “exist but
unknown” and “not applicable”. Therefore, the concept of sparsity is a semantic one, based on the

27

2. ABSTRACT SEQUENCES

real world domain.

2.5.3. Semantic Mapping

A semantic sequence is defined as:

[* [p, c] × , [M, G, A ||,
where p e Position and c e Content.
and [M, G, A) represents Metric, Granularity, and Atomicity, respectively.

In order to map the simple sequence into semantic sequences, we provide domain independent
interpretations of position values. This way, the burden of defining sequence operations for each
metric, fractional, atomic, and density type is removed. The mappings are then defined as:

INTERPRET. p ; [Metric, Granularity) → real world position.
p is a whole number from a simple sequence,
Metric is the name of real world metric, and

Granularity is the fractional number.

Similarly,

ENCODE: real world position ; [Metric, Granularity) → p

To complete the framework, we add as many conversion rules as needed. Thus,

Given: SeqA is sequence with [M1, G1, A) and
SeqB is sequence with [M2, G1, A), then

MCONV1->2: SeqA → SeqB, i.e. the transformation from M1 to M2.

Given: SeqC is sequence with [M1, G2, A), then
GCONV1_2: SeqA → SeqC, i.e. the transformation from G1 to G2.

For sparse sequences, we add one event order function and any number of interpolation and filter
ing functions. Thus

Given: SeqA is sparse and SeqB is dense with the same
[M, G, A) attribute, then

INTERPOLATE: SeqA → SeqB, i.e. transform a sparse sequence to dense.
FILTER: SeqB → SeqA, i.e. transform a dense sequence to sparse.
EVENT: SeqA → Event-SeqA, i.e. build a dense sequence of events.

Note that INTERPOLATE() should be idempotent, i.e. for any dense sequence, SeqC, INTERPO
LATE(SeqC)=SeqC. The reason is that since SeqC is already dense, i.e. all content values exist,
an interpolate function does not have any work to be done.
Event-SeqA can be an order sequence, simple sequence, or a dense semantic sequence whose [M,
G - A) is defined as [event unit, 1, 1]. However, a dense semantic sequence is most appropriate,
since the concept of an “event” in a sequence is the same as a “letter” in a word. Since we also have

s

;

28

2. ABSTRACT SEQUENCES

ENCODE() and LITERAL() transforms, we can transform Event-SeqA to a simple or an order
sequence as dictated by domain or application. If the actual position values are needed for calcula
tions, then one can include the original position value in the content value as a composite, but future
content type operations on this transformed sequence will be different from the original content
type operations. Consequently, the user will have to provide a set of necessary and correct opera
tions. An example is shown below:

DNA map fragment:

Sparse Semantic Sequence:
Position = whole number
Content = enzyme name

Event Sequence:
Position = whole number
Content = enzyme name

and map distance

Eco RI Alu I Eco RI Hae II

' 4 kb '2 kb' 3 kb

model
|

< [0, Eco RI], [4, Alu II, [6, Eco RI], [9, Hae II) ×
Metric = kb, Granularity = 1, Atomicity = 1

n
T

EVENTO |
< [1, Eco RI-0kb), [2, Alu I-4kb],

[3, Eco RI-6kb], [4, Hae II-9kb] >
Metric = event, Granularity = 1, Atomicity = 1

A type of FILTER() is selection, which transforms a sequence to another by selecting for qualifying
content values. Using the previous DNA fragment as an example, we can apply the following FIL
TER() to obtain another sequence:

DNA map fragment:

filter for Eco RI markers

ECO RI Alu I Eco RI Hae II

' 4 kb '2 kb' 3 kb

model
|

FILTER() |

l

< [0, Eco RI], [6, Eco RI], [9, null] >
Metric = kb, Granularity = 1, Atomicity = 1

(Alu I and Hae II removed from the sequence)

29

2. ABSTRACT SEQUENCES

2.5.4. New Framework

The previous framework is now filled as follows:

[• [p, c |>, [M, G, A ||
semantic/sparse

º º
INTERPOLATE()

... < [p, c 12 [* [p, c] - , [M, G, A ||
simple abstract semantic/dense

*/ sºlº
< [p, c] × ENCODE()

order abstract

30

2. ABSTRACT SEQUENCES

2.6. Operations on Abstract Sequences
The following table describes all the semantic operations of sequences we have discussed:

sequence types

simple – order

semantic operations

LITERAL()

semantic e-> simple INTERPRET(),
ENCODE(),
MCONV(), GCONV(),
INTERPOLATE(),
FILTER(), EVENT()

These operations map our abstract order and simple sequences to real world semantic sequences.
They are domain and application specific, therefore, must be supplied by the users of the model. In
contrast, there is a suite of sequence operations which are independent of semantics:

BASIC OPERATIONS

COntent {-} sequence — multiple
Sequence Sequence Sequences
|-}==

BUILD(), CUT(), APPLY(),
LENGTH(), CAT(), RECURSE()
VALUE(), REVERSE()

There are also operations that can be constructed from basic operations. The ones of interest to the
HGP is listed below:

CONSTRUCTED OPERATIONS

sequence — multiple
Sequence sequences

SUBSEQ()
|-}=

SEQ_EQUAL(),
MATCH(),
OVERLAPO

2.6.1. Basic Notation

For discussion on operations, we will use the following notation:
<...×

{...} to denote a set,
to denote a sequence,

31

2. ABSTRACT SEQUENCES

[...] to denote an ordered n-tuple, and
a■ b) to denote “subscripts”, or the content value of the ordered pair [b, a 1 (where it is

in the form [position, content I).
Given a position type, P, whose instances are ordered, and an arbitrary type, T, then the type of T.
sequences, SEQ_T, is defined as follows:

P — position type,
T — content type,

x's — instances of content type T,
n — whole number or integer > 0,

then an instance of SEQ_T, ze SEQ_T, can be explicitly represented as:

z = < x [p]] , x [p2] , x [p3] , ..., x [pm 1 >
where pi's are instances of Punder the implicit order of p1 < p 2 < p3*... < pn, and every occurrence
of x associated with a “[pil” is an instance of T.

Operations are defined as:

op_name: list of domain variables — range type
and to be used as:

op_name (list of domain variables),

which returns an instance from the range type.

We will also assume the following:

(1) position values in a sequence is ordered and dense. In our framework the simple sequence
position types can be represented by the whole numbers: 1, 2, 3, etc. The order sequence
positions by whole number literals: “1”, “2”, “3", etc., i.e. they can be compared, but dif
ferences do not have any meaning.

(2) the existence of the some minimal position value. For simple sequence, the minimal ele
ment is denoted by 1. For the order sequence, the minimal element is also denoted by “1”.
Computationally, it is better to use 0 (or “0”), but it would be less intuitive to the non-com
puter science person.

(3) the existence of a null sequence, “null seq”, whose set of position-content pairs is the
empty set.

(4) “equality” is defined for instances in T as T_EQUAL().

All the operations will be described in the context of simple sequences, whose position values are
whole numbers. All the operations also apply to order sequences, however, one must use the literal
form of the position values (see Section 2.5.2).

32

2. ABSTRACT SEQUENCES

2.6.2. Content K-> Sequence

First group of operations deal with the mapping between sequences and content types, usually
through a position parameter.

BUILD: x e T — SEQ_T

converts a single element of Tinto a T-sequence of length 1. The position value associated
with x is the minimal value in the context of SEQ_T.

LENGTH: x e SEQ_T – N (whole number)

returns the length of x. This is equivalent to the cardinality of the sequence. For order
sequences, it is important that this number is derived by counting, because position
differences do not have any meaning. For null seq., LENGTH() returns 0.

VALUE: x e SEQ_T; p e P → T

retrieves the value of x at position p. If x [p] is not defined, whether it is out of range or x
is the null seq, then VALUE(x, p) should return the null value for T.

2.6.3. Sequence K-> Sequence

This group of operations deals with the construction of new sequence(s) from given sequence(s).
The values of the content type of a sequence is not changed, but the associated position values will
be changed.

CUT FRONT: x e SEQ_T ; p e P → SEQ_T
CUT BACK: x e SEQ_T; p e P → SEQ_T

returns the beginning, or end, sequence of a cut placed at position p on sequence x. For sim
ple sequences:

CUT FRONT (x, 0) → null seq
CUT_BACK (x, 0) — x

CUT FRONT (x, 1) → BUILD(VALUE(x, 1))
CUT_BACK (x,1) → z,

where z = < x [2] , x [3], ..., x [n] P,
and n is the largest position value of x.

CUT FRONT (x , LENGTH(x)) → x
CUT_BACK (x, LENGTH(x)) → null seq

If x is null seq, then CUT FRONT and CUT BACK returns null seq.
If p > LENGTH(x), then the result is the same as if p is LENGTH(x).

A question remains on whether z, the result of CUT_BACK(x,1), starts at 1 or 22 If our
assumption of minimal element is maintained, then z should be

33

2. ABSTRACT SEQUENCES

z = < z [1], z [2] , z [3], ..., z [n - 1 J P, and not
z = < z [2] , z [3], z [4], ..., z [n] P.

So CUT_BACK(x, 1) should be:
z [1] = x [2],

z [2] = x [3], etc., which can be made robust by using induction.

To be completely robust, in order sequences, “n - 1”, i.e. LITERAL(n - 1), has to be
defined as:

SUCC(SUCC(... SUCC(“1”)...))
with n - 1 composition of SUCC(), the successor function.

CAT: x, y e SEQ_T – SEQ_T

concatenates y to x. If we use explicit representation:
x = < x [1], x [2] , x [3], ..., x [n] × and
y = < y [1], y [2] , y [3], ..., y [m] ×,

then

CAT(x, y) = < x [1], x [2], ..., x [n], y [1], y [2], ... , y [m] ×,

more correctly:

CAT(x, y) = < z [1], z [2], ..., z [n + m) > where
for 1 <= i <= n do z [i] = x [i] and
for n < i <= n + m do z [i] = y [i - n)

As expected:

CAT(x, null seq) = x
CAT(null seq., x) = x

REVERSE: x e SEQ_T – SEQ_T

this reverses a sequence. It is the only function that does not conserve order information.
For example:

x = < x [1], x [2], ..., x [n] ×
then

REVERSE(x) = < r [1], r [2], ..., r [n] ×, where
for 1 <= i <= n do r [i] = x [n + 1 − i)

If x is null seq., REVERSE() returns a null seq.

2.6.4. Multiple Sequences

Multiple sequence operations map sequences to other types. This is the most diverse group and the
most difficult to generalize. Instead, we only present three basic operations in the fashion of LISP

34

2. ABSTRACT SEQUENCES

operators. These operations permit the change of content values to construct new sequence types
in arbitrary fashion.

APPLY: x e SEQ_T; fe (T – T') — SEQ_T^

this is the iterative apply function, it takes a function f, which maps T to T', and apply it to
all the elements of an instance of T-sequence and returns an instance of T’-sequence.
Position values and order are conserved under this operation, only the content values are
altered.

APPLY(x, f) = < a. [1], a [2], ..., a [n] ×, where
for 1 <= i <= n do a [i] = f(x [i])

This operator permits an operation on content type to become an operation on the sequence
type. This “super-operator” is independent of the content operation, therefore it eliminates
the complexity of verifying each “extended” sequence operation.

APPLY TWO: x, ye SEQ_T; fe (T, T – T') — SEQ Tº

this is the apply “pair-wise” function over two sequences: for each position, p, in the range
of x and y, we generate a new sequence by applying f:

APPLY TWO(x, y, f) = < z [1], z [2], ..., z [n] ×, where
for 1 <= i <= max(LENGTH(x), LENGTH(y)) do

z [i] = f(x [i], y [i])

The event-joins of the temporal models can be constructed by using APPLY TWO():

1. convert the JOIN operation as f() over the content value.
2. perform APPLY TWO(x, y, f).

This is more general than event-joins, since it is independent of sequence type or content
value and it is not limited to work with only corresponding attributes between the two
sequences.

RECURSE: x e SEQ_T ; fe (T, T – TO); d e T’ → T.’

this is simple recursive apply function.

RRECURSE (x, f) = f(x [1], f(x [2], ... f(x [n], d) ...))

The value d is used as default value for the initial f(). The previous example is right
associative, similarly, there is a left associative RECURSE:

LRECURSE (x, f) = f(... f(f(d., x [1]), x [2])..., x [n])

The last three functions are based on a new class of operations that take a function as one (or more)
of their arguments. The return types are no longer restricted by content type T, position type P nor
sequence type SEQ_T. In the HGP, only APPLY() and APPLY TWO() are of interest.

35

2. ABSTRACT SEQUENCES

2.6.5. Constructed Operations

Many other common operations can be built from these operations. The construction is of theoret
ical interest only, because in the real world, most of them are implemented directly. Notable exam
ples are:

SUBSEQ: x e SEQ_T, p1, p2 e P → SEQ_T

returns a subsequence of x. This can be constructed from CUT FRONT() and
CUT_BACK():

SUBSEQ(x, p1, p2) = CUT FRONT(CUT_BACKGK, p1), p2)
SEO EQUAL: x, ye SEQ_T – Boolean

checks to see whether x and y are equal. This can be constructed from the left associative
RECURSE() (LRECURSE):

Let T^ = [Boolean, SEQ_T],
X and Y e SEQ_T,
x and y e T,
t e Boolean, and

left([A, B J) returns A.

Define f: T', T – Tº as f ([t, Y], x) returns [tº , Y’ j, where:

t’ = AND(t,T_EQUAL(x, VALUE(Y, 1)))
Y’ = CUT_BACK(Y, 1)

then SEQ_EQUAL(X,Y) = left(LRECURSE (X, f), [True, Y]))

MATCH: x, y e SEQ_T ; p e P → Boolean

checks to see whether y is a subsequence of x at position p:

SEQ_EQUAL(SUBSEQ(x, p, p + LENGTH(y)), y)

OVERLAP: x, y e SEQ_T; p e P → Boolean

checks to see whether y overlaps x at position p:

SEQ_EQUAL(CUT_BACK(x, p), y)

Overlap definition could be extended to check all possibilities, including embedding, i.e. y
is within x.

MAX OVERLAP: x, ye SEQ_T – pe P

determines the position of maximum overlap. A simple O(n°) algorithm is:

for p from 1 to LENGTH(x) do
if (OVERLAP(x, y, p)) then return(p)

endfor

36

3. MODELS OF BIOLOGICAL SEQUENCES

CHAPTER 3. MODELS OF BIOLOGICAL SEQUENCES

With the definition of the abstract sequence model complete, we can now develop the model for
biological objects. We will start with the nucleotides, then single stranded (SS) sequences, double
stranded (DS) sequences, and finally, markers and fragments.

3.1. Nucleotides

DNA bases can be modelled as an enumerated type, BASE: {A, C, G, T). As required, we have
base equal(). In addition, we have base_complement(), which returns the complement of a base.
We could also model Pu, Py, and N as a part of the enumerated type. Then the functions
base equal() and base_complement() are defined as:

º, A C | G T | Pu Py | N base || complement

A H=H
C F T F F F T | T C G

G F | F | T | F | T | F | T G C

T F F F T | F T | T T A

Pu T F T F T F T Pu Py

Py F | T | F | T | F | T | T Py Pu

N T T T T T T T N N

“Pu” stands for Purines, which could be either A or G.

“Py” stands for Pyrimidines, which could be either C or T.
“N” stands for any Nucleotide.

DNA sequences would not normally require the use of Pu, Py, or N, because if the sequence is
known, then the exact base is known, or if the sequence is unknown then it would not be a “valid”
sequence of bases. The use of Pu, Py, or N is to model intermediate uncertainty, i.e. under certain
situations, we only have partial information about the sequence. Instead of losing this partial infor
mation by not storing anything, we could use these special enumerations. A situation where this is
most useful is the modelling of restriction enzyme recognition sequences. However, there are other
groupings that lack widely used names, such as W for A or T and S for C or G [48].

38

3. MODELS OF BIOLOGICAL SEQUENCES

3.2. Single Stranded Sequences
To model real world sequences in our framework, we only need to specify the [M, G, A) triplet
and the semantic operators. For single stranded (SS) DNA sequences, [M, G, A) is [base unit,
1, 1 }. Let:

SEQ_BASE = sequence of bases,
P=SEQ_BASE position values, which are in “base units”, and
W = whole numbers of the simple sequence position values.

We will use ssDNA to represent the biological single stranded DNA and SS DNA to represent the
sequence model type for single stranded DNA. For abstract operations, SS DNA is synonymous
with SEQ_BASE, however, for operations that are significant only in biology, we will use
SS_DNA.

For brevity, we will use the character string representation for SEQ_BASE: “b1b2b: ...”, instead of
the verbose form: < [1, bi , [2, b2), [3, by 1, ... P.
3.2.1. Semantic Operators

The semantic operators, which map semantic sequences to and from abstract sequences, are
defined in Section 2.5.3. They are described in the following table, under the context of biology:

Semantic Operators Mapping Definition

INTERPRET() ne W — pe P p = n base_unit

ENCODEO pe P → n e W n = numerical value of p

INTERPOLATE() Xe SEQ_BASE → y[p] = N for all p not in X and
Ye SEQ_BASE y[p] = x|[p] for all p in X.

EVENTO Xe SEQ_BASE → |y|[n] = x|[p],
Ye SEQ EVENT where n is the ordinal number of p in X

Comments:

1. MCONV() and GCONV() are not defined in the biological domain of ssDNA because there
is only one metric (“base unit”) and one granularity (“1 base unit”).

2. The INTERPOLATE() function can be the null function where N is “not applicable” or the
total function where N is “any base”.

3.2.2. Sequence Operators

With these definitions, all ssDNA operations can be derived from the abstract simple sequence

39

3. MODELS OF BIOLOGICAL SEQUENCES

operations (define in Section 2.6). The ones of interest for the HGP are:

Sequence Operators Comments

Hi-
— length in base units

VALUE() returns the base value

BUILD() length is 1 base unit for building SS_DNA

SUBSEQ() returns a subsequence

CAT() concatenate two ssDNA

SEQ_EQUAL() defined by using base equal()

APPLY() useful for building biological valid functions

REVERSE() since ssDNA is directional, this is used only for
building COMPLEMENT() (see below)

3.2.3. Biological Operators

From the set of abstract sequence operators, we can construct operators specific to biology.

Biological Operators Comments

COMPLEMENT() complements a ssDNA

IS_COMPLEMENT() checks to see if two ssDNA are complementary

MATCH_CUTO) cut ssDNA where sequences match

COMPLEMENT: Xe SS_DNA → SS_DNA

A biological complementary sequence is both base-by-base complement and in reverse
order. Therefore, the definition is:

REVERSE(APPLY(X, base_complement()))

IS COMPLEMENT: X, Ye SS_DNA → Boolean, is defined by:

SEQ_EQUAL(X, COMPLEMENT(Y))

MATCH CUT: X, Ye SS_DNA → set of SS_DNA

cuts at where Y matches X, returns a set of SS_DNA. We will use a SS_DNA “match cut”

as a building block function for the enzyme digest of dsDNA. For example, if we are given:
X = “ACTAGAAAAAGTC” and

Y = “AAA”,

40

3. MODELS OF BIOLOGICAL SEQUENCES

then assuming that the cut is placed before the match, a straight forward computational
result will be: (“ACTAG”, “A”, “AAAGTC”}. However, biology does not deal with a sin
gle instance of SS_DNA. Typically, in an experiment, there is a pool of identical instances
(value-wise) undergoing the same processing. The result of MATCH_CUTO, in the biolog
ical domain, is:

(“ACTAG”, “AA”,
“ACTAGA", “A”,
“ACTAGAA”, “AAAGTC”).

This is very different from the simple model of MATCH_CUTO.

3.3. Double Stranded Sequences
3.3.1. DS_DNA Models
There is no direct sequence model for dsDNA because a dsDNA has rotational symmetry and
because it can have arbitrary SS regions. Therefore, dsDNA has to be modelled as a complex type.
We shall discuss three complex models for dsDNA: symmetric, asymmetric, and polymorphic. To
preserve rotational symmetry, a “rotate” operator is needed to obtain a rotational equivalent
DS_DNA from a given DS_DNA. This operator, when used in conjunction with simple equality,
provides the basis for DS_DNA equality.

Semantic Operators Mapping Definition

ROTATE() X e DS_DNA → returns the value of X after rotation
DS_DNA

A. Symmetric Model

The first approach is to build a model that is “symmetric” to rotation.

DS_DNA1 = [SS_DNA1, SS_DNA2, offset), where:
SS_DNA1: start H end
SS_DNA2: end H Start

HºHº
Offset

offset is the distance between the starts of the component SS DNA's,
more appropriately, the position of SS_DNA2's start relative to SS_DNA1's start.

The rotational symmetry of DS DNA is preserved as a swap of the sequence elements
within the ordered triple, since:

ROTATE([S1, s2, offset)) → [S2, S1, offset J.

41

3. MODELS OF BIOLOGICAL SEQUENCES

If offset 2 (length of SS_DNA1 + SS_DNA2–1) or offset - 0, we have a null DS_DNA1:
SS_DNA1: start H end
SS_DNA2: end H Start

offset: Hº->

offset 2 summed length –1, thus invalid DS_DNA
Or

SS_DNA1: start H end
SS_DNA2: end H Start

offset: HºHº

offset is negative, thus invalid DS_DNA

B. Asymmetric Model

The second model is a brute force model, that specifies the components as we encounter them. Here
DS_DNA is broken down into three sections. It lacks the symmetry of the first model.

DS_DNA2 = [SS_DNA, start, end, tail1, tail2], where:

SS_DNA: start H end

Start: A start of double stranded region
end: A end of double stranded region

tail1 and tail2: +1 for 3. *T 5 protruding
0 for 5. | blunt-end

–1 for 3.
-

*T 3' protruding

Rotational symmetry is defined as the following operation:

ROTATE(DS_DNA2) → [COMPLEMENT(SS_DNA), LENGTH(SS_DNA)—end,
LENGTH(SS_DNA) – start, — tail2, — taill J

C. Polymorphic Model

The third approach to modelling DS_DNA is a polymorphic sequence, made of SS sequences and
filled DS sequences. The intermediate sequence models needed to create the overall model are:
1. SIMPLE_DS is a filled, blunt-end DS_DNA.

Since it has no SS tails, we can use a simple sequence as its model. But rotational symmetry
requires that an orientation be specified when a simple sequence is used to model a
DS_DNA.

SIMPLE_DS = [ss e SS_DNA, orientation), where
orientation = 1 if ss is in the same orientation with respect to the larger context,

42

3. MODELS OF BIOLOGICAL SEQUENCES

–1 if ss is in the opposite orientation, and
0 if ss is not in a larger context.

ROTATE(SIMPLE_DS) — [ss, – orientation) or [COMPLEMENT(ss), orientation)

Either results is valid.

2. SIMPLE_SS is the same as SS_DNA.

However, to maintain the correct biological orientation, it must also have an attribute to
determine its orientation with respect to the larger sequence.

SIMPLE_SS = [ss e SS_DNA, orientation), where
orientation = 1 if ss is in the same orientation as the larger context,

i.e. 5' to 3' is in the same direction.

-1 if ss is in the opposite orientation, 5' to 3' is the other direction, and
0 if ss is not in a larger context.

ROTATE(SIMPLE_SS) — [ss, – orientation)

Since a SS sequence is always read from 5' to 3', we do not complement ss, but change its
orientation.

3. POLY_SEQ is a sequence made of SIMPLE_SS, SIMPLE_DS, and POLY_SEQ.

The rotation operation on a POLY_SEQ is similar to COMPLEMENTO on SS_DNA, it is
defined by using the APPLY() operation:

ROTATE(ps) = REVERSE(APPLY(ps, ROTATE))

Since POLY_SEQ is recursive, we can recursively apply the ROTATE() operation until
SIMPLE_DS or SIMPLE_SS has been reached.

A piece of DS_DNA, with two SS end-tails, can be modelled under the polymorphic model as:
ps = <ss1, ds, ss2 >, where ssl, ss? e SIMPLE_SS and ds e SIMPLE_DS

This is very similar to the asymmetric model. However, it has the advantage of constructing DS
sequences with SS gaps. In general, this advantage is not required, because internal SS regions are
usually filled by biological processes.

If we restrict the polymorphic model to a simple SS-DS-SS sequence, then the three models are
equivalent because they capture the same amount of information. The interconversion between
them is straight forward, therefore, we can use whichever model is convenient for the operation
under study. This reduces the overhead that we make to implement a particular operation for a par
ticular model. We will predominantly use DS_DNA1 and DS_DNA2 for the following discussion.
3.3.1. Semantic and Sequence Operators

Another consequence of rotational symmetry is its effect on position values in a DS_DNA. The

43

3. MODELS OF BIOLOGICAL SEQUENCES

meaning of a position can be viewed as a physical point, not just a distance value from a reference.
Since DS_DNA has rotational symmetry, a position should be orientation independent, i.e. it marks
the same physical point regardless of the orientation of the DS_DNA. This implies that a position
is always attached to the sequence from where it was obtained. For example, a DS_Position is [p,
ds), where p is a whole number and ds is the originating DS_DNA with the implicit understanding
that p is based on the orientation of ds. We minimize the complexity of this problem by only using
position values as inputs to operators. In this case, position values are whole numbers and are to be
associated with the orientation of the input DS_DNA.

Because DS_DNA is no longer a direct sequence model, semantic operators are no longer appro
priate. However, an equivalent set of them can be constructed to maintain the “sequence” nature of
DS_DNA:

Semantic Operators Mapping Definition

INTERPRET() ne W — pe DS_P p = [n base_units, ds)

ENCODEO pe P → n e W n = numerical value of p

INTERPOLATE() X e DS_DNA → y[p] = N for all p not in X and
Ye DS_DNA y[p] = x|[p] for all p in X.

EVENTO X e DS_DNA → y[n] = x|[p],
Ye DS_DNA where n is the ordinal number of p in X

ROTATE() X e DS_DNA → returns the value of X after rotation
DS_DNA

Although the simple sequence operators (defined in Section 2.6) are no longer directly applicable
to DS DNA, an equivalent set of them can be created. The ones of interest are:

Sequence Operators Comments
F- – - -DS_LENGTH() total length in base units

DS_VALUE() returns the base value under the default orientation

DS_SUBSEQ() returns a subsequence with the same orientation

3. MODELS OF BIOLOGICAL SEQUENCES

3.3.2. Biological Operators on DS_DNA
The biological operators are:

Biological Operators

SS_DNA → DS_DNA || DS_DNA → DS_DNA mixed
- EE

ANNEAL(), FILL(), TRIM(), DS_MATCH(),
DENATURE() DS_CATO, DS_MATCH_CUTO

DS_EQUAL()

1. ANNEAL: sl, s2 e SS_DNA → DS_DNA1
takes two SS_DNA and construct a DS_DNA based on complementary overlap. Conceiv
ably, there can be a set of DS_DNA, since there may be more than one overlap. We will be
interested in only the maximum overlap.

2. DENATURE: ds e DS_DNA1 – {s1, s2 e SS_DNA)

takes a DS_DNA and returns the two SS_DNA components. This returns a set, not an
ordered pair, because biologically, the two SS_DNA components can not be ordered.

3. FILL: ds e DS_DNA2 – DS_DNA2
fills the SS tails of a DS_DNA. If we let ds e DS_DNA2 and:

ds = [ss, start, end, tail1, tail2],
then, the resultant DS_DNA2 would be:

filled ds = [ss, 1, LENGTH(ss), 0, 0 }.

4. TRIM: ds e DS_DNA2 — DS_DNA2

removes the SS tails. The resultant DS DNA2, from previous ds, would be:
trimmed ds = [SUBSEQ(ss, start, end), 1, end — start + 1, 0, 0].

5. DS EQUAL: ds1, ds2 e DS_DNA1 — Boolean

determines whether two DS DNA are equal. Since rotational symmetry is possible, we
have:

(dsl.si = ds2.st AND ds1.s2 = ds2.s? AND ds1.offset = ds2.offset)
OR

(dsl.si = ds2.s? AND ds1.s2 = ds2.st AND ds1.offset = ds2.offset)

where dsts; denotes the si component of ds and “=” is SS_EQUAL for SS_DNA compo
nents and integer equality for offsets.

Another implementation of DS_EQUAL is based on a SIMPLE_EQUAL() that operates on
the components of the specific DS_DNA model:

45

3. MODELS OF BIOLOGICAL SEQUENCES

SIMPLE_EQUAL(ds1, ds2) OR SIMPLE_EQUAL(dsi, ROTATE(ds2))
DS CAT: ds1, ds2 e DS_DNA2 – DS_DNA3
concatenates two DS DNA together. Conceivably, dst and ds2 can have four possible ori
entations for concatenation, and since more than one overlap is possible, this should return
a set of all possible results. Furthermore, such a concatenation may have internal SS gaps:

ds 1: TLDITTTl

ds2: i.i.d.■ . i.i.f.i.
WWWW

result: TTTTTTTLIII i.i.d. i.i.d. i.i.
AAAA AAAA AA

A and W mark the single stranded gaps

The full model would require the use of polymorphic sequence. For simplicity, we will
assume the resultant DS DNA will have all the gaps filled and the overlap is maximal.
DS MATCH: ds e DS_DNA1 ; ss e SS_DNA → set of DS positions

returns all the DS positions where ss matches ds. We can use SS MATCH() and iterate
through the length of ds.si to generate matching positions on the given orientation, i.e.
associated with ds. Then apply MATCH() against ds.s? for the complementary strand,
which would generate matching positions associated with ROTATE(ds). This is an example
of an operator where returned position values must be associated with the source DS_DNA.

DS MATCH CUT. ds, dsee DS_DNA2 – set of DS DNA
This is the definition of the restriction enzyme cutting. The result is a set of DS_DNA. We
use dse, a DS_DNA2, to model restriction enzyme site instead of a SS_DNA. The reason is
that SS_DNA is insufficient as a specification for enzyme cutting site, because the cut site
is often offset from the start of the recognition sequence on both component strands of the
DS_DNA. Therefore, dse is used as a template, matched against ds in both orientation. We
will discuss the use of DS_DNA for restriction recognition site in the next section. The
complete operation specification is nontrivial, but is computable.

46

3. MODELS OF BIOLOGICAL SEQUENCES

3.4. Fragment Markers
There are two types of markers: restriction enzyme sites and probes. Both can be modelled as
DS_DNA.

3.4.1. Restriction Enzyme Sequences

Restriction enzyme sites are not physical DS_DNA, but rather recognition sequences. Since some
enzymes can recognize more than one specific sequence, therefore, a marker can correspond to a
set of exact sequences. Since a recognition sequence is usually thought as a simple sequence, why
do we modelled it as a DS_DNA? The reason is that restriction enzyme recognize DS_DNA, not
SS_DNA, and the cut site can be modelled by the SS tails. Furthermore, the rotational symmetry
is preserved by enzyme, i.e. it matches a sequence independent of orientation:

G|AATT CEco RI r nizes:
co RI recognizes C TTAA G

ATGAATTCGTATGCTTAAGATG

TACTTAAGCATACGAATTCTAC

ATG |AATT CGTATGC TTAA | GATG
TAC TTAA |GCATACG|AATT CTAC

when given this DS_DNA sequence:

Eco RI will cut at:

creating three DS_DNA sequences:
ATG---- AATTCGTATGCTTAA ––––GATG
TACTTAA ––––GCATACG---- *** AATTCTAC

Therefore, if the recognition DS_DNA sequence is considered as a template overlay, we will use
it in both orientations, as appropriate for all DS_DNA operations. Using DS_DNA2 as a base
model, we modify it slightly to conform to recognition semantics.

RE_SEQ = [SS_DNA, left, right, tail), where:

SS_DNA: start H end
left: A left cut, in SS_DNA order

right: A right cut, in SS_DNA order

0 for 3. HT- blunt-end

–1 for 3. | 3' protruding

47

3. MODELS OF BIOLOGICAL SEQUENCES

For example:

G|AATT C... Häiº, becomes I GATTC”, 1, 5, +1].Eco RI sequence,

AG | CT & 4 º

Alu I sequence, CT |GA’ becomes [“AGCT’’, 2, 2, 0].

Pu GCGC | Py & 4 3

Hae II, sequence ey ICGCGT pu, becomes [“PuGCGCPy”, 1, 5, –1).
Pu stands for Purines (A or C)
Py stands for Pyrimidines (T or G)

Although, these three examples are symmetric, there are restriction sequences where the cut site is
asymmetric, thus both “left” and “right” is needed. However, the “tail” information only needs one
value. The use “Pu" and “Py” in Hae II recognition sequence is a form of sequence shorthand for
a set of exact sequences (see Section 1.5.1). However, this may not be sufficient to describe all pos
sible recognition sequences. If the original DS_DNA2 model is used, then tail1 = tail and tail2=–
tail. This would retain the consistency between restriction sequences and probes.

3.4.2. Probe Sequences

A probe, on the other hand, is physically based on a DS_DNA, however, it is used as a SS recog
nition sequence via the IS_COMPLEMENT() operator. Although the exact sequence of a probe
may be unknown, it is sufficiently unique to be identifiable. In actual biological experiments, one
or both of the component SS DNA can used as the recognition sequence, but operationally, it is
the same as using a DS_DNA template in both orientations.

3.4.3. Markers in Fragments

Markers, when they are placed on a fragment, are considered as point-like, i.e. the intrinsic lengths
of markers are considered too small to be visible in the context of a fragment. Appropriately, they
are considered as “events” on a sequence whose granularity and atomicity is greater than 1 base.
Subsequently, both restriction sequences and probes can be abstracted as a single quantum, i.e. a
“marker”.

48

3. MODELS OF BIOLOGICAL SEQUENCES

3.5. Fragment As Sequence
A fragment is a sequence of markers. The sequence content type is a marker, i.e. a DS_DNA as
described in the previous section. The only operation required of markers is equality. The sequence
position type is dependent on the measuring device for the fragment. When a fragment is measured
by a gel, its metric is usually in units of bases or kilobases and the granularity is dependent on the
composition of the gel and varies between 1 base to 100+ kb. However, when a fragment is mea
sured by recombination, the metric unit is centiMorgan and its granularity ranges from 0.001 to 0.1.
If a chromosomal fragment is visualized by cytological staining, the metric unit can be “percent of
arm-length” and its granularity ranges between 0.001 to 0.1. In all cases, the atomicity never goes
below 1 base. The table below describes some of the values encountered in the HGP.

