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Abstract 

We model radon entry into basements using a previously developed three-dimensional steady­
state finite difference model that has been modified in the following ways: first, cylindrical coor­
dinates are used to take advantage of the symmetry of the problem in the horizontal plane, 
thereby increasing resolution and computing efficiency without significant loss of generality; 
second, the configuration of the basement has been made more realistic by incorporating the con­
crete footer which supports the basement walls and floor; third, a quadratic relationship between 
the pressure and flow in the L-shaped gap between slab, footer, and wall has been employed; 
fourth, the natural convection of the soil gas which follows from the heating of the basement in 
winter has been taken into account. The temperature field in the soil is determined from the 
equation of energy conservation, using the basement, surface, and deep-soil temperatures as 
boundary conditions. The pressure field is determined from Darcy's law and the equation of 
mass conservation (continuity), assuming that there is no flow across any boundary except the 
soil surface (atmospheric pressure) and the opening in the basement shell (fixed pressure). Since 
the energy conservation equation includes both heat advection and conduction, the temperature 
and pressure equations must be coupled. After the pressure and temperature fields have been 
obtained, the velocity field is found from Darcy's law. Finally, the radon concentration field is 
found from the equation of mass-transport, assuming that diffusive entry through openings may 
be neglected. The convective radon entry rate through the opening or openings is then calculated. 
In this paper we describe the modified model, compare the predicted radon entry rates with and 
without the consideration of thermal convection, and compare the predicted rates with rates deter­
mined from data from 7 houses in the Spokane River valley of Washington and Idaho. Although 
the predicted rate is much lower than the mean of the rates determined from measurements, errors 
in the measurement of soil permeability and variations in the permeability of the area immedi­
ately under the basement slab, which has a significant influence on the pressure field, can account 
for the range of entry rates inferred from the data. 

Keywords: Radon, Modeling, Soil, Mass transport, Pollutant, Heat transfer 
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Introduction 

The primary source of radon in houses with high indoor concentrations is, in most cases, the 
surrounding soil; the primary means of entry is generally the passage of soil-gas through cracks 
or other gaps in the building shell (Nero, 1988a) or through penneable sub-surface walls (Garbesi 
and Sextro, 1990). In houses with basements, for which the length of the soil-gas path from soil 
surface to entry point may be long and the pore-space radon concentration consequently elevated, 
radon entry rates may be particularly high. The soil-gas flow rate is primarily dependent on the 
penneability of the soil, on the nature of openings in the building shell, and on the degree of 
basement depressurization. The radon concentration in the soil is dependent on the soil gas velo­
city, the radium content, porosity, density, and emanating fraction of the soil, the diffusivity of 
radon in the soil, and the depth. 

A model amenable to closed-fonn solutions can provide only a crude representation of the 
problem. One such model is described by Mowris and Fisk (1987) and by Nazaroff (1988b). A 
linear crack in the basement slab is represented in bipolar coordinates by a cylinder embedded in 
a homogeneous semi-infinite medium; the soil surface is represented by a plane parallel to the 
axis of the cylinder. The basement itself is not modeled. Darcy's law and the continuity equa­
tion, which together describe soil-gas transport, reduce to the Laplace equation for the pressure 
field; this equation has a series solution. The mass-transport equation without diffusion may then 
be solved for the radon concentration field, assuming a fixed concentration at infinite radius, and 
the two solutions combined to give the radon entry rate at the cylinder. This model gives an indi­
cation of the dependence of the entry rate on basement pressure and soil penneability when the 
soil is homogeneous, but it cannot represent the basement-soil boundary correctly, nor can it deal 
with inhomogeneous soils. 

Recognition of the limitations of closed-fonn models has led to the development of numeri­
cal models, such as the two-dimensional models of Dimbylow (1987) and of Mowris and Fisk 
(1987), and the three-dimensional model of Loureiro (1987) and Loureiro, et al. (1990), which 
are able to deal with irregular boundaries and arbitrary boundary conditions. Here, steady-state 
solutions of the generalized Laplace equation and the mass-transport equation are given in Carte­
sian coordinates for a region comprising a quadrant of a basement and a block of soil large 
enough that a further increase in size produces an insignificant change in the soil-gas and radon 
entry rates. The basement walls and slab and the outer limits of the soil block are treated as no­
flow boundaries, while the soil surface is a boundary at atmospheric pressure and zero radon con­
centration. In the Loureiro model, the pressure, soil-gas velocity, and radon concentration in 
peripheral gaps (of rectangular cross-section) in the basement slab are modeled analytically and 
the results adjusted to match those of the numerical solution at the soil-gap interface. The varia­
bility of the soil characteristics is essentially unlimited, although variation on a fine scale may 
lead to an excessively large number of control volumes, long solution times, and large computing 

costs. 

