UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Diffusion Distance: Efficient Computation and Applications

Permalink
https://escholarship.org/uc/item/8sc929qg2

Author
Scott, Cory Braker

Publication Date
2021

Supplemental Material
ttps://escholarship.org/uc/item/8sc929g2 #supplementa

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-ShareAlike
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8sc929g2
https://escholarship.org/uc/item/8sc929g2#supplemental
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Diffusion Distance: Efficient Computation and Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Cory Braker Scott

Dissertation Committee:
Prof. Eric Mjolsness, Chair
Prof. Alexander Ihler

Prof. Diane Adele Oyen?
Prof. Padhraic Smyth

2021

Los Alamos National Laboratory



Chapters 1, 2, 3, 4 and 5 (©) 2021 Public Library of Science
Chapter 6 (C) 2019 Society for Industrial and Applied Mathematics
Chapter 7 () 2020 IOP:Machine Learning, Science and Technology

All other materials (€) 2021 Cory Braker Scott



TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ALGORITHMS
ACKNOWLEDGMENTS
CURRICULUM VITAE

ABSTRACT OF THE DISSERTATION

1 Introduction
1.1 Imtroduction . . . . . . . . . .
1.2 Prior Work . . . . .

1.2.1 Quadratic Matching of Points and Graphs (structural, explicit, cont-opt)

1.2.2  Cut-Distance of Graphs (structural, implicit, disc-opt) . . . . .. ..
1.2.3  Wasserstein Earth Mover Distance (spectral, implicit, disc-opt) . . . .
1.2.4 Graph-Edit Distance . . . . . . . . ... ... ... ... .. .....
1.2.5 Diffusion Distance due to Hammond et al. [48] . . . . . ... .. ...
1.2.6  Novel Diffusion-Derived Measures . . . . . . . . . ... ... .....
1.3 Outline. . . . . . . . . e
1.4 Mathematical Background . . . . . . .. ... oo o
1.4.1 Desirable Characteristics for Distance Metrics . . . . . . . . ... ..
1.4.2 Definitions . . . . . . . ..

2 Diffusion Distance
2.1 Diffusion Distance Definition . . . . . . . . . . . . . ... ... ... ...
2.2 Directedness of Distance and Constraints . . . . . . . . . . . . .. ... ...
2.3 Variants of Distance Measure . . . . . . . . . . .. ... ... .. ......
2.4 Spectral Lower Bound . . . . . .. ... 0o
2.5 Summary of Distance Metric Versions . . . . . . . . ... .. ... ... ...

3 Theoretical Properties of GDD
3.1 Optimization over P is equivalent to an eigenvalue matching problem . . . .
3.2 Triangle Inequality forao=1. . . . . . . . . .. ... ...
3.3 Time-Scaled Graph Diffusion Distance . . . . . .. .. ... ... .. ....
3.4 Sparse-Diffusion Distance . . . . . . . . . .. ...

i

Page

vii
viil

ix

"

o

—
—H O ©W OO0 O Utk DN+~ =

—_



3.5 Upper Bounds for Graph Products (Linear Version) . . . . . . .. ... ...
3.6 Upper Bounds for Graph Products (Exponential Version) . . . . . ... ...
3.7 Existence of Zero-Error P for Cycle Graphs . . . . . . ... ... ... ...
3.8 Spectral Version of Decoupling for the Diffusion Term of Graph Product Pro-

longations . . . . . . ...

3.8.1 Distortion-penalized Distance . . . . . .. .. ... ... .. .....
3.9 Theory Summary . . . . . . . . ..

Efficiently Calculating GDD

4.1 Algorithm Development . . . . . . . . ... ... oL
4.2 Optimization of D% . . . . . . .
4.3 Optimization of D? . . . . . . . .
4.4  Algorithm Correctness Proof . . . . . . . . .. ... ... ... ...
4.5 Implementation Details . . . . . . . . .. ... 0oL

Numerical Properties of GDD
5.1 Graph Lineages . . . . . . . . . .
5.2 Numerical Optimization Methods . . . . . . . . ... ... ... ... ....
5.2.1 Black-Box Optimization Over ao. . . . . . . . . . .. .. ... .. ...
5.3 Triangle Inequality violation of D (Exponential Distance) and D (Linear Dis-
BANCE) . . ..
5.4 Intra- and Inter-Lineage Distances . . . . . . . . . . ... ... .. ... ...
5.5 Graph Limits . . . . . ...
5.6 Limit of Path Graph Distances . . . . .. . . . .. .. ... ... ......

Application: Multiscale Neural Network Training
6.1 Prior Work . . . . . o
6.1.1 Outline . . . . . ..
6.2 Optimal Prolongation Maps Between Graphs . . . . . . . ... ... ... ..
6.3 Comparison of Numerical Methods . . . . .. ... .. ... ... ......
6.3.1 Imitialization . . . . . . . . ...
6.3.2 Precomputing P matrices . . . . .. . ... ... L.
6.4 Multiscale Artificial Neural Network Algorithm . . . . . .. ... ... ...
6.4.1 Weight Prolongation and Restriction Operators . . . . . .. ... ..
6.4.2 Multiscale Artificial Neural Network Training . . . . . ... ... ..
6.5 Machine Learning Experiments . . . . . . . .. .. ... 0oL
6.5.1 Simple Machine Vision Task . . . . . . ... .. ... ... ... ...
6.5.2 MNIST . . . .
6.5.3 Experiments of Choiceof P . . . . . . ... .. ... .. ... ....
6.5.4  Summary . . . ...
6.6 Conclusion and Future Work . . . . . . . . . .. ..o

il



7 Application - Graph Prolongation Convolutional Networks
7.1 Convolution and Graph Convolution . . . .. .. .. ... ... .......

7.2 Microtubules . . ... ... .. ..

7.2.1 Simulation of MTs and Prior Work . . . . . . . . . . . . . . .. ...
7.3 Model Architecture and Mathematical Details . . . . . . . . . .. ... ...

7.3.1 Model Description . . . . .
7.3.2 Mathematical Background .

7.3.3 Graph Convolutional Layer Definition . . . . . . .. .. .. ... ...
7.3.4 Graph Prolongation Convolutional Networks . . . . . . . .. ... ..
7.4 Dataset Generation and Reduced Model Construction . . . . . . . ... ...

74.1 Dataset . ... .. ... ..

7.4.2 Efficient Calculation of Graph Diffusion Distance . . . . . . .. ...

7.4.3 Graph Coarsening . . . . . .
7.5 Machine Learning Experiments . .
7.5.1 Experimental Procedure . .

7.5.2  Evaluation of GPCN Variants . . . . . .. .. ... ... ... ....
7.5.3 Evaluation of Training Schedules . . . . . . ... ... .. ... ...

7.5.4 Comparison with DiffPool .

7.5.5 Comparison to Other GCN Ensemble Models . . . . . ... ... ..

7.5.6 Machine Learning Summary
7.6 Future Work . . . . ... ...

7.6.1 Differentiable Models of Molecular Dynamics . . . . . . .. ... ...

7.6.2 Tensor Factorization . . . .
7.6.3 Graph Limits . . .. .. ..
7.7 Conclusion . . ... ... ... ...

8 Other Applications

8.1 Shape Analysis for Discretized Meshes . . . . . . . ... ... ... ... ..
8.2 Morphological Analysis of Cell Networks . . . . . . ... ... ... ... ...

8.2.1 Biological Background . . .

8.2.2 GDD is a differentiable function of ¢ and edge weights . . . . . . . ..

8.2.3 Weighted Diffusion Distance

8.2.4 Learning Edge Weighting Functions . . . . . . . .. .. .. ... ...

8.3 Conclusion and Future Work . . . .
9 Conclusion

Bibliography

v

115
115
116
118
119
119
120
121
122
123
123
127
131
134
134
135
137
140
141
145
146
146
149
149
150

152
152
154
155
156
158
159
161

162

164



1.1
1.2
1.3

2.1
4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8

7.9

LIST OF FIGURES

Page
The lineage of path graphs. . . . . . . . .. ... ... 0. 15
Multiple coarsened graphs drawn from the Utah Teapot. . . . . .. ... .. 15
Graph box and cross products . . . . . .. ..o 17
Plot of GDD as t is varied, demonstrating unimodality. . . . . . . . .. . .. 19
Linear vs. exponential versions of GDD; multimoldality as a function of a. . 57
Example graph lineages. . . . . . . . . ... Lo 70
Example distance calculations between graph lineages. . . . . . .. ... .. 71
Speedup of Algorithm 2 in comparison to golden section search. . . . . . .. 74
Frequency of triangle inequality violation by various forms of GDD. . . . . . 76
GDD limit for path graphs, demonstrating convergence. . . . . . . . . . . .. 84
Difference between calculated distance and theoretical upper bound. . . . . . 85
Limiting behavior of GDD as graph size grows very large. . . . . . . . . . .. 85
Example P matrices found via two optimization methods. . . . . . . . . .. 92
Locality vs. diffusion Paretoplot. . . . . . . .. .. ... ... ... ... .. 94
Example P matrices for path and cycle graphs of various sizes. . . . . . . . . 97
Visualization of multigrid training procedure. . . . . . . . . . ... ... .. 104
Accuracy vs. training cost for a MSANN model, on a machine vision task. . 108
MsANN performance vs. training time on MNIST. . . . . ... .. ... .. 110
Comparison of P Matrices for MNIST MsANN. . . . ... ... ... .... 113
Schematic of GPCN model. . . . . . . .. .. ... ... ... ... .. ... 124
Microtubule model under bending load. . . . . . . . .. .. ... .. ... .. 127
Microtubule model structure. . . . . . . .. ..o 128
Changes in stiffness of microtubule model under constant load, as parameters
controlling interaction strength are varied. . . . . . . . .. ... ... 128
Plot of Linear Graph Diffusion Distance between two small random graphs. . 132

