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Abstract: Unraveling the multisymptomatic Gulf War Illness (GWI) pathology and finding an effective
cure have eluded researchers for decades. The chronic symptom persistence and limitations for
studying the etiologies in mouse models that differ significantly from those in humans pose challenges
for drug discovery and finding effective therapeutic regimens. The GWI exposome differs significantly
in the study cohorts, and the above makes it difficult to recreate a model closely resembling the
GWI symptom pathology. We have used a double engraftment strategy for reconstituting a human
immune system coupled with human microbiome transfer to create a humanized-mouse model
for GWI. Using whole-genome shotgun sequencing and blood immune cytokine enzyme linked
immunosorbent assay (ELISA), we show that our double humanized mice treated with Gulf War
(GW) chemicals show significantly altered gut microbiomes, similar to those reported in a Veteran
cohort of GWI. The results also showed similar cytokine profiles, such as increased levels of IL-1β,
IL-6, and TNF R-1, in the double humanized model, as found previously in a human cohort. Further, a
novel GWI Veteran fecal microbiota transfer was used to create a second alternative model that closely
resembled the microbiome and immune-system-associated pathology of a GWI Veteran. A GWI
Veteran microbiota transplant in humanized mice showed a human microbiome reconstitution and a
systemic inflammatory pathology, as reflected by increases in interleukins 1β, 6, 8 (IL-1β, IL-6, IL-8),
tumor necrosis factor receptor 1 (TNF R-1), and endotoxemia. In conclusion, though preliminary,
we report a novel in vivo model with a human microbiome reconstitution and an engrafted human
immune phenotype that may help to better understand gut–immune interactions in GWI.

Keywords: humanized mice; NSG; bacteriome; IL-6; TNF R-1; gut–immune axis

1. Introduction

Significant research has been conducted, including clinical and preclinical studies, for
the past 30 years on Gulf War Illness (GWI), advancing our understanding of complex
multisymptomatic pathologies. Studies have reported the prevalence of GWI symptoms to
be significantly higher among the Veterans who were deployed in the 1990–91 Gulf War
(GW) compared to the non-deployed population [1]. It is important to note that a section
of aging GW Veterans, in the present day, continue to experience the persistence of GWI
symptoms [2].

GWI has been reported to be the result of the exposure to multiple chemical and
environmental toxicants by Veterans during the war [3]. Several research groups, including
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ours, have attempted to administer two or more such reported toxicants as a mixture in
preclinical murine models to understand the pathophysiology and exposome profile of
GWI. However, most studies have used experimental mouse or rat strains to design their
respective chronic or sub-chronic GWI models [4].

Recent approaches have focused on substituting experimental murine models with
humanized mouse models. The advantage of the humanized mouse model lies in its ability
to possess human immune cells, gut microbiome, specific tissues, and tumor growth [5].
Humanized mouse models have proven to be advantageous in studying the altered immune
functions in autoimmune, metabolic, and infectious diseases [6,7]. Among the different
strains of humanized mice that are used, CD34+ hu-NSG strain and BLT-TKO strain are the
most commonly used. CD34+ hu-NSGs are non-obese diabetic (NOD) mice, where the gene
coding for the γ chain of the IL-2 receptor is deleted, preventing cytokine signaling, along
with a scid mutation in the Prkdc or DNA repair protein. They do not have any B- or T-cells
or functional natural killer cells. The humanization of the immune system is conducted
after the initial myeloablation through radiation, followed by injection with human CD34+
hematopoietic stem cells [8,9]. The approach for generating TKO-BLT-humanized mice with
C57BL/6 backgrounds decreased its effectiveness because of the issue of graft rejection, as
human CD47 cannot be recognized by mice signal regulatory protein α (SIRPα) expressed
in C57BL/6 mice [10]. To overcome this, triple-knockout (TKO) mice with deletions
of Rag1, IL-2γc, and CD47 genes were used. Further engraftment with human CD34+
hematopoietic stem cells and human fetal tissues (bone marrow, liver, thymus, or BLT)
led to the development of TKO-BLT-humanized mice, which were immunologically stable
to transplantations [11]. Further modification of existing CD34+ hu-NSG- and TKO-BLT-
humanized mouse models by engrafting with a human gut microbiome via fecal microbiota
transfer (FMT) has led to the development of a “double humanized mouse model” [12].
This model has the advantage for being more translatable for mimicking the human-gut
microbiome-induced host immune response as opposed to immune responses due to an
altered murine microbiome, which are different [13].

