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Summary

All mature blood cell types in the adult animal arise from hematopoietic stem and progenitor cells 

(HSPCs). However, the developmental cues regulating HSPC ontogeny are incompletely 

understood. In particular, the details surrounding a requirement for Wnt/β-catenin signaling in the 

development of mature HSPCs are controversial and difficult to consolidate. Using zebrafish, we 

demonstrate that Wnt signaling is required to direct an amplification of HSPCs in the aorta. Wnt9a 

is specifically required for this process and cannot be replaced by Wnt9b or Wnt3a. This 

proliferative event occurs independently of initial HSPC fate specification, and the Wnt9a input is 

required prior to aorta formation. HSPC arterial amplification occurs prior to seeding of secondary 

hematopoietic tissues and proceeds, in part, through the cell cycle regulator myca (c-myc). Our 
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results support a general paradigm, in which early signaling events, including Wnt, direct later 

HSPC developmental processes.

Graphical Abstract

In Brief

Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the blood cells of the adult 

organism; however, how these cells are derived in vivo is still incompletely understood. Using 

zebrafish, Grainger et al. find that Wnt9a mediates amplification of HSPCs prior to their migration 

to secondary hematopoietic sites.

INTRODUCTION

Hematopoietic stem cells (HSCs) both self-renew and generate all mature blood cell types 

throughout the lifespan of the vertebrate organism. Derivation of HSCs in vitro would allow 

patient-specific replacement therapies. Currently, deriving an HSC in vitro that is suitable 

for therapeutic use is not possible. Gaining a more thorough understanding of the molecular 

cues that direct HSC development in vivo will aid in improving protocols to derive HSCs 

from pluripotent precursors.

HSCs originate from arterial hemogenic endothelium (HE) during vertebrate development, a 

cell population derived from posterior lateral mesoderm (PLM) in lower vertebrates, which 

also forms the vascular cord and subsequently the aorta (Brown et al., 2000; Fouquet et al., 

1997; Herbert et al., 2009; Jin et al., 2005; Liao et al., 1997). During the migration of PLM 

cells, inductive cues from the somites are thought to instruct the fate of HE from shared 

vascular precursors (Bertrand et al., 2010a; Burns et al., 2005; Butko et al., 2015; Clements 

et al., 2011; Clements and Traver, 2013; Kobayashi et al., 2014; Leung et al., 2013; 

Wilkinson et al., 2009; Zhen et al., 2013). Hematopoietic stem and progenitor cells (HSPCs) 

emerge directly from the floor of the dorsal aorta (DA; aorta hereafter) in a process termed 
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the endothelial-to-hematopoietic transition (EHT) (Bertrand et al., 2010a; Kissa and 

Herbomel, 2010). In zebrafish, EHT begins at 26 hr post-fertilization (hpf), and the number 

of emerging HSPCs peaks at around 36 hpf (Bertrand et al., 2010a; Kissa and Herbo-mel, 

2010). Following this transition, HSPCs enter circulation through the posterior cardinal vein 

and migrate to the caudal hematopoietic tissue (CHT) in zebrafish (analogous to the 

placenta/ fetal liver in mammals) for secondary amplification (Murayama et al., 2006; 

Tamplin et al., 2015), and finally to the kidney (akin to the mammalian bone marrow), where 

they reside for the remainder of adult life (Jagannathan-Bogdan and Zon, 2013). Although 

the anatomical location of these sites varies among organisms, HSC fate is likely instructed 

by conserved developmental cues. Understanding the inductive signals that instruct HSC fate 

from the mesoderm will be essential to the eventual derivation of HSCs from pluripotent 

precursors.

Wnt signaling is vital for the maintenance and development of stem cell populations in many 

organ systems, including the intestine, skin, and liver (Clevers and Nusse, 2012). Wnt genes 

encode lipid-modified, secreted growth factors that initiate signaling cascades, including the 

Wnt/β-catenin pathway (commonly referred to as the ‘‘canonical’’ Wnt pathway). Upon 

Wnt binding its cognate receptor encoded by a Frizzled (Fzd) gene, the β-catenin protein 

becomes stabilized and enters the nucleus, where it interacts with the lymphoid enhancer 

binding factor/T cell factor (LEF/TCF) transcription factors to drive expression of Wnt 

target genes and regulate a variety of developmental processes.

The role of Wnt function in HSPC development and function remains poorly understood, in 

part because of conflicting reports. For example, loss of Wnt function depleted the HSPC 

pool (Fleming et al., 2008; Goessling et al., 2009; Luis et al., 2009; Zhao et al., 2007), and 

activation of Wnt signaling resulted in an increased HSPC number (Baba et al., 2005; 

Goessling et al., 2009; Malhotra et al., 2008; Reya et al., 2003; Willert et al., 2003). In 

contrast, others have observed a depletion of the progenitor pool upon β-catenin 

overexpression (Kirstetter et al., 2006; Scheller et al., 2006), which may relate to dosage-

dependent effects of Wnt signaling on different populations of blood cells (Luis et al., 2011). 

