UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Cognition and the Computational Power of Connectionist Networks

Permalink
https://escholarship.org/uc/item/8s85v591|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 21(0)

Author
Hadley, Robert F.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8s85v591
https://escholarship.org
http://www.cdlib.org/

Cognition and the Computational Power
of Connectionist Networks

Robert F. Hadley
School of Computing Science
and Cognitive Science Program
Simon Fraser University
Burnaby, B.C., V5A 156
hadley@cs.sfu.ca

Abstract

This paper examines certain claims of “cogni-
tive significance” which (wisely or not) have been
based upon the theoretical powers of two dis-
tinct classes of connectionist networks, namely, the
“universal function approximators”, and recurrent
finite-state simulation networks. Each class will be
considered with respect to its potential in the realm
of cognitive modeling. Regarding the first class, |
argue that, contrary to the claims of some influ-
ential connectionists, feed-forward networks do not
possess the theoretical capacity to approximate all
functions of interest to cognitive scientisis. By
contrast, I argue that a certain class of recurrent
networks (i.e., those which closely approximate de-
terministic finite automata, DFA) shows consid-
erably greater promise in some domains. However,
serious difficulties arise when we consider how the
relevant recurrent networks (RNNs) could acquire
the weight vectors needed to support DFA simula-
tions.

Introduction.

Do connectionist networks have the computational
power, in theory, to provide successful explanatory
models for high-level human cognition? Many con-
nectionists believe so, and their confidence stems
from a number of formal results that have appeared
in the last decade. These ‘computability’ results per-
tain to network architectures which, on the face of
it, avoid the shortcomings of the oft-cited McCulloch
& Pitts (1943) implementation of conventional ‘logic
gates’. It is now widely recognized that McCulloch-
Pitts ‘neural circuitry’ designs are radically unlike
the kinds of neural structures found in actual brains,
and offer no advantage over standard digital cir-
cuitry. By contrast, some network architectures in-
volved in recent theoretical results bear at least a
superficial resemblance to biological neural struc-
tures. This fact has inspired hope, in some quar-
ters, that connectionist networks (abbreviated here
as ‘c-nets’') may both (a) match the power of high-
level, symbolic Al programs for explaining higher
cognitive functions (such as abstract planning, math-
ematical reasoning, and theory formation), and (b)
provide insight into how these higher functions could
be instantiated in living brains. Among those who
have appealed to the ‘theoretical power’ of multi-
layer c-nets (especially their purported ‘universal’

196

function approximation capacity) within a cognitive
contert are Churchland (1990), Elman et al (1996),
and Niklasson & van Gelder (1994).

This paper will examine several frequently cited
theoretical results with regard to their potential for
satisfying both conditions (a) and (b) above. In par-
ticular, I focus upon whether the relevant proofs ap-
peal to processing models which present a genuine
alternative to conventional high-level symbolic pro-
cessing. In addition, I explore whether the proposed
models possess some measure of cognitive/biological
plausibility. For even if a given c-net architecture
essentially implemenis a classical machine, at the
computational level, such an implementation would
still be vastly important if it revealed how high-level
classical processes could be realized in brain-like sys-
tems.

In what follows, I consider ‘computability re-
sults’ which fall into two major categories. These
are: (1) ‘universal’ function approximators (em-
phatic scare quotes), (2) deterministic finite au-
tomata simulators. Papers belonging these cate-
gories are: (1) Hartman, Keeler, & Kowalski (1990);
Hornik, Stinchcombe, & White (1989). (2) Casey,
1996; Cleerman, Servan-Schreiber, & McClelland
(1989); Omlin & Giles (1996); Sontag (1995).

I shall argue that results in the first of the above
categories hold no promise for explainin% the ab-
stract planning and reasoning capacities of humans.
(‘Universal’ function approximators lack the reg-
uisite power — they are not universal.) By con-
trast, the second category (deterministic finite au-
tomata, DFA) offers some measure of hope pro-
vided the c-nets are designed in a fashion that en-
sures close mimicry of the state transitions of some
DFA. However, even here, the existence of cog-
nitively /biologically defensible training methods 1s
highly problematic.