GWI pathology has been identified to be associated with an altered gut microbiome
due to GW chemical exposures [14–17]. We have observed in our previous studies that
the diversity or richness of the gut microbiome, as measured by α-diversity, has been
significantly altered in GWI Veterans and in preclinical mouse models [14–16]. Present-day
GWI Veterans belong to the elderly population between 50 and 60 years old. Studies have
reported that in the elderly population, the α-diversity is decreased because of exposure to
nosocomial infections upon multiple hospital visits, sepsis, antibiotic prescriptions, and
diet [18]. A lower α-diversity index, like the Chao 1 index, was associated with mortality
among elderly patients [19]. α-Diversity could be used for its predictive value, especially
as an indicator for the onset of neurodegeneration, which is majorly observed among the
GWI Veteran cohort [20,21]. Hence, we have analyzed the α-diversity along with studying
the inter-group gut bacterial variation through β-diversity analysis, which can help to
identify signature gut bacterial profiles for designing future therapeutic approaches. Also,
it will be more advantageous to utilize a double humanized mouse model to study the
GWI pathology, as the immunological response could be more translatable to the clinical
data available from GWI Veterans. In the present study, we have used CD34+ hu-NSG
(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ), mostly termed as NSGTM mouse strains, which were
engrafted with human hematopoietic stem cells (hu-CD34+). The CD34+ hu-NSG mice
were further engrafted with a human gut microbiome from a healthy human subject after
antibiotic-induced gut depletion via FMT, following the protocol reported by Daharsh
et al., with modifications [12]. We have studied the gut microbiome and systemic immune
responses after administering GW-representative chemicals in CD34+ hu-NSG mice with
an established human gut microbiome. Further, we report the altered gut microbiome and
immunological signature post-engrafting the CD34+ hu-NSG mice with a GWI Veteran’s
microbiome by performing FMT using a stool sample from a GWI Veteran.
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2. Results
2.1. Establishment of Healthy Human Gut Bacteriome in CD34+ hu-NSG Mice

We wanted to establish the gut bacteriome of a healthy human donor in the CD34+ hu-
NSGTM mouse strain. Gut depletion was performed by administering an antibiotic cocktail
via oral gavage for 12 days, followed by FMT with a healthy human fecal sample for 2 days.
To study the efficacy of the antibiotic-cocktail-induced gut depletion and the subsequent hu-
man gut bacteriome establishment, we performed a whole-genome sequencing study using
fecal samples from the three groups. The results showed that the α-diversity (Chao 1) of the
gut bacteriome was significantly decreased in the NSG_ABX Treatment group compared
to the NSG_Control group (p < 0.001) (Figure 1A). The administration of the human FMT
after the initial gut depletion by antibiotic treatment in the NSG_Hu-FMT group resulted
in a significant increase in the α-diversity (Chao 1) compared to the NSG_ABX Treatment
group, which indicated the establishment of human gut bacteria (p < 0.001) (Figure 1A).
The Bray–Curtis β-diversity analysis showed significant differences in the gut bacteriome
profile between the NSG_Control and NSG_ABX Treatment groups (p < 0.002) and between
the NSG_ABX Treatment and NSG_Hu-FMT groups (p < 0.005) (Figure 1B). At the phylum
level, an increase in the relative abundance of Firmicutes and a decrease in Verrucomicrobia
were observed in the NSG_ABX Treatment group as compared to the NSG_Control group
(Figure 1C). Moreover, human FMT treatment increased the relative abundance of Verru-
comicrobia and decreased Firmicutes in the NSG_Hu-FMT group compared to the NSG_ABX
Treatment group (Figure 1C). Further investigating the colonized bacterial population in
the CD34+ hu-NSG mouse strain by comparing it with the bacterial profile of the healthy
human donor at the genus level (Supplementary Materials Table S1), we observed that
the relative abundances of Bifidobacterium and Roseburia were significantly increased in
NSG_Hu-FMT groups compared to the NSG_ABX Treatment group (Figure 2). We also
observed significant increases in the relative abundances of beneficial gut commensal bac-
teria Akkermansia, Lachnospiraceae, and Schaedlerella in NSG_Hu-FMT groups compared to
the NSG_ABX Treatment group (Figure 2). Further, we wanted to study the expression of
the systemic inflammation in the three groups by performing serum enzyme-linked im-
munosorbent assays (ELISAs). We observed significantly increased expressions of human
proinflammatory cytokines IL-1β, IL-6, and IL-8 and the human soluble tumor necrosis
factor receptor 1 (TNF R-1) at the serum level in the NSG_ABX Treatment group compared
to the NSG_Control group, which was significantly decreased in the NSG_Hu-FMT group
(Figure 3A–D). There were no statistically significant differences in the endotoxin levels
between the NSG_ABX Treatment and NSG_Hu-FMT groups (Figure 3E). These results
suggested that the gut bacteriome depletion and subsequent microbiome repopulation
from a healthy human donor restored the gut bacteriome diversity typical of a healthy
human donor with no significant systemic inflammation.
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Figure 1. Establishment of human gut bacteria in NSG-CD34+ mice. (A) Box plots showing α-diver-
sities (Chao 1) of gut bacteriome in NSG_Control group (mice administered with the vehicle), 
NSG_ABX Treatment (mice administered with antibiotic cocktail via oral gavage for 12 days), and 
NSG_Hu-FMT (mice administered with human fecal microbiota transfer after gut bacteriome de-
pletion with antibiotic cocktail). (B) β-Diversity analysis (Bray–Curtis) of NSG_Control, NSG_ABX 
Treatment, and NSG_Hu-FMT groups. (C) Stacked bar representation of relative abundance of gut 
bacteriome at the phylum level in NSG_Control, NSG_ABX Treatment, and NSG_Hu-FMT groups; 
p < 0.05 was considered as statistically significant. 
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Figure 1. Establishment of human gut bacteria in NSG-CD34+ mice. (A) Box plots showing
α-diversities (Chao 1) of gut bacteriome in NSG_Control group (mice administered with the ve-
hicle), NSG_ABX Treatment (mice administered with antibiotic cocktail via oral gavage for 12 days),
and NSG_Hu-FMT (mice administered with human fecal microbiota transfer after gut bacteriome
depletion with antibiotic cocktail). (B) β-Diversity analysis (Bray–Curtis) of NSG_Control, NSG_ABX
Treatment, and NSG_Hu-FMT groups. (C) Stacked bar representation of relative abundance of gut
bacteriome at the phylum level in NSG_Control, NSG_ABX Treatment, and NSG_Hu-FMT groups;
p < 0.05 was considered as statistically significant.
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Figure 2. Bar graph representation of relative abundances of gut bacteriome at the genus level
in NSG_Control, NSG_ABX Treatment, and NSG_Hu-FMT groups; p < 0.05 was considered as
statistically significant.
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Figure 3. Altered expressions of systemic proinflammation biomarkers during establishment of hu-
man gut bacteria in NSG-CD34+ mice. Bar graph representation of systemic cytokines (A) IL-1β, (B) 
IL-6, (C) IL-8, and (D) TNF R-1 in NSG_Control, NSG_ABX Treatment, and NSG_Hu-FMT groups. 
(E) Bar graph representation of serum endotoxemia, measured by LAL Assay in NSG_Control, 
NSG_ABX Treatment, and NSG_Hu-FMT groups; p < 0.05 was considered as statistically significant. 
NS denotes non-significant change. 

