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Abstract: Pancreatic cancer remains one of the most lethal cancers, primarily due to its late diag-
nosis and limited treatment options. This review examines the challenges and potential of using
immunotherapy to treat pancreatic cancer, highlighting the role of artificial intelligence (AI) as a
promising tool to enhance early detection and monitor the effectiveness of these therapies. By syn-
thesizing recent advancements and identifying gaps in the current research, this review aims to
provide a comprehensive overview of how AI and immunotherapy can be integrated to develop
more personalized and effective treatment strategies. The insights from this review may guide future
research efforts and contribute to improving patient outcomes in pancreatic cancer management.

Keywords: PDAC; immunotherapy; immune checkpoint inhibitors; radiomics; artificial intelligence;
deep learning; machine learning

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a significant global health challenge,
ranking as the fourth leading cause of cancer-related mortality, causing 466,003 deaths
annually worldwide. In the United States, the 5-year relative survival rate for pancreatic
cancer is alarmingly low, standing at merely 12% [1]. Forecasts from 2021 suggest that
by 2040, the number of deaths caused by pancreatic cancer will surpass those caused by
colorectal cancer, making it the second leading cause of cancer-related death in the United
States [2]. Since it is predominantly diagnosed at advanced stages, PDAC treatment options
are limited, with surgical intervention being the traditional approach. However, the efficacy
of surgery for late-stage PDAC is significantly compromised due to delayed diagnosis,
which hinders resectability and is compounded by a high incidence of inoperable disease.
The early detection of PDAC is challenging due to its asymptomatic nature in the initial
stages and the lack of specific biomarkers, which contributes to the high mortality rate
associated with this cancer [3].

In cancer immunotherapy (CIT), patients often exhibit atypical tumor response pat-
terns, most notably “pseudoprogression” [4]. This phenomenon, characterized by the
transient enlargement of tumors or the emergence of new lesions due to T-cell infiltra-
tion, diverges from traditional criteria like RECIST, which would typically interpret such
changes as disease progression. Consequently, the early and accurate assessment of CIT
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responses becomes challenging, as existing modified criteria like RECIST, iRECIST, and
imRECIST [5–7] do not fully account for tumor heterogeneity, the nuances of pseudopro-
gression, and immune-related mixed response patterns. This complexity complicates the
prediction of clinical outcomes, such as progression-free survival and overall survival.
Additionally, the immunosuppressive microenvironment of PDAC further diminishes the
efficacy of immune checkpoint inhibitors (ICIs), underscoring the urgency of developing
effective treatment strategies.

In contrast, artificial intelligence (AI) presents a promising alternative by leveraging
conventional medical imaging data to identify novel biomarkers for monitoring patho-
physiological responses to CIT. AI-based algorithms, known for their superior efficiency
compared to manual methods in cancer imaging, facilitate the advanced quantification
of tumor burden and treatment response [8,9]. By integrating radiomics analysis with
sophisticated statistical methods, these AI frameworks aim to extract descriptive imaging
biomarkers that correlate with histological tumor markers, thereby enhancing the pre-
diction of treatment outcomes. The expected correlation between AI-derived imaging
biomarkers and histological findings holds the potential to refine prognosis and accurately
predict responses to treatments such as anti-PD1, anti-CTLA-4, or combination therapy,
thereby surpassing the limitations of current assessment methodologies.

In this review, we examine the role of ICIs in the treatment of PDAC, focusing on the
challenges posed by the tumor’s immunosuppressive microenvironment and strategies
to enhance the efficacy of these therapies. We also explore the emerging role of artificial
intelligence (AI), particularly in the early detection of PDAC and the monitoring of im-
munotherapy outcomes. By integrating insights from both immunotherapy and AI, this
review provides a comprehensive overview of current advancements and future directions
in PDAC management, highlighting the potential of AI-driven approaches to improve
diagnostic accuracy, personalize treatment, and ultimately enhance patient outcomes.

2. ICI Mechanism and Treatment for PDAC

ICIs function by targeting and inhibiting specific immune checkpoint proteins that
regulate the immune system, preventing overactivation and autoimmunity (Figure 1).
The primary mechanism involves blocking the interaction between checkpoint proteins
and their ligands, which suppresses the immune response against tumors [10,11]. For
instance, PD-1, an immune checkpoint protein, modulates T-cell activity in peripheral
tissues through its interaction with PD-L1 and PD-L2. Blocking PD-1 or its ligands with
ICIs prevents the “off” signal that would normally reduce T-cell activity, thus sustaining an
active immune response against tumor cells [12–15]. Similarly, CTLA-4, another checkpoint
protein, attenuates the activation of naïve and memory T-cells by binding to the ligands
B7-1 (CD80) and B7-2 (CD86) on antigen-presenting cells. By inhibiting CTLA-4, ICIs
enhance T-cell activation and proliferation, thereby boosting the immune response against
cancer cells [12,16]. Figure 1 illustrates the mechanism of ICIs and the commonly used ICIs
for each type.