Although these studies establish that Wnt is essential for the function of adult HSPCs, what 

is lacking is a clear understanding of Wnt function during the embryonic development of 

HSPCs. In particular, it is unclear at what stage(s) of HSPC development Wnt is critical. 

Furthermore, the identification of a specific Wnt ligand regulating HSPC development 

remains elusive. Here, we demonstrate that Wnt signaling is required prior to formation of 

the aorta. We further show that the wnt gene wnt9a is expressed in relevant spatiotemporal 

do-mains and that HSPCs are depleted following loss of function of wnt9a; this loss of 

function cannot be rescued with ectopic expression of other wnt genes. This Wnt9a cue 

drives an early aortic amplification of HSPCs, which occurs after HSPC emergence begins. 

This proliferative event is mediated, at least in part, through regulation of myc-a (also known 

as c-myc).
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RESULTS

Hematopoietic Stem Cell Numbers Are Affected by Wnt Signaling

Using zebrafish, in which complex developmental processes can be readily observed and 

dissected, we examined the requirement for Wnt signaling during HSPC development. We 

observed robust Wnt reporter activity in the floor of the dorsal aorta at 26 hpf (during HSPC 

emergence) using double transgenic 7X TCF:eGFP (Moro et al., 2012); kdrl:mCherry 
(Bertrand et al., 2010a) embryos, which express eGFP from a Wnt responsive sequence and 

membrane-bound mCherry in the vasculature (Figure S1A), indicating that endothelial cells 

have received a Wnt cue.

To monitor the effect of Wnt/β-catenin modulation on HSPCs, we used LiCl, which 

activates Wnt/β-catenin signaling through inhibition of GSK3b, and IWP-L6 (Wang et al., 

2013), which inhibits Porcn, an essential regulator of Wnt ligand maturation and secretion 

(Kadowaki et al., 1996; Komekado et al., 2007). As previously established, dosages of 0.15 

M LiCl or 1.5 mM IWP-L6 did not alter overall embryonic morphogenesis or vasculature, as 

visualized by kdrl:mCherry expression (Figure S1B), but were able to activate or inhibit Wnt 

signaling, respectively (van de Water et al., 2001; Wang et al., 2013), as measured by 

expression of the Wnt target gene axin2 (Jho et al., 2002) (Figure S1C).

HSPCs can be identified as kdrl:mCherry; cmyb:eGFP double positive cells in the floor of 

the aorta (Bertrand et al., 2010a). To determine if there was an overall function for Wnt 

leading to HSPC emergence, we treated larvae from 10 hpf to 36 hpf to activate [LiCl] or 

inhibit [IWP] Wnt and observed emerging HSPCs at 36 hpf, when their numbers peak 

(Bertrand et al., 2010a; Kissa and Herbomel, 2010). By doing so, we observed a 2-fold 

decrease and a 1.5-fold increase in HSPC number after Wnt inhibition [IWP] or activation 

[LiCl], respectively (Figures 1A and 1B). These effects were confirmed with reverse 

transcription qPCR for the hematopoietic marker cmyb (Figure S1D), indicating that Wnt 

signaling regulates HSPC number.

Wnt Is Required Transiently Prior to 20 hpf

To identify the window in HSPC development when Wnt is required, we used hsp:dntcf 
transgenic animals, which carry a dominant-negative version of tcf (dntcf), the expression of 

which rapidly inhibits expression of Wnt target genes (Figures S1E and S1F) (Clevers and 

Nusse, 2012; Lewis et al., 2004). We per-formed heat shocks each hour, spanning the 

window prior to HSPC emergence (13–26 hpf), followed by analysis of cmyb expression at 

40 hpf by whole-mount in situ hybridization (WISH) (Kissa et al., 2008). Heat shock before 

19 hpf resulted in a profound loss of cmyb expression in the aorta at 40 hpf, whereas heat 

shock at 20 hpf or later had no effect (Figures 1C–1E). Because the dntcf effect on axin2 
expression occurs acutely and is long-lasting (Figure S1F), these results suggested that the 

role for Wnt in HSPC development occurs prior to 20 hpf. We confirmed these results with 

drug treatments (Figure S1G). Specification, when HSCs acquire identity cues, occurs as 

mesodermal cells migrate to the midline underneath the somites to form the aorta and vein 

(Kobayashi et al., 2014) (Figure 1I), and can be monitored with early expression of HSPC 

markers, such as runx1. The expression of runx1 at 26 hpf was unaffected following the drug 
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treatment regime (Figure S1H) (Burns et al., 2005); dntcf expression at 13 hpf also did not 

affect runx1 or cmyb expression at 29 hpf (Figures S1I and S1J). These results indicate that 

Wnt signaling positively regulates the number of emerging HSPCs after specification.

