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Abstract 1 

Large-scale shifts in marine species biogeography have been a notable impact of 2 

climate change. An effective explanation of what drives these species shifts, as well as 3 

accurate predictions of where they might move, is crucial to effectively managing these 4 

natural resources and conserving biodiversity. While temperature has been implicated 5 

as a major driver of these shifts, physiological processes suggest that oxygen, prey, and 6 

other factors should also play important roles. We expanded upon previous temperature-7 

based distribution models by testing whether oxygen, food web productivity, salinity, and 8 

scope for metabolic activity (the Metabolic Index) better explained the changing 9 

biogeography of Black Sea Bass (Centropristis striata) in the Northeast US. This species 10 

has been expanding further north over the past 15 years. We found that oxygen 11 

improved model performance beyond a simple consideration of temperature (ΔAIC = 12 

799, ΔTSS = 0.015), with additional contributions from prey and salinity. However, the 13 

Metabolic Index did not substantially increase model performance relative to 14 

temperature and oxygen (ΔAIC = 0.63, ΔTSS = 0.0002). Marine species are sensitive to 15 

oxygen, and we encourage researchers to use ocean biogeochemical hindcast and 16 

forecast products to better understand marine biogeographic changes.  17 

 18 
Keywords: marine biogeography, species distribution modeling, fisheries, species shifts, 19 

physiology, temperature, oxygen, metabolic index 20 

 21 
 22 
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Introduction 23 

 24 

Ongoing global climate change has had substantial impacts on species biogeography 25 

(Sunday et al., 2012). This is especially visible in the ocean, where there are many 26 

examples of species and communities shifting to new locations as environmental 27 

conditions change (Lenoir et al., 2020). These shifts impact ecological communities, 28 

ecosystems, and coastal economies (Allison et al., 2009; Brander, 2010; Kleisner et al., 29 

2016). For scientists and resource managers, understanding historical distribution shifts 30 

is an important step towards understanding the mechanisms most relevant to making 31 

future projections and developing effective management plans. 32 

 33 

Approaches to modeling marine species distribution under climate change have often 34 

focused on responses to temperature change (Kleisner et al., 2017; Nye et al., 2009). 35 

Temperature is widely measured and has clear impacts on species physiology and 36 

demography, including metabolism, growth, and reproduction (Angilletta Jr., 2009; Free 37 

et al., 2019). However, effectively explaining past shifts in distribution and accurately 38 

projecting future shifts will require a more complete understanding of the factors 39 

determining species habitat. Previous research has found that models using only 40 

temperature can result in less accurate and overly optimistic projections (McHenry et al., 41 

2019).  42 

 43 

For marine species, physiological experiments and ecological theory suggest that key 44 

factors are likely to include dissolved oxygen, prey availability (Morgan, 1972; Velasco et 45 

al., 2019). In particular, metabolic processes suggest that temperature and dissolved 46 
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oxygen interact to determine marine species habitat suitability (Portner & Knust, 2007). 47 

This physiological interaction has been explained through the mechanism of temperature 48 

induced hypoxia, which can be measured with the Metabolic Index (ɸ). The Metabolic 49 

Index measures the metabolic capacity of an individual organism relative to the 50 

environmental supply of oxygen at a certain temperature (Deutsch et al., 2015). For a 51 

marine habitat to be metabolically viable for a species, the dissolved oxygen supply rate 52 

must exceed the basal metabolic demand of the individual (Seibel & Deutsch, 2020). 53 

The Metabolic Index has been used to explain the boundaries of extant species 54 

distributions (Deutsch et al., 2020; Howard et al., 2020) as well as species extinction 55 

events over geological time (Penn et al., 2018), and is therefore expected to be useful 56 

for explaining contemporary changes in species distributions. However, it remains 57 

unclear how the Metabolic Index performs relative to and in combination with other 58 

environmental factors likely to influence species distributions and their changes through 59 

time (Essington et al., 2022). In particular, oxygen and the Metabolic Index have proven 60 

useful for explaining static biogeography (Essington et al., 2022; Howard et al., 2020) 61 

and changes in abundance (Howard et al., 2020), but it remains unclear whether these 62 

factors are more important for explaining changes in biogeography over decadal 63 

timescales than other factors like temperature. In addition, the use of the Metabolic 64 

Index requires species-specific physiological measurements, which impedes widespread 65 

application. A more widely applicable alternative may be to estimate the interaction of 66 

temperature and oxygen from historical records of species occurrence. 67 

 68 

Food or prey availability is also an important determinant of species niche and habitat. 69 

The availability of prey is a first-order constraint on predator presence and abundance 70 

(Mammides et al., 2009; Morgan, 1972; Trainor et al., 2014). Despite the clear 71 
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importance of prey availability, using such information to understand marine species 72 

spatial distributions is difficult in part because many marine predators are generalists, or 73 

their prey remain unknown. One solution may be to consider aggregate measures of 74 

lower food web productivity. For example, fisheries productivity has been related to the 75 

overall productivity of planktonic food chains (Stock et al., 2017).  76 

 77 

Beyond prey, salinity is an important habitat determinant of marine species, especially in 78 

coastal and lagoon environments with variable freshwater outflow and dry conditions 79 