In this paper, we describe a steady-state numerical model based on that of Loureiro, but one 
that takes advantage of the symmetry of the problem in the horizontal plane by using cylindrical 
coordinates. There is a loss of generality in that only central and peripheral openings in the base­
ment shell can be modeled, but these are, in fact, the only types considered in earlier work. The 
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model has also been modified so that the concrete footer that nonnally supports the wall and slab 

is be included, giving the slab-footer-wall gap an L-shape. The boundary conditions at the soil­
gap interface have been altered in order to take this shape into consideration. This gap, which is 
considered to be an important source of indoor radon in many houses, is the only opening in the 
building shell discussed in detail in this paper; for a description of models with alternative or 

additional openings, see Revzan and Fisk (1990b) and Garbesi and Sextro (1990). The Loureiro 
model neglects the circulation of soil gas which occurs in winter and is caused by the presence of 
a heated basement; we incorporate this circulation into the model and demonstrate that buoyancy 
forces acting on soil gas may be an important factor in radon entry. Finally, to verify the numeri­
cal model to the limited extent possible, we compare the predictions of the model for the soil of 
the Spokane River Valley of Washington and Idaho with data from seven houses in that area. 
The influence of soil characteristics on radon entry is discussed in detail in Revzan (1990a). 

Model Description 

The region to be modeled comprises the subsurface part of a basement and a block of the 
surrounding soil. Air is assumed to enter the basement solely through an L-shaped gap between 
the foundation footer, the slab, and the walls. (Gaps and cracks at other locations are discussed in 
Revzan and Fisk, 1990b.) Assuming that the cross-section of the walls and gaps does not vary, 
the basement can be modeled as a cylinder with only the loss of comer effects, which will be 
shown to be unimportant. The region from which a house draws soil gas depends on the posi­
tions of adjacent houses, the extent of their depressurization, and the characteristics of the soil. 
The exact boundaries of this region are likely to be important in particular cases, but in the gen­

eral case, the soil block may be represented as well by a cylinder as by a box. The entire region 
may therefore be modeled in cylindrical coordinates, which pennits greater resolution, shorter 
solution time (with lower cost), or a combination of the two. A vertical cross-section of the 
region, with the dimensions used in this paper, is shown in Figure 1. A detail of the cross-section 
of the basement area, with the width of the gap greatly exaggerated, is shown in Figure 2. In this 
paper, the gap width, w, is assumed to be 0.003 m and the thickness, t, to be 0.25 m. 

The model comprises three differential equations. First, the temperature field in the soil is 
found from the steady-state energy conservation equation (assuming thennal equilibrium between 
the solid and gaseous phases of the soil [Bejan, 1984; Ene and Polisevski, 1987]), 

;
0 

v-[p{r,z)V(r,z)T(r,z)] =V· [a(r,z)VT{r,z)J. (1) 

where p0 is the density of air at 0° C, T is the temperature, a is the thennal diffusivity at oo C, 
and vis the soil-gas velocity. We assume that a =5xHr7 m2 s-1 throughout the soil (Oke, 1987). 

The temperature is fixed at Tb at the outside of the basement, including the soil-gap interface, at 
T 0 at the soil surface ("outside", z=O), and at T s at the lower limit of the soil (z= 12.1 m, Figure 

1). The outer limit of the soil (r=15.15 m, Figure 1) is presumed to represent the boundary 

between two houses, so that here there is no heat flow, i.e., the nonnal derivative ofT must van­
ish. These boundary conditions are shown in Figures 1 and 2. Since the soil-gas velocity is 
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determined by the pressure and temperature fields, the heat-transfer and pressure equations must 
be coupled. In many cases of practical importance, however, heat advection is negligible with 
respect to conduction, so that the left-hand side of Equation 1 may be set to zero and the tempera­
ture field determined independently of the pressure field. The circumstances under which heat 
advection is significant will be described in the following section. 