Directed Graph Diffusion Distance (GDD) between offset tube graphs and G.133
Three graphs used to create structure matrices for our GPCN model. . . . . 134
Comparison of mean squared error (MSE) on held-out validation data (nor-
malized by averaging over the validation set) as a function of FLOPs expended,
for variants of the GPCN model. . . . . . . . ... ... ... ... ... .. 136
Effect of varying training schedule for training a GPCN model. . . . . . . . . 139

7.10 Comparison of 3-level GPCN and A-GPCN models to a 3-level DiffPool GPCN.140



7.11 Comparison of Normalized MSE on held-out validation data as a function
of FLOPs expended for a variety of ensemble Graph Convolutional Network
Models. . . . . . e

7.12 Limiting behavior of two classes of distances between graphs, as a function of
graph size. . . . . . . L

8.1 Variety of 3D meshes, compared by GDD. . . . .. ... ... ... ... ..
8.2 Multidimensional scaling plot of GDD on meshes. . . . . . . ... ... ...

8.3 Extraction of cell morphology graphs from mutant and wild-type Arabidopsis.

8.4 Example graphs extracted from SAM images. . . . ... .. ... ... ...
8.5 Neural-net learned edge weights on morphological graphs. . . . . . . . . . ..
8.6 Distance matrices and embeddings produced by GDD for cell morphology

vi



2.1
5.1

6.1
6.2
6.3

7.1

7.2
7.3

7.4

8.1

LIST OF TABLES

Page
Summary of various forms of distance metric. . . . . . . .. ... ... ... 28
Mean GDD between graph lineages. . . . . . . . .. ... ... ... 7
Best MSANN performance and hyperparameters (one-object task). . . . . . . 107
Best MsANN performance and hyperparameters (two-object task) . . . . . . 107
Best MSANN performance and hyperparameters (MNIST) . . . ... .. .. 111
Description of energetic interactions in microtubule simulation, according to
the labels in Figure 7.3. . . . . . . . ... 129
Filter specifications for ensemble models in comparison experiment. . . . . . 142
Mean error and uncertainty of several GCN ensemble models across ten ran-
dom trials. . . . . . . L 143
Mean wall-clock time to perform feed-forward and backpropagation for various
GOCN ensemble models. . . . . . .. ..o 143
Validation accuracy of a GDD classifier for cell graphs. . . . . .. .. .. .. 161

vil



1
2

3

LIST OF ALGORITHMS

Pseudocode for Linear GDD calculation. . . . . . . .. ... ... ... ...
Pseudocode for Exponential GDD Calculation . . . . . .. .. ... .. ...

One cycle of the MsANN training procedure

viii



ACKNOWLEDGMENTS

Writing this dissertation was a monumental effort, and one which would not have been
possible without the support of many of my friends, collaborators, and loved ones. Since
this acknowledgements page is finite, I can only thank a few of them:

Thanks to my advisor, Eric Mjolsness, for taking a chance on a grad student with no papers
to his name; and thanks to Diane Oyen, Steven Janke, Matthew Whitehead, Padhraic Smyth,
and Alexander Ihler for all of their advice and academic encouragement.

Thanks to my parents, Thomas Scott and Elizabeth Braker, who have always encouraged
me to forge my own path and to approach the world with an inquisitive and compassionate
mindset. Thanks as well to my brother, Ben Scott, who I am super proud to call a fellow
scientist. Your support means the world to me.

Thanks to my partner, Julia Boese, who has been a bedrock of support at times when my
work was trying and difficult.

Finally, thanks to my other friends, partners, and family, who have all encouraged me to
grow in ways I couldn’t have anticipated over the last few years. This success couldn’t have
happened without you all.

X



CURRICULUM VITAE

Cory Braker Scott

EDUCATION

Doctor of Philosophy in Computer Science

University of California, Irvine

Master of Science in Computer Science

University of California, Irvine

Bachelor of Arts in Computer Science

Colorado College

Bachelor of Arts in Mathematics

Colorado College

RESEARCH EXPERIENCE

Graduate Research Assistant
University of California, Irvine

Graduate Research Assistant
Los Alamos National Labs

Machine Learning Intern
TAE Technologies, Inc

Software Engineering Intern
Charles River Analytics, Inc

REU Participant
Boise State University

TEACHING EXPERIENCE

Teaching Assistant
University of California, Irvine

2021
Irvine, CA

2017
Irvine, CA

2013
Colorado Springs, CO

2013
Colorado Springs, CO

2015-2021
Irvine, California

2018—-2021
Los Alamos, NM

2017, 2020-2021
Rancho Santa Margarita, CA

2016
Cambridge, MA

2012
Boise, ID

2015-2021
Irvine, CA

Courses: Introduction to Programming, Introduction to Optimization

Paraprofessional
Colorado College

Teaching Assistant
Colorado College

2013-2014
Colorado Springs, CO

2011-2013
Colorado Springs, CO



REFEREED JOURNAL PUBLICATIONS

Graph Diffusion Distance: Properties and Efficient 2021
Computation

PLOS ONE

StressNet - Deep learning to predict stress with fracture 2021

propagation in brittle materials
Nature: Materials Degradation

Graph prolongation convolutional networks: explicitly 2020
multiscale machine learning on graphs with applications

to modeling of cytoskeleton

IOP Machine Learning: Science and Technology

Detection and prediction of a beam-driven mode in 2020
Field-Reversed Configuration plasma with Recurrent

Neural Networks

Nuclear Fusion

Multilevel Artificial Neural Network Training for Spa- 2019
tially Correlated Learning
STAM Journal on Scientific Computing

Algebraic properties of generalized Rijndael-like ci- 2014
phers.
Groups Complexity Cryptology

REFEREED CONFERENCE PUBLICATIONS

Physics-Informed Spatiotemporal Deep Learning for March 2020
Emulating Coupled Dynamical Systems
AAAT Spring Symposium

SOFTWARE

DiffusionDistance https://github.com/scottcb/DiffusionDistance
Collection of codes to calculate diffusion distance between graph Laplacians.

MsANN https://github.com/scottcb/MsANN
A machine learning model which learns at multiple spatial scales.

x1


https://github.com/scottcb/DiffusionDistance
https://github.com/scottcb/MsANN

ABSTRACT OF THE DISSERTATION

Diffusion Distance: Efficient Computation and Applications
By
Cory Braker Scott
Doctor of Philosophy in Computer Science
University of California, Irvine, 2021

Prof. Eric Mjolsness, Chair

How is the shape of a graph captured by the way heat diffuses between its nodes? The
Laplacian Exponential Kernel of a graph is a matrix whose eigenvalues and eigenvectors
describe this heat (or more generally, probability) diffusion process as a function of time.
Previous work has shown that the Laplacian can be gainfully used for comparing graphs,
but these methods are limited to graphs of the same size. This work focuses on generalizing
one such measure, Graph Diffusion Distance (GDD), making it capable of comparing graphs
of varying size. Calculating these distances involves solving a complicated multivariate op-
timization problem, and we will detail a novel optimization algorithm for doing so. This
procedure outperforms naive univariate optimization by a speedup of as much as 1000x.
One key feature of this procedure is that it produces a coarsening operator which attempts
to align the two heat kernels to agree with each other as much as possible. These operators
can be used as the coarsening step in a convolutional neural network, resulting in a 10x
increase in training efficiency. We will show how these “Graph Prolongation Convolutional
Networks” can be used to accelerate molecular dynamics simulations of proteins. Finally,
we will also discuss some applications of the GDD, including 2D and 3D shape analysis and

characterization of plant cell growth.

xil



Chapter 1

Introduction

1.1 Introduction

Structure comparison, as well as structure summarization, is a ubiquitous problem, appearing
across multiple scientific disciplines. In particular, many scientific problems (e.g. inference
of molecular properties from structure, pattern matching in data point clouds and scientific
images) may be reduced to the problem of inexact graph matching: given two graphs, com-
pute a measure of similarity that gainfully captures structural correspondence between the
two. Similarly, many algorithms for addressing multiple scales of dynamical behavior rely on
methods for automatically coarsening the computational graph associated with some model

architecture.