Methodology Metrics Granularity Range Atomicity
===

base 1 and up 1 base

Physical kilobase 0.001 and up 0.001 kilobase

megabase 0.001 and up 10:6 megabase

centiFad 0.001 to 0.1 not CXàCt

Biological 6centiMorgan 0.001 to 0.1 not exact, ~10

- -
1 to p111 and not CXaCtband position p

Histological q1 to q111
arm length 0.001 to 0.1 not CXaCt

The relationships between biological and histological metrics to bases cannot be described by a
simple ratio. Under current technology, the finest granularity achieved by these methodologies do
not approach the resolution of a single base. However, the mapping between these metrics and
bases are monotonic and, in theory, an experimentally derived function can be found.

We will assume our fragment sequence to be dense, with a “null” (unknown) marker value for the
positions that we do not have actual marker values.

3.5.1. Semantic Operators

The semantic operators for fragments are:

Semantic Operators Mapping Definition

INTERPRET() ne W — pe P p = n metric units

ENCODEO pe P → n e W n = numerical value of p

49

3. MODELS OF BIOLOGICAL SEQUENCES

Semantic Operators Mapping Definition
- - - E -

MCONV() Xe SEQ_MARK1; convert metrics
In 6- M2 —)

SEQ_MARK2

GCONV() Xe SEQ_MARK1-> | convert granularity
SEQ_MARK2

INTERPOLATE() Xe SEQ_MARK — y[p] = N for all p not in X and
Ye SEQ_MARK y[p] = x|[p] for all p in X.

EVENTO Xe SEQ_MARK — y[n] = x|[p],
Ye SEQ_MARK where n is the ordinal number of p in X

ROTATE() Xe SEQ_MARK — returns the value of X after rotation
SEQ_MARK

Comments:

SEQ_MARK represents a sequence of markers with an appropriate [M, G, A).
coarse-to-fine GCONV

These are rare, and if needed, are usually defined by insertion of null marker values for the
newly formed position values.
fine-to-coarse GCONV

These can be defined by rounding off position values. However, multiple markers may col
lect into a single resultant position. For example, if two or more markers now occupy the
new position value, then a composite value, e.g. a set or a bag, is needed as a marker value.
Another method is to directly use Set of DS_DNA as a marker value. Then no matter how
many markers are collected per position, we still have a sequence of markers.

The rotational symmetry of dsDNA is conserved for operations that consider fragments as
large DS_DNA sequences. When applicable, rotational transform is defined as:

ROTATE(fs) = REVERSE(APPLY(fs, ROTATE)), where
fs is a sequence of markers, and
ROTATE() is DS_DNA ROTATE().

This symmetry is broken for operations at the level of fragments derived from histological
methodologies, because the marker positions now have an absolute reference frame based
on the chromosome structure. Although one can argue that all sequences are located some
where on a chromosome and therefore, they must have an absolute reference. However, it
is the operations that determine whether rotational symmetry is meaningful or not.

50

3. MODELS OF BIOLOGICAL SEQUENCES

3.5.2. Sequence Operators

Sequence operators (based in Section 2.6) for fragments are:

§: Comments

LENGTH() length in appropriate metric units

VALUE() returns a marker

FRAG_BUILD() requires a beginning Marker, an end Marker, and
length.

SUBSEQ() returns a subsequence

CAT() concatenate two fragments

SEQ_EQUAL() defined by using marker equal()

APPLY() useful for building biological valid functions

REVERSE() this is used only for building a biologically valid
reVerSe

Comments:

The original BUILD() only constructs a sequence of 1 unit long. The FRAG_BUILD() is a
shorthand for building a longer sequence with implicit “null” values.

A check should be made in CATO to make sure the end marker offsi is biologically
compatible with the beginning marker offs2.

1.

3.5.3. Biologically Operators

For biologically significant sequences of markers, we will use the synonym FRAGMENT, instead
of SEQ_MARK. Biologically pertinent operators for fragments are:

Biological Operators

FRAGMENT 6–3. Others
FRAGMENT 6–3

FRAGMENT
mixed

——

FRAG_OVERLAP() FRAGEQUAL),
FRAG_CONTAINS(),
INSERT MARKER()

CUT_AT_MARKER(),
CUT_AT_POS()

FRAG EQUAL : fs 1, fs2 e FRAGMENT – Boolean

checks for exact equality of two fragments

51

3. MODELS OF BIOLOGICAL SEQUENCES

2. FRAG OVERLAP: fs 1, fs2 e FRAGMENT – Position

returns the position in fsi where fs2 overlap.

3. FRAG CONTAINS: fs 1, fs2 e FRAGMENT - Boolean
checks for containment offs2 in fst.

4. INSERT MARKER: fs e FRAGMENT; m e MARKER; p e Position — FRAGMENT

inserts Marker m at Position p in fs.

5. CUT AT POS: fs e FRAGMENT; p e Position — Set of FRAGMENT

cuts fs at Position p. The result is a set of two fragments. The newly created ends do not
have any known marker value, i.e. they have a “null” value.

6. CUT AT MARKER : fs e FRAGMENT ; m e MARKER – Set of FRAGMENT

cuts fs wherever Marker m occurs. The result is a set of fragments.

3.5.4. Circular Fragments

A biologically significant form of DNA fragment is the circular DNA. To model this under the
abstract sequence model requires an additional attribute of Topology. If the value of Topology is
“linear”, then no changes are required for the operators. If the value is “circular”, then the “zero”
point, i.e. the beginning of the equivalent linear fragment, is used as a reference point. The follow
ing operators are defined:

Circular Operators

circularization FRAGMENT 6–3, mixed
FRAGMENT

CIRCULARIZE() FRAG_EQUAL(), CUT_AT_MARKER(),
FRAG_CONTAINSO, CUT AT POS()
INSERT MARKER()

1. CIRCULARIZE: fs e LINEAR_FRAGMENT – CIRCULAR_FRAGMENT

This takes a linear fragment and circularize it if the ends of the fragment are compatible.

2. FRAG_EQUAL() and INSERT MARKER() remains the same.

CUT_AT MARKER: fs e FRAGMENT ; m e MARKER → Set of FRAGMENT

This is identical to the linear form of CUT AT MARKER() defined above, except that the
ends of the original fs are sealed between two Markers. Same applies to CUT AT POS().

4. FRAG_CONTAINS() is defined if fsi is circular and fs2 is linear.

52

3. MODELS OF BIOLOGICAL SEQUENCES

3.5.5. Ordered Maps

A special type of sequence information found in the HGP is from the ordered clone maps. They are
sequences of DNA fragments whose order is known, but not their distances. Therefore, the position
type is of pure order. In Section 2.3.4, we used the dense order sequence to model them and in the
current framework (Section 2.5.4), they are considered as order abstract, which is still dense. How
ever, we now propose a different model.

The justification for the new model is based on the following problem. If we are given an ordered
clone map of fragments with preassigned order values and if we introduce a new fragment into this
map, then we need to assign the new fragment an order value. If the sequence model is dense, then
all the fragments that follow the new one will have to be reassigned with new order values. If the
sequence model is sparse, then the other order values can remain the same. This is achievable only
if the position type is based on the numbers used in the Dewey decimal system, i.e. the one used
cataloging of books in a library. In this numeric system (based on rational numbers with infinite
precision), one can always insert a number between any two given numbers. Therefore, one can
insert a new fragment into an ordered clone map without affecting the other preassigned position
values.

This approach has the advantage of minimizing changes when an ordered clone map is updated
with new information. Therefore, we could model ordered clone maps as order abstract sequences,
but with an intrinsically sparse position type, e.g. the Dewey decimal numbers.

53

4. SEQUENCE SUMMMARY

CHAPTER 4. SEQUENCE SUMMMARY
4.1. Conceptual Basis
The basis for our conceptual sequence models has two major components: the abstract mathemat
ical function and the separation of abstraction from semantics. Mathematical functions are purely
characterized by a set of domain values and a set of range values. A subset of these functions has
ordered domain values and, by casting these domains into positions, it formed the basis of our
sequence models. In order to extend the semantics of position values, the position type was further
categorized based on measurement theory. Thus, metric scales, i.e. ordinal and interval, were inte
grated into the position type and form a framework of models. At this point, the sequence models
were still abstract. The next step was the addition of the real world semantics.

Implementation issues, such as storage efficiency or access methods, and application specific
issues should be ignored in a conceptual model. Therefore, it is critical that we do not inadvertently
introduce implementation or application specifications when adding the semantics. With this prin
ciple in mind, the relationships between metric, granularity, atomicity, and density were added to
the framework as semantic components to be specified by the user in domain specific fashion.
Other sequence models are typically concerned with implementation or application issues prior to
this stage. Therefore, some of the basic interactions between sequence characteristics were never
modelled and the end result was an ad hoc development of sequence operations.

In addition to the static description of sequence information and its semantics, we also defined a
set of sequence operations. They are summarized below:

Types Names Comments
- E:-

INTERPRET() abstract to semantic

ENCODE() semantic to abstract
Semantic
Operators MCONV() convert metrics

(domain GCONV() convert granularities
specific)

INTERPOLATE() usually the default null interpolation function

EVENTO generate a sequence type based on event order

54

4. SEQUENCE SUMMMARY

Types Names Comments

LENGTH() - length of a==
VALUE() returns the content value

BUILD() content type to sequence type

Sequence CUTO, SUBSEQ() returns a subsequence

º CAT() concatenate two sequences
independent) || REVERSE() reverses a sequence

SEQ_EQUAL() defined by using equal() from content type

APPLY() apply an arbitrary function to content values

RECURSE() recursion over elements in a sequence

4.2. HGP Sequence Models
We proposed a model for each of the sequence types found in the HGP For ssDNA and fragments,
the models were as simple as SEQ_BASE and SEQ_MARK, respectively. On the other hand,
dsDNA required a more complicated model. In the context of the HGP, dsDNA is never “seen”
with SS tails, because the native form of DNA in the cell nucleus is always fully complemented.
Therefore, genomic database models for DNA sequences always assumed the native double
stranded form. Under this assumption, dsDNA can be modelled as ssDNA and, subsequently, char
acter strings. However, rotational symmetry of dsDNA cannot be accounted for by character
strings. Consequently, programs external to the database must maintain this information and per
form the necessary transformations to recapture this characteristic. More importantly, the schema
for a database with the string implementation would fail to capture this aspect, which would intro
duce potential maintenance problems for the application developers as clients of the database.

If we made the same simplifying assumption, then our dsDNA can be modelled as SEQ_BASE.
However, it would still be named DS_DNA and would still keep all the DS_DNA operators. This
forces the semantics of the rotational symmetry to be associated with the dsDNA model and
removed the burden of maintaining this information from the clients of the database. In software
engineering terms, this improves the cohesion of information modelling.

55

4. SEQUENCE SUMMMARY

Finally, we defined a set of biologically relevant operators:

Types Names Comments

COMPLEMENT() complements a SSDNA

SSDNA IS_COMPLEMENT() checks to see if two ssDNA are complementary

MATCH_CUTO cut ssDNA where the sequence matches

ROTATE() preserving equality for dsDNA

DS_EQUAL() equality for DS_DNA

dsDNA §§º () SSDNA → dsDNA

FILL(), TRIM() makes blunt-end dsDNA

MATCH_CUTO) cut dsDNA where the sequence matches

FRAG_EQUAL() equality for FRAGMENT

FRAG_CONTAINSO checks to see if a fragment is contained in another

fragments INSERT MARKER() insert a marker into a fragment

CUT AT_MARKER() cut a fragment at matching marker positions

CIRCULARIZE() circularize a linear fragment

4.3. Model Expressiveness
In addition to the sequences found in the HGP (see Section 2.3.4), the proposed framework of
sequences can properly capture the sequence information from the commonly used sequence types
of other domains:

Models density Metric Granularity Atomicity
===

text dense character 1 1

lists dense index unit 1 1

discrete
- - -

sparse tlme variable variableCVentS

tep-wise
- - -step dense tlme variable variable

COnt1nuOuS

continuous | dense time variable variable

Metric, Granularity, and Atomicity of temporal sequences will depend on the particular applica

56

4. SEQUENCE SUMMMARY

tions. Temporal models chose to implement step-wise continuous sequences as discrete event
sequences because of their relational implementation. While it may be more economical to store a
step-wise continuous sequence as a discrete event sequence, this choice should not be made at the
conceptual level.

4.4. Open Topics
The sequence framework only addresses the abstractions of a single sequence, it does not address
the issue of a collection of sequences. This is insufficient for database data modelling, because a
database contains collections of sequences and data models are to reflect the gestalt nature of these
collections. Therefore, the sequence framework must be integrated into a database data model (as
opposed to an programming data model) in order for it to be useful for modelling databases
sequence information. This integration is the goal of Part II of this work. However, there are other
topics open for future discussion.
4.4.1. Position Order

Issues pertaining to partial and circular order were not addressed in the current framework. A non
standard algebraic position type will affect the arrangement of a framework based on linear, mea
surable position type. For example, what is the meaning of granularity of a partial order position
type? In addition, operator semantics will need modification. For example, concatenate for partial
order sequences could be a merge of two partial order graphs based on common position-content
values.

57

5. BACKGROUND

PART II. EXTENSIBLE OBJECT DATA MODEL

CHAPTER 5. BACKGROUND

Data models serve as languages of discourse, they convey meanings from one domain to another.
There are three major groups of data models: conceptual, logical, and physical [66). A conceptual
model provides a way for users to model the real world and to communicate with precision about
their application domains. This is accomplished by capturing the “semantics” of the real world,
such as object abstraction, integrity, and relationships. The physical model, on the other hand, con
tains information about the actual implementation of data structures and operations that support the
conceptual model. The specific implementation constitutes the database management system
(DBMS). The logical model is based on an abstraction of the physical model by removing optimi
zation and implementation-specific features. It acts as an intermediate language between the con
ceptual and physical models. The following diagram demonstrate their interrelationships:

Real World Concepts Examples:

Specifies Implements

Conceptual Model EER [65], SDM [28], OSAM [62]

Specifies Implements
W

Logical Model hierarchical, network, relational [22]

sºme, | Implements
Physical Model Ingres [31], Sybase [63), Informix [30]

The distinction between conceptual models from logical or physical models is based on the seman
tic richness of the model and not on the level of implementation. Therefore, the conceptual models
are also termed semantic models, as an indication of their semantic richness. It is desirable to go
directly from a rich conceptual model to a physical implementation, which is the reason that certain
logical model (especially the relational model) are being extended [8,16,43].

In addition to the organization of models based on semantic richness, there is an alternative orga
nization that is based on dependency. Under this scheme, the models are grouped into three groups:
interface, conceptual, and physical. The interface group deals with how the users interact with the
system. In database applications, this translates into query facilities and user interface issues. In
this group, it is very application dependent but implementation independent, therefore, it is some
times called the “external level”. The conceptual group is similar to the conceptual models in the
previous scheme. It deals with data models and formal query languages in an application and

*-

* .

*
*

58

5. BACKGROUND

implementation independent fashion. Lastly, the physical group handles implementation specific
information, such as data structures and access methods. However, it is application independent,
therefore, it is sometimes called the “internal level”. Their relationships are diagrammed as fol
lows:

Users Dependency:

application

Interface Level Implementation Independent

! modelling
Application and Implementation

Conceptual Level Independent

! query optimization
Physical Level Application Independent

Our goal in Part II is to develop a conceptual data model, with sequence constructs, that corre
sponds to both organizations, i.e. it is both semantically rich and application and implementation
independent.

There are two approaches to the integration of the abstract sequence models into a conceptual data
model. The first approach is to choose an existing data model and graft the sequence model as an
extension. For example, we can extend the relational model with sequence constructs in the style
of Non First Normal Form (NFNF) [1]. A better alternative is to use a semantic model for sequence
extension. Since semantic models already provide rich conceptual power, the only task is to add a
sequence construct. However, such an addition has to be semantically consistent with the base
model and remains orthogonal to other constructs. The verification of consistency and orthogonal
ity would be a limited exercise, but the creation of a new construct may introduce conceptual incon
gruities in the model. In addition, some semantic models already have a limited version of
sequences, e.g. “lists” and “arrays” [28), does one extend or replace existing constructs?
The second approach is to develop a new model from scratch with sequences as an integral com
ponent. Here, we run the risk of redeveloping constructs found in other models and resulting in
redundant work. On the other hand, it allows us to build a new self-consistent model without the
possibility of conflicts with the presumed intent of existing constructs. In addition, it gives us the
opportunity to resolve open questions in conceptual data modelling. For this work, we choose the
latter approach because we are free to address open modelling issues. The remainder of this chapter
reviews the issues of conceptual data modelling. In Chapter 6, a new data model is proposed. Chap
ters 7 and 8 describe the model in detail. Finally, Chapter 9 summarizes the results of Part II.

59

5. BACKGROUND

5.1. Framework for Data Models

Currently, conceptual data models are based on two approaches: semantic and object-oriented.
Many semantic data models have been proposed and they were reviewed in [29,51]. Briefly,
semantic data models borrow constructs from knowledge representation and semantic modelling
in the Artificial Intelligence field. Their objectives are to capture real world concepts in an appli
cation independent fashion. Object-oriented models are logical models based on Object-Oriented
DBMS's (OODBMS) [38], but due to their semantic richness, these can also serve as conceptual
models. They primarily focus on features of Object-Oriented programming languages, i.e. object
identity, classes, and inheritance. For this research, we are proposing yet another conceptual model,
independent of these two approaches.

Unfortunately, debating merits of data models is like debating merits of programming languages:
arguments range from the arcane to the religious. Therefore, we first propose a framework where
conceptual data models can be evaluated and compared. Clearly, the assumptions behind any
framework are also debatable, but once accepted, the models can be evaluated in a systematic fash
ion. Our framework is built on two central issues of every conceptual model: what a model is and
how the model is used. This framework is based on the one presented in [46].

5.1.1. Semantic Mapping

In the core of all models is the semantic mapping. The result of a modelling process is the schema.
For conceptual modelling, a schema is “an implementation of the real world”. In addition, it can
be viewed as a specification or as a template for translation into a logical or physical schema. This
is diagrammed in the previous figures. Consequently, the conceptual model (as a language to pro
duce a schema) serves two goals: one is semantic richness to capture real world meaning, another
is formalism to specify implementation. Together, these goals determine the power of the semantic
mapping. The main aspects of this mapping are:

-

1. Semantic Richness

A direct representation of a real world concept is better than an indirect one. A rich model
will have more constructs that map directly to real world concepts. However, a balance
must be struck between richness and simplicity.

2. Representation Uniqueness

For a given real world concept, it is less confusing if there is only one unique representation
in the model. If there are many constructs for the same concept, then additional rules are
needed to decide which construct is to be used.

3. Implementation Independence

A conceptual model should be independent of its implementation, i.e. the underlying

X

;

5. BACKGROUND

model. However, the model is also a bridge between the real world information and the
actual database (or logical model), therefore, the concepts it captures must be implement
able on any sufficiently capable database (model), not just one specific database.

Mathematical Completeness

In a mathematical framework, a data model can be considered as a logical theory with a
denotation for each construct and a set of definitions and axioms. Completeness is a prop
erty that states “model” transformations correspond to “real world” transformations [23]. It
stipulates that all constructs in the data model are well-defined and all operations are closed.

In addition, there are certain features of semantic mapping that a model should address:
5. Model Extensibility

A model should be extensible to capture application specific concepts in a general fashion.
This is the ability to add new constructs to the model in a systematic fashion when new con
cepts appear in an application domain. This is equivalent to extending a language, not just
expressing statements from a given language.
Domain Invariance

A conceptual schema should only describe the invariant properties of the application
domain. If this is not observed, then after each operation that changes the database state,
the schema would also be changed. This would force operations to be of ad hoc nature
because one cannot ensure a stable schema prior to the actual operation. Therefore, a con
ceptual model should only model operation-invariant properties.

5.1.2. Usability

The usability of a model determine how it is used and, in turn, its acceptance. Although semantic
richness is important, human factors dominate in this determination. Two factors of usability are
mental comprehensibility and user interface. Comprehensibility is, in turn, based on a mixture of
factors and it is also a subjective criterion: each application domain and each user will weigh each
factor differently. The main components to comprehensibility is richness and uniqueness from the
semantic mapping part plus the following:
7. Model Simplicity

A simple model is easier to learn than a complex model. A model should have a small num
ber of simple constructs and a small number of rules governing the interaction between con
structs. The interaction rules are usually the most complex part of a model, because there
can be O(n° x m) cases where n is the number of base constructs and m is the number of
association constructs.

61

5. BACKGROUND

8. Schema Modularity

A conceptual model should allow the user to divide the “real world” into smaller, manage
able chunks of related information. There are two mechanisms: encapsulation and refer- –

ences. Although encapsulation is based on semantic mapping, i.e. how groupings of real C
g

world concepts are mapped to model constructs, its execution as a usability factor is more
important because it determines how we use the model to group concepts. Referencing is
the ability to separate definition from reference. It is a feature that helps the users to handle

-

the complexity of real world information by breaking apart a large schema into smaller
pieces.

User interface issues deal with the mechanical process of modelling by a user:

9. Graphical Form

A graphical form is often more visually comprehensible than a textual form. A model
should support a graphical representation of its constructs. Presumably, each construct in
the model would have an easily identifiable graphical representation.

10. User Support
a

A set of tools for schema generation, editing, and viewing would be useful. In addition, if -
the conceptual schema is independent of the underlying system or model, then a translation
tool to different systems and models would be useful.

This is a large and comprehensible framework. Therefore, our proposed model will only emphasize
some of the features. Of those addressed, some will overlap with other conceptual models.

62 * /

5. BACKGROUND

5.2. Common Characteristics

We will start with the features that most Semantic models fulfill.

5.2.1. Semantic Richness

The semantic “richness” of a model is a measure of how well it can model real world information.

All conceptual models have a set of basic constructs. The constructs have been reviewed in [29,51].
Briefly, they are:

1. Types and Instances

These are also termed Classes and Entities, Objects and Instances, Classes and Objects. The exact
terminology isn't important as long as they are used consistently within a model. A model instance
corresponds to a real-world object or abstraction. A collection of instances with common informa
tion and behavior (with respect to other collections) is called a Type. For example, a Person Type
would include information such as ID, Name, and Age, and “contains” zero or more instances of
Dependent Type. You and I are instances of Persons, each with different values for ID, Name, Age,
and different dependents.

2. Aggregation and Grouping

Aggregation is also termed Tuple or Cross-Product. Grouping is termed Sets. The terminology is
reversed in some data models. These concepts define two methods of collecting instances together
to form a new Type. Tuple construction builds a new Type from a fixed number of instances, each
of a specific Type. When given an instance of the Tuple Type, specific member instances are usu
ally accessed by their Type name. For example, if x is an instance of Department Type, x.Manager
would retrieve the manager instance. Set construction builds a new Type from an indeterminate
number of instances, usually from one specified Type. The instances within a set cannot be indi
vidually addressed, instead, they are accessed through selection or iteration on the set.

3. Specialization and Generalization

These are aspects of IS-A hierarchies. Sometimes, they are also used to extend the concepts of Sub
sets and Union. Specialization constructs a new Type by adding information or behavior to previ
ously defined Types. Generalization is the reverse of specialization, it constructs a new Type from
other Types, but only keeps the common information and behavior. For example, a Student is a spe
cialization of Person and a Publication is a generalization of Article and Book.

4. Relationships and Roles

They define how one Type relates to another. Relationships can be represented as a mathematical
mapping between two sets of instances, therefore, we find concepts of 1-to-1,1-to-many, many-to
many, unto, and into expressed by relationships. Relationships in a data model are named after the
real world relationship. For example, some of the relationships between two Person Types are “Par

63

5. BACKGROUND

ent-of”, “Managed-by”, and “Married-to”. Roles are aliases the Type assumes at the end-point of
a relationship. For example, a Person assumes the roles of Parent and Child at the ends of a “Parent
of" relationship.

5. Class Construction and Meta-Typing

Some models permit Class construction, where arbitrary instances are explicitly grouped into new
Types. Other models support Meta-Typing, where arbitrary Types can be explicitly grouped into
new (meta-)Types. The two mechanisms allow Type formation based on explicit instances. These
are supported by data models which are more instance-oriented than type-oriented.

The more real world concepts for which there is a direct representation, the richer the model. Given
this set of basic constructs, there are many ways to design a consistent model, as demonstrated by
the current set of conceptual models. Each has its own extensions, but the problem is not semantic
expressiveness because all of them cover the basics. In fact, some users would be satisfied with the
richness from a subset of these five constructs, because for their particular application domains, a
subset is sufficient.

5.2.2. Representation Uniqueness

For any particular real world concept, most models provide only one unique representation. How
ever, this fails when relationships are encountered. There are two basic approaches [29]: one
approach is function-based where all relationships are designated by directed arcs and the other
approach is type-based where new types represent relationships. The function-based approach
lacks the ability to refer to a relationship and its characteristics together. The type-based approach
allows ambiguous mapping of relationships. These are demonstrated in the following diagram
matic example:

Managed-by

DepartmentHº- WorkS-For |Employee
Functional
approach:

º
º

5. BACKGROUND

In the functional approach, there is no mechanism to reference Years based on Works-For or to use
Works-For as a basis to another relationship because the functions have only one destination.

Type-base
approach:

In the type-based approach, one cannot prevent modelling Manager as an attribute of Department.
There is no resolution for this problem in “graph”-based data models, because it is a fundamental
semantic gap based on our ability to abstract a relationship as entity and vise versa. We will choose
the type-based approach because it allows us to scale-up relationship abstractions. Therefore, we
will consider the problem of Department/Manager as an error in modelling semantics, i.e. the cor
rect schema should use an explicit “Managed-by” relationship between Department and Manager.
5.2.3. Implementation Independence

Most conceptual data models can be implemented on top of different logical or physical models.
However, the ease and efficiency is dependent on the particular constructs. For example, Entity
Relationship (ER) constructs have direct implementation into relational schema [18]. However, the
integrity constraints of cardinality and foreign keys specified by an ER schema require additional
processing in the relational model via triggers or supporting queries to maintain integrity. Special
ized constructs, e.g. summary of Object-Oriented Semantic Association Model (OSAM) [62) and
collection of IFO [2], are difficult to shoehorn into the relational form. On the other hand, set con
structs from the IFO model has a simple and direct implementation on a hierarchical DBMS. Dif
ficult implementations indicates that the underlying model or system truly lacks certain features
that would make them conceptual. After all, if the relational model captures a rich set of semantics,
we won’t have the proliferation of relational extensions and semantic data models. There is also a
principle behind the drive to capture real world semantics: if the model is rich enough to capture
the domain semantics, then it is sufficient.

Object Oriented data models are logical models of OODBMS, therefore, they lack independence
from physical systems. On the other hand, they are rich in semantic constructs. Recent progress has
been made to provide mathematical completeness to OO models, but has not pursued logical-level
independence [69]. However, OO models are rich in mechanisms to implement conceptual abstrac
tions, albeit only on top of OODBMS.

65

5. BACKGROUND

5.2.4. Mathematical Completeness

When discussed in the context of mathematical logic, completeness depends on a balance between
the number of distinct constructs and the number of axioms governing their behavior. In a mathe
matical theory where constructs out-number axioms, completeness is unlikely to be achieved. On
the other hand, if axioms out-number constructs, contradictions may be present. A theory that is
complete implies all statements are provably correct or incorrect, i.e. no statement exists that can
not be proved. For example, Pressburger arithmetic is complete, but with the addition of “multipli
cation” to form Number Theory, it becomes incomplete [23]. From another perspective,
completeness is a measure of “semantic complexity”. The more complex a theory, the more diffi
cult for it to be complete.

-

With the advent of relational model, mathematical formalism has been pursued by all subsequent
models. Given the fact that completeness is related to “semantic complexity”, it is unlikely to be
achieved by semantic data models. On the other hand, certain amount of formalisms can be
obtained, e.g. all terms are well-defined and all operations are closed and computable. For this
work, we will not investigate completeness in our proposed model. This is reserved for future
research.

5.2.5. User Support

Support is often determined by the maturity of available tools for the model. These tools provide
the ability to view, edit, print, and store model schemata. They also provide semantic translators to
other data models for implementation or graphical translators to document processors. These tools
enhance the usability of a model, but the lack of such tools should not detract from its usability as
a conceptual model. The development of these tools is in the domain of user interface research and
not in data modelling research. Furthermore, the development of tools is expensive, therefore, new
or uncommon data models often lack the wide-spread acceptance for such investment. The only
support tool for our proposed model is the query processor described in Part III. Other support tools
are reserved for future research.

* -

-

5. BACKGROUND

5.3. Unique Characteristics
There are some aspects of conceptual data modelling that have been improved in our proposed
model as compared to others. These will be explored in more detail:
5.3.1. Domain Invariance

The concept of invariance is very important in all modelling endeavors. It allows the model con
structs to only reflect the domain information that is “generally” true. In most semantic data mod
els, there does not exist a clear definition of invariance, i.e. what domain information is considered

to be “generally” true. Most models typically start with some statements concerning the definition
of “objects” and their representations, relationships, or implementations. In addition, most models
focus on the abstraction of object characteristics, i.e. type definition, and not on the specific
instances of objects. This is fortuitous because type definition is a form of invariance principle.
This approach works for many applications, because during the lifetime of a database schema, the
type definitions do not change, only the instances of the types. But in certain domains, e.g. statis
tical databases, it is the instances that do not change, only the types or categorizations of them
change. Clearly, in these domains, the standard type definition may not properly describe the
domain information that is “generally” true and a fundamental semantic gap forms.

In our model, we define the invariance at the level of collection of instances. Domain concepts
related to all the instances of the same collections are then mapped onto the schema. Concepts
which are specific to individual instances are not modelled. In addition, a collection-level construct
based on “context dependency” will define the relationship between instances. This will maintain
a constant level of abstraction and invariance for the model.

5.3.2. Model Extensibility

Most semantic data models do not provide the mechanism to add new constructs in a systematic
fashion. After all, the goal of a semantic data model is to be semantically rich, therefore, no new
constructs should be needed. This is inadequate for specialized domains, since in the real world,
there are many semantic concepts that cannot be mapped onto a strict set of constructs and rules.
Therefore, our proposed model is constructed so that extensibility is a core feature. This reflects
the “open-ended” nature of all mathematical models, i.e. new axioms and definitions can always
be added to an existing model to create a new model.

Under what situation would there be a need for new constructs? Typically, it is the emergence of
new abstractions or encapsulations. For example, a Set is an encapsulation of a collection of
instances and it is usually included in a semantic model. However, a sequence or list is an encap
sulation of a collection of instances that is different from sets, i.e. the information that goes into the
construction of a sequence is different from a set. If an existing semantic data model is used, one
would have to shoehorn tuple and set constructions and integrity constraints to emulate a sequence.

67

5. BACKGROUND

On the other hand, extensibility would allow the introduction of a new construct to represent a
sequence, without a complex mapping based on existing constructs.

The ability to extend an existing model depends on the uniformity and orthogonality of the under
lying model. In most models, no attempt has been made to fully categorize its modelling constructs.
Therefore, there is no a priori mechanism to determine if all the possible semantics have been cap
tured. For example, the addition of cardinality constraints to ER relationships is considered ad hoc.
There is no precedence of why it should be there, except for the fact that, semantically, it is mean
ingful. In order to make cardinality less ad hoc, one has to have a problem statement that is con
sistent (with cardinality) and, potentially, a solution that is complete (cardinality as a part of it). The
use of “consistency” and “completeness” stems from their meaning in relating proof-theoretic and
model-theoretic mathematical models.

In our proposed model, we have focused on three orthogonal features: structural constructors, iden
tity vs. property, and context dependency. The core model provides a rudimentary set of structural
constructors and context constraints. Therefore, extensions to the core model could include new
Structural constructors and new context constraints.

5.3.3. Model Simplicity

Most semantic models have at least five constructs, usually two to three node types and two to three
arc types. Although the number of basic constructs are few (less than seven), the interaction
between them (nodex arc x node) is much more complex. This can be quantified by a table of node
to-node interactions. For example, in the basic ER model [18], there are four node types: attributes,
entities, weak entities, and relationships; and two arc types: between attributes and other nodes and
between relationships and entities. The interaction table for this ER model is given as:

where:

N-to-N Entity W-Entity Attribute Relationship

Entity
-

attr attr º
W-Entity attrº attr attr

-

Attribute attrº attrº
-

attrº

Relationship rel
-

attr
-

“attr" link entities to attributes,

“rel” link entities to relationships,
ge, 25. indicates an invalid link, and

*** indicates dependence on directionality.

The table format gives us a handle on the complexity of a data model. In addition, it is a form of
algebraic semantics, providing a “closure” of derivable model concepts, i.e. each (node x arc x

:

--

1 -

N

;
*-

68

5. BACKGROUND

node) entry has a defined meaning. For example, between Entity and Weak-Entity, the “attribute”
link defines how the Weak-Entity relates to the Entity, and the meaning of this link is constant for
all occurrences of Entity/Weak-Entity in a schema. This entry forms one distinct interaction and it
is the number of distinct interactions that determines the complexity of the model.

In more complex models, there is directionality to the arcs. If we add implicit directionality to the
arcs, as defined in the standard ER model, the entries with “” become invalid and the table

becomes nonsymmetric. Furthermore, there can be multiple arc types in each node x node cell
when we include IS-A for the Extended ER (EER) model [26]. The resultant table should be a 3
D table, with arc type being the third dimension.

The IFO model [2] has five node types with 4 arc types and has this interaction table:

N-to-N l Printable Abstract Free Collection Product
Printable

- - -

==

Abstract F F F/G F F
Free F F/S F/S/G F/S F/S

Collection C C G/C C C

Product C C G/C C C

where F for functional mapping,
S for specialization,
G for generalization,
C for composition,
« g » -indicates an invalid link.

In the cell Abstract x Free, the entry Abstract x function x Free is semantically different from
Abstract x generalization × Free. However, the common occurrences of function and composition
links imply generalized features, indicating a similar semantic can be applied to all ×-function-x
and x-composition-x entries. Localized occurrences, such as specialization and generalization
links, imply more specific features. These may indicate cell-by-cell differences. The directionality
of arcs is noticeable from the asymmetry of the table.

The simplicity (or complexity) of a model is not determined by the number of basic constructs, but
by the way the interaction table is filled. In many models, the node-to-node interaction is often
given by a series of rules or formal definitions using mathematical terminology. This makes direct
comparison of complexity difficult. In addition, there are also rules and definitions governing the
interaction between non-adjacent nodes. For example, cardinality and participation constraints in
the ER model govern the association between entities across a relationship. Another example is IS

º

* *

h

*

N

;

69

5. BACKGROUND

A paths for specializations and generalizations which forbids an entity to occur twice along an IS
A path.