ICIs have shown significant promise in treating various solid tumors [17], particularly
those classified as immune “hot” tumors, which are characterized by high immune cell
infiltration and a high tumor mutational burden (TMB) [18]. However, PDAC presents
unique challenges for ICIs due to its typically “cold” tumor microenvironment, which lacks
sufficient immune cell infiltration and exhibits low immunogenicity, making it less respon-
sive to immunotherapy [19–21]. Despite these challenges, certain subgroups of tumors,
such as those with deficient mismatch repair (dMMR) [22] or high microsatellite instability
(MSI-H) [23,24], have shown better responses to ICIs. In a multi-institutional analysis,
patients with MSI/dMMR PDAC treated with ICIs showed a median progression-free
survival (PFS) of 26.7 months and a high disease control rate, suggesting that ICIs can
be effective in this subgroup [25]. Additionally, patients with a high tumor mutational
burden (TMB) also benefit from ICI therapy, with a significantly improved overall survival
(OS) and time to treatment discontinuation (TTD) compared to those with low TMB [26].
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Transforming immune “cold” tumors, typically less responsive to ICIs due to their low
immunogenicity and immune escape mechanisms, into “hot” tumors is a potential strategy
to enhance immunotherapy efficacy [27,28]. Combination therapy is another promising
approach. For example, combining radiotherapy with ICIs can induce the abscopal ef-
fect, enhancing systemic antitumor responses and potentially improving the efficacy of
treatments for PDAC [29].
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Figure 1. Mechanism of action of immune checkpoint inhibitors in cancer treatment. It shows
the interaction between dendritic cells, T-cells, and tumor cells, focusing on immune checkpoint
pathways. Anti-CTLA4 ICIs (e.g., Ipilimumab, Tremelimumab) block the CTLA-4/B7 interaction,
activating T-cells. Anti-PD-1 (e.g., Pembrolizumab, Nivolumab) and anti-PD-L1 (e.g., Atezolizumab,
Durvalumab) ICIs disrupt the PD-1/PD-L1 interaction, restoring T-cell function to attack tumor cells.

Overall, while ICIs hold promise, their application in PDAC requires further research
to overcome the unique challenges posed by the tumor’s microenvironment and to identify
effective combination strategies that can re-engage immune responses for better clini-
cal outcomes.

2.1. PD-1/PD-L1

PD-1 is an immune checkpoint expressed on activated T-cells. Upon binding to
its ligand PD-L1, it inhibits T-cell activity and promotes immune tolerance, making it
a target for immunotherapy in various cancers [30]. However, in PDAC, PD-1/PD-L1
blockade monotherapy has shown limited efficacy due to the tumor’s immunosuppressive
microenvironment and intrinsic non-immunogenic nature [31]. More effective treatments
are needed to address these challenges.

A study explored the use of pembrolizumab, an anti-PD-1 ICI, in the treatment of
pancreatic cancer with mismatch repair deficiency. The findings demonstrated that PD-
1 blockade could be effective in PDAC patients with high mutational burdens caused
by mismatch repair defects, resulting in a substantial immune response and improved
clinical outcomes [22]. However, more universal treatment approaches are needed. A study
by Moral et al. reveals that Group 2 innate lymphoid cells (ILC2s) enhance the efficacy
of PD-1 blockade in PDAC by activating tissue-specific tumor immunity, presenting a
novel approach to improve immunotherapy outcomes [32]. Additionally, a recent study
demonstrated that modulating the intratumor microbiome with a probiotic engineered to
disrupt bacterial iron respiration enhances the efficacy of PD-L1 blockade in pancreatic
cancer by reducing immunosuppressive signals and improving cytotoxic T lymphocyte
infiltration [33].
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Ongoing clinical trials are exploring various strategies to overcome the immunosup-
pressive environment of PDAC (Table 1). One such trial compared the efficacy of niraparib
combined with either nivolumab (anti-PD-1) or ipilimumab (anti-CTLA-4) in patients with
advanced pancreatic cancer. The study found that niraparib plus ipilimumab resulted in a
superior progression-free survival rate at 6 months (PFS6) of 59.6% compared to 20.6% for
niraparib plus nivolumab [34]. Another phase 1 clinical trial has been initiated to test the
safety, preliminary efficacy, and biomarkers of response to the combination of Trametinib
(MEK inhibitor), Ruxolitinib (JAK2/STAT3 inhibitor), and Retifanlimab (PD-1 inhibitor) in
patients with metastatic PDAC who have progressed on prior therapy. This combination
aims to overcome ICI resistance by enhancing CD8+ T-cell cytotoxicity and antitumor
responses [35]. In another phase I trial, personalized RNA neoantigen vaccines, combined
with anti-PD-L1 immunotherapy (atezolizumab) and chemotherapy (mFOLFIRINOX),
were found to induce substantial neoantigen-specific T-cell responses in patients with
surgically resected PDAC, leading to prolonged recurrence-free survival. These results
suggest that such combination therapy can effectively stimulate durable immune responses
and may significantly delay disease recurrence in PDAC patients [36].