(Barletta et al., 2005). Because many marine species spend at least a part of their life 80 

cycle near-shore, salinity can impact the overall distribution of a species (Pauly & Yáñez-81 

Arancibia, 1994). Salinity has been used in previous efforts to predict marine species 82 

habitat (A. S. Miller et al., 2016).  83 

 84 

While oxygen, prey availability, and salinity are likely to be important for defining marine 85 

fish biogeography, the absence of long term, spatially resolved datasets for oxygen and 86 

prey has made testing these hypotheses difficult. The development of coupled physical-87 

biogeochemical oceanographic model hindcasts that resolve historical planktonic food 88 

web dynamics may help to fill in these details (Doney, 1999; Quere et al., 2005). 89 

 90 

Black Sea Bass (Centropristis striata) is an important fishery species that has expanded 91 

its range 80 km/decade north over the past five decades (McMahan, 2017; Morley et al., 92 

2018). Because of this notable range expansion and the extensive distribution data 93 

available from scientific trawl surveys of the continental shelf, Black Sea Bass is a useful 94 

species against which to test hypotheses for the factors driving range shifts. Fishermen 95 

have reported a higher number of sightings of Black Sea Bass in the southern Gulf of 96 
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Maine since an ocean heatwave in 2012 (McMahan, 2017). Subsequent investigations 97 

determined that Black Sea Bass have been slowly expanding into the Gulf of Maine over 98 

15 years and have spawned there at least once (McBride et al., 2018). This represents a 99 

range expansion of nearly 1o north from the previous range limit for the Mid-Atlantic 100 

stock (McBride et al., 2018; McMahan, 2017). More broadly, Black Sea Bass are 101 

distributed across the northwest Atlantic Ocean and, historically, the species has been 102 

recorded from Texas in the Gulf of Mexico up to Cape Cod, Massachusetts (Brodziak, 103 

2007; McCartney et al., 2013; Roy et al., 2012). Black Sea Bass supports both 104 

commercial and recreational fisheries throughout their range and has been managed as 105 

three separate stocks: Mid-Atlantic, South Atlantic, and Gulf of Mexico (Mercer, 1978). 106 

Black Sea Bass has been identified as a warm water species, and it undertakes 107 

southward migrations triggered by low ocean temperatures each fall. In the face of 108 

ocean warming caused by climate change, it has been categorized as a “winning” 109 

species in the northeast U.S. because of its expanding range and increased productivity 110 

(Free et al., 2019; Hare et al., 2016). Black Sea Bass has been the focus of previous 111 

modeling studies (A. S. Miller et al., 2016; Morley et al., 2018) in which temperature and 112 

shelf water volume (as a proxy for productivity) were important determinants of seasonal 113 

habitats in fall and spring.  114 

 115 

In this study, we tested several environmental variables and one physiological variable 116 

for their utility to explain Black Sea Bass habitat and changes in spatial distribution 117 

through time in the Northwest Atlantic. The major questions that we address in this study 118 

are 1) whether dissolved oxygen, prey availability, and salinity more effectively explain 119 

Black Sea Bass biogeography and changes through time than does ocean temperature 120 

alone; and 2) whether the Metabolic Index outperforms other environmental factors for 121 
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explaining shifting marine species distributions.  There are broad concerns over how 122 

shifts of important marine species under climate change may impact local economies 123 

and our work addresses this by defining a metabolic habitat for black sea bass. 124 

 125 

  126 
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Materials and Methods 127 

Our approach was to test alternative hypotheses expressed as statistical species 128 

distribution models. Our baseline model used sea bottom temperature, ocean floor 129 

rugosity, and sediment type (grain size) as explanatory variables, which have been 130 

useful for previous Black Sea Bass distribution models (Morley et al., 2018). We then 131 

tested whether adding salinity, zooplankton density (as a proxy for prey availability), 132 

dissolved oxygen, and Metabolic Index improved the ability to explain changes in 133 

distribution. In situ observations of oxygen and prey were too sparse for this purpose, so 134 

we used oceanographic hindcasts for these environmental conditions and for salinity. 135 

Models were assessed on their ability to predict out-of-sample presence-absence and 136 

biomass.  137 

Species data 138 

We used species occurrence and biomass data from scientific bottom trawl hauls 139 

conducted in four regions of the Atlantic North American continental shelf. Surveys were 140 

conducted primarily by NOAA Fisheries (USA) and by DFO (Canada) and were compiled 141 

by Morley et al. (2018) (Fig. S1 and Table S1). The dataset included corrections for 142 

method changes in the Northeast U.S. following Miller et al. (2010). The original dataset 143 

spanned nearly 50 years from 1963 to 2010, but we trimmed it to 1982-2010 to match 144 

the environmental data and oceanographic hindcasts. This trimming left 2802 Black Sea 145 

Bass presences and 40,542 absences (Fig. S2). A majority of Black Sea Bass 146 

presences were in the Mid-Atlantic (2125) and the rest were in the South Atlantic.  147 

 148 
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Environmental data 149 

Oxygen concentration, zooplankton density, and salinity values were obtained from a 150 

biogeochemical oceanographic hindcast model for the period 1982 to 2010 (Kang & 151 