-

After understanding how easy it is for a model to achieve complexity, what would achieve simplic
ity? We again focus on the features of uniformity and orthogonality. IFO functions and composi
tions links are uniform, but are insufficiently uniform, i.e. certain node combinations are not
permitted. ER cardinality and participation constraints are orthogonal to nodes and links, but they
can’t be applied to attribute links. If the constructs and their interactions are more uniform and
orthogonal, then the model becomes simpler to comprehend and to use.

These two features are not separable. Orthogonality enhance uniformity and vise versa. Therefore,
applying this doctrine, one would attempt to create as many orthogonal or uniform concepts for a
data model as possible. However, if the final result becomes too “atomic”, the semantic nature of
the model is lost and the end result will lack richness. For example, the relational model is where
concepts are orthogonal and uniform, but semantically impoverished. A balance must be found
between the semantic richness of model constructs and the pursuit of orthogonality and uniformity.
We approach this problem in three steps. First step is a structural model based on information con
tent. A database holds information, therefore, the logical mechanism for abstraction is the informa
tion content. Second step is explicit definitions of identity and property. Every real world object
has an identity and some associated property. This separation is crucial to the integrity of the
domain information and should be retained in the model. Finally, context information is captured.
Every real world object also exists in some context and this affects how it relates to other objects.
Therefore, our model would systematically categorize and abstract context information. Each of
these characteristics will remain orthogonal, so that associations between them can remain uni
form.

5.3.4. Graphical Form

Most semantic models have a graphical representation. However, the choice of symbols and their
interconnections will affect the usability of the model. This is an issue separate from the semantics
of the model. There are three major problems with graphical design:

1. Labelling of Objects

This is a problem of where to place the label associated with an object. For example, the ER model
allows the labelling of most objects within the graphical form, but the IFO model almost forces

-

(

70

5. BACKGROUND

external labelling because of internal patterns:

ER: IFO/GSM:

CLASS KPN
Person VAN/

VS.

Age
TUDE

On a large schema, such external labelling creates pairing conflicts, when one cannot readily deter
mine which object is associated with which label.

2. Modularity

Modularity determines whether references can have a graphical form. Certain models, e.g. the ER
and the IFO models, do not have a graphical distinction between object definition and reference.
Therefore, a schema would only have one node per abstraction and references are based on arcs
converging on that node. For a large schema, this would create a graph that has tangled topology.
In practice, references and definitions are separated, but this requires an additional notation on a
graphical object to determine its actual nature.

3. Directionality

Another problem is the lack of directionality. For example, in both ER and IFO models, the arcs
can fan out in any directions. This reduces the comprehensibility of a schema diagram because one
tend to lose track of visited nodes and be overwhelmed by the snaking of arcs.

These are problems in graphical design, not in data modelling. There are many factors governing
graphical design, but the focus of this research is not about these factors. However, data model
designers should be aware of these issues because they affect the comprehensibility of the graphi
cal diagrams. We will apply the three described principles to the graphical representation of our
proposed model. First, all symbols are uniform and internally labelled. This reduces the label-to
symbol pairing problem. Furthermore, a uniform symbol is also a hallmark of semantic uniformity
in the model. Second, a separation of definition from reference in the graphical form. The “spa
ghetti” look in most semantic models is due to the lack of this separation. This simple strategy will
permit a schema to be separated into manageable chunks. Finally, an implicit directionality of
information flow is provided, which will give a consistent direction of reading and drawing a
schema to prevent the maze situation.

s

71

5. BACKGROUND

5.4. Model Characteristics Summary
Our proposed model will address features common to other conceptual models, but in addition, it
will also address features not present in the others. The main features are:
1. Semantic Richness. The constructs supported by our proposed model provide type

definition, aggregation and grouping, specialization and generalizations, and relationships
and roles.

Model Extensibility. The proposed model is actually a framework of models. Therefore,
extensions to the core model can be seamlessly integrated. The abstract sequences, as
defined in Part I, will be one such extension. Other extensions are metatyping,
classification, and generalized constraints, which are reserved for future research.

Model Simplicity. The model achieves simplicity by orthogonality and uniformity. We have
divided the conceptual modelling into three categories: structural, identification, and
contexts. Variants of each category can be applied to any variants of other categories
without loss of generality. This also permits extensions organized along these separate
categories.

-

Graphical Form. The graphical representation of this model has a natural organization. It
trades off some artistic freedom for comprehensibility and reinforcement of modular
construction.

The minor features of the proposed model are:
5. Domain Invariance. We have decided to explicitly relate domain invariant concepts to our

model constructs. This is a choice which has advantages in understanding of how domain
concepts map to and from our model.

Representation Uniqueness. We have chosen the type-based approach, which follows our
paradigm of extensibility by upward scaling of domain abstractions.
Implementation Independence. We will define our basic constructs with abstractions which
are implementation independent.

Some features are not discussed in this work and are reserved for future research: Completeness
and Support.

72

6. EXTENSIBLE OBJECT DATA MODEL

CHAPTER 6. EXTENSIBLE OBJECT DATA MODEL

Our approach to data modelling starts with the concept of information content, which is further
divided into structural and location components. The structural component determines what infor
mation is stored. This is defined by an abstraction in our model called the Object-Type. The loca
tion component determines where the information is stored and is defined by an abstraction called
the Instance. The coupling between Object-Type and Instance is mediated by the abstraction called
Context. A schema with Object-Type and Context definitions can unambiguously determine the
Instances. The remainder of this chapter will describe the basic definitions of the Extensible Object
Model (EOM). Chapter 7 will discuss Object-Type creation by using constructors. Chapter 8 will
discuss context definitions.

6.1.

(1)

(2)

(3)

Definition of Object-Types
A database is a depository of information.
It is divided into individual blocks of information. Each block of information holds some

information content. This stored content is an abstraction or an array of binary digits, i.e.
bits, when considered from an information theoretic point of view. Object-Types define the
sizes of these blocks and how they relate to other blocks, defined by other Object-Types.

Each Object-Type defines two mapping functions:

(a) the interpretation of bit patterns (symbolic values) in a storage block to the semantic val
ues associated with the real world concept of which the Object-Type represents

(b) the encoding of semantic values of a real world concept into a pattern of bits (symbolic
value).

These two functions provide the link between the real world and the symbolic universe and
is identical to the interpretation and encoding transforms discussed in Section 2.5.3.

Each Object-Type is named.

The name corresponds to a concept in the real world. For example, numbers, such as 1, 2,
and 3, can be encoded in binary as “1”, “10”, and “11”. Conversely, binary digits can be
interpreted as numbers. However, letters, such as “A”, “B”, and “C”, can also be encoded
in binary as “1000001”, “1000010”, and “1000011”, and in turn, be interpreted as ASCII

characters. Thus, the concepts of “Integer” and “ASCII character” each have their own
-

mapping functions.

The same symbolic value can be interpreted, by different Object-Types, into different
semantic values and vice versa. Therefore, the name of an Object-Type is very important to
the maintenance of the integrity between the real world and the symbolic universe. From

* *

º

&

73

6. EXTENSIBLE OBJECT DATA MODEL

(4)

(5)

6.2.

(1)

now on, unless we specifically state a value is semantic, it is assumed to be symbolic, i.e. a
value is its bit pattern.

Each Object-Type defines a set (collection) of potential values.

Since a type defines the mapping between semantics and symbolics, we can map all the pos
sible semantic values, thereby obtaining all the possible symbolic values (bit patterns).
Therefore, an Object-Type defines a set of potential or permissible symbolic values.

Each Object-Type has a set of symbolic operators or functions.

The operators correspond to the transforms of the real world that affect instances of an
Object-Type. A semantic value will change under real world processes, and because each
semantic value has a symbolic value, we can construct a symbolic operator which performs
the equivalent transform in the symbolic domain. For example, the semantic concept of
“addition” has a symbolic equivalent in “2's-complement addition operation”, which oper
ates on ordered binary digits, without regard of the semantic interpretation of these digits.
Definition of Instances

An Instance of an ObjectType is a particular value.

The collection of instances forms the actual data in the database, i.e., they have “physical
reality” and correspond to actual blocks of bits. Although the Object-Type can define a very
large set of potential values, we are only interested in the actual values in the database.
Therefore, we can use an Object-Type in a schema to represent the collection of actual
instances found in the database, not the potential instances. For now, we will use “collec
tion” to represent the “relaxed” form of a set, i.e. a bag, since there can be a multiplicity of
instances having the same value, within the database, represented by one Object-Type.

With this specification, we deviate from the counting principle of constructing Object
Types. For example, the traditional generation of a cross product term is considered to be
“larger” in collection size and number of instances. However, in a database, not all possible
combinations are present. In fact, the cardinality of the cross product instances may actually
be less than the cardinality of the sources. On the other hand, the number of bits needed to
store the cross product information is always at least the sum of the bits of the sources, i.e.
“larger” than the sources.

The definition of instances simply states the existence of instances, it does not dictate the
physical location of the information contained by the instances, e.g. volatile memory, disk
sector, cluster, or file. Although the “source” component of the information content defines
where the information is located, but it is an abstract form of location, i.e. an Instance is a
conceptual location.

f
-

74

6. EXTENSIBLE OBJECT DATA MODEL

(2)

(3)

(4)

Identity of instance is value-based.

If two instances, defined by an Object-Type X, have equal values, then the instances are
identical. In other words, if using all the information available as Object-Type X and we
cannot distinguish two instances apart, then they are the same instance. If this rule is abso
lute, then collections (bags) are not permitted. However, as we shall see later, this value
based equivalence is amended with their context information for greater expressiveness.
The corrected rule is “when given two instances, from the same context, defined by an
Object-Type X,...”.

An instance value has two components: ID and Property.

The ID component must always be present and interpretable, thus it has both semantic and
symbolic values. Equality based on this value contributes to the “identity” of the instance.
The Property component contains all the information other than the ID component, thus it
may or may not be present. These components can be defined as operators of instances, e.g.
ID() would return the value that form the ID portion of a particular given instance.

Technically, only instances have these components because only instances have an actual
value that can be partitioned into ID and Property values, Object-Types do not have actual
values and cannot provide these component values. However, the derivation of component
values within an instance is identical for all instances of the same Object-Type. Thus we
can represent these components at the Object-Type level, i.e. an Object-Type “has” ID and
Property components.

Fundamental relationship of ID and Property: ID determines Property.

Given two instances, x1 and x2: If ID(x1) = ID(x2), then Property(x1) = Property(x2).
ID(instance) returns the instance ID value
Property(instance) returns the instance property value
= is value-equality or bit-wise equality.

The advantage of using explicit ID specification is better control over the scope and extent
of object instances. In OO data models, a system-wide implicit (surrogate) object ID is
assumed to be present and unique. Instance identity is then based on the equality of this sur
rogate ID value. In the relational models, identity is based on the key-attribute equality,
therefore it does not have a system-wide uniqueness. In conceptual modelling, there are sit
uations where the objects should have system-wide uniqueness, but there are also situations
where they should not. In this model, we enforce an explicit ID specification, which allows
both situations to be modelled correctly.

75

6. EXTENSIBLE OBJECT DATA MODEL

6.3. Graphical Notation
We will also use a graphical form for Object-Types. When drawn in a schema, Object-Types are
shown as:

Object-Type

The rationale for a rectangular shape is uniformity. Using the principle of encapsulation, instances
of an Object-Type can be referenced uniformly without knowledge of its underlying definition,
thus all Object-Types have the same shape on the top. On the other hand, once we open up an
instance, then its internal structure, defined by the Object-Type, becomes visible. If the structure is
defined elsewhere, we find an alias or an implementation and if the structure is constructed, we find
the type of construction and its sources (see below). This forms a very simple but effective graph
ical notation for the Extensible Object Model schema.

6.4. Object-Types in a Schema
For the remainder of the discussion, upper case variables, such as A, B, and X, represent Object
Types and lower case variables, such as a, b, and x, represent object instances. Lowercase variables
can be extended with subscripts to label individual instances, for example: x1 and x2. However, this
labelling does not necessarily imply the instances are different. In fact, a single instance may be
given different labels, and only later, we may learn that they refer to the same instance. We will use
“=” to denote value equality between two labelled instances, and “H” if they are identical, i.e. the
same instance.

We resolve multiple occurrences of an Object-Type by separating Object-Type definitions from
declarations (or references). A schema can contain multiple declarations of an Object-Type, these
represent where the Object-Type information is used. However, a schema has only one definition
per Object-Type, which defines the information structure of the Object-Type. All Object-Types
with the same name in a schema will denote the same Object-Type information structure. This sep
aration enhances the model's ability to construct a schema in readable portions and promote proper
abstractions and encapsulations of Object-Types.

An Object-Type is defined under these three situations: implementation, alias, and construction.

A. Implementation
Abstract Objects are not very meaningful until we implement it with a well-known semantic. For
example, Object-Type Name can be implemented as a character string and Object-Type ID# as an

76

6. EXTENSIBLE OBJECT DATA MODEL

integer. Implemented Object-Types are shown as:

Examples Usage:
Object-Type

-

[Implementation] ID# Name Child
p [integer] [string] [Person]

The implementations of ID# and Name are shown inside the square brackets. A natural extension
to well-known implemented types is any other Object-Types defined in the schema. For example,
the Object-Type Child is an implementation of the Object-Type Person, which means a Child
instance is structurally the same as a Person instance. If an implemented type is supported by the
underlying DBMS, then it is considered as “primitive”. Examples of primitive types are integer,
string, date, and time.
B. Alias

Object-Types can be aliases, i.e. renamed from another Object Type:

Examples Usage:
Alias-Type

Manager P-DeptActual-T
(Actu ype) (Person) (Dept)

This allows more natural and semantically meaningful names. In this example, Manager is an alias
for an Object-Type Person, which is shown in parenthesis. This means a Manager instance is an
instance of Person, and if Person is defined elsewhere, then Manager is also defined. In addition to
the “structural” definition, alias also defines the collection where the instances are to be obtained,

i.e. the collection represented by the actual Object-Type.
C. Construction

The last type of definition is by construction. Here the Object-Type is on top of a small labelled
circle denoting the type of construction, with one or more incoming arrows.

Examples Usage:

Object-Type target: Person Committee
C e

Cons

SOUTCCS: ID# Name Person

The “C” is an abbreviation for “Composition”.

The Composition, Set, and three more will be discussed in Chapter 7. The direction of the arrow

77

6. EXTENSIBLE OBJECT DATA MODEL

denotes “information flow”, i.e. the information content of the source contributes to the informa

tion content of the target. Therefore, a target Object-Type is defined if its source Object-Types are
defined. If we combine the schema from the implementation example above, then Person would be
defined. Furthermore, Committee would also be defined. Otherwise, we have partial definition and
the current schema is considered incomplete.

6.5. Other Characteristics

The process of defining an Object-Type by implementation, alias, or constructors, fixes the seman
tic functions of interpretation and encoding. For the case of implementation and alias, ID and Prop
erty components are defined by the referenced Object-Type. If an implementation type is
“primitive”, then ID is set to the implementation value and Property is set to null. For constructors,
we will define ID and Property components individually.

The EOM forces the user to define a set of operators when an Object-Type is defined. By default,
a minimal, generic set of operators is provided with each constructor, however, the user is free to
define additional operators. Since we are dealing with information abstraction, the results of these
operations can be viewed as Property values of the instance. As long as the results behave as Prop
erty, it does not matter how the value is provided. Therefore, they can be explicitly stated in the
EOM schema by defining Property components that are “implemented” as procedures or queries.

r
■

r

78

7. CONSTRUCTORS

CHAPTER 7. CONSTRUCTORS

Constructors determine the structure of the information content in an Object-type, i.e. what infor
mation is included in an Object-Type and how it is organized. Under the symbolic viewpoint, a con
structor determines how to partition the block of bits into smaller blocks based on the defined
source Object-Types. We now describe five basic constructors to build complex Object-Types:

(1) Composition

(2) Set

(3) Sequence

(4) Inheritance

(5) Union
-

The constructors are similar to the generics of Object-Oriented programming. They are indepen
dent of the source Object-Types, yet all Object-Types, derived from the same constructor, organize
information in a similar manner. These constructors have been explored in previous semantic data
models. The most traditional constructor is Composition, which is identical to cross product and
tuple construction. Set and Sequence constructors are new to relational and ER modelling, but well
developed in Object-Oriented models and NFNF relational extensions. Inheritance and Union have
been explored in many semantic models. However, we are going to bring them together in a con
sistent manner.

The general form of a constructor is diagrammed as follows:

Constructed
Object-Type

ID Arcs Property Arcs

Source A Source B Source C Source D

The name of the constructor is defined in the circle under the constructed Object-Type. It receives
one or more incoming ID arcs (thick) and zero or more incoming Property arcs (thin). Each of the
arcs originates from another Object-Type. The constructed Object-Type is named the “target” and
the sources for the constructor is named the “component” or “source”. We will use the “.” (dot)
notation to reference a source of a construction, e.g. “X.A.”, and “[...]” (vector or tuple) notation to
reference a set of sources, e.g. “[A, B J’.

79

7. CONSTRUCTORS

7.1. Composition
The paradigm of abstract information storage allows us to construct an Object-Type from a com
position of other Object-Types. This is similar to a C*struct” or Pascal “record” implemented as a
contiguous block of memory storage. This constructor is similar to the tuple structure in the rela
tional model. We denote a Composition as follows:

Property Arcs

A B C D

The links will determine explicitly which source Object-Types will make up the ID component and
which will make the Property component. The fundamental relationship of ID determining Prop
erty would then be enforced. In ER and relational terminology, ID defines the key attributes and
Property defines the non-key attributes. Since we are not forced into a two-level construct (“tuple
and field” or “entity and attribute”), the “key concept” is applied to the component Object-Types,
not specialized “attributes”.

The default operators furnished by a Composition constructor is source reference and equality. This
can be applied to both types and instances. In the diagrammed example, X.A is the Object-Type A
in X,x.a is the instance value of A in the instance x, and [X.C., X.D) is the Property portion of X,
while [x.c., x.d.] is the property value of instance x. ID(X) is defined as [ID(X.A), ID(X.B.)).
It is understood that when we apply ID() and Property() to Object-Type, we imply instance appli
cation. Therefore, two instances of X, x1 and x2, are equaliff ID(x1.a) = ID(x2.a) and ID(x1.b)
= ID(x2.b).
7.1.1. Examples of Composition

Here is an example to the Employee/Department problem. We define Person as:
Comments:

Person (1) A Person is defined as a Composition
C of ID#, Name, and Age.

_2^ (2) ID(Person) = [ID(ID#))(3) Property(Person) = [Name, Age |
ID# Name Age

* * *

80

7. CONSTRUCTORS

Dept as:

Dept Comments:
C (1) A Dept is defined as a Composition of

Name, Floor, and Manager.2^ (2) ID(Dept.) = [ID(Name) |
Name Floor Manager (3) Property(Dep)- [Floor, Manager |

(Person) (4) Manager is an alias for a Person.

and Works-In as:

Works-In Comments:

(1) Works-In is defined as a Relationship
(Composition) of Employee, Dept,
Salary and %Time.

º: g.Time T. (2) ID(Works-In) = [ID(Employee),
(Person) ID(Dept.))

Dept Salary (3) Property(Works-In) = [Salary,

In Section 7.8.2, we will show that ID equality is the same as instance equality. Therefore, ID(
Works-In) can be defined as [Employee, Dept J. For now either form is sufficient.
The current state of the EOM schema is:

Defined: Abstract:
Comments:

Person ID# Floor (1) The abstract Object-Types can be
Dept Name %Time implemented as primitive types or be

defined as a construction.

Works-In Age Salary

As the schema evolve, we may wish to define Person.Name. We can give Name a new definition,
so the previous schema is not affected:

Comments:
Name

C (1) Name is defined as a Composition of First_N,
Middle_N, and Last_N.

(2) ID(Name) = [First_N , Middle_N, Last_N)
First_N Middle_N Last_N (3) Property(Name) = [], i.e. none

However, this would change Dept.Name as an unexpected side-effect. The solution is to rename
the new definition “P_Name” and implement Person.Name as P_Name. Then Dept.Name is left

º|

81

7. CONSTRUCTORS

unaffected. An alternative is to attach the new definition directly below an existing one:
Comments:

P
CTSOIn (1) Person.Name is now defined as a

C Composition of First_N, Middle_N,
and Last_N.

(2) Since access to Person.Name is still

ID# Name Age through Person, this ensures
C Person.Name behaves properly and

Dept.Name is unaffected.

First_N Middle_N Last_N

This schema requires local Object-Type definition. If permitted, then future uses of Object-Type
“Name” will be ambiguous, i.e. it could be Person.Name or Dept.Name. Thus, for reason of sim
plicity, we disallow “context-dependent” Object-Type definition for the core EOM, see Section
7.5.2 for more discussion and Section 9.5 for extension.

7.1.2. Composition and Relationships

The Composition constructor can also be used to model relationships. Some would argue that a dif
ferent constructor should be used, e.g. “R” for relationship, so that the real world relationships,
such as Works-In, can be distinguished from the real world compositions. Since the operational
definition of the new constructor, Relationship, is the same as a Composition, we choose to use one
constructor to model two real world semantics. On the other hand, there is an advantage of using
the Relationship constructor to clarify the interpretation of schemata. Therefore, we shall allow the
use of the Relationship constructor as an alias for Composition.

Since we unified both Composition and Relationship, it opens the problem of the semantic meaning
of the ID and Property arcs. Our formal definition of the relationship between the target and the
source is information containment. The most obvious interpretation for this definition is “has” or
“part-of”. However, other interpretations are permitted provided the containment semantics are not
violated. For example, in a typical E-R schema, a Person “has” a ID#, Name and Age. On the other
hand, a Dept “has” a Name and Manager, but “is on” a Floor. The alternative is to construct a
“IsCn” Object-Type as a relationship that has Dept and Floor as components and a “Manages”

º
º
--º
-

.
. º

82

7. CONSTRUCTORS

Object-Types as a relationship that has Dept and Person components:

ISOn

C

Dept

C
-

Dept Floor
VS.

Manages

Name Floor Manager C
(Person)

Dept Manager

The choice depends on the user's perception of attributes vs. relationships. If expressed as a rela
tionship, then we expect the Objects “IsCn” or “Manages” to have additional Properties. If
expressed as a component of Dept, then there should not be additional components to the real world
relationship between Dept and Floor or Dept and Manager. Therefore, as long as the source infor
mation is properly contained within the target information, the arc between them can take on other
meanings without conflicts.

º -

|
-

83

7. CONSTRUCTORS

7.2. Set

A SET constructor builds an Object-Type of instances that are “sets of instances”. We diagram a
Set constructor as follows:

Set of X

Set

X Size

We do not support heterogeneous sets, so only one ID arc is permitted for the Set constructor. The
source Object-Type supplies the elements to the instances of the Set-constructed Object-Type. If
Set X (Set of X) is such a construct, then an instance in Set_X is a particular set of X's. For exam
ple, let the set of source instances X = {x1, x2, x3}. Let Set of X, named “Set X”, be the Set-con
structed Object-Type from Object-Type X, then instances of Set_X are sets of x's. And the set of
instances of Set_X can be as large as the power set of X:

PowerSet X = {{ }, {x1 }, {x2), (x3 }, {x1, x2), (x1, x3), (x2, x3 }, {x1, x2, x3 }}
Since we are only interested in the actual elements in a database, Set_X would be a subset of Pow
erSet X. If we want to retain the ID() and Property() operators, then we need to define ID() over
the instances of Set X such that it distinguishes instances of Set_X from each other. The simplest
approach is to define ID(s), where s is an element of Set X, as the set of ID components over x's
in s:

ID(s) = { ID(x) || where x e s]

Then equality of ID() is simply set equality. When coupled with the fact that ID() of an instance of
Set is value dependent on the source instances, the source arc for the Set constructor is like an ID
arc and is given the same form.

As an Object-Type, a Set constructor provides a set of operators. The standard ones we associate
23 & 4with sets are “member-of”, “subset”, and “union”, “intersection”, and “equal”.

7.2.1. Usage

The Set constructor provides us a way to resolve the relational multi-value dependency (MVD)
[22,64]. When a MVD appears in a relational database, it is usually the result of modelling sets in
strict relational form. However, the concept of the “set” is far more intuitive than MVD, the form
described using relational algebra. The solution from the relational model would be a second rela

7. CONSTRUCTORS

tion to carry the set information. However, at the conceptual level, we only need to know that a set
is operated upon as a unit, not as individual instances. This is equivalent to the NFNF models where
the basic relational semantics have been extended with a set (or more correctly, relational) attribute.

Here is an example usage of the Set constructor:
-

Comments:
Committee

(1) Committee is composed of a Name, a
C Set_of_Persons, and a Budget.

(2) Size is a property of the Object-Type
Set_of_Persons.

(3) Budge is a property of Committee.tof
Name #: Budget

e

Person Size

7.2.2. Set Instance Naming

The pragmatist would argue that identifying a set instance by its contents is not very efficient nor
intuitive. He would ask for a “name” to be associated with each set instance. If we do this for the

previous example, then the Committee Object-Type becomes a Composition and the Set construc
tor becomes a Set arc:

Committee
wº- Set Arc

Name Person Size Budget

Consequently, this removes the construction of a distinct Set Object-Type. Unfortunately, this is
not true for all situations, i.e. there are occasions where “anonymous” sets are used or where prop
erties of the Set Object-Type are distinct from the named component.

7.2.3. Type Naming and Object Property

What is the appropriate name for the Set constructed Object-Type? If we named it “Committee”,
then we expect it to have some properties associated with its function or characteristics, e.g. Bud
get. If we named it “Set of Persons”, then it would only have properties associated with generic

85

7. CONSTRUCTORS

sets, e.g. size. In the process of modelling, the user attaches a name that carries real-world meaning s

to a type, i.e. the type name is always associated with the two semantic mapping functions. The
problem now becomes a question of whether a set instance has distinct Property components. Nat
urally, size is a property of a Set instance. However, a more interesting question is whether there
exist non-computable property as a result of real world semantics? For example, Budget in the pre- C
vious example could be a candidate for non-computable Set property. If such property information tº

exists, does it belong to the context of the set or does it belong to the set itself? To resolve this ques- A

tion, one would need to determine the “epiphenomenon” of a construct, i.e. what is the difference H
between the whole and the sum of parts? Using our previous example, Budget is a property of the
Committee, but we can also view Budget as an epiphenomenon of the Set of Persons. There are
two answers to the question of where Budget belongs.

To a “constructivist”, simple constructs, e.g. sets and sequences, has little or no epiphenomenon.
Therefore, he would argue that we would assign little or no non-computable property values: a Set
of Persons has the characteristics of generic sets and no more. However, when an “intuitionist” sees º
us using sets to model the real world, he would say we are coercing complex real world relation- -

*

ships into such simple constructs that we will lose “epiphenomenon” information unless we allow
-

explicit capture. He would also caution us that even if the property component of a Set Object-Type
is computable, it may not be feasible nor accurate given our current state of knowledge. The two <

**

approaches are diagrammed as follows:

Committee Named
-

Committee (
C C

-

º

A

Set of -
Name Persons Budget Name Committe

e e .

R.

Person Size Person Size Budget A.

Constructivist’s Answer Intuitionist's Answer 7

Which answer is correct? The solution is based on the name given to the Set-constructed Object
Type. As discussed earlier, a name given to an Object-Type conveys a semantic concept and pro-

*

vides the interpretation and encoding functions. Therefore, the intuitionist's model has to rename *

86 (

7. CONSTRUCTORS

Committee to Named_Committee and Set of Persons to Committee. As it turns out, these two sche

mata model different real world situations. In the constructivist's case, the budget is not a property
of the Set of Persons. Instead, it is the context of the Set of Persons which determines the budget.
Conceptually, this budget is not a property of a Set of Person as much as being “associated” with
a Set of Person, similar to the way two entities relate through a relationship in the ER model. In the
intuitionist's case, the budget is determined by the number of persons in the Committee instance.
The result is a budget which is an epiphenomenon of a Set of Persons, i.e. it is dependent on the
number of instance members. This situation exists if Budget is not determined by the context of the
committee. The correct model, therefore, depends on the real world and each schema has its own
semantic interpretation.

-

N

*-

87

7. CONSTRUCTORS -

7.3. Sequence
As described in Section 4.1, our framework for sequences is based on mathematical functions, i.e.
for each position in a sequence, there is one and only one content value. There are several

-

approaches to building sequences of this type. º
7.3.1. Set Approach

The simplest approach is to compose the position and content Object-Types together and build a A.

Set of them:
-

Set of Comments: º
Pos-ContVal (1) Position-ContentValue is a composition.

For a given Position, there is only one
ContentValue. Thus ContentValue can be

viewed as Property.

Position- Set (2) Set Property is dependent on the Set º
ContentValue | Property constructor, e.g. size. | -

Position ContentValue

Set of Position-ContentValue is ordered, based on the value of Position. Unfortunately, this schema
only provides the functions and operators associated with a Set and the semantics associated with .

a sequence would be lost. Therefore, we would not be able to perform sequence operations on this *

COnStruct.
-

7.3.2. Sequence Constructor
Another approach is to develop a position or “ordering” arc that can emanate from any component
of the ID component of the sequence. This allows sequences ordered from any component of the
Sequence-source Object-Type.

88 i

7. CONSTRUCTORS

The following example demonstrate this approach:
Comments:

Protein
(1) Enzymatic Activity properly belongs as

a property of Protein. The intrinsic
SS enzymatic activity is always dependent

sº on the sequence of amino acids. Thus
S for any given sequence, the activity will

> Positioned| |Enzymatic be the same for any other matching
AA Activity sequence.
C (2) AminoAcid is our sequence base type

and is promoted to an ID component.
(3) A special “ordering” arc goes from the

Position Object-Type to the Sequence

Position AminoAcid COnStructor.

As a new Object-Type, the Sequence constructor provides new operators. These include “length”,
“concat”, “cut”, etc., as described in Section 2.6. Since all Object-Types support ID(), we need to
construct a sufficiently distinct value for ID function. In the protein example, a given protein
Sequence, pr, has

ID(pr)= < ID(pr. 1st positioned AA), ID(pr:2nd positionedAA), ... P.

Reminder: <...× denotes a sequence,
{...} for sets, and
[...] for tuples or compositions.

Since the ID of Positioned AA is [ID(Position), ID(AminoAcid)], we have

= < ID(pr.pal), ID(pr.pa2), ... P.

= < [ID(pr.pa 1.p.), ID(pr.pal.aa) 1, [ID(pr.pa2.p.), ID(prºpaz.aa)], ... →
where pan is nth Position-AA instance,

p stands for Position instance, and
aa stands for AminoAcid instance.

This is sufficient to distinguished instances of protein based on the amino acid sequence. If we did
not promote AminoAcid to an ID, then:

ID(pr.)= < [ID(pr.pal) 1, [ID(pr.pa2)], ... P
= < [ID(pr.pa 1-p)), [ID(pr.pa 2.p.)) , ... P.
= < 1 , 2, 3, ... P

which would not be unique enough to distinguish protein instances apart. The ordering arc permits
the user to order a sequence based on an arbitrary, but well-defined, component. In order to support

º

89

7. CONSTRUCTORS

the sequence model developed in Part I, the necessary conditions for Position Object-Type are
uniqueness and complete order when viewed as a set.

7.3.3. Alternative Sequence Constructor

The use of a Position-ContentValue composition Object-Type as the source of a Sequence con
structor seems to be redundant. We could include its assumed existence in the Sequence constructor
directly:

Protein
- -uuuuuuuuuuuli. Position Arc

sº -> ContentValue Arc
Sº

sº
sº

Position AminoAcid Size Activity

This raises the problem of attaching Property component to the Position-ContentValue Object
Type as a result of Composition. The Property components at the level of the Sequence constructor
does not apply to the intermediate level Composition. In certain domains, the intermediate Property
information is important. For example, annotations are usually attached to this intermediate com
position. Therefore, our explicit representation is a necessary construct.

7.3.4. Semantic Sequences

The Sequence constructor, as it stands, can model abstract order and simple sequences. In order to
model abstract semantic sequences, the positional characteristics of Metric, Granularity and Ato
micity (see Section 2.2) need to be added as generic components. There are three approaches.
In the first approach, we add a “semantic sequence” constructor. Typically, the positional charac
teristics of Metric, Granularity, and Atomicity are invariant within a sequence, i.e. all the position
Values of a given sequence have the same Metric, Granularity, and Atomicity value. Therefore,
despite the fact that these characteristics are positional, they should be a component of the Seman
tic Sequence Object-Type, not a component of the Position Object-Type. Since these characteris
tics are semantically distinct, they should be distinguishable from each other by arc type, not by
Object-Type name.

2.
º
*-

i.

º

90

7. CONSTRUCTORS
-

The following is an example of the graphical representation: Sº
º

Semantic
- -

Sequence
--

º
*-

w º
sº

sº A
º Position

ContentValu

Position ContentValue

Consequently, there are now five arc types: Order, Sequence-Source, Metric, Granularity, and Ato-
-

micity. All the arcs are like ID arcs in their thickness because each component participates as an *

ID component. For example, two Semantic Sequence instances, which only differs in Metric value,
-

should be considered different. Similar arguments hold for Granularity and Atomicity. However,

when we have two Semantic Sequence instances that can be changed to matching values through º

Metric or Granularity conversions, then the sequences are considered to be “equal”. This implies
--

“equality” for Semantic Sequence constructor is no longer a simple value-by-value comparator.
-

The drawback to this approach is the number of arc types. Each new arc type needs to be evaluated (
with respect to the arc source Object-Type. For example, the Order arc requires an Object-Type
whose values are completely ordered, Metric requires a semantic label, Granularity and Atomicity
requires rational values. Therefore, the Position Object-Type cannot be arbitrary as seen in Com
position or Set-Source. This limits the generality of the arcs.

-

The second approach is the other extreme where the positional characteristics are encoded into the
Sequence Object-Type name, e.g. “SequenceName M_G_A” where M, G, and A stand for Metric,
Granularity, and Atomicity domain names. In this case, positional characteristics are not modelled
as independent Object-Types, but as domain-specific semantic information. For example, for a *

Sequence of markers with kilobase Metric, 0.1 Granularity, and 0.001 Atomicity, the name would A.

be “NMarkerSequence_kb_10th 1000th”. In this case, all instances of a Sequence Object-Type 7
would have the same positional characteristics. Under some situations this is desirable, but it would
be liniting for the management of interconvertable sequences with different positional character
istics

The third approach is based on the first, but uses a Composition constructor to “implement” a

91 (

7. CONSTRUCTORS

semantic sequence. The positional characteristics are implemented as a set of ID components for
the semantic sequence. This retains the simplicity of the Sequence constructor and satisfies the
requirements of the abstract semantic sequence model. However, like the first approach, it requires
a new definition for “equality” for the semantic sequence. The following is a representation of
Semantic Sequence using the Composition and Sequence constructors:

Semantic
Sequence

C

Simple
- - - -sºe Metric | Granularity Atomicity

§ Comments:
S

sº (1) Metric, Granularity, and Atomicity are Semantic
sº Sequence components.