In this work we present a distance metric for undirected graphs, based on the Laplacian
exponential kernel. This measure generalizes the work of Hammond et al. [48] on graph dif-
fusion distance for graphs of equal size; crucially, our distance measure allows for graphs of
inequal size. We formulate the distance measure as the solution to an optimization problem

dependent on a comparison of the two graph Laplacians. This problem is a nested opti-

1



mization problem, with the innermost layer consisting of multivariate optimization subject
to matrix constraints (e.g. orthogonality). To compute this dissimilarity score efficiently, we
also develop and demonstrate the lower computational cost of an algorithm which calculates
upper bounds on the distance. This algorithm finds a prolongation /restriction operator, P,
which produces an optimally coarsened version of the Laplacian matrix of a graph. Prolon-
gation /restriction operators produced via the method in this paper can be used to accelerate
the training of neural networks (both flat ANNs, as we will see in Chapter 6, and graph

neural networks, as we will see in Chapter 7).

1.2 Prior Work

Quantitative measures of similarity or dissimilarity between graphs have been studied for
decades owing to their relevance for problems in pattern recognition including structure-
based recognition of extended and compound objects in computer vision, prediction of
chemical similarity based on shared molecular structure, and many other domains. Related
problems arise in quantitative modeling, for example in meshed discretizations of partial
differential equations and more recently in trainable statistical models of data that feature
graph-like models of connectivity such as Bayes Networks, Markov Random Fields, and ar-
tificial neural networks. A core problem is to define and compute how “similar” two graphs
are in a way that is invariant to a permutation of the vertices of either graph, so that the
answer doesn’t depend on an arbitrary numbering of the vertices. On the other hand unlike
an arbitrary numbering, problem-derived semantic labels on graph vertices may express real
aspects of a problem domain and may be fair game for detecting graph similarity (we ex-
plore the use of edge information in Section 8.2. The most difficult case occurs when such
labels are absent, for example in an unstructured mesh, as we shall assume. Here we detail

several measures of graph dissimilarity, chosen by historical significance and similarity to our



measure.

We mention just a few prior works to give an overview of the development of graph distance
measures over time, paying special attention to those which share theoretical or algorithmic
characteristics with the measure we introduce. Our mathematical distinctions concern the

following properties:

e Does the distance measure require an inner optimization loop? If so is it mainly a

discrete or continuous optimization formulation?

e Does the distance measure calculation naturally yield some kind of explicit map from
real-valued functions on vertices of one graph to functions on vertices of the other?
(A map from vertices to vertices would be a special case.) If we use the term “graph
signal” to mean a function f : V(G;1) — S which identifies each vertex of a graph G
with some state s € S, then a map-explicit graph distance is one which as part of its
output provides a new function f’ : V(G3) — S which approximates the behavior of
f. ‘Approximates’ and ‘behavior’ are here left undefined as these would need to be

problem-specific.

e [s the distance metric definable on the spectrum of the graph alone, without regard
to other data from the same graph? The “spectrum” of a graph is a graph invariant
calculated as the eigenvalues of a matrix related to the adjacency matrix of the graph.
Depending on context, the spectrum can refer to eigenvalues of the adjacency matrix,
graph Laplacian, or normalized graph Laplacian of a graph. We will usually take
the underlying matrix to be the graph Laplacian, defined in detail in Section 1.4.2.
Alternatively, does it take into account more detailed “structural” aspects of the graph?

This categorization (structural vs. spectral) is similar to that introduced in [28].

For each of the graph distance variants discussed here, we label them according to the



above taxonomy. For example, the two prior works by Eschera et. al. and Hammond et al
(discussed in Sections 1.2.4 and 1.2.5) would be labelled as (structural, explicit, disc-opt)
and (spectral, implicit, non-opt), respectively. Our distance measure' defined in detail in

Chapter 2 would be labelled (spectral, explicit, cont-opt).

1.2.1 Quadratic Matching of Points and Graphs (structural, ex-

plicit, cont-opt)

As a first example, some graph comparison methods focus on the construction of a point-
to-point correspondence between the vertices of two graphs. Gold et. al. [41] define the
dissimilarity between two unlabelled weighted graphs (with adjacency matrices A®) and A
and ny and ny vertices, respectively) as the solution to the following optimization problem

(for real-valued M = [my;]:

ng ni n2 ni 2
minimize Z Z ( Aﬁ)mlk - Z mij;?) =|[ADM — MA@ ﬁT
I=1 p=1

j=1 k=1 \i=
n2
subject to Zmijzl, j=1...m
=1
m (1.1)
Zmijzl, 2:1n2
j=1
j =1... nq
where ||-||% is the squared Frobenius norm. This problem is similar in structure to the

optimization considered in Section 2.4 and Chapter 4: a key difference being that Gold et

al. consider optimization over real-valued matchings between graph vertices, whereas we

lwith the exception of the sparsity-seeking variants, which are not spectral.



consider 0-1 valued matchings between the eigenvalues of the graph Laplacians. In [42] and
[83] the authors present computational methods for computing the optimum of 1.1, and
demonstrate applications of this distance measure to various machine learning tasks such as
2D and 3D point matching, as well as graph clustering. Gold et al. also introduce softassign,
a method for performing combinatorial optimization with both row and column constraints,

similar to those we consider.

1.2.2 Cut-Distance of Graphs (structural, implicit, disc-opt)

Lovész [68] defines the cut-distance of a pair of graphs as follows: Let the C-norm of a matrix

B be given by:

1
|Bl|g = 3 oA

(1.2)

> By

1€5,jeT

Given two labelled graphs G, G5, on the same set of vertices, and their adjacency matrices

A; and Ay, the cut-distance dey(G1, Go) is then given by

Dcut(Gla G2) - ||A1 - AQHD (13)

(for more details, see [68]). Computing this distance requires combinatorial optimization
(over all vertex subsets of Gy, Gs) but this optimization does not result in an explicit map
between (G; and G5. This distance metric is grounded in the theory of graphons, mathemat-
ical objects which are a natural infinite-sized generalization of dense graphs. However, all
sparse graphs are similar in cut-distance to the zero graphon (see [68]), making cut-distance

less useful for real-world problems.



1.2.3 Wasserstein Earth Mover Distance (spectral, implicit, disc-

opt)

One common metric between graph spectra is the Wasserstein Earth Mover Distance. Most
generally, this distance measures the cost of transforming one probability density function
into another by moving mass under the curve. If we consider the eigenvalues of a (possibly
weighted) graph as point masses, then the EMD measures the distance between the two
spectra as the solution to a transport problem (transporting one set of points to the other,
subject to constraints e.g. a limit on total distance travelled or a limit on the number of
‘agents’ moving points). The EMD has been used in the past in various graph clustering and
pattern recognition contexts; see [44]. In the above categorization, this is an optimization-
based spectral distance measure, but is implicit, since it does not produce a map from
vertices of G to those of Gy (informally, this is because the EMD is not translating one set
of eigenvalues into the other, but instead transforming their respective histograms). Recent
work applying the EMD to graph classification includes [27] and [71]. Some similar recent
works [69, 21] have used optimal transport theory to compare graphs. In this framework,
signals on each graph are smoothed, and considered as draws from probability distribution(s)
over the set of all graph signals. An optimal transport algorithm is used to find the optimal
mapping between the two probability distributions, thereby comparing the two underlying

graphs.

1.2.4 Graph-Edit Distance

The graph edit distance measures the total cost of converting one graph into another with
a sequence of local edit moves, with each type of move (for example, vertex deletion or
addition, edge deletion or addition, edge division or contraction) incurring a specified cost.

Costs are chosen to suit the graph analysis problem at hand; determining a cost assignment

6



which makes the edit distance most instructive for a certain set of graphs is both problem-
dependent and an active area of research. The distance measure is then the sum of these costs
over an optimal sequence of edits, which must be found using some optimization algorithm
i.e. a shortest-path algorithm (the best choice of algorithm may vary, depending on how the
costs are chosen). The sequence of edits may or may not (depending on the exact set of
allowable edit moves) be adaptable into an explicit map between vertex-sets. Classic pattern

recognition literature includes: [31] [32] [37] [88] .

1.2.5 Diffusion Distance due to Hammond et al. [48]

We discuss this recent distance metric more thoroughly below. This distance measures the
difference between two graphs as the maximum discrepancy between probability distributions
which represent single-particle diffusion beginning from each of the nodes of G; and G,. This
distance is computed by comparing the eigenvalues of the heat kernels of the two graphs.
The optimization involved in calculating this distance is a simple unimodal optimization
over a single scalar, ¢, representing the passage of time for the diffusion process on the two

graphs; hence we do not count this among the “optimization based” methods we consider.

1.2.6 Novel Diffusion-Derived Measures

In this work, we introduce a family of related graph distance measures. These measures
compare two graphs in terms of similarity of a set of probability distributions describing
single-particle diffusion on each graph. For two graphs G; and G5 with respective Lapla-
cians L(G;) and L(Gs), the matrices e/2(¢1) and e'*(@2) are called the Laplacian Exponential
Kernels of Gy and G5 (t is a scalar representing the passage of time). The column vectors

of these matrices describe the probability distribution of a single-particle diffusion process



starting from each vertex, after ¢ time has passed. The norm of the difference of these two
kernels thus describes how different these two graphs are, from the perspective of single-
particle diffusion, at time ¢. Since these distributions are identical at very-early and very
late times ¢ (we formalize this notion in Section 2.1), a natural way to define a graph distance
is to take the supremum over all t2. When the two graphs are the same size, so are the two
kernels, which may therefore be directly compared with a matrix norm. This case is the case
considered by Hammond et al. [48]. However, to compare two graphs of different sizes, we

need a mapping between the column vectors of e“(¢1) and et(G2),

One such mapping is optimization over a suitably constrained prolongation/restriction opera-
tor between the graph Laplacians of the two graphs. This operator is a permutation-invariant
way to compare the behavior of a diffusion process on each. The prolongation map P thus
calculated may then be used to map signals (by which we mean values associated with ver-
tices or edges of a graph) on GG to the space of signals on G (and vice versa). In Chapters
6 and 7 we implicitly consider the weights of an artificial neural network model to be graph

signals, and use these operators to train a hierarchy of linked neural network models.

