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ABSTRACT OF THE DISSERTATION

Diffusion Distance: Efficient Computation and Applications

By

Cory Braker Scott

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Prof. Eric Mjolsness, Chair

How is the shape of a graph captured by the way heat diffuses between its nodes? The

Laplacian Exponential Kernel of a graph is a matrix whose eigenvalues and eigenvectors

describe this heat (or more generally, probability) diffusion process as a function of time.

Previous work has shown that the Laplacian can be gainfully used for comparing graphs,

but these methods are limited to graphs of the same size. This work focuses on generalizing

one such measure, Graph Diffusion Distance (GDD), making it capable of comparing graphs

of varying size. Calculating these distances involves solving a complicated multivariate op-

timization problem, and we will detail a novel optimization algorithm for doing so. This

procedure outperforms naive univariate optimization by a speedup of as much as 1000x.

One key feature of this procedure is that it produces a coarsening operator which attempts

to align the two heat kernels to agree with each other as much as possible. These operators

can be used as the coarsening step in a convolutional neural network, resulting in a 10x

increase in training efficiency. We will show how these “Graph Prolongation Convolutional

Networks” can be used to accelerate molecular dynamics simulations of proteins. Finally,

we will also discuss some applications of the GDD, including 2D and 3D shape analysis and

characterization of plant cell growth.

xii



Chapter 1

Introduction

1.1 Introduction

Structure comparison, as well as structure summarization, is a ubiquitous problem, appearing

across multiple scientific disciplines. In particular, many scientific problems (e.g. inference

of molecular properties from structure, pattern matching in data point clouds and scientific

images) may be reduced to the problem of inexact graph matching: given two graphs, com-

pute a measure of similarity that gainfully captures structural correspondence between the

two. Similarly, many algorithms for addressing multiple scales of dynamical behavior rely on

methods for automatically coarsening the computational graph associated with some model

architecture.

In this work we present a distance metric for undirected graphs, based on the Laplacian

exponential kernel. This measure generalizes the work of Hammond et al. [48] on graph dif-

fusion distance for graphs of equal size; crucially, our distance measure allows for graphs of

inequal size. We formulate the distance measure as the solution to an optimization problem

dependent on a comparison of the two graph Laplacians. This problem is a nested opti-

1



mization problem, with the innermost layer consisting of multivariate optimization subject

to matrix constraints (e.g. orthogonality). To compute this dissimilarity score efficiently, we

also develop and demonstrate the lower computational cost of an algorithm which calculates

upper bounds on the distance. This algorithm finds a prolongation/restriction operator, P ,

which produces an optimally coarsened version of the Laplacian matrix of a graph. Prolon-

gation/restriction operators produced via the method in this paper can be used to accelerate

the training of neural networks (both flat ANNs, as we will see in Chapter 6, and graph

neural networks, as we will see in Chapter 7).

1.2 Prior Work

Quantitative measures of similarity or dissimilarity between graphs have been studied for

decades owing to their relevance for problems in pattern recognition including structure-

based recognition of extended and compound objects in computer vision, prediction of

chemical similarity based on shared molecular structure, and many other domains. Related

problems arise in quantitative modeling, for example in meshed discretizations of partial

differential equations and more recently in trainable statistical models of data that feature

graph-like models of connectivity such as Bayes Networks, Markov Random Fields, and ar-

tificial neural networks. A core problem is to define and compute how “similar” two graphs

are in a way that is invariant to a permutation of the vertices of either graph, so that the

answer doesn’t depend on an arbitrary numbering of the vertices. On the other hand unlike

an arbitrary numbering, problem-derived semantic labels on graph vertices may express real

aspects of a problem domain and may be fair game for detecting graph similarity (we ex-

plore the use of edge information in Section 8.2. The most difficult case occurs when such

labels are absent, for example in an unstructured mesh, as we shall assume. Here we detail

several measures of graph dissimilarity, chosen by historical significance and similarity to our

2



measure.

We mention just a few prior works to give an overview of the development of graph distance

measures over time, paying special attention to those which share theoretical or algorithmic

characteristics with the measure we introduce. Our mathematical distinctions concern the

following properties:

• Does the distance measure require an inner optimization loop? If so is it mainly a

discrete or continuous optimization formulation?

• Does the distance measure calculation naturally yield some kind of explicit map from

real-valued functions on vertices of one graph to functions on vertices of the other?

(A map from vertices to vertices would be a special case.) If we use the term “graph

signal” to mean a function f : V (G1) → S which identifies each vertex of a graph G1

with some state s ∈ S, then a map-explicit graph distance is one which as part of its

output provides a new function f ′ : V (G2) → S which approximates the behavior of

f . ‘Approximates’ and ‘behavior’ are here left undefined as these would need to be

problem-specific.

• Is the distance metric definable on the spectrum of the graph alone, without regard

to other data from the same graph? The “spectrum” of a graph is a graph invariant

calculated as the eigenvalues of a matrix related to the adjacency matrix of the graph.

Depending on context, the spectrum can refer to eigenvalues of the adjacency matrix,

graph Laplacian, or normalized graph Laplacian of a graph. We will usually take

the underlying matrix to be the graph Laplacian, defined in detail in Section 1.4.2.

Alternatively, does it take into account more detailed “structural” aspects of the graph?

This categorization (structural vs. spectral) is similar to that introduced in [28].

For each of the graph distance variants discussed here, we label them according to the

3



above taxonomy. For example, the two prior works by Eschera et. al. and Hammond et al

(discussed in Sections 1.2.4 and 1.2.5) would be labelled as (structural, explicit, disc-opt)

and (spectral, implicit, non-opt), respectively. Our distance measure1 defined in detail in

Chapter 2 would be labelled (spectral, explicit, cont-opt).

1.2.1 Quadratic Matching of Points and Graphs (structural, ex-

plicit, cont-opt)

As a first example, some graph comparison methods focus on the construction of a point-

to-point correspondence between the vertices of two graphs. Gold et. al. [41] define the

dissimilarity between two unlabelled weighted graphs (with adjacency matrices A(1) and A(2)

and n1 and n2 vertices, respectively) as the solution to the following optimization problem

(for real-valued M = [mij]:

minimize

n2∑
j=1

n1∑
k=1

(
n2∑
l=1

A
(1)
jl mlk −

n1∑
p=1

mjpA
(2)
pk

)2

=
∣∣∣∣A(1)M −MA(2)

∣∣∣∣2
F

subject to

n2∑
i=1

mij = 1, j = 1 . . . n1

n1∑
j=1

mij = 1, i = 1 . . . n2

mij ≥ 0 i = 1 . . . n2

j = 1 . . . n1

(1.1)

where ||·||2F is the squared Frobenius norm. This problem is similar in structure to the

optimization considered in Section 2.4 and Chapter 4: a key difference being that Gold et

al. consider optimization over real-valued matchings between graph vertices, whereas we

1with the exception of the sparsity-seeking variants, which are not spectral.
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consider 0-1 valued matchings between the eigenvalues of the graph Laplacians. In [42] and

[83] the authors present computational methods for computing the optimum of 1.1, and

demonstrate applications of this distance measure to various machine learning tasks such as

2D and 3D point matching, as well as graph clustering. Gold et al. also introduce softassign,

a method for performing combinatorial optimization with both row and column constraints,

similar to those we consider.

1.2.2 Cut-Distance of Graphs (structural, implicit, disc-opt)

Lovász [68] defines the cut-distance of a pair of graphs as follows: Let the �-norm of a matrix

B be given by:

||B||� =
1

n2
max

S,T⊆1...n

∣∣∣∣∣ ∑
i∈S,j∈T

Bij

∣∣∣∣∣ (1.2)

Given two labelled graphs G1, G2, on the same set of vertices, and their adjacency matrices

A1 and A2, the cut-distance dcut(G1, G2) is then given by

Dcut(G1, G2) = ||A1 − A2||� (1.3)

(for more details, see [68]). Computing this distance requires combinatorial optimization

(over all vertex subsets of G1, G2) but this optimization does not result in an explicit map

between G1 and G2. This distance metric is grounded in the theory of graphons, mathemat-

ical objects which are a natural infinite-sized generalization of dense graphs. However, all

sparse graphs are similar in cut-distance to the zero graphon (see [68]), making cut-distance

less useful for real-world problems.
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1.2.3 Wasserstein Earth Mover Distance (spectral, implicit, disc-

opt)

One common metric between graph spectra is the Wasserstein Earth Mover Distance. Most

generally, this distance measures the cost of transforming one probability density function

into another by moving mass under the curve. If we consider the eigenvalues of a (possibly

weighted) graph as point masses, then the EMD measures the distance between the two

spectra as the solution to a transport problem (transporting one set of points to the other,

subject to constraints e.g. a limit on total distance travelled or a limit on the number of

‘agents’ moving points). The EMD has been used in the past in various graph clustering and

pattern recognition contexts; see [44]. In the above categorization, this is an optimization-

based spectral distance measure, but is implicit, since it does not produce a map from

vertices of G1 to those of G2 (informally, this is because the EMD is not translating one set

of eigenvalues into the other, but instead transforming their respective histograms). Recent

work applying the EMD to graph classification includes [27] and [71]. Some similar recent

works [69, 21] have used optimal transport theory to compare graphs. In this framework,

signals on each graph are smoothed, and considered as draws from probability distribution(s)

over the set of all graph signals. An optimal transport algorithm is used to find the optimal

mapping between the two probability distributions, thereby comparing the two underlying

graphs.

1.2.4 Graph-Edit Distance

The graph edit distance measures the total cost of converting one graph into another with

a sequence of local edit moves, with each type of move (for example, vertex deletion or

addition, edge deletion or addition, edge division or contraction) incurring a specified cost.

Costs are chosen to suit the graph analysis problem at hand; determining a cost assignment
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which makes the edit distance most instructive for a certain set of graphs is both problem-

dependent and an active area of research. The distance measure is then the sum of these costs

over an optimal sequence of edits, which must be found using some optimization algorithm

i.e. a shortest-path algorithm (the best choice of algorithm may vary, depending on how the

costs are chosen). The sequence of edits may or may not (depending on the exact set of

allowable edit moves) be adaptable into an explicit map between vertex-sets. Classic pattern

recognition literature includes: [31] [32] [37] [88] .

1.2.5 Diffusion Distance due to Hammond et al. [48]

We discuss this recent distance metric more thoroughly below. This distance measures the

difference between two graphs as the maximum discrepancy between probability distributions

which represent single-particle diffusion beginning from each of the nodes of G1 and G2. This

distance is computed by comparing the eigenvalues of the heat kernels of the two graphs.

The optimization involved in calculating this distance is a simple unimodal optimization

over a single scalar, t, representing the passage of time for the diffusion process on the two

graphs; hence we do not count this among the “optimization based” methods we consider.

1.2.6 Novel Diffusion-Derived Measures

In this work, we introduce a family of related graph distance measures. These measures

compare two graphs in terms of similarity of a set of probability distributions describing

single-particle diffusion on each graph. For two graphs G1 and G2 with respective Lapla-

cians L(G1) and L(G2), the matrices etL(G1) and etL(G2) are called the Laplacian Exponential

Kernels of G1 and G2 (t is a scalar representing the passage of time). The column vectors

of these matrices describe the probability distribution of a single-particle diffusion process
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starting from each vertex, after t time has passed. The norm of the difference of these two

kernels thus describes how different these two graphs are, from the perspective of single-

particle diffusion, at time t. Since these distributions are identical at very-early and very

late times t (we formalize this notion in Section 2.1), a natural way to define a graph distance

is to take the supremum over all t2. When the two graphs are the same size, so are the two

kernels, which may therefore be directly compared with a matrix norm. This case is the case

considered by Hammond et al. [48]. However, to compare two graphs of different sizes, we

need a mapping between the column vectors of etL(G1) and etL(G2).

One such mapping is optimization over a suitably constrained prolongation/restriction opera-

tor between the graph Laplacians of the two graphs. This operator is a permutation-invariant

way to compare the behavior of a diffusion process on each. The prolongation map P thus

calculated may then be used to map signals (by which we mean values associated with ver-

tices or edges of a graph) on G1 to the space of signals on G2 (and vice versa). In Chapters

6 and 7 we implicitly consider the weights of an artificial neural network model to be graph

signals, and use these operators to train a hierarchy of linked neural network models.

We also, in sections 3.3 and 3.4 consider a time conversion factor between diffusion on graphs

of unequal size, and consider the effect of limiting this optimization to sparse maps between

the two graphs (again, our case reduces to Hammond when the graphs in question are the

same size, dense P and R matrices are allowed, and our time-scaling parameter is set to 1).

In this work, we present an algorithm for computing the type of nested optimization given

in our definition of distance (Equations 2.2 and 2.3). The innermost loop of our distance

measure optimization consists of a Linear Assignment Problem (LAP, defined below) where

the entries of the cost matrix have a nonlinear dependence on some external variable. Our

algorithm greatly reduces both the count and size of calls to the external LAP solver. We

2We will assume that the two graphs are undirected and each consist of only one component, as otherwise
this supremum is not guaranteed to be finite and therefore informative.
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use this algorithm to compute an upper bound on our distance measure, but it could also be

useful in other similar nested optimization contexts: specifically, nested optimization where

the inner loop consists of a linear assignment problem whose costs depend quadratically on

the parameter in the outermost loop.

1.3 Outline

The goal of this manuscript is to develop the theory and practice of comparing graphs us-

ing Graph Diffusion Distance (GDD). The remainder of this chapter (Chapter 1) defines

basic mathematical terminology and framework necessary for the remainder of the work.

Chapter 2 defines Graph Diffusion Distance and the variants thereof considered. Efficiently

computing these distance metrics requires a novel algorithm, which we motivate and explain

in Chapter 4. Chapters 3 and 5 explore theoretical and numeric properties of GDD, re-

spectively. Chapters 6, 7, and 8 showcase several applications of GDD to various scientific

tasks. Chapters 6 and 7 in particular are structured as self-contained investigations and

may be read without material from Chapters 2-5, although material from Section 1.4 may

be necessary for understanding notation.

1.4 Mathematical Background

In this section we briefly define terminology and notation which will be useful in the expo-

sition and proofs to follow.
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1.4.1 Desirable Characteristics for Distance Metrics

The ideal for a quantitative measure of similarity or distance on some set S is usually taken

to be a distance metric d : S × S 7→ R satisfying for all x, y, z ∈ S:

• Non-negativity: d(x, y) ≥ 0

• Identity: d(x, y) = 0 ⇐⇒ x = y

• Symmetry: d(x, y) = d(y, x)

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Then (S, d) is a metric space. Euclidean distance on Rd and geodesic distance on manifolds

satisfy these axioms. They can be used to define algorithms that generalize from Rd to

other spaces. A variety of weakenings of these axioms are required in many applications,

by dropping some axioms and/or weakening others. For example if S is a set of nonempty

sets of a metric space S0, one can define the “Hausdorff distance” on S which is an extended

pseudometric that obeys the triangle inequality but not the Identity axiom and that can

take values including +∞. As another example, any measure measure of distance on graphs

which is purely spectral (in the taxonomy of Section 1.2) cannot distinguish between graphs

which have identical spectra. We discuss this in more detail in Section 2.3.

Additional properties of distance metrics that generalize Euclidean distance may pertain

to metric spaces related by Cartesian product, for example, by summing the squares of

the distance metrics on the factor spaces. We will consider an analog of this property in

Section 3.6.
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1.4.2 Definitions

Graph Laplacian: For an undirected graph G with adjacency matrix A and vertex degrees

d1, d2 . . . dn, we define the Laplacian of the graph as

L(G) = A− diag({d1, d2 . . . dn}) (1.4)

= A− diag(1 · A)

= A(G)−D(G).

The eigenvalues of this matrix are referred to as the spectrum of G. See [9, 26] for more

details on graph Laplacians and spectral graph theory. L(G) is sometimes instead defined

as D(G)−A(G); we take this sign convention for L(G) because it agrees with the standard

continuum Laplacian operator, ∆, of a multivariate function f : ∆f =
∑n

i=1
δ2f
δx2i

.

Frobenius Norm: The squared Frobenius norm, ||A||2F of a matrix A is given by the sum

of squares of matrix entries. This can equivalently be written as Tr[ATA].

Linear Assignment Problem (LAP): We take the usual definition of the Linear Assign-

ment Problem (see [18], [19]): we have two lists of items S and R (sometimes referred to as

“workers” and “jobs”), and a cost function c : S×R→ R which maps pairs of elements from

S and R to an associated cost value. This can be written as a linear program for real-valued
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xij as follows:

minimize
m∑
i=1

n∑
j=1

c(si, rj)xij

subject to
m∑
i=1

xij ≤ 1, j = 1 . . . n

n∑
j=1

xij ≤ 1, i = 1 . . .m

xij ≥ 0 i = 1 . . .m, j = 1 . . . n

(1.5)

Generally, “Linear Assignment Problem” refers to the square version of the problem where

|S| = |R| = n, and the objective is to allocate the n jobs to n workers such that each worker

has exactly one job and vice versa. The case where there are more workers than jobs, or vice

versa, is referred to as a Rectangular LAP or RLAP. In practice, the conceptually simplest

method for solving an RLAP is to convert it to a LAP by augmenting the cost matrix with

several columns (rows) of zeros. In this case, solving the RLAP is equivalent to solving a

LAP with size max(n,m). Other computational shortcuts exist; see [12] for details. Since

the code we use to solve RLAPs takes the augmented cost matrix approach, we do not

consider other methods in this paper.

Matching: we refer to a 0-1 matrix M which is the solution of a particular LAP as a

“matching”. We may refer to the “pairs” or “points” of a matching, by which we mean

the pairs of indices (i, j) with Mij = 1. We may also say in this case that M “assigns” i

to j. Given two matrices A1 and A2, and lists of their eigenvalues {λ(1)
1 , λ

(1)
2 , . . . , λ

(1)
n1 } and

{λ(2)
1 , λ

(2)
2 , . . . , λ

(2)
n2 }, with n2 ≥ n1, we define the minimal eigenvalue matching m∗(A1, A2)
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as the matrix which is the solution of the following constrained optimization problem:

m∗(A1, A2) = arg inf
M

n2∑
i=1

n1∑
j=1

Mi,j(λ
(1)
j − λ

(2)
i )2 (1.6)

subject to
(
M ∈ {0, 1}n2×n1

)
∧

(
n2∑
i=1

Mi,j = 1

)
∧

(
n1∑
j=1

Mi,j ≤ 1

)

In the case of eigenvalues with multiplicity > 1, there may not be one unique such matrix,

in which case we distinguish matrices with identical cost by the lexicographical ordering

of their occupied indices and take m∗(A1, A2) as the first of those with minimal cost. This

matching problem is well-studied and efficient algorithms for solving it exist; we use a Python

language implementation [22] of a 1957 algorithm due to Munkres [74]. Additionally, given a

way to enumerate the minimal-cost matchings found as solutions to this eigenvalue matching

problem, we can perform combinatorial optimization with respect to some other objective

function g, in order to find optima of g(P ) subject to the constraint that P is a minimal

matching.

Hierarchical Graph Sequences: A Hierarchical Graph Sequence (HGS) is a sequence of

graphs, indexed by l ∈ N = 0, 1, 2, 3 . . ., satisfying the following:

• G0 is the graph with one vertex and one self-loop, and;

• Successive members of the lineage grow roughly exponentially - that is, there exists

some base b such that the growth rate (of nodes) as a function of level number l is

O(bl
1+ε

), for all ε > 0.

Graded Graph: A graded graph is a graph along with a vertex labelling, where vertices

are labelled with non-negative integers such that ∆l, the difference in label over any edge,

is in {−1, 0, 1}. We will refer to the ∆l = 0 edges as “within-level” and the l = ±1 edges as

“between-level”.
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Graph Lineages: A graph lineage is a graded graph with two extra conditions:

• The vertices and edges with ∆l = 0 form a HGS; and

• the vertices and edges with ∆l = ±1 form a HGS of bipartite graphs.

More plainly, a graph lineage is an exponentially growing sequence of graphs along with

ancestry relationships between nodes. We will also use the term graph lineage to refer to

the HGS in the first part of the definition (it will be clear from context which sense we are

using). Some intuitive examples of graph lineages in this latter sense are the following:

• Path graphs or cycle graphs of size bn for any integer b.

• More generally, grid graphs of any dimension d, of side length b, yielding a lineage

which grows with size bd
n

(with periodic or nonperiodic boundary conditions).

• For any probability distribution p(x, y) whose support is points in the unit square,

we can construct a graph by discretizing the map of p as a function of x and y, and

interpreting the resulting matrix as the adjacency matrix of a graph. For a specific

probability distribution p, the graphs derived this way with discretizations of exponen-

tially increasing bin count form a graph lineage.

• The triangulated mesh is a common object in computer graphics [81, 73, 96], repre-

senting a discretization of a 2-manifold embedded in R3. Finer and finer subdivisions

of such a mesh constitute a graph lineage.

Several examples of graph lineages are used in the discussion of the numerical properties of

Graph Diffusion Distance in Section 5.1. Additional examples (a path graph and a triangu-

lated mesh) can be found in Figures 1.1 and 1.2.

14



Figure 1.1: The first seven levels of the graph lineage of path graphs, with ancestry relation-
ships. ∆l = 0 edges are colored in orange, ∆l = ±1 edges are colored in blue. Self-loops are
not illustrated.

Figure 1.2: Top: subsamples of a mesh of the Utah teapot, of increasing density (each node
is connected to its 8 nearest neighbors by the ∆l = ±0 edges, rendered in blue). These
samples form a graph lineage (∆l = ±1 edges are not illustrated). Bottom: the same set of
nodes, with only ∆l = ±1 edges plotted (in orange) for one node from the coarsest level and
its descendants.

Kronecker Product and Sum of matrices: Given a (k × l) matrix M , and some other

matrix N , the Kronecker product is the block matrix

M ⊗N =


m11N · · · m1lN

...
. . .

...

mk1N · · · mklN

 .

See [52], Section 11.4, for more details about the Kronecker Product. If M and N are square,
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their Kronecker Sum is defined, and is given by

M ⊕N = M ⊗ IN + IM ⊗N

where we write IA to denote an identity matrix of the same size as A.

Box Product (�) of graphs: For G1 with vertex set U = {u1, u2 . . .} and G2 with vertex

set V = {v1, v2 . . .}, G1�G2 is the graph with vertex set U×V and an edge between (ui1 , vj1)

and (ui2 , vj2) when either of the following is true:

• i1 = i2 and vj1 and vj2 are adjacent in G2, or

• j1 = j2 and ui1 and ui2 are adjacent in G1.

This may be rephrased in terms of the Kronecker Sum ⊕ of the two matrices:

A(G1�G2) = A(G1)⊕ A(G2) = A(G1)⊗ I|G2| + I|G1| ⊗ A(G2) (1.7)

Cross Product (×) of graphs: For G1 with vertex set U = {u1, u2 . . .} and G2 with

vertex set V = {v1, v2 . . .}, G1×G2 is the graph with vertex set U ×V and an edge between

(ui1 , vj1) and (ui2 , vj2) when both of the following are true:

• ui1 and ui2 are adjacent in G1, and

• vj1 and vj2 are adjacent in G2.

We include the standard pictorial illustration of the difference between these two graph

products in Figure 1.3.

Grid Graph: a grid graph (called a lattice graph or Hamming Graph in some texts [16]) is

the distance-regular graph given by the box product of path graphs Pa1 , Pa1 , . . . Pak (yielding
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Figure 1.3: Two types of graph product:
the Cross product (G1×G2, left) and Box
product (G1�G2, right). For two edges
v1 ∼ u1 ∈ G1 and v2 ∼ u2 ∈ G2, we illus-
trate the resultant edges in the set of ver-
tices {(u1, v1), (u2, v1), (u1, v2), (u2, v2)} in
the graph product.

a grid with aperiodic boundary conditions) or by a similar list of cycle graphs (yielding a

grid with periodic boundary conditions).

Prolongation map: A prolongation map between two graphs G1 and G2 of sizes n1 and

n2, with n2 ≥ n1, is an n2×n1 matrix of real numbers which is an optimum of the objective

function of equation 6.1 below (possibly subject to some set of constraints C(P )).
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Chapter 2

Diffusion Distance

In this Chapter we provide the definition of Graph Diffusion Distance, as well as providing

motivation for why the optimiztion over t is an essential component of the GDD calculation.

We also briefly introduce some variants of GDD which will be covered in more detail in

Chapter 3. The diffusion distance calculations presented throughout this thesis depend on

an upper bound of the innermost optimization over P and α; in Section 2.4 we define a

lower bound on the same optimization. This lower bound will be useful in some of the GDD

property proofs in Chapter 3.

2.1 Diffusion Distance Definition

We generalize the diffusion distance defined by Hammond et al. [48]. This distortion measure

between two undirected graphs G1 and G2, of the same size, was defined as:

DHammond(G1, G2) = sup
t

∣∣∣∣etL1 − etL2
∣∣∣∣2
F

(2.1)
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Figure 2.1: A plot illustrating unimodality of diffusion distance. D2 was calculated between
two grid graphs Sq7 and Sq8 of size 7 × 7 and 8 × 8, respectively. The distance is given by

the formula D2 (Sq7, Sq8| t) = infα>0 infP |C(P )

∣∣∣∣∣∣Pe taL(Sq7) − etαL(Sq8)P
∣∣∣∣∣∣2
F

as a function of t.

The peak, at t ≈ .318, yields the distance D2 (Sq7, Sq8).

where Li represents the graph Laplacian of Gi.

This may be interpreted as measuring the maximum divergence, as a function of t, between

diffusion processes starting from each vertex of each graph, as measured by the squared

Euclidean distance between the column vectors of etLi . Each column vj of etLi (which is

called the Laplacian Exponential Kernel) describes a probability distribution of visits (by a

random walk of duration t, with node transition probabilities given by the columns of eL) to

the vertices of Gi, starting at vertex j. This distance metric is then measuring the difference

between the two graphs by comparing these probability distributions; the motivation between

taking the supremum over all t is that the value of the objective function at the maximum

is the most these two distributions can diverge. See Figure 2.1 for an example of a distance

calculation, with a characteristic peak.

For further intuition about why the peak is the most natural place to take as the distance,
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rather than some other arbitrary time, note that at very early times and very late times,

the probability distribution of vertex visits is agnostic to graph structure: at early times no

diffusion has had a chance to take place, while at very late times the distribution of vertex-

visits converges to the stationary state1 for each connected component of the graph. Hence

we are most interested in a regime of t-values in between these extremes, where differences

in G1 and G2 are apparent in their differing probability distributions.

Our contribution generalizes this measure to allow for graphs of differing size. We add

two variables to this optimization: a prolongation operator, P (represented as a rectangular

matrix), and a time-scaling factor, α. The dissimilarity between two graphs G1 and G2 (with

Laplacians Li = L(Gi)) is then defined as:

D2(G1, G2) = sup
t>0

inf
α>0

inf
P |C(P )

∣∣∣∣∣∣Pe tαL1 − eαtL2P
∣∣∣∣∣∣2
F

(2.2)

where C(P ) represents some set of constraints on the matrix P . For the remainder of this

work we useD(G1, G2) to refer to the distance andD2(G1, G2) to refer to the squared distance

- this notation is chosen to simplify the exposition of some proofs. It will be convenient for

later calculations to introduce and assume the concept of transitive constraints - by which we

mean that for any constraint C, satisfaction of C by P1 and P2 implies satisfaction of C by their

product P1P2 (when such a product is defined). Some (non-exclusive) examples of transitive

constraints include orthogonality, particular forms of sparsity, and their conjunctions.

The simplest transitive constraint we will consider is that P should be orthogonal. Intuitively,

an orthogonal P represents a norm-preserving map between nodes of G1 and nodes of G2,

so we are measuring how well diffusion on G1 approximates diffusion on G2, as projected

by P . Note that since in general P is a rectangular matrix it is not necessarily true that

PP T = I. We assume that |G1| = n1 ≤ n2 = |G2|; if not, the order of the operands is

1Because the graphs are undirected, a stationary state is guaranteed to exist.
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switched, so that P is always at least as tall as it is wide. We also briefly consider a sparsity

constraint in Section 3.4 below. Since sparsity is more difficult to treat numerically, our

default constraint will be orthogonality alone. Other constraints could include bandedness

and other structural constraints. We also note that because L is finite-dimensional, the

exponential map is continuous and therefore we can swap the order of optimization over t

and α. The optimization procedure outlined in this thesis optimizes these variables in the

order presented above (namely: an outermost loop of maximization over t, a middle loop of

minimization over α given t, and an innermost loop of minimization over P given t and α).