2 Position- (2) Simple Sequence remains the same as before.
% ContentValue

%
% C

%
%

%

Position ContentValue

The association of Object-Type name to positional characteristics becomes domain specific and
user defined, not mediated by distinct arcs. This is compatible with the EOM definition for Object
Type naming, i.e. it is the user to defines the semantic mapping (see Section 6.1). We will choose
the third approach has the basis for semantic sequences.

~

92

7. CONSTRUCTORS

7.4. IS-A Construction

So far we have only described how instances from one Object-Type associate with instances from
another Object-Type. For example, a target instance is associated with source instances in the Com
position constructor, or with a set of instances in the Set constructor. Object-Types define the col
lections and an instance can only come from a single collection. However, in the real world we also
can have an instance which came from two collections, i.e. it is from the intersection of two. This

is the concept behind “IS-A hierarchy”. The cardinal statement of IS-A characterization is:
An instance of A is an instance of B.

Let the following diagram denote a IS-A relationship between A and B:

B set of B instances

IS-A

set of A instances

Comments:

(1) The direction of arrow defines the “IS-A”.

(2) Set A is a “subset” of B, or

(3) An instance of set A “belongs” to both sets A and B.

There are several possible mechanisms that satisfy the definition of a natural language IS-A: inher
itance, subset, and union. We will discuss these in order.

º

93

7. CONSTRUCTORS

7.5. Inheritance

Inheritance is a form of “IS-A” relationship. This constructor is diagrammed as follows:

X

Property Arcs

A B C D

In the EOM, we define it as strict subtyping hierarchy, i.e. every instance of X has all the informa
tion of some instance A or some instance B (or both). In the Object-Oriented terminology, A is the
supertype and X is the subtype. Since operations are based on the information content, all opera
tions defined on A can be applied to instances of X. When given an instance of X and if we
“reduce” it into an instance of A, then only the information and operations as an instance of A
should be available. Likewise for B. Therefore, the “navigational” step we take from X to A would
limit the amount of information we can work with. An analogy in the relational model is the “pro
jection” of X onto A. In other semantic models, this is considered as “specialization”: the subtype
is a specialization of the supertype.

We reverse the direction of IS-A arc: the supertype is the source and the subtype is the target. The
reason for this reversal is information content. Our constructors follows the general principle that
the constructed type has more “information” than its sources. Therefore, a subtype, under inherit
ance, has more information than the supertype. As a result, the arrow is directed toward the sub
type.

N

;

94

7. CONSTRUCTORS

An example using the inheritance constructor is diagrammed as follows:
Comments:

Student Engineer

I I
(1) An instance of Student or Engineer “is an”

instance of Person. The Person Object
Type is the “supertype”. Student and
Engineer Object-Types are “subtypes”.

(2) Property of Student and Engineer is
different.

(3) Property of Person is common to Student
C and Engineer.

GPA Person Salary

(4) In this example, we permit the situation
where an instance of Person is common to

both Student and Engineer. For example,
persons in a Co-op student program.ID# Name Age

The arc from the supertype to the Inheritance constructor is thick because the identity of the sub
type instance is determined by the supertype instance, i.e. ID is dependent on that arc. The inher
itance constructor can be viewed as a short hand notation for an otherwise flat schema. The

transformation between the schemata is a simple reattachment of supertype components to the sub
type Object-Type. The above schema is equivalent to:

Student Engineer

C

TD. Name Age GPA Name Age Salary

Although the transformation of schema with inheritance constructors to one without is simple and
straightforward, inheritance is a very useful abstraction tool to be retained. For example, it permits
the existence of persons who have not been assigned to students nor engineers. In addition, the con
cept of a Person Object-Type and the operations on a Person Object-Type is now collected and
independent of both subtypes. In programming languages, inheritance improves cohesion [59].
Similar improvements between data objects can be obtained in database modelling. Therefore,
despite the technical simplicity of “de-inheritance” transform, it is a useful tool of conceptual mod
elling. However, several issues remain to be resolved.

95

7. CONSTRUCTORS º
7.5.1. Composition vs. Inheritance

What is the operational difference between inheritance and composition? Inheritance “percolate”
both ID and Property components, as defined by the transformation of the schema, so the compo
nents of the supertype is fully visible as components of the subtype. If the inheritance constructor
is replaced by a Composition constructor, then Property() of the subtype would not retrieve the
Property() of the supertype. If we used a Composition in our example, Property(Engineer) would
return Salary and ID(Engineer) would return ID(Person), or ID#. Name and Age would have to
be retrieved by Property(Engineer.Person). Using Inheritance, Property(Engineer) would return
Name, Age, and Salary, as expected from the flat schema and the semantics of the real world.

There are other semantic differences between composition and inheritance. An instance from a
Composition is “associated” with instances from its sources. On the other hand, an instance from
an Inheritance “is” the same instance from the ID sources of inheritance. “Association” imply dif
ferent instances, therefore, one instance can change without affecting the other one. “IS-A” implies
the same instance, which means changes to one will affect the other. For example, changing the
Age of an Engineer instance would affect the Age value of the source Person instance and will also
affect the Age value of any inherited Student instance of that person.
7.5.2. Overloading

The perceived strength of inheritance is derived from the concept of overloading. This is a result
of the natural language deficiency for real world semantics, i.e. multiple meanings are mapped to
the same linguistic token. In the process of modelling, there is a tendency to maintain this over
loaded mapping and to use context information (a la natural language) to resolve the ambiguity. In
general, there are two types of overloading. Consider the following schema:

Engineer

I

Person Status

C

ID# Status Age

The first type is definition overloading. If we permit context-dependent Object-Type definition,
then Engineer.Status can contain different information content than Person.Status. However, in the

º

º

º

96

7. CONSTRUCTORS

core model, an Object-Type's name determines the semantic mapping between real world concepts
and symbolic values. Therefore, Object-Types with the same name must have the same mapping.
If Person.Status was meant to be marital and Engineer.Status was meant to be professional, then
the two Status Object-Types should be named differently. Therefore, definition overloading is not
permitted in the core model.

The second type of overloading is value overloading. Here, Engineer.Status and Person.Status has
the same Object-Type definition, but different values. The “de-inherited” schema remains the
same, i.e. Engineer is still a composition of ID#, Status, and Age. However, the retrieval of com
ponent instances is changed to reflect overloading. For example, we can use direct source priority
to determine which overloaded value to use. In the lookup for Engineer.Status, if Status is declared
as a source directly under Engineer, it will be the one used. Otherwise, a search is made for Status
in the supertype Person. In the lookup for Person.Status, only the sources of Person is scanned.
Thus it would not return the Status value under subtype Engineer.

7.5.3. Overloading and Consistency

Value overloading creates another problem of its own: consistency. If we adopt the value resolution
algorithm as described above, then there exists the potential that an Engineer's instance status is
different from his status as a Person. This would be a violation of the consistency in the real world.
If an instance of Person is also an instance of Engineer, then the two instances are “identical”. Con
sequently, their Status values should also be the same. Therefore, if Status was meant to be marital,
then a Person instance and the corresponding Engineer instance should have the same value.

If we consider the fact that overloading is a linguistic limitation and not a modelling limitation, it
places doubts on the worth of value overloading. After all, if a value is to be overloaded, then that
value could be easily made a part the supertype instance value in the first place. Under this analysis,
value overloading is superfluous and dangerous, therefore it is not supported in the core model.

7.5.4. Multiple Inheritance

Multiple inheritance is an extension to permit 1-to-many “IS-A” relationship between a subtype
instance and supertype instances. However, a “competition” overloading presents an additional
problem for the redeclared Object-Types in the supertypes.

* :
*

97

7. CONSTRUCTORS

ID# Weight

This problem can be demonstrated in the following example: sº
º

Amphibious -W. –
I 2. '

: "Al

Land Water *

Vehicle Vehicle –
C C

ID# Weight

#Wheels Displacement

Amphibious Vehicle inherits from LandVehicle and WaterVehicle and the Property of AmphVehi
cle includes #Wheels and Displacement. However, from which supertype shall it inherit Weight?
If the Weight instance value is the same, then there is no problem. On the other hand, if they are
different, then there is no a priori mechanism to resolve the ambiguity. A similar, but more serious
problem also exist for ID#.

Since we excluded context dependent Object-Type definition, i.e. no definitional overloading, then –
the resolution is simple, since all same-name Object-Types refer to the same content. Then Land- C
Vehicle.ID# and WaterVehicle.ID# are the same Object-Type definition. Similarly, both Weights * * *

are the same. The resultant “de-inherited” schema for Amphibious Vehicle would look like: º
AmphVehicle –

C sº
º

-

s ;
ID# Weight || #Wheels |Displacement

A

Since we disallowed value overloading, i.e. values must be consistent, then it does not matter 7.
which ID# and Weight values will be associated with the instances of Amphibious Vehicle. Presum
ably, in a consistent database, LandVehicle.ID# and WaterVehicle.ID# (and Weight) will have the

-

Same value for the instances which are also Amphibious. This becomes an integrity constraint on º

the components of Inheritance constructors to maintain value consistency. º,

98 (

7. CONSTRUCTORS

7.6. Subset

Subset is the separation of instances based on some predicate over the value of the instances. For
example, Person is the superset to Young Person and Old_Person subsets:

Comments:
Young
Person Old Perso (1) An instance of YoungPerson or

Ul Ul OldPerson “is an” instance of Person.
Person is the “superset”. YoungPerson
and OldPerson are “subsets”.

Person (2) Properties of YoungPerson and OldPerson
are the same as Person.

(3) In this example, a Person cannot be both> Young and Old. However, in otherexamples, the subsets could be
ID# Name Age overlapping.

Strict Subset cannot have additional components. So the Subset constructor has only one incoming
ID arc and no Property arcs. The direction of the arc in a Subset constructor goes from the superset
to the subset, because a subset instance contains the information content of its superset instance
plus the information encoded by the subset predicate. Therefore, a subset instance “holds” more
information than the superset instance.
7.6.1. Subset and Inheritance

Subset can be viewed as Inheritance, although the distinction between inheritance and subset is the
presence of the predicate. If the model permits arbitrary predicates to be supplied, then the result
is the indeterminacy of a Turing machine. This would argue for moving the predicate out of the
definition of the EOM and, instead, use a “hook” for an outside agent in the application domain to
perform the semantic decision. Similarly, the real world decision that determines the correspon
dence between a supertype instance and a subtype instance in an inheritance schema is also outside
the definition of the conceptual model. For example, the process that decides whether a person is
a student or an engineer is not modelled, but rather, the decision is accepted and reflected in the
state of the database. If so, then inheritance and subset can be represented by the same constructor
in our model. Furthermore, Subset can be viewed as a special case of Inheritance where no new
source components are added. This “overloaded” use of a constructor for both Inheritance and Sub
set is similar to the use of Composition constructor for both ER relationships and attribute charac
terization.

|
z.º

º
º

1.

–

99

7. CONSTRUCTORS

7.7. Union

The third type of “IS-A” is the Union constructor:

This is equivalent to the “generalization” concept in other semantic data models: an instance of
XUY is an instance of X or an instance of Y. A Union instance must also contains the information

that determines which source Object-Type it is derived from. As a result, it contains “more” infor
mation than the sum of its sources, and the arc points toward the Union Object-Type. Naturally, the
ID arc determines the possible sources for the Union. Property arc is for any new information avail
able as a Union Object-Type. Our usage of “Union” is based on the “union”-type of programming
languages. The Union constructor provides dynamic binding, which allows an instance reference
to be defined by the dynamic state of the database system and not by the static definition of a
schema.

7.7.1. Example

XUY

nio

X Y

An example of the Union constructor is:

Publicatio

Property

Publisher

Date Date

Conference Session

Date

100

7. CONSTRUCTORS

Comments:

(1) An instance of Publication “is an” instance of Article, Book, or (Conference) Paper.

(2) Not shown are the Property components of Article, Book, and Paper.

(3) There is no a priori common information expected of Article, Book, or Paper. In this par
ticular schema, Date happens to be common.

7.7.2. Union and Inheritance

Some would argue that a Union schema can be viewed as an Inheritance schema upside down. In
our example, Publication would be the supertype, providing the source Object-Type to subtypes
Article, Book, and Paper. If this is the only difference between Union and Inheritance, then Union,
as a distinct constructor, should be dropped from the model and its semantics replaced with the
Inheritance constructor. However, a union instance retains the full information content of the

source type, while the inheritance supertype only has the “reduced” information content. This dif
ference in information content determines what kind of operations are permitted on a Union
instance.

A second argument to eliminate Union constructor is its similarity in form to multiple inheritance.
However, a union instance does not inherit the information content of its source instances nor is it

subject to the integrity constraint of consistent values that a multiply inherited instance in under.
Therefore, the semantics of multiple inheritance is not the correct interpretation of the union con
StructOr.

7.7.3. Union and Superset

The concept of Union is distinct from Superset because Union allows heterogeneity of information
content between source and target while strict Superset does not. In fact, strict Superset is a special
case of Union, where all the sources are homogeneously defined. If this is the case, then all the
source Object-Types are aliases of a core Object-Type.
7.7.4. Considerations of IS-A

There are two uses of IS-A constructors. First objective is the simplification by removing redun
dant information in a schema. Common themes can be grouped together into a “supertype”, and
only the specifics need definition in the subtypes. Second objective is the graceful evolution of the
Schema: new extensions and groupings can be added without redesigning the old schema. This pre
Serves the validity of previous queries and reduces the software maintenance of database applica
tions. The second objective also forces the separation of Inheritance (“specialization”) constructor
from Union (“generalization”) constructor. A data model can propose only one constructor for
both, but in doing so, the ability to gracefully evolve a schema is lost. Using the Publication exam
ple, if we first define Article and Book as subtypes of Publication in the schema, then when we add

101

7. CONSTRUCTORS

Paper, the sources for Publication could be shuffled. Thus any queries defined for Publication
before the addition of Paper is now inconsistent with the new schema. However, with a Union con
structor, queries for Publication can remain independent of its sources.

X

a.

102

7. CONSTRUCTORS

7.8. General Characteristics

7.8.1. Information Content of Instances

We defined ID and Property components to an Object-Type, hence, also to any instances belonging
to that Object-Type, but is the total information content of an instance the same as the sum of the
ID components and the Property components? As it turns out, the definitions of ID, as functions
for Composition, Set and Sequence constructors, do not return all the information of the ID com
ponents. For example:

Name

Manages

Floor Budget

Employee
-

ID# Name Salary

ID(Manages)

Therefore, ID(Manages) + Property(Manages) # Manages. This difference raises the question of
whether to “enlarge” the definition of ID() to include the property component of an ID source, i.e.
let ID(Manages) = [Dept, Employee J. Since we can reference the information content of the ID
components by tuple notation, i.e. “[...]” and the equality determination is not dependent on the

= [ID(Dept.), ID(Employee))
= [ID(Dept.Name), ID(Employee.ID#))
* [Dept., Employee)

Property(Manages) = [Years)

Property value (see following section), we will not support this proposal.
7.8.2. Extension to the Fundamental Relationship
For any constructor, in addition to the fundamental relationship of ID and Property, we can also
State:

If ID(x1) = ID(x2), then x1 = x2, i.e. bit equality over all the bits.
Proof:

1. For every ID component A, of X:
ID(x1) = ID(x2) → ID(x1.a) = ID(x2.a)

→ Property(x1.a) = Property(x2.a),

º

103

7. CONSTRUCTORS

2. if A is primitive, then x1.a = x2.a.

3. if A is constructed, then we recursively traverse the construction tree, until primitive
Object-Types are reached. Technically, this is done via induction from the primitive to
the complex.

4. For every Property component C of X:
ID(x1) = ID(x2) → x1.c = x2.c,
by the original definition of fundamental relationship.

5. Therefore we have x1 = x2.

This is much stronger than the fundamental “ID determines Property” rule, because it asserts equal
ity over all the component values of two instances. In addition, this removes the “enlargement” of
ID() proposed in the previous section and keeps the “computation” of ID() down to a minimal.

7.8.3. Recursive Application of Constructors

Object-Types can be defined only once, but they can be declared or referenced multiply. What
would happen if an Object-Type is encountered multiply within its definition:

Person

C

Set of Manager
SS■■ Dependents Name (Person)

e

Person Size

In this definition of Person, we encounter Manager, which is another Person and a Set of Depen
dents, which are made of Persons. In the Manager path, there is a potential conflict if a person is
his/her own manager. In the Dependent path, there is usually no conflict, since a person is never
his/her own dependent (except for tax purposes). The conflict becomes apparent when recursive
access is attempted. For example, to answer the question: “find all managers of X”, one usually
apply recursive access. If an instance is re-encountered in the access, some heuristic must be
applied to prevent infinite regress. For example, if a Person instance X has a manager who is him
Self- then the search must be terminated. These problems have been addressed in the recursive

7. CONSTRUCTORS

query processing research and will not be reiterated here.

A deeper problem exists for the Extensible Object Model if recursion occur along the ID path. We
analyze this problem in two parts, first with IS-A constructors and second with conventional con
StructOTS.

A. IS-A Constructors Must be ID Acyclic
Any IS-A constructor cycle along the ID path is invalid. This is because an instance constructed by
an IS-A constructor is the same instance of its source. An example of cyclic ID path can be dem
onstrated by the Inheritance constructor.

For example:

subtype
X Y

I I

Y wrºte

We have:

ID(subtype x) = ID(y) and ID(y) = ID(supertype x),

but since the x instances for both sub- and super-types are identical, we also have:

supertype x = subtype X.

Therefore, it bring us back to the beginning. Consequently, the ID value of an X instance cannot
be found in this cycle. Therefore, X does not have a definable ID. A similar argument can be made
for a cycle of pure Union constructors and a cycle of mixed Inheritance/Union (any IS-A) construc
torS.

B. Conventional Constructors Must be ID Acyclic
This situation is more subtle. An Object-Type has one or more ID source components, which in
turn, have their own. If one of its descendent ID Types eventually refer back to the initial Object

105

7. CONSTRUCTORS

Type, we would encounter a similar problem to the IS-A example:

X Y

C C

Y X

We have:

ID(xi) = ID(yi) and ID(yi) = ID(xj).
If xi = Xj, have the same situation as in IS-A.

If xi # xj, we still need to define Xj:

ID(xj) = ID(yi) and ID(yi) = ID(xk), ad infinitum.
Consequently, the ID value of an X instance cannot be fully defined due to infinite regress. There
fore, X is not “ID definable”. The end result is that Object-Types along ID arcs cannot form cycles,
independent of constructor usage. On the other hand, cycles in Property arcs are permitted, but only
if some form of termination heuristic is provided.

º

º

º
º

106

8. CONTEXT DEPENDENCY

CHAPTER 8. CONTEXT DEPENDENCY

In Chapter 6 and Chapter 7, we have defined the following:

(1) the concept of an abstract Object-Type.

(2) the concept of an Instance.

(3) the representation of a collection of instances by an Object-Type.

(4) the concept of ID and Property values with respect to the abstract Object-Type and the fun
damental rule that “ID determines Property”.

(5) the concept of constructors, from which we construct new Object-Types.

(6) the use of ID and Property arcs in the Object-Type constructors for the explicit determina
tion of ID and Property of an instance.

These definitions build a conceptual model in which we know the following:

(1) what information is stored — as defined by Object-Type constructors and definitions.

(2) how to interpret the stored information — by the semantic mapping associated with the
name of the Object-Type.

(3) basic properties of the information content — two instances with equal ID values must have
equal Property values.

A schema based on the above principles provides relationships between Object-Types, i.e. struc
tural information, but this is insufficient to model instance relationships such as cardinality and
dependency. Therefore, we will extend the model by defining where the information is stored, i.e.
the relationships between Instances. The approach is by augmenting Object-Type definition with
the concept of “context dependency” to form an abstract definition of location for the Instances.
There are three types of context dependencies:

(1) target dependency, which determines the relationships between instances and their target
instances. This also establishes the equivalence relationship for instances, i.e. identity,
beyond the equality relationship.

(2) source dependency, which determines the relationship between instances and their source
instances. This provides integrity constraints for instance existence.

(3) peer dependency, which determines the relationship between instances of the same Object
Type. This provides the basis for cardinality relationships and is also an integrity constraint
for instance existence.

Context Dependencies create an orthogonal set of specifications that can be applied independent
of the constructors. Visually, following the arcs and constructors, target dependency “goes up” the

N

107

8. CONTEXT DEPENDENCY

8.1. Instance Association Diagrams
Before we describe the various context dependencies, we introduce a different graphical notation,
named “instance association diagrams”, to help us visualize Instance locations. Previously, a
schema “graph” only shows the Object-Types and arcs between them, which defines how informa
tion from one Object-Type associates to another. However, a schema is also a representation of
information content in a database, i.e. each Object-Type represents a collection of instances in the
database. Therefore, we introduce a different graphical representation to denote actual instances
defined by a schema. This representation is to be used as a tool to visualize the interaction between
Object-Types and collections of instances under context dependency, they are not to be used in an
Extensible Object schema. In addition to the visualization, this instance association diagram is also
a semantic “model” for the instances defined by our conceptual Extensible Object schema. Ulti
mately, it will help us define and resolve the issue of context dependency.

8.1.1. Composition, Set, and Sequence
An example of the instance association diagram is show as follows:

EOM Schema: Instance Association Diagram:

Person Collection of
Person instances

C

Name

C) Set of Instances

C) Bag of Instances ºCollection of Collection of

Instance Name instances ID instances-

XX

—e- Instance Association Links

The Person Object-Type defines a collection of Person instances. In this case, the Person collection
is a set and holds three instances, p1, p.2, and p3. The same applies to ID#. The Name collection is
a bag and holds three instances. The links from n’s to p’s indicate which Name instance is associ

109

8. CONTEXT DEPENDENCY

ated with which Person instance. These links are the “instance” equivalent of the schema arcs for
Composition. We do not differentiate ID from Property because, on the “instance” side, they are
all association links. There should be only at most one arc between any two instances, since none
of our constructors support a multiplicity of instances within a strict set.

From now on, the term “set” is defined as a strict set, i.e. each element in a set is unique and has a
different value from all other elements of the same set. For collections with multiple equal-valued
instances, the term will be a “bag”. In the case of a bag, we could have two instances whose values

44–??are equal (“=”), but they are not identical or equivalent (“=”).

In the instance association diagrams, we denote distinct instances by distinct physical locations on
the diagram. However, a single instance may be given different labels because of different paths
were used to reach the instance. These paths include navigation from target instance or selection
applied to a collection of instances. When used as references, without the benefit of an instance
association diagram, we face the possibility that two differently labels may actually refer to the
same instance.

8.1.2. Inheritance and Union

Instance association diagrams can also be applied toward the Inheritance and Union constructors.
A Union schema will create the following example diagram:

Publication

U

Jour Article Conf Paper

The differentiation between “structural” constructors and IS-A constructors is represented in the
instance association diagrams by the different types of links. Therefore, the links between a Publi
cation instance and its source instances have double-ended arrows to indicate IS-A. Note that p2 is
both a Journal Article instance and a Conference Paper instance.

**

;

110

8. CONTEXT DEPENDENCY

An example that includes both “structural” and IS-A constructors is diagrammed in the following:

Student Engineer
I

GPA Person Seniority

ID# Name

<!—º- IS-A link

—e- Association link

The links between Student instances and Person instances have double-ended arrows to indicate

IS-A. Same for Engineer instances. Person p2 is both a student and an engineer.

111

8. CONTEXT DEPENDENCY

8.2. Target Dependency
To address the issue of target dependency, let's take an ER schema as a starting point:

a Hº- a

If we convert this schema to the Extensible Object Model, we have:

In the ER model, W has a different symbol than A, therefore they are interpreted differently. How
ever, in the Extensible Object schema, they are equivalent, i.e. they both are ID source to a Com
position constructor. Therefore, if we wish to capture the ER difference, we need to examine the
associations between Object-Type W and A vs. A and R. The question becomes what are the
Semantic differences between W/A association and A/R association in the ER model? and how do

we capture these differences in our model?

One interpretation for Object-Type W is that of an attribute for an entity. That is, the attribute’s
value is the sole property of the entity and is not subjected to constraints from other Object-Type
definitions. Consequently, the value of this attribute is modifiable without constraints. Another
interpretation for W is that they are implemented values, such as integers, dates, and strings, with
independent storage. Therefore, changing any of these values do not affect the values of other

112

8. CONTEXT DEPENDENCY

instances within the same target instance nor the corresponding instance values of other instances.
The equivalent in the relational model are field values: each tuple (row) has independent field val
ues. Certain semantic models define a specific node for these type of objects, e.g. “Printable” in
IFO [2].

The interpretation for A is that of an abstract object, in which instances coexist under a strict set
criterion, e.g. duplicates are not permitted. In the ER model, they are Entities and Relationships,
and in the relational model, they are tuples and relations. The “gestalt” values of entity or tuple
instances can not be changed without the consideration for constraints of set membership, cardi
nality (e.g. 1-M), etc..

Most data models have this separation between attribute and abstract values. However, in the
Extensible Object Model, there is no distinction between attribute and abstract, i.e. all Object
Types are equivalent and behave the same. Although we provide the “implementation definition”
of an Object-Type, this should not weaken the uniformity of the abstraction. Therefore, we need to
define this problem in a broader scope, for which the attribute/abstract dichotomy is only a limited
solution for it. Our solution for the extended problem is the concept of target dependency.

There are two equivalent interpretations for target dependency: identity and set generation. The
first is based on the idea that the identity of an instance is dependent on its target. Instance identity
can be phrased as the following question: when we are given two instances from a collection, how
do we determine if they are different instances or the same instance? This is the core problem of
equivalence vs. equality. The standard approach is “downward”, i.e. object identity is determined
by the value of the instance. This approach is taken by the relational model: a tuple's identity is
determined by its key fields. It is also the approach taken by pure Object-Oriented models: an
instance's identity is determined by the surrogate (virtual, system, hidden, intrinsic, or implicit) ID
value. Target dependency introduces the concept of “upward” object identity, i.e. identity of an
instance is not only based on its “lower” values, but also the “upper” values, defined by its target.
This dependency is a form of context dependency, i.e. the context of the instance is needed to deter
mine its identity.

The second interpretation of target dependency is the generation of sets. While instance identity
interprets target dependency by “upward” direction, set generation interprets by “downward”
direction from the instance's target. The basis of this interpretation is that every instance belongs
to a strict set. However, there may be many strict sets associated with each declared Object-Type,
with the multiplicity dependent on the target dependency designation. Since our concept of identity
is value-based, the formation of strict sets ensures identity of instances within a strict set is always
achievable. Furthermore, this explicit identity provides a useful integrity constraint that prevents
the collision of instance values and, subsequently, identities.

113

8. CONTEXT DEPENDENCY

Target dependency is a “vertical” concept, so our discussion is restricted to the Object-Type of
interest and to its “target”, i.e. the constructed Object-Type of which one of its sources is our given
Object-Type. The following diagram describes the terminology:

Target --Target Object-Type
C)*—Some constructor

~~Either ID or Property Arc

Sº --~~Context Designation
Source bject-Type of interest

8.2.1. Types of Target Dependency

We define target dependency with the following assumptions:

(1) It applies to the immediate target level, i.e. target dependency is not defined between
Object-Types spanning more than one level of constructors.

(2) It applies to both ID and Property arcs without differentiation. This preserves the orthogo
nality between ID/Property differentiation from target dependency.

(3) The corresponding “downward” characterization, between a given Object-Type and its
sources, is strictly value-based. This means the context of an Object-Type X, with respect
to its target is independent of the context(s) of X’s sources.

(4) Target Dependencies are not applied toward Inheritance nor Union constructors. Because
the instance links of IS-A constructors are not of the “association” type.

There are three target contexts we use in the EOM, each will be defined with both identity and set
generation interpretations.

A. Local (or target-instance) context

Under local-context, two instances are identical if and only if they are value-equal and their target
instances are identical, i.e. the given instances are local to their target instances. The target instance
is the instance in the constructed Object-Type above the given source Object-Type in the schema.
Using our Person example in Section 8.1.1 and assigning local-context to Person.Name, an
instance of Name, p1.nl, is identical to another, p2.nz, iff ID(p1.nl) = ID(p2.nz) and p1 = p2. In
Other words, two Name instances are identical if they have the same value and belongs to the same
Person instance. The latter “equivalence” on Person instances is stronger than equality of the Per
Son.ID#, because it forces a potential “upward” percolation of equality tests.

If the given Object-Type is of local-context, then the each instance of the target Object-Type
defines an isolated set of the given Object-Type instances. This creates a set of sets such that the

114

8. CONTEXT DEPENDENCY

instances of the given Object-Type is partitioned by the corresponding target instances. Attributes
in the E-R model has this characteristic. By default, a declared Object-Type has instance context.

Example Usage:
Person

L
-

C
Object-Type

Age Name

B. Shared (or target-set) context

Here we overlook target instance differences, but recognize target instance sets, i.e. the given
instances are shared among their target instances. In other words, instances are partitioned into sets
based on the sets of their respective target instances. Therefore, if we assign shared-context to Per
son.ID#, then an instance, p1..idi, is identical to another, p2.id?, iff ID(p1.idl) = ID(p2id2) and
p1 and p2 are instances from the same set, i.e. Person. This is equivalent to defining a set of ID#
instances for each set of target instances. If the schema defines another composition, Company, also
made of ID#, then by this definition, the set of instances of Person.ID# is partitioned separately
from Company.ID#. Thus, even if ID(p1.id#) = ID(c1.id#) for some Person instance pland some
Company instance c1, the two ID# instances are not identical because pi belongs to a different set
than c1. This is commonly used to preserve one-to-one correspondence between a Composed
Object and a singular ID component. An Object-Type with shared-context is shown as:

Example Usage:

S Company Person
Object-Type C C

ID# * ID# *

C. Global (or target-independent) context

In this case, ID value equality is object identity, i.e. no target information is required. This is equiv
alent of defining only one set of instances for all declarations of the Object-Type. For example, if
every instance of Person came from the same set, regardless from which Person declaration it is
chosen from, then the Person Object-Type is considered to have global-context identity. The E-R
models uses this form of global-context identity for entities. This is also used for the EOM Object
Type definition from aliases, i.e. the alias type is considered to be global. We denote a global-con

w
*

115

8. CONTEXT DEPENDENCY

text Object-Type as:

Example Usage:

G WorkS-In anaged by
Object-Type

Person Dept Person

These contexts are analogous the scopes of variables in a high-level programming language. Local
variables inside a subroutine is of local-context. Static variables, local to a module and common to

a set of subroutines, are of shared-context. Global variables has global-context. In data models, the
context of a data instance is not determined by lexical nor execution scope, but is determined by
its relationships with other data instances. The instance association diagrams for the various con
texts are shown in Appendix A.

116

8. CONTEXT DEPENDENCY

8.3. Source Dependency
A converse situation to target dependency is source dependency, i.e. an instance existence is depen
dent on its source instances. This problem is similar to the relational model as null vs. non-null col
umn designation. If an attribute or field in a relation is specified non-null, then every row in that
relation must have a valid value for that field. On the other hand, if the field can be null, then there

can exist rows without a valid value, or a “null” value, for that field. In the Extensible Object
Model, a target's existence can be similarly dependent on the existence of a source, i.e. requires a
source instance. We will denote them as follows:

R for Required (source-dependent), default is Non-required (source non-dependent):

Person Dept
C C

_2^ 2"
Name Race" Name Manager

In this example, a Person's Name instance is required, but Race is not a required instance. Forevery
instance in the Dept Object-Type, both Name and Manager source instances are required. In gen
eral, Property source objects can be either required or non-required, while ID should be required.
Unlike target dependency, source dependency is applicable to IS-A constructors. The instance
association diagrams for the various contexts are shown in Appendix A.

8.3.1. Dependency vs. Null

Dependency and null address different issues. Null is a semantic problem while dependency is an
integrity problem. The semantic problem is resolved in the Extensible Object Model by allowing
semantically meaningful “null” values. If a null value is semantically meaningful, then it must have
a symbolic representation, i.e. a unique bit pattern. Since equality on bits is defined, a null value is
distinct from the any other values. Furthermore, there can be many distinct null values, e.g.
“unknown” and “not applicable”. Therefore, a null value can be used as a “normal” value, and it
can also be used for ID value without losing the properties we have defined. This extension comes
from the ability to add new tokens carrying new semantics to almost any model without loss of con
sistency. In reality, however, a null value must be operationally well-defined, because a set of val
ues, as defined by an Object-Type, is paired with a set of operations. Although this requirement
makes the construction of operations more difficult, it occurs outside the scope of the Extensible
Object Model. In summary, in the Extensible Object Model, a null value is treated like any other
“normal” value.

º

A

117

8. CONTEXT DEPENDENCY

The integrity problem of source dependency is whether a target instance can exist without a source
instance. It is determined by the presence or absence of the instance association (or IS-A) link
between the target instance and the source instance. It is not determined by the values of instances.
For Required source dependency, the link must be present and be sourced from a valid instance.
For Non-required, the link can be absent.

The null value problem in the relational model is a mixture of semantic and integrity problems. The
reason is that the relational model is purely value-based, therefore the integrity problem of
instance-to-instance relationships cannot be fully expressed. Our source dependency deals only
with the integrity problem.

8.3.2. ER Participation Constraints

Mandatory vs. optional participation in the ER model has a similar interpretation to source depen
dency. If applied between an entity and an attribute, the entity is source-dependent on the manda
tory attribute. If applied between a relationship and an entity, the relationship is source-dependent
on the mandatory entity. However, ER has another constraint where the implication is reversed: a
“total role” constraint is where the entity is “source-dependent” on the relationship [64]. Under this
constraint, an entity instance can exist only if a relationship instance, associated with that entity
instance, also exists. This is not target dependency, because it can be applied on global Object
Types. Nor is this source dependency, because of the reverse direction of dependency. The “total
role” constraint actually opens up the possibility for arbitrary dependency between unrelated
Object-Types. Since the objective of the Extensible Object Model is to provide a core model, we
will not pursue this extension.

sº
º

º

118

8. CONTEXT DEPENDENCY

8.4. Peer Dependency
If an Object-Type defines the actual instances of a database, we will need to determine which
potential instances are permitted to be inserted into a database. Clearly, if we are to accommodate
E-R relationships as a composition, we need additional characterizations for cardinality. For exam

1 M& Hºº-º-
then it can be modelled as:

ple, if we are given:

Comments:

R (1) The Relationship constructor is an alias for
the Composition constructor.