(Apart from the foregoing, a third class of com-
putability results exists. This concerns Turing-
equivalent networks. [See Siegelmann (1996); Siegel-
mann & Sontag, 1994] These are examined in de-
tail in my extended technical report (Hadley, 1999),
where [argue that Turing-equivalent networks not
only require weights and nodes of infinite precision,
but are at least as “brittle” and “hand-crafted” as
classical symbolic algorithms. It should be noted
that the “infinite precision” difficulties have also
been explored by Sontag [1995]. Due to space
constraints, I must here omit further discussion of

Turing-equivalent networks.)

2. Universal Function Approximators.

The thesis that multi-layer, feed-forward neural
networks can be universal function approximators,
derives primarily from two influential publications;
Hornik, Stinchcombe & White (1989) and Hartman,
Keeler & Kowalski (1990). Although the titles of
both these publications contain the phrases ‘univer-
sal approximators’ and ‘universal approximations’,
respectively, the text of each paper makes it clear
that only a certain class of functions is being ad-
dressed. In both cases, only the class of measur-
able Borel functions is discussed, but this includes
continuously valued functions. Hornik et al contend
that this class covers ‘virtually any function of inter-
est’. Hartman et al do not address this issue, per-
haps because they believed the cited work of Hornik
et al had sufficiently explored the question. In any
case, the difference between the proofs provided by
these two groups of researchers concerns only the ac-
tivation functions applied to hidden layer units, and
does not concern the input-output mapping func-
tions which are to be approximated. For this reason,
my discussion will center upon Hornik et al, since
theirs is the earlier work. My conclusions, however,
apply equally well to any claim or ‘proof’ that finite
multi-layer, feed-forward networks can be universal
function approximators.

2.1 Problems with Universality.

Let us note at the outset that any given measur-
able Borel function is a set of ordered pairs, where
each element of each ordered pair is a single real
number. Since the output layer of any actual neural
network can contain only a finite number of units,
each having finite precision, any given output value
produced for a given input can have only finite preci-
sion. Such an output value cannot uniquely approx-
imate, in the general case, a specific real number, no
matter how large the output layer may be. For, an
infinity of real numbers will lie arbitrarily close to
any fixed precision output value. In purely numer-
ical domains, this may often be a negligible issue.
However, when numerical output is being used to
encode symbolic formulae or sentences, serious prob-
lems can arise. Admittedly, such difficulties can at
times be obviated by a prudent choice of encoding
schemes. Unfortunately, this is often not possible in
domains associated with higher cognition.

For example, the realms of logic, mathematics,
and linguistic theory each involve infinite sets of for-
mulae or sentences. In addition, within these realms
there are important functions which can map a given
sentence %selected from an infinite set) onto another
sentence (or even an infinite set of sentences). That
is, such functions have infinite ranges and domains.
Yet, the input/output layers of any physically realiz-
able c-net can contain only a finite number of units,
each having finite precision. Thus, these layers can
accurately encode values spanning only a finite in-
terval. If an infinite number of formulae encodings
are to be ‘packed’ into a finite numerical span, there
can be no lower bound on how close together a pair

of encodings can be.!

Now, since a given output value will seldom pre-
cisely represent the target encoding, one will usually
be forced to rely upon some approrimate result to
determine which formula was being output. How-
ever, this would commonly lead to disaster, since,
in the present context, two numbers which encode
distinct formulae should not be viewed as approx-
imations of each other, no matter how numerically
close the encodings are. For example, a given numer-
ical code, C, may be very close to the encoding of
some theorem, and yet C may encode some other for-
mula which is logically invalid. This difficulty cannot
be circumvented by taking some actually generated
output value and searching for the nearest number
which encodes a well-formed formula. For there sim-
ply is no “nearest formula encoding”. Given any pair
of formulae encodings, some other, distinct formula
encoding would always lie between them. The brute
fact is that formulae are discrete objects which can
seldom be viewed as approximations of each other.