Next, the pressure field is found from a generalization of Darcy's law, i.e., 

V(r ,z) =- k(~z) [ VP(r ,z)- p(r,z)g~, (2) 

where k the permeability of the soil, wliich is assumed to be isotropic, J.1 the viscosity of air 
(1.8x10-5 kg m-1 s-1), P the absolute pressure; p the density of air, g the acceleration of gravity, 
and 2 the unit vector in the z-direction, taken positive downward. For temperatures of interest 
here, the dependence of p upon T is given by 

p(r ,z) = Po [ 1 - ~ T (r ,z >], (3) 

where T is in °C, p0 is the density of air at 0 °C (1.293 kg m-3), and ~ is the coefficient of thermal 
expansion, which is approximately equal to 1/273 oc-1• For isothermal problems, it is customary 
to define a disturbance pressure by subtracting the atmospheric and static pressures from P. In 
our case, since the density of air varies with z, it is convenient to choose a reference density, 
which is arbitrary, rather than to use the integral expression for the static pressure. Boundary 

conditions are somewhat simplified if the reference is either Ph• the density where T = T b• or Ps• 
the density where T = T5• We choose the latter density and define the disturbance pressure, p, by 
the equation 

(4) 

where P A is the atmospheric pressure, assumed constant in a steady-state model. Combining 
Equations 2, 3, and 4 gives 

(5) 

The first term on the r.h.s. of this equation vanishes at the lower boundary of the soil, i.e., when 
T(r,z5) = T1 , so that the bOundary condition here becomes simply a zero normal derivative. This 
convenience is the justification for the choice of Ps as the reference density. 

The equation of conservation of mass (continuity) is 

(6) 

Combining Equations 5 and 6, we have the second equation of the model, i.e., 
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V· { p(r ,z:(r .z) [ Vp(r ,z) + p.,gp [T(r .z)- T,J ~ }= 0. (7) 

This equation must be solved in conjunction with Equation 1 when thennal convection is 
significant. 

The boundaries for the solution of equation 7 are the outer limit of the soil block in the r­
direction, the soil surface and the lower limit of the soil block in the z-direction, and either the 
inner or outer basement surfaces, including the opening. If the inner basement surface is chosen 
as a boundary, the entire gap between slab and footer and wall and footer must be included in the 
problem. The gap width is typically four orders of magnitude smaller than the soil block size and 
the soil gas must change direction as it passes through the gap, so that the control volumes must 
be made very small in this region. As a result, computation time is high. In actual construction, 
moreover, the gap has irregular walls, so that it is not well represented by the model. Conse­
quently, it is best to take the boundaries of the problem to be the outside surfaces of the basement 
and footer, including the mouth (soil-gap interface) of the slab-footer gap, and to treat the ques­
tion of the gap itself separately. With these boundaries, radon entry by diffusion through con­
crete is neglected; this subject has been treated by Zapalac (1983). The question of radon entry 
through penneable walls is also neglected here, although the model is capable of treating the sub­
ject with only slight modifications. Garbesi and Sextro (1990) discuss soil-gas entry through 
penneable walls, but do not deal with radon entry per se. 

Given these assumptions, the nonnal velocity must vanish at all concrete surfaces and at the 
outer and lower limits of the soil and the pressure must be fixed at the soil surface and the soil­
gap interface. At vertical concrete surfaces and at the outer soil boundary, the vanishing of the 
nonnal velocity is equivalent to a zero nonnal pressure derivative. At horizontal concrete sur­
faces and at the lower soil boundary, Equation 5 gives 

(8) 

where z, is the position of the surface of interest. At the lower soil boundary, this equation 
reduces to a vanishing nonnal derivative of p. At the soil surface, z = 0, P = P A and Equation 4 
gives the boundary condition p(r,O) = 0. The boundary conditions at the three soil boundaries are 
shown on Figure 1. 

The pressure at the soil-gap interface is detennined by the basement pressure and the pres­
sure drop across the gap. In winter, temperature differences between a house and the outside, the 
effect of wind, and the operation of heating, ventilation, and air-conditioning systems produce a 
basement pressure which is generally lower than P A (Feustel and Shennan, 1989; Shennan, et al., 
1979; Revzan, et al., 1988; Revzan, 1989). The difference between the pressure at the basement 
side 9f the slab-wall gap and P A• corrected for the static pressure difference, is written as M>b. 
The pressure drop across the gap,.M>g, is detennined from an algorithm due to Baker, et al., 
(1989): 
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I An I_ l2J.U 1 .... 1 p(l.5+n) 2 
I..J/..e-8 - w2 v + 2 v . (9) 

Here, t and w are, respectively, the thickness and width of the opening (see Figure 2), v is the 
average speed of air through the opening, i.e., the flow rate through the opening divided by the 
area, and n is the number of bends in the opening. Assuming that the temperature is constant 
inside the gap, so that there is no thermally-induced pressure difference between the basement 
and soil sides, the disturbance pressure at the soil-gap interface is then 

(10) 

where r8 is the radial coordinate of the soil.side of the gap. The boundary conditions at the base­
ment may be clarified by examining Figure 2. 