We also, in sections 3.3 and 3.4 consider a time conversion factor between diffusion on graphs
of unequal size, and consider the effect of limiting this optimization to sparse maps between
the two graphs (again, our case reduces to Hammond when the graphs in question are the

same size, dense P and R matrices are allowed, and our time-scaling parameter is set to 1).

In this work, we present an algorithm for computing the type of nested optimization given
in our definition of distance (Equations 2.2 and 2.3). The innermost loop of our distance
measure optimization consists of a Linear Assignment Problem (LAP, defined below) where
the entries of the cost matrix have a nonlinear dependence on some external variable. Our

algorithm greatly reduces both the count and size of calls to the external LAP solver. We

2We will assume that the two graphs are undirected and each consist of only one component, as otherwise
this supremum is not guaranteed to be finite and therefore informative.



use this algorithm to compute an upper bound on our distance measure, but it could also be
useful in other similar nested optimization contexts: specifically, nested optimization where
the inner loop consists of a linear assignment problem whose costs depend quadratically on

the parameter in the outermost loop.

1.3 Outline

The goal of this manuscript is to develop the theory and practice of comparing graphs us-
ing Graph Diffusion Distance (GDD). The remainder of this chapter (Chapter 1) defines
basic mathematical terminology and framework necessary for the remainder of the work.
Chapter 2 defines Graph Diffusion Distance and the variants thereof considered. Efficiently
computing these distance metrics requires a novel algorithm, which we motivate and explain
in Chapter 4. Chapters 3 and 5 explore theoretical and numeric properties of GDD, re-
spectively. Chapters 6, 7, and 8 showcase several applications of GDD to various scientific
tasks. Chapters 6 and 7 in particular are structured as self-contained investigations and
may be read without material from Chapters 2-5, although material from Section 1.4 may

be necessary for understanding notation.

1.4 Mathematical Background

In this section we briefly define terminology and notation which will be useful in the expo-

sition and proofs to follow.



1.4.1 Desirable Characteristics for Distance Metrics

The ideal for a quantitative measure of similarity or distance on some set S is usually taken

to be a distance metric d : S x S — R satisfying for all x,y,z € S:

Non-negativity: d(z,y) > 0

Identity: d(xz,y) =0 <= z =1y

Symmetry: d(z,y) = d(y, )

Triangle inequality: d(z, z) < d(z,y) + d(y, z)

Then (S,d) is a metric space. Euclidean distance on R? and geodesic distance on manifolds
satisfy these axioms. They can be used to define algorithms that generalize from R? to
other spaces. A variety of weakenings of these axioms are required in many applications,
by dropping some axioms and/or weakening others. For example if S is a set of nonempty
sets of a metric space Sy, one can define the “Hausdorff distance” on S which is an extended
pseudometric that obeys the triangle inequality but not the Identity axiom and that can
take values including +o00. As another example, any measure measure of distance on graphs
which is purely spectral (in the taxonomy of Section 1.2) cannot distinguish between graphs

which have identical spectra. We discuss this in more detail in Section 2.3.

Additional properties of distance metrics that generalize Euclidean distance may pertain
to metric spaces related by Cartesian product, for example, by summing the squares of
the distance metrics on the factor spaces. We will consider an analog of this property in

Section 3.6.

10



1.4.2 Definitions

Graph Laplacian: For an undirected graph GG with adjacency matrix A and vertex degrees

dy,ds . ..d,, we define the Laplacian of the graph as

L(G) = A — diag({dy,ds .. .d,}) (1.4)
=A— diag(1- A)
= A(G) — D(G).

The eigenvalues of this matrix are referred to as the spectrum of G. See [9, 26] for more
details on graph Laplacians and spectral graph theory. L(G) is sometimes instead defined
as D(G) — A(G); we take this sign convention for L(G) because it agrees with the standard

n  §2f

continuum Laplacian operator, A, of a multivariate function f: Af =3 ", &5

Frobenius Norm: The squared Frobenius norm, ||A||% of a matrix A is given by the sum

of squares of matrix entries. This can equivalently be written as Tr[AT A].

Linear Assignment Problem (LAP): We take the usual definition of the Linear Assign-
ment Problem (see [18], [19]): we have two lists of items S and R (sometimes referred to as
“workers” and “jobs”), and a cost function ¢ : S x R — R which maps pairs of elements from

S and R to an associated cost value. This can be written as a linear program for real-valued

11



x;; as follows:

m n
minimize g g c(si,15)ij

i=1 j=1
subject to injgl, j=1...n

> ay <1 i=1...m

j=1

x>0 1=1...m,7=1...n

Generally, “Linear Assignment Problem” refers to the square version of the problem where
|S| = |R| = n, and the objective is to allocate the n jobs to n workers such that each worker
has exactly one job and vice versa. The case where there are more workers than jobs, or vice
versa, is referred to as a Rectangular LAP or RLAP. In practice, the conceptually simplest
method for solving an RLAP is to convert it to a LAP by augmenting the cost matrix with
several columns (rows) of zeros. In this case, solving the RLAP is equivalent to solving a
LAP with size max(n, m). Other computational shortcuts exist; see [12] for details. Since
the code we use to solve RLAPs takes the augmented cost matrix approach, we do not

consider other methods in this paper.

Matching: we refer to a 0-1 matrix M which is the solution of a particular LAP as a
“matching”. We may refer to the “pairs” or “points” of a matching, by which we mean

the pairs of indices (7, j) with M;; = 1. We may also say in this case that M “assigns” i

to j. Given two matrices A; and A,, and lists of their eigenvalues {Aﬁ”, )\gl), cee /\,(111)} and
{A§2), ,\§2>, . )\,(122)}, with ng > ny, we define the minimal eigenvalue matching m*(A;, As)

12



as the matrix which is the solution of the following constrained optimization problem:

ny  ni

m*(Ay, Az) = arginf > Y My (A = AP (1.6)

i=1 j=1

ng ni
subject to (M € {0,1}"2X™) A (Z M, = 1) A (Z M,;; < 1)
i=1 j=1

In the case of eigenvalues with multiplicity > 1, there may not be one unique such matrix,
in which case we distinguish matrices with identical cost by the lexicographical ordering
of their occupied indices and take m*(A;, As) as the first of those with minimal cost. This
matching problem is well-studied and efficient algorithms for solving it exist; we use a Python
language implementation [22] of a 1957 algorithm due to Munkres [74]. Additionally, given a
way to enumerate the minimal-cost matchings found as solutions to this eigenvalue matching
problem, we can perform combinatorial optimization with respect to some other objective
function g, in order to find optima of g(P) subject to the constraint that P is a minimal

matching.

Hierarchical Graph Sequences: A Hierarchical Graph Sequence (HGS) is a sequence of

graphs, indexed by [ € N=10,1,2,3..., satisfying the following:

e (5 is the graph with one vertex and one self-loop, and;

e Successive members of the lineage grow roughly exponentially - that is, there exists
some base b such that the growth rate (of nodes) as a function of level number [ is

O™, for all € > 0.

Graded Graph: A graded graph is a graph along with a vertex labelling, where vertices
are labelled with non-negative integers such that Al, the difference in label over any edge,
is in {—1,0,1}. We will refer to the Al = 0 edges as “within-level” and the | = £1 edges as

“between-level” .

13



Graph Lineages: A graph lineage is a graded graph with two extra conditions:

e The vertices and edges with Al = 0 form a HGS; and

e the vertices and edges with Al = +1 form a HGS of bipartite graphs.

More plainly, a graph lineage is an exponentially growing sequence of graphs along with
ancestry relationships between nodes. We will also use the term graph lineage to refer to
the HGS in the first part of the definition (it will be clear from context which sense we are

using). Some intuitive examples of graph lineages in this latter sense are the following:

e Path graphs or cycle graphs of size 0" for any integer b.

e More generally, grid graphs of any dimension d, of side length b, yielding a lineage

which grows with size %" (with periodic or nonperiodic boundary conditions).

e For any probability distribution p(x,y) whose support is points in the unit square,
we can construct a graph by discretizing the map of p as a function of x and y, and
interpreting the resulting matrix as the adjacency matrix of a graph. For a specific
probability distribution p, the graphs derived this way with discretizations of exponen-

tially increasing bin count form a graph lineage.

e The triangulated mesh is a common object in computer graphics [81, 73, 96|, repre-
senting a discretization of a 2-manifold embedded in R3. Finer and finer subdivisions

of such a mesh constitute a graph lineage.