It might now be objected that the problem just
described is not unique to neural networks. Af-
ter all, no physically realizable computer could ac-
tually derive an infinity of symbolic theorems, or
process arbitrarily long symbolic strings. However,
this objection misses the theoretical point I am mak-
ing. The point is that there are important ‘func-
tions of interest’ which cannot be approximated by
any feed-forward network, even though such net-
works can approximate many continuously valued
functions. Functions which map formulae/sentences
into other formulae/sentences are both interesting
and important, as I explain below. Many of these
functions cannot be approximated in any sense rele-
vant to the foregoing discussion. Yet, as defined by
automata theory, they are computable functions (i.e.,
recursive). We can write useful symbolic programs
which intensionally embody these functions, and the
programs will halt, though not always rapidly. This
1s true even though the ranges and domains of the
computable functions may be infinite. An example
of such a function, used by some automated theo-
rem provers, is the clause-form conversion algorithm.
It takes any sentence of first-order logic (FOL) and
generates a set of clauses. This set can be written
as a simple conjunction of formula.

Now, of course, a given computation involving a
computable function can exceed a computer’s mem-
ory resources. However, as Fodor and Pylyshyn ob-
serve (1988), one can always add more memory with-
out having to alter the program, or the function be-
ing computed. This cannot be said, in general, of
c-nets, where increasing the amount of memory (or
nodes) will create a different weight configuration,
thereby altering the function being computed.

Returning to the main thread, it might be ob-
jected that the foregoing discussion is misguided,
since Hornik et al were addressing measurable nu-

!To see this, suppose there existed such a finite lower
bound. Since there are an infinity of formulae encodings,
and each pair of encodings is separated by at least this
lower bound, then the entire spanned region would have
to be infinitely broad.

197

merical functions. Functions which map symbolic
expressions into symbolic expressions are not mea-
surable in the relevant sense. In reply, I would em-
phasize two points. First, Hornik et al identify the
class of functions they address with ‘virtually any
function of interest’. They even say that ‘failures in
application can be attributed to ... the presence of
a stochastic rather than a deterministic relation be-
tween input and target’. Secondly, regardless of the
original intent, Hornik et al’s results have been con-
strued by many cognitively motivated connection-
ists as a clear demonstration that, in principle, mul-
tilayer feed-forward c-nets can match the power of
conventional Al programs. It is this construal (or
misconstrual) which concerns me most.

My critique thus far has centered upon prob-
lems that arise when interpreting finite numerical
output as approximate encodings of discrete sym-
bolic strings. However, significantly deeper prob-
lems are encountered when we consider the kinds
of (potentially non-halting) computations required
by theorem provers in the realm of FOL and higher
mathematics. For these realms, there exist working
programs which prove interesting theorems. More-
over, standard Al textbooks present various means
whereby theorem provers for FOL can be applied
to practical problems such as planning, natural lan-
guage interpretation, and even programming.

The theorem proving programs just alluded to are
not guaranteed to halt (complete their computa-
tions% in general, though for many input values, they
will halt and produce interesting output. However,
these programs are usually deterministic and instan-
tiate partial recursive functions (the relevant sets of
theorems are recursively enumerable). Such func-
tions comprise a major focus of recursive function
theory. Furthermore, as far as we presently know,
humans may at times employ high-level mental pro-
cesses which are best modeled Ey non-halting pro-
grams of the kind being considered. One obvious
example would involve mathematicians who discover
complex proofs for existing conjectures. The most
successful cognitive models in this area are high-level
programs which employ both heuristic rules and sub-
programs that halt for some inputs but not others.