Having found a solution to Equation 7, we may determine the soil-gas velocity from Equa­
tion 5. The soil-gas entry rate, E5, is then given by 

Ea = Jv(r8 ,z )·da(r8 ,z ), 
I 

(11) 

where a is an element of the area of the soil-gap interface and l: indicates an integral over the. 
entire interface area. 

Finally, the radon concentration in the soil gas, C, is determined from 

V· [v(r ,z )C (r ,z >] = V· [v (r ,z )VC (r ,z )] - E(r ,z )AC (r ,z) + E(r ,z )S (r ,z ), (12) 

where Dis the bulk diffusivity of radon in soil, A. the radon decay constant, E the porosity of the 
soil, and S the rate of release of radon into the soil gas per unit volume of soil. In this paper, we 
assume that the soil is homogeneous with D = to--6m2 s-1 and E = 0.5 (Nazaroff, 1988a). The 
model does not deal with spatial variations in soil moisture; values of D, E, and S may be chosen 
to reflect wet conditions. The boundary conditions for solution of Equation 12 are identical to 
those for Equation 7 except at the soil-gap interface. At the soil surface, we assume C = 0; 
because radon concentrations in soil gas are typically high compared to those in the atmosphere, 
the assumption of a non-zero soil-surface concentration has a negligible effect on the result. We 
assume that radon entry by diffusion through a gap is negligible compared to convective entry. 
In that case, the radon concentration immediately inside the gap is equal to that immediately out­
side, i.e., the normal derivative of C vanishes at the soil-gap interface. Other assumptions may be 
m~de, e.g., that the concentration inside an opening has an exponential profile, but the effect on· 
the calculated radon entry rate is negligible in situations where the rate is high enough to produce 
elevated indoor concentrations (Loureiro, 1987; Loureiro, et al., 1990). 

The radon concentration at distances far from the soil surface and the basement, Coo, is 
given by 

\J 
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(13) 

Since this paper does not deal with the soil characteristics that detennine the radon source 
strength, we nonnalize C by Coo, so that results are independent of S. From previously­
detennined velocities and a solution to Equation 12, we find the normalized radon entry rate, Er, 
from the equation 

1 J ~ Er = -C C (r ,z )v(r .z )·d a(r ,z ). 
oo;t 

(14) 

Er has the dimensions of a volumetric flow rate, but must be distinguished from the soil-gas entry 
rate. Because the concentration at any opening is less than Coo, Er is always less than E5• 

The equations for the temperature, pressure, and concentration fields (1, 7, and 12) are 
solved in sequence, each in the same way. An irregular grid, similar to that of Loureiro (1987) 
divides the region into control volumes, which may vary greatly in size, and the equation of 
interest is integrated over each of the volumes using a first-order central difference scheme. The 
result is a set of difference equations of the form 

(15) 

where 'l'nm represents the temperature, pressure, or radon concentration at the point (n,m), the 
coefficients c, 1, r, t, and b refer to the central, left, right, top, and bottom points, respectively, as 
viewed in the manner of Figure 1, and Sum is the inhomogeneous part of the equation. These 
equations, with appropriate boundary conditions, are solved using iterative techniques described 
by Patankar (1980), Loureiro (1987), and Loureiro, et al. (1990). The value of the field at itera­

tion i, \jl~. is given by 

"'~ = '1'~-1 + ro [ v,!,. - "'~-1], (16) 

where 'I'~ is the solutions of Equation 15 at iteration i, '1'~1 is the solution of Equation 16 at 
iteration i-1, and ro is the relaxation coefficient. Satisfactory results may generally be obtained 
for ro = 1.5, except where temperature and pressure equations must be coupled, in which case ro 
must be at least 1 to ensure numerical stability. All results cited in this paper have been obtained 
with ro = 1. 