Curchitser, 2013; Zhang et al., 2019). This ROMS-COBALT (Regional Oceanic Modeling 152 

System-Carbon, Ocean, Biogeochemistry and Lower Trophics) model covers most of the 153 

northwest Atlantic and has a grid configuration of 7 km x 7 km and 40 vertical layers 154 

from the sea surface to the sea bottom. The accuracy of this model has been verified by 155 

comparing it against historical data for sea surface temperature, sea surface chlorophyll 156 

and nitrate concentrations (Kang & Curchitser., 2013; Zhang et al., 2018). We used 157 

zooplankton density as a proxy for prey availability. While Black Sea Bass are generalist 158 

predators that do not directly feed on zooplankton (Brodziak, 2007), zooplankton 159 

productivity supports the food web that feeds Black Sea Bass. 160 

 161 

At the location of each haul in our species dataset, we extracted the seasonal averages 162 

of dissolved oxygen, zooplankton, and salinity by calculating the average value over 163 

three months (the month the haul took place and the preceding and following months). 164 

Dissolved oxygen concentration (mol/kg of seawater) and salinity (ppm) were taken from 165 

the bottom-most vertical layer of the ROMS dataset. Zooplankton densities (zooplankton 166 

body nitrogen mol/kg of seawater) were defined separately for three size classes in the 167 

ROMS-COBALT model. Small zooplankton were less than 200 µm equivalent spherical 168 

diameter (ESD), medium zooplankton were small to medium copepods between 200 and 169 

2000 µm ESD, and large zooplankton were large copepods and euphausiids between 2 170 

and 2 mm ESD (Stock et al., 2014). We calculated the total zooplankton density as the 171 

sum of the three size classes across the 40 vertical layers.  172 

 173 
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 174 
In addition, we used sea bottom temperature, seafloor rugosity, and seafloor sediment 175 

grain sizes as compiled by Morley et al. (2018). To summarize their methods, 176 

temperature data were originally from the Simple Ocean Data Assimilation (SODA) 177 

v3.3.1 (Carton et al., 2018). While Morley et al. used several temperature variables, 178 

including sea surface temperature and annual maximums and minimums, we only used 179 

seasonal bottom temperature because of the high correlation between the various 180 

temperature measurements (Fig. S3). The temperature metrics were positively 181 

correlated to a large degree (r > 0.5), while dissolved oxygen was negatively correlated 182 

with the various temperature metrics (r < -0.5). Rugosity and grain size were potentially 183 

useful because Black Sea Bass are known to be associated with rocky bottom structures 184 

(Able, 1995; Brodziak, 2007; Steimle, 1996). Rugosity was calculated from the General 185 

Bathymetric Chart of the Oceans (GEBCO) gridded bathymetry dataset at a 1 km 186 

resolution (Becker et al., 2009). While coarse, this scale has proven useful for explaining 187 

the distribution of marine fishes (Hare et al. 2012; Morley et al., 2018, Morley et al., 188 

2020). Rugosity of a cell was calculated as the absolute difference between its depth 189 

and the depth of the surrounding eight cells. Sediment grain size was interpolated from 190 

several sources (see Morley et al. 2018) and was measured on the Phi Wentworth scale 191 

in which a higher value indicates a finer sediment, and a lower value indicates a coarser 192 

sediment. The distribution of these variables for both Black Sea Bass presences and 193 

absences are shown in Fig. S4 (presences) and Fig. S5 (absences). 194 

 195 
 196 
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Metabolic Index 197 

The Metabolic Index is defined as the ratio of the rate of oxygen supply to an individual 198 

relative to the oxygen demand necessary for sustaining basic life functions at a certain 199 

temperature. Experiments have confirmed that the Metabolic Index is a useful indicator 200 

of temperature-dependent hypoxia in Black Sea Bass (Slesinger et al., 2018). The 201 

Metabolic Index is calculated as 202 

𝜑=
𝐴𝑜𝐵𝑛𝑃𝑂2

𝑒𝑥𝑝(−𝐸𝑜/𝑘𝐵𝑇)
 203 

where Ao is the species-specific ratio of rate coefficients for O2 supply and metabolic 204 

demand, Bn is the per-mass rate of gas transfer between water and the animal and its 205 

scaling with body mass for the species of interest (measured in kPa-1), PO2 is the partial 206 

pressure of dissolved oxygen measured in kPa, Eo is the temperature dependence of 207 

metabolic activity measured in eV, kB is Boltzmann’s constant measured in eV K-1, and T 208 

is temperature measured in K. We used Black Sea Bass-specific values of 209 

Ao=0.00040728, Bn=10-2, and Eo=0.27 measured in physiological experiments (Seibel & 210 

Deutsch, 2020; Slesinger et al., 2018). We used seasonal bottom temperature (referred 211 

to as temperature from now on) from SODA in K for temperature. Dissolved oxygen from 212 

the ROMS-COBALT model in mol/kg of seawater units was converted to kPa using the 213 