Several examples of graph lineages are used in the discussion of the numerical properties of
Graph Diffusion Distance in Section 5.1. Additional examples (a path graph and a triangu-

lated mesh) can be found in Figures 1.1 and 1.2.

14



Figure 1.1: The first seven levels of the graph lineage of path graphs, with ancestry relation-
ships. Al = 0 edges are colored in orange, Al = +1 edges are colored in blue. Self-loops are
not illustrated.

Figure 1.2: Top: subsamples of a mesh of the Utah teapot, of increasing density (each node
is connected to its 8 nearest neighbors by the Al = 40 edges, rendered in blue). These
samples form a graph lineage (Al = +1 edges are not illustrated). Bottom: the same set of
nodes, with only Al = +1 edges plotted (in orange) for one node from the coarsest level and
its descendants.

Kronecker Product and Sum of matrices: Given a (k x [) matrix M, and some other

matrix N, the Kronecker product is the block matrix

muN muN
M®N =

mklN ce mklN

See [52], Section 11.4, for more details about the Kronecker Product. If M and N are square,

15



their Kronecker Sum is defined, and is given by

MEN=MQIy+ Iy ® N

where we write 14 to denote an identity matrix of the same size as A.

Box Product (O) of graphs: For G; with vertex set U = {uy,uy ...} and G5 with vertex
set V = {v1,v2...}, Gi0OG, is the graph with vertex set U x V' and an edge between (u;,, v, )
and (u;,,v;,) when either of the following is true:

® i, = iy and v;, and v;, are adjacent in Gy, or

e j1 = jo and u;, and u;, are adjacent in Gj.

This may be rephrased in terms of the Kronecker Sum @ of the two matrices:

A(GHGs) = A(G1) ® A(G2) = A(G1) @ Ligy) + ljey © A(G2) (1.7)

Cross Product (x) of graphs: For G; with vertex set U = {uj,us...} and Gy with
vertex set V = {vy,v2...}, Gi X Gy is the graph with vertex set U x V' and an edge between

(wi,,vj,) and (u;y,v;,) when both of the following are true:

e u; and u;, are adjacent in Gy, and
e v;, and v, are adjacent in Gs.

We include the standard pictorial illustration of the difference between these two graph

products in Figure 1.3.

Grid Graph: a grid graph (called a lattice graph or Hamming Graph in some texts [16]) is

the distance-regular graph given by the box product of path graphs P,,, P,,, ... P, (yielding

16



Figure 1.3: Two types of graph product:
the Cross product (G x Ge, left) and Box
(wivy) (uz,v1) (upv1) wyvy Product (G10Gs, right). For two edges

» v ~up € Gy and vy ~ uy € Gy, we illus-

trate the resultant edges in the set of ver-
. tices {(u1,v1), (u2,v1), (u1,v2), (u2, v2)} in
: the graph product.

(ug,vy) (uz,v2) (ug,vp) (u,vy)

u1 V1 u1 Vi

a grid with aperiodic boundary conditions) or by a similar list of cycle graphs (yielding a

grid with periodic boundary conditions).

Prolongation map: A prolongation map between two graphs G; and G, of sizes n; and
ng, with ny > nq, is an ny X ny matrix of real numbers which is an optimum of the objective

function of equation 6.1 below (possibly subject to some set of constraints C'(P)).

17



Chapter 2

Diffusion Distance

In this Chapter we provide the definition of Graph Diffusion Distance, as well as providing
motivation for why the optimiztion over ¢ is an essential component of the GDD calculation.
We also briefly introduce some variants of GDD which will be covered in more detail in
Chapter 3. The diffusion distance calculations presented throughout this thesis depend on
an upper bound of the innermost optimization over P and «; in Section 2.4 we define a
lower bound on the same optimization. This lower bound will be useful in some of the GDD

property proofs in Chapter 3.

2.1 Diffusion Distance Definition

We generalize the diffusion distance defined by Hammond et al. [48]. This distortion measure

between two undirected graphs GG; and G, of the same size, was defined as:

DHammond<Gla GQ) = Slip HetLl - 6tL2 | ‘i‘ (21)

18



D*(G,G, |t=1,) Distance as a Function of ¢
0.005

0.004
0.003
0.002

0.001

lc

1 2 3 4 o

Figure 2.1: A plot illustrating unimodality of diffusion distance. D? was calculated between
two grid graphs Sq; and Sqg of size 7 x 7 and 8 x 8, respectively. The distance is given by

2
the formula D? (Sq,ﬁ Sq8| t) = infa>0 ian|C(P) HP(}%L(SO”) — etozL(SqS)PH as a function of .
F

The peak, at ¢ ~ .318, yields the distance D? (Sq;, Sqg)-
where L; represents the graph Laplacian of G;.

This may be interpreted as measuring the maximum divergence, as a function of ¢, between
diffusion processes starting from each vertex of each graph, as measured by the squared
Euclidean distance between the column vectors of e'*i. Each column v; of e’ (which is
called the Laplacian Exponential Kernel) describes a probability distribution of visits (by a
random walk of duration ¢, with node transition probabilities given by the columns of ) to
the vertices of G;, starting at vertex j. This distance metric is then measuring the difference
between the two graphs by comparing these probability distributions; the motivation between
taking the supremum over all ¢ is that the value of the objective function at the maximum
is the most these two distributions can diverge. See Figure 2.1 for an example of a distance

calculation, with a characteristic peak.

For further intuition about why the peak is the most natural place to take as the distance,

19



rather than some other arbitrary time, note that at very early times and very late times,
the probability distribution of vertex visits is agnostic to graph structure: at early times no
diffusion has had a chance to take place, while at very late times the distribution of vertex-
visits converges to the stationary state! for each connected component of the graph. Hence
we are most interested in a regime of ¢t-values in between these extremes, where differences

in G; and G are apparent in their differing probability distributions.

Our contribution generalizes this measure to allow for graphs of differing size. We add
two variables to this optimization: a prolongation operator, P (represented as a rectangular
matrix), and a time-scaling factor, cv. The dissimilarity between two graphs G; and Go (with

Laplacians L; = L(G;)) is then defined as:

2
2 _ : : %Ll _ atlo
DG, Ga) = supint int || Pest — o2 2:2)

where C(P) represents some set of constraints on the matrix P. For the remainder of this
work we use D(G1, G3) to refer to the distance and D?(Gy, G3) to refer to the squared distance
- this notation is chosen to simplify the exposition of some proofs. It will be convenient for
later calculations to introduce and assume the concept of transitive constraints - by which we
mean that for any constraint C, satisfaction of C by P, and P, implies satisfaction of C by their
product P; P, (when such a product is defined). Some (non-exclusive) examples of transitive

constraints include orthogonality, particular forms of sparsity, and their conjunctions.

The simplest transitive constraint we will consider is that P should be orthogonal. Intuitively,
an orthogonal P represents a norm-preserving map between nodes of G; and nodes of Go,
so we are measuring how well diffusion on G approximates diffusion on G5, as projected
by P. Note that since in general P is a rectangular matrix it is not necessarily true that

PPT = I. We assume that |G1| = n; < ny = |Gy|; if not, the order of the operands is

!Because the graphs are undirected, a stationary state is guaranteed to exist.

20



switched, so that P is always at least as tall as it is wide. We also briefly consider a sparsity
constraint in Section 3.4 below. Since sparsity is more difficult to treat numerically, our
default constraint will be orthogonality alone. Other constraints could include bandedness
and other structural constraints. We also note that because L is finite-dimensional, the
exponential map is continuous and therefore we can swap the order of optimization over ¢
and «. The optimization procedure outlined in this thesis optimizes these variables in the
order presented above (namely: an outermost loop of maximization over ¢, a middle loop of

minimization over a given ¢, and an innermost loop of minimization over P given t and «).

The other additional parameter, «, controls dilation between the passage of time in the
two graphs, to account for different scales. Again, the intuition is that we are interested in
the difference between structural properties of the graph (from the point of view of single-
particle diffusion) independent of the absolute number of nodes in the graph. As an example,
diffusion on an n x n grid is a reasonably accurate approximation of more rapid diffusion on a
2n X 2n grid, especially when 7 is very large. In our discussion of variants of this dissimilarity
score, we will use the notation D?(G1, Ga|x = ¢) to mean restrictions of any of our distortion
measure equations where variable x is held to a constant value ¢; In cases where it is clear

from context which variable is held to a fixed value ¢, we will write D?(Gy, Gac)

At very early times the second and higher-order terms of the Taylor Series expansion of the
matrix exponential function vanish, and so e’ ~ I + tL. This motivates the early-time or

“linear” version of this distance, D:

. 1 2
DQ(Gl, GQ) = inf inf —PL1 - OZLQP (23)
a>0 PIC(P) || & P
1 t 2
N (inf inf HP@EL1 — eatL2PH ) (2.4)
t2 \ a>0 pPlc(P) F

(Note that the identity matrices cancel). The outermost optimization (maximization over t)

21



is removed for this version of the distance, as t can be factored out:

2
= 2
F

1 2

t
« «

F

This means that for the linear version, we only optimize o and P. For the exponential
version of the dissimilarity score, we note briefly that the supremum over t of our objective

function must exist, since for any Gy, Ga:

I
D*(G1,Gy) < D* | G1,Gy|la=1,P = (2.6)
0

In other words, the infimum over all P and « is bounded above by any particular choice of

values for these variables. Since

D*|G,Gylt=0,aa=1,P = =0, and (2.7)

lim D? | G1,Gs |t,,a=1,P = =0 (2.8)

te—r00 O

this upper bound must have a supremum (possibly 0) at some t* € [0,00). Then

I
D2 Gl,GQ t*,Oé = 1,P = (29)

0

must be finite and therefore so must the objective function.