We then sought to establish the timeline for the loss of HSPCs in the aorta by inducing 

expression of dntcf at 16.5 hpf and per-forming WISH for cmyb from 23 to 36 hpf. Using 

this approach, we determined that the earliest loss of cmyb+ cells was detected around 30 to 

31 hpf, with an exaggeration of this effect seen through 33 hpf (Figures 1F–1H). 

Importantly, we could not detect an increase in apoptosis in dntcf animals at 32 hpf (Figure 

S2A). Therefore, in the absence of Wnt, HSPC numbers were diminished by a mechanism 

independent of apoptosis.

Wnt Cue Is Required in Cells of the HE

To test whether the Wnt signal is received by endothelial cells, we generated upstream 

activating sequence (UAS):dntcf and UAS:constitutively active (CA)-β-catenin transgenic 

animals to drive the previously reported dntcf or CA-β-catenin transgenes with Gal4 in the 

vasculature (Figures S2B–S2E). Similar to the ubiquitous induction of the hsp:dntcf 
transgene, endothelial-specific (using fli1a:Gal4) Wnt inhibition resulted in a loss of HSPCs 

at 40 hpf (Figures 2A–2C), whereas CA-β-catenin expression led to an increase in HSPCs at 

40 hpf (Figure S2F), indicating that the Wnt signal acts upon vascular cells to influence 

HSPC development.

To determine if the Wnt cue is required broadly in endothelial cells, or more specifically in 

HE, we drove dntcf using a gata2b:Gal4 driver, which is expressed in the earliest known 

population of HE (the transient population of endothelial precursors that can differentiate 

into HSCs) (Butko et al., 2015). Similar to ubiquitous hsp:dntcf and endothelial-specific 

transgenes, Wnt inhibition in gata2b+ cells resulted in a loss of HSPCs at 40 hpf (Figures 

2D–2F), indicating that the Wnt signal acts upon HE to influence HSPC development.

Wnt9a Is Required for HSPC Development

The data presented above establish an essential role for Wnt signaling in HSPC 

development. We have previously demonstrated that the ventral somite signals to 

neighboring endothelial precursors during HSPC migration to the embryonic midline 

(Clements et al., 2011; Kobayashi et al., 2014). The timing of the Wnt requirement in HSPC 

development suggested the somite as a possible source of Wnts. To identify candidate wnt 
gene(s), we surveyed expression of 21 wnt genes by qPCR in myf5-GFP positive (somitic) 

cells (Chen et al., 2007) prior to (16.5 hpf) and after (20 hpf). We identified wnt9a as our 

prime candidate because it is expressed at 16.5 hpf, and downregulated at 20 hpf (Figures 

S3A–S3C). By WISH, wnt9a transcript is detected in the posterior somites at 16.5 hpf; in 

regions consistent with vasculature at 19 hpf; and in the vasculature and the CHT by 28 hpf 

(Figure 3A).

To determine the effect of loss of wnt9a on HSPC development, we used a splice-blocking 

morpholino (MO) to knock down wnt9a expression in embryos (Figures S3D and S3E). 

Upon injection into embryos, this MO decreased Wnt signaling, as demonstrated by 

reduction in axin2 expression (Figure S3F). We observed a 2-fold decrease in kdrl:mCherry; 
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cmyb: eGFP HSPCs emerging from the floor of the dorsal aorta at 36 hpf using this MO and 

a second MO designed to block translation of wnt9a (ATG-MO) (Figures 3B–3D). This 

phenotype was specific to the hematopoietic system because the vasculature, aorta, and 

pronephros were properly specified in MO-injected embryos (Figure S3G). MO knockdown 

of the closely related wnt9b gene did not affect HSPCs, suggesting that wnt9a is specifically 

required for HSPC development (Figures 3C and 3D). To further determine whether or not 

Wnt9a specifically instructs HSPC development, we performed co-injections of cDNA (to 

circumvent early lethality) encoding either wnt9a, wnt9b, or wnt3a with the wnt9a splice-

blocking MO. Ectopic expression of wnt9a rescued HSPC numbers in wnt9a morphants 

(Figures 3C and 3D). In contrast, ectopic expression of wnt9b or wnt3a did not rescue the 

wnt9a MO effect on HSPC numbers (Figures 3C and 3D). These data suggest that Wnt9a 

specifically drives HSPC development, and that loss of wnt9a cannot be rescued by 

overexpression of other wnt genes.

The loss of HSPCs in wnt9a morphants persisted to later stages of embryonic hematopoiesis: 

at 4 days post-fertilization, we observed a dose-dependent loss of cmyb+ cells in the CHT, 

indicating a substantial decline in the total number of HSPCs (Figure 3E). Similar to 

enforced expression of dntcf, wnt9a knockdown had no effect on runx1 expression at 26 hpf 

(Figures S3H and S3I). Finally, because recent reports have indicated that MOs may have 

non-specific effects (Kok et al., 2015; Schulte-Merker and Stainier, 2014; van Impel et al., 

2014), we confirmed that genetic mutation of wnt9a results in loss of cmyb+ cells at 36 hpf 

as well (Figures 3F–3H). We confirmed that somitic wnt9a is required for HSPC emergence 

by injecting a UAS:wnt9a cDNA construct into fish with a somitic gal4 driver (phldb1:gal4), 

in the context of the wnt9a MO, and found that somitic overexpression of wnt9a was 

sufficient to partially rescue the loss of HSPCs (Figures S3J and S3K). Taken together, these 

results indicate a defect in the emergence of HSPCs following loss of wnt9a.