  

Figure 3. Altered expressions of systemic proinflammation biomarkers during establishment of
human gut bacteria in NSG-CD34+ mice. Bar graph representation of systemic cytokines (A) IL-1β,
(B) IL-6, (C) IL-8, and (D) TNF R-1 in NSG_Control, NSG_ABX Treatment, and NSG_Hu-FMT groups.
(E) Bar graph representation of serum endotoxemia, measured by LAL Assay in NSG_Control,
NSG_ABX Treatment, and NSG_Hu-FMT groups; p < 0.05 was considered as statistically significant.
NS denotes non-significant change.

2.2. Effects of Representative GW Chemical Treatment on the Gut Bacteriome, Resistome Profiles,
and Systemic Inflammation in CD34+ hu-NSG Mice with Established Human Gut Bacteriome

The current aim for the below-reported experiments was to use the humanized gut
bacteriome model to study the possible alterations in the gut microbial diversity following
GW chemical exposure. We studied the alterations in the gut bacteriome and resistome
profile after the administration of representative GW chemicals pyridostigmine bromide
and permethrin in CD34+ hu-NSG mice having an established human gut bacteriome. The
α-diversity (Chao 1) was significantly decreased in the NSG_Hu-FMT+GWI group when
compared to the NSG_Hu-FMT group (p < 0.05) (Figure 4A). The Bray–Curtis β-diversity
analysis, a representation of the richness and unique niches between groups, showed
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that the observed difference in the gut bacteriome profile between the NSG_Hu-FMT and
NSG_Hu-FMT+GWI groups was non-significant (p = 0.131) (Figure 4B). At the phylum
level, we observed an increase in the relative abundance of Firmicutes and a decrease in
Verrucomicrobia in NSG_Hu-FMT+GWI compared to the NSG_Hu-FMT group (Figure 4C).
At genus level, significant decreases were observed in the relative abundances of Akkerman-
sia (p = 0.001), Bifidobacterium (p < 0.001), Lachnospiraceae (p < 0.05), Roseburia (p < 0.001),
and Schaedlerella (p < 0.001) in the NSG_Hu-FMT+GWI group compared to the NSG_Hu-
FMT group (Figure 5). Further, we studied the gut resistome profile between these two
experimental mouse groups because our previous study reported the association of the gut
resistome alteration with the underlying GWI condition [22]. A significant increase in the
α-diversity of antibiotic resistance genes was observed in NSG_Hu-FMT+GWI compared
to the NSG_Hu-FMT group (p = 0.006) (Figure 6A). The Bray–Curtis β-diversity analysis
showed that although there was a distinct separation in the gut resistome profile between
the two groups, the difference was statistically non-significant (p = 0.141) (Figure 6B).
We also observed significant increases in the relative abundances of antibiotic resistance
genes aminoglycoside gene aadE 1 KF864551 (p < 0.001), macrolide 29 1724 Branch (p < 0.01),
macrolide 57 1774 Branch (p < 0.001), and tetracycline 7 2471 Branch (p < 0.001) in NSG_Hu-
FMT+GWI compared to the NSG_Hu-FMT group (Figure 6C). Further, we observed sig-
nificant increases in the expressions of serum proinflammatory markers IL-1β (p < 0.001),
IL-6 (p < 0.001), and IL-8 (p < 0.001) and the soluble TNF R-1 (p < 0.001) in NSG_Hu-
FMT+GWI compared to the NSG_Hu-FMT group (Figure 7A–D). Further, we observed a
significant increase in the endotoxin levels (p < 0.001) in NSG_Hu-FMT+GWI compared
to the NSG_Hu-FMT group (Figure 7E), suggesting a distinct gut-leaching phenomenon
often associated with gut dysbiosis in GWI and other metabolic and environment-linked
disease phenotypes.
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Figure 4. Exposure to representative GW chemicals altered gut bacteriome profile in NSG-CD34+ mice
with established human gut bacteria. (A) Box plots showing α-diversities of gut bacteriome (Chao
1) in NSG_Hu-FMT (mice administered with human fecal microbiota transfer after gut bacteriome
depletion with antibiotic cocktail) and NSG_Hu-FMT+GWI (mice administered with representative
GW chemicals pyridostigmine bromide and permethrin for 15 days after gut bacteriome depletion
with antibiotic cocktail and human fecal microbiota transfer). (B) β-Diversity analysis (Bray–Curtis) of
NSG_Hu-FMT and NSG_Hu-FMT+GWI groups. (C) Stacked bar representation of relative abundance
of gut bacteriome at the phylum level in NSG_Hu-FMT and NSG_Hu-FMT+GWI groups; p < 0.05
was considered as statistically significant.
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Figure 6. Exposure to representative GW chemicals altered gut resistome profile in NSG-CD34+ mice
with established human gut bacteria. (A) Box plots showing α-diversities (Chao 1) of gut resistome
in NSG_Hu-FMT (mice administered with human fecal microbiota transfer after gut bacteriome
depletion with antibiotic cocktail) and NSG_Hu-FMT+GWI (mice administered with representative
GW chemicals pyridostigmine bromide and permethrin for 15 days after gut bacteriome depletion
with antibiotic cocktail and human fecal microbiota transfer). (B) β-Diversity analysis (Bray–Curtis) of
NSG_Hu-FMT and NSG_Hu-FMT+GWI groups. (C) Bar graph representation of relative abundances
of altered antibiotic resistance genes in NSG_Hu-FMT and NSG_Hu-FMT+GWI groups; p < 0.05 was
considered as statistically significant.
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Figure 7. Altered expression of systemic proinflammation biomarkers after administration with
representative GW chemicals in NSG-CD34+ mice with established human gut bacteria. Bar graph
representation of systemic cytokines (A) IL-1β, (B) IL-6, (C) IL-8, and (D) TNF R-1 in NSG_Hu-FMT
and NSG_Hu-FMT+GWI groups. (E) Bar graph representation of serum endotoxemia, measured by
LAL assay in NSG_Hu-FMT and NSG_Hu-FMT+GWI groups; p < 0.05 was considered as statisti-
cally significant.
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2.3. Effects of Fecal Microbiota Transfer from GWI Veteran’s Stool Sample on the Gut Bacteriome,
Resistome Profiles, and Systemic Inflammation in CD34+ hu-NSG Mice