The other additional parameter, α, controls dilation between the passage of time in the

two graphs, to account for different scales. Again, the intuition is that we are interested in

the difference between structural properties of the graph (from the point of view of single-

particle diffusion) independent of the absolute number of nodes in the graph. As an example,

diffusion on an n×n grid is a reasonably accurate approximation of more rapid diffusion on a

2n×2n grid, especially when n is very large. In our discussion of variants of this dissimilarity

score, we will use the notation D2(G1, G2|x = c) to mean restrictions of any of our distortion

measure equations where variable x is held to a constant value c; In cases where it is clear

from context which variable is held to a fixed value c, we will write D2(G1, G2|c)

At very early times the second and higher-order terms of the Taylor Series expansion of the

matrix exponential function vanish, and so etL ≈ I + tL. This motivates the early-time or

“linear” version of this distance, D̃:

D̃2(G1, G2) = inf
α>0

inf
P |C(P )

∣∣∣∣∣∣∣∣ 1αPL1 − αL2P

∣∣∣∣∣∣∣∣2
F

(2.3)

≈ 1

t2

(
inf
α>0

inf
P |C(P )

∣∣∣∣∣∣Pe tαL1 − eαtL2P
∣∣∣∣∣∣2
F

)
(2.4)

(Note that the identity matrices cancel). The outermost optimization (maximization over t)
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is removed for this version of the distance, as t can be factored out:

∣∣∣∣∣∣∣∣ tαPL1 − αtL2P

∣∣∣∣∣∣∣∣2
F

= t2
∣∣∣∣∣∣∣∣ 1αPL1 − αL2P

∣∣∣∣∣∣∣∣2
F

(2.5)

This means that for the linear version, we only optimize α and P . For the exponential

version of the dissimilarity score, we note briefly that the supremum over t of our objective

function must exist, since for any G1, G2:

D2(G1, G2) ≤ D2

G1, G2

∣∣∣∣∣∣∣α = 1, P =

 I

0


 (2.6)

In other words, the infimum over all P and α is bounded above by any particular choice of

values for these variables. Since

D2

G1, G2

∣∣∣∣∣∣∣t = 0, α = 1, P =

 I

0


 = 0, and (2.7)

lim
tc→∞

D2

G1, G2

∣∣∣∣∣∣∣tc, α = 1, P =

 I

0


 = 0 (2.8)

this upper bound must have a supremum (possibly 0) at some t∗ ∈ [0,∞). Then

D2

G1, G2

∣∣∣∣∣∣∣t∗, α = 1, P =

 I

0


 (2.9)

must be finite and therefore so must the objective function.

22



2.2 Directedness of Distance and Constraints

We note that this distance measure, as defined so far, is directed : the operands G1 and

G2 serve differing roles in the objective function. This additionally makes the constraint

predicate C(P ) ambiguous: when we state that C represents orthogonality, it is not clear

whether we are referring to P TP = I or PP T = I (only one of which can be true for a

non-square matrix P ). To remove this ambiguity, we will, for the computations in the rest

of this manuscript, define the distance metric to be symmetric: the distance between G1 and

G2 with |G1| ≤ |G2| is always D(G1, G2). P is then always at least as tall as it is wide, so

of the two choices of orthogonality constraint we select P TP = I.

2.3 Variants of Distance Measure

Thus far we have avoided referring to this graph dissimilarity function as a “distance metric”.

As we shall see later, full optimization of Equations 2.2 and 2.3 over α and P is too loose, in

the sense that the distances D(G1, G2), D(G2, G3), and D(G1, G3) do not necessarily satisfy

the triangle inequality. The same is true for D̃. See Section 5.3 for numerical experiments

suggesting a particular parameter regime where the triangle inequality is satisfied. We thus

define several restricted/augmented versions of both D and D̃ which are guaranteed to

satisfy the triangle inequality. These different versions are summarized in Table 2.1. These

variously satisfy some of the conditions necessary for generalized versions of distance metrics,

including:

• Premetric: a function d(x, y) for which d(x, y) ≥ 0 and d(x, y) = d(y, x) for all x, y.

• Pseudometric: As a premetric, but additionally d(x, z) ≤ d(x, y)+d(y, z) for all x, y, z.

• ρ-inframetric: As a premetric, but additionally d(x, z) ≤ ρ (d(x, y) + d(y, z)) and
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d(x, y) = 0 if and only if x = y, for all x, y, z.

Additionally, we note here that a distance measure on graphs using Laplacian spectra can

at best be a pseudometric, since isospectral, non-isomorphic graphs are well-known to exist

[40][107]. Characterizing the conditions under which two graphs are isospectral but not

isomorphic is an open problem in spectral graph theory. However, previous computational

work has led to the conjecture that “almost all” graphs are uniquely defined by their spectra

[15][17][108], in the sense that the probability of two graphs of size n being isospectral but

not isomorphic goes to 0 as n → ∞. Furthermore, our numerical experiments seem to

show empirically that the violation of the triangle inequality is bounded, in the sense that

D(G1, G3) ≤ ρ ∗ (D(G1, G2) +D(G2, G3)) for ρ ≈ 2.1. This means that even in the least

restricted case our similarity measure may be a 2.1-infra-pseudometric on graphs (and, since

such isospectral, non-isomorphic graphs are relatively rare, it behaves like a 2.1−inframetric).

As we will see in Chapter 3, in some more restricted cases we can prove triangle inequalities,

making our measure a pseudometric. In Section 4.1, we discuss an algorithm for computing

the optima in Equations (2.2) and (2.3). First, we discuss some theoretical properties of this

dissimilarity measure.

2.4 Spectral Lower Bound

In Theorem 4.4.1 of Chapter 4 we will derive and make use of an upper bound on the graph

distance D̃(G1, G2). This upper bound is calculated by constraining the variable P to be

not only orthogonal, but also P = U2MUT
1 where M is the solution (i.e. “matching”, in the

terminology of that section) to a Linear Assignment problem with costs given by a function

of the eigenvalues of L(G1) and L(G2). In this section we derive a similar lower bound on

the distance.
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Let G1 and G2 be undirected graphs with Laplacians L1 = L(G1) and L2 = L(G2), and let

α > 0 be constant. By Equation (4.5), we have

D̃2(G1, G2) = inf
α>0

inf
PTP=I

(
n2∑
i=1

n1∑
j=1

p2
ij

(
1

α
λ

(1)
j − αλ

(2)
i

)2
)
. (2.10)

The following upper bound on D̃ is achieved by constraining P to be not only orthogonal,

but related to a constrained matching problem between the two lists of eigenvalues:

D̃2(G1, G2) ≤ infα>0 infM
∣∣∣∣ 1
α
MΛ1 − αΛ2M

∣∣∣∣2
F

subject to

n2∑
i=1

mij ≤ 1, j = 1 . . . n1

n1∑
j=1

mij ≤ 1, i = 1 . . . n2

mij ≥ 0 i = 1 . . . n2, j = 1 . . . n1,

(2.11)

where Λ1 and Λ2 are diagonal matrices of the eigenvalues of L1 and L2 respectively. Here we

used the explicit map P̃ = UT
2 PU1 as a change of basis; we then converted the constraints on

P into equivalent constraints on P̃ , and imposed additional constraints so that the resulting

optimization (a linear assignment problem) is an upper bound. See the proof of Theorem

4.4.1 for the details of this derivation. We show in this section that a less constrained

assignment problem is a lower bound on D̃2. We do this by computing the same mapping

P̃ = UT
2 PU1 and then dropping some of the constraints on P̃ (which is equivalent to dropping

constraints on P , yielding a lower bound). The constraint P TP = I is the conjunction of

n2
1 constraints on the column vectors of P : if pi is the ith column of P , then P TP = I is
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equivalent to:

pi · pi = 1 ∀i = 1 . . . n1 (2.12)

pi · pi = 0 ∀i = 1 . . . n1, j = 1 . . . i− 1, i+ 1 . . . n1, (2.13)

If we discard the constraints in Equation (2.13), we are left with the constraint that every

column of p must have unit norm.

Construct the “spectral lower bound matching” matrix P (SLB) as follows:

P
(SLB)
i,j =


1 if i = arg mink

(
1
α
λ

(1)
j − αλ

(k)
k

)2

0 otherwise.

(2.14)

For any α, this matrix is the solution to a matching problem (less constrained than the

original optimization over all P ) where each λ
(1)
j is assigned to the closest λ

(2)
i , allowing

collisions. It clearly satisfies the constraints in Equation (2.12), but may violate those in

Equation (2.13). Thus, we have

D̃2(G1, G2) = inf
α>0

inf
PTP=I

(
n2∑
i=1

n1∑
j=1

p2
ij

(
1

α
λ

(1)
j − αλ

(2)
i

)2
)
.

≥ D̃2
(
G1, G2

∣∣P (SLB)
) (2.15)

Various algorithms exist to rapidly find the member of a set of points which is closest to

some reference point (for example, KD-Trees [11]). For any α, the spectral lower bound

can be calculated by an outer loop over alpha and an inner loop which applies one of these

methods. We do not consider joint optimization of the lower bound over P and α in this
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work.

2.5 Summary of Distance Metric Versions

Table 2.1 summarizes the variants of our distance metric.
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t α s Classification Treatment in this manuscript
Fixed at
tc < ε

Fixed at
αc = 1

s = 0 Pseudometric Defined in Equation 3.5. Optimized
by one pass of LAP solver. Triangle
inequality proven in Theorem 3.2.2.

Fixed at
tc < ε

Fixed
at αc =
(n1

n2
)r

s = 0 Pseudometric Defined in Equation (3.11). Opti-
mized by one pass of LAP solver. Tri-
angle inequality proven in Theorem
3.3.1.

Fixed at
tc < ε

Optimized s = 0 Premetric Defined in Equation 2.3. Optimized
by Algorithm 1. Triangle inequality
violations examined experimentally in
Section 5.3.

Optimized Fixed at
αc = 1

s = 0 Metric When |G1| = |G2|, this is Hammond
et. al’s version of graph distance.

Optimized Optimized s = 0 Premetric Defined in Equation 2.2. Optimized
by Algorithm 2. Graph Product upper
bound proven in Theorem 3.6.1. Tri-
angle inequality violations examined
experimentally in Section 5.3. Used to
calculate graph distances in Sections
5.4 and 5.5.

Fixed at
tc < ε

Fixed at
αc = 1

s > 0 Pseudometric Triangle inequality proven in Theorem
3.2.2.

Fixed at
tc < ε

Fixed
at αc =
(n1

n2
)r

s > 0 Pseudometric Triangle inequality proven in Theorem
3.3.1.

Optimized Optimized s > 0 Discussed in Section 3.4.

Table 2.1: Summary of this thesis’s investigation of different forms of our graph dissimilarity
measure. In this work, we systematically explore properties of this measure given sparsity
parameter s = 0, and various regimes of t (fixed at some early time, or maximized over all t)
and α (fixed at α = 1, fixed at a constant power r of the ratio of graph sizes, or minimized
over all α. We leave exploration of nonzero values of the sparsity parameter to future work.
Variants not explicitly called out are not considered. In the case where α and t are both
optimized and s > 0, it is unclear which of the metric conditions GDD satisfies, hence the
corresponding classification is left blank.
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Chapter 3

Theoretical Properties of GDD

Having introduced Graph Diffusion Distance in Chapter 2, we proceed to prove several of

properties of various instances of our graph dissimilarity score, including triangle inequalities

for some specific versions and an upper bound on the distance between two graph products.

We will here rely heavily on various properties of the Kronecker sum and product of matrices

which may be found in [52], Section 11.4.

3.1 Optimization over P is equivalent to an eigenvalue

matching problem

For the purpose of the calculations in this section, we restrict ourselves to the “diffusion”

term of our objective function 6.1 (the term which coerces two diffusion processes to agree),

which we will write as

DP,α (G1, G2) =

∣∣∣∣∣∣∣∣ 1√
α
PL1 −

√
αL2P

∣∣∣∣∣∣∣∣
F

. (3.1)

29



Because L1 and L2 are each real and symmetric, they may both be diagonalized as Li =

UiΛiU
T
i where Ui is a rotation matrix and Λi is a diagonal matrix with the eigenvalues of Li

on the diagonal. Substituting into 3.1, and letting P̃ = UT
2 PU1, we have

DP,α (G1, G2) =

∣∣∣∣∣∣∣∣ 1√
α
PL1 −

√
αL2P

∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣ 1√
α
PU1Λ1U

T
1 −
√
αU2Λ2U

T
2 P

∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣ 1√
α

(
UT

2 PU1

)
Λ1 −

√
αΛ2

(
UT

2 PU1

)∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣ 1√
α
P̃Λ1 −

√
αΛ2P̃

∣∣∣∣∣∣∣∣
F

(3.2)

where P̃ is an orthogonal matrix P̃ T P̃ = I if and only if P is as well. Since the Frobe-

nius norm is invariant under multiplication by rotation matrices, 3.2 is a re-formulation of

our original Laplacian matrix objective function in terms of the spectra of the two graphs.

Optimization of this modified form of the objective function subject to orthogonality con-

straints on P is upper-bounded by optimization over matchings of eigenvalues: for any fixed

α the eigenvalue-matching problem has the same objective function, but our optimization is

over all real valued orthogonal P . The orthogonality constraint is a relaxed version of the

constraints on matching problems (Equation 1.6) discussed in subsection 1.4.2, since match-

ing matrices M are also orthogonal (MTM = I). Many algorithms exist for solving the

inner partial and 0-1 constrained minimum-cost assignment problems, such as the Munkres

algorithm [74] (also in subsection 1.4.2).

We note three corollaries of the above argument. Namely, because the Frobenius norm is

invariant under the mapping to and from eigenspace:

1. Optimal or near-optimal P̃ in eigenvalue-space maintain their optimality through the

mapping U2 · UT
1 back to graph-space.
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2. Solutions which are within ε of the optimum in P̃ -space are also within ε of the optimum

in P -space; and

3. More precisely, if they exist, zero-cost eigenvalue matchings correspond exactly with

zero-cost P .

A natural next question would be why it might be worthwhile to work in the original graph-

space, rather than always optimizing this simpler eigenvalue-matching problem instead. In

many cases (path graphs, cycle graphs) the spectrum of a member Gl of a graph lineage

is a subset of that of Gl+1, guaranteeing that zero-cost eigenvalue matchings (and thus, by

the argument above, prolongations with zero diffusion cost) exist. However, when this is

not the case, the above argument only upper bounds the true distance, since the matching

problem constraints are more strict. Thus, numerical optimization over P , with orthogonality

constraints only, may find a better bound on DP,α (Gl, Gl+1).

3.2 Triangle Inequality for α = 1

In this section, we show that both the linear and exponential versions of diffusion distance

satisfy the triangle inequality when α = 1.

Lemma 3.2.1. For any matrices M and P , with P satisfying P TP = I,

||PM ||2F ≤ ||M ||
2
F and ||MP ||2F ≤ ||M ||

2
F .

Proof. Suppose without loss of generality that P TP = I. Then:

1. ||PM ||2F = Tr[MTP TPM ] = Tr[MTM ] = ||M ||2F

2. If P TP = I, then letting PP T = Π, Π is a projection operator satisfying ΠT = Π = Π2.

Then,
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||M ||2F = Tr[MTM ] = Tr[MTM(Π + (I − Π))]

= Tr[MTMΠ] + Tr[MTM(I − Π)]

= Tr[MTMPP T ] + Tr[MTM(I − Π)2]

= ||MP ||2F + ||M(I − Π)||2F

≥ ||MP ||2F

(3.3)

Theorem 3.2.2. D̃2 satisfies the triangle inequality for α = 1.

Proof. Let G1, G2, G3 be simple graphs, with Laplacians L1, L2, L3. Let

P31 = arg inf
P |C(P )

||PL1 − L3P ||2F . (3.4)

P31 is guaranteed to exist for constraints C which form a compact space of matrices; or-

thogonality constraints are an example, since the space of orthogonal matrices is closed and

bounded. Then

D̃2(G1, G3 |α = 1) = ||P31L1 − L3P31||2F = inf
P |C(P )

||PL1 − L3P ||2F

≤ inf
P32,P21|C(P32P21)

||P32P21L1 − L3P32P21||2F
(3.5)

where we write C(P32P21) to signify that the product P32P21 satisfies the original transitive

constraints on P , e.g. orthogonality and/or sparsity. Since the constraint predicate C(P )
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satisfies Equation (3.12), then so does their product, so we may write

D̃(G1, G3 |α = 1) ≤ inf
P32|C(P32)

inf
P21|C(P21)

||P32P21L1 − L3P32P21||F

= inf
P32|C(P32)

inf
P21|C(P21)

||P32P21L1 − P32L2P21

+ P32L2P21 − L3P32P21||F

≤ inf
P32|C(P32)

inf
P21|C(P21)

(||P32P21L1 − P32L2P21||F

+ ||P32L2P21 − L3P32P21||F )

= inf
P32|C(P32)

inf
P21|C(P21)

(||P32 (P21L1 − L2P21)||F

+ ||(P32L2 − L3P32)P21||F )

(3.6)

By Lemma 3.2.1,

D̃(G1, G3 |α = 1) ≤ inf
P32|C(P32)

inf
P21|C(P21)

(||P21L1 − L2P21||F

+ ||P32L2 − L3P32||F )

= inf
P21|C(P21)

||P21L1 − L2P21||F

+ inf
P32|C(P32)

||P32L2 − L3P32||F

= D̃(G1, G2 |α = 1) + D̃(G2, G3 |α = 1)

(3.7)

We note that in this proof we use L1, L2, and L3 (making this the small-t or linear version of

the objective function), but the same argument holds when all three are replaced with etLi ,

so we also have

Corollary 3.2.3. D satisfies the triangle inequality for α = 1.
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Proof. By the same calculation as in Theorem 3.2.2, with all Li replaced by etcLi , we have

D (G1, G3| tc, α = 1) ≤ D(G1, G2 |tc, α = 1) +D(G2, G3 |tc, α = 1) (3.8)

for any constant tc. Then, letting

t13 = arg sup
tc

D (G1, G3| tc, α = 1) (3.9)

we have:

D (G1, G3|α = 1) = sup
tc

D (G1, G3| tc, α = 1)

= D (G1, G3| t13, α = 1)

≤ D(G1, G2 |t13, α = 1) +D(G2, G3 |t13, α = 1)

≤ sup
tc

D (G1, G2| tc, α = 1)

+ sup
tc

D (G2, G3| tc, α = 1)

= D (G1, G2|α = 1) +D (G2, G3|α = 1)

(3.10)

Note that in the proofs of Theorem 3.2.2, Theorem 3.3.1, and Corollary 3.2.3, we assume

that the constraint predicate C(P ) includes at least orthogonality (so that we may apply

Lemma 3.2.1). However, this constraint predicate could be more strict, e.g. include both

orthogonality and sparsity. Hence these statements also apply to the s > 0 cases in Table

2.1, which we do not otherwise consider in this work: in our numerical experiments we (for

reasons of computational simplicity) only require our optimization over P be orthogonally

constrained.
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3.3 Time-Scaled Graph Diffusion Distance

For any graphs G1 and G2, and some real nuber r, we define the Time-Scaled Graph Diffusion

Distance (TSGDD) as a scaled version of the linear distance, with α fixed. Namely, let

D̃2
r(G1, G2) = (n1n2)−2rD̃2

(
G1, G2

∣∣∣∣α =

(
n1

n2

)r)
(3.11)

= inf
P |C(P )

(n1n2)−2r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n2

)−r
PL1 −

(
n1

n2

)r
L2P

∣∣∣∣∣
∣∣∣∣∣
2

F

The intuition for this version of the distance measure is that we are constraining the time

dilation, α, between G1 and G2 to be a power of the ratio of the two graph sizes. The factor

(n1n2)−2r is needed to ensure this version of the distance satisfies the triangle inequality, as

seen in Theorem 3.3.1.

Theorem 3.3.1. The TSGDD, as defined above, satisfies the triangle inequality.

Proof. As above, let G1, G2, G3 be three graphs with ni = |Gi| and n1 ≤ n2 ≤ n3, and

let Li be the Laplacian of Gi. Let C(P ) represent a transitive constraint predicate, also as

described previously. Then, for a constant r ∈ R, we have:

D̃r(G1, G3) =

inf
P |C(P )

(n1n3)−r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n3

)−r
PL1 −

(
n1

n3

)r
L3P

∣∣∣∣∣
∣∣∣∣∣
F

≤ inf
P32,P21|C(P32P21)

(n1n3)−r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n3

)−r
P32P21L1 −

(
n1

n3

)r
L3P32P21

∣∣∣∣∣
∣∣∣∣∣
F

under the assumption, as in Equation (3.12), that C(P32) ∧ C(P21) =⇒ C(P32P21),

35



D̃r(G1, G3) ≤

inf
P32,P21|C(P32)∧C(P21)

(n1n3)−r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n3

)−r
P32P21L1 −

(
n1

n3

)r
L3P32P21

∣∣∣∣∣
∣∣∣∣∣
F

= inf
P32,P21|C(P32)∧C(P21)

(n1n3)−r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n3

)−r
P32P21L1 −

(
n1n3

n2
2

)r
P32L2P21

+

(
n1n3

n2
2

)r
P32L2P21 −

(
n1

n3

)r
L3P32P21

∣∣∣∣∣∣∣∣
F

≤ inf
P32,P21|C(P32)∧C(P21)

(n1n3)−r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n3

)−r
P32P21L1 −

(
n1n3

n2
2

)r
P32L2P21

∣∣∣∣∣
∣∣∣∣∣
F

+ (n1n3)−r
∣∣∣∣∣∣∣∣(n1n3

n2
2

)r
P32L2P21 −

(
n1

n3

)r
L3P32P21

∣∣∣∣∣∣∣∣
F

= inf
P32,P21|C(P32)∧C(P21)

(n1n3)−r
(
n3

n2

)r∣∣∣∣∣
∣∣∣∣∣
(
n1

n2

)−r
P32P21L1 −

(
n1

n2

)r
P32L2P21

∣∣∣∣∣
∣∣∣∣∣
F

+ (n1n3)−r
(
n1

n2

)r∣∣∣∣∣
∣∣∣∣∣
(
n2

n3

)−r
P32L2P21 −

(
n2

n3

)r
L3P32P21

∣∣∣∣∣
∣∣∣∣∣
F

= inf
P32,P21|C(P32)∧C(P21)

(n1n2)−r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n2

)−r
P32P21L1 −

(
n1

n2

)r
P32L2P21

∣∣∣∣∣
∣∣∣∣∣
F

+ (n2n3)−r

∣∣∣∣∣
∣∣∣∣∣
(
n2

n3

)−r
P32L2P21 −

(
n2

n3

)r
L3P32P21

∣∣∣∣∣
∣∣∣∣∣
F

By Lemma 3.2.1,
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D̃r(G1, G3) ≤ inf
P32,P21|C(P32)∧C(P21)

(n1n2)−r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n2

)−r
P21L1 −

(
n1

n2

)r
L2P21

∣∣∣∣∣
∣∣∣∣∣
F

+ (n2n3)−r

∣∣∣∣∣
∣∣∣∣∣
(
n2

n3

)−r
P32L2 −

(
n2

n3

)r
L3P32

∣∣∣∣∣
∣∣∣∣∣
F

= inf
P21|C(P21)

(n1n2)−r

∣∣∣∣∣
∣∣∣∣∣
(
n1

n2

)−r
P21L1 −

(
n1

n2

)r
L2P21

∣∣∣∣∣
∣∣∣∣∣
F

+ inf
P32|C(P32)

(n2n3)−r

∣∣∣∣∣
∣∣∣∣∣
(
n2

n3

)−r
P32L2 −

(
n2

n3

)r
L3P32

∣∣∣∣∣
∣∣∣∣∣
F

= D̃r(G1, G2) + D̃r(G2, G3)

and so

D̃r(G1, G3) ≤ D̃r(G1, G2) + D̃r(G2, G3)

for any fixed r ∈ R.

3.4 Sparse-Diffusion Distance

Recall that we use the notation C(P ) for a constraint predicate that must be satisfied by

prolongation matrix P , which is transitive in the sense that:

C(P32) ∧ C(P21) =⇒ C(P32P21). (3.12)

The simplest example is C(P ) = Corthog(P ) ≡ (P TP = I). Let degreei,j(M) is the total

number of nonzero entries in row i or column j of M . Sparsity can be introduced in transitive

form by C(P ) = Corthog(P ) ∧ Csparsity(P ) where

Csparsity(P ) ≡
(

max
i,j

degreei,j(P ) ≤ (nP coarse/nPfine)
−s
)
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for some real number s ≥ 0. Here, nPfine and nP coarse are the dimensions of P . This predicate

is transitive since

max
i,j

degreei,j(P32P21) ≤
(

max
i,j

degreei,j(P32)

)(
max
i,j

degreei,j(P21)

)
,

and since n2 cancels out from the numerator and denominator of the product of the fanout

bounds. This transitive sparsity constraint depends on a power-law parameter s ≥ 0. When

s = 0, there is no sparsity constraint.

Another form of sparsity constraints are those which specify a pattern on matrix entries which

are allowed to be nonzero. Two simple examples (which are also transitive) are matrices

which are constrained to be upper triangular, as well as matrices which are constrained to

be of the form A ⊗ B where A and B are themselves both constrained to be sparse. More

complicated are n1 × n2 matrices which are constrained to be banded for some specified

pattern of bands: more specifically, that there is a reordering of the rows and columns that

the number of diagonal bands (of width 1, slope n1

n2
) with nonzero entries is less than

(
n1

n2

)q
for some 0 ≤ q < 1. For example, linear interpolation matrices between d-dimensional grids,

with non-overlapping source regions, follow this constraint.

As a final note on sparsity, we observe that any of the optimizations detailed in this work

could also be performed including a sparsity term (for example, the | · |1-norm of the matrix

P , calculated as
∑

i

∑
j |pij| is one possibility, as are terms which penalize t or α far from 1),

rather than explicit sparsity constraints. A potential method of performing this optimization

would be to start by optimizing the non-sparse version of the objective function (as detailed

in Section 4.1) and then slowly increasing the strength of the regularization term.
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3.5 Upper Bounds for Graph Products (Linear Ver-

sion)

We next consider the problem of finding optimal prolongations between two graphs G
(1)
� =

G
(1)
1 �G(2)

1 and G
(2)
� = G

(1)
2 �G(2)

2 when optimal prolongations are known between G
(1)
1 and

G
(1)
2 , and G

(2)
1 and G

(2)
2 . We show that under some reasonable assumptions, these two

prolongation optimizations decouple - we may thus solve them separately and combine the

solutions to obtain the optimal prolongations between the two product graphs.