Table 1. Clinical trials involving immune checkpoint inhibitors (ICIs) for PDAC therapy (the data on
clinical trials were obtained from ClinicalTrials.gov and accessed as of 15 April 2024).

ICIs Type ICIs Name Other Treatments NCT Phase Status

CTLA-4
Ipilimumab KRAS peptide vaccine NCT04117087 PHASE1 RECRUITING

Niraparib + Ipilimumab NCT03404960 PHASE1|PHASE2 ACTIVE_NOT_RECRUITING

PD-1

Niraparib + Nivolumab NCT03404960 PHASE1|PHASE2 ACTIVE_NOT_RECRUITING

Nivolumab

BMS-813160, Gemcitabine,
Nab-paclitaxel, Biopsy,

Peripheral blood
NCT03496662 PHASE1|PHASE2 ACTIVE_NOT_RECRUITING

Stereotactic Body Radiation (SBRT),
CCR2/CCR5 dual antagonist, GVAX NCT03767582 PHASE1|PHASE2 RECRUITING

Irreversible Electroporation (IRE),
Toll-Like Receptor 9 NCT04612530 PHASE1 RECRUITING

KRAS peptide vaccine NCT04117087 PHASE1 RECRUITING

Albumin-bound paclitaxel, Paricalcitol,
Cisplatin, Gemcitabine NCT02754726 PHASE2 ACTIVE_NOT_RECRUITING

BMS-986416 NCT04943900 PHASE1 ACTIVE_NOT_RECRUITING

RO7496353, Capecitabine, S-1,
Oxaliplatin, Nab-paclitaxel,

Gemcitabine
NCT05867121 PHASE1 RECRUITING

Daratumumab, KRAS vaccine NCT06015724 PHASE2 RECRUITING

Fluorouracil, Irinotecan, Irinotecan
Hydrochloride, Leucovorin,

Leucovorin Calcium, Oxaliplatin,
Therapeutic Conventional Surgery

NCT03970252 EARLY_PHASE1 ACTIVE_NOT_RECRUITING

Regorafenib, (Stivarga, BAY73-4506) NCT04704154 PHASE2 ACTIVE_NOT_RECRUITING

SX-682 NCT04477343 PHASE1 RECRUITING

ClinicalTrials.gov
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Table 1. Cont.

ICIs Type ICIs Name Other Treatments NCT Phase Status

PD-1 Pembrolizumab

Defactinib NCT03727880 PHASE2 RECRUITING

PEGPH20 NCT03634332 PHASE2 UNKNOWN

GEN1042, Cisplatin, Carboplatin, 5-FU,
Gemcitabine, Nab paclitaxel,

Pemetrexed, Paclitaxel
NCT04083599 PHASE1|PHASE2 RECRUITING

Folfirinox NCT05132504 PHASE2 RECRUITING

BXCL701 NCT05558982 PHASE2 RECRUITING

Olaparib NCT04666740 PHASE2 RECRUITING

Lenvatinib Mesylate NCT04887805 PHASE2 RECRUITING

Belzutifan, Lenvatinib NCT04976634 PHASE2 RECRUITING

Imiquimod, Sotigalimab, Synthetic
Tumor-Associated Peptide Vaccine
Therapy, Computed Tomography,

Magnetic Resonance Imaging

NCT02600949 PHASE1 RECRUITING

Epacadostat NCT03432676 PHASE2 WITHDRAWN

Lenvatinib NCT05273554 PHASE1 RECRUITING

PF-07934040, Gemcitabine,
Nab-paclitaxel, Cetuximab,

Fluorouracil, Oxaliplatin, Leucovorin,
Bevacizumab, pemetrexed, Cisplatin,

Paclitaxel, Carboplatin

NCT06447662 PHASE1 NOT_YET_RECRUITING

Nab-paclitaxel, Gemcitabine, Cisplatin,
Irinotecan, Capecitabine, Olaparib NCT04753879 PHASE2 RECRUITING