Further, we wanted to study whether establishing the gut bacteriome from GWI Veterans
by FMT would result in similar alterations in the gut bacteriome, resistome, and systemic
inflammatory patterns in the new GWI-mouse model discussed in the previous section.
The aim was to recreate a unique gut microbiome specific to a deployed GWI Veteran. We
compared the results of this NSG_GWIV group (humanized mouse group with GWI Veteran
microbiome) with the results of the NSG_Hu-FMT group, which mimics the health condition
of a healthy human supposedly representing a non-deployed individual. The results showed
that the α-diversity (Chao 1) of the NSG_GWIV group was significantly increased (p < 0.001)
compared to the NSG_Hu-FMT group (Figure 8A). We observed that the gut bacteriome
profiles of the two groups were significantly distinct (p = 0.004) from each other by the
Bray–Curtis β-diversity analysis (Figure 8B). At the phylum level, the relative abundance
of Verrucomicrobia was decreased in the NSG_GWIV group compared to the NSG_Hu-FMT
group (Figure 8C). However, no change was observed in the relative abundance of Firmicutes
(Figure 8C). Further, we compared the gut bacterial profile at the genus level in the GWI
Veteran’s fecal sample (Supplementary Materials Table S1) with the established bacterial
profile in the NSG_GWIV group and observed the following changes: At the genus level,
we observed significant decreases in the relative abundances of Akkermansia (p = 0.001),
Bifidobacterium (p < 0.001), Lachnospiraceae (p < 0.001), Roseburia (p < 0.001), and Schaedlerella
(p < 0.001) in the NSG_GWIV group compared to the NSG_Hu-FMT group (Figure 9). We
also observed that the α-diversity (Chao 1) of the antibiotic resistance gene profile in the
NSG_GWIV group was significantly altered as compared to that in the NSG_Hu-FMT group
(p = 0.025) (Figure 10A). The Bray–Curtis β-diversity analysis showed a significant difference
(p < 0.003) between the gut resistome profiles of the two groups (Figure 10B). At the individual
gene level, we observed significant increases in the relative abundances of aminoglycoside gene
aadE 1 KF864551 (p = 0.001), macrolide 29 1724 Branch (p < 0.001), macrolide 57 1774 Branch
(p < 0.001), and tetracycline 7 2471 Branch (p < 0.001) in NSG_GWIV compared to the NSG_Hu-
FMT group (Figure 10C). Finally, we studied whether the colonized bacteriome from the
GWI Veteran resulted in the expression of systemic proinflammatory biomarkers. Significant
increases in the expressions of IL-1β (p < 0.001), IL-6 (p < 0.001), and IL-8 (p = 0.025) and
the soluble TNF R-1 (p = 0.007) were observed in the NSG_GWIV group compared to the
NSG_Hu-FMT group (Figure 11A–D). A significant increase in the endotoxin levels (p = 0.042)
in NSG_GWIV was observed when compared to the NSG_Hu-FMT group (Figure 11E),
suggesting that our novel approach to recreate the GWI microbiome in a humanized-mouse
model bore similarities with the average GWI Veteran having systemic inflammation, as
reported in several human studies [23,24].
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Figure 8. Administration with human fecal microbiota transfer from GWI Veteran’s stool sample
altered gut bacteriome profile in NSG-CD34+ mice. (A) Box plots showing α-diversities of gut
bacteriome (Chao 1) in NSG_Hu-FMT (mice administered with human fecal microbiota transfer
after gut bacteriome depletion with antibiotic cocktail) and NSG_GWIV (mice administered with
human fecal microbiota transfer from GWI Veteran’s stool sample after gut bacteriome depletion
with antibiotic cocktail). (B) β-Diversity analysis (Bray–Curtis) of NSG_Hu-FMT and NSG_GWIV
groups. (C) Stacked bar representation of relative abundances of gut bacteriome at the phylum level
in NSG_Hu-FMT and NSG_GWIV groups; p < 0.05 was considered as statistically significant.
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Figure 10. Administration with human fecal microbiota transfer from GWI Veteran’s stool sample
altered gut resistome profile in NSG-CD34+ mice. (A) Box plots showing α-diversities (Chao 1) of
gut resistome in NSG_Hu-FMT (mice administered with human fecal microbiota transfer after gut
bacteriome depletion with antibiotic cocktail) and NSG_GWIV (mice administered with human fecal
microbiota transfer from GWI Veteran’s stool sample after gut bacteriome depletion with antibiotic
cocktail. (B) β-Diversity analysis (Bray–Curtis) of NSG_Hu-FMT and NSG_GWIV groups. (C) Bar
graph representation of relative abundances of altered antibiotic resistance genes in NSG_Hu-FMT
and NSG_GWIV groups; p < 0.05 was considered as statistically significant.
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Figure 11. Altered expressions of systemic proinflammation biomarkers, after human fecal microbiota
transfer from GWI Veteran’s stool sample, in NSG-CD34+ mice. Bar graph representation of systemic
cytokines (A) IL-1β, (B) IL-6, (C) IL-8, and (D) TNF R-1 in NSG_Hu-FMT and NSG_GWIV groups.
(E) Bar graph representation of serum endotoxemia, measured by LAL assay in NSG_Hu-FMT and
NSG_GWIV groups; p < 0.05 was considered as statistically significant.