From the definition of graph box product, we have

L
(j)
� = L(G

(j)
1 �G(j)

2 )

= A(G
(j)
1 �G(j)

2 )−D(G
(j)
1 �G(j)

2 )

=
(
A(G

(j)
1 )⊗ I(j)

2 + I
(j)
1 ⊗ A(G

(j)
2 )
)
−
(
D(G

(j)
1 )⊗ I(j)

2 + I
(j)
1 ⊗D(G

(j)
2 )
)

=
(
A(G

(j)
1 )⊗ I(j)

2 −D(G
(j)
1 )⊗ I(j)

2

)
−
(
I

(j)
1 ⊗ A(G

(j)
2 )− I(j)

1 ⊗D(G
(j)
2 )
)

= (L
(j)
1 ⊗ I

(j)
2 ) + (I

(j)
1 ⊗ L

(j)
2 )

= L(G
(j)
1 )⊕ L(G

(j)
2 )

where ⊕ is the Kronecker sum of matrices as previously defined. See [34], Item 3.4 for more

details on Laplacians of graph products. We calculate
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DP,α
(
G

(1)
� , G

(2)
�

)
=

∣∣∣∣∣∣∣∣ 1√
α
PL

(1)
� −

√
αL

(2)
� P

∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣ 1√
α
P
((
L

(1)
1 ⊗ I

(1)
2

)
+
(
I

(1)
1 ⊗ L

(1)
2

))
−
√
α
((
L

(2)
1 ⊗ I

(2)
2

)
+
(
I

(2)
1 ⊗ L

(2)
2

))
P
∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣( 1√
α
P
(
L

(1)
1 ⊗ I

(1)
2

)
−
√
α
(
L

(2)
1 ⊗ I

(2)
2

)
P

)
+

(
1√
α
P
(
I

(1)
1 ⊗ L

(1)
2

)
−
√
α
(
I

(2)
1 ⊗ L

(2)
2

)
P

)∣∣∣∣∣∣∣∣
F

Now we try out the assumption that P = P1 ⊗ P2, which restricts the search space over P

and may increase the objective function:

DP,α
(
G

(1)
� , G

(2)
�

)
=

∣∣∣∣∣∣∣∣[ 1√
α

(P1 ⊗ P2)
(
L

(1)
1 ⊗ I

(1)
2

)
−
√
α
(
L

(2)
1 ⊗ I

(2)
2

)
(P1 ⊗ P2)

]
+

[
1√
α

(P1 ⊗ P2)
(
I

(1)
1 ⊗ L

(1)
2

)
−
√
α
(
I

(2)
1 ⊗ L

(2)
2

)
(P1 ⊗ P2)

]∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣( 1√
α

(
P1L

(1)
1 ⊗ P2

)
−
√
α
(
L

(2)
1 P1 ⊗ P2

))
+

(
1√
α

(
P1 ⊗ P2L

(1)
2

)
−
√
α
(
P1 ⊗ L(2)

2 P2

))∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣(( 1√
α
P1L

(1)
1 −

√
αL

(2)
1 P1

)
⊗ P2

)
+

(
P1 ⊗

(
1√
α
P2L

(1)
2 −

√
αL

(2)
2 P2

))∣∣∣∣∣∣∣∣
F
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Since ||A+B||F ≤ ||A||F + ||B||F ,

≤
∣∣∣∣∣∣∣∣(( 1√

α
P1L

(1)
1 −

√
αL

(2)
1 P1

)
⊗ P2

)∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣(P1 ⊗
(

1√
α
P2L

(1)
2 −

√
αL

(2)
2 P2

))∣∣∣∣∣∣∣∣
F

=

∣∣∣∣∣∣∣∣ 1√
α
P1L

(1)
1 −

√
αL

(2)
1 P1

∣∣∣∣∣∣∣∣
F

||P2||F

+ ||P1||F

∣∣∣∣∣∣∣∣ 1√
α
P2L

(1)
2 −

√
αL

(2)
2 P2

∣∣∣∣∣∣∣∣
F

,

Thus assuming P = P1 ⊗ P2

DP,α
(
G

(1)
� , G

(2)
�

)
≤
∣∣∣∣∣∣P̃2

∣∣∣∣∣∣
F
Dα,P1

(
G

(1)
1 , G

(2)
1

)
+
∣∣∣∣∣∣P̃1

∣∣∣∣∣∣
F
Dα,P2

(
G

(1)
2 , G

(2)
2

)
,

which is a weighted sum of objectives of the optimizations for prolongation from G
(1)
1 to

G
(2)
1 and G

(1)
2 to G

(2)
2 . Recall that our original constraint on P was that P TP = I; since

P = P1 ⊗ P2 this is equivalent (by a property of the Kronecker product; see Corollary 13.8

in [64]) to the coupled constraints on P1 and P2:

(
P1

TP1 =
1

η
I

(1)
1

)
∧

(
P2

TP2 = ηI
(1)
2

)
(3.13)

for some η ∈ R. For any P1, P2 which obey 3.13, we may rescale them by η to make them

orthogonal without changing the value of the objective, so we take η = 1 in subsequent

calculations. Noting that ||A||F =
√

Tr(ATA), we see that

||P1||F =

√
Tr(I

(1)
1 ) =

√
n

(1)
1 and similarly ||P2||F =

√
n

(1)
2 .

Thus, we have proven the following:
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Theorem 3.5.1. Assuming that P decomposes as P = P1 ⊗ P2, the diffusion distance

DP,α

(
G

(1)
� , G

(2)
�

)
between G

(1)
� and G

(2)
� is bounded above by the strictly monotonically in-

creasing function of the two distances DP1,α and DP2,α:

F(DP1,α, DP2,α) =

√
n

(1)
2 DP1,α +

√
n

(1)
1 DP2,α,

Namely,

DP,α

(
G

(1)
� , G

(2)
�

)
≤ F

(
DP1,α

(
G

(1)
1 , G

(2)
1

)
, DP2,α

(
G

(1)
2 , G

(2)
2

))

Thus, the original optimization over the product graphs decouples into separate optimiza-

tions over the two sets of factors, constrained to have the same value of α. Additionally,

since the requirement that P = P1 ⊗ P2 is an additional constraint,

Corollary 3.5.2. If (α1, P1) and (α2, P2), subject to orthogonality constraints, are optima

of Dα,P

(
G

(1)
1 , G

(1)
1

)
and Dα,P

(
G

(1)
2 , G

(1)
2

)
, and furthermore if α1 = α2, then the value of

DP,α(G
(1)
1 �G(1)

2 , G
(2)
1 �G(2)

2 ) for an optimal P is bounded above by DP1⊗P2,α1(G
(1)
1 �G(1)

2 , G
(2)
1 �G(2)

2 ).

This upper bound on the original objective function is a monotonically increasing function

of the objectives for the two smaller problems. A consequence of this upper bound is that

if DP1,α

(
G

(1)
1 , G

(2)
1

)
≤ ε1 and DP2,α

(
G

(1)
2 , G

(2)
2

)
≤ ε2, then the composite solution P1 ⊗ P2

must have DP1⊗P2,α

(
G

(1)
� , G

(2)
�

)
≤ ε =

(√
n1 +

√
n2

)
max(ε1, ε2). Thus if both of these dis-

tances are arbitrarily small then the composite distance must also be small. Furthermore,

if only one of these is small, so that DP1,α

(
G

(1)
1 , G

(2)
1

)
≈ 0 or DP2,α

(
G

(1)
2 , G

(2)
2

)
≈ 0, then

DP1⊗P2,α ≈ DP2,α or DP1⊗P2,α ≈ DP1,α, respectively.

We have experimentally found that many families of graphs do not require scaling between

the two diffusion processes: the optimal (α, P ) pair has α = 1. In particular, prolongation

between path (cycle) graphs of size n and size 2n always have αoptimal = 1, since the spectrum
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of the former graph is a subset of that of the larger - therefore, there is a matching solution

of cost 0 which by the argument above can be mapped to a graph-space P with objective

function value 0 (we prove this in Section 3.7). In this case, the two terms of the upper

bound are totally decoupled and may each be optimized separately (whereas in the form

given above, they both depend on a α).

3.6 Upper Bounds for Graph Products (Exponential

Version)

We now consider the case where we want to compute the distance of two graph box products,

i.e. D (G1,G2) where

G1 = G
(1)
1 �G(2)

1 and G2 = G
(1)
2 �G(2)

2 (3.14)

and

P (1) = arg inf
Pc|C(Pc)

D
(
G

(1)
1 , G

(1)
2 |tc, αc, Pc

)
P (2) = arg inf

Pc|C(Pc)
D
(
G

(2)
1 , G

(2)
2 |tc, αc, Pc

) (3.15)

are known for some tc, αc.

Theorem 3.6.1. Let G1 and G2 be graph box products as described above, and for a graph

G let L(G) be its Laplacian. For fixed t = tc, α = αc, P
(i) as given above, for any λ ∈ [0, 1],
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we have

inf
Pc|C(Pc)

D (G1,G2) ≤

λ
(∣∣∣∣∣∣e tcαcL(G

(2)
1 )
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣etcαcL(G

(2)
2 )
∣∣∣∣∣∣
F

)
D
(
G

(1)
1 , G

(1)
2 |P (1)

)
+ (1− λ)

(∣∣∣∣∣∣e tcαcL(G
(1)
1 )
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣etcαcL(G

(1)
2 )
∣∣∣∣∣∣
F

)
D
(
G

(2)
1 , G

(2)
2 |P (2)

) (3.16)

where all distances are evaluated at t = tc, α = αc, but we have omitted that notation for

simplicity.

Proof. For graph products Gi, we have

L(Gi) = L(G
(1)
i )⊕ L(G

(2)
i )

=

(
L(G

(1)
i )⊗ I∣∣∣L(G

(2)
i )

∣∣∣
)

+

(
I∣∣∣L(G

(1)
i )

∣∣∣ ⊗ L(G
(2)
i )

) (3.17)

(this fact can be easily verified from the formula for the adjacency matrix of a graph box

product, given in the definition in Section 1.4.2), and so

exp [cL(Gi)] = exp

[
c

(
L(G

(1)
i )⊗ I∣∣∣L(G

(2)
i )

∣∣∣
)

+

(
I∣∣∣L(G

(1)
i )

∣∣∣ ⊗ L(G
(2)
i )

)]
. (3.18)

Because A⊗ I|B| and I|A| ⊗B commute for any A and B,

exp [cL(Gi)] = exp

[
c

(
L(G

(1)
i )⊗ I∣∣∣L(G

(2)
i )

∣∣∣
)]

exp

[
c

(
I∣∣∣L(G

(1)
i )

∣∣∣ ⊗ L(G
(2)
i )

)]
=

(
exp

[
cL(G

(1)
i )
]
⊗ I∣∣∣L(G

(2)
i )

∣∣∣
)(

I∣∣∣L(G
(1)
i )

∣∣∣ ⊗ exp
[
cL(G

(2)
i )
])

= exp
[
cL(G

(1)
i )
]
⊗ exp

[
cL(G

(2)
i )
] (3.19)
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We will make the following abbreviations:

E1 = e
tc
αc
L(G1) E

(1)
1 = e

tc
αc
L(G

(1)
1 ) E

(2)
1 = e

tc
αc
L(G

(2)
1 )

E2 = etcαcL(G2) E
(1)
2 = etcαcL(G

(1)
2 ) E

(2)
2 = etcαcL(G

(2)
2 )

Then,

inf
P |C(P )

D (G1,G2) ≤ D
(
G1,G2|P (1) ⊗ P (2)

)
(3.20)

=
∣∣∣∣(P (1) ⊗ P (2)

)
E1 − E2

(
P (1) ⊗ P (2)

)∣∣∣∣
F

=
∣∣∣∣∣∣(P (1) ⊗ P (2)

) (
E

(1)
1 ⊗ E

(2)
1

)
−
(
E

(1)
2 ⊗ E

(2)
2

) (
P (1) ⊗ P (2)

)∣∣∣∣∣∣
F

=
∣∣∣∣∣∣(P (1)E

(1)
1 ⊗ P (2)E

(2)
1

)
−
(
E

(1)
2 P (1) ⊗ E(2)

2 P (2)
)∣∣∣∣∣∣2

F

=
∣∣∣∣∣∣(P (1)E

(1)
1 ⊗ P (2)E

(2)
1

)
−
(
P (1)E

(1)
1 ⊗ E

(2)
2 P (2)

)
(3.21)

+
(
P (1)E

(1)
1 ⊗ E

(2)
2 P (2)

)
−
(
E

(1)
2 P (1) ⊗ E(2)

2 P (2)
)∣∣∣∣∣∣

F

≤
∣∣∣∣∣∣(P (1)E

(1)
1 ⊗ P (2)E

(2)
1

)
−
(
P (1)E

(1)
1 ⊗ E

(2)
2 P (2)

)∣∣∣∣∣∣
F

+
∣∣∣∣∣∣(P (1)E

(1)
1 ⊗ E

(2)
2 P (2)

)
−
(
E

(1)
2 P (1) ⊗ E(2)

2 P (2)
)∣∣∣∣∣∣

F

=
∣∣∣∣∣∣P (1)E

(1)
1 ⊗

(
P (2)E

(2)
1 − E

(2)
2 P (2)

)∣∣∣∣∣∣
F

(3.22)

+
∣∣∣∣∣∣(P (1)E

(1)
1 − E

(1)
2 P (1)

)
⊗ E(2)

2 P (2)
∣∣∣∣∣∣
F

=
∣∣∣∣∣∣P (1)E

(1)
1

∣∣∣∣∣∣
F

∣∣∣∣∣∣P (2)E
(2)
1 − E

(2)
2 P (2)

∣∣∣∣∣∣
F

(3.23)

+
∣∣∣∣∣∣P (1)E

(1)
1 − E

(1)
2 P (1)

∣∣∣∣∣∣
F

∣∣∣∣∣∣E(2)
2 P (2)

∣∣∣∣∣∣
F
.

By Lemma 3.2.1,

inf
P |C(P )

D (G1,G2) ≤
∣∣∣∣∣∣E(1)

1

∣∣∣∣∣∣
F

∣∣∣∣∣∣P (2)E
(2)
1 − E

(2)
2 P (2)

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣P (1)E

(1)
1 − E

(1)
2 P (1)

∣∣∣∣∣∣
F

∣∣∣∣∣∣E(2)
2

∣∣∣∣∣∣
F
.

(3.24)
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If we instead use
(
E

(1)
2 P (1) ⊗ P (2)E

(2)
1

)
as the cross term in Equation (3.21), we have

inf
P
D (G1,G2) ≤

∣∣∣∣∣∣E(1)
2

∣∣∣∣∣∣
F

∣∣∣∣∣∣P (2)E
(2)
1 − E

(2)
2 P (2)

∣∣∣∣∣∣
F

(3.25)

+
∣∣∣∣∣∣P (1)E

(1)
1 − E

(1)
2 P (1)

∣∣∣∣∣∣
F

∣∣∣∣∣∣E(2)
1

∣∣∣∣∣∣
F

A linear combination of these two bounds gives us the desired bound.

This has the additional consequence that

inf
Pc|C(Pc)

D (G1,G2) ≤

min
[(∣∣∣∣∣∣e tcαcL(G

(2)
1 )
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣etcαcL(G

(2)
2 )
∣∣∣∣∣∣
F

)
D
(
G

(1)
1 , G

(1)
2 |P (1)

)
,(∣∣∣∣∣∣e tcαcL(G

(1)
1 )
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣etcαcL(G

(1)
2 )
∣∣∣∣∣∣
F

)
D
(
G

(2)
1 , G

(2)
2 |P (2)

)] (3.26)

Additionally, if

E
(1)
i = E

(2)
i for i ∈ 1, 2 and P (1) = P (2), (3.27)

This reduces further to

D
(
G1,G2|P (1) ⊗ P (1)

)
≤ min

(∣∣∣∣∣∣E(1)
1

∣∣∣∣∣∣
F
,
∣∣∣∣∣∣E(1)

2

∣∣∣∣∣∣
F

) ∣∣∣∣∣∣P (1)E
(1)
1 − E

(1)
2 P (1)

∣∣∣∣∣∣
F

(3.28)

and so

D
(
G

(1)
1 �G(1)

1 , G
(1)
2 �G(1)

2

∣∣∣ tc, αc) (3.29)

≤ min
(∣∣∣∣∣∣e tcacL(G

(1)
1 )
∣∣∣∣∣∣
F
,
∣∣∣∣∣∣etcacL(G

(1)
2 )
∣∣∣∣∣∣
F

)
D
(
G

(1)
1 , G

(1)
2 | tc, αc

)

An example of such a graph sequence is the sequence of two-dimensional square grids, which

are each the box product of two identical one-dimensional grids i.e., path graphs: Sqn =
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Pan�Pan.

3.7 Existence of Zero-Error P for Cycle Graphs

Theorem 3.7.1. In this section, we give an example closed-form solution for a prolongation

matrix which achieves zero error when prolonging between cycle graphs. Let G(1) and G(2) be

graphs with spectra λ
(1)
i and λ

(2)
j , respectively, with n1 =

∣∣G(1)
∣∣ ≤ n2 =

∣∣G(2)
∣∣. Suppose that

for every λ
(1)
i = r of multiplicity k, r is also an eigenvalue of G(2) of multiplicity ≥ k. Then

there is a zero-cost eigenvalue matching M between G(1) and G(2).

Proof. Let (i1, j1), (i1, j1) . . . (in1 , jn1) be a list of pairs of indices such that the following hold:

• All of the ik are unique.

• All of the jk are unique.

• For any pair (ik, jk), λ
(1)
k = λ

(2)
k .

Define P as follows:

Pij =


1 (i, j) appears in the above list.

0 else.

P is clearly orthogonal, since it has exactly one 1 in each row and each column and zeros

elsewhere (P is a permutation matrix for n1 = n2 and a subpermutation matrix otherwise).

Furthermore, we must have

n2∑
i=1

n1∑
j=1

Pij

(
λ

(1)
j − λ

(2)
i

)
= 0
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and therefore

∣∣∣∣PΛ(1) − Λ(2)P
∣∣∣∣
F

= 0 (3.30)

Corollary 3.7.2. For any n, there exist zero-error matchings between cycle graphs Cn and

C2n.

Proof. The spectra of Cn are given by the formula (see [52] Section 39.3):

λ(Cn) = 2 cos(
2πj

n
) for (j = 0, 1, . . . n− 1)

Thus λ(Cn) and λ(C2n) clearly satisfy the conditions of Theorem 3.7.1 above. In particular,

the matrix

Pij =


1 if i = 2j

0 else.

has 0 cost as in Equation 3.30

3.8 Spectral Version of Decoupling for the Diffusion

Term of Graph Product Prolongations

In this section we derive an eigenspace version of the bound derived in Section 3.5.

Theorem 3.8.1. The eigenspace version of the diffusion term of the objective function of a

graph product prolongation also decouples into two smaller prolongation problems.

48



Proof. From Theorem 3.5.1 of the main manuscript, we know that for

G
(1)
� = G

(1)
1 �G(2)

1 and G
(2)
� = G

(1)
2 �G(2)

2 ,

and assuming P = P1 ⊗ P2,

DP,α
(
G

(1)
� , G

(2)
�

)
=
∣∣∣∣∣∣PL(1)

� − L
(2)
� P

∣∣∣∣∣∣
F

≤
√
n

(1)
2 DP1,α

(
G

(1)
1 , G

(2)
1

)
+

√
n

(1)
1 DP2,α

(
G

(1)
2 , G

(2)
2

)
=

√
n

(1)
2

∣∣∣∣∣∣∣∣ 1√
α
P1L

(1)
1 −

√
αL

(2)
1 P1

∣∣∣∣∣∣∣∣
F

+

√
n

(1)
1

∣∣∣∣∣∣∣∣ 1√
α
P2L

(1)
2 −

√
αL

(2)
2 P2

∣∣∣∣∣∣∣∣
F

,

Trivially, we can rewrite each of these Frobenius norms to be their spectral version, as in

Equation 3.1. Thus,

∣∣∣∣∣∣PL(1)
� − L

(2)
� P

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣P̃Λ

(1)
� − Λ

(2)
� P̃

∣∣∣∣∣∣
F

≤
√
n

(1)
2

∣∣∣∣∣∣∣∣ 1√
α
P̃1Λ

(1)
1 −

√
αΛ

(2)
1 P̃1

∣∣∣∣∣∣∣∣
F

+

√
n

(1)
1

∣∣∣∣∣∣∣∣ 1√
α
P̃2Λ

(1)
2 −

√
αΛ

(2)
2 P̃2

∣∣∣∣∣∣∣∣
F

,

which is a weighted sum of objectives of the two spectral prolongation problems for the

two factor lineages. We have thus also decoupled this eigenvalue-matching version of the

objective function into two separate prolongation problems.

Finally, we show that if P̃1 and P̃2 are solutions to the eigenvalue matching problem m ∗

(L
(1)
1 , L

(2)
1 ) and m ∗ (L

(1)
2 , L

(2)
2 ) respectively, then P̃ = P̃1 ⊗ P̃2 is a valid, but not necessarily
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optimal, solution to the eigenvalue matching problem m∗ (L
(1)
� , L

(2)
� ). By valid we mean that

P̃ satisfies the constraints given in the definition of matching problems in Section 1.4.2.

Proof. This fact follows directly from the constraints on P̃1 and P̃2. A matrix M is a

valid matching matrix iff its entries are in {0, 1} and it is orthogonal (this is an equivalent

expression of the constraints given in Section 1.4.2. If P̃1 and P̃2 are both orthogonal and

{0, 1}-valued, then we observe the following facts about their Kronecker product P̃1 ⊗ P̃2:

• it is also {0, 1}-valued, since any of its entries is the product of an entry of P̃1 and one

of P̃2.

• it is orthogonal, since A⊗B is orthogonal iff ATA = ζI and BTB = 1
ζ
I for some ζ > 0

[64]. P̃1 and P̃2 satisfy these conditions with ζ = 1.

So P̃1⊗P̃2 satisfies the constraints given for the eigenvalue matching problem m ∗ (L
(1)
� , L

(2)
� ).

3.8.1 Distortion-penalized Distance

We can add a term to the graph diffusion distance which penalizes large distortions induced

by α, as follows: define

Dreg(G1, G2) = sup
t

inf
P |C(P )

inf
α>0

{∣∣∣∣∣∣Pe tαL1 − etαL2P
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣e tαL1 − etL1

∣∣∣∣∣∣
F

+
∣∣∣∣etL2P − etαL2P

∣∣∣∣
F

}
We can show analytically that this distance satisfies the triangle inequality:

Theorem 3.8.2. Dreg satisfies the triangle inequality.
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Proof. For graphs G1, G2, G3 and Laplacians L1, L2, L3, for any fixed t ≥ 0, we have:

Dreg(G1, G3|t) = inf
P |C(P )

inf
α>0

{∣∣∣∣∣∣Pe tαL1 − etαL3P
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣e tαL1 − etL1

∣∣∣∣∣∣
F

+
∣∣∣∣etL3P − etαL3P

∣∣∣∣
F

}
≤ Dreg(G1, G3|t, α = 1)

= inf
P |C(P )

{∣∣∣∣PetL1 − etL3P
∣∣∣∣
F

+
∣∣∣∣etL1 − etL1

∣∣∣∣
F

+
∣∣∣∣etL3P − etL3P

∣∣∣∣
F

}
= inf

P |C(P )

∣∣∣∣PetL1 − etL3P
∣∣∣∣
F

Suppose that

α32, P32 = arg inf
a>0

inf
P |C(P )

{∣∣∣∣∣∣Pe tαL2 − etαL3P
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣e tαL2 − etL2

∣∣∣∣∣∣
F

+
∣∣∣∣etL3P − etαL3P

∣∣∣∣
F

}
α21, P21 = arg inf

a>0
inf

P |C(P )

{∣∣∣∣∣∣Pe tαL1 − etαL2P
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣e tαL1 − etL1

∣∣∣∣∣∣
F

+
∣∣∣∣etL2P − etαL2P

∣∣∣∣
F

}
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Then,

inf
P |C(P )

∣∣∣∣PetL1 − etL3P
∣∣∣∣
F
≤
∣∣∣∣P32P21e

tL1 − etL3P32P21

∣∣∣∣
F

inf
P |C(P )

∣∣∣∣PetL1 − etL3P
∣∣∣∣
F
≤
∣∣∣∣∣∣P32P21e

tL1 − P32P21e
t
α21

L1 + P32P21e
t
α21

L1

− P32e
tα21L2P21 + P32e

tα21L2P21 − P32e
tL2P21

+ P32e
tL2P21 − P32e

t
α32

L2P21 + P32e
t
α32

L2P21

− etα32L3P32P21 +etα32L3P32P21 − etL3P32P21

∣∣∣∣
F

≤
∣∣∣∣∣∣P32P21e

tL1 − P32P21e
t
α21

L1

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣P32P21e

t
α21

L1 − P32e
tα21L2P21

∣∣∣∣∣∣
F

+
∣∣∣∣P32e

tα21L2P21 − P32e
tL2P21

∣∣∣∣
F

+
∣∣∣∣∣∣P32e

tL2P21 − P32e
t
α32

L2P21

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣P32e

t
α32

L2P21 − etα32L3P32P21

∣∣∣∣∣∣
F

+
∣∣∣∣etα32L3P32P21 − etL3P32P21

∣∣∣∣
F

by Lemma 3.2.1,

inf
P |C(P )

∣∣∣∣PetL1 − etL3P
∣∣∣∣
F
≤
∣∣∣∣∣∣etL1 − e

t
α21

L1

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣P21e

t
α21

L1 − etα21L2P21

∣∣∣∣∣∣
F

+
∣∣∣∣etα21L2P21 − etL2P21

∣∣∣∣
F

+
∣∣∣∣∣∣etL2 − e

t
α32

L2

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣P32e

t
α32

L2 − etα32L3P32

∣∣∣∣∣∣
F

+
∣∣∣∣etα32L3P32 − etL3P32

∣∣∣∣
F

= Dreg(G1, G2|t = c) +Dreg(G2, G3|t = c)
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Since this is true for any fixed t, let

t∗ = arg sup
t
Dreg(G1, G3|t).

Then

Dreg(G1, G3) = sup
c
Dreg(G1, G3|t)

= Dreg(G1, G3|t∗)

≤ Dreg(G1, G2|t∗) +Dreg(G2, G3|t = t∗)

≤ sup
t21

Dreg(G1, G2|t21) + sup
t32

Dreg(G2, G3|t32)

= Dreg(G1, G2) +Dreg(G2, G3)

We can construct a similar regularized version of the linear objective function:

D̃reg(G1, G2) =

∣∣∣∣∣∣∣∣ 1αPL1 − αL2P

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ 1αL1 − L1

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣ PL2 − αL2P

∣∣∣∣∣∣
The additional terms included inDreg and D̃reg penalize α distorting the respective Laplacians

far from their original values. In practice, many of the theoretical guarantees provided earlier

in this manuscript may not apply to optimization of the augmented objective function.

Hence, a major area of future work will be modification of our optimization procedure to

compute this form of distance.
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3.9 Theory Summary

Triangle inequalities are proven for some members of the proposed family of graph distor-

tion or “distance” measures, including infinitesimal and finite diffusion time, a power law

for sparsity, and/or a power law for the time scaling factor between coarse and fine scales.

However, the case of an optimal (not power law) time conversion factor α needs to be inves-

tigated by numerical experiment, and that requires new algorithms, introduced in Section

4.3. We also show that in the case of distances between graph box products, optimization

over P for the product graphs is bounded above by a monotonic function of the optimum

over the component graphs.
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Chapter 4

Efficiently Calculating GDD

In previous chapters we have introduced and defined diffusion distance. A crucial component

of the optimization required to calculate GDD is the optimization of the α parameter for

conversion between coarse and fine time scales. Optimizing α in addition to optimizing the

prolongation matrix P under transitive constraints C(P ), is a nontrivial numerical problem

that in our experience seems to require new methods. We develop such methods here.

4.1 Algorithm Development

In this section, we describe the algorithm used to calculate upper bounds on graph distances

as the joint optima (over P , t, and α) of the distance equations Equation 2.2 and Equation

2.3, under orthogonality constraints only, i.e. the case C(P ) = {P |P TP = I}. At the core of

both algorithms is a subroutine to solve the Linear Assignment Problem (LAP - see Equation

(1.5)) repeatedly, in order to find the subpermutation matrix which is optimal at a particular

value of α. Namely, we are interested in calculating D̃ as
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D̃(G1, G2) = min
α
f(α) where f(α) = inf

P |PTP=I

∣∣∣∣∣∣∣∣ 1αPL(G1)− αL(G2)P

∣∣∣∣∣∣∣∣ (4.1)

which, for orthogonality or any other compact constraint

= min
P |PTP=I

∣∣∣∣∣∣∣∣ 1αPL(G1)− αL(G2)P

∣∣∣∣∣∣∣∣ .
However, we have found that the unique structure of this optimization problem admits a

specialized procedure which is faster and more accurate than nested univariate optimization

of α and t (where each innermost function evaluation consists of a full optimization over P at

some t, α). We first briefly describe the algorithm used to find the optimal P and α for D̃2.

The formal description of the algorithm is given by Algorithm 1. In both cases, we reduce the

computational complexity of the optimization over P by imposing the additional constraint

that P must be a subpermutation matrix when rotated into the spectral basis (we define

subpermutations in the proof of Theorem 4.4.1). This constraint is compatible with the

orthogonality constraint (all subpermutation matrices are orthogonal, but not vice versa).