Now, programs which implement theorem provers
for standard first-order logic and higher-order math-
ematical domains involve iterative processes. Their
computational complexity is infinite, since no a pri-
ort limit can be set on the number of iterations
involved. By contrast, non-recurrent, feed-forward
networks have computational complexity which is
linear. Such networks (implemented in parallel, as
connectionist theory assumes) always complete their
computations in time which is a linear function of
the number of layers present. Moreover, unlike
partial recursive functions (or their corresponding
programs), these networks always produce an out-
put for any given input. In light of this, it i1s ex-
tremely doubtful that multi-layer feed-forward net-
works could approximate the partial recursive func-
tions under consideration. For example, consider the
partial function which, given any suspected theorem
of standard FOL, yields a formal proof for that sen-
tence if and only if a proof exists. Certainly, no

198

feed-forward network could reliably produce an ‘ap-
proximate output’ which could then be used to me-
chanically infer the desired theorem-proof, if one ex-
ists. For this supposition would entail that there ex-
ists an effective decision procedure for ascertaining
theoremhood in the full first-order calculus. Such a
decision procedure has been proven to be impossible
(Church, 1956).

Moreover, nothing in Hornik et al (or in Hartman
et al) would suggest that a feed-forward network
could even frequently produce output that approxi-
mated the encoding of a target proof for a suspected
theorem. Their proofs simply do not address the
class of partial recursive functions. We know also,
from the renowned work of Church (1956), Godel
(1931) and others, that a function which relates
arbitrary sentences of FOL (or number theory) to
their supposed proofs is not reducible to any arith-
metic (or algebraic) equation. To be sure, the ‘proof
predicates’ employed by Godel in his famous incom-
pleteness theorems correspond to algebraic formu-
lae. However, these predicates apply (or ‘hold’) only
in cases where a proof actually exists. Thus, these
‘proof predicates’ could not be embedded in a c-net’s
weight configuration in order to determine whethera
suspected theorem had a proof. Any purported feed-
forward net of this kind would produce output for
theorems and non-theorems alike, and this output
could not be used to distinguish the two cases.

It might now be objected that the difficulties just
considered are innocuous, since it may appear that
partial recursive functions (PRFs) are not really
functions at all. After all, these “functions” are only
partially defined; they fail to produce output for cer-
tain input values.

In reply, two points are relevant. First, as previ-
ously noted, PRFs form a major topic in recursive
function theory. Researchers in this realm (includ-
ing Alan Turing, Alonzo Church, and other giants)
certainly have regarded PRFs as an important type
of function, and recursive function theory is an es-
sential field within both Mathematics and Computer
Science. However, setting aside quibbles about the
semantics of ‘function’, there remains the crucial
point that theoretical proofs about “universal” func-
tion approximation have been cited by many con-
nectionists as conclusive evidence that any mental
computation could, in principle, be closely approxi-
mated by feed-forward networks. Here lies the crux
of the matter. Now, certain of the PRF's cited above
have been used to model high-level cognitive pro-
cesses, and it is beyond dispute that computer pro-
grams embodying these PRFs actually perform com-
putations. Moreover, it would be entirely question-
begging for any connectionist to insist that the men-
tal computations of interest could never be accu-
rately modeled by PRFs. So, regardless of how nar-
rowly we choose to construe the sense of ‘function’,
the theoretical proofs in question simply have not
established that all mental computations of interest
can be approximated by feed-forward networks.

3. Recurrent Neural Networks and
Deterministic Finite Automata.

In a 1989 paper, Cleermans et al offered a demon-

stration that simple recurrent networks “can learn to
mimic closely a finite-state automaton (FSA) both
in its behavior and in its state representations”.
Their demonstration was experimental, rather than
formal. Using backpropagation, they successfully
trained recurrent networks to induce comparatively
simple deterministic finite automata (DFA). Exper-
imental evidence of this nature could not, of course,
establish any general equivalence between recurrent
neural networks (RNNs) and DFA. Indeed, Elman’s
work with RNNs (1990, 1993) illustrated that sim-
ple recurrent nets, trained via backpropagation, may
provide only limited approximations to DFA, in that
network performance can significantly degrade when
even moderately deep recursion is present within in-
put strings. On a more encouraging note, the capac-
ity of RNNs to simulate the general class of DFAs
has been formally proven (see Sontag, 1995; Casey,
1996; Omlin & Giles, 1996). These proofs are sig-
nificant because many powerful computational pro-
cesses can be modeled by DFAs. (Whether high-
level human cognition can, in general, be modeled
by DFAs is less clear, however. We shall return to
that issue below.)