22



2.2 Directedness of Distance and Constraints

We note that this distance measure, as defined so far, is directed: the operands G; and
G5 serve differing roles in the objective function. This additionally makes the constraint
predicate C(P) ambiguous: when we state that C represents orthogonality, it is not clear
whether we are referring to PTP = I or PPT = I (only one of which can be true for a
non-square matrix P). To remove this ambiguity, we will, for the computations in the rest
of this manuscript, define the distance metric to be symmetric: the distance between GG and
Go with |G| < |Go| is always D(G1,Gs). P is then always at least as tall as it is wide, so

of the two choices of orthogonality constraint we select PTP = I.

2.3 Variants of Distance Measure

Thus far we have avoided referring to this graph dissimilarity function as a “distance metric”.
As we shall see later, full optimization of Equations 2.2 and 2.3 over o and P is too loose, in
the sense that the distances D(G1, Gy), D(G2, Gs), and D(Gy, G3) do not necessarily satisfy
the triangle inequality. The same is true for D. See Section 5.3 for numerical experiments
suggesting a particular parameter regime where the triangle inequality is satisfied. We thus
define several restricted/augmented versions of both D and D which are guaranteed to
satisfy the triangle inequality. These different versions are summarized in Table 2.1. These
variously satisfy some of the conditions necessary for generalized versions of distance metrics,

including:
e Premetric: a function d(z,y) for which d(z,y) > 0 and d(x,y) = d(y, x) for all z,y.

e Pseudometric: As a premetric, but additionally d(z, z) < d(x,y)+d(y, z) for all x,y, z.

e p-inframetric: As a premetric, but additionally d(z,z) < p(d(z,y)+ d(y,z)) and

23



d(z,y) = 0 if and only if z = y, for all x,y, 2.

Additionally, we note here that a distance measure on graphs using Laplacian spectra can
at best be a pseudometric, since isospectral, non-isomorphic graphs are well-known to exist
[40][107]. Characterizing the conditions under which two graphs are isospectral but not
isomorphic is an open problem in spectral graph theory. However, previous computational
work has led to the conjecture that “almost all” graphs are uniquely defined by their spectra
[15][17][108], in the sense that the probability of two graphs of size n being isospectral but
not isomorphic goes to 0 as n — oo. Furthermore, our numerical experiments seem to
show empirically that the violation of the triangle inequality is bounded, in the sense that
D(G41,G3) < px (D(G1,Gs) + D(Ge,G3)) for p &~ 2.1. This means that even in the least
restricted case our similarity measure may be a 2.1-infra-pseudometric on graphs (and, since
such isospectral, non-isomorphic graphs are relatively rare, it behaves like a 2.1—inframetric).
As we will see in Chapter 3, in some more restricted cases we can prove triangle inequalities,
making our measure a pseudometric. In Section 4.1, we discuss an algorithm for computing
the optima in Equations (2.2) and (2.3). First, we discuss some theoretical properties of this

dissimilarity measure.

2.4 Spectral Lower Bound

In Theorem 4.4.1 of Chapter 4 we will derive and make use of an upper bound on the graph
distance l~)(G1, GG2). This upper bound is calculated by constraining the variable P to be
not only orthogonal, but also P = Uy MU where M is the solution (i.e. “matching”, in the
terminology of that section) to a Linear Assignment problem with costs given by a function
of the eigenvalues of L(G;) and L(G3). In this section we derive a similar lower bound on

the distance.

24



Let G; and G5 be undirected graphs with Laplacians L1 = L(G1) and Ly, = L(Gs), and let

a > 0 be constant. By Equation (4.5), we have

_ ng  ni 1 2
2 _ : 2 (1) 2)
D*(G1,Gy) = g;%p%r]lsf:[ (Z Zpij <a)\j —a\; ) ) . (2.10)

i=1 j=1

The following upper bound on D is achieved by constraining P to be not only orthogonal,

but related to a constrained matching problem between the two lists of eigenvalues:

D*(Gh,Gs) < infasginfar ||2MA, —ahoM|[],

subject to i:mij <1, j=1...m
il (2.11)
> my <1, i=1...n
j=1
mi; > 0 1=1...n9,5=1...nq,

where A; and A, are diagonal matrices of the eigenvalues of L and L, respectively. Here we
used the explicit map P = UL PU, as a change of basis; we then converted the constraints on
P into equivalent constraints on P, and imposed additional constraints so that the resulting
optimization (a linear assignment problem) is an upper bound. See the proof of Theorem
4.4.1 for the details of this derivation. We show in this section that a less constrained
assignment problem is a lower bound on D?. We do this by computing the same mapping
P= UJ PU, and then dropping some of the constraints on P (which is equivalent to dropping
constraints on P, yielding a lower bound). The constraint PTP = [ is the conjunction of

n? constraints on the column vectors of P: if p; is the ith column of P, then PTP = I is

25



equivalent to:

pi-pi=1 Vi=1...m (2.12)

p;-pi =0 Vi=1..n,j=1...i—1i+1...n, (2.13)

If we discard the constraints in Equation (2.13), we are left with the constraint that every

column of p must have unit norm.

Construct the “spectral lower bound matching” matrix POB) as follows:

2
1 ifi = argminy (é)\(.l) — oz)\(k)>
pLB) _ 7 : (2.14)

z’J
0 otherwise.

For any «, this matrix is the solution to a matching problem (less constrained than the

original optimization over all P) where each )\§.I) is assigned to the closest /\52), allowing

collisions. It clearly satisfies the constraints in Equation (2.12), but may violate those in

Equation (2.13). Thus, we have

B nz ni 1 2
2 _ ; 2 (1) (2)

(2.15)
> DQ (Gb G2 |P(SLB)>

Various algorithms exist to rapidly find the member of a set of points which is closest to
some reference point (for example, KD-Trees [11]). For any «, the spectral lower bound
can be calculated by an outer loop over alpha and an inner loop which applies one of these

methods. We do not consider joint optimization of the lower bound over P and « in this

26



work.

2.5 Summary of Distance Metric Versions

Table 2.1 summarizes the variants of our distance metric.

27



t Q Classification | Treatment in this manuscript
Fixed at | Fixed at =0 | Pseudometric | Defined in Equation 3.5. Optimized
t. <€ a.=1 by one pass of LAP solver. Triangle
inequality proven in Theorem 3.2.2.
Fixed at | Fixed s =0 | Pseudometric | Defined in Equation (3.11). Opti-
t.<e at a, = mized by one pass of LAP solver. Tri-
()" angle inequality proven in Theorem
3.3.1.
Fixed at | Optimized | s =0 | Premetric Defined in Equation 2.3. Optimized
e <e€ by Algorithm 1. Triangle inequality
violations examined experimentally in
Section 5.3.
Optimized | Fixed at | s =0 | Metric When |G;| = |G2|, this is Hammond
a. =1 et. al’s version of graph distance.
Optimized | Optimized | s =0 | Premetric Defined in Equation 2.2. Optimized
by Algorithm 2. Graph Product upper
bound proven in Theorem 3.6.1. Tri-
angle inequality violations examined
experimentally in Section 5.3. Used to
calculate graph distances in Sections
5.4 and 5.5.
Fixed at | Fixed at | s> 0 | Pseudometric | Triangle inequality proven in Theorem
t. <€ a. =1 3.2.2.
Fixed at | Fixed s >0 | Pseudometric | Triangle inequality proven in Theorem
t. <€ at a, = 3.3.1.
()"
Optimized | Optimized | s > 0 Discussed in Section 3.4.

Table 2.1: Summary of this thesis’s investigation of different forms of our graph dissimilarity
measure. In this work, we systematically explore properties of this measure given sparsity
parameter s = 0, and various regimes of ¢ (fixed at some early time, or maximized over all t)
and « (fixed at o = 1, fixed at a constant power r of the ratio of graph sizes, or minimized
over all a. We leave exploration of nonzero values of the sparsity parameter to future work.
Variants not explicitly called out are not considered. In the case where o and ¢ are both
optimized and s > 0, it is unclear which of the metric conditions GDD satisfies, hence the
corresponding classification is left blank.

28



Chapter 3

Theoretical Properties of GDD

Having introduced Graph Diffusion Distance in Chapter 2, we proceed to prove several of
properties of various instances of our graph dissimilarity score, including triangle inequalities
for some specific versions and an upper bound on the distance between two graph products.
We will here rely heavily on various properties of the Kronecker sum and product of matrices

which may be found in [52], Section 11.4.