Epacadostat, Oxaliplatin, Leucovorin,
5-Fluorouracil, Gemcitabine,

nab-Paclitaxel, Carboplatin, Paclitaxel,
Pemetrexed, Cyclophosphamide,

Carboplatin, Cisplatin, 5-Fluorouracil,
investigator’s choice of platinum agent

NCT03085914 PHASE1|PHASE2 COMPLETED

Futibatinib, Cisplatin, 5-FU,
Oxaliplatin, Leucovorin,

Levoleucovorin, Irinotecan
NCT05945823 PHASE2 RECRUITING

PD-L1 Atezolizumab

PEGPH20 NCT03979066 PHASE2 TERMINATED

Tumor Treating Fields, Gemcitabine,
Nab-paclitaxel NCT06390059 PHASE2 RECRUITING

RO7496353, Capecitabine, S-1,
Oxaliplatin, Nab-paclitaxel,

Gemcitabine
NCT05867121 PHASE1 RECRUITING

Autogene cevumeran, mFOLFIRINOX NCT05968326 PHASE2 RECRUITING

Nab-paclitaxel, Gemcitabine,
Oxaliplatin, Leucovorin, Fluorouracil,

Cobimetinib, PEGPH20, BL-8040,
Selicrelumab, Bevacizumab,

RO6874281, AB928, Tiragolumab,
Tocilizumab

NCT03193190 PHASE1|PHASE2 ACTIVE_NOT_RECRUITING

Durvalumab Rintatolimod NCT05927142 PHASE1|PHASE2 RECRUITING

2.2. CTLA-4

Clinical trials investigating the role of CTLA-4 blockade in PDAC have produced
promising yet complex results. CTLA-4, a potent immunoregulatory molecule, down-
regulates T-cell activation and inhibits antitumor immune responses, making it a target
for cancer immunotherapy [37]. Bengsch et al. [38] demonstrated that the CTLA-4/CD80
pathway regulates T-cell infiltration in PDAC. Their study revealed that blocking CTLA-4
or CD80 stimulates CD4+ but not CD8+ T-cell infiltration, suggesting distinct mechanisms
for the exclusion of CD4+ and CD8+ T-cells in PDAC. Additionally, high CTLA-4 expression
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has been associated with poor prognosis. Higher expression of CTLA-4 on CD8+ T-cells is
significantly associated with a shorter overall survival in patients with metastatic PDAC,
highlighting the potential impact of CTLA-4-mediated immunosuppression on disease
prognosis [39,40].

Ipilimumab, an anti-CTLA-4 antibody, has shown potential to enhance T-cell responses
and elicit antitumor immunity in various cancers, including melanoma and prostate can-
cer [41]. However, a phase 2 trial by Royal et al. [42] evaluated the efficacy of ipilimumab
in treating locally advanced or metastatic PDAC and found no responders according to
RECIST criteria. Nevertheless, one patient experienced a significant delayed response,
suggesting that immunotherapeutic approaches to PDAC warrant further exploration
despite limited immediate efficacy.

Combining ipilimumab with other treatments has shown potential benefits. A study
demonstrated that combining ipilimumab with a GM-CSF-secreting cell-based vaccine
(GVAX) in previously treated pancreatic cancer patients resulted in improved overall sur-
vival and mesothelin-specific T-cell responses [43]. Similarly, a phase 1b study by Kamath
et al. (2020) evaluated ipilimumab and gemcitabine in advanced PDAC, establishing a safe
regimen and suggesting that the combination may enhance the durability of response com-
pared to gemcitabine alone [42]. Another study indicated that CTLA-4 blockade combined
with the GVAX vaccine significantly enhances T-cell responses, diversifies T-cell receptor
repertoires, and improves the overall survival in PDAC, suggesting that CTLA-4 inhibition
can effectively potentiate antitumor immunity and overcome treatment resistance [43]. In
summary, while CTLA-4 blockade alone shows limited efficacy in PDAC, these clinical
trials suggest that combination therapies offer potential benefits for enhancing antitumor
immune responses and improving patient outcomes.