Boundary values are introduced into Equation 15 in· a straightforward manner; all have 
fixed values, except for the pressure at a soil-gap interface, which requires special treatment. 
(The temperature and radon concentration at a soil-gap interface are treated conventionally. See 
Figure 2 and the discussions following Equations 1 and 12.) Let Pnm be the pressure at an inter­
face node. Initially, we set M>b to the representative winter value of -5 Pa and M> 8 to zero; Pnm is 
found from the discrete form of Equation 4. After the first iteration, the pressure immediately 

outside the opening is known, and a relationship between this pressure, Pnrn• and the average air 
speed at the opening can be found from the discrete form of Equation 5. A second expression 
involving Pnrn and the average speed is Equation 9. From the two equations, a new value of Pnm 
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is detennined and used as a boundary value during the next iteration. 

Iterations are pennitted to continue until the residuals fall below a fixed tolerance; for 
results cited in this paper, the tolerance is 1~. As a further check when a gap is present, the 
total rate of mass transport through the gap is compared to the transport rate across the soil sur­
face. For results cited in this paper, the relative difference is always less than 0.1 %. 

The final step in the procedure is the calculation of the soil-gas and radon entry rates, using 
the discrete fonns of equations 11 and 14. 

Model Predictions 

In this section, we compare the predictions of two-dimensional cylindrical and three­
dimensional rectangular versions of the model, give a brief description of the nature and magni­
tude of the soil-gas flows and radon concentrations predicted by the model, and discuss the rela­
tionship between the radon entry rate, the indoor radon concentration, and the soil penneability 
for the configuration depicted in Figures 1 and 2. For a more complete discussion of the 
influence of soil penneability on radon entry, see Revzan, 1990a. The influence of structural fac­
tors and construction practices on radon entry is the subject of Revzan and Fisk, 1990b. 

For the comparison of the two models, we assume that the configuration is that of Figures 1 
and 2 and that the soil is homogeneous. In the simulations, the penneability varied from w-12 to 
w-10 m2• The basement cross-section for the three-dimensional model was square; in two sets of 
simulations, the length of a side was first taken equal to the cylinder diameter d and then equal to 
dl..fi. the latter value giving a diagonal equal to d. The gap width was 0.003 m. The discrepan­
cies in the predicted soil-gas flux (i.e., entry rate per unit length of gap) were -8% for all 
configurations, with the three-dimensional model making the lower prediction. The discrepancies 
in the radon concentration at the soil-gap interface were less than 1%, with the three-dimensional 
model predicting the higher value, so that the discrepancies in the predicted radon entry rate were 
on the order of 7%. Figure 3 shows the pressure immediately under the basement slab along the 
radius of the cylindrical cross-section and the half-diagonal of the square cross-section, both 5 m, 
for a basement pressure of -5 Pa. The slab-footer gap is 0.15 m from the wall, as shown in Figure 
2. Generally, the three-dimensional model predicts a lower pressure gradient near the gap, and 
therefore a lower soil-gas entry rate than the cylindrical model. Since the perimeter of the square 
is less than that of the circle, the fluxes predicted by the two models are more nearly equal. Fig­
ure 3 does not illustrate the relatively high pressure gradient predicted by the three-dimensional 
model at the corners of the footer; however, the high gradients in these small regions do not 
significantly increase the total entry rate of soil gas or radon. 

The nature of the soil gas flows predicted by the cylindrical model may be seen in Figures 
4-6. which show streamlines for the configuration of Figures 1 and 2. The soil temperature, 
where used, is detennined by the model assuming an outside air temperature of 0 °C, a basement 
temperature of 15 °C, and a soil temperature at 10m depth of 10 °C, which is the assumed annual 

mean, so that conditions are typical of winter in a cold climate. Figure 4 illustrates the case of 
pure natural convection. Here &Pb = 0, i.e., the basement is at atmospheric pressure, so that the 
flow is a circulation toward the warmer basement wall. Figure 5 illustrates the case of pressure-

-8-
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driven flow for isothennal soil for a basement pressure 5 Pa lower than annospheric. All flow 
lines run from the surface to the 0.003 m wide slab-footer opening, which is the only gap in the 
basement shell. In Figure 6, the two cases are combined, so that both a circulation and a flow into 
the gap are present. 