3.1 Optimization over P is equivalent to an eigenvalue

matching problem

For the purpose of the calculations in this section, we restrict ourselves to the “diffusion”
term of our objective function 6.1 (the term which coerces two diffusion processes to agree),

which we will write as

Dpo (G1, Gs) = H%Ph — JaL,P (3.1)

F

29



Because L; and L, are each real and symmetric, they may both be diagonalized as L; =
UiAiUiT where Uj; is a rotation matrix and A; is a diagonal matrix with the eigenvalues of L;

on the diagonal. Substituting into 3.1, and letting P = UL PU,, we have

Dp, (G1,Gs) = PL, — \/aL,P

F

PUMUT — /aU,\yUS P

F

= ||—= (U7 PUy) Ay — Val, (U PUY)

F

(3.2)

where P is an orthogonal matrix PTP = I if and only if P is as well. Since the Frobe-
nius norm is invariant under multiplication by rotation matrices, 3.2 is a re-formulation of
our original Laplacian matrix objective function in terms of the spectra of the two graphs.
Optimization of this modified form of the objective function subject to orthogonality con-
straints on P is upper-bounded by optimization over matchings of eigenvalues: for any fixed
a the eigenvalue-matching problem has the same objective function, but our optimization is
over all real valued orthogonal P. The orthogonality constraint is a relaxed version of the
constraints on matching problems (Equation 1.6) discussed in subsection 1.4.2, since match-
ing matrices M are also orthogonal (MTM = I). Many algorithms exist for solving the
inner partial and 0-1 constrained minimum-cost assignment problems, such as the Munkres

algorithm [74] (also in subsection 1.4.2).

We note three corollaries of the above argument. Namely, because the Frobenius norm is

invariant under the mapping to and from eigenspace:

1. Optimal or near-optimal P in eigenvalue-space maintain their optimality through the

mapping U, - UL back to graph-space.

30



2. Solutions which are within e of the optimum in P-space are also within ¢ of the optimum

in P-space; and

3. More precisely, if they exist, zero-cost eigenvalue matchings correspond exactly with

zero-cost P.

A natural next question would be why it might be worthwhile to work in the original graph-
space, rather than always optimizing this simpler eigenvalue-matching problem instead. In
many cases (path graphs, cycle graphs) the spectrum of a member G; of a graph lineage
is a subset of that of Gy, guaranteeing that zero-cost eigenvalue matchings (and thus, by
the argument above, prolongations with zero diffusion cost) exist. However, when this is
not the case, the above argument only upper bounds the true distance, since the matching
problem constraints are more strict. Thus, numerical optimization over P, with orthogonality

constraints only, may find a better bound on D (G}, Gi11).

3.2 Triangle Inequality for a =1

In this section, we show that both the linear and exponential versions of diffusion distance

satisfy the triangle inequality when o = 1.
Lemma 3.2.1. For any matrices M and P, with P satisfying PTP =1,
|1PM]|5 < [|M|[7 and [|MP|5 < [[M|[7 -

Proof. Suppose without loss of generality that PT P = I. Then:

1. ||PM]|)% = Te[MTPTPM] = Te[MT M] = || M]|%,

2. If PTP = I, then letting PPT =TI, Il is a projection operator satisfying 117 = IT = II%.
Then,

31



| M|[5 = Te[MTM] = Te[MTM I+ (I —11))]
= Tr[MT M) + Te[MT M (I — 1I)]
= Te[MTMPPT] + Te[MTM(I — 11)?] (3.3)

= [|MP[; + |IM(I — 1)

> ||MP|[7
m
Theorem 3.2.2. D? satisfies the triangle inequality for o = 1.
Proof. Let G1, G5, G be simple graphs, with Laplacians Ly, Lo, L3. Let
Py = inf [|[PL; — LyP|[5. 4
31 al“gpgl(P)H 1 3P|% (3.4)

Ps; is guaranteed to exist for constraints C which form a compact space of matrices; or-
thogonality constraints are an example, since the space of orthogonal matrices is closed and

bounded. Then

D2(G1,G3 ’CY = 1) = HP31L1 — L3P31H§; = mf Hle — LgPH%
PIC(P) (3 5)
< inf : || P32 Por1 Ly — L3P32P21||§:»

P39,P1|C(P32Po1

where we write C(PsoPs1) to signify that the product Psp Py satisfies the original transitive

constraints on P, e.g. orthogonality and/or sparsity. Since the constraint predicate C(P)

32



satisfies Equation (3.12), then so does their product, so we may write
b(Gl,G3|Oé: ].) S inf inf ||P32P21L1—L3P32P21||F
P33|C(P32) P21|C(P21)

= inf inf HP32P21L1 — P32L2P21
P33|C(Ps32) P21|C(P21)

+  PsoLoPyy — L3Py Poyl|

S inf inf (HP32P21L1 — P32L2P21HF (36)
P32|C(P32) P21|C(P21)

+ || PsaLoPoy — LyPsoPoy| 1)

= mf lnf (HP32 (P21L1 — L2P21)HF
P33|C(P32) P21|C(P21)

+  |[(Psalo — L3Ps) Porl|p)

By Lemma 3.2.1,
D(Gy,Gsla=1)< inf inf Py Ly — Ly P:
( 1 3|04 )_P32‘151(P32)P21‘1g(1)21)(|| 2141 2 21||p
+  ||Ps2Ly — L3Pl )

= inf Py — Ly P )
lellél(le)H 2111 2P| g (3.7)

+ inf PsoLy — LsP.
P32|C(P32)|| 3212 3 32HF

= D(G1,Gy|la=1) + D(Gy,Gs | = 1)

We note that in this proof we use Ly, Lq, and Lz (making this the small-¢ or linear version of
the objective function), but the same argument holds when all three are replaced with el

so we also have

Corollary 3.2.3. D satisfies the triangle inequality for o = 1.

33



Proof. By the same calculation as in Theorem 3.2.2, with all L; replaced by e'’i, we have

D (Gl, G3| tc,Oé = 1) S D(Gl,GQ |tc,O[ = 1) + D(GQ, G3 |tc,0z = ].) (38)

for any constant t.. Then, letting
t13 = argsup D (G, G| t., a0 = 1) (3.9)
te

we have:

D<G17G3|a = 1) = SupD<G17G3‘t67a = 1)
te

= D(Gl,Ggltlg,OJ = 1)

S D(Gl,GQ ‘t13704 = ].) + D(GQ, Gg |t13, o = 1)

(3.10)
< S}tlch (G1,Gs|t., a0 =1)
+ S?pD(GQ,Gg|tC,Oé =1)
=D (G1,Gala=1)4+ D (G, G3la=1)
O

Note that in the proofs of Theorem 3.2.2, Theorem 3.3.1, and Corollary 3.2.3, we assume
that the constraint predicate C(P) includes at least orthogonality (so that we may apply
Lemma 3.2.1). However, this constraint predicate could be more strict, e.g. include both
orthogonality and sparsity. Hence these statements also apply to the s > 0 cases in Table
2.1, which we do not otherwise consider in this work: in our numerical experiments we (for
reasons of computational simplicity) only require our optimization over P be orthogonally

constrained.

34



3.3 Time-Scaled Graph Diffusion Distance

For any graphs (G; and (G5, and some real nuber r, we define the Time-Scaled Graph Diffusion

Distance (TSGDD) as a scaled version of the linear distance, with « fixed. Namely, let

o= <Z—;)) (3.11)
() e () e

The intuition for this version of the distance measure is that we are constraining the time

Dz(Gl, GQ) = (nlng)_%DQ (Gl, G2

= inf (niny)™>"
PC(P)

F

dilation, «, between G; and G5 to be a power of the ratio of the two graph sizes. The factor
(n1n2)72r is needed to ensure this version of the distance satisfies the triangle inequality, as

seen in Theorem 3.3.1.

Theorem 3.3.1. The TSGDD, as defined above, satisfies the triangle inequality.

Proof. As above, let G1,G5, Gs be three graphs with n; = |G;] and n; < ny < ng, and
let L; be the Laplacian of G;. Let C(P) represent a transitive constraint predicate, also as

described previously. Then, for a constant r € R, we have:

D,(Gy,Gs) =
inf (Tllng)_r (E) PLl — (E) L3P
Plc(P) ns3 n3
F
< inf (ninz)™" (E> PyoPoy Ly — (E> L3 P35 Py
P32,P>1|C(P32P21) ns ns F

under the assumption, as in Equation (3.12), that C(Ps2) A C(Pa1) = C(Ps2Pa1),

35



D’/‘(Gla Gs) <

: —r
inf (nlng)
P327P21|C(P32)/\C(P21)

n - n r
(—1> Py Py Ly — (—1> L3Py Py
n n

; -r
= inf (nins)
P327P21|C(P32)/\C(P21)

ning\ n \"
+ ( 123) P3g Lo Py — (n_1> L3 P3y Py

na

< inf (ninz)™"
P32,P21|C(P32)AC(P21)

F

+ (ning)™"

= inf (n1n3)
P327P21|C(P32)/\C(P21)

o T
= inf (n1ng)
P39,Po; |C(P32)/\C(P21)

F

F

F

+ (ngng ) -

By Lemma 3.2.1,

36



Dr(Gla GB) <

< in (nin2)™"
P32, P21|C(P32)AC(Pa1)