Hematopoietic Precursors Expand in the Aorta

Next, we aimed to determine the mechanism underlying HSPC reduction upon loss of Wnt 

function. HSCs arise from hemogenic cells in the aorta, enter circulation, and seed the CHT, 

where they proliferate and differentiate before migrating to the adult hematopoietic tissues 

(Murayama et al., 2006). The observation that diminished Wnt signaling led to a decrease in 

aortic HSPCs suggested that HSPCs also undergo an expansion in the aorta. HSPCs can also 

be detected using kdrl:mCherry; gata2b:GFP double transgenic animals (Butko et al., 2015). 

We used this line for EdU pulse labeling at 26 hpf to detect proliferation events in emerging 

HSPCs at 33 hpf. With this approach, we could detect gata2b+ cells that had proliferated, 

prior to exit from the aorta (Figures 4A and 4B). We also detected proliferation events in 

kdrl:mCherry; cmyb:GFP animals at 32 hpf and as early as 30 hpf (Figures S4A and S4B). 

To determine the extent to which HSPCs proliferate in the aorta, we treated kdrl:mCherry; 
gata2b:GFP animals from 26 to 35 hpf with 5-fluorouracil, which selectively kills cells that 

have undergone DNA synthesis (Heidelberger et al., 1957). This resulted in a 2.5-fold 

reduction in the average number of HSPCs at 36 hpf (Figures 4C–4E), confirming a 

requirement for amplification of nascent HSPCs in the aorta.
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Wnt9a Drives HSPC Proliferation in the Aorta through myca

The loss of HSPCs independent of apoptosis and the concomitant requirement for 

proliferation in the aorta suggested that in the absence of a Wnt cue, HSPCs may be G1 

arrested; the FUCCI fish identifies G1-phase cells with the red fluorescent protein mCherry 

(Bouldin and Kimelman, 2014; Sugiyama et al., 2009). Endothelial cells in the G1 phase can 

therefore be sorted from kdrl:GFP; FUCCI morphant fish and compared to the same 

population from uninjected controls. We sorted G1-phase endothelial cells (kdrl:GFP; 
FUCCI) from morphant and uninjected fish. At 28 hpf, G1 cells from wnt9a MO-injected 

fish had robust expression of gata2b, whereas we were unable to detect gata2b transcripts in 

the uninjected sample; gata2b expression in un-sorted fish was similar in morphant and 

control fish, suggesting that HSPCs are G1 arrested in the absence of wnt9a (Figures 4F and 

4G). We could also detect an increase in G1-arrested endothelial cells in wnt9a MO-injected 

animals (Figures S4C and S4D).

Entrance to the replicative S phase of the cell cycle is governed by a series of cellular events 

requiring D-class cyclins and their cofactors, cdk2 and cdk4 (Bertoli et al., 2013), which we 

predicted to be decreased in Wnt-reduced animals. Consistent with this model, we observed 

a profound loss of cyclinD2b and cdk4, and a small, but significant, decrease in cyclinD1 
and cdk2 in Wnt-suppressed (dntcf+) endothelial cells at 30 hpf (Figures 5A and B). The 

transcriptional regulator and contextspecific Wnt target gene myca, which acts upstream of 

these cell cycle regulators (Mateyak et al., 1999), was also downregulated in dntcf+ 

endothelial cells (Figure 5B), whereas normal myca levels increase in endothelial cells 

during development, concordant with endothelial expansion (Figure S5A). We could not 

detect a loss of these cell cycle regulators at earlier time points, such as 24 hpf (Figure S5B). 

Accordingly, introducing myca mRNA in wnt9a morphants was sufficient to rescue the loss 

of cmyb+ cells at 40 hpf (Figures 5C and 5D) and of cell cycle regulators by 28 hpf (Figure 

S5C), indicating that at least a portion of Wnt9a function in HSPCs proceeds through myca. 

Finally, expressing myca expression under control of the gata2b promoter (in 

gata2b:KalTA4; UAS:myca) was sufficient to rescue the loss of wnt9a in morphants (Figures 

5C and 5D), further supporting this requirement in the HE. Taken altogether, our results 

indicate that Wnt9a drives an early amplification of HSPCs up- stream of the cell cycle 

regulator myca in the HE (Figure 6).