Now, it is noteworthy that RNNs and DFAs are
not equivalent classes. Given a particular DFA,
there does exist some RNN whose I/O behaviour
is equivalent to the DFA. However, there are many
RNNs which fail to approximate any DFA to a de-

ree sufficient to enable successful automaton simu-

ation on long input strings. Omlin & Giles (1996)
are emphatic on this point. They also provide an al-
gorithm which partially pre-determines a network’s
weights, prior to training, in order to ensure that
subsequent learning yields weight vectors that guar-
antee successful simulation. The resulting networks
can achieve very close simulations of DFA, but the
question naturally arises, do these simulations pos-
sess any advantage over classical DFA? For example,
will the network possess a tolerance to ‘noise’ which
wou!?d be absent in an entirely precise DFA simula-
tion?

In principle, some degree of noise tolerance could
be present. Indeed, Casey (1996) has proven that
RNN simulations of DFA can, in general, be noise
tolerant (within narrow bounds) provided the requi-
site weight vectors are assumed to be present. How-
ever, Casey does not offer an algorithm for gener-
ating the required weights. His concerns were of a
different order.

The overriding goal of Casey’s work (1996) was
demonstrated in his first theorem, which states that
“if an RNN performs an FSM [finite state machine]
computation, then it must organize itself so that it
models the minimal DFA which performs the same
FSM computation.” The minimal DFA is one that
achieves the given task with the least number of
states (and state nodes). Elsewhere, Casey asserts
that the RNN “mimics” the organization of the min-
imal DFA.

It is important to appreciate the generality of
Casey's results. For we now know that every deter-
ministic RNN which successfully matches the input-
output behaviour of a given DFA must implement
some particular DFA, viz., the minimal DFA that

199

performs the given computation. To be sure, the
limited noise tolerance of the RNN implementation
may bring advantages in some domains. Neverthe-
less, a precise correspondence will exist between the
RNN state representations and those of the minimal
DFA in question. Any attempt to expand the noise
tolerance of the RNN can introduce errors on each
iterative state transition. Such errors are rapidly
compounded and lead to increasingly degraded per-
formance.

Now, on the face of it, Casey’s results conflict
with an observation of Cleermans, et al, namely that

“representations [within the simple recurrent net-
work] correspond to nodes in the FSA only when
resources are severely constrained.” The conflict dis-
solves, however, when we recall that Cleermans et al
are thinking of the FSA which one is ostensibly mod-
eling, whereas Casey’s proof refers to the minimal
DFA.

The upshot of the foregoing discussion is that suc-
cessful RNN simulations of DFA can be viewed as
close approximations of DFA. Moreover, every DFA
implements some classical algorithm. The question
naturally arises, then, whether RNN implementa-
tions of DFA can provide important insights into
how high-level algorithmic processes could be im-
plemented in the brain. As I will now argue, the
answer largely depends upon the cognitive plausibil-
ity of several assumptions which are crucial to the
computability results cited above.

3.1 Genesis of Weight Vectors.

A key premise, found both in (Casey, 1996) and
(Sontag, 1995) is that weights vectors, having suit-
able topological properties, may be assumed to be
present in the RNN. Admittedly, Casey shows con-
cern for how weights are to be acquired. For this
reason, his proofs are designed with “robust” RNNs
in mind (the weight vectors need fall only within
certain tolerance ranges). Nevertheless, neither he
nor Sontag proves that the requisite weights can be
generated by any feasible method. Let us consider,
therefore, how the appropriate weight vectors might
come to be present.

There appear to be just three salient possibilities.
(A) Some or all of the required weights are innately
present. (B) The weights are induced by supervised
training, e.g., via the backpropagation algorithm.
(C) The weights are induced by unsupervised learn-
ing methods.