The tradeoff of this reduction of computational complexity is that we can only guarantee

that our optima are upper bounds of the optima over all orthogonal P . However, in practice,

this bound seems to be tight: over a large number of empirical evaluations we did not find

any example where orthogonally-constrained optimization was able to improve in objective

function value over optimization constrained to subpermutation matrices. Therefore, we

shall for the remainder of this paper refer to the optima calculated as distance values, when

strictly they are distance upper bounds. We also note here that a distance lower bound is

also possible to calculate by relaxing the constraints in C(P ) (for instance, by replacing the

optimization over all P with a less constrained matching problem - see Section 2.4).
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(a)

(b)

Figure 4.1: Two plots demonstrating characteristics of distance calculation between a (7×7)
grid and an (8× 8) grid.
(a): Plot illustrating the discontinuity and multimodality of the linear version of dis-
tance. Each gray curve represents a function fPc(αc) = D̃2 (Sq7, Sq8|αc, Pc). The thicker
curve is the lower convex hull of the thinner curves as a function of α, that is: f(αc) =
infP |C(P ) D̃

2 (Sq7, Sq8|αc). We see that f(α) is continuous, but has discontinuous slope, as
well as several local minima (marked by arrowheads - note in this plot some of these look
like inflection points or maxima because they are obscured by the red line, but the are all
local minima). These properties make D̃ difficult to optimize, necessitating the development
of Algorithm 1.
(b): As in (a), but with D2 (Sq7, Sq8|t = .318) plotted instead of D̃2. This t value is the
location of the maximum in Figure 2.1.
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4.2 Optimization of D̃2

Algorithm 1 Abbreviated pseudocode for the algorithm described in Section 4.2, for com-
puting infP,α D̃

2.

1: procedure D-Tilde(L1, L2, αlow, αhigh.)
2: Compute λ(1), λ(2) as the eigenvalues of L1 and L2.
3: Compute, by optimizing a linear assignment, Mlow and Mhigh as the optimal match-

ings at αlow, αhigh respectively. Initialize the list of optimal matchings as {Mlow,Mhigh}.
4: Until the current list of matchings is not expanded in the following step, or the entire

interval [αlow, αhigh] is marked as explored:
5: Attempt to expand the list of optimal matchings by solving a linear assignment

problem at the α where the cost curves of two matchings (currently in the list) intersect.
If no better assignment exists, then mark the interval covered by those matchings as
explored, as guaranteed by Theorem 4.4.3.

6: Return the lowest-cost M and its optimal α.
7: end procedure

Joint optimization of D̃2 over α and P is a nested optimization problem (see [77] and [98]

for a description of nested optimization), with potential combinatorial optimization over P

dependent on each choice of α. Furthermore, the function f(α) = infP |C(P ) D̃
2(G1, G2|α) is

both multimodal and continuous but, in general, with a discontinuous derivative (See Figure

4.1). Univariate optimization procedures such as Golden Section Search result in many

loops of some procedure to optimize over P , which in our restricted case must each time

compute a full solution to a LAP with n2 × n1 weights. In our experience, this means that

these univariate methods have a tendency to get stuck in local optima. We reduce the total

number of calls to the LAP solver, as well as the size of the LAPs solved, by taking advantage

of several unique properties of the optimization as a function of α. When the optimal P (1)

and P (2) are known for α1 and α2, then for any αc such that min(α1, α2) ≤ αc ≤ max(α1, α2),

the optimal P (c) at αc must satisfy: P
(1)
ij = 1 ∧ P (2)

ij = 1 =⇒ P
(c)
ij = 1 (see Theorem 4.4.3).

Thus, the optimization over P at αc is already partially solved given the solutions at α1

and α2, and so we need only re-compute the remaining (smaller) subproblem on the set of

assignments where P (1) and P (2) disagree. This has two consequences for our search over α:

First, the size of LAP problems which must be solved at each step decreases over time (as we
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find P -optima for a denser and denser set of α). Secondly, these theoretical guarantees mean

that we can mark intervals of α-values as being explored (meaning we have provably found

the P which are optimal over the interval) and thus do not have to perform the relatively

expensive optimization over P for any α in that interval.

4.3 Optimization of D2

Algorithm 2 Abbreviated pseudocode for the algorithm described in Section 4.3, for com-
puting supt infP,αD

2.

1: procedure D(L1, L2, αlow, αhigh, step size ε)
2: Compute λ(1), λ(2) as the eigenvalues of L1 and L2.
3: Solve the Linear Version of the problem using Algorithm 1, obtaining α∗,M∗. Ac-

cording to the argument presented in the definition of linear distance (Equation 2.3) this
solution holds for very small t. Keep the entire frontier of matchings found during the
execution of Algorithm 1. Set t = 0, d(0) = D(G1, G2|α∗,M∗, t)

4: Until d(t+ ε) < d(t):
5: t = t+ ε
6: Use the linear algorithm with etL1 and etL2 as the input matrices, initializing the

list of matchings with those found at the previous t.
7: Set d(t) = D(G1, G2|α∗,M∗, t) where α∗,M∗ are the optima from the previous

step.
8: Return the maxt d(t).
9: end procedure

Many of the theoretical guarantees underlying our algorithm for computing D̃2 no longer

hold for the exponential version of the distance. We adapt our linear-version procedure into

an algorithm for computing this version, with the caveat that the lack of these guarantees

means that our upper bound on the exponential version may be looser than that on the

linear version. It is still clearly an upper bound, since the α and P found by this procedure

satisfy the given constraints α > 0 and P TP = I. In particular, we have observed cases

where the exponential-distance analog of Theorem 4.4.3 would not hold, meaning we cannot

rule out α-intervals as we can in the linear version. Thus, this upper bound may be looser

than that computed for the linear objective function.
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For the exponential version of the algorithm, we first compute the list of optimal P for the

linear version, assuming (since etL ≈ I + L for very small t) that this is also the list of

optimal P for the exponential version of the objective function at some low t. We proceed

to increment t with some step size ∆t, in the manner of a continuation method [3]. At each

new t value, we search for new optimal P along the currently known frontier of optima as

a function of α. When a new P is found as the intersection of two known Pi, Pi+1, it is

inserted into the list, which is kept in order of increasing α. For each P in this frontier, we

find the optimal α, keeping P and t constant. Assuming infP infαD
2(G1, G2|tc) is unimodal

as a function of tc, we increase tc until infP infαD
2(G1, G2|tc) ≥ infP infαD

2(G1, G2|tc+∆t),

storing all P matrices found as optima at each tc value. P which were on the lower convex

hull at some prior value of t but not the current value are retained, as they may regain

optimality for some α-range at a future value of t (we have observed this, in practice). For

this list P1, P2 . . . Pm, we then compute supt infα infiD
2(G1, G2|Pi). Since the exponential

map is continuous, and we are incrementing t by very small steps, we also propose the further

computational shortcut of storing the list of optimal α at time t to use as starting points

for the optimization at t + ∆t. In practice, this made little difference in the runtime of our

optimization procedure.

4.4 Algorithm Correctness Proof

Theorem 4.4.1. For any two graphs G1 and G2 with Laplacians L(G1) and L(G2), for fixed

α, the optimization over P given in the innermost loop of Equation 2.3 is upper bounded by

a Linear Assignment Problem as defined in Equation (1.5). This LAP is given by taking R

to be the eigenvalues λ
(1)
j of L(G1) and S to be the eigenvalues λ

(2)
i of L(G2), with the cost
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of a pair (equivalently, one entry of the cost matrix C) given by

Cij = c(si, rj) = c
(
λ

(2)
i , λ

(1)
j

)
=

(
1

α
λ

(1)
j − αλ

(2)
i

)2

(4.2)

Proof. L(G1) and L(G2) are both real symmetric matrices, so they may be diagonalized as

L(Gi) = UiΛiU
T
i , where the Ui are rotation matrices, and the Λi are diagonal matrices with

the eigenvalues λ
(i)
1 , λ

(i)
2 . . . λ

(i)
ni along the diagonal. Because the Frobenius norm is invariant

under rotation, we have:

D̃2(G1, G2) = inf
α>0

inf
PTP=I

∣∣∣∣∣∣∣∣ 1αPL(G1)− αL(G2)P

∣∣∣∣∣∣∣∣2
F

= inf
α>0

inf
PTP=I

∣∣∣∣∣∣∣∣ 1αUT
2 PL(G1)U1 − αUT

2 L(G2)PU1

∣∣∣∣∣∣∣∣2
F

= inf
α>0

inf
PTP=I

∣∣∣∣∣∣∣∣ 1αUT
2 PU1Λ1U

T
1 U1 − αUT

2 U2Λ2U
T
2 PU1

∣∣∣∣∣∣∣∣2
F

(4.3)

= inf
α>0

inf
PTP=I

∣∣∣∣∣∣∣∣ 1αUT
2 PU1Λ1 − αΛ2U

T
2 PU1

∣∣∣∣∣∣∣∣2
F

.

Because the Ui are orthogonal, the transformation P̃ = UT
2 PU1 preserves orthogonality, so

D̃2(G1, G2) = inf
α>0

inf
PTP=I

∣∣∣∣∣∣∣∣ 1αPΛ1 − αΛ2P

∣∣∣∣∣∣∣∣2
F

= inf
α>0

inf
PTP=I

∣∣∣∣∣∣∣∣ 1αΛ1

∣∣∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣ αΛ2P

∣∣∣∣∣∣2
F
− 2Tr

[
P TΛ2PΛ1

]
= inf

α>0
inf

PTP=I

(
Tr

[
1

α2
Λ2

1

]
+ Tr

[
α2P TΛ2

2P
]
− 2Tr

[
P TΛ2PΛ1

])
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writing P = [pij],

D̃2(G1, G2) = inf
α>0

inf
PTP=I

(
1

α2

n1∑
j=1

λ
(1)
j

2
+ α2

n2∑
i=1

n1∑
j=1

p2
ijλ

(2)
i

2
(4.4)

−2

n2∑
i=1

n1∑
j=1

p2
ijλ

(2)
i λ

(1)
j

)

= inf
α>0

inf
PTP=I

(
n2∑
i=1

n1∑
j=1

p2
ij

(
1

α2
λ

(1)
j

2
− 2λ

(2)
i λ

(1)
j + α2λ

(2)
i

2
))

= inf
α>0

inf
PTP=I

(
n2∑
i=1

n1∑
j=1

p2
ij

(
1

α
λ

(1)
j − αλ

(2)
i

)2
)

(4.5)

For any given α,

inf
PTP=I

 n2∑
i=1

n1∑
j=1

p2
ij

(
λ

(1)
j

α
− αλ(2)

i

)2
 ≤ inf

P̃ |sub(P̃ )

 n2∑
i=1

n1∑
j=1

p̃2
ij

(
λ

(1)
j

α
− αλ(2)

i

)2
 ,

where subperm(P̃ ) could be any other condition more strict than the constraint P TP = I.

Here we take this stricter constraint to be the condition that P̃ is a subpermutation matrix: an

orthogonal matrix (i.e. P̃ T P̃ = I) for which P̃ ∈ {0, 1}n2×n1 . Equivalently, a subpermutation

matrix is a {0, 1}-valued matrix [p̃ij] such that for each i ∈ {1, . . . n1 ≤ n2}, exactly one

j ∈ {1, . . . n2 ≥ n1} takes the value 1 rather than 0 (so
∑n2

j=1 P̃ji = 1), and for each

j ∈ {1, . . . n2 ≥ n1}, either zero or one i ∈ {1, . . . n1 ≤ n2} takes the value 1 rather than 0

(so
∑n1

i=1 P̃ji ≤ 1).

Furthermore, this optimization is exactly a linear assignment problem of eigenvalues of L(G1)

to L(G2), with the cost of a pair
(
λ

(1)
j , λ

(2)
i

)
given by

c
(
λ

(1)
j , λ

(2)
i

)
=

(
1

α
λ

(1)
j − αλ

(2)
i

)2
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Note also that the same argument applies to the innermost two optimizations of the calcu-

lation of D2 (the exponential version of the diffusion distance) as well as D2
r . In the D2 case

the entries of the cost matrix are instead given by

c
(
λ

(1)
j , λ

(2)
i

)
=
(
e

1
α
λ
(1)
j − eαλ

(2)
i

)2

If we instead loosen the constraints on P , we can calculate a lower bound on the distance.

See Section 2.4 for lower bound details.

Recall that our definition of a ‘matching’ in Section 1.4.2 was a P matrix representing a

particular solution to the linear assignment problem with costs given as in Equation (4.2).

For given G1, G2, and some matching M , let

fM(α) = D̃2(G1, G2|α, UT
2 MU1) (4.6)

where U1, U2 diagonalize L1 and L2 as in Equation (4.3).

Lemma 4.4.2. For two unique matchings M1 and M2 (for the same G1, G2) the equation

fM1(α)− fM2(α) = 0 has at most one real positive solution in α. This follows from the fact

that when P and t are fixed, the objective function is a rational function in α (see Equation

(4.4)), with a quadratic numerator and an asymptote at α = 0.
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Proof. By Equation (4.4), we have

fM1(α)− fM2(α) =(
1

α2

n1∑
j=1

λ
(1)
j

2
+ α2

n2∑
i=1

n1∑
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[M1]2ijλ
(2)
i

2
− 2
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n1∑
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[M1]2ijλ
(2)
i λ

(1)
j

)
(4.7)

−

(
1

α2

n1∑
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(1)
j

2
+ α2
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n1∑
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[M2]2ijλ
(2)
i

2
− 2
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i=1

n1∑
j=1

[M2]2ijλ
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(1)
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)
(4.8)

= α2

(
n2∑
i=1

n1∑
j=1

[M1]2ijλ
(2)
i

2
−

n2∑
i=1

n1∑
j=1

[M2]2ijλ
(2)
i

2

)
(4.9)

+

(
2

n2∑
i=1

n1∑
j=1

[M2]2ijλ
(2)
i λ

(1)
j − 2

n2∑
i=1

n1∑
j=1

[M1]2ijλ
(2)
i λ

(1)
j

)
(4.10)

Abbreviating the sums, we have

α2 (A1 − A2) + (C2 − C1) = 0 (4.11)

and so

α = ±
√
C2 − C1

A1 − A2

(4.12)

Since A1, A2, C1, C2 are all nonnegative reals, at most one of these roots is positive.

We will say that a matching M “assigns” j to i if and only if Mij = 1.

Theorem 4.4.3. If two matchings M1 and M3 which yield optimal upper bounds for the

linear distance D̃2 (at α1 ≤ α and α3 ≥ α respectively) agree on a set of assignments, then

the optimal M at α must also agree with that set of assignments.

Proof. We need the following lemmas:
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Lemma 4.4.4. If an optimal matching assigns i to m(i) (so that eigenvalue λ
(1)
i of G1 is

paired with λ
(2)
f(i) of G2 in the sum of costs Equation (4.2)), then the sequence m(1),m(2), . . .m(n1)

is monotonic increasing.

Proof. This follows from the fact that the two sequences of eigenvalues are monotonic nonde-

creasing, so if there’s a ‘crossing’ (i1 < i2 but m(i2) < m(i1)) then the new matching obtained

by uncrossing those two pairs (performing a 2-opt step as defined in [25]) has strictly lesser

objective function value. Hence an optimal matching can’t contain any such crossings.

Lemma 4.4.5. For all positive real α∗ ≥ ε > 0, let M1 be an optimal matching at α∗ − ε

and M2 be optimal at α∗ + ε. For 1 ≤ i ≤ n1, let s1(i) and s2(i) be the indices of λ(2) paired

with i in M1 and M2, respectively. Then for all i, s1(i) ≤ s2(i).

Proof. Define a “run” for s1, s2 as a sequence of consecutive indices l, l+ 1, . . . l+ k in [1, n1]

such that for any l, l + 1: min(s1(l + 1), s2(l + 1)) < max(s1(l), s2(l)). The following must

be true about a “run”:

1. Within a run, either s1(l) < s2(l) or s1(l) > s2(l) for all l. Otherwise, we have

one or more crossings (as in Lemma 4.4.4): for some l we have s1(l) > s1(l + 1) or

s2(l) > s2(l+ 1). Any crossing may be uncrossed for a strictly lower objective function

value - violating optimality of M1 or M2.

2. Any pair of matchings as defined above consists of a sequence of runs, where we allow

a run to be trivial i.e. be a single index.

Next, we show that within a run, we must have s1(i) < s2(i) for all i. Let S = {l, l+1, . . . l+k}

be a run. By optimality of M1, M2 at α∗ − ε and α∗ + ε respectively, we have:
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∑
i∈S

(
1

α∗ − ε
λ

(1)
i − (α∗ − ε)λ(2)

s1(i)

)2

<
∑
i∈S

(
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λ

(1)
i − (α∗ − ε)λ(2)

s2(i)

)2

and
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(
1
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)2

<
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(2)
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.

Respectively, these simplify to

−
∑
i∈S

(
λ

(2)
s1(i) − λ

(2)
s2(i)

)(
−2λ

(i)
i + (α∗ − ε)2

(
λ

(2)
s1(i) + λ

(2)
s2(i)

))
> 0

and

∑
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)(
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(i)
i + (α∗ + ε)2

(
λ

(2)
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(2)
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Summing these inequalities and cancelling −2λ
(i)
i , we have:

∑
i∈S

{
(α∗ + ε)2

((
λ

(2)
s1(i)

)2

+
(
λ

(2)
s2(i)

)2
)
− (α∗ − ε)2
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+
(
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> 0.

Summing and reducing gives us

4α∗ε

(∑
i∈S

(
λ
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s1(i)

)2

−
∑
i∈S

(
λ

(2)
s2(i)
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)
> 0 and so

∑
i∈S

(
λ

(2)
s1(i)

)2

>
∑
i∈S

(
λ

(2)
s2(i)

)2

.

However, since the λ
(2)
j are monotonic nondecreasing, this means we cannot also have s1(i) >
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s2(i) for all i ∈ S, since that would imply

n1∑
i=1

(
λ

(2)
s1(i)

)2

<

n1∑
i=1

(
λ

(2)
s2(i)

)2

.

Therefore, in a run of arbitrary length, all indices must move ‘forward’ (meaning that s1(i) <

s2(i) for all i in the run), and so (since any pair of matchings optimal at such α define a set

of runs) we must have s1(i) ≤ s2(i). This completes the proof of the lemma.

Thus, for three matchings M1,M2,M3 which are optimal at a sequence of α1 ≤ α2 ≤ α3, we

must have s1(i) ≤ s2(i) ≤ s3(i) for all i. In particular, if s1(i) = s3(i), we must also have

s1(i) = s2(i) = s3(i).

Theorem 4.4.6. If two matchings M1 and M3 yield optimal upper bounds for the linear

distance D̃2 at α1 and α3 respectively, and fM1(α2) = fM2(α2) for some α2 s.t. α1 ≤ α2 ≤ α3,

then either (1) M1 and M3 are optimal over the entire interval [α1, α3] or (1) some other

matching M2 improves over M1 and M3 at α2.

Proof. This follows directly from the facts that fM1(α) and fM2(α) (as defined in Equation

(4.6)), can only meet at one real positive value of α (Lemma 4.4.2). Say that the cost curves

for M1 (known to be optimal at α = α1) and M3 (optimal at α = α3) meet at α = α2, and

furthermore assume that α1 ≤ α2 ≤ α3. If some other matching M2 improves over (meaning,

has lesser obj. function value as a function of α) M1 or M3 anywhere in the interval [α1, α3],

it must improve over both at α = α2, since it may intersect each of these cost curves at most

once on this interval. If M1 and M3 are both optimal at their intersection point (meaning no

such distinct M2 exists) then we know that no other matching improves on either of them

over the the interval [α1, α3] and may therefore mark it as explored during the outermost
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loop (otimization over α) of Algorithm 1.

Together, the preceeding properties verify that our algorithm will indeed find the joint opti-

mum over all α and P (for fixed t = c, for D̃, subject to subpermutation constraints on P ):

it allows us to find the entire set of P subpermutation matrices which appear on the lower

convex hull of distance as a function of alpha.

4.5 Implementation Details

We implement Algorithms 1 and 2 in the programming language Python (version 3.6.1) [87].

Numerical arrays were stored using the numpy package [109]. Our inner LAP solver was

the package lapsolver [50]. Univariate optimization over t and α was performed with the

‘bounded’ method of the scipy.optimize package [30], with bounds set at [0, 10.0] for each

variable and a input tolerance of 10−12. Laplacians were computed with the laplacian method

from the package networkX [47], and their eigenvalues were computed with scipy.linalg.eigh.

Because of numerical precision issues arising during eigenvalue computation, it can be dif-

ficult to determine when two matchings agree, using eigenvalue comparison. In practice

we ignore this issue and assume that two matchings are only identical if they associate the

same indices of the two lists of eigenvalues. This means we may be accumulating multiple

equivalent representations of the same matching (up to multiplicity of eigenvalues) during

our sweeps through t and α. We leave mitigating this inefficiency for future work.

Code for computing diffusion distance, both with our algorithm and with naive univariate

optimization, may be found in the Supplementary Information associated with this paper,

as well as a maintained GitHub repository [93].
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Chapter 5

Numerical Properties of GDD

Previous chapters have introduced graph diffusion distance and explored some of its theo-

retical properties, as well as demonstrating an efficient method for computing GDD. This

chapter presents several experiments, using the machinery developed in Chapter 4 to explore

numerical properties of GDD as well as numerical properties of Algorithm 1.

5.1 Graph Lineages

In this section we introduce several specific graph lineages for which we will compute various

intra- and inter-lineage distances. Three of these are well-known lineages of graphs, and the

fourth is defined in terms of a product of complete graphs:

Path Graphs (Pan): 1D grid graphs of length n, with aperiodic boundary conditions.

Cycle Graphs (Cyn): 1D grid graphs of length n, with periodic boundary conditions.

Square Grid Graphs (Sqn): 2D grid graphs of dimensions n, with aperiodic boundary con-
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2D Grids

Paths

Cycles

k-Barbell graphs

Figure 5.1: Graph lineages used in multiple numerical experiments in the main text.

ditions. Sqn = Pan�Pan

“Multi-Barbell” Graphs (Ban): Constructed as Cyn�Kn, where Kn is the complete graph

on n vertices.

These familes are all illustrated in Figure 5.1.

Additionally, some examples distances between elements of these graph lineages are illus-

trated in Figure 5.2. In these tables we see that in general intra-lineage distances are small,

and inter-lineage distances are large.
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Figure 5.2: Distances D2(G,H) calculated for several pairs of graphs. The top plot shows
distances where G and H are both chosen from {Grid13×13, P169, C169,Ba13}. At bot-
tom, distances are calculated from G chosen in {Grid12×12, P144, C144,Ba12} to H chosen
in {Grid13×13, P169, C169,Ba13}. As expected, diagonal entries are smallest.
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5.2 Numerical Optimization Methods

We briefly discuss here the other numerical methods we have used to calculate D̃2 and D2.

In general we have found these methods inferior to the algoithm presented in Chapter 4, but

we present them here for completeness.

Nelder-Mead in Mathematica For very small graph pairs (n1× n2 ≤ 100) we are able to find

optimal P, α, t using constrained optimization in Mathematica 11.3 [53] using NMinimize,

which uses Nelder-Mead as its backend by default. The size limitation made this approach

unusable for any real experiments.

Orthogonally Constrained Opt. We also tried a variety of codes specialized for numeric

optimization subject to orthogonality constraints. These included (1) the python package

PyManopt [105], a code designed for manifold-constrained optimization; (2) gradient descent

in Tensorflow using the penalty function g(P ) = c
∣∣∣∣P TP − I

∣∣∣∣
F

(with c� 1 a small positive

constant weight) to maintain orthogonality, as well as (3) an implementation of the Cayley

reparametrization method from [114] (written by the authors of that same paper). In our

experience, these codes were slower, with poorer scaling with problem size, than combina-

torial optimization over subpermutation matrices, and did not produce improved results on

our optimization problem.

5.2.1 Black-Box Optimization Over α.

We compare in more detail two methods of joint optimization over α and P when P is

constrained to be a subpermutation matrix in the diagonal basis for L(G1) and L(G2).

Specifically, we compare our approach given in Algorithm 1 to univariate optimization over

α, where each function evaluation consists of full optimization over P . Figure 5.3 shows the

results of this experiment. We randomly sample pairs of graphs as follows:
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1. n1 is drawn uniformly from [5, 120].

2. n2 is drawn uniformly from [n1, n1 + 60].

3. G1 and G2 are generated by adding edges according to a Bernoulli distribution with

probability p. We ran 60 trials for each p in { .125, .25, .375, .5, .625, .75, .875 }.

We compute the linear version of distance for each pair. Because our algorithm finds all of

the local minima as a function of alpha, we compute the cost of the golden section approach

as the summed cost of multiple golden section searches in alpha: one GS search starting from

the initial bracket [0.618α∗, 1.618α∗] for each local minimum α∗ found by our algorithm. We

see that our algorithm is always faster by at least a factor of 10, and occasionally faster by

as much as a factor of 103. This can be attributed to the fact that the golden section search

is unaware of the structure of the linear assignment problem: it must solve a full n2 × n2

linear assignment problem for each value of α it explores. In contrast, our algorithm is able

to use information from prior calls to the LAP solver, and therefore solves a series of LAP

problems whose sizes are monotonically nonincreasing.

5.3 Triangle Inequality violation of D (Exponential Dis-

tance) and D̃ (Linear Distance)

As stated in Section 2.3, our full graph dissimilarity measure does not necessarily obey the

triangle inequality. In this section we systematically explore conditions under which the

triangle inequality is satisfied or not satisfied. We generate triplets G1, G2, G3 of random

graphs of sizes ni for n1 ∈ [5, 30], n2 ∈ [n1, n1 + 30], and n3 ∈ [n2, n2 + 30] by drawing

edges from the Bernoulli distribution with probability p (we perform 4500 trials for each

p value in [.125, .25, .375, .5, .625, .75, .875]). We compute the distance D̃(Gi, Gk) (for
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Figure 5.3: Comparison of runtimes for our algorithm and bounded golden section search
over the same interval [10−6, 10]. Runtimes were measured by a weighted count of evaluations
of the Linear Assignment Problem solver, with an n× n linear assignment problem counted
as n3 units of cost. Because our algorithm recovers the entire lower convex hull of the
objective function as a function of α, we compute the cost of the golden section search
as the summed cost of multiple searches, starting from an interval bracketing each local
optimum found by our algorithm. We see that our algorithm is much less computationally
expensive, sometimes by a factor of 103. The most dramatic speedup occurs in the regime
where n1 << n2. Graphs were generated by drawing n1 uniformly from [5, 120], drawing
n2 uniformly from [n1, n1 + 60], and then adding edges according to a Bernoulli distribution
with p in { .125, .25, .375, .5, .625, .75, .875 } (60 trials each).

74



(i, k) ∈ {(1, 3), (1, 2), (2, 3)}). The results may be seen in Figure 5.4. In this figure we plot

a histogram of the “discrepancy score”

Disc(G1, G2, G3) = D̃(G1, G3)/(D̃(G1, G2) + D̃(G2, G3)), (5.1)

which measures the degree to which a triplet of graphs violates the triangle inequality (i.e.

falls outside of the unit interval [0,1]), for approximately 3 × 104 such triplets. It is clear

that, especially for the linear definition of the distance, the triangle inequality is not always

satisfied. However, we also observe that (for graphs of these sizes) the discrepancy score is

bounded: no triple violates the triangle inequality by more than a factor of approximately

1.8. This is shown by the histogram of discrepancies in Figure 5.4. Additionally, the triangle

inequality is satisfied in 28184 (95.2%) of cases.

We see similar but even stronger results when we run the same experiment with D2 instead

of D̃2; these may also be seen in Figure 5.4. We calculated the discrepancy score analogously,

but with D substituted for D̃. We see similarly that the degree of violation is bounded. In

this case, no triple violated the triangle inequality by a factor of more than 5, and in this

case the triangle inequality was satisfied in 99.8% of the triples. More work is needed to

examine this trend; in particular, it would be interesting to examine whether other models

of graph generation also satisfy the triangle inequality up to this constant. In both of these

cases, the triangle inequality violations may be a result of our optimization procedure finding

local minima/maxima for one or more of the three distances computed. We also repeat the

above procedure for the same triplets of graphs, but with distances computed not in order of

increasing vertex size: calculating Disc(G2, G1, G3) and Disc(G3, G2, G1). All of these results

are plotted in Figure 5.4.
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Figure 5.4: Histograms of triangle inequality violation. These plots show the distribution
of Disc(G1, G2, G3), as defined in the text, for the cases (a) top: the linear or small-time
version of distance and (b) bottom: the exponential or arbitrary-time version of distance.
We see that for the sizes of graph we consider, the largest violation of the triangle inequality
is bounded, suggesting that our distance measure may be an infra-ρ-pseudometric for some
value of ρ ≈ 1.8 (linear version) or ρ ≈ 5.0 (exponential version). See Table 2.1 for a summary
of the distance metric variants introduced in this paper. We also plot the same histogram for
out-of-order (by vertex size) graph sequences: Disc(G2, G1, G3) and Disc(G3, G2, G1). Each
plot has a line at x = 1, the maximum discrepancy score for which the underlying distances
satisfy the triangle inequality.
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5.4 Intra- and Inter-Lineage Distances

We compute pairwise distances for sequences of graphs in the graph lineages displayed in

Figure 5.1. For each pair of graph families (Square Grids, Paths, Cycles, and Multi-Barbells),

we compute the distance from the ith member of one lineage to the (i+1)-st member of each

other lineage, and take the average of the resulting distances from i = 1 to i = 12. These

distances are listed in Table 5.1. As expected, average distances within a lineage are smaller

than the distances from one lineage to another.