3. Discussion

Our study is the first attempt to recreate a mouse model of GWI that reflects a human
immune system and a human gut microbiome. Owing to many previous research studies,
primarily conducted on mouse or rat models, several mechanistic pathways related to the
pathology of GWI have been identified [3,4,25]. These studies helped us to understand the
possible therapeutic targets ranging from systemic inflammation to neuroinflammation and
gut microbiome alterations. However, many such studies differed in the endpoints when
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related to human cohorts and patient outcomes, though the authors agree that various
etiologies of GWI, such as a combination of exposures, routes of exposure, and symptom
persistence, provided valuable information for their translatability in humans in spite of
the limitations for using an animal model. Further, animal models can provide for the high
reproducibility of outcomes when imposing conditions as observed in the GW theater and
can help to summarize the translational value, especially when identifying the treatments,
tolerability, and efficacy of new treatment strategies. For example, our own studies in mouse
models that reported gut bacteriome alterations showed marked differences in cytokine
profiles and microbiome diversity when compared to a pilot study in humans [14,17]. It
is not unknown that mouse microbiome profiles are distinctly different when compared
to human microbiota, and it is difficult to correlate the mouse pathology arising from
such a diverse microbiome to a possible human disease interface [26]. Further, mouse gut-
associated lymphoid tissue (GALT) and its interactions with the specific mouse immune
phenotype may have subtle differences with a human immunophenotype [27]. The above
challenges have led investigators wishing to study gut microbiome–immune interactions to
switch to mouse models that effectively have a human microbiome coupled with a human
immune system [28]. Though such a hypothesis is easier stated than proven, the use of novel
methodologies and implementation in disease models may have challenges. For example,
the use of immunocompromised mice and their resistance or absence for overcoming a
series of surgical interventions, as well as exposure to repeated drugs/handling stress
can have severe implications on the health of the mice [12]. Moreover, the costs and
sophistication involved in conducting such experiments have limited their use. In this
study, we have attempted to use an established mouse strain commercially available from
Jackson Laboratories (NSGTM, engrafted with bone-marrow-derived CD34+) to supplant a
human microbiome, following a modified protocol previously used by Daharsh et al. [12].
We also used two distinct approaches to recreate a GWI Veteran phenotype in the mouse.
First, we recreated a more established model, widely used in the GWI pathology field,
that uses GW chemicals, permethrin and pyridostigmine bromide, as the routine exposure,
coupled with the transplantation of a healthy human microbiome to facilitate the human–
gut–immune interaction, and another novel concept to repopulate the GWI Veteran’s
microbiome in the mice that already had a human immunophenotype.