‘Respirometry’ package in R (Birk, 2020). For the unit conversion, ROMS-COBALT 214 

seasonal salinity values (in ppm) and temperature (in K) were also used. 215 

Species distribution modeling 216 

We expressed alternative hypotheses for the factors driving Black Sea Bass distribution 217 

as a set of statistical models. We used a two-stage modeling approach, also called a 218 
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hurdle model, that included a presence/absence model and a biomass conditional on 219 

presence model to account for the large number of zeros in the data (Barry & Welsh, 220 

2002; Cragg, 1971; Morley et al., 2018). To model presence-absence, we utilized a 221 

generalized additive model (GAM) with binomial errors fit with the mgcv package in R 222 

(Wood, 2017). For biomass models, we then added a second-stage GAM that modeled 223 

the log-transformed biomass with a normal error distribution. The GAM for presence-224 

absence included all hauls in order to include observed absences, while the log-biomass 225 

GAM was fit for all hauls with non-zero biomass. Because the biomass model was only 226 

fit to non-zero biomass observations and in order to model biomass across the full range 227 

of environmental conditions and surveys, we followed the methods of Morley et al. 228 

(2018) and added a small set of artificial near-zero biomass values (10-10) to a fraction of 229 

hauls in regions where the species was never encountered (10% of the hauls in a region 230 

or 10% of total observations, whichever was the smaller value).  231 

 232 

We then designed sets of explanatory variables to compare against each other as our 233 

alternative hypotheses. These included models with only a single oceanographic 234 

variable as well as multivariable models. All models (whether single or multivariable) 235 

included the ocean floor variables (rugosity and sediment grain size) and a categorical 236 

variable for the bottom trawl survey (to account for differences in vessels and sampling 237 

methods) (Table S1). To reduce overfitting, we used the recommendation to set a 238 

gamma value for each GAM as the log of the number of samples included in the model 239 

divided by two (Wood, 2017). We investigated higher gamma values (up to gamma = 50) 240 

for greater smoothing but doing so degraded out-of-sample predictive skill and we did 241 

not pursue this further (Wood, 2017). 242 

 243 
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The null model contained only the ocean floor and survey variables. Single variable 244 

models also included temperature, Metabolic Index, dissolved oxygen, salinity, or 245 

zooplankton. Multivariable models included different combinations of the above-246 

mentioned variables in order to test the explanatory value of Metabolic Index and other 247 

variables relative to temperature (Table 1). We examined models in several classes, 248 

including traditional temperature-based models (T models), Metabolic Index-based 249 

models (MI models), temperature-oxygen interaction models (T:O models), and hybrid 250 

models (those that contained a combination of temperature, Metabolic Index, and/or 251 

temperature-oxygen interaction). The T:O models examined whether the interaction 252 

between temperature and oxygen could be estimated statistically and the relative 253 

performance of this estimation against the physiologically calibrated MI values. 254 

 255 

Model assessment 256 

In order to understand model skill, we assessed both in-sample model fit and out-of-257 

sample forecasting skill. Each model was fit to a training dataset of all hauls before the 258 

year 2000 and two metrics were calculated. Akaike Information Criterion (AIC) is a 259 

measure of model performance that is proportional to the model complexity minus the 260 

log likelihood. With certain assumptions, the model with the lowest AIC score is 261 

expected to have the best performance (Burnham & Anderson, 2004). We calculated 262 

ΔAIC as the difference between the AIC of each model and of the lowest scoring model. 263 

As a simple guideline, ΔAIC values <2 indicate models that do not have substantially 264 

different performance, and ΔAIC values >10 indicate very little support (Burnham & 265 

Anderson, 2004). In addition, the models were evaluated against all the hauls including 266 
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and after the year 2000 with the True Skill Statistic (TSS) as a true out-of-sample test. 267 

TSS compares the number of correct forecasts, minus the ones attributed to random 268 

guessing, to that of a hypothetical set of perfect forecasts (Allouche et al., 2006). A TSS 269 

value of 1 suggests perfect prediction capability, and values at 0 or below indicate no 270 

better than random capability.  271 

 272 

The code for accessing the ROMS-COBALT hindcast data and calculating seasonal 273 

averages for dissolved oxygen, salinity, and zooplankton was written in Python 274 

programming language version 2.7 (Perez & Granger, 2007; van Rossum & Drake, 275 

2002). The code for all remaining analyses was written in R version 4.0 (R Core Team, 276 

2021). The code can be accessed on GitHub at https://github.com/wajra/bsb-shift-277 

drivers.  278 

 279 

Results 280 

Black sea bass distribution shifted northwards from 1980 to 2010 (Fig. 1a,b) and by the 281 

2000s, they were highly prevalent off the coast of New Jersey and into southern New 282 

England. This is apparent by prevalence anomalies (2000s – 1980s; Fig. S6 (a)). As one 283 

measure of spatial distribution, their centroid shifted north from 37.15 °N latitude in the 284 

1980s to 38.79 °N latitude in the 2000s (Fig. 1a,b). Over the same period of time, the 285 

environment had also changed considerably, with the most noticeable changes in 286 

temperature and dissolved oxygen (Fig. 2). The bottom waters in the Gulf of Maine 287 

warmed by around 1 °C over these two decades. This region also showed some 288 

deoxygenation (loss of 1 mg/dl over a 20 year period). However, zooplankton density 289 

and salinity remained constant through the 1980s to the 2000s. 290 

https://github.com/wajra/bsb-shift-drivers
https://github.com/wajra/bsb-shift-drivers
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 291 