Square Grids Paths Cycles Multi-Barbells

Square Grids 0.0096700 0.048162 0.046841 0.63429

Paths 0.30256 0.0018735 0.010300 2.1483

Cycles 0.27150 0.0083606 0.0060738 2.0357

Multi-Barbells 0.21666 0.75212 0.72697 0.029317

Table 5.1: Mean distances between graphs in several lineages. For two lineages G1, G2 . . .
(listed at left) and H!, H2, . . . (listed at the top), each entry shows the mean distance
D(Gi, Hi+1) (where the average is taken over i = 1 to 12). As expected, we see that the
distance from elements of a graph lineage to other members of the same lineage (the di-
agonal entries of the table) is smaller than distances taken between lineages. Furthermore
as expected, 1D paths are more similar (but not equal) to 1D cycles than to other graph
lineages.

We note here that the idea of computing intra- and inter- lineage distances is similar to

recent work [49] computing distances between graph ensembles : certain classes of similarly-

generated random graphs. Graph diffusion distance has been previously shown (in [49]) to

capture key structural information about graphs; for example, GDD is known to be sensitive

to certain critical transitions in ensembles of random graphs as the random parameters are

varied. This is also true for our time dilated version of GDD. More formally: let Gp and G
′
p

represent random graphs on n vertices, drawn from the Erdős-Renyi distribution with edge

probability p. Then D(Gp, G
′
p) has a local maximum at p = 1

n
, representing the transition
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between disconnected and connected graphs. This is true for our distance as well as the

original version due to Hammond.

5.5 Graph Limits

Here, we provide preliminary evidence that graph distance measures of this type may be

used in the definition of a graph limit - a graphlike object which is the limit of an infinite

sequence of graphs. This idea has been previously explored, most famously by Lovász [68],

whose definition of a graph limit (called a graphon) is as follows: Recall the definition of

graph cut-distance Dcut(G,H) from Equation 1.3, namely: the cut distance is the maximum

discrepancy in sizes of edge-cuts, taken over all possible subsets of vertices, between two

graphs on the same vertex-set. A graphon is then an equivalence class of Cauchy sequences

of graphs1, under the equivalence relation that two sequences G1, G2, . . . and H1, H2, . . . are

equivalent if Dcut(Gi, Hi) approaches 0 as n→∞.

We propose a similar definition of graph limits, but with our diffusion distance substituted

as the distance measure used in the definition of a Cauchy sequence of graphs. Hammond et.

al. argue in [48] why their variant of diffusion distance may be a more descriptive distance

measure than cut-distance. More specifically, they show that on some classes of graphs, some

edge deletions ‘matter’ much more than others: removal of a single edge changes the diffusive

properties of the graph significantly. However, the graph-cut distance between the new and

old graphs is the same, regardless of which edge has been removed, while the diffusion

distance captures this nuance. For graph limits, however, our generalization to unequal-sized

graphs via P is of course essential. Furthermore, previous work [14] on sparse graph limits has

shown that in the framework of Lovász all sequences of sparse graphs converge (in the infinite-

1Here we are calling a sequence of graphs “Cauchy” if for any ε > 0 there is some N such that for all
n,m ≥ N , Dcut(Gn, Gm) < ε.
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size limit) to the zero graphon. Graph convergence results specific to sparse graphs include

the Benjamini-Schramm framework [10], in which graph sequences are compared using the

distributional limits of subgraph frequencies. These two graph comparison methods both

have the characteristic that the “limit object” of a sequence of graphs is rigorously defined.

It is unclear that density functions on the unit square are the best choice of limit objects for

graphs; while graphons have many nice properties as detailed by Lovász, other underlying

limit objects may be a more natural choice for sparse graphs. In this section we attempt

to show empirically that such a limit object of graph sequences under GDD may exist, and

therefore merit further investigation.

We examine several sequences of graphs of increasing size for the required Cauchy behavior

(in terms of our distance measure) to justify this variant definition of a “graph limit”.

For each of the graph sequences defined in Section 5.1, we examine the distance between

successive members of the sequence, plotting D2(Gn, Hn+1) for each choice of G and H.

These sequences of distances are plotted in Figure 5.7.

In this figure, we see that generally distance diverges between different graph lineages, and

converges for successive members of the same lineage, as n → ∞. We note the exceptions

to this trend:

1. The distances between n-paths and n + 1-cycles appear to be converging; this is in-

tuitive, as we would expect that difference between the two spectra due to distortion

from the ends of the path graph would decrease in effect as n→∞.

2. We also show analytically, under similar assumtions, that the distance between succes-

sive path graphs also shrinks to zero (Theorem 5.6.2).

We do not show that all similarly-constructed graph sequences display this Cauchy-like

behavior. We hope to address this deeper question, as well as a more formal exploration of
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the limit object, with one or more modified versions of the objective function (see Section

3.8.1).

5.6 Limit of Path Graph Distances

In this section, we demonstrate analytically that the sequence of path graphs of increasing

size is Cauchy in the sense described by the previous section. In the following theorem

(Theorem 5.6.2), we assume that the optimal value of t approaches some value t̃ as n→∞.

We have not proven this to be the case, but have observed this behavior for both square

grids and path graphs (see Figure 5.5 for an example of this behavior). Lemmas 5.6.1 and

5.6.2 show a related result for path graphs; we note that the spectrum of the Laplacian (as

we define it in this paper) of a path graph of size n is given by

λk = −2 + 2 cos
kπ

n− 1
k ∈ {0...n− 1}.

Lemma 5.6.1. For any finite k, t, we have

lim
n→∞

n
(
et(−2+2 cos(πk

n
)) − et(−2+2 cos( πk

n+1
))
)2

= 0

Proof. Clearly for finite k, t

lim
n→∞

(
et(−2+2 cos(πk

n
)) − et(−2+2 cos( πk

n+1
))
)

= 0
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Then,

lim
n→∞

n
(
e−2+2 cos(πk

n
) − e−2+2 cos( πk

n+1
)
)

= lim
n→∞

(
e−2+2 cos(πk

n
) − e−2+2 cos( πk

n+1
)
)

1
n

Evaluating this expression requires applying L’Hôpital’s rule. Hence, we have:

lim
n→∞

(
e−2+2 cos(πk

n
) − e−2+2 cos( πk

n+1
)
)

1
n

= lim
n→∞

2πkt

(
sin(πkn )e

2t(cos(πkn )−1)

n2 − sin( πk
n+1)e

2t(cos( πk
n+1)−1)

(n+1)2

)
−1
n2

= 2πkt lim
n→∞

(
n2 sin

(
πk
n+1

)
e2t(cos( πk

n+1)−1)

(n+ 1)2
− sin

(
πk

n

)
e2t(cos(πkn )−1)

)
.

Since both of the limits

lim
n→∞

(
n2 sin

(
πk
n+1

)
e2t(cos( πk

n+1)−1)

(n+ 1)2

)

and

lim
n→∞

(
− sin

(
πk

n

)
e2t(cos(πkn )−1)

)

exist (and are 0),

2πkt lim
n→∞

(
n2 sin

(
πk
n+1

)
e2t(cos( πk

n+1)−1)

(n+ 1)2
− sin

(
πk

n

)
e2t(cos(πkn )−1)

)
= 0
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and therefore

lim
n→∞

n
(
et(−2+2 cos(πk

n
)) − et(−2+2 cos( πk

n+1
))
)2

= 0

Theorem 5.6.2. If limn→∞ arg suptD
2 (Pan,Pan+1| t) exists, then:

lim
n→∞

D2 (Pan,Pan+1) = 0.

Proof. Assume that limn→∞ arg suptD
2 (Pan,Pan+1| t) = t̃. Then, we must have

lim
n→∞

D2 (Pan,Pan+1) ≤ lim
n→∞

D2
(

Pan,Pan+1| t̃
)

Hence, it remains only to prove that

lim
n→∞

D2 (Pan,Pan+1| t) = 0

for any finite t (which will then include t̃). First, for any particular (n+1)×n subpermutation

matrix S, note that

D2 (Pan,Pan+1| t) = inf
α>0

inf
P |C(P )

D2 (Pan,Pan+1| t, P, α)

≤ D2
(

Pan,Pan+1| t, α = 1, UT
n+1SUn

)
Here, Un and Un+1 are the matrices which diagonalize L(Pan) and L(Pan+1) respectively

(note also that a diagonalizer of a matrix L also diagonalizes eL). If at each n we select S

to be the subpermutation S =

 I

0

, then (using the same argument as in Theorem 4.4.1)
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the objective function simplifies to:

D2 (Pan,Pan+1| t, P = UT
n+1SUn, α = 1)

=
∣∣∣∣SecΛPan − ecΛPan+1S

∣∣∣∣2
F

=
n−1∑
k=0

(
ec(−2+2 cos(πk

n
)) − ec(−2+2 cos( πk

n+1
))
)2

≤ max
0≤k≤n−1

n
(
ec(−2+2 cos(πk

n
)) − ec(−2+2 cos( πk

n+1
))
)2

By Lemma 5.6.1, for any finite k, t, we have

lim
n→∞

n
(
et(−2+2 cos(πk

n
)) − et(−2+2 cos( πk

n+1
))
)2

= 0

So for any ε > 0, ∃N such that when n ≥ N , for any c, k,

n
(
ec(−2+2 cos(πk

n
)) − ec(−2+2 cos( πk

n+1
))
)2

< ε

But then

n−1∑
k=0

(
ec(−2+2 cos(πk

n
)) − ec(−2+2 cos( πk

n+1
))
)2

< ε

as required. Thus, the Cauchy condition is satisfied for the lineage of path graphs Pan

Given a graph lineage which consists of levelwise box products between two lineages, it seems

natural to use our upper bound on successive distances between graph box products to prove

convergence of the sequence of products. As an example, the lineage consisting of square

grids is the levelwise box product of the lineage of path graphs with itself. However, in this

we see that this bound may not be very tight. Applying Equation (3.29) from Theorem
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Figure 5.5: Limiting behavior of D and two parameters as path graph size approaches
infinity. All distances were calculated between Pathn and Pathn+1. We plot the value of the
objective function, as well as the optimal values of α and t, as n → ∞. Optimal α rapidly
approach 1 and the optimal distance tends to 0. Additionally, the optimal t value approaches
a constant (t ≈ .316345), providing experimental validation of the assumption we make in
proving Theorem 5.6.2.

3.6.1, we have (for any tc, αc):

D
(

Sqn, Sqn+1

)
≤ D

(
Sqn, Sqn+1

∣∣ tc, αc)
≤ D (Pan+1,Pan+1 | tc, αc)

(∣∣∣∣∣∣e tcacL(Pan)
∣∣∣∣∣∣
F

+
∣∣∣∣etcacL(Pan+1)

∣∣∣∣
F

)
As we can see in Figure 5.6, the right side of this inequality seems to be tending to a nonzero

value as n → ∞, whereas the actual distance (calculated by our optimization procedure)

appears to be tending to zero.
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Figure 5.6: Comparison of the distance D(Sqn, Sqn+1) as a function of n, to the upper
bound calculated as the optimum of distance between Pan and Pan+1. We see that the
upper found converges to some constant D ≈ 0.01782, whereas the actual distance appears
to be converging to 0 as n→∞.

Figure 5.7: Cauchy-like behavior of graph distance as a function of sequence index, n. The
distance between successive square grids and all other graph sequences appears to diverge
(the same behavior is seen for k-barbells). Notably, the distance between Gridn×n and
Grid(n+1)×(n+1) does not appear to converge, until much higher values of n (n > 100) than
the other convergent series. This may be because the distances calculated are an upper
bound, and may be converging more slowly than the ‘true’ optima.
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Chapter 6

Application: Multiscale Neural

Network Training

Previous chapters have explored the properties of Graph Diffusion Distance, as well as ex-

plained how to compute it efficiently. In this chapter, we use the P matrices which are

a byproduct of computing Graph Diffusion Distance to accelerate the process of training

a neural network. This is accomplished by defining a network which operates on multiple

spatial scales of the input data, with the mapping in between scales performed by pre- and

post-multiplication with P matrices. The final model shares some structural similarities with

multigrid solvers for differential equations, which we discuss in the next section.

6.1 Prior Work

In this section, we discuss prior attempts to apply ideas from multigrid methods to neural

network models. Broadly speaking, prior approaches to neural net multigrid can be catego-

rized into two classes: (1) Neural network models which are “structurally multigrid”, i.e. are
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typical neural network models which make use of multiple scales of resolution; and (2) Neural

network training processes which are hierarchical in some way, or use a coarsening-refinement

procedure as part of the training process.

In the first class are approaches [43, 58, 95]. Ke et al [58] implement a convolutional network

in which convolutions make use of a multigrid-like structure similar to a Gaussian pyramid,

with the motivation that the network will learn features at multiple scales of resolution. Grais

et. al [43] define a convolution operation, inspired by multigrid methods, that convolves at

multiple levels of resolution simultaneously. Serban et. al [95] demonstrate a recurrent neural

network model which similarly operates in multiple levels of some scale space; but in this

work the scale space is a space of aggregated language models (specifically, the differing scales

are different levels of generality in language models - for example, topic models are coarsest,

word models are finest, with document models somewhere in between). Common to all three

of these approaches is that they make use of a modified neural net structure while leaving

the training process unchanged, except that the network accepts multiresolution inputs.

In contrast, multilevel neural network models [8, 91] in the second category present modified

learning procedures which also use methodology similar to multilevel modeling. Reference

[8] introduces a network which learns at coarse scales, and then gradually refines its decision

making by increasing the resolution of the input space and learning “corrections” at each

scale. However, that paper focuses on the capability of a particular family of basis functions

for neural networks, and not on the capabilities of the multigrid approach. Reference [91]

presents a reframing of the neural network training process as an evolution equation in time,

and then applies a method called MGRIT (Multigrid Reduction in Time [33]) to achieve the

same results as parallelizing over many runs of training.

Our approach is fundamentally different: we use coarsened versions of the network model

to make coarse updates to the weight variables of our model, followed by ‘smoothing steps’
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in which the fine-scale weights are refined. This approach is more general than any of

[43, 58, 95], since it can be applied to any feed-forward network and is not tied to a particular

network structure. The approach in [91] is to parallelize the training process by reframing

it as a continuous-in-time evolution equation, but it still uses the same base model and

therefore only learns at one spatial scale.

Our method is both structurally multilevel and learns using a multilevel training procedure.

Our hierarchical neural network architecture is the first to learn at all spatial scales simulta-

neously over the course of training, transitioning between neural networks of varying input

resolution according to standard multigrid method schedules of coarsening and refinement.

To our knowledge, this represents a fully novel approach to combining the powerful data

analysis of neural networks with the model acceleration of multiscale modeling.

6.1.1 Outline

Building on the terminology in Chapters 1 and 2, in Section 6.2 we define an objective

function which evaluates a map between two graphs, in terms of how well it preserves the

behavior of some local process operating on those graphs (interpreting the smaller of the two

graphs as a coarsened version of the larger). This is the core theory of this chapter: that of

optimal prolongation maps between computational processes running on graph-based data

structures, and hence between graphs. In this chapter we use a specific example of such a

process, single-particle diffusion on graphs, to examine the behavior of these prolongation

maps. Finally, we discuss numerical methods for finding (given two input graphs G1 and

G2, and a process) prolongation and restriction maps which minimize the error of using

G1 as a surrogate structure for simulating the behavior of that process on G2. We will

define more rigorously what we mean by “process”, “error”, and “prolongation” in Section

6.2. In Subsection 6.3.2 we examine some properties of this objective function, including
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presenting some projection matrices which are local optima for particular choices of graph

structure and process. In Subsections 6.4 and 6.4.2, we define the Multiscale Artificial

Neural Network (MsANN), a hierarchically-structured neural network model which uses these

optimized projection matrices to project network parameters between levels of the hierarchy,

resulting in more efficient training. In Section 6.5, we demonstrate this efficiency by training

a simple neural network model on a variety of datasets, comparing the cost of our approach

to that of training only the finest network in the hierarchy.

6.2 Optimal Prolongation Maps Between Graphs

Given two graphs G1 and G2, we find the optimal prolongation map between them as follows:

We first calculate the graph Laplacians L1 and L2, as well as pairwise vertex Manhattan

distance matrices (i.e. the matrix with Ti,j the minimal number of graph edges between

vertices i and j in the graph), T1 and T2, of each graph. Calculating these matrices may

not be trivial for arbitrary dense graphs; for example, calculating the pairwise Manhattan

distance of a graph with m edges on n vertices can be accomplished in O(m+n log n) by the

Fibonacci heap version of Dijkstra’s algorithm [35]. Additionally, in Section 6.3 we discuss an

optimization procedure which requires computing the eigenvalues of Li (which are referred

to as the spectrum of Gi). Computing graph spectra is a well studied problem; we direct

the reader to [23, 79]. In practice, all of the graph spectra computed for experiments in this

chapter took a negligible amount of time (< 1s) on a modern consumer-grade laptop using

the scipy.linalg package [56], which in turn uses LAPACK routines for Schur decomposition
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of the matrix [4]. The optimal map is defined as P which minimizes the matrix function

inf
P |C(P ),α>0,β>0

E(P ) (6.1)

= inf
P |C(P ),α>0,β>0

[
(1− s)

∣∣∣∣∣∣∣∣ 1√
α
PL1 −

√
αL2P

∣∣∣∣∣∣∣∣2
F

“Diffusion Term”

+s

∣∣∣∣∣∣∣∣ 1√
β
PT1 −

√
βT2P

∣∣∣∣∣∣∣∣2
F

]
“Locality Term”1

where || · ||F is the Frobenius norm, and C(P ) is a set of constraints on P (in particular,

we require P TP = In1 , but could also impose other restrictions such as sparsity, regularity,

and/or bandedness). The manifold of real-valued orthogonal n2 × n1 matrices with n1 ≤

n2 is known as the Stiefel manifold; minimization constrained to this manifold is a well-

studied problem [84, 106]. This optimization problem can be thought of as measuring the

agreement between processes on each graph, as mapped through P . The expression PX1 −

X2P compares the end result of

1. Advancing process X2 forward in time on G2 and then using P to interpolate vertex

states to the smaller graph, to:

2. Interpolating the initial state (the all-ones vector) using P and then advancing process

X1 on G1.

Strictly speaking the above interpretation of our objective function does not apply to the

Manhattan distance matrix T of a graph, since T is not a valid time evolution operator and

thus is not a valid choice for X. However, the objective function term containing T may

still be interpreted as comparing travel distance in one graph to travel distance in the other.

That is, we are implicitly comparing the similarity of two ways of measuring the distance of

two nodes vk and vl in G1:

1By this we mean the notion that neighborhoods of G1 should be mapped to neighborhoods of G2 and
vice versa.
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1. The Manhattan distance, as defined above, and;

2.
∑n2

i=1

∑n2

j=1 pikdG2(ui, uj)pjl, a sum of path distances in G2 weighted by how strongly

vk and vl are connected, through P , to the endpoints of those paths, ui and uj.

Parameters α and β are rescaling parameters to compensate for different graph sizes; in other

words, P must only ensure that processes 1 and 2 above agree up to some multiplicative

constant. In operator theory terminology, the Laplacian is a time evolution operator for the

single particle diffusion equation: Li = A(Gi) − diag(1 · A(Gi)). This operator evolves the

probability distribution of states of a single-particle diffusion process on a graph Gi (but

other processes could be used - for example, a chemical reaction network or multiple-particle

diffusion). The process L defines a probability-conserving Master Equation of nonequilib-

rium statistical mechanics dp/dt = L · p which has formal solution p(t) = exp (tL) · p(0).

Pre-multiplication by the prolongation matrix P is clearly a linear operator i.e. linear trans-

formation from Rn1 to Rn2 . Thus, we are requiring P which minimizes the degree to which

the operator diagram

L1

∆t
- L1

′

(Diagram 1)

L2

P

? ∆t
- L2

′

P

?

fails to commute. ∆t of course refers to advancement in time. See [55], Figure 1, for a more

complete version of this commutative diagram for model reduction.

We thus include in our objective function terms with 1) graph diffusion and 2) graph locality

as the underlying process matrices (T , the Manhattan distance matrix, cannot be considered

a time evolution operator because it is not probability-preserving). Parameter s adjusts the
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Figure 6.1: Several solutions of our objective function found by PyManOpt as s, the relative
weight of the two terms of our objective function, is tuned from 0 (fully diffuse, top left)
to 1 (fully local, bottom right). Within each subplot, grayscale indicates the magnitude of
matrix entries. Note that the P matrices found with s = 0 do not appear to be structured
in a way which respects the locality of the original graphs, whereas the matrices with s = 1
do.

relative strength of these terms to each other; so we may find “fully diffuse” P when s = 0 and

“fully local” P when s = 1. Figure 6.1 illustrates this tradeoff for an example prolongation

problem on a pair of grid graphs, including the transition from a global optimum of the

diffusion term to a global optimum of the locality term. In each case, we only require P

to map these processes into one another up to a multiplicative constant: α for the diffusion

term and β for the locality term. Exhaustive grid search over α and β for a variety of

prolongations between (a) path graphs and (b) 2D grid graphs of varying sizes has suggested

that for prolongation problems where the Gi are both paths or both grids, the best values

(up to the resolution of our search, 10−6) for these parameters are α = 1.0 and β = n1/n2.

However, we do not expect this scaling law to hold for general graphs.
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6.3 Comparison of Numerical Methods

To find minima of this objective function, we explore several numerical methods. For pro-

totyping, we initially used Nelder-Mead [75] optimization with explicit orthogonality con-

straints, as implemented in the Mathematica commercial computer algebra program. How-

ever, this approach does not scale - in our hands Mathematica was not able to minimize this

objective function with more than approximately 200 unknowns in a reasonable amount of

time. Our next approach was to use a special-purpose code [114] for orthogonally-constrained

gradient descent. While this software package scaled well to pairs of large graphs, it required

many random restarts to find minima of our objective function. Motivated by its automatic

differentiation capability and its ability to handle larger numbers of unknowns, we tried the

TensorFlow minimization package [1]: first custom-written code and then a package called

PyManOpt [105] which performs manifold-constrained optimization of arbitrary objective

functions expressed as TensorFlow computation graphs. PyManOpt is able to perform first-

and second-order minimization while staying within the constraint manifold (rather than our

custom code, which takes gradient descent steps and then projects back to the constraint sur-

face). These latter two approaches performed best in terms of optimization solution quality,

and we compare them more throughly below.

To compare the performance of the TensorFlow method and the PyManOpt method, we

explore the performance of both minimization methods as the relative weight s of the lo-

cality and diffusion terms is adjusted. Figure 6.2 shows the tradeoff plot of the optimized

unweighted value of each term as the weight parameter s is tuned. The four subplots corre-

spond to four runs of this experiment with differing sizes of graphs; in each we find optimal

prolongations from a cycle graph of size n to one of size 2n. The PyManOpt-based mini-

mization code is clearly superior, as we see a clear linear tradeoff between objective function

terms as a function of s. The TensorFlow code which maintains orthogonality by projecting

93



Figure 6.2: Tradeoff plot of locality vs. diffusion for several pairs of graphs. Multiple
solutions are plotted in each subplot, representing the adjustment of the s parameter in
our objective function from totally local to totally diffuse. We see that the PyManOpt
boundary shows a linear tradeoff between the two terms of the objective function as their
relative weight is tuned, whereas the Tensorflow boundary is more irregular. Furthermore,
the PyManOpt method in general finds optima with lower objective function value than
Tensorflow (for both objectives). We note that Nelder-Mead in Mathematica would not be
able to tackle problems of this size, and the method due to Wen and Yin [114] produced
points which are off of this plot by at least an order of magnitude (we do not present these
points).

back to the Stiefel manifold falls short of this boundary in all cases. Therefore unless oth-

erwise specified, for the rest of this chapter when we discuss solving for P matrices, we are

reporting results of using the PyManOpt method.
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6.3.1 Initialization

We initialize our minimization with an upper-bound solution given by the Munkres minimum-

cost matching algorithm; the initial P is m∗(L1, L2) as defined in equation 1.6, i.e. the binary

matrix where an entry P(i,j) is 1 if the pair (i, j) is one of the minimal-cost pairs selected

by the minimum-cost assignment algorithm, and 0 otherwise. While this solution is, strictly

speaking, minimizing the error associated with mapping the spectrum of one graph into the

spectrum of the other (rather than actually mapping a process running on one graph into

a process on the other) we found it to be a reasonable initialization, outperforming both

random restarts and initialization with the appropriately sized block matrix

 I

0

.

6.3.2 Precomputing P matrices

For some structured graph lineages it may be possible to derive formulaic expressions for

optimal P and α, as a function of the lineage index. For example, during our experiments

we discovered species of P which are local minima of prolongation between path graphs,

cycle graphs, and grid graphs. A set of these outputs is shown in Figure 6.1. They feature

various diagonal patterns as naturally idealized in Figure 6.3. These idealized versions of

these patterns all are also empirical local minima of our optimization procedure, for s = 0 or

s = 1, as indicated. Each column of Figure 6.3 provides a regular family of P structures for

use in our subsequent experiments in Section 6.5. We have additionally derived closed-form

expressions for global minima of the diffusion term of our objective function for some graph

families (cycle graphs and grid graphs with periodic boundary conditions). However, in

practice these global minima are nonlocal (in the sense that they are not close to optimizing

the locality term) and thus may not preserve learned spatial rules between weights in levels

of our hierarchy.
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Examples of these formulaic P matrices can be seen in Figure 6.3. Each column of that

figure shows increasing sizes of P generated by closed-form solutions which were initially

found by solving smaller prolongation problems (for various graph pairs and choices of s) and

generalizing the solution to higher n. Many of these examples are similar to what a human

being would design as interpolation matrices between cycles and periodic grids. However, (a)

they are valid local optima found by our optimization code and (b) our approach generalizes

to processes running on more complicated or non-regular graphs, for which there may not

be an obvious a priori choice of prolongation operator.

We highlight the best of these multiple species of closed-form solution, for both cycle graphs

and grid graphs. The interpolation matrix-like P seen in the third column of the “Cycle

Graphs” section, or the sixth column of the “Grid Graphs” section of Figure 6.3, were the

local optima with lowest objective function value (with s = 1, i.e. they are fully local). As

the best optima found by our method(s), these matrices were our choice for line graph and

grid graph prolongation operators in our neural network experiments, detailed in Section 6.5.

We reiterate that in those experiments we do not find the P matrices via any optimization

method - since the neural networks in question have layer sizes of order 103, finding the

prolongation matrices from scratch may be computationally difficult. Instead, we use the

solutions found on smaller problems as a recipe for generating prolongation matrices of the

proper size.

Furthermore, given two graph lineages G
(1)
1 , G

(2)
1 , G

(3)
1 . . . and G

(1)
2 , G

(2)
2 , G

(3)
2 . . ., and se-

quences of optimal matrices P
(1)
1 , P

(2)
1 , P

(3)
1 . . . and P

(1)
2 , P

(2)
2 , P

(3)
2 . . . mapping between suc-

cessive members of each, we can construct P which are related to the optima for prolonging

between members of a new graph lineage which is comprised of the levelwise graph box prod-

uct of the two sequences. We show in (Section 3.5, Corollary 3.5.2) conditions under which

the value of the objective function at P
(i)
box = P

(i)
1 ⊗ P

(i)
2 is an upper bound of the optimal

value for prolongations between members of the lineage G
(1)
1 �G(1)

2 , G
(2)
1 �G(2)

2 , G
(3)
1 �G(3)

2 , . . . .
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Figure 6.3: Examples of P matrices for cycle graph (left) and grid graph (right) prolongation
problems of various sizes, which can be generated by closed-form representations dependent
on problem size. Within each of the top and bottom plots, columns represent a series of
matrices each generated by a particular numerical recipe, with rows representing increasing
sizes of prolongation problem. Each matrix plot is a plot of the absolute value of matrix
cell values. These closed-form representations were initially found as local minima of our
objective function on small problems and then generalized to closed-form representations.
For the “Cycle Graphs” section, the prolongation problems were between cycle graphs of
sizes n1 = 2, 4, 8, 16 and n2 = 2 ∗ n1. Columns 1-3 were solutions found with s = 1 (fully
local), and the rest were found with s = 0 (fully diffuse). For the “Grid Graphs” section,
the prolongation problems were between grids of size (n1, n1) to grids of size (2n1, 2n1) for
n1 in 4, 8, 16. Columns 1-6 are fully local and columns 7-10 are fully diffuse, respectively. As
in Figure 6.1, grayscale values indicate the magnitude of each matrix entry.