For each of these three possibilities, there may be
cognitive realms where considerable plausibility ex-
ists. However, the realm of high-level cognition (ab-
stract reasoning, planning, theory formation) seems
to present some difficulty for all three possibilities.

Consider first the innateness hypothesis. Given
that most forms of abstract reasoning and theory
formation rely, in part, on a variety of specialized
mental skills (e.g., the ability to apply acquired ver-
bal rules, the ability to find analogies with exist-
ing theories/methods; the ability to mentally en-
tertain a list of alternative plans; etc.), it seems
highly likely that some prior learning, at least, is
required to support these powerful cognitive pro-
cesses (cf. Hadley, in press). So, the supposition
that we employ an innate, fully weight-configured

RNN to achieve all such cognitive processing is prob-
lematic at best. Nevertheless, there remains the ap-
parent possibility that we possess certain modular
NNs which are trained by erperience, but that we
also possess a high-level, innately-configured, gen-
eral problem solving RNN, which matches the power
of some DFA. This general-purpose RNN might in-
voke the empirically-trained modules to achieve cer-
tain sub-tasks, but the high-level RNN could still be
viewed as an innately programmed network.

Unfortunately, a serious difficulty remains. Specif-
ically, the innate weight-configuration hypothesis
would find little support among some prominent
neuro-psychologists and connectionists. For exam-
ple, Elman, Bates, et al (1996) argue forcefully that
detailed, pre-specified weights (supporting specific
representations) are not innately present in the cere-
bral cortex. While this proposition i1s not embraced
by all developmentalists, it 1s worrisome that its dis-
senters have not produced physiological evidence to
the contrary. Note also, that the partial weight pre-
specification strategy of Omlin & Giles (1996
seemingly undermined by Elman et al’s arguments.
For, though Omlin & Giles offer an algorithm for
pre-specifying weights, this algorithm is not driven
by experiential training. Thus, their a-priori weight
pre-specification should be viewed as comparable to
innate structuring.

Turning now to (B), the supervised learning hy-
pothesis, we are again confronted with a serious
obstacle. For, all known supervised learning algo-
rithms require a representative sampling of target
output values to be available during the training
process. Yet, in domains such as abstract reason-
ing, planning, and especially theory formation, the
overwhelming majority of “output values” are not
available beforehand. Rather, they have yet to be
discovered by the agents who are undergoing train-
ing. Also. in this domain, “interpolation” between
known output values often fails to work (as we saw
in the case of ‘universal’ function approximation).
Moreover, it would be ludicrous to suppose that hu-
mans learn how to devise theories or to prove the-
orems by a simple form of stimulus-response train-
ing. Part of the learning process, at the very least,
involves being taught general principles, and then
applying these principles in novel combinations (cf.
Hadley, in press).

Apart from the above, we must bear in mind that
abstract reasoning, and theory formation are highly
complex processes. Any computationally complete
and effective DFA model of these processes will in-
volve hundreds or thousands of distinct states and
state transitions, at the least.? In light of this, any
RNN, corresponding to such a DFA, will involve
complex and lengthy recursive processes. Now, as
Omlin & Giles have emphasized, there are no known
supervised learning algorithms which reliably induce
weight configurations in RNNs so as to achieve suc-
cessful simulation of DFAs in the face of lengthy re-
cursive processes. Yet, humans certainly engage in

2The skeptical reader might attempt to construct an
complete DFA model for SOAR (Laird, et al, 1987), a
well known candidate for a ‘general cognitive model’.

200

lengthy internal processing in cases where they are
devising a proof strategy or, say, planning their next
move in a chess game. So, even |gn0rmg the diffi-
culty of ‘unavailable target outputs’, we presently
have no reason to believe that supervised learning
methods could induce the requisite weight vectors.