While we fitted presence-absence and biomass models using single or multiple 292 

oceanographic variables, we focus our presentation of results here on the presence-293 

absence model. The best performing single-variable model for presence-absence used 294 

the Metabolic Index, as determined from out-of-sample TSS and AIC (Table 2). Models 295 

had similar but relatively low out-of-sample TSS at the scale of the individual bottom 296 

trawl haul, while AIC differences among the models were large (>20). The next-best 297 

model was oxygen, which had a ΔAIC of 24. The null model performed poorly on all 298 

metrics. The low skill of the models could be partially attributed to testing against 299 

individual hauls rather than testing over a larger averaged area (for example, a ¼ degree 300 

grid square as shown in Fig. 1) 301 

 302 

 303 

In presence-absence models combining multiple oceanographic factors, there were 304 

three equivalently well-performing models according to both out-of-sample TSS and 305 

ΔAIC (Table 3). In order of increasing complexity, these were T+O+S+Z (ΔAIC=0.625), 306 

T+O+MI+S+Z (ΔAIC=0), and T+O+T:O+S+Z (ΔAIC=0.698). The addition of an extra 307 

explanatory variable to the T+O+S+Z model, in the form of either a temperature-oxygen 308 

interaction (T:O) or the Metabolic Index (MI), produced only a very minor increase in 309 

model performance. Therefore, we selected T+O+S+Z as the preferred model for 310 

plotting in Fig. 1. In terms of model classes, the MI and T:O models generally did not 311 

perform well, illustrating the importance of including a temperature factor. In the T class 312 

of models with only one additional factor, adding dissolved oxygen resulted in the 313 

greatest improvement in model skill and was substantially better than adding MI. 314 
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Comparing models with T+O, the addition of S, Z, or S+Z (from T+O to T+O+Z, T+O+S, 315 

or T+O+S+Z) yielded better model performance compared to hybrid models. 316 

 317 

 318 

In the T+O+S+Z model, all explanatory variables were statistically significant (p<1x10-11) 319 

(Table 4). The probability of presence generally increased with rising temperature up to 320 

at least 10 °C (Fig. 3). The probability of presence decreased substantially at dissolved 321 

oxygen levels higher than 2.5 x 10-4 mol/kg. The probability of presence increased with 322 

zooplankton density up to 8 x 10-5 zooplankton body nitrogen mol/kg of seawater. 323 

Probability of presence also increased in general with salinity and rugosity. Grain size 324 

was the only parameter to which probability of presence did not show a clear directional 325 

response (Fig. 3).  326 

 327 

Species biomass (Table S2) also showed a positive relationship with temperature, 328 

peaking at 10 °C and then slowly declining at higher temperatures (Fig. S7). Species 329 

biomass showed a similar positive relationship with dissolved oxygen and peaked at 2.5 330 

x 10-4 mol/kg and declined after. Biomass also showed a positive nonlinear relationship 331 

with zooplankton density (Fig. S7). 332 

 333 

 334 

Both the statistically estimated temperature-oxygen interaction and the Metabolic Index 335 

represent similar concepts, with the latter more tightly constrained by physiological 336 

theory. We, therefore, compared the two effects (Fig. 4). The temperature-oxygen 337 

interaction suggested that probabilities of presence were highest at dissolved oxygen 338 

levels from 0 to 9 mg/L) and from 5 to 30 °C, which did not align with MI isoclines. In 339 
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particular, the statistical interaction did not suggest a higher minimum tolerable oxygen 340 

concentration at higher temperatures, as suggested by MI. Nearly all hauls considered 341 

for the study (99%) were above a MI of 2. Black Sea Bass were encountered in 6% of 342 

these hauls. Black Sea Bass were also encountered in 14% of the hauls below an MI of 343 

2. Black Sea Bass were notably absent from hauls below 3 °C or above 10 mg/L O2 (i.e., 344 

at particularly high MI values). 345 

 346 

 347 

Hindcasting the T+O+S+Z model revealed that the model successfully predicted the 348 

northward expansion of Black Sea Bass through time (Fig. 1c, d). In particular, the 349 

model predicted a northward shift of the centroid from 35.23 °N to 35.80 °N, similar to 350 

but not as large as the observed shift (37.15 to 38.79 °N). The suitable habitat was 351 

concentrated around North Carolina in the 1980s and shifted northwards to New York 352 

and offshore to Georges Bank by the 2000s. 353 

Discussion 354 

Species range shifts have both ecological and economic impacts. In order to best 355 

understand how to mitigate and prepare for these shifts, it is important to understand 356 

their major drivers. In this study, we examined whether oxygen, temperature-dependent 357 

hypoxia, food availability, and salinity from oceanographic hindcasts were useful for 358 

explaining historical shifts in Black Sea Bass distributions in the northwest Atlantic. We 359 

found that a multi-variate model including temperature and dissolved oxygen in particular 360 

described the Black Sea Bass habitat in the Northwest Atlantic and changes through 361 

time. While fish physiology suggests an interaction between temperature and oxygen is 362 