DISCUSSION

Wnt signaling regulates multiple stages of hematopoiesis, but requirements for the specific 

molecules that mediate these signals are not well understood. This study sought to 

understand the regulation of specific wnt genes that instruct early hematopoietic 

development. We found that a single wnt gene, wnt9a, mediates a critical Wnt signal that is 

received by the endothelium prior to 20 hpf for HSPC emergence in the zebrafish. The 

Wnt9a signal stimulates a previously unrecognized HSPC amplification event in the aorta 

that is mediated through activation of myca, a Wnt-regulated gene, and important regulator 

of cell proliferation.

Previous work has demonstrated an early Wnt signaling requirement for the production of 

long-term HSCs in mouse and zebrafish (Goessling et al., 2009; Ruiz-Herguido et al., 2012); 
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however, the identity of Wnt signaling components, particularly which of the numerous 

Wnts, has remained unclear. Here, we demonstrate a unique requirement for the somatically 

expressed wnt9a in HSPC development. Knockdown of wnt9a causes a decrease in cmyb+ 

hematopoietic precursors at 36 hpf, consistent with previous global knockdown of Wnt 

function in mouse and zebrafish (Goessling et al., 2009; Luis et al., 2009, 2011; Ruiz-

Herguido et al., 2012). Extending these studies, we have found that loss of wnt9a expression 

does not cause a defect in HSPC specification, as evidenced by normal runx1 expression in 

the aorta at 26 hpf. This is also in contrast to other factors known to affect HSPC 

development at the level of specification (Butko et al., 2015; Clements et al., 2011; Espίn- 

Palazόn et al., 2014; Kim et al., 2014; Kobayashi et al., 2014; Lee et al., 2014; Pouget et al., 

2014). For example, Wnt16 acts through a non-canonical Wnt pathway upstream of Notch 

signaling to specify HSPC identity (Clements et al., 2011), a process that is mediated by an 

interaction between the ventral somite and migrating vascular precursors (Kobayashi et al., 

2014).

Loss of wnt9a cannot be compensated for by overexpression of other Wnt genes, suggesting 

that the requirement for Wnt9a in HSPC development is specific. This specificity is 

surprising because in many experimental settings, individual Wnt proteins produce similar 

effects and are often interchangeable. Our current understanding of specific Wnt interactions 

with their cognate receptors is quite limited and largely restricted to in vitro studies. For 

example, wingless (the Drosophila Wnt1 ortholog) interacts with the cysteine-rich domains 

(CRDs) of both Fz and Dfz2 (two Drosophila Fzd proteins that act redundantly in 

establishing segment polarity in the embryo), but with 10-fold lower affinity for Fz than for 

Dfz2 (Rulifson et al., 2000). Determining specificities of Wnts for their receptors is 

confounded by the large number of Wnts and Wnt receptors involved: the mammalian 

genome contains 19 wnt and 10 Fzd genes and the zebrafish genome contains 20+ wnt and 

14 fzd genes. A recent study analyzed the interactions of four Wnt proteins with six Fzd 

CRDs and found a significant range in binding affinities among individual pairs 

(Dijksterhuis et al., 2015). Identifying the Fzd(s) and co-receptors expressed in the pre-HE 

during HSPC development will be informative in studying the interaction of Wnt9a with 

these potential receptors.

Wnt9a is well conserved among vertebrates (Curtin et al., 2011; Kamel et al., 2013) and is 

expressed in mouse HSPCs (Wu et al., 2012), indicating possible conservation of function 

during hematopoietic development. In this context, it is worth noting that in both zebrafish 

and mammals, the wnt9a gene is syntenic to wnt3a (Nusse, 2001), suggesting coordinate 

regulation of these two wnt genes. Importantly, Wnt3a has been implicated in HSC self-

renewal in the mouse (Luis et al., 2009; Willert et al., 2003), but does not appear to have a 

role in zebrafish hematopoiesis (Buckles et al., 2004; Clements et al., 2009; Thorpe et al., 

2005). A role for Wnt9a in mammalian hematopoietic development has not yet been 

addressed.

Interestingly, zebrafish embryos that are deficient for Wnt signaling do not show a 

hematopoietic phenotype until 30 hpf, which is 10 hr removed from the time that the signal 

is required. This delayed effect of a Wnt signal may be related to the concept of cellular 

memory put forth by Vincent and colleagues, who pro-posed that earlier signaling events 
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allow persistent expression of relevant target genes (Alexandre et al., 2014). Our data 

indicate that during this time, cells of the HE are primed for amplification in the dorsal aorta. 

Upon loss of Wnt signaling via global pathway inhibition or wnt9a knockdown, these 

emerging HSPCs are arrested in the G1 phase of the cell cycle, causing a decrease in 

proliferating HSPCs and overall HSPC numbers. This regulation of the cell cycle is 

mediated, at least in part, by myca (the zebra-fish homolog of mammalian C-MYC), which, 

among other targets, controls transcription of D-class cyclin genes and their associated 

cyclin-dependent kinases (Amati et al., 1998; Hanson et al., 1994; Mateyak et al., 1999). 