We leave open the question of whether such formulaic P exist for other families of structured

graphs (complete graphs, k-partite graphs, etc.). Even in cases where formulaic P are not

known, the computational cost of numerically optimizing over P may be amortized, in the

sense that once a P -map is calculated, it may be used in many different hierarchical neural

networks or indeed many different multiscale models.
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6.4 Multiscale Artificial Neural Network Algorithm

In this section we describe the Multiscale Artificial Neural Network (MsANN) training pro-

cedure, both in prose and in pseudocode (Algorithm 3). Let M0 . . .ML be a sequence of

neural network models with identical “aspect ratios” (meaning the sizes of each layer relative

to other layers in the same model) but differing input resolution, so thatM0 operates at the

finest scale and ML at the coarsest. For each model Ml, let θ
(l)
0 , θ

(l)
1 , . . . θ

(l)
nvars−1 be a list of

the nvars network parameters (each in matrix or vector form) in some canonical order which

is maintained across all scales. Let the symbol P(l)
j represent either:

• If the network parameters θ
(i)
j at levels i = 0 . . . L are weight matrices between layers

m1 and m2 of each hierarchy, then P(l)
j represents a pair of matrices

(
P

(l)
inputj

, P
(l)
outputj

)
,

such that:

– P
(l)
inputj

prolongs or restricts between possible values of nodes in layer m1 of model

Ml, and values of nodes in layer m1 of model Ml+1.

– P
(l)
outputj

does the same for possible values of nodes in layer m2 of each model.

• If the network parameters θ
(i)
j at levels i = 0 . . . L are bias vectors which are added to

layer m of each hierarchy, then P(l)
j represents a single P

(l)
j which prolongs or restricts

between possible values of nodes in layer m of modelMl, and values of nodes in layer

m of model Ml+1.

As a concrete example, for a hierarchy of single-layer networksM0,M1,M2, each with one

weight matrix W (l) and one bias vector b(l), we could have θ
(l)
0 = W (l), θ

(l)
1 = b(l) for each

Ml. P(0)
0 would represent a pair of matrices which map between the space of possible values

of W (0) and the space of possible values of W (1) in a manner detailed in the next section.

On the other hand, P(0)
1 would represent a single matrix which maps between b(0) and b(1).
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Similarly, P(1)
0 would map between W (1) and W (2), and P(1)

1 between b(1) and b(2). In Section

6.4.2, we describe a general procedure for training such a hierarchy according to standard

multilevel modeling schedules of refinement and coarsening, with the result that the finest

network, informed by the weights of all coarser networks, requires fewer training examples.

6.4.1 Weight Prolongation and Restriction Operators

In this section we introduce the prolongation and restriction operators for neural network

weight and bias optimization variables in matrix or vector form respectively.

For a 2D matrix of weights W , define

ProP ◦W ≡ Pro(Pinput,Poutput) ◦W ≡ PinputWP T
output

ResP ◦W ≡ Res(Pinput,Poutput) ◦W ≡ P T
inputWPoutput

(6.2)

where Pinput and Poutput are each prolongation maps between graphs which respect the struc-

ture of the spaces of inputs and outputs of W , i.e. whose structure is similar to the structure

of correlations in that space. Further research is necessary to make this notion more precise.

In our experiments on autoencoder networks in Section 6.5, we use example problems with

an obvious choice of graph to use. In these 1D and 2D machine vision tasks, where we expect

each pixel to be highly correlated with the activity of its immediate neighbors in the grid,

1D and 2D grids are clear choices of graphs for our prolongtion matrix calculation. Other

choices may lead to similar results; for instance, we speculate that since neural network

weight matrices may be interpreted as the weights of a multipartite graph of connected neu-

rons in the network, these graphs could be an alternate choice of structure to prolong/restrict

between. We leave for future work the development of automatic methods for determining

these structures.
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Note that the Pro and Res linear operators satisfy ResP ◦ ProP = I, the identity operator,

so ProP ◦ ResP is a projection operator.

For a 1D matrix of biases b, define

ProP ◦ b = P · b

ResP ◦ b = P T · b
(6.3)

where, as before, we require that P be a prolongation matrix between graphs which are

appropriate for the dynamics of the network layer where b is applied. Again ResP ◦ProP = I.

Given such a hierarchy of models M0 . . .ML, and appropriate Pro and Res operators as

defined above, we define a Multiscale Artificial Neural Network (MsANN) to be a neural

network model with the same layer and parameter dimensions as the largest model in the

hierarchy, where each layer parameter Θj is given by a sum of prolonged weight matrices

from level j of each of the models defined above:

Θj = θ
(0)
j + Pro1→0 ◦ θ(1)

j + Pro2→0 ◦ θ(2)
j . . .ProL→0 ◦ θ(L)

j (6.4)

Here we are using Prok→0 as a shorthand to indicate composed prolongation from model k

to model 0, so if θ
(i)
j are weight variables we have (by Equation 6.2)

Θj = θ
(0)
j + P

(0)
inputj

θ
(1)
j

(
P

(0)
outputj

)T
(6.5)

+ P
(0)
inputj

P
(1)
inputj

θ
(2)
j

(
P

(1)
outputj

)T(
P

(0)
outputj

)T
+ . . . +

(
P

(0)
inputj

. . . P
(L−1)
inputj

θ
(L)
j

(
P

(L−1)
outputj

)T
. . .
(
P

(0)
outputj

)T)

and if θ
(i)
j are bias variables we have (by Equation 6.3)

Θj = θ
(0)
j + P

(0)
biasj

θ
(1)
j + P

(0)
biasj

P
(1)
biasj

θ
(2)
j + . . .+

(
P

(0)
biasj

P
(1)
biasj

. . . P
(L−1)
biasj

θ
(L)
j

)
(6.6)
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We note that matrix products such as P
(0)
inputj

. . . P
(k)
inputj

need only be computed once, during

model construction.

6.4.2 Multiscale Artificial Neural Network Training

The Multiscale Artificial Neural Network algorithm is defined in terms of a recursive ‘cycle’

that is analogous to one epoch of default neural network training. Starting with M0 (i.e.

the finest model in the hierarchy), we call the routine MsANNCycle(0), which is defined

recursively. At any level l, MsANNCycle trains the network at level l for k batches of

training examples, recurses by calling MsANNCycle(l + 1), and then returns to train for k

further batches at level l. The number of calls to MsANNCycle(l + 1) inside each call to

MsANNCycle(l) is given by a parameter γ.

This is followed by additional training at the refined scale; this process is normally [111]

referred to by the multigrid methods community as ‘restriction’ and ‘prolongation’ followed

by ‘smoothing’. The multigrid methods community additionally has special names for this

type of recursive refining procedure with γ = 1 (“V-Cycles”) and γ = 2 (“W-Cycles”). See

Figure 6.4 for an illustration of these contraction and refinement schedules. In our numerical

experiments below, we examine the effect of this parameter on multigrid network training.

Neural network training with gradient descent requires computing the gradient of the error E

between the network output and target with regard to the network parameters. This gradient

is computed by taking a vector of error for the nodes in the output layer, and backpropagating

that error backward through the network layer by layer to compute the individual weight

matrix and bias vector gradients. An individual network weight or bias term w is then

adjusted using gradient descent, i.e. the new value w′ is given by w′ = w − η dE
dw

, where η is

a learning rate or step size. Several techniques can be used to dynamically change learning

rate during model training - we refer the reader to [13] for a description of these techniques
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and backpropagation in general.

Our construction of the MsANN model above did not make use of the Res (restriction) op-

erator - we show here how this operator is used to compute the gradient of the coarsened

variables in the hierarchy. This can be thought of as continuing the process of backpropaga-

tion through the Pro operator. For these calculations we assume Θj is a weight matrix, and

derive the gradient for a particular θ
(k)
j . For notational simplicity we rename these matrices

W and V , respectively. We also collapse the matrix products

P (input) = P
(0)
inputj

P
(1)
inputj

. . . P
(k)
inputj

(6.7)(
P (output)

)T
=
(
P

(L−1)
outputj

)T(
P

(L−2)
outputj

)T
. . .
(
P

(0)
outputj

)T
(6.8)

Let dE
dW

be a matrix where
(
dE
dW

)
mn

= dE
dwmn

, calculated via backpropagation as described

above. Then, for some m,n:

dwmn
dvkl

=
d

dvkl
(. . .+ Pro ◦ V + . . .)mn (6.9)

=
d

dvkl
(. . .+ Prok→0 ◦ V + . . .)mn =

d

dvkl
(Prok→0 ◦ V )mn

=
d

dvkl

(
P (input)V

(
P (output)

)T)
mn

=
d

dvkl

(∑
a,b

p(input)
ma vabp

(output)
nb

)

=
(
p

(input)
mk p

(output)
nl

)

Then,

dE

dvkl
=
∑
m,n

dE

dwmn

dwmn
dvkl

(6.10)

=
∑
m,n

dE

dwmn
p

(input)
mk p

(output)
nl

=

((
P (input)

)T dE
dW

P (output)

)
kl
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and so

dE

dV
=
(
P (input)

)T dE
dW

P (output)

and therefore finally

dE

dV
= Res0→k ◦

dE

dW
(6.11)

where Res is as in 6.2.

Algorithm 3 One ‘cycle’ of the MsANN procedure.

Procedure MsANNCycle(l):

Train model Ml for k batches, where each consists of:

1. Feed examples through the network in feed-forward mode;

2. Compute error E between network output and target;

3. Use the classical backpropagation algorithm to compute the gradient of top-level pa-

rameter Θj w.r.t. this error;

4. Use the appropriate Res operations to compute the gradient of E w.r.t. the parameters

in Ml, as described in Equation 6.11.

if max depth has not been reached then

for 1 ≤ i ≤ γ do

MsANNCycle(l + 1);

Train model Ml for k batches, as above

end

end
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Figure 6.4: Visits to models in a hierarchy of neural networks realized by several values
of the recursion frequency parameter γ. The γ = 1 case and the γ = 2 case are referred
to as “V-cycles” and “W-cycles”, respectively. Each time the multilevel training procedure
visits a level, it performs some number, k, of smoothing steps (i.e. gradient descent at that
resolution) at that model.

We also note here that our code implementation of this procedure does not make explicit use

of the Res operator; instead, we use the automatic differentiation capability of Tensorflow [1]

to compute this restricted gradient. This is necessary because data is supplied to the model,

and error is calculated, at the finest scale only. Hence we calculate the gradient at this

scale and restrict it to the coarser layers of the model. It may be possible to feed coarsened

data through only the coarser layers of the model, eliminating the need for computing the

gradient at the finest scale, but we do not explore this method in this thesis.

6.5 Machine Learning Experiments

We present four experiments using this Multiscale Neural Network method. All of the

experiments below demonstrate that our multigrid method outperforms default training

(i.e. training only the finest-scale network), in terms of the number of training examples

(summed over all scales) needed to reach a particular mean-squared error (MSE) value. We

perform two experiments with synthetic machine vision tasks, as well as two experiments with

benchmark image datasets for machine learning. While all of the examples presented here

are autoencoder networks (networks whose training task is to reproduce their input at the

output layer, while passing through a bottleneck layer or layers), we do not mean to imply
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that MsANN techniques are constrained to autoencoder networks. All network training

uses the standard backpropagation algorithm to compute training gradients, and this is the

expected application domain of our method. Autoencoding image data is a good choice

of machine learning task for our experiments for two main reasons. First, autoencoders are

symmetric and learn to reproduce their input at their output. Other ML models (for instance,

neural networks for classification) have output whose nodes are not spatially correlated, and

it is not yet clear if our approach will generalize to this type of model. Secondly, since

the single and double-object machine vision tasks operate on synthetic data, we can easily

generate an arbitrary number of samples from the data distribution, which was useful in the

early development of this procedure. Our initial successes on this synthetic data led us to

try the same task with a standard benchmark real-world dataset. For each experiment, we

use the following measure of computational cost to compare relative performance. Let |M|

be the number of trainable parameters in modelM. We compute the cost of a training step

of the weights in model Mk using a batch of size b as |Mk|
|M0|b. The total cost C(t) of training

at step t is the sum of this cost over all training steps thus far at all scales. This cost is

motivated by the fact that the number of multiply operations for backpropagation is O(nm)

in the total number of network parameters m and training examples n, so we are adding up

the relative cost of using a batch of size b to adjust the weights in model Mk, as compared

to the cost of using that same batch to adjust the weights in M0.

6.5.1 Simple Machine Vision Task

As an initial experiment in the capabilities of hierarchical neural networks, we first try two

simple examples: finding lower-dimensional representation of two artificial datasets. In both

cases, we generate synthetic data by uniformly sampling from

1. the set of binary-valued vectors with one “object” comprising a contiguous set of pixels
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one-eighth as long as the entire vector set to 1, and the rest zero; and

2. the set of vectors with two such non-overlapping objects.

In each case, the number of possible unique data vectors is quite low: for inputs of size

1024, we have 1024 - 128 = 896 such vectors. Thus, for both of the synthetic datasets we

add binary noise to each vector, where each “pixel” of the input has an independent chance

of firing spuriously with p = 0.05. This noise in included only in the input vector, making

these networks Denoising Autoencoders : models whose task is to remove noise from an input

image.

Single-Object Autoencoder

We first test the performance of this procedure on a simple machine vision task. The neural

networks in our hierarchy of models each have layer size specification (in number of units)

[2n, 2n−2, 2n−3, 2n−2, 2n] for n in {10, . . . 6}, with a bias term at each layer and sigmoid logistic

activation. We present the network with binary vectors which are 0 everywhere except

for a contiguous segment of indices of length 2n−3 which are set to 1, with added binary

noise as described above. The objective function to minimize is the mean-squared error

(MSE) between the input and output layers. Each model in the hierarchy is trained using

RMSPropOptimizer in Tensorflow, with learning rate α = 0.0005.

The results of this experiment are plotted in Figure 6.5 and summarized in Table 6.1. We

perform multiple runs of the entire training procedure with differing values of k (the number

of smoothing steps), γ (the multigrid cycle parameter), and L (depth of hierarchy). Notably,

nearly all multigrid schedules demonstrate performance gains over the default network (i.e.

the network which trains only at the l = 0 scale), with more improvement for higher values

of k, L, and γ. The hierarchy which learned most rapidly was the deepest model (L = 6)
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with k = 4 and γ = 3. Those multigrid models which did not improve over the default

network were only slightly more computationally expensive per unit of accuracy than their

default counterparts, and the multigrid models which did improve, improved significantly.

Best MsANN Worst MsANN Default Best MsANN params

Final MSE 6.612× 10−4 4.431× 10−3 3.654× 10−3 (γ = 3, L = 5, k = 004)

Cost to 1
10 MSE 7.342× 103 1.640× 105 1.266× 105 (γ = 3, L = 6, k = 004)

Table 6.1: Best performance (on validation dataset for the one-object autoencoding task) by
any combination of parameters in our sweep over values for γ (recursion constant), L (depth
of network), and k (number of batches processed at each visit to each level). We report the
final Mean-Squared Error for both the best and worst combination of these parameters, as
well as for default training. We also report the best combination of parameters. The second
row indicates the cost C(t) necessary to train each model to 1

10
of the error at which it began.

The best MsANN network reaches this threshhold in an order of magnitude less cost, and its
final error is roughly half that of the default model, demonstrating clear improvement over
training without multigrid.

Double-Object Autoencoder

We repeat the above experiment with a slightly more difficult machine vision task - the

network must learn to de-noise an image with two (non-overlapping) ‘objects’ in the visual

field. We use the same network structure and training procedure, and note that we see again

(plotted in Figure 6.5 and summarized in Table 6.2) that the hierarchical model is more

efficient, reaching lower error in the same amount of computational cost C(t). The multigrid

neural networks again typically learn much more rapidly than the non-multigrid models.

Best MsANN Worst MsANN Default Best MsANN params
Final MSE 2.576× 10−3 8.998× 10−3 8.816× 10−3 (γ = 3, L = 6, k = 002)

Cost to 1
10

MSE 2.433× 104 2.623× 105 2.216× 105 (γ = 3, L = 6, k = 016)

Table 6.2: Best performance (on validation dataset for the two-object autoencoding task).
Again the MsANN network demonstrates performance and accuracy gains over neural net-
work training alone. See Table 6.1.
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Figure 6.5: Log-log plots of accuracy E(t) as a function of training cost C(t) attained by
a variety of hierarchical neural networks training on a simple machine vision task, demon-
strating that deeper hierarchies with more mutligrid behavior learn more rapidly. Plots are
ordered from top to bottom in increasing depth of recursion parameter γ; left plots are the
single-object experiments and right plots are the double-object experiments. Within each
plot, different curves represent different values of the depth of hierarchy, from L = 6 (light-
est) to L = 0 (darkest). Each line is the best run for that pair (L, γ) over all choices of k
(number of smoothing steps at each level) in {1, 2, 4, 8, 16, 32, 64, 128}.
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6.5.2 MNIST

To supplement the above synthetic experiments with one using real-world data, we perform

the same experiment with an autoencoder for the MNIST handwritten digit dataset [65, 66].

In this case, rather than the usual MNIST classification task, we use an autoencoder to map

the MNIST images into a lower-dimensional (d = 128) space with good reconstruction. We

use the same network structure as in the 1D vision example; also as in that example, each

network in the hierarchy is constructed of fully connected layers with bias terms and sigmoid

activation, and smoothing steps are performed with RMSProp [51] with learning rate 0.0005.

The only difference is that in this example we do not add noise to the input images, since

the dataset is larger by two orders of magnitude.

In this experiment, we see (in Figure 6.6 and Table 6.3) similar improvement in efficiency.

Table 6.3 summarizes these results: the best multilevel models learned more rapidly and

achieved lower error than their single-level counterparts, whereas the worst multilevel models

performed on par with the default model. Because the MNIST data is comprised of 2D

images, we tried using P matrices which were the optima of prolongation problems between

grids of the appropriate sizes, in addition to the same 1D P used in the prior two experiments.

The difference in performance between these two choices of underlying structure for the

prolongation maps can be seen in Figure 6.6. With either approach, we see similar results

to the synthetic data experiment, in that more training steps at the coarser layers results

in improved learning performance of the finer networks in the hierarchy. However, the

matrices optimized for 2D prolongation perform marginally better than their 1D cousins, -

in particular, the multigrid hierarchy with 2D prolongations took 60% of the computational

cost to reduce its error to 1
10

of its original value, as compared to the 1D version. We explore

the effect of varying the strategy used to pick P in Subsection 6.5.3.
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Figure 6.6: Log-log plots of mean-squared error E(t) on MNIST autoencoding task as a
function of computational cost C(t); the left plots represent multigrid performed with path
graph prolongations for each layer while the right plots used grid-based prolongation. While
both approaches show gains over default learning in both speed of learning and final error
value, the one which respects the spatial structure of the input data improves more rapidly.
Subplot explanations are the same as in Figure 6.5.
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Path-Based P Matrices
Best MsANN Worst MsANN Default Best MsANN params

Final MSE 1.547× 10−2 4.605× 10−2 4.171× 10−2 (γ = 3, L = 4, k = 008)
Cost to 1

10
MSE 7.207× 104 N/A N/A (γ = 3, L = 5, k = 032)

Grid-Based P Matrices
Best MsANN Worst MsANN Default Best MsANN params

Final MSE 1.436× 10−2 4.620× 10−2 4.132× 10−2 (γ = 3, L = 4, k = 002)
Cost to 1

10
MSE 5.095× 104 N/A N/A (γ = 3, L = 6, k = 128)

Table 6.3: Best performance (on validation dataset for the MNIST autoencoding task).
See Table 6.1. Upper section represents scores attained by a MsANN with path-based
prolongation, lower section represents grid-based prolongation. Entries marked N/A did not
reach 1

10
of their initial error during training.

6.5.3 Experiments of Choice of P

To further explore the role of the structure of P in these machine learning models, we

compare the performance of several MsANN models with P generated according to various

strategies. Our initial experiment on the MNIST dataset used the exact same hierarchical

network structure and prolongation/restriction operators as the example with 1D data, and

yielded marginal computational benefit. We were thus motivated to try this learning task

with prolongations which are designed for for 2D grid-based model architectures, as well

as trying unstructured (random orthogonal) matrices as a baseline. More precisely, our 1D

experiments used P matrices resembling those in column 3 of the “Cycle Graphs” section of

Figure 6.3. We instead, for the MNIST task, used P matrices like those in column 6 of the

“Grid Graphs” section of the same figure. In Figure 6.7, we illustrate the difference in these

choices for the MNIST training task, with the same choice of multigrid training parameters:

(L = 6, γ = 3, k = 1). We compare the following strategies for generating P :

1. As local optima of a prolongation problem between 1D grids, with periodic boundary

conditions;

2. As local optima of a prolongation problem between 2D grids, with periodic boundary
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conditions;

3. As in 2, but shuffled along the first index of the array.

Strategy 3 was chosen to provide the same degree of connectivity between each coarse variable

and its related fine variables as strategy 2, but in random order i.e. connected in a way which

is unrelated to the 2D correlation between neighboring pixels. We see in Figure 6.7 that the

two strategies utilizing local optima outperform both the randomized strategy and default

training (training only the finest scale). Furthermore, strategy 2 outperforms strategy 1,

although the latter eventually catches up at the end of training, when coarse-scale weight

training has diminishing marginal returns. The random strategy is initially on par with the

two optimized ones (we speculate that this is due to the ability to affect many fine-scale

variables at once, even in random order, which may make the gradient direction easier to

travel), but eventually falls behind, at times being less efficient than default training. We

leave for further work the question of whether there are choices of prolongation problem

which are even more efficient for this machine learning task. We also compare all of the

preceeding models to a model which has the same structure as a MsANN model (a hierarchy

of coarsened variables with Pro and Res operators between them), but which was trained

by training all variables in the model simultaneously. This model performs on par with

the default model, illustrating the need for the multilevel training schedule dictated by the

choice of γ.

6.5.4 Summary

We see uniform improvement (as the parameters L and γ are increased) in the rate of

neural network learning when models are stacked in the type of multiscale hierarchy we

define in equations 6.2 and 6.3, despite the diversity of machine learning tasks we examine.

Furthermore, this improvement is marked: the hierarchical models both learn more rapidly
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Figure 6.7: Comparison of sev-
eral choices of Pro and Res op-
erators for a Multiscale Neural
Network training experiment,
on MNIST data. Two choices
for P which are local optima of
prolongation problems demon-
strate more efficient training
than default, while two strate-
gies perform worse: multigrid
training with random P matri-
ces, and training all varibles in
the hierarchy simultaneously.

than training without multigrid and have final error lower than the default model. In many of

our test cases, the hierarchical models reached the same level of MSE as the default in more

than an order of magnitude fewer training examples, and continued to improve, surpassing

the final level of error reached by the default network. Even in the worst case, our hierarchical

model structure performed on par with neural networks which did not incorporate our weight

prolongation and restriction operators. We leave the question of finding optimal (L, γ, k) for

future work - see Section 6.6 for further discussion. Finally, we note that the model(s) in

the experiments presented in section 6.5.1 were essentially the same MsANN models (same

set of L, γ, k and same set of P matrices), and showed similar performance gains on two

different machine vision problems, indicating that it may be possible to develop general

MsANN model-creation procedures that are applicable to a variety of problems (rather than

needing to be hand-tuned).

6.6 Conclusion and Future Work

We have introduced a novel method for multiscale modeling, which relies on a novel prolon-

gation and restriction operator to move between models in a hierarchy. These prolongation
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and restriction operators are the optima of an objective function we introduce which is a

natural distance metric on graphs and graph lineages. We prove several important properties

of this objective function, including an upper bound which allows us to decouple a difficult

optimization into two smaller optimization problems under certain circumstances.

Additionally, we demonstrate an algorithm which makes use of such P and R operators

to simultaneously train models in a hierarchy of neural networks (specifically, autoencoder

neural networks). This Multiscale Artificial Neural Network (MsANN) approach statistically

outperforms training only at the finest scale, achieving lower error than the default model and

also reaching the default model’s best performance in an order of magnitude fewer training

examples. While in our experiments we saw uniform improvement as the parameters γ, k,

and L were increased (meaning that the hierarchy is deeper, and the model spends more

relative time training at the coarser scales), this may not always be the case, and we leave

the question of finding optimal settings of these parameters for future work.

Promising directions for future work also include investigating the properties of the distance

metric on graphs, and the use of those properties in graph lineage, as well as modifying the

MsANN algorithm to perform the same type of hierarchical learning on more complicated

ANN models, such as Convolutional Neural Networks (CNNs), as well as non-autoencoding

tasks, for example classification.
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Chapter 7

Application - Graph Prolongation

Convolutional Networks

Building off of the multiscale neural network training ideas introduced in the previous chap-

ter, we here apply a similar idea to train a Graph Convolutional Network, a model which

excels at handling unstructured data. The problem we apply our model to is the prediction

of energetic behavior of a rigid protein structure called a microtubule.

7.1 Convolution and Graph Convolution

Recent successes of deep learning have demonstrated that the inductive bias of Convolu-

tional Neural Networks (CNNs) makes them extremely efficient for analyzing data with an

inherent grid structure, such as images or video. In particular, many applications use these

models to make per-node (per-pixel) predictions over grid graphs: examples include image

segmentation, optical flow prediction, anticipating motion of objects in a scene, and facial

detection/identification. Further work applies these methods to emulate physical models,
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by discretizing the input domain. Computational Fluid Dynamics and other scientific tasks

featuring PDEs or ODEs on a domain discretized by a rectangular lattice have seen recent

breakthroughs applying machine learning models, like CNNs to handle data which is struc-

tured this way. These models learn a set of local filters whose size is much smaller than

the size of the domain - these filters may then be applied simultaneously across the entire

domain, leveraging the fact that at a given scale the local behavior of the neighborhood

around a pixel (voxel) is likely to be similar at all grid points.

Graph Convolutional Networks (GCNs) are a natural extension of the above idea of image

‘filters’ to arbitrary graphs rather than nD grids, which may be more suitable in some

scientific contexts. Intuitively, GCNs replace the image filtering operation of CNNs with

repeated passes of: 1) aggregation of information between nodes according to some structure

matrix 2) nonlinear processing of data at each node according to some rule (most commonly

a flat neural network which takes as separate input(s) the current vector at each node). We

refer the reader to a recent survey by Bacciu et al [6] for a more complete exploration of the

taxonomy graph neural networks.

7.2 Microtubules

As an example of a dataset whose underlying graph is not a grid, we consider a coarse-grained

simulation of a microtubule. Microtubules (MTs) are self-assembling nanostructures, ubiqui-

tous in living cells, that along with actin filaments comprise a major portion of the dynamic

cytoskeleton governing cell shape and mechanics. Whole-MT biomechanical models would

be a useful tool for modeling cytoskeletal dynamics at the cellular scale. MTs play important

structural roles during cell division, cell growth, and separation of chromosomes (in eukary-

otic cells) [20]. Microtubules are comprised of a lattice structure of two conformations (α and

β) of tubulin. Free-floating tubulin monomers associate energetically into dimer subunits,
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which then associate head-to-tail to form long chain-like complexes called protofilaments.

Protofilaments associate side-to side in a sheet; at some critical number of protofilaments

(which varies between species and cell type) the sheet wraps closed to form a repeating he-

lical lattice with a seam. See [78], Page 303, Figure 1. Key properties of microtubules are:

Dynamic instability: microtubules grow from one end by attracting free-floating tubulin

monomers [110]. Microtubules can spontaneously enter a “catastrophe” phase, in which

they rapidly unravel, but can also “rescue” themselves from the catastrophe state and re-

sume growth [39, 97].

Interactions: Microtubules interact with one another: they can dynamically avoid one an-

other during the growth phase, or collide and bundle up, or collide and enter catastrophe

[104]. The exact mechanism governing these interactions is an area of current research.

Structural strength: microtubules are very stiff, with a Young’s Modulus estimated at

≈1GPa for some cases [78]. This stiffness is thought to play a role in reinforcing cell walls

[63].