The procedure to create a double humanized engraftment comes with numerous
challenges. The one that had to be dealt with relied on the successful engraftment of a
healthy human microbiome after the depletion of a mouse microbiome. The results showed
that the mouse microbiome deletion with a cocktail of antibiotics significantly decreased the
α-diversity of the host’s gut microbiota but was restored to a higher diversity upon human
microbiome engraftment (Figure 1A). Notably, our whole-genome sequencing approach
allowed us to dive deep into the species diversity, and the results showed that healthy
human microbiome engraftment significantly restored several probiotic species, which were
otherwise decreased upon antibiotic treatment (Figure 2). The above approach and data
confirmed that though complex, we successfully repopulated the human microbiota after
depleting the mouse microbiota in these mice. Further, the increased systemic inflammation
that followed the antibiotic treatment, a natural occurrence due to the severe stress involved,
was also restored to normal levels upon the human healthy microbiota engraftment, another
evidence that the mice recovered fully after the human microbiota was engrafted. There
was no residual inflammation that could skew our results if and when these same mice
were to be exposed to disease mechanisms (Figure 3).

Having successfully engrafted the human microbiota, we tested whether the gut–
immune axis in a double humanized microenvironment withstood the test of the GW
chemical exposure and bore a resemblance to the present-day GWI Veteran. The results
showed that GW chemical exposure showed an altered microbiota and an increased sys-
temic inflammatory profile in this model when compared to non-exposed mice (Figures 4–7).
Notably, the resistome profile also showed an altered signature similar to those of human
cohorts from our previously published study [14]. In this study, the increased expression of
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antibiotic resistance genes in the NSG_Hu-FMT+GWI group could result from selection
pressure on the gut microbiome created because of the administration of GW chemicals.
Studies have reported that increased exposure to environmental chemicals results in in-
creased expression of these genes [29]. This could also be due to horizontal transfer via
mobile genetic elements that are harbored by the gut bacteria bearing these resistance
genes [30]. Tetracycline and macrolide are among the commonly prescribed antibiotics in
clinics and hospitals; hence, resistance to these antibiotics might lead to treatment failures in
aging GWI Veterans in the future [31]. We should emphasize, however, that the β-diversity
in the GW-chemical-exposed mice had a non-significant difference when compared to the
humanized controls. Still, this result opened a new avenue to explore a deeper approach for
studying the individual species abundance not explored in human exposure. The results
showed that the probiotic bacteria and principal short chain fatty acid (SCFA)-producing
bacteria were significantly decreased in the GW-chemical-exposed humanized mice when
compared to controls [32]. The results also confirmed the need to use SCFA supplemen-
tation as an effective therapeutic modality as the one being tested now by our group [33].
Notably, a previous pilot study from our group found a significant increase in TNF R-1
levels in GWI Veterans, a result that was similar to that in our humanized-mouse model,
thus confirming that the present model may be a feasible alternative to a murine drug
discovery platform confined for using only the mouse immune system and/or mouse
immune phenotype [14].

There are various limitations in using a GW-chemical-induced model for studying
pathology, and though several mouse models have been used to study the symptoms
of GWI, no one model represents a true exposome of GWI. Often, studies on mouse
models do not reflect the true exposure of either chemicals or mixtures that may have been
present in the war theater. For example, GWI is the result of a mixture of exposures, such as
organophosphate insecticides, oil well smoke, and consumption of pyridostigmine bromide
( pills. Many studies have focused only on pyridostigmine bromide as a model exposure,
severely limiting the thorough study of the GWI exposome. The above exposure paradigms
cause several variabilities in data interpretation, as we do not know the proportion of each
exposure component in an ideal physiological and pharmacological setting. We, therefore,
used another novel approach (apart from a mixture of GW chemicals) to mimic exposure
or recreate a true GW exposome using microbiome engraftment as an option. As found
in our earlier pilot study, the above hypothesis originated with the assumption that gut
microbiome dysbiosis is a key predictor of many GWI symptoms, including gastrointestinal
disturbances and systemic immune alterations. In this aim, we engrafted the human
microbiota derived from a deployed GWI Veteran who had persistent GWI with most
of the prominent symptoms, as noted from a list of Veterans with GWI from the George
E. Wahlen Veterans Affairs Medical Center’s (GEWVAMC’s) Gulf War registry [34]. A
single Veteran’s stool sample was chosen to be a representative of a GWI cohort, where
gut dysbiosis and gastrointestinal disturbances coexist. A pooled stool sample from all the
GWI Veterans’ stool samples was considered but was not feasible, as that approach would
generalize the disease phenotype. A future study may consider transplanting bacterial
colonies from each Veteran’s stool sample to each subsequent mouse to represent each
individual in the cohort. The control group received a microbiota transplant from a healthy
non-deployed volunteer. The results showed that the engrafted human microbiota group
from the deployed individual had significantly decreased probiotic species abundance
similar to what was found in the GW-chemical-exposure group (Figures 8–10). This group
also had a similar resistome profile and significant elevations in TNF R-1, IL-1β, and IL-6, a
profile that matched our earlier pilot study with the GWI human cohort (Figure 11).