These genes are downregulated when Wnt is inhibited, and loss of HSPCs in this context can 

be rescued with myca. Our findings are consistent with re-ports showing that MYC 

expression is vital to maintaining HSPC numbers and function (Delgado and Leόn, 2010; 

Laurenti et al., 2008) and studies using MYC as a factor to facilitate re-programming to 

HSPC fate (Riddell et al., 2014), and also that MYC is a context-dependent Wnt target (Cole 

et al., 2010; Kolligs et al., 1999; Muncan et al., 2006; Sansom et al., 2007). Although it 

appears that Myca operates downstream of the Wnt9a cue, further investigation will be 

required to determine the nature of the timing delay between 20 and 31 hpf because both 

myca transcript and protein are known to be tightly controlled, with estimated half-lives of 

20–30 min or less (McCormack et al., 1984; Rabbitts et al., 1985). Interestingly, Myca and 

Notch1 (which is critical to HSC fate specification) have been previously shown to interact 

(Bertrand et al., 2010b; Bigas et al., 2013; Burns et al., 2005; Kim et al., 2014; Kumano et 

al., 2003; Palomero et al., 2006). However, we could not detect any differences in Notch 

reporter expression in wnt9a morphants (data not shown), suggesting that this process occurs 

independently of Notch signaling. This suggests that tight regulation of cell proliferation by 

the Wnt signaling pathway through myca is critical for proper hematopoietic development.

Our findings show a unique role for Wnt9a in zebrafish HSPC development. This signal is 

received by cells of the HE as they ingress to the midline to form the vascular cord prior to 

20 hpf. The Wnt9a signal instructs HSPC emergence, but not HSPC specification, via 

priming HSPCs for later aortic amplification. The specific Wnts necessary to differentiate 

human pluripotent stem cells to hematopoietic or other lineages are often unknown or 

unused in protocols. Instead, global small molecule pathway activators or inhibitors are 

often favored because of their wide- spread availability and inexpensive nature. Our data 

indicate that the specific molecules that mediate a specific signal during in vivo development 

may provide more precise developmental instruction than small molecules with non-specific 

effects on signaling pathways, especially because differences in Wnt requirements could 

also be reflective of precise timing and ligand requirements. Understanding the precise 

identity of these instructive signals and their temporal regulation is critical for improving 

differentiation protocols to develop HSCs in vitro, which one day could be used as a 

therapeutic alternative to bone-marrow transplants.

EXPERIMENTAL PROCEDURES

Zebrafish Lines and Maintenance

Zebrafish were maintained and propagated according to University of California and local 

institutional animal care and use committee policies (protocol S04168). AB*, 
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Tg(cmyb:eGFP)zf169Tg, Tg(hsp:Gal4)kca4Tg/+, Tg(kdrl:Cherry-CAAX)y171, Tg(fli1a:eGFP), 
Tg(kdrl:eGFP)s843, Tg(7X TCF-X.laveis-siamois: eGFP)ia4, Tg(fli1a:Gal4), 
Tg(gata2b:KalTA4; UAS:Lifeact:eGFP), Tg(Dual FUCCI), Tg(fli1a:EcRF-VP16), 
Tg(phldb1:KalTA4), and Tg(hsp70l:dntcf7l1a)w26 lines have been previously described 

(Bertrand et al., 2008, 2010a; Bouldin and Kimelman, 2014; Butko et al., 2015; Espίn-

Palazόn et al., 2014; Jin et al., 2005; Kobayashi et al., 2014; Lawson and Weinstein, 2002; 

Lewis et al., 2004; Moro et al., 2012; North et al., 2007; Sugiyama et al., 2009; Swift et al., 

2014). Tg(UAS-dntcf7l1a-CG2), Tg(UAS: wnt9a) and Tg(UAS:myca) founders were 

established by injecting 25 pg of the constructs described below with 100 pg of transposase 

mRNA at the one-cell stage. For simplicity in the text, these lines are referred to with 

shortforms listed in square brackets: Tg(cmyb:eGFP)zf169Tg [cmyb:eGFP], Tg(kdrl:Cherry-
CAAX)y171 [kdrl:mCherry], Tg(fli1a:eGFP) [fli1a:eGFP], Tg(kdrl:eGFP)s843 [kdrl:eGFP], 
Tg(7X TCF-X.laveis-siamois:eGFP)ia4 [7XTCF:eGFP], Tg(gata2b:KalTA4; 
UAS:Lifeact:eGFP) [gata2b:eGFP] and Tg(hsp70l:dntcf7l1a)w26 [hsp:dntcf], Tg(UAS-
dntcf7l1a-CG2)[UAS:dntcf], Tg(UAS: wnt9a) [UAS: wnt9a], Tg(UAS:myca) [UAS:myca], 
Tg(phldb1:KalTA4) [phldb:KalTA4], and Tg(Dual FUCCI) [FUCCI]. MOs for wnt9a were 

targeted to retain the first intron (Figure S3D) with sequence 50-

GAAAGAATTGTCCTGCCTACCCGAA-3ˊ, or targeted to block the ATG start codon 

(wnt9a ATG-MO) with sequence 50-CCAGGAGAAGGTGTCCATCCAG CAT-3ˊ from 

GeneTools. One-cell stage zygotes were injected with 1 ng of wnt9a MO, and retention of 

the intron was confirmed by PCR. The ATG-MO was used at a concentration of 2 ng per 

injection. Mutation of the wnt9a locus was achieved by injecting 100 ng of cas9 mRNA 

(Trilink) and 100 ng of short guide RNA (sgRNA) targeting exon 1 

(ATTGGGACGGCTAATAGATT). Muta-tions were confirmed by sequencing individuals. 