In this work we introduce a model which learns to reproduce the dynamics of a graph

signal (defined as an association of each node in the network with a vector of discrete or

real-valued labels) at multiple scales of graph resolution. We apply this model framework

to predict the potential energy of each tubulin monomer in a simplified mechanochemical

simulation of a microtubule. This trial dataset illustrates the efficiency of our proposed type

of graph convolutional network and is a solid proof-of-concept for applying this model to

more biologically accurate microtubule models in the future. In the next section, we discuss

the wide variety of microtubule simulations which have been previously studied.
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7.2.1 Simulation of MTs and Prior Work

Non-continuum, non-event-based simulation of large molecules is typically done by repre-

senting some molecular subunit as a particle/rigid body, and then defining rules for how

these subunits interact energetically. Molecular Dynamics (MD) simulation is an expan-

sive area of study and a detailed overview is beyond the scope of this paper. Instead, we

describe in general terms some basic ideas relevant to the numerical simulation detailed

in Section 7.4.1. Simulation of microtubules is an area of active research, and there are

many fundamental questions yet to be answered. A brief review of previous MT simulation

studies [99, 38, 72, 110, 113, 70] finds a wide variety of different simulation techniques and

assumptions. For this reason, we choose a simple model which is in a qualitative sense the

“lowest common denominator” of many of these models. Our microtubule simulation is a

fixed structure of tubulin with energy terms defined only for tubulin-tubulin associations

(consisting of angle and edge length constraints between monomers). We simulated the be-

havior of this structure under bending load in the MD software package LAMMPS [82] using

Verlet integration [112] and an implicit surrounding solvent [90]. For more details of our

simulation, see Section 7.4.1 and the source code, available in the Supplementary Material

accompanying this paper. Each timestep of our simulator produces a vector consisting of

each monomer’s contribution to the total potential energy of the structure at that timestep,

as detailed in Section 7.4.1. This vector is the target output we want our machine learning

model to predict. In this work, we apply graph convolutional networks, trained via a method

we introduce, to predict these energy values for a section of microtubule.
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7.3 Model Architecture and Mathematical Details

7.3.1 Model Description

Many approaches to scientific problems benefit from the use of multiscale analysis: separating

the behavior at hand into multiple scale lengths and analyzing each separately. We expect

in general to have different phenomena at different scales, therefore necessitating varying

treatments; a typical example would be a hybrid computational mechanics solver which uses

both a continuum model at the largest spatial scale, but models spatially smaller interactions

with an all-atom simulation [100, 115]. Even when phenomena are the same across multiple

spatial scales (i.e. solving the Navier-Stokes equations on irregular domains [85]) we expect

to see acceleration of simulations when we use a multiscale architecture, as in the case of

Multigrid solvers for iterative systems. These methods work on the premise that it if the

wavelength of an error is large in comparison to the scale length considered by a solver, it

may take many iterative steps at that scale to resolve the error. It is therefore advantageous

to resolve errors at a scale similar to their characteristic wavelength, which is accomplished

by building a hierarchy of solvers which each address error at a particular scale length. The

exact method for reduction in error (a “smoothing” step) is problem dependent; however,

strategies for stepping between spatial scales have been invented, with good theoretical

guarantees for accelerated error reduction of the entire system.

It is here necessary to note that the scheduling dictates which scale of error is reduced at

a given step in the algorithm. In multigrid methods, the actual fine-to-coarse mapping (or

vice versa) is given by multiplying the current solution by either a restriction or prolongation

matrix, respectively. Typically these matrices are constrained, for example to be norm-

preserving. This is similar in both motivation and practice to the matrix multiplication we

use in our model architecture, detailed below and in Section 7.3.4.
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Multiscale architectures are also a staple of machine learning methods. Convolutional Neural

Networks, as described in section 7.1, are an example of such a system: features are propa-

gated through the network so that the nodes in the final layer are aggregating information

from a wide visual area. Motivated by both CNNs and the multiscale method literature, we

develop a model which uses a multiscale architecture to learn molecular dynamics at multi-

ple spatial scales. Input is coarsened to each of these scales by applying an optimized linear

projection (for details of this optimization, see Section 7.4.2). At each scale, a graph convo-

lutional network processes that scale’s information, analogous to the lateral connections in

U-Net [86]. Again analogously to the “upscaling” connection in U-Net, the output of these

GCNs is upsampled using the inverse of the same optimized linear projection used in the

prior downsampling step. These outputs are all summed to produce a final model prediction

at the finest scale. In the rest of this section, we first provide some general mathematical

background (Section 7.3.2), formally define Graph Convolution (Section 7.3.3), and finally

use these definitions to formally specify our model architecture in (Section 7.3.4)

7.3.2 Mathematical Background

Definitions: For all basic terms (graph, edge, vertex, degree) we use standard definitions.

We use the notation {xi}bi=a to represent the sequence of xi indexed by the integers a, a +

1, a + 2, . . . b. When X is a matrix, we will write [X]ij to denote the entry in the ith row,

jth column.

Graph Laplacian: The graph Laplacian is the matrix given by L(G) = A(G)−diag(A(G) ·

1) where A(G) is the adjacency matrix of G, and 1 is an appropriately sized vector of 1s.

The graph Laplacian is given by some authors as the opposite sign.

Linear Graph Diffusion Distance (GDD): Given two graphs G1 and G2, with |G1| ≤
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|G2| the Linear Graph Diffusion Distance D(G1, G2) is given by:

D(G1, G2) = inf
P |C(P )
α>0

∣∣∣∣∣∣∣∣ 1αPL(G1)− αL(G2)P

∣∣∣∣∣∣∣∣
F

(7.1)

where C(P ) represents some set of constraints on P , α is a scalar with α > 0, and || · ||F

represents the Frobenius norm. We take C(P ) to be orthogonality: P TP = I. Note that

since in general P is a rectangular matrix, it may not be the case that PP T = I. Unless

stated otherwise all P matrices detailed in this work were calculated with α = 1, using

the procedure laid out in the following section, in which we briefly detail an algorithm for

efficiently computing the distance in the case where α is allowed to vary. The efficiency

of this algorithm is necessary to enable the computation of the LGDD between very large

graphs, as discussed in Section 7.6.3.

Prolongation matrix: we use the term “prolongation matrix” to refer to a matrix which

is the optimum of the minimization given in the definition of the LGDD.

7.3.3 Graph Convolutional Layer Definition

We follow the GCN formulation given by Kipf and Welling [62]. Assuming an input tensor

X of dimensions n×F (where n is the number of nodes in the graph and F is the dimension

of the label at each node), we inductively define the layerwise update rules for a graph

convolutional network gcn
(
Zi, X,

{
θ

(i)
l

}m
l=1

)
as:

X0 = X

Xm = gm
(
ZiXm−1W

(i)
m + b(i)

m

)
,

where gm is the activation function of the mth layer.
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7.3.4 Graph Prolongation Convolutional Networks

The model we propose is an ensemble of GCNs at multiple scales, with optimized projection

matrices performing the mapping in between scales (i.e. between ensemble members). More

formally, Let {Gi}ki=1 represent a sequence of graphs with |G1| ≥ |G2| . . . ≥ |Gk|, and let

{Zi = z(Gi)}ki=1 be their structure matrices (for some chosen method z of calculating the

structure matrix given the graph). In all experiments in this paper, we take z(G) = L(G), the

graph Laplacian, as previously defined 1. In an ensemble of Graph Convolutional Networks,

let θ
(i)
l =

{
W

(i)
l , b

(i)
l

}
represent the parameters (filter matrix and bias vector) in layer l of

the ith network.

When i = j − 1, let Pi,j be an optimal (in either the sense of Graph Diffusion Distance,

or in the sense we detail in section 7.5.5) prolongation matrix from L(Gj) to L(Gi), i.e.

Pi,j = arg infP |C(P ) ||PL(Gj)− L(Gi)P ||F . Then, for i < j − 1, let Pi,j be shorthand for the

matrix product Pi,i+1Pi+1,i+2 . . . Pj−1,j. For example, P1,4 = P1,2P2,3P3,4.

Our multiscale ensemble model is then constructed as:

GPCN

(
{Zi}ki=1 , X,

{{
θ

(i)
l

}mi
l=1

}k
i=1

, {Pi,i+1}k−1
i=1

)
= gcn

(
Z1, X,

{
θ

(1)
l

}m1

l=1

)
+

k∑
i=2

P1igcn
(
Zi, P

T
1iX,

{
θ

(i)
l

}mi
l=1

)
(7.2)

This model architecture is illustrated in Figure 7.1. When the P matrices are constant/fixed,

we will refer to this model as a GPCN, for Graph Prolongation-Convolutional Network.

However, we find in our experiments in Section 7.5.5 that validation error is further reduced

1Other GCN research uses powers of the Laplacian, the normalized Laplacian, the symmetric normalized
Laplacian, etc. Comparison of these structure matrices is beyond the scope of this paper.
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when the P operators are tuned during the same gradient update step which updates the

filter weights, which we refer to as an “adaptive” GPCN or A-GPCN. We explain our method

for choosing Zi and optimizing P matrices in Section 7.5.5.

7.4 Dataset Generation and Reduced Model Construc-

tion

In this section we describe some of the ancillary numerical results needed to reproduce and

understand our main machine learning results in Section 7.5.

7.4.1 Dataset

In this Section we detail the process for generating the simulated microtubule data for

comparison of our model with other GCN ensemble models. Our microtubule structure has 13

protofilaments (each 48 tubulin monomers long). As in a biological microtubule, each tubulin

monomer is offset (along the axis parallel to the protofilaments) from its neighbors in adjacent

protofilaments, resulting in a helical structrure with a pitch of 3 tubulin units. We refer to

this pitch as the “offset” in Section 7.4.3. Each monomer subunit (624 total) is represented

as a point mass of 50 Dalton (8.30 × 10−15 ng). The diameter of the whole structure is 26

nm, and the length is ≈ 260 nm. The model itself was constructed using Moltemplate [54],

a tool for constructing large regular molecules to be used in LAMMPS simulations. Our

Moltemplate structure files were organized hierarchically, with: tubulin monomers arranged

into α-β dimer pairs; which were then arranged into rings of thirteen dimers; which were

then stacked to create a molecule 48 dimers long. Note that this organization has no effect

on the final LAMMPS simulation: we report it here for reproducibility, as well as providing
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Figure 7.1: Top: Schematic of GPCN model. Data matrix X is fed into the model and
repeatedly coarsened using optimized projection matrices Pik, illustrated by purple arrows.
These coarsened data matrices are separately fed into GCN models, producing predictions
at each scale. Each blue arrow represents an upsample-and-add operation, where the up-
sampling is performed with the transpose of the Pik. The final output of the ensemble is
the projected sum of the outputs of each component GCN.Middle and bottom: mathemat-
ical details of upsampling and downsampling steps from top diagram. See Equation 7.2 for
details.
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the template files in the supplementary material accompanying this paper.

For this model, we define energetic interactions for angles and associations only. No steric or

dihedral interactions were used: for dihedrals, this was because the lattice structure of the

tube meant any set of four molecules contributed to multiple, contradictory dihedral inter-

actions 2. Interaction energy of an association b was calculated using the “harmonic” bond

style in LAMMPS, i.e. E(b) = Ltype(b)(length(b)− b0)2, where b0 is the resting length and L

is the strength of that interaction (L varies according to bond type). The energy of an angle

φ was similarly calculated using the “harmonic” angle style, i.e. E(φ) = Ltype(φ)(φ− φ0)2,

where φ0 is the resting angle and k is again the interaction strength, and L again depends

on the angle type of φ3. The resting lengths and angles for all energetic interactions were

calculated using the resting geometry of our microtubule graph Gmt: a LAMMPS script was

used to print the value of every angle interaction in the model, and these were collected and

grouped based on value (all 153◦ angles, all 102◦ angles, etc). Each strength parameter was

varied over the values in {3.0, 9.0, 18.0, 30.0, 39.0, 48.0, 57.0}, producing 75 parameter combi-

nations. Langevin dynamics were used, but with small temperature, to ensure stability and

emphasize mechanical interactions. See Table 7.1 and Figure 7.3 for details on each strength

parameter. See Figure 7.4 for an illustration of varying resting positions and final energies

as a result of varying these interaction parameters.

GNU Parallel [103] was used to run a simulation for each combination of interaction pa-

rameters, using the particle dynamics simulation engine LAMMPS. In each simulation, we

clamp the first two rings of tubulin monomers (nodes 1-26) in place, and apply force (in

the negative y direction) to the final two rings of monomers (nodes 599-624). This force

starts at 0 and ramps up during the first 128000 timesteps (one step = 0.018 ns) to its max-

2Association and angle constraints were sufficient to replicate the bending resistance behavior of micro-
tubules. We hope to run a similar experiment using higher-order particle interactions (which may be more
biologically plausible), in future work.

3the LAMMPS manual uses the character K to represent the interaction coefficient; we have used L to
distinguish it from the spring constant k, for which we have L = k

2 .
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imum value of 9× 10−14 N. Once maximum force is reached, the simulation runs for 256000

additional timesteps, which in our experience was long enough for all particles to come to

rest. See Figure 7.2 for an illustration (visualized with Ovito [101]) of the potential energy

per-particle at the final frame of a typical simulation run. Every K = 32000 timesteps, we

save the following for every particle: the position x, y, z; components of velocity vx, vy, vz;

components of force Fx, Fy, Fz; and the potential energy of the particle E. The dataset is

then a concatenation of the 12 saved frames from every simulation run, comprising all com-

binations of input parameter values, where for each frame we have:

xi, the input graph signal, a 624× 10 matrix holding the position and velocity of each par-

ticle, as well as values of the four interaction coefficients; and

yi, the output graph signal, a 624×1 matrix holding the potential energy calculated for each

particle.

We note here that none of the inputs to the model encode information about any of the

statistics of the system as a whole (for example, the total energy, the temperature or density

of the surrounding solvent, etc). This was not necessary in our example simulations because

these factors did not vary in our experiment. A more detailed data input would likely be

necessary for our model to be implemented in a more complicated simulation scenario that

tuned any of these system quantities between runs.

During training, after a training/validation split, we normalize the data by taking the mean

and standard deviation of the Ntrain × 624 × 10 input and Ntrain × 624 × 1 output tensors

along their first axis. Each data tensor is then reduced by the mean and divided by the

standard deviation so that all 624 × 10 inputs to the network have zero mean and unit

standard deviation. We normalize using the training data only.
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Figure 7.2: Microtubule model under bending load. Color of each particle indicates the
sum of that particle’s share of all of the energetic interactions in which it participates. This
view is on the clamed end; the other end, out of view, has a constant force applied. The
flexural rigidity (EI) we measure from the stiffest MTs we simulate is within the (broad)
range of values found by prior work for taxol-stabilized MTs (both simulated and measured;
see [60, 102, 110]).

7.4.2 Efficient Calculation of Graph Diffusion Distance

The joint optimization given in the definition of Linear Graph Diffusion Distance (Equation

7.1) is a nested optimization problem. If we set

f(α) = D(G1, G2|α)

= inf
P |C(P )

∣∣∣∣∣∣∣∣ 1αPL(G1)− αL(G2)P

∣∣∣∣∣∣∣∣
F

,
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Figure 7.3: Microtubule model structure. Red spheres represent α-tubulin; purple spheres
represent β-tubulin. Highlighted atoms at center are labelled to show example energetic
interactions: each type of interaction indicated in Table 7.1 (using the particle labels in this
image) is applied everywhere in the model where that arrangement of particle and association
types occurs in that position.

Figure 7.4: Changes in stiffness of microtubule model under constant load, as parameters
controlling interaction strength are varied. We see qualitiative differences in behavior as
spring constants are adjusted between 0.1 and 1.9. The left and right images show the final
timestep of simulations where all spring constants were set to the minimum and maximum
strength, respectively. Particles (tubulin monomers) are colored according to their contri-
bution to total potential energy of the configuration, identically to Figure 7.2. All pictures
show the microtubule at rest e.g. at the end of the simulation run using that parameter set.
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Table 7.1: Description of energetic interactions in microtubule simulation, according to the
labels in Figure 7.3.

Association interactions

Description Examples Resting Length Strength Param.
Lateral association inside lattice (1,3),(2,4) 5.15639nm LatAssoc
Lateral association across seam (5,8),(6,9) 5.15639nm LatAssoc

Longitudinal association (1,2),(3,4) 5.0nm LongAssoc

angle interactions

Description Examples Resting Angle Strength Param.
Pitch angle inside lattice (1,3,5),(2,4,6) 153.023◦ LatAngle

Longitudinal angle (5,6,7),(8,9,10) 180◦ LongAngle
Lattice cell acute angle (3,4,6),(3,5,6),(5,8,9),(6,9,10) 77.0694◦ QuadAngles
Lattice cell obtuse angle (4,3,5),(4,6,5),(6,5,8),(6,9,8) 102.931◦ QuadAngles

then each evaluation of f requires a full optimization of the matrix P subject to constraints

C. When L(G1) and L(G2) are Graph Laplacians, f(α) is continuous, but with discontinu-

ous derivative, and has many local minima (see Figure 7.5). As a result, the naive approach

of optimizing f(α) using a univariate optimization method like Golden Section Search is

inefficient. In this section we briefly describe a procedure for performing this joint optimiza-

tion more efficiently. For a discussion of variants of the LGDD, as well as the theoretical

justification of this algorithm, see [94].

First, we note that by making the constraints on P more restrictive, we upper-bound the

original distance:

D(G1, G2) = inf
P |C(P )
α>0

∣∣∣∣∣∣∣∣ 1αPL(G1)− αL(G2)P

∣∣∣∣∣∣∣∣
F

≤ inf
P |S(P )
α>0

∣∣∣∣∣∣∣∣ 1αPL(G1)− αL(G2)P

∣∣∣∣∣∣∣∣
F

. (7.3)

In our case, C(P ) represents orthogonality. As a restriction of our constraints we specify

that P must be related to a subpermutation matrix (an orthogonal matrix having only 0 and
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1 entries) P̃ as follows: P = U2P̃U
T
1 , where the Ui are the fixed matrices which diagonalize

L(Gi): L(Gi) = UiΛiU
T
i . Then,

D(G1, G2) ≤ inf
P |S(P )
α>0

∣∣∣∣∣∣∣∣ 1αPL(G1)− αL(G2)P

∣∣∣∣∣∣∣∣
F

= inf
P̃ |subperm(P̃ )

α>0

∣∣∣∣∣∣∣∣ 1αU2P̃U
T
1 U1Λ1U

T
1

−αU2Λ2U
T
2 U2P̃U

T
1

∣∣∣∣∣∣
F

= inf
P̃ |subperm(P̃ )

α>0

∣∣∣∣∣∣∣∣ 1αU2P̃Λ1U
T
1 − αU2Λ2P̃U

T
1

∣∣∣∣∣∣∣∣
F

= inf
P̃ |subperm(P̃ )

α>0

∣∣∣∣∣∣∣∣U2

(
1

α
P̃Λ1 − αΛ2P̃

)
UT

1

∣∣∣∣∣∣∣∣
F

.

Because the Ui are rotation matrices (under which the Frobenius norm is invariant), this

further simplifies to

D(G1, G2) ≤ inf
P̃ |subperm(P̃ )

α>0

∣∣∣∣∣∣∣∣ 1αP̃Λ1 − αΛ2P̃

∣∣∣∣∣∣∣∣
F

.

Furthermore, because the Λi are diagonal, this optimization is equivalent to a Rectangular

Linear Assignment Problem (RLAP) [12], between the diagonal entries λ
(1)
j and λ

(2)
l of Λ1

and Λ2, respectively, with the α-dependent cost of an assignment given by:

cα(λ
(1)
j , λ

(2)
l ) =

(
1

α
λ

(1)
j − αλ

(2)
l

)2

. (7.4)

.

RLAPs are extensively studied. We use the general LAP solving package lapsolver [50] to

comute P̃ . In practice (and indeed in this paper) we set often set α = 1, in which case
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the solution P̃ of the RLAP only acts as a preconditioner for the orthogonally-constrained

optimization over P . More generally, when alpha is allowed to vary (and therefore many

RLAPs must be solved), a further speedup is attained by re-using partial RLAP solutions

from previously-tested values of α to find the optimal assignment at α′. We detail how this

may be done in out recent work [94].

For the P matrices used in the experiments in this work, we set α = 1 and used lapsolver to

find an optimal assignment P̃ . We then initialized an orthogonally-constrained optimization

of 7.1 with P = U2P̃U
T
1 . This constrained optimization was performed using Pymanopt

[105].

7.4.3 Graph Coarsening

In this Section we outline a procedure for determining the coarsened structure matrices to

use in the hierarchy of GCN models comprising a GPCN. We use our microtubule graph

as an example. In this case, we have two a-priori guidelines for producing the reduced-

order graphs: 1) the reduced models should still be a tube and 2) it makes sense from a

biological point of view to coarsen by combining the α-β pairs into single subunits. Given

these restrictions, we can explore the space of coarsened graphs and find the coarse graph

which is nearest to our original graph (under the GDD).

Our microtubule model is a tube of length 48 units, 13 units per complete “turn”, and with

the seam offset by three units. We generalize this notion as follows: Let p be the offset,

and k be the number of monomers in one turn of the tube, and n the number of turns of a

tube graph GTube(n,k,p). The graph used in our simulation is thus Gmt = GTube(48,13,3). We

pick the medium scale model Ginter to be GTube(24,13,1), as this is the result of combining

each α-β pair of tubulin monomer units in the fine scale, into one tubulin dimer unit in

the medium scale. We pick the coarsest graph Gcoarse by searching over possible offset tube
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Figure 7.5: Plot of Linear Graph Diffusion Distance between two small random graphs, as α
is varied. Each grey curve shows the objective function when P is fixed, as a function of α,
and each curve represents a P matrix which is optimal at any value of α in the plotted range.
The red curve shows the lower convex hull of all grey curves. Note that it is continuous but
has discontinuous slope. Black arrows represent local optima. The discontinuous slope and
high number of local optima illustrate why optimizing this function using univariate search
over α is inefficient.

graphs. Namely, we vary k ∈ {3, 4, . . . 12} and p ∈ {0, 1, 2, 3}, and compute the optimal

P ∗ and its associated distance D(GTube(24,k,p), Gmt|P = P ∗). Figure 7.6 shows the distance

between Gmt and various other tube graphs as parameters p and k are varied. The nearest

GTube(24,k,p) to Gmt is that with p = 0 and k = 3. Note that Figure 7.6 has two columns for

each value of k: these represent the coarse edges along the seam having weight (relative to

the other edges) 1 (marked with an S) or having weight 2 (no S). This is motivated by the

fact that our initial condensing of each dimer pair condensed pairs of seam edges into single

edges.
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Figure 7.6: Directed Graph Diffusion Distance (GDD) between offset tube graphs and Gmt.
Table cells colored by value. We see from this comparison that the two graphs which are
closest to Gmt are GTube(24,3,0) and GTube(24,3,0) with an edge weight of 2 for connections along
the seam, motivating our choice of GTube(24,3,0) (unweighted) as the coarsest graph in our
hierarchy.
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Gmt

Ginter

Gcoarse

Figure 7.7: Three graphs used to create structure matrices for our GPCN model. Top:
microtubule graph. Center: Offset tube with 13 subunits per turn, length 24, and offset 1.
Bottom: Tube with 3 subunits per turn, no offset, and length 24.

7.5 Machine Learning Experiments

7.5.1 Experimental Procedure

This section contains several experiments comparing our model, and its variants, to other

types of Graph Convolutional Networks. All models were trained using ADAM with de-

fault hyperparameters, in TensorFlow [1]. Random seeds for Python, TensorFlow, Numpy,

and Scipy were all initialized to the same value for each training run, to ensure that the

train/validation split is the same across all experiments, and the batches of drawn data are

the same. See supplementary material for version numbers of all software packages used.

Training batch size was set to 8, all GCN layers have ReLU activation, and all dense layers
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have sigmoidal activation with the exception of the output layer of each network (which is

linear). All modes were trained for 1000 epochs of 20 batches each. The time per batch of

each model is listed in Table 7.4.

Since hardware implementations may differ, we estimate the computational cost in Floating

Point OPerations (FLOPs) of each operation in our models. The cost of a graph convolutional

layer with n × n structure matrix Z, n × F input data X, and F × C filter matrix W is

estimated as: nF (|Z|+C), where |Z| is the number of nonzero entries of Z. This is calculated

as the sum of the costs of the two matrix multiplications X ·W and Z ·XW , with the latter

assumed to be implemented as sparse matrix multiplication and therefore requiring O(|Z|nF )

operations. For implementation reasons, our GCN layers (across all models) do not use sparse

multiplication; if support for arbitrary-dimensional sparse tensor outer products is included

in TensorFlow in the future, we would expect the wall-clock times in Table 7.4 to decrease.

The cost of a dense layer (with n × F input data X, and F × C filter matrix W ) applied

to every node separately is estimated as: O(nFC). The cost of taking the dot product

between a n × k matrix and a k ×m matrix (for example, the restriction/prolongation by

P ) is estimated as O(nmk).

For GPCN models, P matrices were calculated using Pymanopt [105] to optimize Equation

7.1 subject to orthogonality constraints. The same P were used to initialize the (variable)

P matrices of A-GPCN models.

7.5.2 Evaluation of GPCN Variants

Our proposed model uses a hierarchy of graph convolutional networks to predict energy of

a molecule at several spatial scales. The computational cost of a graph convolutional layer

is approximately quadratic in the number of nodes in the underlying graph. We would

therefore expect to see efficiency gains when some number of graph convolution layers are
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Figure 7.8: Comparison of mean squared error (MSE) on held-out validation data (normal-
ized by averaging over the validation set) as a function of FLOPs expended, for variants of
our model. We see that the adaptive and non-adaptive models occupy separate regimes (the
adaptive models are superior), and within each the depth-3 model outperforms the depth-2
one.

operating on a reduced graph. In this subsection we present numerical experiments showing

that this is indeed the case: the accuracy gained (per unit of computational expenditure)

is higher for deeper hierarchies. Additionally, the adaptive model(s) universally outperform

their non-adaptive counterparts.

We compare the following versions of our model:

• a two-level GPCN with static P -matrices;
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• a three-level GPCN with static P -matrices;

• both of the above, but with P matrices allowed to vary during training (adjusted with

the same backpropagation signals which are used to modify the convolution weights).

Figure 7.8 and Table 7.3 summarize these results.

7.5.3 Evaluation of Training Schedules

In contrast to the prior section, where we use the same training strategy and evaluate the

efficiency of different variants of our model, in this section we fix the model architecture and

evaluate the effect of different training schedules. Specifically, we compare the computational

cost of training the entire GPCN at once, versus training the different ‘resolutions’ (meaning

the different GCNs in the hierarchy) of the network according to a more complicated training

schedule. This approach is motivated by recent work in coarse-to-fine training of both flat

and convolutional neural networks [92, 118, 45, 29, 59], as well as the extensive literature on

Algebraic MultiGrid (AMG) methods [111].

AMG solvers for differential equations on a mesh (which arises as the discretization of some

volume to be simulated) proceed by performing numerical “smoothing steps” at multiple

resolutions of discretization. The intuition behind this approach is that modes of error

should be smooth at a spatial scale which is equivalent to their wavelength, i.e. the solver

shouldn’t spend many cycles resolving long-wavelength errors at the finest scale, since they

can be resolved more efficiently at the coarse scale. Given a solver and a hierarchy of

discretizations, the AMG literature defines several types of training procedures or “cycle”

types (F-cycle, V-cycle, W-cycle). These cycles can be understood as being specified by a

recursion parameter γ, which controls how many times the smoothing or training algorithm

visits all of the coarser levels of the hierarchy in between smoothing steps at a given scale. For
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example, when γ = 1 the algorithm proceeds from fine to coarse and back again, performing

one smoothing step at each resolution - a ‘V’ cycle.

We investigate the efficiency of training 3-level GPCN and A-GPCN (as described in Section

7.5.2), using multigrid-like training schedules with γ ∈ {0, 1, 2, 3}, as well as “coarse-to-fine”

training: training the coarse model to convergence, then training the coarse and intermediate

models together (until convergence), then finally training all three models at once. Error

was calculated at the fine-scale. For coarse-to-fine training convergence was defined to have

occurred once 10 epochs had passed without improvement of the validation error.