Admittedly, it is possible that an appropriate, su-
pervised learning method will someday be discov-
ered. However, from this it does not follow that
a purely agnostic attitude on the issue is reason-
able. Any successful, supervised learning algorithm
(in this domain) must have highly specific mathe-
matical properties, just as a proof for a mathemat-
ical proposition must have very special properties.
If one arbitrarily pinpoints some extremely complex
mathematical proposition and asserts, ‘It is just as
likely that this proposition is provable as that it is
not’, one may expect a (figurative) barrage of rot-
ten tomatoes before an audience of mathematicians.
Likewise, it would be imprudent to claim that the
existence of the required supervised learning algo-
rithm is just as likely as its non-existence.

There remains, of course, possibility SC) - unsu-
pervised learning methods. Unfortunately, as many
experienced connectionists can testify, it is even
more difficult to induce appropriate weight vectors
in a large, complex RNN via unsupervised methods
than by supervised training. This explains why the
overwhelming majority of connectionist models pub-
lished (in various Cognitive Science journals and pro-
ceedings) employ backpropagation (or its near kin)
rather than unsupervised algorithms.

To be sure, it is widely agreed that much hu-
man learmng occurs in an unsupervised fashion.
Moreover, unsupervised competitive and/or Heb-
bian learning appears to be the foundation for most
or all “weight adjustment” (via synaptic modifica-
tion) that occurs in the cerebral cortex (cf. El-
man et al, 1996). Presumably then, unsupervised
learning can achieve astounding results in the cogni-
tive realm. Given this, should we not remain open-
minded regarding hypothesis (C)?

Unfortunately, matters are not so simple. Al-
though I happily embrace the view that unsuper-
vised learning may achieve wonderful feats, it is far
from clear that it does so via training RNNs to be-
have like DFA. I have argued elsewhere (Hadley, in
press) that much of the power of high-level cognition
derives from architectures that arise through novel
interactions of modules. Unsupervised learning, in
conjunction with other forms of plasticity, probably
plays a large role in the formation of these mod-
ules. However, it is unclear, at best, whether these
modules can be modeled as DFA. Among other dif-
ficulties, DFA do not even possess sufficient power
to parse context-sensitive grammars.

In summary, we have now seen that significant
doubts arise, for all three possibilities {(A), (B),
and (C)}, with respect to how suitable weight vec-
tors, needed to support DFA simulation, could occur
within brain-based RNNs. The innateness hypoth-
esis presents fewer difficulties, at first glance. How-
ever, this hypothesis finds little favor in some con-
nectionist quarters, due to the dearth of supporting
physiological evidence. Of the learning-based pos-

sibilities, only supervised algorithms (in particular,
variants of backpropagation) have successfully in-
duced even approximately correct weights in com-
paratively simple RNNs. It is noteworthy, more-
over, that backpropagation, and its refinements,
have thus far resisted any reduction to biologically
based weight modification methods. This aspect fur-
ther clouds the prospect that frained RNNs may re-
veal the nature of cognitively plausible implementa-
tions of DFA in actual brains.

Conclusions and Summary.

In the foregoing, | have examined claims made for
the computational powers of two distinct classes of
connectionist networks, namely, the (putative) “uni-
versal function approximators”, and recurrent finite-
state simulation networks. Each class was consid-
ered with respect to its potential in the realm of
cognitive modeling. Regarding the first class, I ar-
gued that, contrary to the claims of some influential
connectionists, feed-forward networks do not possess
the capacity to approximate all functions of interest
to cognitive scientists. They clearly do not possess
the ability to approximate partial recursive (non-
halting) functions, though the latter may very well
provide good models of some high-level cognitive
processes. Moreover, we saw that feed-forward net-
works cannot approximate certain important, sim-
ple recursive (halting) functions which map symbolic
strings onto other symbolic strings.