Modulation of Wnt signaling was carried out using 0.15 M LiCl or 1.5 mM IWP-L6 in E3 

with PTU as previ-ously described (van de Water et al., 2001; Wang et al., 2013). For heat 

shock experiments, fish were heat shocked at 38 C for 10 or 30 min and were allowed to 

return to 28.5 C gradually. 5-Fluorouracil treatments were performed at 10 mM, with DMSO 

as a vehicle. Rescue experiments were performed using 10-pg myca mRNA synthesized 

using the SP6 mMessage machine kit (Ambion), according to the manufacturer’s 

recommendations.

WISH

RNA probe synthesis was carried out according to the manufacturer’s recommendations 

using the DIG-RNA labeling kit (Roche). Probes for dll4, hey2, notch1b, msr, kdrl, cdh17, 
cmyb, and runx1 and WISH protocols have been previously described (Clements et al., 

2011; Kobayashi et al., 2014; Rowlinson and Gering, 2010), whereas the probe construct for 

wnt9a was a gift from W. Herzog.

Fluorescence-Activated Cell Sorting and qPCR

Zebrafish were dissociated using Liberase TM (Roche) and filtered through an 80-μm filter. 

Cells were sorted on a BD Influx cell sorter according to standard procedures. RNA and 

cDNA were synthesized by standard means and qPCR was performed using FastStart 

Universal SYBR Green Master Mix (Roche) according to the manufacturer’s 
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recommendations and analyzed using the 2-∆∆Ct method (Schefe et al., 2006). Sequences of 

primers are shown in the Supplemental Experimental Procedures.

EdU and TUNEL Labeling

Zebrafish larvae were injected with 1 nL of 10 mM EdU into the heart at 26 hpf, fixed at 

later time points, and stained using the Click-iT EdU imaging kit (Invitrogen) according to 

the manufacturer’s recommendations. Transgenic reporters were stained using standard 

immunofluorescence with chicken anti-GFP (Aves Labs) and anti-mCherry [1C51] (abcam). 

TUNEL staining was carried out as previously described (Espίn-Palazόn et al., 2014).

Quantifying HSPCs

HSPCs were quantified by counting the number of kdrl:mCherry; cmyb:eGFP or 

kdrl:mCherry; gata2b:GFP double positive cells in the floor of the DA in the region above 

the yolk extension in a 625-μm confocal Z stack encompassing the entire mediolateral 

segment of the aorta. The number of HSPCs per millimeter was calculated from these data. 

Confocal images were generated by stacking one to four individual Z slices. When 

quantifying WISH data, the number of cmyb+ cells was counted above the yolk extension.

Plasmid Construction

Zebrafish dntcf7l1a lacking the β-catenin-binding domain was amplified by PCR and 

subcloned to pENTR1a dual selection and recombined with p5E-UAS, p3E-pA, and the Tol2 

cmlc2:eGFP destination vector from the Tol2 kit (Kwan et al., 2007). Constructs to express 

zebrafish myca, wnt3a, wnt9a, and wnt9b were established by subcloning cDNA encoding 

each gene into pCS2+.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• An early Wnt cue directs later HSPC proliferation, prior to secondary 

amplification

• Wnt9a is uniquely required for early HSPC amplification

• Myc is downstream of the Wnt cue necessary for proliferation
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Figure 1. Wnt Signaling Is Required Transiently Prior to 20 hpf for HSPC Development
(A) kdrl:mCherry; cmyb:eGFP fish were treated with IWP-L6 or LiCl to inhibit and activate 

Wnt signaling, respectively (van de Water et al., 2001; Wang et al., 2013), from 10 hpf to 36 

hpf and imaged at 36 hpf. A, aorta; V, vein. Scale bar, 30 mm.

(B) Quantitation of HSPCs per millimeter of aorta.

(C) Schematic of heat shock regimen.

(D) hsp:dntcf fish were heat shocked every hour from 13 hpf to 24 hpf, fixed at 40 hpf, and 

analyzed for cmyb expression by WISH. Scale bar, 100 mm.
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(E) Quantitation of cmyb+ cells from (D).

(F) Schematic of experimental layout.

(G) hsp:dntcf fish were heat shocked at 16.5 hpf, pools were fixed every hour from 23 to 36 

hpf, and they were analyzed for cmyb expression by WISH. Scale bar, 100 μm.