(2) When given an instance of R, r,
ID(r) = [ID(ra), ID(r.b) J.

G G
A B

In order to model the 1-M relationship between A and B, we need to restrict the instance set R by
ID values of A and B. Unfortunately, the ID value of a single instance is insufficient to determine
whether a given instance belongs to the set defined by the Object-Type.

This is the basis for peer dependency, i.e. the valid existence an instance is dependent on the exist
ence of its peers. Therefore, a Composition constructor needs to include one or more peer depen
dency rules which operates “side-to-side”.

8.4.1. Approaches to Peer Dependency

There are two basic approaches: functional dependency and involvement cardinality. To compare
their differences, we use the “pigeon-hole” paradigm: with every instance added to the set, it occu
pies a new slot and covers a set of incompatible slots. To insert a new instance, therefore, we must
find an open slot. If we don't find an open slot, then the new instance is either identical to an exist
ing instance or in conflict with one. When given an instance x, we determine whether x has a valid
existence in the instance set R through the following steps:

(1) We test x against r1, r2, r3, ... of the instance set. The test is determined by whether we
choose functional dependency or involvement cardinality.

(2) The results of successive tests are AND’ed to obtain the final answer.

Thus if any current instance rules against insertion, then the final result is false. Although the test

119

8. CONTEXT DEPENDENCY

is phrased as an insertion problem, it can be used as a static consistency check. For example, if we
are given a set of r's, then we can check to see if this set is consistent with the peer dependency
rules by inserting the r's one by one, in any order, into a new set with the same rules. If all can be
inserted, then the set is consistent. If not, the set is inconsistent.

8.4.2. Functional Dependency

The first approach is functional dependency. We will use the previous schema for the binary case.

A. Binary Relationships

For 1–1 relationship between A and B, we have:

If x is an instance of R, then for all instances, r, of R in the database:
ID(x,a) = ID(r.a.) – ID(x,b) = ID(r.b)

For 1-M relationship:

If x is an instance of R, then for all instances, r, of R in the database:

ID(x,b) = ID(r.b) → ID(x,a) = ID(r.a.)

For M-M relationship, no restrictions are applied. However, we always have the fundamental
“ID → Property” rule:

If r1 and r2 are instances of R:
ID(r1) = ID(r2) → Property(r1) = Property(r2).

The logical predicates expressed here are equivalent to the functional dependency principle of 1–
1 or 1-M relationships [64].

B. Ternary Relationships

We will let x = [al, bl, c1 | and r = [az, b2, c2), where r ranges over r1, r2, r3, We now use
a truth table to describe the results of all possible comparisons. The first three columns describe the
result of the comparison of the component values between x and r. The next four columns describe
the combined component result based on the functional dependency. For example, if we are testing
for 1-1-1, then the result of x and ri (chosen from the 1-1-1 column) is AND’d with the result of x
and r2 (chosen from the 1-1-1 column) and so on.

-s

120

8. CONTEXT DEPENDENCY

This produces the following (comments in parentheses):

a1=a2 b2=b2 | c.1=c2 || 1–1–1 1–1—M | 1–M–M | M-M-M | Comments
|- - =

T T T T T T T (1)

T T F F T(4) T T

T F T F F T(5) T

T F F T(3) T T T

F T T F F F T(6)

F T F T(3) T T T

F F T T(3) T T T

F F F T T T T (2)

Comments: Let A = (a1=a2), B = (b1=b2), and C = (c1=c2).

(1)

(2)

(3)

(4)

(5)

(6)

If all three components are equal, then x = ri for some ri in R, thus insertion of x does not
affect the instance set of R (by the definition of a set). However, this can be considered as
invalid if Property(x) + Property(ri), then all values should be False.

If x is different from any r already in the set R, then x can be inserted.

Since 1–1–1 is defined by the predicate ((A AND B)—C) AND ((A AND C)—B) AND ((B
AND C)—A). As long as there are two components that are different, x can be inserted into
R.

The functional dependency of 1–1—M is ((A AND C)—B) AND ((B AND C)—A). There
fore, this is True.

The functional dependency of 1–M–M is (BAND C)—A.

There is no dependency under M-M-M, therefore, any x can be inserted.

8.4.3. Involvement Cardinality

The second approach is by involvement cardinality, which is based on the principle that a source
instance can originate association arcs at its given cardinality, i.e. be involved at the specified car
dinality. Under this interpretation, the 1–M binary relationship would be the converse of its logical
interpretation under functional dependency, i.e. ID(x,a) = ID(ra) → ID(x,b) = ID(r.b). Since
an instance of A can be associated with only one instance of R, this implies if two instances of R
that have the same instance of A, they must be the same instance. Involvement cardinality and
functional dependency interpretations for 1–1 and M-M relationships remain the same. ~.

&

*

121

8. CONTEXT DEPENDENCY

The ternary relationship under involvement cardinality produces the following table:

a1=a2 || b2=b2 | c.1=C2 1–1–1 1–1—M 1—M–M | M-M-M | Comments

T T T T T T T (1)

T T F F(3) F(4) F(5) T(6)

T F T F(3) F F T

T F F F(3) F F T

F T T F(3) F T T

F T F F(3) F T T

F F T F(3) T T T

F F F T T T T (2)

Comments:

(1) Same as functional dependency.

(2) Same as functional dependency.

(3) Involvement cardinality of 1–1–1 is (AeB) AND (Be->C) AND (CeA). Therefore, if any
sources are equal, all sources must also be equal. This will preserve the number of occur
rences of that source instance in a target instance set at the specified cardinality of 1.

(4) 1–1—M is (AeB) AND (A—C) AND (B-C). Therefore, this is False. The last predicate,
(B–3C), is redundant.

(5) 1—M–M is A– (B AND C), which is a deduction from (A–B) AND (A—C).

(6) Same as functional dependency, since there are no additional rules.
8.4.4. Other Uses of Truth Table

In any modelling process, one encounters the problem of equivalence between two schemata.
When we have a schema with three or more ID source Object-Types, is there a mechanism to deter
mine if this schema can be converted to one where the ID sources are cascaded? This is achievable

because the pigeon-hole mechanism makes any peer dependency condition based on equality and
boolean algebra into a truth table. Since we can enumerate all possible truth tables for a fixed num
ber of components, we can determine whether or not a given composition is truly n-ary. It will also
provide a decomposition, and possibly, a unique one. Naturally, if the peer dependency condition
goes beyond equality, e.g. arithmetic counting and procedural, this method will not succeed.

z
º

º

122

8. CONTEXT DEPENDENCY

In Appendix B, we examined all the cases of ternary relationships using the generalized truth table.
Although half of the ternary compositions can be decomposed into cascaded binary compositions,
there may not be a motivation to do so because of the semantics of Object-Type definition. A sim
ilar situation exists for choosing a particular cascade against an equivalent cascade. Ultimately, it
is the user who will decide which one is semantically correct.

8.4.5. Approaches to Peer Dependency

The basic approach to peer dependency could be either functional dependency or involvement car
dinality, with the arcs designated “1” or “M”. The more general approach is to specify the truth
table for a given composition. However, this may be too broad and may not be semantically mean
ingful to the user. That is, an arbitrary combination of T and F is consistent but is not as interpret
able as functional dependency or involvement cardinality. On the other hand, this does not mean
that other meaningful combinations do not exist. An extension of cardinality is to provide a number
range for involvement cardinality. This approach goes beyond the truth table because it requires
counting variables. We will not explore this issue as a part of the core Extensible Object Model.

The most general approach is an arbitrary function based on the new instance and the set of existing
instances. This goes beyond the truth table because the operations are no longer based on equality
and boolean algebra. This peer dependency function is interpretable only by “name”, and, in gen
eral, it is not possible to determine if the function is computable or not. A “rule” or “trigger” mech
anism for database updates is such an implementation.

Functional dependency does not generalize to Set or Sequence constructors, because there is only
one ID source with these constructors. However, involvement cardinality still applies in these
cases. Furthermore, functional dependency becomes more difficult to define when n > 3. Therefore,
in this model, we will use involvement cardinality, and denote a singular involvement by a “1”,
otherwise it would be assigned “many” (M) by default. The instance association diagrams for the
various contexts are shown in Appendix A.

- *
-

º

ss
º

123

8. CONTEXT DEPENDENCY

8.5. Issues of Context Dependency Usage
8.5.1. Target Local-Context vs. Attribute Value

One may argue that local-context instances are not instances, but “attributes”, as in the ER model.
Thus they should not be considered as Object-Types and should be modelled as attribute values
directly than some “instance” that has a given value. For example, a Person's Age should be a sim
ple value rather than an “instance”. The end result is similar to a primitive implementation defini
tion, but it reduces the uniformity of the Extensible Object Model. It may be true that value storage
is more compact and direct, but such optimization decision should be left to the schema compiler,
just as current language compilers and query processors perform optimizations to generate “code”
for the underlying system or model.

Target local-context also generalizes to Set and Sequence constructors. For the Composition con
structor, a local-context component implies only one instance will exist under a target instance.
This is why an attribute approach is applicable, but misguided. However, under the Set constructor,
multiple instances can exist under a local-context for the ID component. In this situation, the
attribute approach would lose the ability to reference the elements of a Set instance as instances.

8.5.2. Target Shared-Context and Labelling

Shared-context Object Types are usually an artifact of “labelling” (surrogate), i.e. the real world
has constructed an identifying label for objects which have the same characteristics (values). This
is usually achieved by analyzing context information, but because of the complexity of real world
context information, it is simpler to reference the object through its label. For example, when two
chairs have the same features (Property values), such as shape, # of legs, color, etc., and require
two identities, we could use their locations or owners for identification, but these may change with
out affecting the chairs themselves. The solution is to use a sticker on the underside of each chair
and write unique numbers to the stickers. The value on the sticker becomes our shared-context ID
value. As long as the values are unique for chairs, they are adequate for identification, and the one
to-one relationship to the real world is maintained.

8.5.3. Definition vs. Declaration Context Dependency

Can different context dependencies be assigned to different declarations of the same Object-Type
in a single schema? Before adding context dependency, the definition of an Object-Type only dealt
with the information content from a structural point of view. No assumptions were made about
where the information is located. However, a database is dynamic, and we need a specification of
information locality so that changes remain semantically consistent with the real-world and can be
described by a static schema. Context dependency provides this specification in a compact and
static form. If an Object-Type can have different dependency among its declarations, then the
dependencies must be orthogonal to Object-Type definitions. Since there is only one definition per

* *
* *

;

124

8. CONTEXT DEPENDENCY

Object-Type, the operations defined by an Object-Type must be independent of context depen
dency to maintain this orthogonality. If this requirement is satisfied, then one should be able to
assign different dependencies to different declarations. This is the approach we took with the EOM.

8.5.4. Placement of Context Dependency Designation

There are two places where context designations can be placed:

In the Objec-Type: On the Arc:

Works-In Works-In

C C

2 N.
Person Dept Person Dept

Since the Extensible Object Model uses different arcs for ID and Property, so one would assume
that context dependency relationships between target and source should also be placed on the arcs.
However, if an Object-Type declaration sources two or more arcs, the interpretation becomes
ambiguous. For example, if the designation is placed on the arc:

Person Dept
C C

2"
S

ID# Name Size

The declared Name Object-Type is used as local-context for Person, but shared-context for Dept.
We can interpret this schema as a shorthand for a schema with two separate Name declarations,
which then resolves the ambiguity by distinct arc annotations. But this schema gives the impression
that Person and Dept are semantically associated by one collection of Name instances. If the con
text designation is placed in the Object-Type, then we avoid this false impression because we
would be forced to use two Name declarations. This may look inconsistent with the ID/Property
arc differentiation, but in fact it is not. The reason is that the ID/Property characteristic is orthogo
nal to context dependency. Furthermore, each Object-Type declaration can potentially represent
different collections, in which case, the internal context designation is closer to the expectation. For
example, a global Object-Type is not global from the “arc” designation, but from some intrinsic
semantic properties of the Object-Type.

**-
-

º

s
*

125 .

9. OBJECT MODEL SUMMARY

CHAPTER 9. OBJECT MODEL SUMMARY

9.1. Conceptual Basis
9.1.1. Basis for Object-Types

The Object-Type in the Extensible Object Model (EOM) was a distillation of concepts presented
in semantic data models and Object-Oriented programming (OOP). The core concept was the
information theoretic mapping between semantic concepts and physical implementations [58]. In
many models, this was left undefined or implicitly stated. With an explicit definition, our model
formed a clean separation between real world concepts and symbolic values (bits) stored in a data
base. This also determined which real world concepts properly belonged in a schema and which
didn’t.

The concept of an “instance” has taken shape in the database world independently of the similar
concept in OOP The development of OODBMS has since then merged the two efforts and
strengthened its “right to existence”[36]. However, the problem of identity and its operations were
addressed at the implementation or physical level, not at the semantic or conceptual level. This
model brought identity and property into the conceptual level so that it can be related to other
aspects of the conceptual level, such as structural abstraction and integrity. The explicit identity of
EOM was a departure from the use of surrogate or virtual ID's espoused by many database imple
mentations. However, they are not incompatible, because the use of surrogates is an implementa
tion technique that should be hidden at the conceptual level. On the other hand, the notion of
“identifying characteristics” is a “conceptual” abstraction.
9.1.2. Basis for Constructors

A schema defined how Object-Types are associated with each other through the semantics of con
structors and ID/Property arcs. The constructors were based on several concepts. First was the use
of data abstraction in programming languages [42]. This ability to encapsulate a collection of infor
mation units into a new unit was also crucial for semantic modelling. The explicit semantic map
ping provided the basis for data abstraction: a semantic grouping of real world concepts is
implemented by an equivalent grouping of database values. Second was the separation of type and
instances. In the EOM, only types are shown in the schema. This maintained a constant “conceptual
level” in which a user can model real world semantics. Finally, the graphic design was based on
ER and other semantic data models, but the biggest influence was Jackson Design Methodology
and its data structure diagrams [32].

The specific constructors were based on well-known data abstractions. Composition and set con
structors were well characterized in previous efforts of relational and semantic data models. The
sequence constructor was developed to support the biological applications, but it was based on the

126

9. OBJECT MODEL SUMMARY

results of the abstract sequence model (Section 2.5) and previously developed concepts of “text”,
“list”, “vector”, and “time”. Our IS-A constructors, inheritance and union, were developed from
specialization and generalization. In this model, the semantics of IS-A was defined by the use of
instance association diagrams, which removed many ambiguities of multiple inheritance and over
loaded attributes.

9.1.3. Basis for Context Dependency

Context dependency was introduced to extend constructor-defined Object-Type associations to the
instance level. Context dependency was classified into three types: target, source, and peer. The
objective of this classification was to construct a systematic framework for integrity constraints. At
the same time, this framework removed the need of “references”, “foreign keys”, and “surrogates”,
all of which are implementation solutions to context questions. Therefore, they should be hidden
by the proper use of context dependency. In addition, context dependency retained explicit value
equality as a mechanism for resolving instance identity. This preserved the ideal that instance iden
tity is a semantic (real-world) concept that is accessible and can be directly modelled.

The instance association diagrams, which were used to illustrate context dependencies and abstract
instance locations, also formed a semantic interpretation mechanism for integrity constraints. This
interpretation model was an intermediate between the EOM and the actual database. Since it was
essentially based on instances and sets of instances, it can be readily implemented de novo or on
top of existing DBMS's.

(1) Target Dependency

The inspiration for local context was based on two concepts. First was the hierarchical model
where each instance has its own set of children instances. Second was the concepts of value repli
cation and independent modification. Global context was based on the global references of pro
gramming languages and the use of foreign keys in the relational model. Shared context was based
on the use of module-local variables in programming languages, e.g. “static” variables of an “.c”
file in C. It was further refined by the examples of real world 1-to-1 labelling of objects.

(2) Source Dependency

Source dependency was based on the problem of null vs. non-null in the relational model and the
mandatory vs. optional participation in the ER model. We did not include a “total role” constraint
because it would have permitted dependencies not specified in the local schema and between arbi
trary Object-Types. On the other hand, this provided a new direction for future research.

(3) Peer Dependency

Peer dependency was based on a generalization of the cardinality constraints found in the ER mod
els. Although this research has extended the original idea, we chose involvement cardinality

127

9. OBJECT MODEL SUMMARY

9.2. Goals of the Extensible Object Model
Part II started by reviewing some of the problems of conceptual data modelling and set forth a list
of goals for a new data model: semantic richness, model extensibility, model simplicity, organized
graphical representation, domain invariance, representation uniqueness, and implementation inde
pendence (see Section 5.4). We then presented the EOM with the following features:

(1) Object-Types with semantic mapping functions

(2) ID and Property characterization of Object-Types

(3) Constructors to build new Object-Types

(4) Context Dependency to define Instance-to-Instance relationships

Through the use of constructors and context dependency, this model has achieved the semantic
expressiveness similar to EER, IFO, and OSAM*. A demonstration of semantic richness is detailed
in Section 9.3. Because the organization of these semantic constructs are orthogonal, each can be
applied uniformly and extended independently. For example, new constructors, such as Bag, Tree,
and Semantic Sequences, can be added; constructor arc types can be extended with Ordered By
arc, as in Sequence constructor; and “total role participation” can be defined as reverse source
dependency. Directions for extensions are less clear in the other semantic data models, since their
framework was not as well defined as the EOM.

We also proposed a graphical notation for the model that is based on the orthogonal characteriza
tion. In addition, the notation is oriented top-down and left-to-right, which improves readability
and lowers the possibility of “getting lost”, which is commonly seen with the omnidirectional arcs
associated with other data models (see Appendix C.1). The use of instance association diagrams is
a form of instance semantics. Since the association diagrams are reflections of the Extensible
Object schema, we now have an implementation independent view of information location.

With the separation of definition from declaration, the information captured by a schema is also
localized, which reduces the amount of information one needs prior to comprehension. A model
based on an orthogonal semantics, i.e. two object symbols + three arc types + three contexts, also
reduces the number of interactions one has to learn in order to effectively use it. Therefore, this
model has an additional advantage in simplicity.

Using the semantic information flow model, where type names are based on semantic mapping
functions of encoding and interpretation, we have created a natural enforcement of language usage.
Therefore, each constructor/arc■ context semantic can be verified against the real world phenome
non. Certain guidelines are listed in Appendix C.

129 (
ET

9. OBJECT MODEL SUMMARY

9.3. Comparison with Other Data Models
The semantic expressiveness of the EOM can be demonstrated by restricting its full expression and
by mapping constructs from the other models. There are two aspects to this model mapping. One
is construct equivalence where the constructs from both models are similar, which results in a
schema with the same number of objects, i.e. there is a one-to-one schema object equivalence. The
second is implementation equivalence where several constructs from one model are used to
“implement” a specific construct in another model. Although, the information captured remains the
same, the new objects require new integrity enforcements. Only the first aspect will be considered
to be a demonstration of semantic expressiveness. We now map the features of the traditional and
semantic data models using the constructs from the EOM.

The relational model can be modelled by only using the Composition constructor. In addition, all
source components to the Composition constructor is of “primitive” implementations, e.g. integers,
floats, and strings. The ID components correspond to the key attributes in the relational model. Tar
get dependency is always local, peer dependency is always singular, and source dependency is
either required or non-required depending on the relational null or non-null specification, respec
tively. This is constructeduivalent, because a relational schema expressed in the EOM has the same
number of “relations” and “fields” (Object-Types). The following is a schematic view of the map
ping:

Relational Model: Extensible Object Model:

X
Relation X

L,R,1
Attribute A: Integer, Key, NonNull A

[integer]

Attribute B: String, Null

LR,1
Attribute C: Float, NonNull C

[float]

For extensions to the relational model, such as NFNF, we add the equivalent of the set or sequence
construct. Therefore, the EOM subsumes the relational and NFNF models.

Similarly, the Extended Entity-Relationship model can be described with Composition and Inher
itance constructors. Composition is applied in two situations. The first situation is Entity-Compo
sition. It is used to model ER Entity, which is identical to the Composition in the relational model.

N

*

r

130 .

9. OBJECT MODEL SUMMARY

The second situation is Relationship-Composition. It is used to model ER Relationship, which has
ID sources that are Entity-Compositions. To model Weak-Entities, simply attach the Weak-Entity
Composition as a Property source. For ER cardinality specification, we convert them into the cor
responding peer dependency and for ER participation specification, source dependency is used.
The direction of inheritance in EER is “reversed” with respect to the EOM Inheritance constructor,
i.e. supertypes are sources to the Inheritance constructor. The following shows the mapping
between the two models:

EER Model: Extensible Object Model:

X

• B C[typeA] [type.B]

s
R

In In

X
(2)

Y [typez]
m and n under functional dependency m and n under involvement cardinality

X Y

I

IS-A

y X

In newer EER models, relationships can be built from other relationships using a merged entity/
relationship symbol, but this is handled by a cascade of Compositions in the EOM without addi
tional symbols. If the ER model chooses functional dependency for ternary and higher-degree rela
tionships, then the EOM will have to extend the simple involvement cardinality to the generalized
constraint derived from the truth table for source dependency (see Appendix B). Other ER charac
teristics that would require EOM extensions are: range declaration for cardinality instead of the
simple one or many and total role participation.

131

9. OBJECT MODEL SUMMARY

For the IFO model, the mapping from the EOM is still straight forward:

any type of X X

IFO Model:
-

X X

f f
Y Y

X

-
C

Extensible Object Model:

Y 1
[type Y) Y

IFO Symbol Set:
any type of X

IFO Model:
! printable type

Y

any type of Y
free type

XX

U In

Extensible Object Model: constructed type

any type, including
Y Y |[any type of X the Abstract Type

(not shown)

All features of the IFO model can be properly mapped by the EOM.

The mapping of the OSAM* model [62] to the EOM is limited to a subset of constructs. Direct
support is available for Aggregate, Generalization and Interaction Associations. The following dia

}

132

9. OBJECT MODEL SUMMARY

gram demonstrate the equivalent constructs:

any type of X any type of X

ÓN

any type of X

OSAM* Model: Aggregate

X X X

C C C

Extensible Object Model:

Y 1 Z
[type Y| Y Z (Y)

X OSAM Symbol Set:

OSAM* Model: Ger■ erafízation
-€1. Domain Class

Y Z

Z Entity Class

. É (any type of x) Either Class
Extensible Object Model:

X

OSAM* also supports the set association, which is equivalent to the Set constructor (not shown).
For generalization, OSAM* provides Set-Exclusive and Set-Equality characterization which are
not supported in the core EOM. In addition, several OSAM* constructs are not available in the core
EOM: OSAM* Composition, which is an explicit instance-to-type classification, and Cross-prod
uct, which is a statistical aggregate.

Object-Oriented data models are based on existing OODBMS’s. Therefore, in the sense of imple

ºf

*

T

133

9. OBJECT MODEL SUMMARY

mentation independence, they are not conceptual models. However, the constructs available from
the underlying language, namely C++ libraries [61] and Smalltalk Classes [27], are very useful for
conceptual modelling. A subset of these constructs can be mapped to the EOM constructors,
namely Composition, Set, Sequence, and Inheritance. Other OODBMS constructs that are not sup
ported in the core EOM are: Bags, Queues, Stacks, and Trees. However, these can be provided by
extensions to the EOM (see Section 9.5.6).

Some standard constraints can be declaratively stated in OODBMS’s, e.g. cardinality, but in most
other cases, they are user-defined procedures added to the DBMS. OO philosophy is based on the
encapsulation of both data and operations, therefore, as one defines a class, equivalent to the EOM
Object-Type, one includes the operations which manipulate the instances of that class and also
maintains the integrity of the instance collections. The EOM allows this operational definition in a
schema by abstracting them as an Object-Type whose implementation is “procedural”. Because our
constructors are data definitional, there is no support to further define a procedure at the schema
level, i.e. specifying the actual code. But at the query language level, one can fully define the oper
ational specification of a procedure (see Part III).

N :-

;

134

9. OBJECT MODEL SUMMARY

9.4. Differences From Other Models

The strengths of the EOM are based on the unique features described in Section 5.4. The following
table summarizes the differences between the EOM and other semantic models. The categories are
Abstraction, Constructors, Constraints, and Graphical Representation. Abstraction covers model
features such as extensible framework, model simplicity, implementation independence, and
domain invariance. Constructors and Constraints are aspects of semantic richness. Graphical Rep
resentation deals with comprehensibility of a schema. Clearly, some models carries additional fea
tures not listed.

- -
Extensible Object- ×

Characteristics
| Object Extended ER IFO Oriented OSAM

Abstraction:
-

Extensible
Framework w/ v'

Model

Simplicity v' v' v'
Implementation

- -

Independence complete mostly mostly limited mostly

Dom*"|| Collections Collections Collections + Collections Collections +
Invariance Instances Instances

Existing Constructors:

Composition v’ v' v' w/ v'
Set wº v' wº

Sequence v' v'
Inheritance v' v' v' w/ v'

Union v■ . w/ v’

Existing Constraints:

ID/Property v' v' v' v'

Cardinality w/ v' w/
Contexts v' v’

Graphical Representation:

Nodes unique unique unique In One unique
Arcs unique ambiguous unique In One unique

Simplicity v' v'

s

;

135

9. OBJECT MODEL SUMMARY

9.4.1. Extensible Framework

Extensibility provides the ability to extend the model in an organized fashion. In the EOM, we have
grouped certain semantic features into categories and “load” them onto distinct representations.
For example, the constructor carries the “what” information and the context dependency carries the
“where” information. They form two orthogonal categories, each are extensible independent of the
other. This is missing in other data models where constructs of different semantic nature are devel
oped in ad hoc fashion. Consequently, without a framework for organized extension, these models
are “characteristically closed”, i.e. extensions are made in ad hoc fashion. The extensions of the
EOM are based on the two semantic categories.

-

(1) Constructors

In other models, when a new semantic association is to be added, the typical approach is to add a
new object type, e.g. entity and attribute. This creates a consistency problem because one needs to
verify the interaction between the new type and the existing types in the model. Our model resolves
this problem by defining a new constructor, whose instances represent the information captured by
the new association, independent of the previously defined constructors. Once this is achieved,
instances from this new Object-Type behave like all other instances, free to participate in any other
COnStructorS.

(2) Contexts

In other models, constraints are designated between object types. However, no framework is given
with the constraint types. Therefore, it is difficult to add new constraints in a systematic fashion.
On the other hand, we have classified the constraints into three distinct context groups: target,
source, and peer. Technically, only target context is true context designation, while source and peer
contexts are constraints. Nevertheless, future constraint extensions can be added along any of the
three groups, independent of each other.

OODBMS present a special case for extensibility. Native OODBMS normally do not support the
Union constructor. Therefore, to extend an OODBMS with the Union constructor would be equiv
alent to constructing a Bag or Queue constructor, i.e. these are really implemented in a class library
and is not a feature of the underlying language. In fact, only Composition and Inheritance construc
tors are provided as native language features, everything else is implemented. This method of
extension is just as powerful as our framework.

9.4.2. Model Simplicity

Model simplicity is based on orthogonality and uniformity. Clearly, a benefit of orthogonality is
the extensibility framework discussed previously. However, the main advantage is still user com
prehensibility achieved through uniformity. This can be demonstrated by the following ER exam
ple. The ER model has nonuniform semantics and rules for construct adjacency, e.g. a full ranked

-

7,'"

*

*

º

136

9. OBJECT MODEL SUMMARY

entity (non-weak) can not be attached to another entity without going through a relationship (see
Section 5.3.3). For example, an Address can be considered as an entity, composed of Number,
Street, and City. On the other hand, it can be considered as a string attribute to another entity, e.g.
Person. In the former, it is a complex object, in the latter, a primitive object. In the ER models, the
entity Address can only be attached to Person entity via a relationship, while the attribute Address
can be attached directly. This forces the schema designer into choosing one form or another:

Address as Entity: VS. Address as Attribute:

Address Person

Person Address

The EOM eliminates this dilemma by allowing the schema designer to consider an Address as an
abstract object. then the decision for choosing which schemato use is based on the semantic factors
in the domain, i.e. whether the relationship between Person and Address is containment (composi
tion) or peer association (through Lives-At), and not by the non-uniformity of model construction.

Other semantic models disallow specific construct-pairs because they also lack uniformity. This
introduces complexity into the model, because each special case must be defined separately. OO
data models are uniform, but they occur at the implementation level. Therefore, the implementa
tion-driven problem of the Address example is still present. For OSAM*, uniformity came at the
cost of orthogonality. While all the constructors can be uniformly paired, there was a proliferation
of similar constructors, e.g. aggregation and interaction. Consequently, it became difficult to find
the appropriate constructor to use.

9.4.3. Implementation Independence

With explicit semantic mapping between physical implementation and domain concepts (see Sec
tion 6.1), the EOM maintains itself at the conceptual level. In other data models, some link with
the logical or physical level always remained through the use of printable types or primitives. This
detracts from focusing on the real issue of capturing conceptual semantics of the application
domain. Furthermore, this forces a user to prematurely commit to an implemented type. The EOM

;
º

º

º
137 (

9. OBJECT MODEL SUMMARY

does not suffer from either of these side effects.

An additional benefit of implementation independence is evolvability and maintenance. Data mod
els with links to the underlying system are much more difficult to evolve or maintain as either the
underlying system changes or when the domain semantics changes. OO data models, by the virtue
of being logical models, suffers the most when one needs to migrate a schema from one database
format to another.

A consequence of the semantic mapping is the elimination of the distinction between “attribute”
and “entities”. In most models, a distinction is made because it follows the predominant paradigm
of mental modelling, which is one of dominant/dependent pairing. However, we took another
approach because we needed a uniform model, and there wasn’t sufficient justification for the dis
tinction. Shifting the paradigm away from the dominant/dependent conceptualization to one of
information flow, the EOM permits completely uniform usage of constructs. As one can see, the
decisions made in one area, e.g. implementation independence, also have an impact in other areas,
e.g. model simplicity.
9.4.4. Domain Invariance

Domain invariance in the EOM determines which properties of the domain are to be modelled. This
ensures the consistency of the schema constructs and their interpretation. This is not seen in
instance-oriented data models, e.g. OSAM*, where both instances and collections have represen
tations on the same schema. In addition, uniform instances and types allow Object Types, as rep
resentations of instance collections, to be arbitrarily associated with other Object Types without
restriction. This is not observed in other data models that also have “constructor”-like features, but

lacks explicit domain invariance.
9.4.5. Semantic Richness

The number of constructors and constraints determines semantic richness. For the applications in
the HGP, our core model is sufficiently rich. The entries in the table indicate that it is a superset of
most other models. Clearly, other models could also be extended to include features in the EOM,
but without a framework for extensions, it is less clear of how uniform the extensions will be.

9.4.6. Representation Uniqueness

Semantic uniqueness is controlled by the definition of model constructs. Since our model was
based on a perspective of information capture and flow, it is very specific about how a schema
should be constructed. For example, most semantic models, e.g. ER, separate composition from
relationship, but the EOM does not. The reason is, under the information flow perspective, a com
position is simply an information container box, holding the association information of its sources,
and a relationship is also a container box, holding the association information of its sources. There
fore, the behaviors of the two constructs are identical and the distinction is not made in the model

138

* *

1.

9. OBJECT MODEL SUMMARY

itself, but left to the user's interpretation. Furthermore, with separate constructs for composition
and relationship, other semantic models requires additional distinguishing definitions, which
unnecessarily complicates the model.

These considerations have an impact on the graphical form of the model. Since the EOM is a sim
pler model, the symbols used have unique meaning. In other data models where symbols are over
loaded, there will always be ambiguities that must be resolved by context information. However,
it is often the user who is faced with this task of collecting the sufficient amount of the context
information.

9.4.7. Feature Summary

There is no single feature that distinguishes the EOM from others, instead, it is the gestalt of all
these features that makes this model unique and powerful. Currently, it also contains certain weak
nesses. For example, it lacks a verification for mathematical completeness and lacks a sufficient set
of support tools. But these can be remedied with future research and development.

139

9. OBJECT MODEL SUMMARY

9.5. Open Topics
There are several open topics for the EOM.
9.5.1. Classification

Classification is the explicit formation of types from instances. Traditional data models, e. g. hier
archical, network, and relational, are collection-based (or type-based), i.e. schema objects reflect
collections of instances and specific instances are not denoted. Therefore explicit classification of
instances is not supported in these models. On the other hand, OODBMS and certain semantic data
models, e.g. OSAM* and SDM (28), are instance-based, i.e. explicit instance references are pro
vided and classification is supported. The EOM Object-Type is based on the domain invariance of
collections and therefore, lacks explicit instance references. In addition, if Classification is sup
ported in the EOM, we will have to introduce a new symbol for instances and a schema will no
longer have uniform abstraction. Furthermore, if a model provides the ability to cross the instance
type boundary at one level, then it could also cross multiple levels for full generality. This opens
up the problem of Metatyping.

9.5.2. Metatyping

Metatyping is the formation of types based on a type-description schema, i.e. a metatype, which
represents a collection of instances where each instance is a Type. If the data model provides Clas
sification, then Metatyping is supported, because the “instance Types” are explicitly denoted and
grouped into Metatypes by the use Classification. The problem of invariance is now carried to the
Meta-Type level. If the database, by necessity, spans several levels, then the choice of the abstrac
tion level for its schema may not be freely decidable. For example, a database for taxonomic clas
sification of biological organisms may fluctuate in both instances, types, and metatypes. In other
words, none of the three are invariant within the domain. Therefore, a schema for this database

should be at the highest abstraction (or meta-metatype) level.

Strict metatyping is supported by some OOPL, but not supported in database data models. Conse
quently, several concepts have been used as substitutes: IS-A hierarchy, subject-term hierarchy, and
parametric typing. These provide various amount of organization for metatype relationships. Sub
ject-term is an implicit classification method to form types and type-level characteristics, e.g. the
partitioning of organisms into kingdoms, phyla, etc.. Parametric typing allows structurally similar
types to be collectively referenced. But none of these provide the true semantics of metatyping. For
more details on metatypes and inheritance, see [6].