Nonnalized radon entry rates for the configuration of Figures 1 and 2 are plotted against the 
penneability of the homogeneous soil in Figure 7. The solid line shows the predicted entry rates 
for the complete model, with conduction and advection of heat included, i.e., with the tempera­
ture and pressure equations coupled. The basement, outside, and deep soil temperatures are 15, 0, 
and 10 °C, respectively. The dashed line shows the predicted results for isothennal conditions. 
For the soil penneabilities of greatest practical interest (lo-10 - 10-12 m2), the introduction of 
thennal effects increases the radon entry rate by 35-40%. The dotted line shows the predicted 
entry rates when heat advection is neglected but conduction is included. Advection of heat 

' begins to become significant, for a basement pressure of -5 Pa, at a soil penneability of 10-10 m2• 

Since the soil-gas speed is directly dependent on the product of I APb I and k, heat advection may 
be neglected when this product is less than -5x1o-10 Pa m2• 

The indoor radon concentration corresponding to a particular nonnalized entry rate depends 
on the radon concentration in the soil, the volume of the building, and the air-exchange rates 
between basement and outside, basement and living area, and living area and outside. A com­
plete treatment of this subject is outside the scope of this paper, but in a simplified model in 
which the house is considered a single zone whose air is fully mixed, the indoor radon concentra­
tion, C, is given by 

E,.Coo 
C=~· (17) 

where V and A. are, respectively, the volume and air-exchange rate of the house. For a house of 
volume 500m3 and air-exchange rate of 0.5 h-1, whose surrounding soil has a (typical) Coo of 
3.5x104 Bq m-3, Er (m3 s-1) must be multiplied by -5xlcf to obtain the indoor radon concentra­
tion in Bq m-3• For a homogeneous soil of penneability 10-11 m2, the predicted indoor concen­
tration is -10 Bq m-3. When a layer of high-penneability gravel is present under the basement 
slab, the predicted indoor concentration is a factor of 5 higher (Revzan and Fisk, 1990b). 

The relation between the radon and soil-gas entry rates at any narrow opening may be 
approximated by 

(18) 

where Cava is the average soil-gas radon concentration at the opening. By Darcy's law, E5 is 
linearly dependent on soil penneability. Figure 7 shows, in contrast, that the relation between Er 

and k is not linear, particularly at high k. The departure from linearity is accounted for by the 
diminution in the radon concentration of the soil gas that enters the slab-footer gap as the soil per­
meability and soil-gas velocity increase. Figure 8 illustrates this point by showing the average 
nonnalized radon concentration at the slab-footer gap, plotted against the soil penneability, for 
the configuration of Figures 1 and 2. 
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Model Verification 

There are few data available to compare with the predictions of the model. However, a 
study of several houses in the Spokane River valley of Washington and Idaho (Turk., et al., 1987) 
provides some information on permeabilities and entry rates for 14 houses, of which six had full 
concrete basements and one a basement and a small adjoining crawlspace. Since the results of 
permeability measurements are not precise, and since detailed information on the substructures 
and underlying soil are unavailable, we shall not discuss the houses individually, but rather com­
pare the range of calculated entry rates with the predictions. The permeability of the soil underly­
ing the entire area of the study appears to be on the order of 2 x w-10 m2• The normalized radon 
entry rates are calculated from the data provided by Turk. from the equation 

E, =evA.. 
C.,., 

(19) 

where C is the time-averaged indoor radon concentration in the living area, measured in the 
winter, A. is the time-averaged measured air-exchange rate, and C.,., is based on analysis of soil 
samples taken far from the houses. For the 7 houses which can be modeled reasonably well, the 
values ofEr calculated from measured data range from 5.5x10-4 to 3.2x1o-3 m3 s-1; the mean and 
standard deviation are 1.7x1o-3 and 1.1x1o-3 m3 s-1, respectively. For a soil permeability of 
2x10-10 m2, no subslab gravel layer (no layer having been reported), and a slab-footer gap width 
of 0.003 m, the model predicts an entry rate of 3.8x1o-4 m3 s-1 when the basement-outside pres­
sure difference is a nominal winter value of -5 Pa (Revzan, et al., 1988; Revzan, 1989) and the 
basement, soil surface, and lower soil boundary temperatures are 15, 0, and 10 C, respectively. 

The predicted entry rate is 22% of the calculated mean; the discrepancy may be accounted 
for by errors in the measurement of permeability. Some soils exhibit anisotropy in permeability 
(Nazaroff, 1988a), the permeability for air flow parallel to the soil surface being greater than that 
for flow perpendicular to the surface. It is unclear whether the measured permeability represents 
the permeability in one of the two directions or an average of the two. Furthermore, since the 
permeability measurements were made during the rainy season, it is possible that the average 
winter permeabilities exceed the measured value; permeability measured in water-saturated soil 
can easily be 0.3 of the dry value or even less (Nazaroff, 1988a). Perhaps more significantly, the 
errors in the measurements of soil permeability may be high. The assumption of a soil permea­
bility of 1.4x10-9 m2, a factor of7 greater than the measured value, leads to a predicted entry rate 
approximately equal to the mean of the values determined from the data. 