In this study, several major breakthroughs were achieved. This study is the first
to create a model that closely resembles a GWI exposome, albeit mimicking the human
exposure and its immune phenotype more closely than a typical mouse model. Second, this
study considers a more controlled human microbiota behavior and its interactions with the
immune system, as more studies confirm the important role of the host’s gut microbiome
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in the pathology of multisymptom illnesses. This model can be used for various exposures
more often associated with GWI, such as oil well smoke and side effects of vaccines, apart
from the regular and more common exposures, such as insecticides and pyridostigmine
bromide. Further, the present model can be used in studying more systemic pathologies,
such as chronic fatigue, as fatigue is known to influence gut microbiome–immune system
interactions. Interestingly, our model can also play a broader role in pathological studies
involving chronic fatigue syndrome. For example, we know that chronic fatigue can
result from mitochondrial abnormalities, the shortening of telomeres, redox stress, and,
the most importantly, irregularities in the immune system [35]. Immune system disorders
can result from immunosenescence, a condition where the immune system can become
exhausted, chronic low-inflammatory triggers arise because of consistently higher levels
of IL-6, and T-lymphocyte subsets are abnormally activated [36]. The present human
immune system reconstitution model can help to identify immune system abnormalities,
predict immune cell senescence, and even study mitochondrial abnormalities in these
cells. Further, our present study can be of immense predictive and translational value,
considering the challenges we face in identifying treatment strategies in GWI owing to its
complex etiology. For example, feasible small-molecule drug interventions, which may
be endogenous metabolites or a probiotic, can be tested in this model for possible safety,
tolerability, and positive outcomes before initiating a Phase I or Phase IIa trial. Though the
results of our study provide a feasible alternative for existing pathology and drug discovery
models in GWI, we have identified several limitations and alternative approaches that need
to be resolved.

Though NSG-CD34+ mice are a viable humanized model for human microbiota en-
graftment, bone-marrow-, thymus-, and liver-engrafted mice in an NSG background or BLT
engraftment in triple knockout (TKO) (CD47−/−RAG1−/−IL15Ra−/−) immunodefi-
cient mice in a C57BL/6 background might have better results because GALT structures are
better defined in these models [10]. Further, humanized-mouse models often have severe
graft-versus-host disease, which can have either an early or a late onset, depending on the
model. NSG mice supplanted with CD34+ cells, as used in our model, may suffer from
insufficient engraftment [37,38]. Our model did not have an early onset of graft-versus-host
(GVH) disease, but we were severely limited in extending our studies for more than 15
weeks post exposure. Interestingly, many GWI studies using mouse models and chemical
exposures used a 20-week resting period before the study termination to prove symptom
persistence. In these models, it would be advantageous to use a BLT-TKO-humanized
model with a very late GVH onset (>45-week onset).

GWI pathology has been studied related to its manifestation in the brain, especially in
areas of neuroinflammation, pain, and cognitive dysfunction [39,40]. We have shown that
gut microbiome dysbiosis may play a role in neuroinflammation [15]. A double humanized
mouse model, such as that discussed in the present study, may not be suitable for studying
organ manifestations distant to the gut, as the brain tissue in these mice is not humanized.
This will be true for secondary organ targets, like the liver and kidneys. Another possible
limitation is the use of GWI Veterans’ microbiota transfer for recreating/mimicking the typ-
ical GWI Veteran. Interestingly, the human microbiome is diverse, and several differences
exist between individuals. No one Veteran’s stool sample may be a true representative of
a cohort. To ideally represent the GWI cohort in a humanized model, each mouse trans-
planted with the Veteran’s stool microbiota should represent a single Veteran rather than
generalize the entire cohort by pooling the stool samples or using just 2–3 representative
microbiome engraftments from stool samples. This process may be extensively rigorous,
but engrafting and recreating in a mouse a humanized microbiome from each individual
Veteran will create a true cohort accurately representing each Veteran, as is conducted in a
clinical study. The above approach and a humanized immune system similar to what has
been described in this study may serve as an ideal humanized model for GWI.
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4. Materials and Methods

Pyridostigmine bromide, permethrin, metronidazole, neomycin, vancomycin, ampi-
cillin and all other chemicals unless specified were purchased from Sigma-Aldrich (St. Louis,
MO, USA).

4.1. Animals

We purchased pathogen-free, adult (21 weeks old), female CD34+ hu-NSG mice from
Jackson Laboratories (Bar Harbor, ME, USA). Upon arrival, all the mice were accommodated
in a room with a controlled temperature (22–24 ◦C), having a 12 h light/12 h dark cycle
and ad libitum access to food and water. The mice were housed under SPF conditions with
air exchange, prefilters, and HEPA filters (0.22 µm) in a room with controlled temperature,
humidity, and pressure. The mice were maintained in autoclaved individual microisolator
cages in a rack system capable for managing air exchange with prefilters and HEPA filters
(0.22 µm). All the experiments with the mice were approved by the University of California
Irvine and followed the local Institutional Animal Care and Use Committee’s standards
(protocol number AUP-23-015, approved on 14 April 2023).