Our experiments (see Figure 7.9) show that these training schedules do result in a slight

increase in efficiency of the GPCN model, especially during the early phase of training. The

increase is especially pronounced for the schedules with γ = 2 and γ = 3. Furthermore,

these multigrid training schedules produce models which are more accurate than the GPCN

and A-GPCN models trained in the default manner. As a final note, previous work [92] has

shown that these types of multiscale neural network architectures, with this type of multigrid

training schedule may also be more efficient in a “statistical” sense - that is, require much

less data to find an equivalent or better local minimum of error. A third type of efficiency

results from the fact that once trained, querying the machine learning model is faster than

running an entire simulation. This means that the cost of generating the initial dataset and

training the model is amortized over the time gained by using the machine learning model as

an approximator. We would expect our model to also perform well under both of these latter

measures of efficiency - one run of our fine-scale simulation took approximately 20 minutes,

whereas querying the trained GPCN takes tenths of milliseconds. However, quantifying this

possibility further is beyond the scope of this paper.
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Figure 7.9: Effect of varying training schedule for training a GPCN model. Notably, The
various multigrid training cycles result in models which are more accurate, and do so more
efficiently. Top: FLOPs vs. NMSE for training GPCNs with multigrid training schedules.
Bottom: same, but with A-GPCNs.
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Figure 7.10: Comparison of 3-level GPCN and A-GPCN models to a 3-level GPCN which
uses DiffPool modules to coarsen the input graph and data. Our models improve over
DiffPool in terms of both efficiency and final error.

7.5.4 Comparison with DiffPool

Graph coarsening procedures are in general not differentiable. DiffPool [116] aims to address

this by constructing an auxiliary GCN, whose output is a pooling matrix. Formally: Suppose

that at layer l of a GCN we have a nl × nl structure matrix Z(l) and a n × F data matrix

X(l). In addition to GCN layers as described in Section 7.3, Ying et. al define a pooling

140



operation at layer l as:

S(l) = σ
(
gcnpool

(
Z(l), X(l),

{
θ

(i)
1

}m
l=1

))

where gcnpool is an auxillary GCN with its own set of parameters
{
θ

(i)
1

}m
l=1

, and σ is the

softmax function. The output of gcnpool is a n×ncoarse matrix, each row of which is softmaxed

to produce an affinity matrix S whose rows each sum to 1, representing each fine-scale node

being connected to one unit’s worth of coarse-scale nodes. The coarsened structural and

data matrices for the next layer are then calculated as:

X(l+1) = S(l)TX(l)

Z(l+1) = S(l)TZ(l)S(l) (7.5)

Clearly, the additional GCN layers required to produce S(l) incur additional computational

cost. We compare our 3-level GPCN (adaptive and not) models from the experiment in

Section 7.5.5 to a model which has the same structure, but in which each P matrix is

replaced by the appropriately-sized output of a DiffPool module, and furthermore the

coarsened structure matrices are produced as in Equation 7.5.

We see that our GPCN model achieves comparable validation loss with less computational

work, and our A-GPCN model additionally achieves lower absolute validation loss.

7.5.5 Comparison to Other GCN Ensemble Models

In this experiment we demonstrate the efficiency advantages of our model by comparing

our approach to other ensemble Graph Convolutional Networks. Within each ensemble,

ours and others, each GCN model consists of several graph convolution layers, followed by

several dense layers which are applied to each node separately (node-wise dense layers can be
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Table 7.2: Filter specifications for ensemble models in comparison experiment.

Structure Matrix GCN Filters Dense Filters

Single GCN

Lmt 64,64,64 256, 32, 8, 1

2-GCN Ensemble

Lmt 64,64,64 256, 32, 8, 1
Lmt 32,32,32 256, 32, 8, 1

3-GCN Ensemble

Lmt 64,64,64 256, 32, 8, 1
Lmt 32,32,32 256, 32, 8, 1
Lmt 16,16,16 256, 32, 8, 1

2-level GPCN

Linter 64,64,64 256, 32, 8, 1
Lmt 32,32,32 256, 32, 8, 1

3-level GPCN

Lcoarse 64,64,64 256, 32, 8, 1
Linter 32,32,32 256, 32, 8, 1
Lmt 16,16,16 256, 32, 8, 1

N-GCN (radii 1,2,4)

Lrmt 64,64,64 256, 32, 8, 1

N-GCN (radii 1,2,4,8,16)

Lrmt 64,64,64 256, 32, 8, 1

alternatively understood as a GCN layer with Z = I, although we implement it differently

for efficiency reasons). The input to the dense layers is the node-wise concatenation of the

output of each GCN layer. Each ensemble is the sum output of several such GCNs. We

compare our models to 1, 2, and 3- member GCN ensembles with the same number of filters

(but all using the original fine-scale structure matrix).

We also compare our model to the work of Abu-El-Haija et. al [2], who introduce the N-GCN

model: an ensemble GCN in which each ensemble member uses a different power Zr of the

structure matrix (to aggregate information from neighborhoods of radius r). We include a

N-GCN with radii (1,2,4) and a N-GCN with radii (1,2,4,8,16).
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Table 7.3: Mean error and uncertainty of several GCN ensemble models across ten random
trials. For each trial, the random seed was set to the same value for each model. Reported
values are the minimum error on the validation set during training (not the error at the final
epoch). Normalized Mean Squared Error (NMSE) values are unitless. Only one trial was
performed with the DiffPool model.

Model Name
Mean NMSE
± Std. Dev

(×10−3)

Min NMSE
(×10−3)

Single GCN 1.55 ± 0.10 1.45914
Ensemble - 2 GCNs 1.44 ± 0.07 1.38313
Ensemble - 3 GCNs 1.71 ± 0.20 1.43059

2-level GPCN 1.43 ± 0.12 1.24838
2-level A-GPCN 0.17 ± 0.05 0.08963

3-level GPCN 2.09 ± 0.32 1.57199
3-level A-GPCN 0.131 ± 0.030 0.10148

N-GCN
radii (1,2,4)

1.30 ± 0.05 1.23875

N-GCN
radii (1,2,4,8,16)

1.30 ± 0.06 1.22023

DiffPool 2.041 ± n/a 2.041

Table 7.4: Mean wall-clock time to perform feed-forward and backpropagation for one batch
of data, for various GCN ensemble models. Times were collected on a single Intel(R) Xeon(R)
CPU core and an NVIDIA TITAN X GPU.

Model Name Mean time per batch (s)

Single GCN 0.042
Ensemble - 2 GCNs 0.047
Ensemble - 3 GCNs 0.056

2-level GPCN 0.056
2-level A-GPCN 0.056

3-level GPCN 0.061
3-level A-GPCN 0.059

N-GCN, radii (1,2,4) 0.067
N-GCN, radii (1,2,4,8,16) 0.086

DiffPool 0.0934
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Figure 7.11: Comparison of Normalized MSE on held-out validation data as a function of
FLOPs expended for a variety of ensemble Graph Convolutional Network Models. Plotted
error is is the minimum validation error of the model over training thus far. We see that
especially in early stages of training, our model formulation learns faster (e.g. requires fewer
FLOPs) than an ensemble of 2, 3 or 5 GCNs with the same number of filters.

We summarize the structure of each of our models in Table 7.2. In Figure 7.11 we show a

comparison between each of these models, for one particular random seed (42). Error on the

validation set is tracked as a function of computational cost expended to train the model

(under our cost assumption given above). We see that all four GPCN models outperform the

other types of ensemble model during early training, in the sense that they reach lower levels

of error for the same amount of computational work performed. Additionally, the adaptive

GPCN models outperform all other models in terms of absolute error: after the same number

of training epochs (using the same random seed) they reach an order of magnitude lower error.

Table 7.3 shows summary statistics for several runs of this experiment with varying random
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seeds; we see that the A-GPCN models consistently outperform all other models considered.

Note that Figures 7.11,7.10, and 7.9 plot the Normalize Mean Squared Error (NMSE). This

unitless value compares the output signal to the target after both are normalized by the

procedure described in section 7.4.1.

7.5.6 Machine Learning Summary

The machine learning model presented in Section 7.3.4 is validated through numerical ex-

periments on an evaluation dataset. First, variations of our architecture are compared in

Section 7.5.2, demonstrating that deeper versions of this architecture perform significantly

better, and that re-training the P matrices leads to further accuracy gains. In Section 7.5.3,

we fix the model architecture to be the best-performing of those considered in Section 7.5.2,

and examine the effect of varying training schedules, including multigrid-like and coarse-to-

fine training. These experiments demonstrate that our model achieves comparable error in

less computation when trained in a multigrid fashion. Finally in Sections 7.5.4 and 7.5.5,

we validate our model by training other types of graph convolutional network models on the

same learning task. We show significant accuracy gains over previous GCN ensemble models

such as [2] and also outperform DiffPool [116], which learns pooling maps during the training

process. All results comparing our model to other GCN models are summarized in Tables

7.3 and 7.4. Together these experiments demonstrate the superior accuracy and efficiency

of our machine learning architecture.
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7.6 Future Work

7.6.1 Differentiable Models of Molecular Dynamics

This work demonstrates the use of feed-forward neural networks to approximate the energetic

potentials of a mechanochemical model of an organic molecule. Per-timestep, GCN models

may not be as fast as highly-parallelized, optimized MD codes. However, neural networks

are highly flexible function approximators: the GCN training approach outlined in this

paper could also be used to train a GCN which predicts the energy levels per particle at

the end of a simulation (once equilibrium is reached), given the boundary conditions and

initial conditions of each particle. In the case of our MT experiments, approximately 3×105

steps were required to reach equilibrium. The computational work to generate a suitably

large and diverse training set would then be amortized by the GCN’s ability to generalize

to initial conditions, boundary conditions, and hyperparameters outside of this data set.

Furthermore, this GCN reduced model would be fully differentiable, making it possible to

perform gradient descent with respect to any of these inputs. In particular, we derive here

the gradient of the input to a GCN model with respect to its inputs.

Derivation of Energy Gradient w.r.t Position

As described above, the output of our GCN (or GPCN) model is a n× 1 matrix (or vector)

Y , representing the energy of each simulated particle.. The total energy of the molecule at

position X is given by a sum over monomers, E =
∑n

i=1 [Y ]i. Note that any GCN’s initial

layer update is given by the update rule:

X ‘ = g1 (ZXW1 + b1) .
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During backpropagation, as an intermediate step of computing the partial derivatives of

energy with respect to W1 and b1, we must compute the partial ∂E
∂A1

of energy with respect

to the input to the activation function g1:

A1 = ZXW1 + b1

X ‘ = g1(A1).

We therefore assume we have this derivative. By the Chain Rule for matrix derivatives:

[
∂E

∂X

]
ij

=
∂E

∂[X]ij
=
∑
k,p

∂E

∂[A1]kp

∂[A1]kp
∂[xij]

.

Since

[A1]kp =

(∑
c,d

[Z]kc[X]cd[W1]dp

)
+ [b1]kp

and therefore

∂[A1]kp
∂[X]ij

= [Z]ki[W1]jp,

∂E

∂[X]ij
=
∑
k,p

∂E

∂[A1]kp
[Z]ki[W1]jp

∂E

∂X
= ZT ∂E

∂A1

W T
1 . (7.6)

Furthermore, since our GPCN model is a sum of the output of several GCNs, we can also

derive a backpropagation equation for the gradient of the fine-scale input, X, with respect to

the energy prediction of the entire ensemble. Let E(i) represent the total 4 fine-scale energy

4meaning summed over all monomers, in contrast to the per-monomer predictions made in Section 7.5.
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prediction of the ith member of the ensemble, so that E =
∑k

i=1E
(i). Then, let

∂E(i)

∂X(i)
= Z(i)T ∂E

(i)

∂A
(i)
1

W
(i)
1

T
(7.7)

be the application of Equation 7.6 to each GCN in the ensemble. Since the input to the ith

member of the ensemble is given by X(i) = P T
1,iX, we can calculate the gradient of E(i) with

respect to X, again using the Chain Rule:

∂E(i)

∂[X]mn
=

Ns∑
s=1

Nt∑
t=1

∂E(i)

∂[X(i)]st

∂
[
X(i)

]
st

∂[X]mn

=
Ns∑
s=1

Nt∑
t=1

∂E(i)

∂[X(i)]st

∂
[
P T

1,iX
]
st

∂[X]mn

=
Ns∑
s=1

Nt∑
t=1

∂E(i)

∂[X(i)]st
δtm[P1,i]ns

=
Ns∑
s=1

∂E(i)

∂[X(i)]sm
[P1,i]ns

Therefore,

∂E(i)

∂[X]mn
= P1,i

∂E(i)

∂X(i)

and so

∂E

∂X
=

k∑
i=1

∂E(i)

∂X
=

k∑
i=1

P1,i
∂E(i)

∂X(i)

This backpropagation rule may then be used to adjust X, and thereby find low-energy con-

figurations of the molecular graph. Additionally, analogous to the GCN training procedure

outlined in Section 7.5.3, this optimization over molecule positions could start at the coarse
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scale and be gradually refined.

7.6.2 Tensor Factorization

Recent work has re-examined GCNs in the context of the extensive literature on tensor

decompositions. LanczosNet [67], uses QR decomposition of the structure matrix to aggre-

gate information from large neighborhoods of the graph. The “Tensor Graph Convolutional

Network” of Zhang et. al [117], is a different decomposition method, based on graph factor-

ization; a product of GCNs operating on each factor graph can be as accurate as a single

GCN acting on the product graph. Since Theorem 3.7.1 shows that the GDD of a graph

product is bounded by the distances between the factor graphs, it seems reasonable to com-

bine both ideas into a model which uses a separate GPCN for each factor. One major benefit

of this approach would be that a transfer-learning style approach can be used. For example,

we could train a product of two GCN models on a short section of microtubule; and then

re-use the weights in a model that predicts energetic potentials for a longer microtubule.

This would allow us to extend our approach to MT models whose lengths are biologically

relevant, e.g. 103 tubulin monomers.

7.6.3 Graph Limits

Given that in vivo microtubules are longer than the one simulated in this paper by a factor

of as much as 200x, future work will focus on scaling these methods to the limit of very large

graphs. In particular, this means repeating the experiments of Sections 7.5, but with longer

tube graphs. We hypothesise that tube graphs which are closer to the microtubule graph

(under the LGDD) as their length n→∞ will be more efficient reduced-order models for a

GPCN hierarchy. This idea is similar to the “graphons” (which are the limits of sequences
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of graphs which are Cauchy under the Cut-Distance of graphs) introduced by Lovász [68].

To show that it is reasonable to define a “graph limit” of microtubule graphs in this way, we

plot the distance between successively longer microtubule graphs. Using the same notation

as in Section 7.4.3, we define three families of graphs:

• GGrid(n, 13): Grids of dimensions n× 13, and;

• GTube(n,13,1): Microtubule graphs with 13 protofilaments, of length n, with offset 1,

and;

• GTube(2n,13,3): Microtubule graphs with 13 protofilaments, of length 2n, with offset 3.

In this preliminary example, as n is increased, we see a clear distinction in the distances

D(GTube(n,13,1), GTube(2n,13,3)) and D(GGrid(n,13), GTube(2n,13,3)), with the former clearly limiting

to a larger value as n→∞.

7.7 Conclusion

We introduce a new type of graph ensemble model which explicitly learns to approximate

behavior at multiple levels of coarsening. Our model outperforms several other types of

GCN, including both other ensemble models and a model which coarsens the original graph

using DiffPool. We also explore the effect of various training schedules, discovering that

A-GPCNs can be effectively trained using a coarse-to-fine training schedule. We present the

first use of GCNs to approximate energetic potentials in a model of a microtubule.
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Figure 7.12: Limiting behavior of two classes of distances between graphs, as a function
of graph size. We plot D(GTube(n,13,1), GTube(2n,13,3)) and D(GGrid(n,13), GTube(2n,13,3)) as a
function of n, along with seventh-degree polynomial fit curves of each. The smaller tube
graphs are closer than the grid graphs to the larger tube, even in the large-graph limit.
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Chapter 8

Other Applications

This chapter presents two shorter investigations which use Graph Diffusion Distance.

8.1 Shape Analysis for Discretized Meshes

In this section we demonstrate that graph diffusion distance captures structural properties of

3D point clouds. Ten 3D meshes (see Figure 8.1 for an illustration of the meshes used) were

chosen to represent an array of objects with varying structural and topological properties.

Not all of the mesh files chosen are simple manifolds: for example, the “y-tube” is an open-

ended cylinder with a fin around its equator. Each mesh was used to produce multiple

graphs, via the following procedure:

1. Subsampling the mesh to 1000 points;

2. Performing a clustering step on the new point cloud to identify 256 cluster centers;

3. Connecting each cluster center to its 16 nearest neighbors in the set of cluster centers.
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Figure 8.1: 3D meshes used in the shape analysis experiment. Each mesh was used to
produce several sampled discretizations, which were then compared using GDD.

Since each pass of this procedure (with different random seeds) varied in Step 1, each pass

produced a different graph. We generated 20 graphs for each mesh, and compared the graphs

using GDD.

The results of this experiment can be seen in Figure 8.2. This Figure shows the three first

principal components of the distance matrix of GDD on the dataset of graphs produced as

described above. Each point represents one graph in the dataset, and is colored according

to the mesh which was used to generate it. Most notably, all the clusters are tight and do

not overlap. Close clusters represent structurally similar objects: for example, the cluster

of graphs from the tube mesh is very close to the cluster derived from the tube with an

equatorial fin. This synthetic dataset example demonstrates that graph diffusion distance is

able to compare structural information about point clouds and meshes.
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Figure 8.2: Embedding of pairwise distances between mesh discretizations. We see that GDD
clusters each category of mesh tightly, and furthermore that clusters are nearby when they
are structurally similar meshes, and distant otherwise. Axes represent the three principal
components of the distance matrix and are thus unitless.

8.2 Morphological Analysis of Cell Networks

In this section, we present an application of GDD to biological image analysis, and a gener-

alization of GDD that makes it more suitable for machine learning tasks.
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8.2.1 Biological Background

Species in the plant genus Arabidopsis are of high interest in plant morphology studies,

since 1) its genome was fully sequenced in 1996, relatively early [57], and 2) its structure

makes it relatively easy to capture images of the area of active cell division: the shoot apical

meristem (SAM). Recent work [89] has found that mutant Arabidopsis specimens with a

decreased level of expression of genes trm6,trm7, and trm8 demonstrate more variance in

the placement of new cell walls during cell division.

We prepare a dataset of Arabidopsis images with the following procedure:

1. Two varieties of Arabidopsis (wild type as well as “trm678 mutants”: mutants with

decreased expression of all three of TRM6,TRM7,and TRM8) were planted and kept

in the short-day condition (8 hours of light, 16 hours of dark) for 6 weeks.

2. Plants were transferred to long-day conditions and kept there until the SAM had

formed. This took two weeks for wild-type plants and three weeks for TRM678 mu-

tants.

3. The SAM of each pant was then was then dissected and observed with a confocal

microscope, Leica SP8 upright scanning confocal microscope equipped with a water

immersion objective (HC FLUOTAR L 25x/0.95 W VISIR).

4. This resulted in 3D images of the SAM from above (e.g. perpendicular to the plane of

cell division) collected for both types of specimens.

5. Each 3D image was converted to a 2D image showing only the cell wall of the top layer

of cells in the SAM.

We take 20 confocal microscope images (13 from wild-type plants and 7 from trm678 mu-

tants) of shoot apical meristems, and process them to extract graphs representing local
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Figure 8.3: Left: a microscope image of the SAM of a mutant Arabidopsis specimen. Right:
the same specimen, with separate cells false-colored and an example extracted cell neighbor-
hood graph overlaid.

neighborhoods of cells. Each graph consists of a cell and its 63 closest neighbors (64 cells

total). Cell neighborhood selection was limited to the central region of each SAM image,

since the primordia surrounding the SAM are known to have different morphological proper-

ties. For each cell neighborhood, we produce a graph by connecting two cells iff their shared

boundary is 30 pixels or longer. For each edge, we save the length of this shared boundary,

as well as the angle of the edge from horizontal and the edge length. We extracted 600 cell

neighborhoods for each type, for a total of 1200 graphs. See Figure 8.3 for an example SAM

image and resulting graph, and see Figure 8.4.

8.2.2 GDD is a differentiable function of t and edge weights

Once all of the eigenvalues λi and eigenvectors vi (of a matrix L) are computed, we may

backpropagate through the eigendecomposition as described in [76] and [5]. If our edge

weights (and therefore the values in the Laplacian matrix L) are parametrized by some
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Figure 8.4: Top: ten example morphological graphs extracted from wild-type SAM images.
Bottom: ten morphological graphs drawn from trm678 mutant images.

value θ, and our loss function L is dependent on the eigenvalues of L, then we can collect

the gradient ∂L
∂θ

as:

∂L
∂θ

=
∑
k

(
∂L
∂λk

∂λk
∂θ

)
=
∑
k

(
∂L
∂λk

vTk
∂L

∂θ
vk

)
. (8.1)

In practice, if the entries of L are computed as a function of θ using an automatic differ-

entiation package (such as PyTorch [80]) the gradient matrix ∂L
∂θ

is already known before

eigendecomposition. We note here that for any fixed value of t, all of the operations needed
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to compute GDD are either simple linear algebra or continuous or both. Therefore, for any

loss function L which takes the GDD between two graphs as input, we may optimize L by

backpropagation through the calculation of GDD using Equation 8.1.

8.2.3 Weighted Diffusion Distance

We make two main changes to GDD to make it capable of being tuned to specific graph

data. First, we replace the real-valued optimization over t with a maximum over an explicit

list of t values t1, t2, . . . tp. This removes the need for an optimization step inside the GDD

calculation. Second, we re-weight the Frobenius norm in the GDD calculation with a vector

of weights βj which is the same length as the list of eigenvalues (these weights are normalized

to sum to 1). The resulting GDD calculation is then:

D(G1, G2) = max
t∈t1,t2,...tp

√√√√ n∑
j=1

βj

(
etλ

(1)
j − etλ

(2)
j

)2

. (8.2)

This distance calculation may then be explicitly included in the computation graph (e.g. in

PyTorch) of a machine learning model, without needing to invoke some external optimizer

to find the supremum over all t. tn and βj may be tuned by gradient descent or some other

optimization algorithm to minimize a loss function which takes d as input. Tuning the tn

values results in a list of values of t for which GDD is most informative for a given dataset,

while tuning βj reweights GDD to pay most attention to the eigenvalues which are most

discriminative. In the experiments in Section 8.2.4 we demonstrate the efficacy of tuning

these parameters using contrastive loss.
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Figure 8.5: A neural network model learns edge weights which distinguish two classes of
graphs. Each row shows the weight values assigned by the network at different times during
the training process, from pre-training (far left) to convergence (right). The top row repre-
sents a patch of wild-type Arabidopsis cells, and the bottom row represents mutants. The
pictured edge weights cause these two categories of graph to have distinct spectra.

8.2.4 Learning Edge Weighting Functions

Here, we note that if graph edge weights are determined by some function f parametrized

by θ, we may still apply all of the machinery of Sections 8.2.2 and 8.2.3. A common edge

weighting function for graphs embedded in Euclidean space is the Gaussian Distance Kernel,

wij = exp
( −1

2σ2dij
)
, where dij is the distance between nodes i and j in the embedding. σ is

the ‘radius’ of the distance kernel and can be tuned in the same way as β and t. In cases

like the data discussed in this section, our edge weights are vector-valued, and it is therefore

advantageous to replace this hand-picked edge weight with weights chosen by a general

function approximator, e.g. an artificial neural network [36]. As before, the parameters of

this ANN could be tuned using gradients backpropagated through the GDD calculation and

eigendecomposition. Example weights learned by an ANN, trained with the constrastive loss

function, can be seen in Figure 8.5. We test each of the GDD generalizations proposed, on

each dataset. Both datasets were split 85/15 % train/validation; All metrics we report are

calculated on the validation set. For each dataset, we compare the following four methods:

1) GDD on unweighted graphs, with no tuning of t or other parameters; 2) Gaussian kernel

edge weights (fixed σ), with t and βi tuned; 3) Gaussian kernel edge weights, with t, σ, and

βi 4) General edge weights parametrized by a small neural network. For methods 2 and 3,
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the input to the distance kernel was the distance between nodes in the original image. All

parameters were tuned using ADAMOpt [61] (with default PyTorch hyperparameters and

batch size 256) to minimize the contrastive loss function [46]. Training took 200 epochs.

For the neural network approach, edge weights were chosen as the final output of a neural

network with three layers of sizes {32, 128, 1} with SiLU activations on the first two layers

and no activation function on the last layer. Results of these experiments can be found

in Table 8.1, and distance matrices (along with a distance-preserving embedding [24] of all

points in the dataset) for the cell morphology dataset can be seen in Figure 8.6. The distance

matrices developed using the ANN approach clearly show better separation between the two

categories. The validation accuracy on the cell morphology dataset is best for the ANN

method.

Figure 8.6: Top row: distance matrices between cell morphology graphs produced using
our methods 1-4, as described in Section 8.2.4. Bottom row: the result of embedding each
distance matrix in 2D using its first two principal components. Training dataset points are
semitransparent, validation points are opaque. Note: the principal components used for this
embedding are calculated only on the submatrix which corresponds to training data.
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Method Validation Accuracy % (morpho)
GDD only 77.7

t-tuning and β-weights 85.0
t and σ-tuning,β-weights 85.5

ANN Parametrization 98.3

Table 8.1: Validation set accuracy for a simple K-nearest neighbors classifier for both
datasets, for all four methods. The validation set was the same for each of these tests.
The value reported is the highest value over all K ∈ {3, 50}.

8.3 Conclusion and Future Work

This section presents two applications of GDD to the classification of graphs embedded in 2D

and 3D. In both, we demonstrate that GDD (and a parametrized variant) produce clusters

which draw out structural differences in our dataset(s). Additionally, we demonstrate a

method to compute distance metrics between edge-labelled graphs, in such a way as to

respect class labels. This approach is flexible and can be implemented entirely in PyTorch,

making it possible to learn a distance metric between graphs that were previously not able to

be discriminated by Graph Diffusion Distance. In the future we hope to apply this method

to more heterogenous graph datasets by including the varying-size version of GDD. We also

note here that our neural network approach, as described, is not a Graph Neural Network

in the sense described by prior works like [62, 7], as there is no message-passing step. We

expect message-passing layers to directly improve these results and hope to include them in

a future version of differentiable GDD.
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Chapter 9

Conclusion

This thesis presents an in-depth examination of the properties and efficient computation

of Graph Diffusion Distance (GDD). This distance metric, defined for undirected graphs

of unequal size, uses the eigenvalues of the graph Laplacian to quantify the difference in

behavior between diffusion of heat running on the nodes of each graph. In Chapter 2, we

defined a class of distance measures which use the eigenvalues of a graph Laplacian, and

its matrix exponential, as a distinctive measurement of the properties of diffusion on the

nodes of the graph. This family of related distance measures have several nice theoretical

properties, which we examine in detail in Chapter 3. One specific nice property is that

GDD and several of its variants are bounded above and below by expressions which depend

on the eigenvalues of the two graphs (the spectral lower and upper bounds), making them

possible to compute with real-valued (rather than combinatorial) optimization. However,

these measures typically still require expensive matrix-valued optimizations to calculate. In

Chapters 4 and 5 we present, and examine the numeric behavior of, a novel optimization

algorithm which greatly reduces the number and size of matrix optimizations which need to

be performed, resulting in a speedup of up to 1000x.
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With this computational speedup, GDD can differentiate digits of MNIST, distinguish which

of several 3D meshes a given graph is a discretization of, and be used to classify biological

data (morphological graphs); we show some of these applications in Chapter 8. Further-

more, the P matrix which is produced during the GDD calculation is useful as a prolonga-

tion/restriction operator to coarsen and refine computational graphs. An example of this

latter application is the use of coarsening and refinement operators as part of a neural net-

work architecture; these multiscale machine learning models are more accurate and more

efficient than their single-level counterparts. In Chapters 6 and 7 we demonstrate the ad-

vantages of these machine learning approaches through a variety of numerical experiments.

Specifically, P matrices can be used to automatically coarsen the model architecture of a

machine learning model. The resulting coarsened model learns more efficiently, and in the

case of the experiments in Chapter 7 learns to emulate a dataset with lower error than a

model operating only at one scale.

The graph Laplacian (along with its matrix exponential), is a fundamental object which

captures structural information about a graph. This thesis presents a variety of methods for

comparing such operators and accelerating machine learning models which are constructed

around the graph Laplacian.
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