On the other hand, the discrepancy will be larger if the average I M>b I is smaller than 5 Pa, 
if the basement-outside temperature difference is smaller than 15 °C, if the gap width is less than 
0.003 m, if the soil block from which each house may draw radon is smaller than we have 
estimated or if the entry rates have been underestimated. The entry rates were calculated from 
radon concentrations measured in the living areas on the assumption that forced-air furnaces 
(present in 5 of the 7 houses) assured good mixing of air in most of the houses. If basement 
radon levels were significantly higher than those upstairs, then the entry rates calculated from 
equation 19, with C equal to the basement concentration, would be higher than the stated values. 
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The highest and lowest entry rates detennined from measurements differ by a factor of 6. 
Since the regression of the entry rate on the penneability has an R2 of 0.01, the disparity cannot 
be accounted for by differences in soil penneabilities, and we must infer that there are differences 
in structures, sites, and soils which have not been taken into account. A peripheral opening in the 
basement shell is a nonnal consequence of building practices. Additional openings may exist as 
the result of penetrations for utilities or of cracking of the concrete. However, an examination of 
the predictions of the model shows that the addition of openings setves primarily to redistribute 
the flow of soil gas while increasing the overall entry rate by a factor of 1.5 at most (Revzan and 
Fisk, 1990b ). Radon may also enter through penneable block walls (Garbesi and Sextro, 1989). 

Although it is not usual for gravel to be placed under a slab when the soil itself is well 
drained (i.e., highly penneable), it may be that a gap between slab and soil or disturbance of the 
soil during construction creates a high-penneability region under the slab. The assumption of a 
soil penneability of 2x1o-10 m2 everywhere except for a region of penneability 1o-9 and thick­
ness 0.15 m under the slab leads to a predicted entry rate of9.0x1o--4 m3 s-1, which is 53% of the 
mean of the entry rates calculated from the data. The entry rate remains high (5.8x10-4 m3 s-1) 

even when the thickness is as low as 0.01 m. As the penneability of the 0.01 m layer approaches 
infinity, so that there is a gap between the concrete slab and the soil (not to be confused with the 
slab-footer gap), the entry rate approaches 1.3xto-3 m3 s-1, which is 76% of the mean. If the 
thickness is reduced to that of the slab-footer gap itself, i.e., 0.003 m, the entry rate is 
1.2x1o-3 m3 s-1• 

In sum, the radon entry rate through a slab-footer gap predicted by the model, assuming a 
homogeneous and isotropic soil, is considerably lower than the total entry rate inferred from 
measured data. The discrepancy may be accounted for by failure to take into account permeabil­
ity anisotropy, underestimation of the penneability of the regions immediately adjacent to open­
ings in the building shell, and by the possible presence of permeable walls and additional open­
ings in the building shell. 

Summary and Conclusions 

We have modified the three-dimensional steady-state model of Loureiro, et al. (1990) to 
simulate pressure and radon concentration fields in the vicinity of a cylindrically-symmetrical 
representation of a basement. The boundaries of the simulation space are the outside of the base­
ment wall, slab, and footer, the mouth of the slab-footer gap, and the outer limits of the soil block 
associated with the basement. The basement may be wanner than the soil and the outside; natural 
convection (buoyancy) of soil gas resulting from this condition is included in the model, and has 
been shown to increase radon entry by approximately 40%. Three important subjects have not 
been examined. First, the effects of temporal variations in barometric pressure, which may be far 
greater in amplitude than the steady-state basement- outside pressure differences, have been 
neglected. A time-dependent model is being developed to detennine if these effects, which may 
be significant when the soil permeability is low, are an important factor in radon entry. Second, 
we have neglected soil moisture, which affects both soil penneability and soil-gas radon concen­
tration. Moisture is certainly an imponant factor in the production and transpon of radon in soil, 
and the extension of the model to deal with its influence, even in an unsophisticated manner, is 
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clearly necessary. Third, permeability anisotropy has been neglected. The model is being 
modified to permit the permeability to be treated as a tensor, rather than as a scalar. 