9.5.3. Overloading and Naming

One extension to Object-Type naming is to allow overloading. In the EOM, because Object-Type
names defines the semantic mapping of real world concepts to symbolic values, overloading was

140

9. OBJECT MODEL SUMMARY

disallowed (see Section 7.5.3). However, overloading is a concept strongly defended by OO para
digms because of two major arguments: first is the limited natural language expressions for unique
objects, and second is the ability to resolve similar names by context information. If a conceptual
model is to provide real world semantics by using natural language constructs, then overloading
should be added to the EOM. On the other hand, if a conceptual model is to bridge real world
semantics and database implementations, then it would not be necessary to use overloading. The
EOM can be extended to support name overloading, using the traditional name resolution strategies
[61].

9.5.4. Extended Target Contexts

We have specified three target contexts. However, there may be situations where an unrelated
Object-Type is a source component. For example, in a schema, one can attach Dept.Floor under a
Person as Property:

Dept Person

Name Floor Manager
(Person)

But where does the Dept. Floor instance comes from when the user accesses the instance Person.-
Dfloor? Since Dept.Floor is localized to the context of Dept instances, what should be its target
context under Person? When this type of schema is mapped to the instance association diagrams,
source instances to a constructed instance may refer to an instance that is not global nor related to
the constructed Object-Type. In the core EOM, it should be the Dept that is directly attached to the
Person with global target context, then there is no ambiguity when Person. Dept.Floor is accessed.
Semantically, this is the correct schema. On the other hand, Dfloor may be a useful shorthand for
generating schema projections. The nature of this extension has not been worked out and is
reserved for future research.

9.5.5. Constraint Arcs

In addition to ID and Property arcs, we used the Ordered-By arc for sequence constructors. This is
a special case of a constraint arc. A future extension would change Ordered-By arc to a generalized
constraint arc, where it can be sourced from any other Object-Type. For example, an Ordered-By
arc that is sourced by an object not directly connected to the Sequence constructor. It is an open
question whether orthogonality can be maintained, i.e. is there a combination of contexts that pre

141

9. OBJECT MODEL SUMMARY

clude a constraint arc’ This is similar to the previous problem of attaching “unrelated” Object
Types.
9.5.6. Additional Constructors

Now that a framework for building constructors has been erected, we can explore other construc
tors. Certain constructors are implicitly defined by our core constructors. For example, a Relation
ship constructor is subsumed by the Composition constructor and the Subset is subsumed by
Inheritance. However, if relationship or subset constructors have clearly distinguishable semantics,
then these can exist as independent, primary constructors.

Certain constructors can be modelled by using the core constructors. For example, a Bag construc
tor can be built from a Set of a Composition, where one element of the composition is its multiplic
ity and the other element is the actual ID component to the Bag:

BagOfElem
Implementation

of a Bag

size
Element size

Element

Therefore, a method for constructor extension is by defining partial schema, i.e. a new constructor
is instantiated by placing its source objects in the places defined by the partial schema. Although
some constructors can be defined by partial schema, it may be simpler to consider them as primary
constructors. For example, Queues and Stacks can probably be considered as primary than struc
tures containing a mixture of Sequence and Composition constructors.

There is also a need for domain specific constructors. For example, a statistical cross-product or
subject-term constructor will be useful in population and classification studies. Constructors that
relate spatial values would be useful in CAD/CAM databases. These are reserved for future
research.

9.5.7. Cyclic ID's

In Section 7.8.3, we concluded that Object-Type cycles on ID arcs are ambiguous and undefinable.
However, if we now consider the possibility that the ID of an instance is determined by the path
(graph) of the instance association links, then the cycles are permitted. In this extension, identity

142

9. OBJECT MODEL SUMMARY

of an instance is graph based and can be uniquely determined. If so, then ID() has to be redefined
as the instance graph that is traced out by descendent components and instance association links
(both associative and IS-A). This possibility remains to be analyzed.

9.5.8. Instance Equivalence → Property Relationship

The Fundamental Relationship is based on ID equality to determine Property equality. We can
change this relationship to instance equivalence instead of ID equality. The resultant relationship
will permit instances with the same ID value, but with different identities due to different contexts,
to have different Properties. This extension addresses the problem of assigning unique annotations
to sequence and set elements.

143

10. DESIGN OF A QUERY PROCESSOR

PART III. EXTENSIBLE OBJECT QUERYLANGUAGE

Part III of this work will be concerned with a demonstration of the Extensible Object Model. We
will implement a query processor for a language, named the “Extensible Object Query Language”
(EOQL), that features the main properties of the EOM. Chapter 10 discusses the design criteria for
the query language and its processor. Chapter 11 is a user reference manual for the query language.

CHAPTER 10. DESIGN OF A QUERY PROCESSOR
A query language provides access and modification to a database based on the data model. The data
model provides a certain amount of abstraction, which removes the user from the detailed knowl
edge of the database implementation. The query language should also maintain this abstraction and
information hiding. This goal is identical to any other computer languages. For example, assembly
language replaces address references with labels and effectively hides the need to know about
absolute addresses. Higher languages, such as Pascal and C, hides the details of control flow, space
allocation, and register arithmetic. A query language for EOM should hide the implementation
details of the constructors and context dependency.

There are many aspects to a query language design [6]. However, in the context of this work, we
are only interested in providing a core language that demonstrates the main features of the EOM.
Therefore, the design criteria we chose may not be the ones to use for another environment, e.g.
commercial. A query language has two components: data definition and data manipulation.
10.1. Data Definition Criteria

All query languages provide a syntax to specify schemata for databases. Although the EOM is
specified graphically in Part II, a lexical grammar will be given. In particular, the EOQL will sup
port the specification of:

(1) Definitions by Implementation and Alias,

(2) Definitions by Constructors,

(3) ID and Property Components, and

(4) Context Dependencies
10.1.1. Model Extensions

Since the EOM is an extensible model, the language should also be extensible. Therefore, the
grammar must be organized so that new constructors and contexts can be added to the language
gracefully.

10.1.2. Storage Directives

In Part II, the conceptual model was explored in depth, from which a location abstraction was

144

10. DESIGN OF A QUERY PROCESSOR

defined through the use of instance association diagrams. However, there is insufficient informa
tion to map the location abstraction to real, physical database locations. This mapping is important
for performance optimizations. Therefore, in the EOQL, the language is extended with storage
directives. In real world databases, these directives would include access methods, indices, explicit
clustering, etc.. However, we will only provide three storage directives to be assigned to construc
tor components, similar to the assignment of context dependency. These directives are orthogonal
to the EOM constructs and they are listed as follows:

(1) Direct
The information content of the component instance is stored with the target instance. In pro
gramming languages, this is equivalent to packing a value in a record, i.e. the field in the
record holds the actual value.

(2) Indirect

The information content of the component instance is stored elsewhere, i.e. independent of
the target instance. In programming languages, this is equivalent to packing a “pointer” in
a record, i.e. the field in the record holds a reference to the actual value. In relational data

bases, this is similar to the use of a foreign key.

(3) Virtual

The information content of the component instance is not stored in the database. It is cre
ated from context information by the query processor or by procedures.

The EOQL grammar will include these storage directives for the underlying system. Since these
directives are part of the implementation strategy, they must be separated from the conceptual
schema. Grammatically, this can be done by separate statements or by enclosing storage tokens in
special markers.

- º

*

-
-*

S
º

145

10. DESIGN OF A QUERY PROCESSOR

10.2. Data Manipulation Criteria
The data manipulation component of a query language has to handle changes in the state informa
tion of a database and manage information flow for the user in a local session. Four main criteria
stands out: declarative nature, state information, control flow, and operations.
10.2.1. Declarative Nature

Since the development of SQL for the relational model, other query languages have been compared
to its declarative approach that allows the user to specify “what” a query is and not “how” to do it.
The main aspect to this declarative nature of SQL is the abstraction of the selection process. SQL
provides a single selection statement: “SELECT ... FROM... WHERE ...”, which hides the details
of access methods and selection strategies. The advantage of this approach is that storage imple
mentations are effectively hidden from the user and the maintenance of applications is simplified
when the underlying storage methods or strategies are changed. The EOQL will also use the declar
ative approach, by providing an abstraction for the selection process. However, the EOQL
SELECT command is not considered as an operator which returns a value (set of tuples), therefore,
it could not be used in a nested selection.

10.2.2. State Information

In conjunction with the declarative approach, SQL also removed dependency on state information
inside a query. The virtue of stateless query is the fact that it can be invoked anytime. However,
this removal of state information places two burdens on the user. The first burden is that a user need
to represent a query strategy as a stateless SQL statements. The second is, in some situations,
domain complexity may force the user to reconstruct state information by using temporary tables
and tuples. Consequently, many SQL extensions include variables to hold state information
[30,63]. The EOQL will also provide variables.
10.2.3. Control Flow

Secondary to state information is control flow, i.e. the only useful purpose for state information is
to have an impact on the next operation. Basic SQL does not provide control flow, but many exten
sions do. The EOQL will also provide basic control flow capability. Control structures allow the
user to specify “how” and not “what” and, therefore, this seems antagonistic to the declarative
approach. In fact, they are independent features, because the control flow specification occurs at a
level above the access methods, i.e. control flow in the EOQL is domain driven, not implementa
tion driven. In addition, control structures provides a popular model for users to phrase their
domain-specific queries.

10.2.4. Operations

The simplicity of the relational model permits all the operations to be defined on the “relation” type

146

10. DESIGN OF A QUERY PROCESSOR

alone. Consequently, the result of one operation can be used in any other operation, e.g. one can
embed a SELECT command whereever a tuple set (relation) is used. Since the EOM has different
constructors, operational uniformity of the relational model cannot be enforced, i.e. there are oper
ations that are meaningful in one constructed type but not in another. In fact, each constructor
defines a set of generic operators for any instances derived from that constructor. These construc
tor-specific operators are well-defined and their implementations can be hidden, but they cannot be
used in arbitrary combinations.

A core set of the constructor-specific operators will be provided by the query language. In addition,
the EOM allows each Object-Type to specify operations from the domain semantics, which are out
side the model. The query processor will provide hooks to access these domain-specific operations.

10.2.5. Strongly Typed

The EOQL will be strongly typed, i.e. every statement is verified for consistent type usage prior to
execution. Although we will not pursue the development of a query compiler, type checking is one
of the fundamental components to building a compiler. The advantage of type checking for a query
interpreter is the prevention of potentially dangerous results.

147

10. DESIGN OF A QUERY PROCESSOR

10.3. Implementation Criteria
The previous design criteria are for the query language itself, i.e. the features that language should
have. However, it is the query processor that implements the operations defined by the language
and it is the query processor that changes information in the database. Associated with design cri
teria of the EOQL, there are also design criteria for the Extensible Object Query Processor
(EOQP).

10.3.1. Physical Independence
-

The EOM is a conceptual model and consequently, EOQL should be a conceptual language. There
fore, EOQP should remain independent of the implementation of the database. In fact, with the
abstract location defined by instance association diagrams, one can build EOQP on top of any set
and tuple-based database engine. For this particular demonstration, we have chosen Sybase DBMS
with binary large object support as the underlying database engine. However, the code for EOOP
should be designed so that one can replace the Sybase DBMS with another relational engine or an
Object-Oriented database engine with minimal code reworking.

10.3.2. Domain Specific Operators

Since the EOM permits domain specific operators, the query processor must be organized so that
users can define their own operations and integrate it into the QP. It is assumed that the user-defined
operators are robust and free of side-effects because it is nearly impossible to verify this require
ment independently. Therefore, the user is responsible to maintain and correct any errors in their
operators.

148

10. DESIGN OF A QUERY PROCESSOR

10.4. Design Limitations
Because this implementation is just a demonstration of the EOM, not all features associated with
a complete query language will be available. The limitations are listed below.
10.4.1. Constructors

Only Composition, Set, and Sequence constructors are implemented because of their direct appli
cability to the HGP. Inheritance and Union constructors are reserved for future development. In the
EOQL, one can specify Inheritance and Union constructions. However, they can only be used as
Composition constructions, i.e. the semantics of IS-A is not implemented.

10.4.2. Primitive Types

Only a few primitive types are supported: integer, float, and character string. In addition, user spec
ified enumerated types are supported. Other types, e.g. boolean, date, and time, are reserved for
future development.

10.4.3. Types and Storage Directives

The supported interaction between types and storage directives is listed in the following tables:

Storage Directives

Direct Indirect Virtual

Primitive º: w/ w/

Component Enumerated V wº
Type Procedural v'

Constructor (see text) V v'

ID component to Set and Sequence constructors can be Direct if the ID component is of fixed size
and target dependency is Local. Set or Sequence Object-Types whose the ID component is target
Global and peer One are not supported. These are secondary to the current implementation of Set
and Sequence constructors. In addition, context dependency are not verified for virtual compo
mentS.

149

10. DESIGN OF A QUERY PROCESSOR

10.5. Backend Limitations

The choice of Sybase DBMS with binary object support as the underlying system also creates some
limitations.

10.5.1. Object-Type to Relational Mapping

The mapping of constructed Object-Types is straightforward:

(1) All non-Virtual components are mapped to a column, using the same name. For the Set and
Sequence constructor, the ID component is mapped to a Sybase Image data type with the
name “ set” and “ sequence”, respectively. Primitive data types are mapped accordingly.
Components which are constructed are mapped to their object id (integer).

(2) An Object ID and Context_ID column are added. They will hold the object id and context
id (for Shared context), respectively.

(3) If the constructor is of an IS-A type, the a Valid column is added. This determines which
ID sources are present.

(4) If the constructor is Set or Sequence, a Length and Hash column are added. The Length col
umn holds the count of elements in the set or sequence instance. The Hash column holds a
hash value for faster lookups.

10.5.2. Object_ID and Context_ID Generation
Since Sybase DBMS does not provide unique row idor tupleid, we are forced to create and manage
our own ids. A separate ID daemon is built to supply ID's for Object_ID and Context_ID columns.
Object_ID is always unique. Context_ID is an ID for the set that contains the instance, this is used
for Shared context dependency to determine identity. We do not “garbage collect” discarded ID
values in this version. A simple but effective algorithm for managing Context_ID is as follows:

(1) Upon insertion, an instance is given a new object id from the ID daemon

(2) If it is global, its context is set to 0.
If it is local, its context is set to its parent's object id.
If it is shared, its context is looked up by the ID daemon for the combination of

[parent's type name, parent's context id)

(3) The combination of [instance's type name, instance's context id) is assigned a unique con
text id for future reference.

Since ID's are assigned only when the instances are added to the database, this is the only time
when new ID values are used up. For lookups and identity determination, only Step (2) is needed.

10.5.3. Binary Large Object (BLOB) Support

All the instances that forms a Set or Sequence instance is packed inside a Sybase Image data type.

150

10. DESIGN OF A QUERY PROCESSOR

For components with fixed size storage, a Direct storage is feasible. In this situation, the values of
the elements are packed into consecutive bytes of a block in the image data. When accessed, this º
block of bytes is unpacked into an element instance. For elements with variable size storage, e.g. -]
has components which are character strings, sets, or sequences, only Indirect storage is possible. 2 ”

In this situation, only the object id is stored in the image data. When accessed, the id is retrieved **

and another retrieval to the relation holding the elements is made.

These methods are rudimentary but simple. Clearly, with image data type, one can construct * |

embedded indices, along with the data, to improve access and hold variable size elements. How- –
ever, the current version of EOQP is only concerned with correct operations and not performance. º sº

*-

-

M

4.
7 º

º

151 (

11. QUERYLANGUAGE REFERENCE

CHAPTER 11. QUERYLANGUAGE REFERENCE

The Extensible Object Query Language is separated into four parts: administration, data definition,
instance manipulation, and selection/control flow. We will provide a description of each of these
parts for the Extensible Object Query Language. The full grammar is given in Appendix D.

11.1. Notations

We will use the following formats for describing the formal language:

KEYWORD - keywords of the EOQL are denoted in upper-case letters.

name - names are denoted in lower-case letters, they are user supplied.

token - a token has additional structure, e.g. see Scoped name.

- ellipsis is for repetition of the previous construct

XYZ - underline encloses optional phrase

Each formal language token can be entered into the query processor in different ways:

KEYWORDS - they can be entered in either upper or lower case letters.

I■ lalºne - any character strings, other than keywords, that start with an alphabetic
character: a-z, A-Z, and “ ” (underline). They may include either alphabetic
or numeric characters: 0-9.

The commands are first described with the formal notation. Then examples of usage are shown
using the actual notation.

152

11. QUERYLANGUAGE REFERENCE

11.2. Expressions
A basic feature of the EOQL is the construction of expressions for data modification or control
flow.

11.2.1. Values

Basic values in the EOQL can be of integer, float, or string type:

value = integer
|float
| string

The vertical bar ‘l’indicates an alternative using the standard BNF notation. Integer and floating
values are based on the underlying architecture. Typically, they are four bytes wide. Floating point
value conversion is also dependent on the underlying architecture.

Examples:

12 - integer value 12
123.45 - floating point value that corresponds to 123.45
"test." - string value of “test”

-

A string can enclose “” (double quote) by escaping them with ‘N’ (backslash). For example: "a
\"newV" world".

11.2.2. Variables

A variable or instance is referenced as follows:

scoped name = name

| func_name (expression. ...)
| scoped name.name
| Scoped name.func_name (expression. ...)

The ellipsis “...” denotes zero or more expression's. If the function does not expect any argu
ments, then they are optional.

Examples:
Person - Person instance

Person. Age - Age instance in Person instance
Dept. Manager. Age - Age instance in Manager instance in Dept instance

add (5,4) - Add 5 and 4

Person. Age. increment ()
- Increment Person. Age

153

11. QUERYLANGUAGE REFERENCE

11.2.3. Expressions

An expression is composed of binary operations on values and variables:

expression = scoped name
| value
| expression binop expression
|- expression
| (expression)

A binop is an arithmetic operator: +,-, *, and /, which stands for addition, subtraction, multipli
cation, and division, respectively.

Examples:
3 + 5 - add 3 and 5

Person. Salary * 1.2 - add 20% to Person's Salary instance
2 + length (dnaseq) - add 2 to length of dnaseq
dnaseq.length () / 2 - divide the length of dnaseq by 2

A boolean expression is used in control flow:
condition = condition OR condition

| condition AND condition
|NOT condition
| (condition)
| expression boolop expression

A boolop is a comparator: < , », and = , which stands for less than, greater than, and equal to,
respectively.

Examples:
3 > 5 - returns False

length (dnaseq) > 5 - returns True if length of dnaseq is greater than 5
(Person. Age & 40) AND (Person. Salary = 40000)

- returns True if Person's Age is less than 40 and
Salary is equal to 40000

154

11. QUERYLANGUAGE REFERENCE

11.3. Administration

These commands are mainly directed at the backend of the EOQP i.e. Sybase DBMS. Since this
is implementation specific, certain limitations are visible here.

11.3.1. Start-Up

Sybase start-up requires a password for each user, this is maintained in the EOQP.
11.3.2. Database Creation and Destruction

CREATE DB db_name ;

DESTROY DB db_name:

If the user has the correct privileges, then he can create and destroy databases.
11.3.3. Default Database

USE DB db_name ;

This sets the default database to db name. Subsequent operations goes to the database db name,
until the next USE DB command.

Examples:

CREATE DB test ; creates a database named “test”

USE DB test ; sets the default database to “test”

DESTROY DB test ; destroys the database named “test”
11.3.4. Direct Backend Access

BYPASS string ;

This allows direct command submission to the backend. The string enclosed in double quotes is
sent without modification.

Examples:

BYPASS "sp_help" ; asks for help from Sybase
BYPASS "select k from test" ;

sends the SQL query “select *from test” to the backend

11.3.5. Table Management

The EOQP maintains several tables. They can be viewed by:

DISPLAY pool;
DISPLAY pool name ;
DISPLAY pool string ;

The value for pool is TYPE, FUNC, VAR, or VALUE. The DISPLAY command reports on the
defined types, functions, variables, and values, respectively. The String is used for regular expres

155

11. QUERYLANGUAGE REFERENCE

sion selection of table entries for output. A special case exists when pool is VALUE and the string
format is: "name:start-end". This only prints the values from start to end in the value buffer.

Examples:

DISPLAY TYPE ; display all the type definitions
DISPLAY FUNC compl ; display the function definition of compl
DISPLAY WAR "*a" ; display all variables with names that start with ‘a’
DISPLAY VALUE "integer:3–5" ;

display currently used integers in buffer 3 to 5.

11.3.6. Scripts

The EOQP can read in a previously stored script:

READ string ;
The string determines the filename of the script. At this point, the EOQP process the commands in
the designated file. It returns after the end of file is reached.

Examples:

READ "define_all” : read the EOQL script named “define_all.”
11.3.7. Comments

Comments

Comments are any text that follows a ‘H’ character and up to the next line, except when they occur
in strings.

Examples:

count is 0 - COmment

count = count + 1; # increment count
- the increment command followed by a comment

-

156

11. QUERYLANGUAGE REFERENCE

11.4. Type Definition
11.4.1. Primitive Types

INTEGER, FLOAT, and STRING

The basic types are given above. They should be considered as keywords.

11.4.2. Implementation

DEFINE name IS IMPL BY impl name ;
DEFINE name IS IMPL BY PROC func_name (type name. ...);
DEFINE name IS IMPL BY ENUM : enum label, ...;

An Object-Type can be implemented by another Object-Type. In this case, the Object-Type name
has the same structure as the Object-Type impl name. An Object-Type can also be implemented
as a function, then accessing an instance of this type is equivalent to calling the defined function.
Finally an Object-Type can be an enumeration. Enumeration labels can be either name or string.
Enumerated types are equivalent to primitive types. A special type_name for the function is the
string "..." (ellipsis in quotes), this represents an indeterminate number of arguments.

Examples:

DEFINE position Is IMPL BY INTEGER ;
Type position is structurally similar to INTEGER

DEFINE length IS IMPL BY seq_length ("... ") ;
Type length is the function seq_length that takes an indeterminate
argument.

DEFINE base IS IMPL BY ENUM: A, C, G, T, Pu, Py, N. ;
Typebase is an enumeration.

11.4.3. Aliasing
DEFINE name IS ALIAS OF alias_name;

An Object-Type can be an alias of another Object-Type, i.e. the instances of this type are actually
from the aliased type.

Examples:

DEFINE manager Is ALIAS OF person ;
Type manager is really type person

º
º

157

11. QUERYLANGUAGE REFERENCE

11.4.4. Construction

DEFINE name IS Constructor

{
ID Comp_name : target. Source, peer [storage l;

PROPERTY comp_name: target. Source, peer Istorage l;

ORDERD BY Scoped name: target. Source, peer I VIRTUAL] ;
};
Constructor is COMPOSITION, SET, SEQUENCE, INHERITED, or UNION

target is LOCAL, SHARED, or GLOBAL
SOUrCe is REOUIRED or NONREQ

peer is ONE or MANY

Storage is DIRECT, INDIRECT, or VIRTUAL

The “...” after ID and PROPERTY components indicate that more of them can be specified.
PROPERTY components are not required. For the SET and SEQUENCE constructors, only one
ID component is allowed. However, for the UNION constructor, at least two ID components are
needed. The order of component specification is not important.

Only one ORDERED_BY component can be specified with the SEQUENCE constructor.
Although it is specified with scoped name, it should be either ID_name, comp_name, or
|D_name.comp_name, where ID_name is the name of the ID component and comp_name is
a component under the ID component. Since the ORDERED_BY component is a constraint, its
context dependencies are ignored and its storage directive should be VIRTUAL.

Context dependencies default to LOCAL, NONREQ, and MANY. Storage directive defaults to
INDIRECT.

Examples:

DEFINE posbase IS COMPOSITION

{ ID position : REQUIRED, ONE [VIRTUAL] ;
ID base : REQUIRED, ONE [DIRECT] ;

} ;

DEFINE dnaseq IS SEQUENCE

{ ID posbase : REQUIRED, ONE [DIRECT] ;

ORDERED_BY posbase. position I VIRTUAL] ;
PROPERTY length [VIRTUAL] ;

.

158

11. QUERYLANGUAGE REFERENCE

PROPERTY complement I VIRTUAL] ;
} :

DEFINE ds_dna Is composition
{ ID dmaseq : SHARED, REQUIRED, ONE [INDIRECT] ;

PROPERTY source : GLOBAL, NONREQ, ONE [INDIRECT] ;

PROPERTY mapped : LOCAL, NONREQ, ONE I DIRECT] ;
} :

The first example defines a positioned-base. Note that the position component is virtual. Therefore,
it is not stored in the database. This is a special case where the sequence operators will fill the posi
tion value based on the context of the positioned-base instance. The second example defines a sin
gle stranded DNA sequence, made of positioned-bases. The properties of length and
complement are procedure types, to be defined elsewhere. The third example defines a double
Stranded DNA.

11.4.5. Undefine Types

UNDEFINE type_name ;

This will allow one to undefine an Object-Type. If the type holds existing variables (see Section
11.5.1), then this command will not complete.

11.4.6. Storage for Types

CREATE STORE type_name ;

DESTROY STORE type_name:
The definition of Object-Types is not sent to the backend (Sybase) until explicit storage creation.
This command will recursively create all component types if they are also constructed. If the back
end already have an existing instance store (relation) with the same name, this command will not
complete.

159

11. QUERYLANGUAGE REFERENCE

11.5. Instance Manipulation
11.5.1. Variable Creation and Destruction

CREATE VAR var name IN scoped name;
DESTROY VAR var_name ;

These commands create and destroy variables, which are instances of a given type, but they exist
only in the query processor and not in the permanent store. The scoped name is either nested
type_name's, which traverses the type definition, or it can start with a variable name. In the
former case, var name is simply a variable of the last type_name encountered. In the latter case,
var name is a variable to a descendent component of the first variable in scoped name. Variable .
destruction is transitive, i.e. any variables dependent on the destroy one will also be destroyed.

Examples:

CREATE war x. In ds_dna ;
Variable x is an instance ds_dna in local session

CREATE VAR y IN ds_dna. dnaseq :
Variable y is an instance of dnaseq

CREATE VAR z IN x. dnaseq ;
Variable z is the instance of dnaseq in x

DESTROY WAR x ;

Variables x and z (if created by the previous statement) are
destroyed

11.5.2. Storage Effects

INSERT scoped name;

UPDATE scoped name;

DELETE scoped name;

In order to change the state of the database, we use the above commands. The scoped name is
used as a reference to the actual instance that will be operated on.

Examples:

INSERT d. manager ;
insert the instance referred by d. manager into its collection.

UPDATE p. age ; update the value of age in instance p.

DELETE x. dnaseq :
delete the instance reference by x. dnaseq from its collection.

If the instance references by Scoped name is an ID instance of a Set or Sequence instance, then

160

11. QUERYLANGUAGE REFERENCE -

the Set or Sequence instance value will be affected.

Example: º
CREATE VAR x in dnaseq ; º
. . . # fetch an x instance

-

CREATE VAR y in x. posbase ; **.

. . . # build a value of y
INSERT y :

This will cause y to be inserted into the sequence referenced by x and the instance of y will be
inserted to its collection. Therefore, the instance x is also affected by this command.

11.5.3. Printing Values

OUTPUT expression, ...;
- - - - - -

º

This statement prints the expressions in order. The format is based on the type of the expression: A
2.

Type Output ~

TaW the string, without quotes
- -

string

calculated the calculated value, strings are quoted 2.
value

comma separated component instances:
-

Constructed if primitive — the actual value º
if constructed — the object id -

semicolon-separated elements in braces, “{}” * =

Set value if direct — the actual value(s) A
if indirect — the object id

semicolon-separated elements in angle brackets,sequence value | . .
-

s
<>”, otherwise the same as Set a.

Examples:

OUTPUT "the answer to 3 + 4 is " , 3 + 4 ; M

prints: the answer to 3 + 4 is 7 A.

OUTPUT x ; ;
prints: 243 , 345 , False

OUTPUT x. dnaseq ;
prints: < a ; c : g : t , c > -

OUTPUT x. dnaseq. dna2str () ;

161 |

11. QUERYLANGUAGE REFERENCE

prints: "acgto."

11.5.4. Value Assignment

scoped name = expression;

scoped name := expression;

To effect changes in variables, we have value copy (“=”) and instance assignment (“:=”). In both
situations, if the instance referenced by Scoped name is a primitive type, only the value is copied
to the destination, and if the instance is a constructed type, then all the component values are copied
to the destination. The object id and context id values are copied only if it is an assignment.

Examples:

x = y : copy y value to x

x := y : assign identity of y to x and copy y value to x

p. age = 50 ; copy the value 50 into p. age

p. age := 50 ; copy the value 50 into p. age

162

11. QUERYLANGUAGE REFERENCE

11.6. Selection and Control Flow

11.6.1. Selection Statement

FOREACH

var name IN scoped name,

WHERE (condition)
PERFORM statement ;

This is the select operation for instance collections. The ellipsis, “...”, indicates multiple variables
can be iterated in one statement. The Scoped name is identical to the one used for variable cre
ation (Section 11.5.1). The statement is executed for every combination of instances that satisfy
the WHERE clause. If the WHERE clause is not specified, then the statement is executed for all
1nStanceS.

Examples are:

FOREACH p IN person

WHERE (p. age - 40)
PERFORM OUTPUT p ;

FOREACH ph IN x. dnaseq
WHERE ("c" = base2str (pb.base))
PERFORM count = count + 1 ;

FOREACH m IN dmaseq , n in dnaseq
WHERE (overlap (m , n) > 5 AND NOT (m = n))
PERFORM OUTPUT m , n :

The first example prints out all Persons whose age is greater than 40. The second example counts
the number of c's (cytosine) in the DNA sequence of x. The third example prints all pairs of distinct
DNA sequences whose overlap is greater than 5.

11.6.2. If-Then-Else Statement
-

IF (condition) statement ; ELSE statement :
The Standard If-Then-Else control flow.

11.6.3. While Statement

WHILE (condition) statement;
The Standard While control flow.

11.6.4. Compound Statement

statement = { statement ;... }

C
*

º

163

11. QUERYLANGUAGE REFERENCE

This permits multiple statements to be executed as a unit for the selection or the control flow state
mentS.

Examples:

FOREACH p IN person
WHERE (p. age & 40)
PERFORM

OUTPUT "Person is " , P. name , " in dept ", p. dept. name;
count = 0 ;

FOREACH c IN p. children
WHERE (c. age - 3)
PERFORM count = count + 1 ;

OUTPUT "number of children > 3 years is ", count :
} ;

This prints all the persons who are younger than 40 years old, the department they worked in, and
the number of children greater than 3 years old.
11.6.5. Other Flow Control

BREAK;

CONTINUE ;

EXIT ;

These allow redirection of control flow. BREAK will terminate the execution of any compound
statement in a selection or control flow statement. This implies the termination of FOREACH and
WHILE statements. CONTINUE will restart the execution of the compound statement. In the
FOREACH statement, the next instance combination satisfying the WHERE clause will be
fetched and in the WHILE statement, the condition is checked to see if another round of execution
is warranted. EXIT will terminate the session.

164

11. QUERYLANGUAGE REFERENCE

11.7. Operators
The query processor will support a basic set of operators for the primitive and constructed types.
All of these can be accessed as prefix function calls, e.g. f (a,b), or if the first argument is a
Scoped name, as infix function calls, e.g. a. f(b).

11.7.1. Primitive Types

Numeric operators for integer and floating point values:

add(value, value) - add two values

Sub(value, value) - subtract the Second value from the first

mult(value, value) - multiply two values
div(value, value) - divide the first value by the second
neg(value) - negate the value

scoped name can also be used if the referenced instance is implemented by a primitive type. If
needed, these operators will promote integer to float prior to execution.

Comparison operators for integers, floats, and strings:

gt(value, value) - returns true if the first value is greater than the second
It(value, value) - returns true if the first value is less than the Second

equal(value, value) - returns true if the first value is equal to the second

The result for strings is based on standard lexicographic ordering.

Standard boolean operators:

and(bool value, bool value)- returns true if both values are true
or(bool value, bool value)- returns true if either values is true
not(bool value) - returns true if the value is false

They only operate on boolean types derived from a result of a comparison.

All these operators have an infix binary operator described in Section 11.2.3.

Examples:

add (4 , 3) returns 7

add (4 , 3.5) returns 7.5, 4 is promoted to 4.0 prior to addition
div (3 , 0) returns error

gt (*abc" , "abd”) returns false
or (equal (x, y) , lt (3, 4))

returns true

11.7.2. Constructed Types

The following operators applies to all constructed instances:

J

:

º

165

11. QUERYLANGUAGE REFERENCE

equal(scoped name, scoped name) - returns true if instance values are equal
equiv(scoped name, scoped name) - returns true if they are the same instance

Examples:

equal (x , y) - returns true if x equal y
equiv (x , y) - returns true if x is y

11.7.3. Set and Sequence Operators

To affect change in a set or sequence instance:

insert (set or seq., scoped name) - insert instance into a set or a sequence
update (set or seq., scoped name) - update instance in a set or a sequence
delete (set or seq., scoped name) - delete instance from a set or a sequence

These operations will not flush the scoped name instance to its collection store, unlike the
INSERT, UPDATE, and DELETE commands. The distinction is very important if scoped -
name is a transient indirect instance. This characteristic is subject to change in future versions.

Sequence specific operators are:

length (sequence) - returns the length of sequence
concat (sequence, sequence) - concatenate two sequences
range (sequence, start position, end position)

- returns subsequence
index (sequence, position) - returns element at position
append (sequence, element) - append element to sequence
overlap (sequence, sequence) - find maximal overlap position

The append() will affect the sequence, i.e. it modifies the argument sequence. All others returns
a copy of the value. They can also be applied to character strings, except for index() and append(),
since the type CHAR is not supported.
Set specific operators are:

union (set, set) - returns the union of two sets

diff (set, set) - returns the difference of the first set from the second

intersect (set, set) - returns the intersection of two sets

issubset (set, set) - returns true if the second set is a subset of the first

ismember (set, element) - returns true if the element is in the set

Examples:

insert (dnaseq , x) insert x into dnaseq based on position in x
length (x) returns the length of x
x. concat (y) concatenates x and y, using infix function call

º

-

166

Conclusions

Conclusions

Review

This thesis has three major parts: 1) sequence modelling for Human Genome applications, 2) gen
eralized conceptual object modelling as a framework to incorporate sequence models, and 3) a
query language for the above models and their implementations.

The purpose of Part I is to provide an understanding of the structure of sequences encountered in
the Human Genome Project (HGP) and operations over them. In addition to traditional data types,
the HGP also produces a large amount of information as sequences. Therefore, a first step in build
ing genomic databases is to understand the nature of this sequence information. The informatics
requirement and the biology of the HGP are described in Chapter 1.