OXYGEN AND MARINE FISH BIOGEOGRAPHY 
 

 

 

17 

important for metabolic considerations, considering this mechanism did not appreciably 363 

improve explanatory or forecast skill for species distributions. 364 

 365 

The Metabolic Index has been shown in experimental studies (Seibel & Deutsch, 2020; 366 

Slesinger et al., 2018) to accurately reflect the factorial aerobic scope (measured as 367 

maximum/standard metabolic rate) of a species. As fish were exposed to higher 368 

temperatures and lower Metabolic Indices, Black Sea Bass exhibited less ability to 369 

increase their metabolic activity above their resting rate (Slesinger et al., 2018). A 370 

Metabolic Index of 3 has been suggested as a lower limit for population persistence 371 

(Seibel & Deutsch, 2020). Using Metabolic Index to explain species distributions could 372 

therefore provide a physiological and mechanistic link between the environment and 373 

species biogeography. Previous work has suggested that the Metabolic Index more 374 

accurately describes species boundaries experiencing higher temperatures and lower 375 

oxygen concentrations than does temperature or oxygen alone (Deutsch et al., 2015, 376 

2020). While we found some evidence that Metabolic Index could explain historical Black 377 

Sea Bass distributions, we also found that including temperature and oxygen separately 378 

produced models that were effectively as skillful and parsimonious. Considering 379 

Metabolic Index in addition to temperature and oxygen was not as useful as considering 380 

salinity and proxies for prey.  381 

 382 

One potential explanation for this result is that Metabolic Index is a better predictor of the 383 

warm edge (retracting range) of a species than of the cold edge (expanding range), and 384 

our data were focused on the cold range edge of Black Sea Bass. An organism's ability 385 

to supply oxygen to its organs may decline at cold temperatures more than does 386 

metabolic demand, creating temperature-dependent hypoxia at the cold range edge 387 
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(Pörtner et al., 2017). If this process is important at cold range edges, the MI would need 388 

to be reformulated to include this process. However, the concept of oxygen- and 389 

capacity-limited thermal tolerance itself also remains controversial, including at cold 390 

range edges (Jutfelt et al., 2018). Alternatively, temperature alone (without an oxygen 391 

interaction) may limit the cold range edge because of difficulty acquiring food or avoiding 392 

predators when metabolic, movement and growth rates are slow, or because of limits on 393 

reproduction or other processes (Dahlke et al., 2020; Slesinger et al., 2018). Lower 394 

zooplankton concentrations in the Gulf of Maine (Fig. 2g) may also play a role and 395 

interact with cold temperatures to help limit the Black Sea Bass distribution, perhaps by 396 

further reducing the ability to find food. Better understanding of the ecological limits at 397 

cold temperatures will be helpful for understanding cold range edge dynamics.  398 

 399 

Our findings contribute to other research finding limited utility of the Metabolic Index for 400 

explaining species distributions beyond the utility of oxygen and temperature. Recent 401 

research on sablefish (Anoplopoma fimbria) on the west coast of the US has highlighted 402 

that static species distributions may be more closely related to oxygen than to Metabolic 403 

Index, though, in contrast to Black Sea Bass, temperature was not a particularly useful 404 

explanatory factor for sablefish beyond oxygen (Essington et al., 2022). Some of the 405 

differences between these two species may be explained by their depth distributions. 406 

Sablefish inhabit deeper depths where low oxygen provides a strong constraint on 407 

occupancy, whereas Black Sea Bass occupy shelf habitats with less oxygen limitation. 408 

The sablefish paper did not directly examine changes through time, and our Black Sea 409 

Bass results show additionally that changes in temperature and oxygen can skillfully 410 

predict changes in species distribution through time. 411 

 412 
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The Metabolic Index represents an interaction between temperature and oxygen, but the 413 

use of the Metabolic Index requires physiological experiments to derive species-specific 414 

values that are available to date for only a few dozen species (Deutsch et al., 2020). In 415 

theory, this interaction could be estimated statistically for a wider range of species from 416 

spatial observations of occupancy or biomass. In support of this idea, our model that 417 

estimated the temperature-oxygen interaction statistically (the T:O model) performed 418 

equivalently well as the MI model. However, statistical estimation of the temperature-419 

oxygen interaction in Black Sea Bass produced a response surface that did not align 420 

with Metabolic Index predictions.  This statistical approach may allow insights from 421 

physiology (such as the temperature-oxygen interaction) to be applied more widely 422 

across species in the absence of the extensive lab work required to estimate the MI 423 

directly. There has been a push in the literature to incorporate more mechanistic 424 

approaches into species distribution modeling where the species habitat is explained by 425 

variables with measurable impact on physiological function (Buckley et al., 2011), such 426 

as the Metabolic Index. In advance of extensive physiological experiments, it may be 427 

productive to infer metabolic traits from more widely measured species characteristics 428 

and from phylogenetic history, as is now possible (Schrodt et al., 2015; Thorson et al., 429 