In a comparison of radon entry rates predicted by the model with those determined from a 
study of the Spokane, W A region, we have chosen values of the basement pressure and tempera­

ture that are typical of winter in cold regions and soil permeabilities that are close to those meas­

ured. If the soil is assumed to be homogeneous and isotropic, with permeability equal to the 
mean of the measured values, the predicted radon entry rate is 22% of the mean of the observa­
tions. The observed radon entry rates may then be accounted for by assuming that a narrow gap 
exists between the basement slab and the soil, by assuming that there are gaps in the basement 
shell in addition to the slab-footer gap, and by taking the soil permeability to be somewhat higher 
than the measured value, which is highly uncertain. Further verification of the model requires a 

more completely characterized site and the maintenance of steady-state conditions; work on an 

experimental structure that meets these conditions is now proceeding (Fisk, et al., 1989). 
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1. Vertical cross-section of the region modeled; the shaded areas are the wall, slab, and 
footer. The .boundary conditions for the temperature (T), pressure (p), and radon concen­
tration (C) fields at the soil surface and at the outer and lower soil boundaries are shown 
in the appropriate locations. The definition of the pressure p is also shown; P is the 
absolute pressure, P A is the atmospheric pressure, p is the air density and Ps is its value 
at the lower soil boundary, g is the acceleration of gravity, and z is the vertical coordi­

nate, taken positive downward. 
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2. Detail of the vertical cross-section of the region modeled. The width of the slab-footer 
and slab-wall gaps is shown greatly exaggerated. The boundary conditions at the vertical 
and horizontal concrete surfaces are given below the figure. For the temperature and 
concentration fields, the vertical boundary conditions also apply at the soil-gap interface; 
the boundary condition for the pressure at the interface is shown just below the basement 
slab. T b is the basement temperature, ~pb is the pressure difference between the base­
ment and the outside, ~8 is the pressure difference between the basement and the soil­
gap interface, p is the soil-gas (air) density generally, Ps is the soil-gas density at the 
lower soil boundary, w is the gap width and t the gap thickness. The definition of the 
pressure p is given in the text and in Figure 1. 

c 
~~ 



·-

0 

J• 
( 

3. Pressure immediately under the basement slab for the two-dimensional cylindrical and 
three-dimensional rectangular models. The configuration is that of Figures 1 and 2. The 
soil is homogeneous. The three-dimensional model has a square horizontal cross-section 
whose diagonal is equal to the diameter of the cylindrical horizontal cross-section of the 
two-dimensional model (10 m). The basement pressure is -5 Pa with respect to the 
atmosphere. The pressure drop across the slab-footer-wall gap is negligible, so that the 
pressure at the soil-gap interface, which is 4.85 m from the center, is - -5 Pa as well. 
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4. Vertical cross-section of a basement and the surrounding soil, with streamlines; the direc­
tion of ftow is clockwise. In this case there is no pressure difference between basement 
and outside, so that the ftow is a circulation due to natural convection. The temperatures 
of the basement, the soil surface, and the lower soil boundary are 15, 0, and 10 °C, 
respectively. 
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S. Vertical cross-section of a basement and the surrounding soil, with streamlines; the direc­
tion of flow is clockwise. In this case the flow is due entirely to forced convection; the 
basement pressure is S Pa below that of the atmosphere. 
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6. Venical cross-section of a basement and the surrounding soil, with streamlines; the direc­
tion of flow is clockwise. In this case both forced and natural convection are present. 
The basement pressure is 5 Pa below that of the atmosphere. The temperatures of the 
basement, the soil surface, and the lower soil boundary are 15, 0, and 10 C, respectively. 
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7. The predicted normalized radon entry rate into the slab-footer gap of a basement, plotted 
against soil permeability, for the configuration of Figures 1 and 2. The basement is 5 Pa 
below atmospheric pressure. The solid line shows the predicted rates when both thermal 
conduction and convection are included in the model. The basement, outside, and deep 
soil temperatures are 15, 01 and 10 °C, respectively. The dashed line shows the predic­

tions for isothermal conditions. The dotted line shows the predictions when thermal 

convection is neglected. 
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8. The predicted average normalized radon concentration in the slab-footer gap of a base­
ment, plotted against soil permeability, for the configuration of Figures I and 2. The 
basement 5 Pa below atmospheric pressure. The solid line shows the predicted concen­
trations when both thermal conduction and convection are included in the model. The 
basement, outside, and deep soil temperatures are 15, 0, and 10 °C, respectively. The 
dashed line shows the predictions for isothermal conditions. The dotted line shows the 
predictions when thermal convection is neglected. 
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