As described in Chapter 2, there is no consensus on how to model sequences from current data
models. Therefore, we started with the most primitive and abstract sequence model: a set of
ordered pairs, with one component being the position and the other component being the content.
The next step was to characterize the real world types for position, which were characterized in
terms of their metric, granularity, and atomicity properties. Then, by analyzing the real world inter
actions of these position characteristics, we added semantic operations to the sequence model. This
provided a framework of the basic sequence model. We followed that, at the end of Chapter 2, with
the definition of some abstract sequence operations using only the equality operation provided by
the content type.

In Chapter 3, we verified the expressiveness of the sequence framework by using it to model the
basic types of sequences found in the HGP In addition, we built new operations specific to the HGP
by using operations derived from domain semantics, such as the complement and match cut oper
ations. Finally, in Chapter 4, we summarized our sequence model results and concluded with
remarks for future extensions to the framework.

Part II of this work dealt with generalized conceptual data modelling. For the HGP, the primary
reason for developing a new data model was the ability to integrate the sequence framework
defined in Part I. Another reason was the fact that a conceptual model is the easiest form for porting
an existing database to new database technologies. Because of the long life-time of the HGP, data
base technology will invariably evolve over time. Therefore, porting of genomic databases can best
be done at the conceptual level, similar to porting programs written in high-level vs. low-level lan
guages. External to the needs of the HGP, an objective of this model was to bring forth a new
approach to conceptual modelling. This was embodied in its information flow perspective and its
extensible nature. In addition, this model was developed with the potential as a conceptual model
for Object Oriented (OO) DBMS.

167

Conclusions

In Chapter 6, we defined the basic tenets of the Extensible Object Model. It includes the definition
of Object-Types and Instances. In Chapter 7, Object-Type constructors were defined to provide
semantic richness. These gave the ability to encapsulate multiple distinct information units into a
single unit. Specifically, it provided a framework for defining complex objects that have multiple
components (information units), some of which can be complex as well. In Chapter 8, context
dependencies were defined to manage semantic integrity. These provided the ability to specify con
straints for instances at the type level. The result was a rich conceptual model that is highly uniform
and orthogonal in the sense of increasingly richer layers of object structures and their semantics
(see further discussion on this point in the section “Common Themes” below). Furthermore, a
graphical representation was given to simplify schema design and improve its comprehensibility.
In addition, the concept of physical locality has been abstracted by the use of instance association
diagrams. This allowed the EOM to be implemented on top of any primitive database engine, with
out sacrificing its semantic richness and power. In Chapter 9, the EOM was compared with other
data models and the previously stated goals in Chapter 5. Finally, various extensions were infor
mally discussed for future research.

The main focus of Part II has been the data definition component of the EOM. As with all models,
the EOM is incomplete without a data manipulation language. The third part of this work was to
show that a working query language (EOQL), based on the EOM, can be developed. Therefore, we
designed a query language that contained the major features of the EOM and implemented the
query processor (EOQP) for such as language. Since this was only meant as a demonstration of the
features unique to the EOM, the language did not include many features common to all query lan
guages, such as transaction management. These design criteria and limitations were discussed in
Chapter 10. A commercial DBMS, Sybase, was chosen for the backend engine to implement the
instances. In Chapter 11, we briefly described the major language constructs and provided example
usage.

Below we discuss briefly features of the sequence model, the object model, the query processor,
and common themes between the sequence and object models.

The Sequence Model
The construction of the sequence model framework is an initial step in the unification of many dif
ferently named, but related sequence constructs in separate application domains. This unification
removes the burden of reinventing the sequence model for each domain specific database model.
Since this framework is at the conceptual level, it properly hides the implementation of the
sequence operators. Consequently, the user only has to model domain concepts and not be coerced
into specific constructs by implementation details. For example, research in temporal data model
ling often deals with optimizing its operations for the relational implementation. However, as

168

Conclusions

newer database technologies evolve, the strategies discovered in the relational implementation
may not be applicable. On the other hand, a physical implementation of the model should not be
oblivious to these optimized strategies. Therefore, in our EOQP implementation for sequences, an
optimized temporal joins, for example, can be used for the operator SEQ_APPLY() if the imple
mentation was on top of a relational system.

The Object Model
The EOM was constructed with OO principles in mind. However, borrowing OO concepts does
not mean we have to bind the model to a specific OODBMS. Therefore, the resultant conceptual
model was independent of any specific OODBMS, but still provides the “feel” of an OO model.
Because of the its semantic richness, this model also subsumed many features from the traditional
and semantic data models. In addition, it also extended certain abstractions to a higher conceptual
level, e.g. context dependencies. Consequently, the EOM can be used as a transition model for
evolving databases by first mapping the existing database schema to an EOM schema and then con
verting the EOM schema to the next generation database schema.

The Query Processor
Although the query processor was meant as a demonstration of the EOM features, it has many pow
erful constructs, such as functional overloading and procedural types. In addition, the query pro
cessor has a code frame that supports future extensions and has isolated the underlying database
engine. This is well suited for replacing the underlying engine, which will provide the opportunity
to test and compare new back-end technology, e.g. OODBMS, without reconstructing the front-end
programs. The EOQL and EOQP still lack some of the common features of query languages, but
these can be borrowed from available technologies.

Common Themes

Three common themes were present in Part I and Part II. The first theme is the separation of seman
tics from symbolics. In Part I, this was used to separate position values from its real world values.
In Part II, this was used to separate model constructs from real world objects. Both models employ
the use of semantic mapping functions that are defined by the application domain and not by the
model. This allows each model to work completely in the symbolic domain and yet retain its real
world characteristics.

The second theme is the framework for extensions. It is not realistic to think that one can build the

end-all model for all purposes and domains. Therefore, it is better to construct an extensible frame
work so that future additions can be made without redoing all the previous work. Both the sequence
model framework and the object model framework were designed to be extensible.

The third theme is the orthogonal layering of concepts. In Part I, three specific layers of sequence

169

Conclusions

models were built: order, simple and semantic. In Part II and Part III, three layers of object charac
terization were defined: constructor, context, and storage. Each outer layer is an elaboration of the
inner layer with more semantic information. Each inner layer is an abstraction of the outer layer.
The type of information abstracted at each level is independent of the other layers. This results in
modelling by successive refinement in both conceptual abstractions and conceptual objects.

While the specific models will find uses in their respective domains, the three themes for building
the models are much more crucial to the understanding of data model building. If applied appro
priately, they serve to create models that can gracefully evolve with both the application domain
and the underlying database technology. In addition, they create models that are simple to under
stand and easy to use.

170

Bibliography

Bibliography

Abbreviations Used:

DOOD Deductive and Object Oriented Databases
OOPSLA Object-Oriented Programming Systems, Languages, and Applications
SIGACT ACM Special Interest Group on Automata and Computability Theory
SIGART ACM Special Interest Group on Artificial Intelligence
SIGMOD ACM Special Interest Group on Management of Data
TODS ACM Transaction on Database Systems
TOIS ACM Transaction on Information Systems
VLDB Very Large Data Bases
ECOOPS European Conference on Object Oriented Programming Systems

1. Abiteboul, S. and Bidoit, N., “Non-First Normal Form Relations to Represent Hierarchically
Organized Data”. Proceedings of SIGACT-SIGMOD Symposium on Principles of Database.
Systems, p. 191-200, 1984.

2. Abiteboul, S. and Hull, R., “IFO: A Formal Semantic Database Model”. TODS, 12(4): 525
565, December 1987.

3. Albano, A., Ghelli, G., and Orsini, R., “A Relationship Mechanism of a Strongly Typed
Object-Oriented Database Programming Language”. Proceedings of VLDB 1991 Confer
ence, p. 565-575, September 1991.

4. Alberts, B., Bray, D., Lewis, J., Raff, M, Roberts, K, and Watson, J.D. Molecular Biology of
the Cell, 2nd Edition. Graland Publishing: New York, New York: 1989.

5. Agrawal, R. and Gehani, N.H., “ODE (Object Database and Environment): The Language
and the Data Model”. Proceedings of SIGMOD 1989 Conference, p. 36-45, June 1989.

6. Bancilhon, F. and Buneman P. Eds. Advances in Database Programming Languages. ACM
Press/Addison-Wesley: Reading, Massachusetts. 1990.

7. Barker, W.C., George, D.G., and Hunt, L.T., “Protein Sequence Database”. Methods in Enzy
mology, 183:31–49, 1990.

8. Batory, D.S., Leung, T.Y., and Wise T.E., “Implementation Concepts for an Extensible Data
Model and Data Language”. TODS, 13(3): 231-262, September 1988.

9. Beech, D. “A Foundation for Evolution from Relational to Object Databases”. Advances in
Database Technology - EDBT 1988, Lecture Notes in Computer Science, #303, p. 251-270.

171

Bibliography

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Springer-Verlag. Berlin, 1988.

Beeri, Catriel, “Formal Models for Object Oriented Databases”. Proceedings of DOOD 1989.
Conference, p. 405-430, December 1989, Elsevier: North Holland. 1990.

Bilofsky, H.S., Burks, C, Fickett, J.W., Goad, W.B., Lewitter, F.I., Rindone, W.P., Swindell,
C.D., and Tung, C.S., “The GenBank Genetic Sequence Data Bank”. Nucleic Acids
Research, 14(1): 1-4, 1986.

Bouzeghoub, M. and Metais, E., “Semantic Modeling of Object Oriented Databases”. Pro
ceedings of VLDB 1991 Conference, p. 3-14, 1991.

Brunn, C., personal communications. The Genome Data Base, Welch Library, John Hopkins
University, Baltimore, Maryland.

Burks, C., et. al., “Genbank: Current Status and Future Directions”. Methods in Enzymology,
183: 3-22, 1990.

Carey, M.J., et al., “The Architecture of the EXODUS Extensible DBMS’’. Proceedings of
Object-Oriented Database Workshop, p.52-65, 1986.

-

Carey, M.J., et. al., “The EXODUS Extensible DBMS Project: An Overview”. Readings in
Object Oriented Database Systems. Eds. Zdonik, S.B.and Maier, D., p.474-499, 1989.

Cattell, R.G.G., Object Data Management. Addison-Wesley: Reading, Massachusetts. 1991.

Chen, PPS., “The Entity-Relationship Model - Toward a Unified View of Data”. TODS,
1(1): 9-36, january, 1976.

Clemons, Eric K. “Data Models and the ANSI/SPARC Architecture”. Principles of Database
Design, Vol I: Logical Organizations. Ed. Yao, S.B. Prentice-Hall: Englewood Cliffs, New
Jersey. 1985.

Committee for Advanced DBMS Function, “Third-Generation Database System Manifesto”.
SIGMOD Record, 19(3): 31-44, September 1990.

Courteau, Jacqueline, “Genome Databases”. Science, 254:201-207, 1991.

Date, C.J. An Introduction to Database Systems. 5th Edition. Addison-Wesley: Reading,
Massachusetts. 1990.

Enderton, H., A Math ical In ion ic. Academic Press: Orlando, Florida.
1972.

Fickett, J.W. and Burks C., “Development of a Database for Nucleotide Sequences”. Mathe
matical Methods of DNA Sequences, p. 1-34. CRC Press: BocaRaton, Florida. 1989.

Frenkel, Karen A., “The Human Genome Project and Informatics”. CACM, 34(11): 41-51,
1991.

172

Bibliography

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Gogolla, M. and Hohenstein, U., “Towards a Semantic View of an Extended Entity-Relation
ship Model”. TODS, 16(3): 369-416, September, 1991.

Goldberg, A. and Robinson D. Smalltalk-80; The Language and Its Implementation. Addi
son-Wesley: Reading, Massachusetts. 1983.

Hammer, H. and McLeod D., “Database Description with SDM: A Semantic Database
Model”. TODS, 6(3): 351-386, September 1981.

Hull, R. and King R., “Semantic Database Modeling: Survey, Applications, and Research
Issues”. ACM Computing Survey, 19(3): 201-260, September 1987.

Informix-OnLine Programmer's Manual. Version 4.0. Informix: Menlo Park, California.
March, 1990.

Ingres/SQL Reference Manual. Release 6.3. Ingres: Alameda, California. January, 1990.

Jackson, M. A. Principles of Program Design. Academic Press: Orlando, Florida. 1975.

Joseph, J., Thatte, S., Thompson, C., and Wells, D., “Report on the Object-Oriented Database
Workshop”. SIGMOD Record, 18(3): 78-101, September 1989.

Kahn, P. and Cameron, G., “EMBL Data Library”. Methods in Enzymology, 183:23–31,
1990.

Kent, William, “Limitations of Record-Based Information Models”. TODS, 4(1): 107-131,
March 1979.

Khoshafian, S.N. and Copeland, G.P., “Object Identity”. Pr ings of OOP 1
-

ference, p. 406-416, 1986.

Kilov, Haim, “Reviews of Object-Oriented Papers”. SIGMOD Records, 18(4): 50-55, 1989.

Kim, Won, “Research Directions in Object-Oriented Database Systems”. Proceedings of
SIGACT-SIGMOD-SIGART 1990 Conference, p. 1-15, 1990.

Lander, E.S., Langridge, R., Saccocio, D.M., “Mapping and Interpreting Biological Informa
tion”. CACM, 34(11): 33-39, 1991 or IEEE Computer, 24(11):6-13, 1991.

Lawrence, C.B., “Data Structures for DNA Sequence Manipulation”. Nucleic Acids
Research, 14(1): 205-216, 1986.

Lecluse, C., Richard, P., Velez, F., “O2, an Object-Oriented Data Model”. Proceedings of
SIGMOD 1988 Conference, p. 424–433, 1988.

Liskov, B. and Guttag, J., Ab ion ification in Pr vel nt. MIT

Press: Cambridge, Massachusetts. 1986.

Lohman, G.M., Lindsay, B., Pirahesh, H., and Schiefer, K.B., “Extensions to Starburst:
Objects, Types, Functions, and Rules”. CACM, 34(10):94-109, October 1991.

N

;

173

Bibliography

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Loomis, M.E.S., Shah, A.V., Rumbaugh, J.E., “An Object Modeling Technique for Concep
tual Design”. Proceedings of 1987 ECOOPS, p. 192-202, 1987.

Maier, D. and Zdonik S., “Fundamentals of Object Oriented Databases”. Readings in Object.
Oriented Database Systems. Morgan Kaufman: San Mateo, California. 1990.

McGee, William C., “On User Criteria for Data Model Evalutaion”. TODS, 1(4): 370-387,
1976.

National Research Council, Mapping and Sequencing the Human Genome. National Acad
emy Press: Washington, D.C., 1988.

Nomenclature Committee of the International Union of Biochemisty, “Nomenclature for
incompletely specified bases in nucleic acid sequences”. Journal of Biological Chemistry,
261(1): 13-17, January 5, 1986.

Osborn, S.L. and Heaven, T.E., “The Design of a Relational Database System with Abstract
Data Types as Domains”. TODS, 11(3): 357-373, September, 1986.

Pearson, P. L., Maidak, B., Chipperfield, M., and Robbins, R., “The Human Genome Initia
tive - Do Databases Reflect Current Progress?”. Science, 254:214-215, 1991.

Peckham, J. and Maryanski, F., “Semantic Data Models”. ACM Computing Surveys, 2003):
153-189, September 1988.

Pistor, P. and Anderson F., “Designing a Generalized NF2 Model with an SQL-type Lan
guage Interface”. Proceedings of VLDB 1986 Conference, p. 278-285, 1986.

Pistor, P. and Traunmeuller, R., “A Database Language for Sets, Lists, and Tables”. Informa
tion Systems, 11(4): 323-336, 1986.

Roberts, Fred. Discrete Mathematical Models. Prentice Hall: Englewood Cliffs, N.J. 1976.

Roth, M.A. and Korth, H.F., “The Design of -1NF Relational Databases into Nested Normal
Form”. Proceedings of SIGMOD 1987 Conference, p. 143-159, 1987.

Segev, A. and Shoshani, A., “Logical Modeling of Temporal Data”. Proceedings of SIGMOD.
1987 Conference, p. 454-466, 1987.

Soo, Michael D., “Bibliography on Temporal Database”. SIGMOD Record, 2001): 14-23,
1991.

Sowa, J., Conceptual Structures: Information Processing in Mind and Machine. Addison
Wesley: Reading, Massachusetts. 1984.

Stevens, W.P, Myers, G.J., and Constantine, L.L., “Structured Design”. IBM Systems Jour
nal, 13(2): 115-139, 1974.

Stonebraker, M., Stettner, H., Lynn, N., Kalash, J., Guttman, A., “Document Processing in a

174

Bibliography

61.

62.

63.

65.

67.

68.

69.

70.

Relational Database System”. TOIS, 1(2), 1983.

Stroustrup, B. The C++ Programming Language. Addison-Wesley: Reading, Massachusetts.
1986.

Su, S.Y.W., Krishnamurthy, V., Lam, H. "An Object Oriented Semantic Association Model
(OSAM*)”. ificial Intelligence: f in In ice, Eds. Kumara, S.T.,
Soyster, A.L., and Kashyap, R.L. Chapter 17. IIE/IEM Press: Norcross, Georgia. 1989.
Sybase Transact-SQL Users Guide. Release 4.0. Sybase: Emeryville, California. May, 1989.

Teorey, T.J. Database Modeling and Design: The Entity-Relationship Approach. Morgan
Kaufman: San Mateo, California. 1990.

Teorey, T.J., Yang, D.Q., Fry, J.P., “A Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship Model”. ACM Computing Surveys, 18(2): 197-222,
June 1986.

Tsichritzis, D.C. and Lochovsky, F.H., Data Models. Prentice Hall: Englewood Cliffs, New
Jersey. 1982.

U.S. Congress, Office of Technology Assessment, Mapping Our Genes—The Genome
Projects: How Big, How Fast. OTA-BA-373. U.S. Government Printing Office: Washington,
D.C., April 1988.

U.S. Department of Health and Human Services, “Understanding Our Genetic Inheritance:
The First Five years”, The U.S. Human Genome Project. N.I.H. Publication No. 90–1590.
April, 1990.

Vossen, Gottfried, “Bibliography on Object-Oriented Database Management”. SIGMOD
Record, 2001): 24-46, March 1991.

Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., Weiner, A.M. Molecular Biology of
the Gene, 4th Edition. Benjamin Cummings: Menlo Park, California. 1987.

A
º

º
- º

º-*

175

Glossary

Glossary

Biology
This glossary is based on [68].

A, C, G, T-DNA nucleotides adenosine, cytidine, guanosine, and thymidine, respectively. Also
stands for the bases adenine, cytosine, guanine, and thymine.

A, C, G, U- RNA nucleotides, same as DNA nucleotides except thymidine has been replaced
with uracil. In addition, the deoxyribose sugar molecule in each nucleotide is replaced by
a ribose.

amino acids - A class of small molecules which can be chained together to form proteins.

anneal - The process by which two complementary single stranded nucleotide molecules (DNA or
RNA) are hydrogen bonded into one double stranded molecule.

autosomal chromosome - A chromosome that has been identified with a number between 1 and 22.

There are paired in normal human cells.

base - A molecule whose nonionic form is basic (hydrogen ion receptor), as in acids and bases. In
molecular biology, they refer to a class of 5 molecules.

base pair - Two nucleotides (A and T or G and C) held together by weak (hydrogen) bonds. Two
strands of DNA are held together in the shape of a double helix by the bonds between base
pairs.

centimorgan - A unit of measure of recombination frequency. One centimorgan is equal to a 1-per
cent chance that a genetic locus will be separated from another marker due to recombina
tion in a single generation.

chromosome - A structure found in the cell nucleus and containing the genes. Chromosomes are
composed of DNA and proteins. They can be seen in the light microscope during certain
stages of cell division.

complement - the pairing of nucleotides, A with T (or U) and C with G.

cytological mapping - Mapping of genes using DNA probes that bind to the chromosome at the site
of the gene and are visible in a light microscope.

DNA (deoxyribonucleic acid) - The molecule that encodes genetic information. DNA is normally
a double-stranded molecule held together by weak (hydrogen) bonds between pairs of
nucleotides on opposite strands.

DNA sequence - The order of base pairs, whether in a stretch of a DNA, a gene, a chromosome, or
an entire genome.

176

Glossary

double helix - The shape in which two linear strands of DNA are hydrogen bonded together.

electrophoresis - A method of separating large molecules from a mixture by differentiating mobil
ity in a medium under an electrically charged field.

exon - The piece of primary transcript RNA that is kept for mRNA.

gel - A medium used for electrophoresis. It is commonly made of either agarose (complex sugar)
or polyacrylamide (organic polymer).

gene - The fundamental physical and functional unit of heredity. A gene is an ordered sequence of
nucleotides located in a particular position on a particular chromosome.

gene mapping - Determining the relative locations of different genes on chromosomes.

genome - All the genetic material in the chromosomes of a particular organism. Its size is generally
given as the total number of base pairs.

Human Genome Initiative - An initiative whose goal is to map and sequence the human genome.

Human Genome Project - The implementation of the concepts proposed as the Human Genome Ini
tiative.

Human Genome Program - The individual programs, such as those at the DOE and the NIH, that
make up the Human Genome Project.

intron - The piece of primary transcript RNA that is removed to form the mRNA.

locus - The position of a marker on a chromosome or piece of DNA.

marker - An identifiable physical location on a chromosome, e.g. restriction enzyme cutting site,
gene, RFLP marker, whose inheritance can be monitored.

mRNA (messenger RNA) - A class of RNA whose role is to carry the genetic code from the chro
mosome to the ribosome, the site of protein synthesis.

nucleotide - A unit of DNA or RNA consisting of a nitrogenous base molecule, a phosphate mol
ecule, and a sugar molecule. DNA nucleotides is usually represented as A, C, G, and T and
RNA nucleotides is usually represented as A, C, G, U.

physical map - A map of the locations of identifiable landmarks (from markers) on DNA. Distance
is measured in base pairs. The lowest resolution is the banding pattern on the chromosome,
the highest resolution would be the complete nucleotide sequence.

primary transcript RNA - An exact RNA copy of the DNA in the coding region of a gene.

protein - A molecule that is a sequence of amino acids. They serve as messengers, metabolic pro
cessors, and structural support for cellular activity.

purine - A type of base molecule, either A or G.

pyrimidine - A type of base molecule, either T, U, or C.

*
* -

º:
º

* -

f

177 .

Glossary

recombination - The process by which portions of DNA are exchanged or deleted. Recombination
occurs naturally between or within chromosomes, particularly during the formation of
sperm and egg cells.

restriction enzyme (RE) - An enzyme that recognizes a specific base sequence (usually four to 6
base pairs in length) in a double stranded DNA molecule and cuts both strands of the DNA
molecule at every place where this sequence appears.

restriction enzyme cutting (recognition) site - A specific nucleotide sequence of DNA at which a
RE cuts the DNA. Some are frequent, e.g. every several hundred base pairs, some are infre
quent, e.g. every 10,000 base pairs.

RFLP (restriction fragment length polymorphism) - The presence of two or more variants in the
size of DNA fragments from a specific region of DNa that has been exposed to a particular
RE. These fragments differ in length because of an inherited variation in a RE recognition
site.

sex chromosome - Either X or Y chromosome. A normal human male has one X and one Y chro

mosome and a female has XX.

transcription - The process by which a RNA copy is made from the DNA for the expression of the
gene.

translation - The process by which an amino acid sequence (protein) is synthesized by reading an
mRNA sequence.

Data Modelling
abstraction - The process by which information concerning an object is converted into a symbol in

a language or model.

attribute - A characteristic, usually of a data model entity or an object.

cardinality - The number of instances in a set or collection.

conceptual data model - a data model that primarily focuses on the concepts of the application
domain and is not involved with the details of databases.

data model - A descriptive language that is used to express concepts from whatever domain it is
modelling. Like a language, its richness determines its expressiveness.

database - a depository of organized information.

Database Management System (DBMS) - the collection of computers and programs that manages
a database via the storage, retrieval, and updates of information.

entity - A common abstraction used in data modelling to represent objects (or collection of objects)
in the real world.

178

Glossary

Entity-Relationship Model - A simple conceptual data model that is based on the abstractions of
Entities, Attributes, and Relationships between Entities.

First Normal Form - A relational characteristic where each field in the tuple holds only one value.

hierarchical model - A logical database model whose objects are organized into single parents and
its children, i.e. tree-like.

informatics- The study of the application of computer and statistical techniques to the management
of information.

logical data model - A data model for databases that does not contain any implementation specific
characteristics.

methodology - A set of rules and methods for achieving a stated goal.

network model - A logical database model whose objects are organized into multi-parents and their
children, i.e. direct acyclic graphs.

NonFirst Normal Form - A data model that is an extension of the relational model where the First

Normal Form assumption is not held, i.e. a field may contain several values.
Normal Form - A characteristic of a relation in the relational model which determines the amount

of data cohesion. There are several types of normal forms.

Object Oriented - Any process or methodology that describes the static and dynamic characteristics
of a concept into a single unit of abstraction.

physical data model - An implementation-specific data model for databases, i.e. the actual DBMS
specification.

query language - A language used to access and update database information.

query processor - A program that processes the commands of a query language and effect the
changes in the database.

relational model - A logical database model whose objects are organized in sets and tuples.

schema - A description of the data collections and their characteristics in a database. Usually
expressed using a data model language.

semantics - The meaning of something, as in the meaning of a value.

semantic data model - A data model that is rich in semantics, i.e. real world concepts.

stepwise continuous - a function (sequence) whose range (content) value is held constant until the
next event. For example, salary history.

traditional data model - A hierarchical, network, or relational data model.

º
-

179

A. Context Interactions

APPENDIX A. Context Interactions

In this Appendix, we will briefly describe the interactions of context dependencies and their corre
sponding instance association diagrams. We will first look at target context dependency alone, then 2. '

add source dependency, and finally add peer dependency.
*Z/

A.1. Target Dependency A.

For the purpose of enumerating the possible combinations, we will assume that the Target Object
type defines a strict set of instances. The three contexts have the following instance association

- -- a

examples. --

A.1.1. Global-context

Set of Target 1
instances Set of Target2 - -

instances /
º

Target 1 Target2 -->

O O –

G
-

X X –

Set of X C
instances - * ,

Comments: A.

(1) Since X is global-context, its instances are independent of target Object-Types. Thus x4 is –
not associated with any target instances and x1 can be associated with both til and t21.

(2) No distinction is made on the arc, they could be ID or Property. No distinction is made on
the constructor, it could be Composition, Set, or Sequence. Thus t22 can have both x2 and
x3 be associated with it.

-

N ;

180 (
—

A. Context Interactions

A.1.2. Shared-context

i.º Set of Target2instances

t2 t22 t2Target 1 1 3
arge Target2

O

x * S
X

Sets of X…..Nc--~~~"
-

ag of X
instances instances

Comments:

(1) Since X is shared-context, each set of Targets is associated with its own set of X instances.
Instance x7 is an “orphan” because it is not associated with a Target1 instance. This can be
flagged as a violation or be “forgiven”, depending on the database designer. The link
between t21 and x3 is a “rogue”, it is a violation.

(2) Instance x1 under Target1 can be value-equal to instance x4 under Target2. However,
shared-context will ensure that they are different instances. Within each set, the values must
be distinct, i.e. values of x1, x2, x3, and x7 must be distinct, same for x4, x5, and x6.

A.1.3. Local-context

Set of Target]
-

Set of Target2
1nStanceS instances

t21 t22

Target 1 M Target2O

TOgue

X G. :) X
ag of X

instances

181

A. Context Interactions º

Comments:

(1) Since X is local-context, each Target instance define a set of X instances. Instance x4 is an
orphan. The link between tl2 and x2 is a rogue and a violation. The set enclosing x8 is an
orphan set and a violation.

(2) Instance values within each set have to be unique, but can overlap with instances from other
sets. For example, x1 and x3 can be value-equal but remain non-identical.

A.2. Target and Source Dependency
Now there are two possible context dependencies. The left side will be of Required source depen
dency and the right side will be of Non-required (default).
A.2.1. Global-context

Set of Target 1
instances Set of Target2

instances

Target 1 Target2

O O

X R, X

Set of X
instances

Comments:

(1) With respect to Target1, each instance of Target 1 must have an association arc from a
source X instance. The instance ti2, with a “dangling reference”, cannot exist, because it is
a violation of source dependency, while t22 can exist and is valid.

º

182

A. Context Interactions

A.2.2. Shared-context

Set of Target 1 Set of Target2
instances instances

Target 1
g Target2

O /
rogue

-

X R,S -S
} X

> Bag of X
instances

(1) Between X and Targetl, each instance of Target 1 must receive an arc from a X instance.

Comments:

Therefore, ti 2 is a violation. Instance x2 is an orphan and its disposition is dependent on
target dependency.

(2) The link between x3 and t21 is a rogue, and is a violation of target dependency, but t21 can
have valid existence because it is non-dependent on X.

A.2.3. Local-context

Set of Target 1
-

Set of Target2
1nStanceS instances

t21 t22 t23
Target 1 Target2

O

rogues
TOgue

X

(1) One of the links, between x3 and t12 or between x4 and tig, is a rogue. Removing one will

X

JBag of X
instances

Comments:

create a violation of the source dependency on the other Target 1 instance.

~
*

N

*

*

■

183 .

A. Context Interactions

The link between X6 and t22 is a rogue because it violates target dependency. However, t22 is a valid s

instance in Target2, because it is not dependent on any X instance.

A.3. Target, Source, and Peer Dependency -
Now we have all three context dependencies. There are 3 × 2 × 2, or 12, cases. We are going to (
block them into 6 diagrams, within each diagram, the left side has involvement cardinality of “1”
and the right side has “M” (default). As the following diagrams demonstrate, the actual number of A.

semantic distinctions between target, source, and peer interaction is only 3 + 2 + 2, or 7, because
these dependency rules are independent of each other and they can be interpreted separately.

-

A.3.1. Global/Non-Required context

Set of Target 1
instances Set of Target2

instances

Target 1 Target2 º
O O * .

rogue”
-

1 ,G
-

<
X X º

instances {

Comments:

(1) With respect to Target1, each instance of X can only originate one association arc. If we
accept the link between x1 and til, then the link between x1 and t■ j is a rogue and a viola
tion. Because of non-dependency, tº 3 is still valid after the removal of the link. The link
between X3 and ti 2 is valid, depending on the type of constructor.

(2) Each instance of X can originate multiple arcs to instances in Target2. The cardinality only
applies toward the local constructor. Thus between Target1 and X, the source cardinality is
1, while between Target2 and X, it is M.

184

A. Context Interactions

A.3.2. Global/Required context

Set of Target 1
instances

-

Set of Target2
instances

Target 1 Target2

O O

rogue
T1,R, R,G
X X

Set of X
instances

Comments:

(1) One of the links emanating from x1 is a rogue. Therefore, a correction by removing one of
them will cause the other target instance to violate source dependency. Instance t22 is a
direct violation of source dependency.

A.3.3. Shared/Non-Required context

Set of Target 1 Set of Target2
instances instances

Target 1
arge Target2

O
/\ O

rogue
rogue

S
X X

-

> Bag of X
– instances

Comments:

(1) Between X and Target1, each instance of X should only originate one arc, thus the link
between x2 and t13 is a rogue and a violation of peer dependency. The link between x3 and
t21 is a rogue, but it is a violation of target dependency.

(2) Between X and Target2, the cardinality is M and because of shared-context, this set of X

–

º

185

A. Context Interactions

instances are isolated from Target1's set of X instances. Both tig and t21 are valid because
of non-required source dependency.

A.3.4. Shared/Required context

Set of Target 1 Set of Target2
instances instances

t2

■ Target2O

Og TOZuC

■ /
X

S. Bag of X
instances

Comments:

(1) One of the links emanating from x2 is a rogue and removing it will cause the other target
instance to violate source dependency. The link between x3 and t21 is a rogue, but it is a
violation of target dependency. Removing this link will also cause t21 to violate source
dependency.

A.3.5. Local/Non-Required Context

Set of Target]
instances Set of Target2instances

tl2
tl1 tl3 t21 t22 t23

t24Target 1

O

TOQUIC

x
(tºdid; G.)

(1) Since X is local-context, there is only one target for each X instance. The link between x2

1

Bag of X
instances

Comments:

186

A. Context Interactions

and t12 is a rogue and a violation of target dependency.
(2) For the case where cardinality is M, still only one link can originate from each X instance

because of the local-context. A redundant link, e.g. one of the two links between x8 and t23,
is invalid because instance association diagrams do not support multiplicity. However, if a
Bag constructor is defined, this might become possible, indicating the multiplicity of occur
rence of an instance in its target. If so, this would generalize to all contexts and dependen
C16S.

(3) Despite their dangling references, tla and t24 are valid because of source non-dependency.
A.3.6. Local/Required Context

Set of Targeti Set of Target2
1nStanceS instances

t22 t23 t24
Target 1 Target2

O O

gu

TIR R

X5 X6
ag of X

instances

Comments:

(1) Instance tº is a direction violation of source dependency. The link between x2 and tiz is a
rogue and a violation of target dependency. Removal of it will not affect tiz.

(2) One of the arcs emanating from x7 is a rogue because of target dependency violation.
Removal will cause the other target instance to violate source dependency.

187

B. Ternary Relationships

APPENDIX B. Ternary Relationships

The truth table mechanism for peer dependency was introduced in Section 8.4.1. As a demonstra
tion of its generality, we shall use it to analyze ternary relationships. The basic questions are:

(1) Under what circumstances is a ternary relationship truly ternary, i.e. can it be decomposed
into a cascaded binary relationship?

(2) What differences exist between functional dependency and involvement cardinality con
straints on ternary relationships?