2017). Alternatively, statistical estimation of the temperature-oxygen interaction may be 430 

suitable in many cases for species with sufficient occurrence data. 431 

 432 

The use of hindcast zooplankton density to explain Black Sea Bass distributions proved 433 

to be effective, and the most skillful models included zooplankton. In many ways, this 434 

was a surprising finding. Our zooplankton data were not observations, but instead 435 

hindcast quantities reconstructed by a biogeochemical oceanographic model. Despite 436 

the potential biases and errors in such hindcasts, the zooplankton fields were skillful for 437 
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explaining Black Sea Bass observations. However, using zooplankton as a proxy for 438 

prey availability might be dependent on the species in question, and other metrics of 439 

prey availability would be worth exploring. The inclusion of biotic interactions in the form 440 

of density or coverage of other species has shown to improve certain species distribution 441 

models (Mod et al., 2015). Therefore, it might be valuable to consider prey species that 442 

interact with Black Sea Bass. However, single prey species are less likely to be useful 443 

for a generalist predator like Black Sea Bass. Joint species distribution modeling in 444 

which associated species covary with environment variables may be useful in this 445 

context if the prey species have also been sampled (Tikhonov et al., 2017). Other 446 

studies have suggested that shelf water volume as a proxy for cross-shelf migration 447 

distance may be useful in explaining Black Sea Bass habitat at a regional scale (A. S. 448 

Miller et al., 2016).  449 

 450 

Going forward, the rapid redistribution of many marine species in recent decades, 451 

including Black Sea Bass, provide an ideal opportunity to test hypotheses about the 452 

factors constraining and changing species spatial distributions. Many continental shelf 453 

ecosystems are well-observed and have been for decades (Maureaud et al., 2021), 454 

setting the stage for further research. For Black Sea Bass, future directions could include 455 

a consideration of both minimum and maximum annual temperatures, new data sources 456 

to better survey rocky habitats, and separately investigating juvenile and adult 457 

distributions. Seasonal temperature changes (that may be captured by seasonal 458 

minimums and maximums) are known to trigger Black Sea Bass migratory movements 459 

in fall and spring (Able, 1995), and temperature extremes have been suggested to be 460 

important determinants of species ranges edges (Hutchins, 1947). In the face of climate 461 

change and phenomena such as the increased frequency of heatwaves (Oliver et al., 462 
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2018; Stillman, 2019), it has become even more important to investigate how these 463 

temperature extremes may drive redistribution of species. In addition, Black Sea Bass 464 

are known to associate with complex bottom structures (such as reefs) and with coarse 465 

sediment (Fabrizio et al., 2013; Schweitzer & Stevens, 2019). However, bottom trawl 466 

surveys are typically conducted over muddy and sandy substrate and do not sample 467 

rocky habitats well (Azarovitz, 1981). Therefore, more focused sampling of Black Sea 468 

Bass over their preferred habitats, such as with traps or rod-and-reel (Provost et al., 469 

2017), will be helpful to fully observe their association with complex bottom structures. 470 

Finally, separate models for juveniles and adults may be useful because juveniles are 471 

more often found in shallow water bodies and adults alternate between deeper and 472 

shallow waters. Previous work conducted to determine the wintering habitat preferences 473 

of adult and juvenile Black Sea Bass in the mid-Atlantic Bight found that the wintering 474 

period was important for explaining recruitment to the adult population (A. S. Miller et al., 475 

2016). The extensive history and spatial extent of data available for Black Sea Bass and 476 

other species provides an important resource for testing these and related hypotheses. 477 

 478 

Black Sea Bass is expanding into the Gulf of Maine and has been widely noted as an 479 

example of redistributing marine species (McBride et al., 2018). However, it is one of 480 

many species in the northwestern Atlantic that is expanding into this region (Hare et al., 481 

2016; Nye et al., 2009). In the Gulf of Maine, several species have been projected to 482 

gain suitable thermal habitat in the next 60 to 80 years (Kleisner et al., 2017). The 483 

introduction of novel species into the Gulf of Maine may produce novel species 484 

interactions that have substantial impact on the ecology as well as economic activities. 485 

An example would be the impact that Black Sea Bass may have on the American lobster 486 

populations in the Gulf of Maine as a novel predator (McMahan & Grabowski, 2019). 487 
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 488 

Our results suggest that integrating temperature plus oxygen into a wide range of marine 489 

species distribution models will be productive for allowing a better understanding of 490 

species distributions and their changes through time. Continuing to link physiological 491 

processes to biogeographic patterns has strong promise for improving our 492 

understanding of the impacts of global climate change on species biogeography. 493 

 494 
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Tables 780 

 781 
Table 1: List of models used to explain Black Sea Bass habitat. 782 

Model class Model name Abbreviation 

- Ocean floor only (Null model) - 

T models Temperature + Dissolved Oxygen T+O 

Temperature + Salinity T+S 

Temperature + Zooplankton T+Z 

Temperature + Metabolic Index T+MI 

Temperature + Dissolved Oxygen + 
Zooplankton 

T+O+Z 

Temperature + Dissolved Oxygen + 
Salinity 

T+O+S 

Temperature + Dissolved Oxygen + 
Salinity + Zooplankton 

T+O+S+Z 

Hybrid 
models 

Temperature + Dissolved Oxygen + 
Temperature-Oxygen interaction  

T+O+T:O 
 

Temperature + Dissolved Oxygen + 
Metabolic Index 

T+O+MI 

Temperature + Dissolved Oxygen + 
Salinity + Zooplankton + Metabolic Index 

T+O+S+Z+MI 

Temperature + Dissolved Oxygen + 
Salinity + Zooplankton + Temperature-
Oxygen interaction  