(H) Quantitation of cmyb+ cells from (G).

(I) HSPCs are specified as endothelial cells ingress toward the midline. Endothelial cells 

receive specification cues, at least in part, from somatic cells. At 26 hpf, HSPCs start to 

emerge from the floor of the dorsal aorta. A, aorta; V, vein.

**p < 0.01; ***p < 0.001; n.s., not significant. Error bars represent SD. See also Figure S1.
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Figure 2. Wnt Cue Is Required in Cells of the HE
(A) Schematic of transgenic elements used for endothelial specific expression of dntcf in 

endothelial cells.

(B) WISH for cmyb at 40 hpf in control and in fli1a:Gal4; UAS:dntcf fish.

(C) Quantitation of cmyb+ cells from (B).

(D) Schematic of transgenic elements used for endothelial specific expression of dntcf in the 

HE.

(E) WISH for cmyb at 40 hpf in control and in gata2b:Gal4; UAS:dntcf fish.

Grainger et al. Page 20

Cell Rep. Author manuscript; available in PMC 2018 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(F) Quantification of cmyb+ cells from (E).

***p < 0.001. Scale bars, 100 μm. Error bars represent SD. See also Figure S2.
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Figure 3. Wnt9a Is Required for HSPC Formation
(A and B) WISH for wnt9a at 16.5 hpf, 19 hpf, and 24 hpf (A). Scale bars, 0.2 mm; 

representative images of n = 15. Imaged area is shown in (B).

(C and D) Representative images of kdrl:mCherry; cmyb:eGFP injected as listed (C). 

HSPCs per millimeter of aorta are quantified in (D). Scale bars, 30 mm.

(E) WISH for cmyb in 4 days post fertilization (dpf) fish treated with 0.1 ng or 1 ng of 

wnt9a MO. Scale bars, 0.2 mm.
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(F) Wnt9a mutants were generated by injection of guide RNA targeting the last portion of 

the first exon. (G and H) Expression of cmyb was examined by WISH in 36 hpf WT, wnt9a
+/D and wnt9aD/D- zebrafish

(G) and quantified in (H).

Scale bars, 100 mm. *p < 0.05; ***p < 0.001; n.s., not significant. Error bars represent SD. 

See also Figure S3.
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Figure 4. HSPCs Expand in the Aorta
(A) The heart tubes of gata2b:GFP fish were injected with 1 nL of 10 mM EdU at 26 hpf, 

and fixed and stained for cells that had divided as well as GFP at 33 hpf (n = 10).

(B) Representative confocal image of gata2b+ cells that have undergone cell division in the 

aorta (arrowheads).

(C–E). gata2b:GFP;kdrl:mCherry fish were treated with 10 mM 5ˊ fluorouracil (5FU) from 

24 to 35 hpf (C), confocal imaged at 36 hpf (D), and gata2b+ cells quantified (E).

Grainger et al. Page 24

Cell Rep. Author manuscript; available in PMC 2018 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(F and G) G1 arrested (mCherry+) endothelial cells (GFP+) from wnt9a mor-phant and 

control fish (n = 100 embryos per condition) were collected by FACS at 28 hpf (F) and 

compared by qPCR for gata2b (G).

Scale bars, 30 μm. Error bars represent SD. See also Figure S4.
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Figure 5. Wnt9a Affects Endothelial gata2b+ G1-S Cell Cycle Progression through myca
(A) Endothelial cells (mCherry+) were collected by FACS from hs:dntcf:IRES-GFP; 

kdrl:mCherry fish at 30 hpf after heat shock at 16 hpf (n = 100 embryos per condition).

(B) Wnt inhibited (dntcf;GFP+) cells were com-pared to control (GFP ) cells by qPCR after 

being sorted by FACS.

(C and D) AB* fish were injected with wnt9a MO, myca mRNA, or both; phldb4:Gal4 fish 

were injected with wnt9a MO, UAS;myca plasmid, and transposase mRNA, fixed at 40 hpf, 

analyzed by WISH for cmyb (C), and quantified in (D).
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Scale bar, 100 μm. *p < 0.05; ***p < 0.001; n.s., not significant. Error bars represent SD. 

See also Figure S5.
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Figure 6. Early Wnt9a Cue Is Required for Later Hematopoietic Stem Cell Amplification
Prior to 20 hpf, ingressing cells of the posterior lateral mesoderm travel beneath the somites. 

Inductive cues direct from the somite instruct the fate of these cells, some of which are 

destined to become HE, and later, HSPCs. Wnt9a is expressed in the somite at this stage. By 

26 hpf, the aorta has formed and HSPCs have begun to emerge. In the absence of Wnt9a, 

this early emergence is unaffected, indicating the HSPC fate specification has occurred 

properly. By 31 hpf, normal HSPCs undergo an expansion event, whereas those in Wnt9a-

deficient animals do not.
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