(@) Puly — (@) Ly Py

T2 P

(@) PiyLy — (@> LsPy
ng ng

F

-+ (ngng) -

F
= inf (nlng)_r (E> P21L1 - (@> L2P21
P21|C(P21) Mo Mo P
+ inf  (ngnz)™" <@) Pso Ly — (@> L3 Psy
Ps2|C(Ps2) 3 ng r
= [)r(Gb G2> + DT(G27 GB)
and so
DT<G17 GB) S DT‘<G17 GQ) + [)r(G% GS)
for any fixed r € R. O

3.4 Sparse-Diffusion Distance

Recall that we use the notation C(P) for a constraint predicate that must be satisfied by

prolongation matrix P, which is transitive in the sense that:
C(P32) NC(Po1) = C(PsxPar). (3.12)

The simplest example is C(P) = Cortnog(P) = (PTP = I). Let degree; ;(M) is the total
number of nonzero entries in row ¢ or column 7 of M. Sparsity can be introduced in transitive

form by C(P) = Corthog(P) N Csparsity (P) where

Csparsity(P) = (max degreei,j(P) S (nPcoarse/nPﬁne)_s)
1/7]

37



for some real number s > 0. Here, npgne and npeoarse are the dimensions of P. This predicate

is transitive since

max degree; ; (P32 Po1) < <max degreeivj(P32)> <ma.xdegreei7j(P21)> :

%,J ,J ,J

and since ny cancels out from the numerator and denominator of the product of the fanout
bounds. This transitive sparsity constraint depends on a power-law parameter s > 0. When

s = 0, there is no sparsity constraint.

Another form of sparsity constraints are those which specify a pattern on matrix entries which
are allowed to be nonzero. Two simple examples (which are also transitive) are matrices
which are constrained to be upper triangular, as well as matrices which are constrained to
be of the form A ® B where A and B are themselves both constrained to be sparse. More
complicated are m; X mo matrices which are constrained to be banded for some specified
pattern of bands: more specifically, that there is a reordering of the rows and columns that
the number of diagonal bands (of width 1, slope Z—;) with nonzero entries is less than (Z—;)q
for some 0 < ¢ < 1. For example, linear interpolation matrices between d-dimensional grids,

with non-overlapping source regions, follow this constraint.

As a final note on sparsity, we observe that any of the optimizations detailed in this work
could also be performed including a sparsity term (for example, the | - |;-norm of the matrix
P, calculated as >, > i pi;| is one possibility, as are terms which penalize ¢ or « far from 1),
rather than explicit sparsity constraints. A potential method of performing this optimization
would be to start by optimizing the non-sparse version of the objective function (as detailed

in Section 4.1) and then slowly increasing the strength of the regularization term.

38



3.5 Upper Bounds for Graph Products (Linear Ver-

sion)

We next consider the problem of finding optimal prolongations between two graphs G(D1 ) =
Ggl)DGgm and Gr(D2 ) = Ggl)DGg) when optimal prolongations are known between Ggl) and
Ggl), and GgQ) and ng)‘ We show that under some reasonable assumptions, these two
prolongation optimizations decouple - we may thus solve them separately and combine the

solutions to obtain the optimal prolongations between the two product graphs.
From the definition of graph box product, we have
Ly = L(GY'0a6y))

= A(¢Y'06y) - p(6y'0ay")

= (AE) @ 1 + 1 @ AGY)) - (DG @ 1 + 17 @ D(G))

(ae?) e 1) - D) o 1) - (1 @ AGE) ~ 1P @ D(GE))

= (o)) + (e L)

LIGY) & L(GY)

where @ is the Kronecker sum of matrices as previously defined. See [34], Item 3.4 for more

details on Laplacians of graph products. We calculate

39



1 1
—prLY
Ja

(2o ") +

—aL®p

F
0 )+ (1o L))
(40 9) (9 9)) A,
- (%P (L@ 1) = va (L & 11?) P)
+ (%P (1" @ L8) - va (1 o Lf) P>

Now we try out the assumption that P = P; ® P, which restricts the search space over P

F

and may increase the objective function:

ot (.68) = || 75 (e 2 (1 0 )
~Va (1P e 1) (P e P

1
[ mer (s 10)

iest) o],
H( ! ®P2> —\/a(L?’Pl@PZ))

1
+ <ﬁ (Pl X PzLél)) —Va <P1 X L§2)P2>)
1

+ (P LPL” vaLy?
(7o (7 z))

F

F

40



Since ||A + Bl|r < ||Allr + || Bl|r,

1
<|[((erat - varr) o n))|

1 1 2
+H(P1® (ﬁpﬂé)—\/aLg)Pz))

LY — VarP'p

F

1
:Hﬁpl FHPZHF
1
+ 1P| EPQLS) — VaL? P,

)

F

Thus assuming P = P, ® P

DP’a <G8),G|(:|2)> < ’ PQ

Do (G167

+‘P1

P Da,Pg (Gg1)7 G§2)> )

which is a weighted sum of objectives of the optimizations for prolongation from Ggl) to
G§2) and Ggl) to G§2). Recall that our original constraint on P was that PTP = I; since
P = P, ® P, this is equivalent (by a property of the Kronecker product; see Corollary 13.8

in [64]) to the coupled constraints on P, and P:

1

(PlTPl - —Il(”) A (pr2 - 77[51)) (3.13)
n

for some n € R. For any P, P, which obey 3.13, we may rescale them by 7 to make them

orthogonal without changing the value of the objective, so we take = 1 in subsequent

calculations. Noting that ||A||r = /Tr(ATA), we see that

| Pl = \/Tr(lp) = \/ngl) and similarly || P||p = \/ng).

Thus, we have proven the following:

41



Theorem 3.5.1. Assuming that P decomposes as P = P, ® P, the diffusion distance
Dp, (GS),G(S)) between G(Dl) and Gg) is bounded above by the strictly monotonically in-

creasing function of the two distances Dp, o and Dp, o:

F(Dpy oy Dpyo) = /08 Dpy o + /128" Dy o,

Namely,

Dp, (G(Dl)>G|(j2)> < F (DPW (Ggl),G§2)> Dp, o (Ggl)’ Gf)))

Thus, the original optimization over the product graphs decouples into separate optimiza-
tions over the two sets of factors, constrained to have the same value of a. Additionally,

since the requirement that P = P; ® P is an additional constraint,

Corollary 3.5.2. If (a1, P1) and (ao, P), subject to orthogonality constraints, are optima
of Dy p (Ggl),G§1)> and D, p (Ggl),G§1)>, and furthermore if oy = «o, then the value of
Dpo(GNOGY, P0G for an optimal P is bounded above by Dp,gp, o, (GVOGYY, P0G,

This upper bound on the original objective function is a monotonically increasing function
of the objectives for the two smaller problems. A consequence of this upper bound is that
it Dp, o (Ggl), G§2)> <€ and Dp,, (Gg), G§2)> < €9, then the composite solution P; ® P
must have Dp, gp,.o <G(Dl), GQ) <e= (\/n_1+ \/n_g) max(€ey, €2). Thus if both of these dis-
tances are arbitrarily small then the composite distance must also be small. Furthermore,
if only one of these is small, so that Dp, , (Ggl),G?)) ~ 0 or Dp, (Ggl), G§2)> ~ 0, then

Dp opya = Dpyo Or Dpgp, o = Dp, o, respectively.

We have experimentally found that many families of graphs do not require scaling between
the two diffusion processes: the optimal («, P) pair has @ = 1. In particular, prolongation

between path (cycle) graphs of size n and size 2n always have qgptimal = 1, since the spectrum

42



of the former graph is a subset of that of the larger - therefore, there is a matching solution
of cost 0 which by the argument above can be mapped to a graph-space P with objective
function value 0 (we prove this in Section 3.7). In this case, the two terms of the upper
bound are totally decoupled and may each be optimized separately (whereas in the form

given above, they both depend on a «).

3.6 Upper Bounds for Graph Products (Exponential
Version)

We now consider the case where we want to compute the distance of two graph box products,

i.e. D(Gq,Gy) where
G, =GOGY and G, =cPOcY (3.14)

and

P(l) = arg inf D (Ggl), Ggl) ‘tc, A, Pc)
P.IC(P.)
(3.15)

P(Q) = arg inf D (G?)? G;Q)‘tc, Qc, Pc)
P.|C(P.)

are known for some ., ..

Theorem 3.6.1. Let Gy and Go be graph box products as described above, and for a graph

G let L(G) be its Laplacian. For fived t = t,, o = o, PY as given above, for any A € [0,1],

43



we have

inf D(G,Gy) <

P.|C(Pe:)

c (2)
A(||es= G| 4 [[eece]] ) D (680, 6801P0) (3.16)
(1= ([[et= )|+ [t @] ) p (6, 681p)
F

where all distances are evaluated at t = t., o = ., but we have omitted that notation for

simplicity.

Proof. For graph products G;, we have

L(G;) = LG & L(G?)
3.17
_ (1) (2) ( )

(this fact can be easily verified from the formula for the adjacency matrix of a graph box

product, given in the definition in Section 1.4.2), and so

exp [cL(G;)] = exp [C(L(Gg”) ® JL(G?))) + (I‘L(ng)‘ ® L(G§2))>] .