T+O+S+Z+T:O 

MI models Metabolic Index + Salinity MI+S 

Metabolic Index + Zooplankton MI+Z 

Metabolic Index + Salinity + Zooplankton MI+S+Z 

T:O models Temperature-Oxygen interaction + T:O+S 
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Salinity 

Temperature-Oxygen interaction + 
Zooplankton 

T:O+Z 

Temperature-Oxygen interaction + 
Salinity + Zooplankton 

T:O+S+Z 

 783 

Table 2. Performance metrics for presence-absence models with single oceanographic 784 

variables measured as ΔAIC and as out-of-sample TSS. The best performing model (MI) 785 

is highlighted in bold. 786 

Model name TSS AIC ΔAIC 

Null 0.113 10613 993 

S 0.117 10325 706 

SBT 0.129 9860 240 

O 0.131 9643 24 

Z 0.109 10449 830 

MI 0.132 9619 0 

 787 

 788 

Table 3. Performance metrics for presence/absence models with multiple explanatory 789 

variables. The three best-performing models are highlighted in bold. 790 

Model class Model name TSS AIC ΔAIC 

Null Null 0.1132 10612.7 1551.92 

T models T+O 0.1361 9481.9 421.17 
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T+MI 0.1342 9540.4 479.62 

T+S 0.1305 9732.6 671.82 

T+Z 0.1296 9590.1 529.30 

T+O+Z 0.1386 9119.1 58.37 

T+O+S 0.1380 9368.0 307.24 

T+O+S+Z 0.1438 9061.4 0.63 

Hybrid models 

T+O+T:O 0.1361 9481.9 421.17 

T+O+MI 0.1363 9458.4 397.61 

T+O+MI+S+Z 0.1440 9060.8 0.00 

T+O+T:O+S+Z 0.1438 9061.5 0.70 

MI models 

MI+S 0.1334 9517.9 457.14 

MI+Z 0.1374 9236.6 175.87 

MI+S+Z 0.1429 9186.1 125.37 

T:O models 

T:O+S 0.1353 9643.7 582.97 

T:O+Z 0.1368 9368.9 308.12 

T:O+S+Z 0.1374 9368.2 307.46 

 791 

 792 

Table 4: Fit statistics for the best-performing presence/absence model (T+O+S+Z). 793 

Table shows the empirical degrees of freedom (EDF) and the approximate chi-squared 794 

and p-values for each term. The p-values were below machine tolerance values. 795 
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Variable EDF Chi-Squared value p-value 

Temperature 5.253 240.54 <1x10-11 

Dissolved Oxygen 6.682 467.83 <1x10-11 

Zooplankton 4.730 457.484 <1x10-11 

Salinity 5.908 98.016 <1x10-11 

Rugosity 3.536 46.63 <1x10-11 

Grain size 7.840 301.28 <1x10-11 

 796 
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Figure legends 815 

 816 

Figure 1: Distribution of Black Sea Bass across time. (a) and (b) show Black Sea Bass 817 

prevalence (proportion of hauls with Black Sea Bass) in bottom trawl surveys. 818 

Subfigures (c) and (d) show hindcast probability of presence from the preferred model 819 

(Temperature + Dissolved Oxygen + Salinity + Zooplankton model; T+O+S+Z). Maps 820 

are for 1980 to 1990 (a, c) and for 2000 to 2010 (b, d). Both prevalence and probability 821 

have been averaged into ¼ ° latitude x longitude grid cells. 822 

 823 
Figure 2. Decadal averages for the 1980s and decadal change in mean values between 824 

the 1980s and 2000s for bottom temperature (a,b), bottom dissolved oxygen (c,d), 825 

bottom salinity (e,f), vertically integrated zooplankton density (g,h), and bottom Metabolic 826 

Index (i,j). Note that the change in zooplankton scale is an order of magnitude smaller 827 

than the mean zooplankton scale. The 1% most extreme values for change in salinity, 828 

zooplankton, and dissolved oxygen have been removed to improve legibility of the map. 829 

 830 
Figure 3. Response curves for predictors in the T+O+S+Z presence-absence model. 831 

The shaded areas show the 95% confidence interval. This figure and Fig. S7 show the 832 

partial or additive effect that each covariate in the model has on the predicted variable. 833 

 834 
Figure 4: The effect of the interaction between seasonal bottom temperature and 835 

dissolved oxygen on the probability of presence (from the T+O+T:O+S+Z model). Black 836 

Sea Bass presences (black triangles), absences (gray circles), and Metabolic Index (ɸ, 837 

lines) are plotted against seasonal temperature and dissolved oxygen. Lines indicate a ɸ 838 

of 1 (dashed black) and 2 (dashed green). 839 

 840 