B.1. Binary Cascades
Assuming target dependency is not a factor in this analysis, i.e. all elements are global-context, we
will consider the simple case of three ID sources. There are three possible cascades:

Cascade I: Cascade II: Cascade III:

R R R

C C

w X w Z w Z
A S B S C S

C C

B ' C * C * A * A ’ B

For each cascade, the values of w, x, y, and z could be either 1 or M to form 2° or 16 possible trees.
Binary relationships based on functional dependency is the “converse” of involvement cardinality,
thus 1—M becomes M-1 while 1–1 and M—M remains the same. Therefore, all cases of binary func
tional dependency can be mapped onto the cases for involvement cardinality and do not need to be
analyzed separately. From this point, we can safely let our cardinality numbers represent involve
ment cardinality. Cascade II is a rotation of Cascade I, i.e. A → B — C, and Cascade III is another
rotation, A → C → B. Thus, once we have the truth table for Cascade I, we can generate the truth
table for Cascades II and III by rotation of A, B and C, which is equivalent to row permutation. We
now focus on Cascade I.

|

188

B. Ternary Relationships

B.2. Cascade Predicates

To determine whether a new instance can be inserted is determined by the relationship between A
and S and the relationship between B and C. The relationships can be expressed as the following
predicates:

W X Predicate Predicate

1

1 M A — S

M 1 S → A

M M None

where A = (al-a2), B = (b1=b2), C = (c1=c2), and S = (BAND C)
We now have the 16 cases for Cascade I:

Case | W X Y Z l Equivalent Predicate
1 1 1 1 1 (A → S) AND (B – C)

2 1 1 1 M (A → S) AND (B — C)

3 1 1 M 1 (A → S) AND (C – B)

4 || 1 1 M M (A → S)

5 1 M 1 1 (A → S) AND (B – C)

6 1 M 1 M (A → S) AND (B – C)

7 1 M M 1 (A → S) AND (C – B)

8 1 M M M (A → S)

9 M 1 1 1 (S → A) AND (B – C)

10 M 1 1 M (S — A) AND (B — C)

11 M 1 M 1 (S → A) AND (C – B)

12 M 1 M M (S — A)

13 M M 1 1 (B – C)

14 M M 1 M (B — C)

15 M M M 1 (C – B)

16 M M M M In One

|
s

*

189

B. Ternary Relationships

B.3. Cascade Truth Table

The truth table for the sixteen cases of Cascade I are:

F|F|T|T|T|T F|T|F|F|T|T

F|T|T|F|F|T|T F F

F|T|T|T|T|T|T|T|T

F|F|F|F F|T|T|T|T|F

F

F

T|T|T|T|T|T|T|T|T|T|T|T|T|T|T|T

F

F|F|F|F|F|F|F|F|T|F|T|F|T|F|T

F|F|FF F F|F|T|T|F|F|T|T|F

F

F|T|F|T|F|T|F|T|F|T|T|T|F|T|F|T

T

T|T|T|T|T|T|T|T|T|T|T|T|T|T|T|T

T F F

TruthValuesfor A,B,C

*-

-"--
---,"º,

190

B. Ternary Relationships

To generate Cascade II, we perform permutation on the truth values of A, B, and C:

Truth Values for Cascade II Equivalent Cascade I

B C A C

T T T T T T no change

T T F T F T row 3 of Cascade I

T F T F T T row 5

T F F F F T row 7

F T T T T F row 2

F T F T F F row 4

F F T F T F row 6

F F F F F F | no change

After row permutation, the first eight cases of Cascade II would be the following:

Truth Values for A, B, C | Cases for Cascade II

A B C 1 2 3 4 5 6 7 8

T T T T T T T T T F- T

T T F F F F F F F F F

T F T F F F F T T T T

T F F F T F T F T F T

F T T F F F F F F F F

F T F F F F F F F F F

F F T F F T T F F T T

F F T T T T T T T T

Cascade I equivalent: 9 2 10

B.4. Results

Note that several cases between Cascade I and Cascade II overlaps. After fully enumerating all 48
possible cases (3 cascades with 16 cases each), only 32 are unique. Each of the standard ternary
cases under involvement cardinality can be matched to a case in a cascaded binary relationship. On

s
- A.
-

/
-

191

B. Ternary Relationships

the other hand, the ternary case 1-1-M and 1-M-M under functional dependency are not decompos
able. In a ternary table, there are 2°-2 or 6 rows (excluding all T and all F), each of which can be
T or F, resulting in 2° or 64 unique columns or cases. We have already enumerated 32 such cases
from the cascaded binary compositions, thus leaving 32 cases of pure ternary relationships that are
not decomposable into cascades. Of the 32, two are identified by ternary functional dependency.

In general, we can fully describe a n-ary relationship as a truth table column using O(2") space. We
also can decide if a relationship is truly n-ary by comparison against tables constructed from rela
tionships of lesser degree. In theoretical terms, this is equivalent to predicate transformation and
logic synthesis, both of which have a vast amount of literature. Since it is outside the scope of this
thesis, we will not pursue the connection further.

N*
-

-

*

º

192 "(

C. Examples of EOM Schema

APPENDIX C. Examples of EOM Schema

C.1. Transformation of ER Diagrams
An example of a large but basic ER diagram is shown in Figure C.1. This is taken from Genome
Data Base (GDB) [13]. It represents the conceptual model associated with locus information. In
this exercise, we will take the ER diagram and convert it into an Extensible Object schema. There
are three basic stages: structure, context, and storage.
C.1.1. Structure Determination

The first stage determines structural relationships between Object-Types. For ER conversion, it
consists of the following steps:

(1) Map all the entities and attributes into composition constructors. All key attributes (marked
with “*”) are converted to ID arcs. Since EOM is not bound by implementation specific
types, all references to “id” is replaced by the original object. For example:

CQ pe Locus Note
C

Locus Locus note
Notes

-
note -

date COmm1ttee

note DC

date * person

(2) Examine 1-to-M relationships and decide if a set constructor is more appropriate. If so, then
redundant ID components can be dropped. For example:

Locus

<> -> Set Of Note: “lo:3”
1 M e

Locus other components
Locus Notes of Locus

Locus
Notes

}

s

193

C. Examples of EOM Schema

Figure C.1

C. Examples of EOM Schema

(3)

(4)

(5)

Once LocusNotes has been convert to an ID source to the Set constructor, its Locus ID com

ponent can be removed.

An alternative is to embed the “1” entity as the source component for the “M” entity. If
applied to the previous example, it leaves the LocusNotes object alone, because it already
contains Locus as an ID component. The end result is the removal of the “lo3” relationship.
In fact, LocusNotes is an ER implementation of a relationship in the guise of an entity,
which, in turn, is an ER implementation of a set constructor.

Examine 1-to-1 relationships and decide if they should be modelled as components or as a
relationship-composition. For example:

1
.

1

Locus
Locus DNA

Locus

C

VS.

Locus
DNA

other componentsº."ponents of Locus/DNA

In the GDB example, LocusBNA should be a component of Locus.

Examine M-to-M relationships. They are typically relationship-compositions, therefore,
they are mapped as such.

Weak entities are mapped to compositions. In ER models supporting IS-A links, we would
convert them into inheritance or union constructors, whichever is appropriate for the appli
cation.

C.1.2. Context Determination

In this stage, we attach context designators for target, source, and peer dependencies in three sep
arate steps:

(1) Look for dependencies on targets. Clearly, some components are not dependent at all on
their target instances, these components are marked Global. For example, MIM_ref under

195

C. Examples of EOM Schema

(2)

(3)

Locus MIM_eref is Global. Other components are dependent and specific to their target
instances, they are marked Local. For example, LocusMIM_annot in LocusMIM_eref is
specific to each target instance, therefore, they should be considered Local. Shared compo
nents are the hardest to determine. Invariably, they are represented in ER models as “id”
values. For example, Locus_id is dependent on Locus instance, but the set of Locus_id val
ues is shared among all Locus instances and the id-to-instance integrity will be maintained
only through source and peer dependency. The result of these examples is diagrammed as
follows:

Locus Locus
MIM eref

C

Locus annot * Locus Id
other components
of Locus

MIM ref

Determine source dependencies, i.e. whether a component is required or not required. An
Object-Type that is the only ID component of a target is typically required, unless one
wishes to preserve a possible “null” value for other uses, e.g. defaults or summaries. Since
EOM does not distinguish null vs. non-null in terms of value, this source dependency
relates to domain integrity. The ER diagram provided from GDB does not designate null or
non-null, therefore, the conversion will be based on guessing the domain semantics.

Finally, we convert cardinality constraints from ER functional dependency to Extensible
Object Model involvement cardinality. For binary relationships, this amounts to the rever
sal of “1” and “M”. In general, Local components for Composition, Inheritance, and Union
are set to “1” because, in their target context, they are unique.

196

C. Examples of EOM Schema

Using the previous examples, the Extensible Object schema is diagrammed as follows:

Locus
MIM eref

º L,R,
note date note

G.R.M.
Locus

The target dependency of SetOfNotes under Locus should be Local, since an instance of Set
OfNotes is only associated with one Locus instance. LocusNotes, now as an ID component to the
SetOfNotes, can be either Local or Shared, because SetOfNotes is already partitioned into disjoint
sets of one element each. If one wish to associate a LocusNote instance to several Locus instances,

then LocusNotes will have to be global and its cardinality set to “M”. This is demonstrated in the
Committee Object-Type (not derived from the GDB diagram).

Locus Committee

L. \ ,

Set Of PersonsSet Of Note

C

other components
of Committeeother components

of Locus

L,R,1
Locus Note

C.1.3. Storage Determination

The last step is determining the storage characteristics. This stage is highly implementation spe
cific. Therefore, EOM does not permit a graphical representation for them. However, in the query
language, there are provisions for specifying storage attributes so that physical optimization may
be carried out (see Section 10.1.2). Since we do not designate storage directives in the EOM
schema. This step will be ignored.

197

C. Examples of EOM Schema

C.1.4. Result of Transformations

The simple entities are mapped to the following:

DNA
LocusType DNAType Complex

C C

**** L.NR,1 S.R., L.NR,1 S, L.NR,1
Code desc Key desc Key desc

PolymType AliasType LocusCert

C C C

º L.NR,1 S.R., L.NR,1 S, L.NR,1
Code desc Key desc Code desc

Admin Asººn RegionApproval ode Boundary

**** L.NR,1 TS,R, L.NR,1 LAR, L,R,1
Key desc Key desc Start End

Band
FSType FSAgent Boundary

C C

**** L.NR,1 S,R, L.NR,1
Key desc Key desc

The reason these are “simple” is because all their characterization is encapsulated into the “desc”
Object-Type. Conceivably, these can be further defined into more details.

198

C. Examples of EOM Schema

The more complex entities are mapped to the following:

Fragile Site

Ns LR,
note date note

FSA gent |
- 4A.

- *** GNR,
person committee

Chrom Band Locus Alias

N's S.R.1 -

Nºs.
-

º
SOrt

-

Alias Type 7

DNRINT
-

.----, L.R. Status Flag
- -Region Region ~

Boundary .

The simple relationships are: :
Bank HGML ECNum –Gº Eref Eref -

*

MIM ssignment Mººse º
Eref Mode Iref Ire 7~

L.NR,1
desc Message

º

199

C. Examples of EOM Schema

The more complex relationships are mapped to the following:

Notation: A horizontal “)” represent multiple arcs of the same type: 2–~
This allows grouping of similar components together to improve organization.

Source Iref

C

f Y Y
G.R., G.R., L.R.,

Locus Person Add Date

G.R.M. U.K.I. L.R.1
Source Committee | | Mod Date

L.K., I

In Report

LocusLNA

f TY Y N
G.R., G.R., DNRT

Locus Segment COmment
Family

S.R.I G,R,1
ID L,R,1 Express

Suffix Code Code

G.R.1G,R, ****

DNA 1 Chrom
Complex Number

Probe Iref

C

Y Y N
G.R., G.R. LNR.I

Locus º Symbol || Best Clone

G.R.M. U.K.I GNR,

Probe Prote Order Best Source

L., K, I

Has Polym

Cytolocation
C

N■ Y
G,R,1 L,R,1 LNR,1

Chrom Region Public
Number Boundary

L,R,

Band
Boundary

* .
S

-

-

.

C. Examples of EOM Schema

The mapped set constructors are the following:

Set Of
Set Of Notes Locations

e e

**** - L.R.I G,R,M
Locus Note CytoLocation||Number Of Band

Location || Operation

Finally, we have the following:

“Locus Proposal” is left as an exercise for the reader.

Locus

S,R,1
ID

f Y. Y Y Y
S.R.1 G.R., LNR,1 G.NR,1 LR,

Name PolymType Add Date Review Public

S.R., LNR,1 LNR,1 Committee L.NR,1
Symbol Location Mod Date GNR, Ever

G,R,1 Summary LNR,1 Add Person Approv
Previous Cloned

º
Appr Date G.NR,1

Symbol #.
L.NR,1 &:

L.NR,1 ” Add Comm pprov
Ref LocusType Date L.NR,1

Mark L.NR,1 Set Of
Set Of Notes

Locations

201

C. Examples of EOM Schema

C.2.

In the following examples, we will examine some of the complex interaction between constructors

Set and Sequence Constructors Under Target Context

and target contexts. The question we will ask is: are all target dependencies meaningful for the ID
source of a Set or Sequence constructor?
C.2.1.

Going

Global Context

back to the Committee example in Section 7.2.1, if the Person is set to global-context and
the SetOfPersons is local-context, we would end up with this diagram:

Committee

C

Name SetOfPerso
e

- LSize Person

Comments:

(1)

(2)

Each instance of Committee is composed of an instance of Name, SetOfPersons, and Bud
get. SetOfPersons, Budget, and Size are local-context, thus each instance value is isolated
from the other values. If there is another instance of Committee, c5, and it is composed of
an instance of SetOfPersons, sp3, such that sp3 is composed of {p1, p.2, p3}, then sp3 is
value-equal to sp1, but is a separate and distinct instance by context.

Person is global, thus the SetOfPersons instances are derived from a common set of Person

C. Examples of EOM Schema

instances. The Person instance, p1, of sp1 (ID = {p1, p.2, p3}) and of sp2 (ID = {p1, p4}) are
identical, i.e. same person.

The result of this combination of contexts is that the same set of persons can function as different
Committees and operate with a separate budget where the nature of the committee is probably asso
ciated with the Name given.
C.2.2. Shared Context

Shared Context is similar to Global context because the elements for a Set or Sequence is drawn
from the same set. The only difference is that they are partitioned based on the target instance (set
or sequence instance) sets.
C.2.3. Local Context

Using the protein example in Section 7.3.2, we need to assign the context dependencies such that
changes in a protein's sequence can be made without affecting other proteins, at the same time
retaining the ability to verify against previously inserted protein sequences in the database. Assign
ing global-context to Protein and local-context to Positioned-AA satisfies these requirements. Here
is how the schema and its instance association diagram would look:

Protein

Sº we link a set as a
S horthand notation2* ... I .L.Positioned Enzymatic

AA Activity
%

| pai paz pa■ Ypaq pas pa■ N/pal pag pa)N
—%

Position

203

C. Examples of EOM Schema

Comments:

(1) The instance set for Enzymatic Activity is not shown.

(2) Each instance of Protein is associated with an independent set of Positioned AminoAcids.
There are three proteins: < a.1, a2, a3 >, < a.4, as , as >, and < a.7, ag, ag P. As long they
are distinct sequences, repeated values are permitted. For example, prl could have the value
< Val, Phe, Tyr-, pro could have <Val, Phe, Phe -, and pr; = < His, Phe, Tyr >. The
position is implicit in the order of the amino acid occurrence.

(3) The set boundaries between each instance of AminoAcids has not been drawn for brevity.
The shaded area around the Positioned-AA, Position, and AminoAcid are “bags”.

(4) Position is shared-context in Positioned-AA to maintain correct set membership relation
ship between Positioned-AA and Position. In this case, values of p1=p4=p7=1,
p2=p5=p8=2, and p3=p0=p9=3. As a set, p1, p.2, and p3 are distinct.

(5) AminoAcid is an ID component of local-context, therefore we can have multiple equal-val
ued instances. For example, < Val, Phe, Phe P.

Using the example values, we can change the 3rd amino acid of prl to His, without affecting the
3rd amino acid of pr; because of the local-context separation of AminoAcid. The result protein
instances are: < Val, Phe, His >, < Val, Phe, Phe -, and <His, Phe, Tyr >. However, we are
prevented from changing the value of a 3 to Phe, because the ID(pr1) is < Val, Phe, Tyr - before
the change and < Val, Phe, Phe P afterwards, which would now equal ID(prz). This integrity is
maintained by the fact that ID is based on value only and the new ID value of prl would now be
equal to ID(prº).

Another change we can perform is Position value, if we change the value of p3 to 2, we could create
a protein with two different amino acids, a2 and a 3, at the same Position value. This does not violate
the construction of Positioned-AA. For example, the value of prl now becomes {[1,Val], [2,Phe],
[2,Tyr] } and is a unique value. However, now we only have { p 1, p2) as the set of prl positions
and two association arcs will originate from p2. This is not a sequence, but an ordered set. To main
tain semantic consistency with sequence, we need to add a peer dependency constraint, so that only
one arc is permitted to originate from each position instance and invalidate this change of p3 value.
Therefore, Position is given the involvement cardinality of “1”.

204

D. Query Language Syntax

APPENDIX D. Query Language Syntax

The syntax listed in this Appendix is a stripped version. The actual one has numerous error trapping
rules which are not relevant to this discussion. Therefore, some rules have been condensed together
to improve readability. Keywords are in upper-case and is translated to unique numeric values by
the lexical analyzer. However, NAME, NUMBER, and STRING are supplied by the lexical analyzer as
special token nodes.

D.1. Chaining Statements
The starting point for the parser is strmtlist.

opt_stmtlist : strmtlist
| /* NULL */

stmtlist : Statement

| stmtlist statement

D.2. Basic Statement Types

statement : dba statement "; "
| bypass_statement "; "
| read_statement ";"
| display_statement "; "
| define_stmt '; '
| undef_statement ";"
| storage_statement ";"
| dbinst_statement "; "
| assign_statement ";"
| query_statement
| flow statement
| compound statement
| * : *

All statements are terminated by ‘;', except for compound statement. Since query_statment
and flow statement ends with a statement, the ‘;’ is unnecessary.

D.3. Administration

dba_statement : CREATE DB NAME
| DESTROY DB NAME

N

205

D. Query Language Syntax -

| sUSE DB NAME

bypass_statement : BYPASS STRING

read_statement : READ STRING

D.4. Viewing Internal Table

display_statement DISPLAY TYPE opt_pattern
DISPLAY FUNC opt_pattern
DISPLAY VAR opt_pattern
DISPLAY VALUE opt_pattern

* /
-º-

opt_pattern : STRING º
| NAME

-

| /* NULL */
-

- r - - - - - - -
—º

If opt_pattern is a STRING, it is considered as a regular expression pattern. If it is a NAME, then it º

is used as an exact match pattern.
--

--

D.5. Type Definition * {
T.

define_stmt : DEFINE scoped name IS define phrase
; * {

ºr

define_phrase : ALIAS_OF scoped name
| IMPL BY PROC func_call S
| IMPL BY ENUM ":" arglist - *

| IMPL BY scoped name opt_storage -*-

| constructor_token "{' componentlist) ' -*

; *
Although scoped name is used, they are actually restricted to one name in this version. The vali- *

dation module checks for violations. -4

constructor_token : COMPOSITION -*-

| SET * ,

| SEQUENCE

| INHERITED gº
| UNION

206 *

D. Query Language Syntax

;

This is where future extension of constructors are added.

componentlist : component
| componentlist component

Must have at least one component in a componentlist.

component : ID scoped name opt_contextlist opt_storage "; "
| PROPERTY scoped name opt_contextlist opt_storage "; "
| ORDERED_BY scoped name opt_contextlist opt_storage "; "

opt_contextlist : ":" context_list
| /* NULL */

context_list : context_token
| context_list "," context_token
| /* NULL */

context_token : LOCAL /* target +/
| SHARED /* target +/
| GLOBAL /* target */
| REQUIRED /* source # /
| NONREQ /* source 4 /
| ONE /* peer +/
| MANY /* peer +/

The contexts are pooled, because they can occur in any order and can be left out. The validation
module will manage them correctly. This is also the place where future extensions are added.

opt_storage : " [' DIRECT * | *
| " [' INDIRECT * | *
| " [' VIRTUAL \ } "
| /* NULL */

Currently only one storage directive is permitted. However, future extensions can be added here.

undef_statement : UNDEFINE NAME
-
r

207

D. Query Language Syntax

D.6. Storage Management

storage_statement
|
-
r

CREATE STORE NAME

DESTROY STORE NAME

D.7. Instance Manipulation

dbinst_statement
|
|
|
|
|

r

CREATE VAR NAME IN scoped name
DESTROY WAR NAME

INSERT scoped name
UPDATE scoped name
DELETE scoped name
dbioutput strnt

The INSERT, UPDATE, and DELETE commands have corresponding overloaded function calls, e.g.
insert(). The command calls the function for effecting change in the instance's context, then if
necessary, will perform the actual DBMS action.

dbioutput strmt

output redirect
|

f

OUTPUT opt_arglist output redirect

ADDTO primitive
/* NULL */

This allows the output to be directed into a file.

D.8. Instance Assignment

assign statement
|

|

w

scoped name "=" expr
scoped name " :=' expr
scoped name

The scoped name by itself is a special case of referencing the last instance in the scoped name.
However, if there are functions with side-effects along the way, the side-effects will be carried out.

D.9. Select Command

query_statement FOREACH varlist opt_whereclause PERFORM statement

º
s

208

D. Query Language Syntax

varlist var_def
varlist "," var_def

At least one variable must be defined

var def
;

opt_whereclause

D.10. Control Flow

flow statement

opt_else

compound statement:
-
w

NAME IN scoped name

WHERE * (* condition *) '
/* NULL */

WHILE * (* condition ") * statement
IF ' (' condition ")' statement opt_else
BREAK "; "

CONTINUE * : *
EXIT * : *

ELSE statement

/* NULL */

* {" opt_stmtlist }'

D.11. Basic Expressions

opt_arglist

arglist

argument

condition

arglist
/* NULL */

argument
arglist " , " argument

condition

expr

condition OR condition

A.
-º-

209

D. Query Language Syntax

expr

Need to specify unary minus precedence to ensure proper evaluation.

value

scoped name

simple_name

func_call

overload

-
p

w

condition AND condition
NOT condition

• (,

expr

expr

expr

expr

expr

expr

expr
* - 7

• (,

V - 7

v > *

v.<r

v.4 r
* - /

w k z

*/ .

expr

expr
value

condition

expr

expr

expr

expr

expr

expr

expr

•)

scoped name
STRING

NUMBER

simple_name
scoped name

NAME

func_call

•)

$prec UMINUS

"...' simple_name

NAME * (' opt_arglist ") '
overload ' (' opt_arglist ") '

INSERT

DELETE

UPDATE

This is for handling overloaded names that matches keywords.

- * ,
-

210

E. Query Processor Modules

APPENDIX E. Query Processor Modules

The major modules of the Extended Object Query Processor are described in this Appendix. If
there is a module-specific structure, it is first described, followed by some of the major functions
in the module, and, finally, any interesting files in the module are mentioned.
E.1. Evaluators

This module handles the evaluation of Statements.

evaluate () - takes a parse tree made of Node's and evaluates the command. This call is
reentrant. Therefore, it can be called for evaluating subtrees. A large switch
statement is used to call the specific evaluation functions.

evalvalid () - takes a scoped name Node tree and performs type checking. Since expres
sions are converted to a scoped name Node tree, this handles all static type
checking.

eval () - the callback for the parser.

eval test. C - the main body of the program. If linked with the stubs library, the program is
a debugging version. If linked with the Sybase DB library, the program is a
working version.

E.2. Functions

This modules manages the operators (functions) visible to the user.

typedef struct {

char *name; name of function

char * * args; type names of arguments, null terminated
char * retval; type name of return value
int (* func) () ; actual function

char * (*inst_retval) (); type name of return value
} Func;

If retval is sig_inst, i.e. an arbitrary instance, then the type checking routine will call
inst_retval () to determine the actual type of the returned value.

func_find() - find the index of a function in the function table for the given name.

func_call() - calls a function. Arguments are: func_ptr, return inst, arg_inst [].
func_ptr is a pointer to Func, return inst and arg_inst are pointers to

º 7

211

E. Query Processor Modules

Inst, and the arg_inst [] is null-terminated.

func_varcall() - calls a function. Arguments are: name, return inst, arg0, arg1, ..., 0. This
is a var_args implementation of func_call ().

Constructor - submodule with all constructor specific functions.
overload - submodule with all overloaded functions.

primitive - submodule with all primitive type functions.
primitive/template. c and template. h

- template for adding compiled functions.
ul Ser - user defined functions

E.3. Grammar

This module handles all the grammar, it primarily calls functions in the Node module to create a
parse tree.

low - submodule where all the EOQL grammars are located.

low/*. y - the grammars, with query.y being the top file. They have a standard form, all
keywords are in uppercase, all other tokens are in lowercase. This is used to
dynamically generate the token.h and types. h. See the Makefile in this mod
ule.

low/core. y - if-then-else evaluation is special, so that under immediate mode, the parser
does not wait for the next token before evaluation.

low/lex. l - the lexical analyzer in standard lex format. We changed the input () macro
to handle reading EOQL script files.

typegen. C - a program that generate a C file from EOQL type definitions.

E.4. Instances

This module manages the session instances, such as creation, destruction, reference, and evalua

7/

–

z

º

tion.

typedef struct {

char *name; name of the instance

TypeVal * type; actual type of the instance
NodeInst & ref; pointer to the referencing Node
int status; status information

-- -

212

E. Query Processor Modules

struct instance *parent; parent instance
struct instance *sib; sibling chain from same parent
struct instance *child; points to child instance chain
int num_flas; number of values in the instance

int * values; indices into the value buffers

} Inst;

The parent/sib/child links allows the QP to track dependencies when values are changed. The
node reference and the opposite link from the Node allow the scoped name evaluator to use pre
viously created Instances.

inst_find () - returns the index of instance in the instance table with matching name.

inst_eval () - evaluate an instance based on parent information.

inst_ref () - returns the instance at the end of a scoped name reference.

inst_store. c - routines for searching instances in an image data, i.e. sets or sequences.

inst_value. c - manages the values of an instance.

E.5. Nodes

This modules provides the basic structure for the parse tree.

typedef struct {

Node Type type;

} NodeProto;

Each node type has different structure, but they all start with Node Type type.

template. c and template. h are used for making new node types.

E.6. Storage
This module is the main interface to the underlying database engine. It is the most implementation
specific portion of the EOQP If the engine is replaced, then this module has to be recoded.

typedef struct {

int (* set column) (); determine column locations of components
int (* create) (); create the collection store

int (* destroy) (); destroy the collection store
int (* updateparam) (); updates the relational overhead columns
int (* exist) (); determines if an instance exist in the store

213

E. Query Processor Modules

int (* read) () ; read the component values of an instance
int (* update) () ; update the component values of an instance
int (* insert) () ; insert an instance into the store

int (* delete) (); delete an instance from the store

} StoreRec;

Each constructor will have a storeRec.

The interface to the Store Module is through the generic store_* () call.

implG - a symbolic link to the actual implementation. It should contain routines for all
the constructors.

include G - a symbolic link to the include files of the underlying engine.

physical. C - base routines for interfacing with the underlying engine.

stubs. C - stubs for all the calls to the underlying engine, for testing purposes.

rel-blob - submodule for the current implementation.

serial - submodule for building serial ID daemon. It uses RPC for communication.
serial/serial_wrapper. C

- hides the details of the get_serial () call from rest of the system.

E.7. Support
Miscellaneous support routines.

args. C - routines for managing arrays of character pointers, e.g. char *args [].

E.8. Types
This module manages the types used in the session, such as creation, destruction, and lookups.

typedef struct {

char * typename; name

Type Struct const; type of type definition
int inst_count; number of instances

int defined; whether the type is defined
} TypeProto;

There are many types: primitive, enumerated, core, alias, implemented, and constructor. Each has
its own structure, but all start off with the TypeProto definition.

e

º

214

E. Query Processor Modules

type_find () - returns the index of the matching type in the type table.

type_resolv () - resolves a type fully, i.e. make sure the type is well-defined.

typecompat. c - routines to determine whether two types are compatible.

type core. C - holds all the definitions of primitive and core types.

typeproc. C - handles look ups for procedural types.

typestore. c - checks for validity of a type for external storage.

type value. C - routines that manage references to the value buffers for its instances.

user - a submodule where users can define their own types based on EOQL type def
initions. The program typegen from Grammar is used to build C files.

E.9. Validation

This module performs validation of parse tree to make sure certain semantic constraints are not vio
lated. For example, it checks for conflicting context dependencies and incorrect number of ID/
Property/Ordered By arcs in Object-Type definition.

validate () - takes a parse tree made of Node's and validates the command. This call is reen
trant. Therefore, it can be called for validating subtrees. A large switch state
ment is used to call the specific validate functions.

E.10. Value Buffers

The value buffers serve to manage the data used by the instances.

typedef struct {

Val Enum valtype; type of values stored
char *name; name of the value type
int val_count; the upper bound of existing buffers
int store_size; unit size of a value in bytes
unsigned char in use []; reference count for the usage of a value

} ValPool;

There are several types of value buffers: binary, boolean vector, byte, integer, float, and string. Each
has a different structure, but all of them start with the same definition.

valpool_find () - find the valpool with the matching type name.

value_new (), value_free ()
- allocate new buffer and free buffer.

A.

*

215

E. Query Processor Modules

value_get (), value_set ()

- gets and sets a value. Setting a value is by copying.

value_use () - increment a value's reference count.

216

t

º

, ºr tº, -
{ ºt ()

-º-
º

.*Q_Y
~

º
sº

2.
* ,

~~

L

º, y
º,

~
-º-

WC).7//
*~

72
2.

-
~

º

-

~

■ º
!... .

-

--

~ *T &
º

-

~

*

-

AR5 vº; J 17
~y

-

º
- !' ■ º/ º

() ■ */ 'S
)/2 .

'4 Sº
Nº. 2

L. º
TI/O

(T +-
-º º//ºcºco

*—

ºvºi g ■ º,
~cºlº/º

A

O)),
*-

(- T7. – –

º --- - y

i■ (,
/ºncºco

L. BRARY

■

~

º |C *

ºvº. 9 in
- ***, * , , , , ºf g :tº jº - * * L/ Al

4–

.))) .

º

º,

º

º

NT T

A. -
º4

J.

L. BRARY
sº

y – r- º
"… º

y ~"

º,
º

->
u

º
fº

Nº. 4
-º-

&
º

is
~sº Aº vº;

º

*42
º

O)

-º
- -º

N
º

&

*/ T
~

º
º <

S 4
*

-
->

º,

cº- /C
y-

t

º
/

*-

º
º

J
%)

º,
*.

~
-

|
--

|
/*, ºsº ~

_º t
_º-
º

~~
, -

2.
■ º:

T->

--~~~... . /

cº
2 º'

*

)
*2| - *)

- - - * ,

2

cºlº■ /º
4–

O/] .

-* -->

u■ C
~y -º T. A■ tº J

*~

L18 RARY

* --

Jºvº. 9 in
~

º º/ ///
-

..)/2 .

// inciº
Li BRARY sº

~
-

A-Rivºl J 17

inci■ co

-y

~ * L

-- W.
! C.

* * 7//
**

* L■ 3 RARY
-r

f
º

y

º, -º
* ->

--
*

NJ IT
-

-

º, J.

º
~~

-

-
>̂ .

& ºvº. 9 in

is . ~/ .
*

-

Q C/(
-cºncº

*~~

LIBRARY
-

c

| sºf - -º, ~
"y º2

º7

■)-

A- º

-

~
-

~ Aºivºj 9 ■ ºnsº
--

dº º/ºr Q
º

º
4.

w A-ZO■ lº
y

º T
w º, -->

~
º

º
º^*.

..S.

*/
-1.

Nº
-º-

■

ºr

-y

* L //?
*- l º

º■ ºciº
-

* Lº■ ARY _*

*) L.f
º,

º,

-*
-

-º

wº

sº
sº

--"
* *~ º

- - - - -

º

-

º
~º

TAC
CY,7? //, //cºv

-

- !-

º
º,
º

cº■ / ºr

I■ º

º

)

-

-
-

u º
º

º -S
(* T --º -- ~ ** , *-

* * sº

- - - -, --º / -- ! { ■ º ()
*—-

y

■ º- º, L. B RARY
l ~.

W.
-cºcºo

*-

■ º º L. B R A R Y_ -

As ºf vºj J in

º
*/

º

*

L■ B R ARY
* , --r

y -º º
-

~, %.
-

oº:://º º º º
- Sº,
)

~ *
~

t

-

~
-

■ ºvº g
J.

-- **vº (--r -->º º
~~ t

*Y.
-º //nºt

■ º º ~)
--- º—º

- ()

- - ■ º,sº ºvºi gin º.
2

º/1////º
tºº.

-

4/ º
.)/2 .

º T

*2 as
S +

->
º,

º -
~

C |
>

* ,

ºvº. 9 in
~,

dºll■ / Z//

.)/2

-*
º ~
- *-> *

~ º
º º,

sº ºr * .
- º

º -, ty() r -

f. | --* * -->
º -

- º

u■ (,

sº
º
-

ty r

º,
º

-

º
º

Aºi g ■ º

* º
v.

ºnnº.

º
*

1.

O■ lº
■ º

-

~
-

-º

2
* - cTAC

º
*~ *

L■ B RARY
-S

~
_º

--

->
º * ,

º º,
~ * -

* --
* *

17
~
ºA/º*/

º

c)
- º,Tº.

”, *

Q % st
4- --- º

~

gº!/11/ º
*-

c)
-

()

71/1.1///º'S

ºº/?* Q
4

º

ºv : G in
--~~~~. Aº

L. BRARY

- r |*2. |-
w

-

-
&

º
>

!
J.

º C

--> ■ º
* -

- - º
º

-

~,

A Rivº G in

-
-

-"~
º

- -º
y

- tº***| | | * c

TIC
-y - -

L15 RARY
&

|] sºr -%. º
º

º*.
-

º

A Rivº■ J 17

O■ lº
º ■ º

º

-
-**

-"
~~_*,

*>
-! -* >

.N «»

-->
~

.N-

- ->* [[[.
->

º&■ º º
L■ B R ARY

º L– sº
º -º º

o

_ _ _-

lº■■ ,■ ºn cºco
*-

~
-

º / 7 º’clºco
*-

S

0.

2.

º/, ■ ºn cºco
*—

C■ .*&A.4. 7/7
-
tº J

º

tº 71/11//// Q

W.CY,”

■ º- º, Lºp RARY* - -

º

º, *.
-

-

-

Sº
tº

-

-" * - - -

~ Clº º,
º

- * , , --*– º 0.
º, -- " " -

* ,

c- y º, ■ º, LC 2 *

º
2.

->
- -

- - -

-
- .

-

->
-

-

L1B RARY ºr—tº
º

º,

»-
-

- *~

º
º

º
^

--
~

sº
* , --r

ºv's gº º |--
*/º

- ADyn~2-

A-Tºvº
* ---tº ºf ,

ºf .
* -

*-
~
ºL■ 3 RARY

-- sºº, L. sº
º

*O

A

-- * ~ * -: --
tº v Lºt 1

-

-n-

- L–
º-

º4.

~ *
º

º
--