By contrast, we saw that a particular class of
recurrent networks (namely, RNNs that closely
approximate DFAs) shows considerably greater
promise in some domains. For, many computable
functions, which map symbolic strings of arbitrary
length onto similar strings can, in principle, be mod-
eled by DFAs and their connectionist simulations.
However, serious difficulties emerged when we con-
sidered how the relevant recurrent networks could
acquire the weight vectors needed to support DFA
simulations. Indeed, the most widely used method
of inducing weight vectors (supervised learning) was
seen to be implausible in the realm of several high-
level cognitive functions. Furthermore, hypothe-
ses founded upon innate-wiring and self-organizing
learning likewise presented serious obstacles. This is
not to say that a set of separate RNN modules would
present similar obstacles. However, a set of RNN
modules is not an RNN in the sense assumed by the
various theoretical proofs we have considered here.
Moreover, as previously mentioned, I offer theoret-
ical arguments in (Hadley, in press) to show that a
modular connectionist architecture inevitably leads
to classical patterns of inter-modular processing.

References.

Casey (1996) The Dynamies of discrete-time com-
putation, with application to recurrent neural net-
works and finite state machine extraction, Neural
computation, 8, 1135-1178.

Church, A. (1956) Introduction to mathematical
logic, Princeton, NJ: Princeton University Press.
Churchland, P. (1990) Cognitive activity in artifi-
cial neural networks. In Osherson, D.N. & Smith,

201

E.E. (eds.), An inuwvitation to cognitive science:
Thinking (Vol. 3), Cambridge, MA: MIT Press.

Cleeremans, A., Servan-Schreiber, D. & McClel-
land, J.L. (1989) Finite state automata and simple
recurrent networks, Neural computation, 1, 372-
381.

Elman, J.L. (1993) Learning and development in
neural networks: The importance of starting
small, Cognition, 48, 71-99.

Elman, J.L., Bates, E.A., Johnson, M.H.,
Karmiloff-Smith, A., Parisi, D., Plunkett, K.
(1996), Rethinking Innateness: A Connection-
isi Perspective on Development, Cambridge, MA:
MIT Press.

Godel, K. (1931) Uber formal unentscheidbare
Satze der Principia mathematica und verwandter
System 1, Monatschefie fur Mathematik und
Physik, 38, 173-198 (Translated in van Heijenoort,
1967).

Fodor, J.A. and Pylyshyn, Z.W. (1988), Connec-
tionism and Cognitive Architecture: A Critical
Analysis, Cognition, Vol. 28, 3-71.

Hadley, R.F. (1999) Cognition and the Computa-
tional Power of Connectionist Networks, Technical
Report, SFU CMPT TR 1999-01, School of Com-
puting Science, Simon Fraser University, Burnaby,
B.C., V5A 1S6.

Hadley, R.F. (in press) Connectionism and novel
combinations of skills: implications for cognitive
architecture, Minds and Machines, pp. (to ap-
pear).

Hartman, E.J., Keeler, J.D. & Kowalski, J.M.
(1990) Layered neural networks with Gaussian
hidden units as universal approximations, Neural
computation, 2, 210-215.

Hornik, K., Stinchcombe, M., & White, H. (1989)
Multilayer feedforward networks are universal ap-
proximators, Neural Networks, 2, 359-366.

Laird, J.E., Newell, A., Rosenbloom, P.S. (1987)
SOAR, An architecture for general intelligence,
Artificial Intelligence, 33, 1-64.

Niklasson, L.F. and van Gelder, T. 1994: On Be-
ing Systematically Connectionist. Mind and Lan-
guage, 9, 288-302.

Omlin, C.W. & Giles, C.L. (1996) Constructing de-
terministic finite-state automata in recurrent neu-
ral networks, Journal of the ACM, 43, 937-972.

Siegelmann, H.T. (1996) The simple dynamics of
super Turing theories, Theoretical Computer Sci-
ence, 168, 461-472.

Siegelmann, H.T. & Sontag, E.D. (1994) Ana-
log computation via neural networks, Theoretical
Computer Science, 131, 331-360.

Sontag, E.D. (1995) Automata and neural net-
works, The Handbook of brain theory and neural
networks, (ed.) Arbib, M.A., Cambridge, MA:
MIT Press.

	cogsci_1999_196-201