4.2. Mouse Model of Gulf War Illness

The mice were acclimatized for one week, followed by random distribution into five
experimental groups, where each group comprised 6 mice. The NSG_Control mouse group
was administered with a phosphate-buffered saline solution via oral gavage for 30 days.
The NSG_ABX Treatment group was administered with an antibiotic cocktail solution
(metronidazole, 1 g/kg; neomycin, 1 g/kg; vancomycin, 0.5 g/kg; and ampicillin, 1 g/kg)
via oral gavage for 12 days and allowed to persist for the remaining 18-day period. The
NSG_Hu-FMT group was administered with the antibiotic cocktail via oral gavage for the
initial 12 days for the native gut bacteriome depletion, after which FMT via oral gavage
was performed for the next 2 days to establish the gut bacteriome of a healthy human.
Healthy human fecal samples were purchased from Creative Biomart, Inc. (Shirley, NY,
USA), dissolved in sterile phosphate-buffered saline solution, and centrifuged at 3000× g
for 5 min. Then, 100 µL of the supernatant was administered in the mice. After the FMT
procedure, the mice were allowed to persist for the remaining 15 days. It is immensely
important that correct procedures be followed for FMT, including the volume, medium, and
number of bacteria transplanted [41]. For the present study, we used 108 CFU per/mL [42].
In the NSG_Hu-FMT+GWI group, gut depletion was conducted by antibiotic cocktail
administration via oral gavage for 12 days, and human bacteriome establishment was
conducted by performing FMT similar to that in the NSG_Hu-FMT group. After the
FMT process, representative GW chemicals, pyridostigmine bromide (2 mg/kg diluted in
phosphate-buffered saline) and permethrin (200 mg/kg diluted in 0.6% dimethyl sulfoxide),
were administered via oral gavage on a triweekly basis for 15 days. The NSG_GWIV mouse
group was administered with an antibiotic cocktail via oral gavage for 12 days for gut
bacteriome depletion followed by an FMT process with a GWI Veteran’s stool sample for 2
days. The stool sample was homogenized in 1 mL of phosphate-buffered saline solution,
and centrifugation was performed at 3000× g for 5 min. Then, 100 µL of the supernatant
was immediately administered in the NSG_GWIV mouse group. The deidentified GWI
Veterans’ stool samples were kindly provided by Dr. Tuteja from his recently conducted
study [34]. The human cohort study from which the human stool sample was collected was
approved by the Salt Lake City Veterans Affairs Medical Center and the University of Utah
Institutional Review Board. The study was registered at ClinicalTrials.gov (NCT03078530).
These mice were allowed to persist for the remaining 15 days for the effective repopulation
of the gut bacteriome. All the mice were sacrificed after the experimental period, fecal
pellets were collected for the bacteriome analysis, and serum was collected from blood
freshly collected by the process of cardiac puncture.

ClinicalTrials.gov
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4.3. Bacteriome Analysis

Fecal pellets were collected from all the experimental mouse groups for bacteriome
analysis by the vendor CosmosID, Inc. (Germantown, MD, USA). Briefly, the total DNA
from the fecal pellets was isolated following the manufacturer’s protocol using QIAGEN
DNeasy PowerSoil Pro Kit (Germantown, MD, USA). The quantification of the extracted
DNA was performed using a Qubit Flex fluorometer and a Qubit dsDNA HS assay kit
(Thermo Fisher Scientific, Waltham, MA, USA). The DNA library was prepared using
the xGen DNA library prep kit (IDT, Coralville, IA, USA) and xGen Normalase UDI
primers, with a total DNA input of 1.5 ng. DNA fragmentation was performed using a
specified amount of the IDT xGEN fragmentation enzyme (Coralville, IA, USA). The library
was constructed by adding unique dual indices to each sample, followed by 10 cycles of
PCR. The DNA libraries were purified using AMpure magnetic beads (Beckman Coulter,
Indianapolis, IA, USA) and eluted in QIAGEN EB buffer (Germantown, MD, USA). The
DNA libraries were quantified using a Qubit fluorometer and a Qubit dsDNA HS assay
kit. The libraries were sequenced on the Illumina NovaSeq X Plus (San Diego, CA, USA)
platform at 2 × 150 bp. The data, upon arrival, were run through fastqc (version 0.11.9). The
multiqc report was reviewed to ensure that the read depths met the thresholds and there
were no errors with duplication rates, read quality, and adaptor content. The results for the
taxonomic analysis were viewed on the vendor’s CosmosID-Hub microbiome platform to
ensure there were no barcoding or contamination issues.

4.4. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was performed using serum collected from the mice using commercially avail-
able kits for human IL-1β (Proteintech, Rosemont, IL, USA), human IL-6 (Proteintech,
Rosemont, IL, USA), human IL-8 (Proteintech, Rosemont, IL, USA), and human TNF R-1
(R&D Systems, Inc., Minneapolis, MN, USA). The procedure was carried out following the
manufacturer’s protocol.

4.5. Limulus Lysate Test (LAL) Assay

The serum endotoxin levels were quantified using a Pierce LAL chromogenic endo-
toxin quantitation kit from Thermo Fisher Scientific (Waltham, MA, USA). The procedure
was carried out following the manufacturer’s protocol.

4.6. Statistical Analysis

The statistical analyses used GraphPad Prism software version 10.2.2 (San Diego, CA,
USA). One-way ANOVA and unpaired two-tailed t-tests were conducted with Bonferroni–
Dunn post hoc corrections. The data are represented as means ± SEM; p ≤ 0.05 was
considered to be statistically significant for all the analyses.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms25116093/s1.
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