3. AI in Detecting and Monitoring Immunotherapy Responses

PDAC remains one of the most challenging malignancies to detect and treat, largely
due to its aggressive nature and the complexity of its tumor microenvironment (TME).
Early detection is crucial but difficult to achieve through traditional methods, highlighting
the need for innovative approaches. In this context, AI has emerged as a transformative
tool, offering novel strategies to enhance the detection and monitoring of immunotherapy
responses in PDAC (Figure 2).
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3.1. The Need for AI in PDAC Detection and Monitoring

Conventional methods for monitoring PDAC, such as biopsies, are often invasive and
pose risks to patients, while blood-based biomarkers like CA19-9 and carcinoembryonic
antigen (CEA), although non-invasive, tend to be non-specific and may not fully capture the
complex dynamics of the tumor microenvironment (TME), which is critical in determining
immunotherapy outcomes [44–46]. On the other hand, imaging biomarkers, such as those
derived from MRI, offer non-invasive alternatives but still require advanced techniques for
accurate interpretation. AI, with its capacity to analyze vast and intricate datasets, can be
applied to both blood-based and imaging biomarkers, offering a more precise approach
to biomarker discovery and disease monitoring [47]. By integrating data from multiple
sources, AI enhances our ability to understand and monitor PDAC, ultimately leading to
more personalized and effective treatment strategies.

3.2. AI-Driven Improvement in Biomarkers

Blood-based biomarkers are essential for understanding PDAC progression and guid-
ing treatment strategies. For example, the p53 biomarker, a tumor suppressor protein,
is crucial in regulating cell division and preventing tumor formation. Mutations in the
TP53 gene, which encodes the p53 protein, are frequently associated with various cancers,
including PDAC [44–46]. Detecting these mutations is essential for understanding the
disease’s progression and prognosis. AI-driven approaches; however, offer the potential
to revolutionize this process. By leveraging advanced algorithms to analyze radiology
and histopathology images, AI can identify patterns and biomarkers predictive of treat-
ment response [48]. A recent study introduced a model-driven multi-modal deep learning
approach that leverages a spiral transformation algorithm to effectively utilize 3D infor-
mation and enhance data quality [49]. This innovative method significantly improved the
non-invasive prediction of TP53 mutations, offering an alternative for PDAC detection and
monitoring. Iwatate et al. demonstrated that radiogenomic analysis using CT imaging
features can effectively predict p53 mutations and PD-L1 expression in PDAC, providing a
non-invasive method to assess these critical biomarkers for prognostic evaluation [50].

In addition to blood-based biomarkers, broader AI applications in PDAC have led
to the development of gene signatures beyond circulating biomarkers. For instance, a
recent machine learning-based study created a prognostic gene signature (DPIRG) for
PDAC, identifying immune biomarkers (e.g., PLEC, TRPV1) and potential drugs, such
as thalidomide, that could convert cold tumors to more immunogenic states, thereby
enhancing patient stratification and expanding immunotherapy options [51].

3.3. Radiomics-Based Prediction of Immunotherapy Response in PDAC

Radiomics, the high-throughput extraction of quantitative features from medical im-
ages [52], has emerged as a powerful tool in evaluating and treating PDAC, particularly
in the context of immunotherapy [53]. The TME of PDAC is notoriously complex, often
hindering the development of reliable predictive biomarkers for targeted therapies. Ra-
diomics offers a non-invasive method to assess the TME and predict immune infiltration,
providing crucial insights into potential responses to immunotherapy [54,55]. However,
monitoring the efficacy of ICI treatment remains challenging due to phenomena like pseu-
doprogression, where tumors initially appear to grow before responding to treatment.
Traditional criteria, such as RECIST and its modified versions like iRECIST, rely primarily
on a change in the tumor size and often fail to account for these atypical response patterns.
Even with improvements like imRECIST, the issue persists, highlighting the need for more
advanced methods.

Recent studies have demonstrated the potential of radiomics to non-invasively assess
the TME and predict immune cell infiltration. For instance, a machine learning classifier
based on non-contrast MRI was developed to preoperatively predict CD8+ T-cell expression
in PDAC patients, showing significant discriminative ability with an AUC of 0.89 in the
training cohort and 0.69 in the validation cohort [56]. Pan et al. (2019) utilized MRI to
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monitor therapeutic responses in PDAC, demonstrating that specific radiomic features
correlated with patient outcomes, thereby validating MRI’s utility in tracking immunother-
apy efficacy [57]. Similarly, Eresen et al. (2020) conducted an early prediction study that
showcased the use of MRI radiomics to predict responses to immunotherapy in PDAC, sug-
gesting that early radiomic markers might serve as valuable tools in personalized treatment
planning [8]. Additionally, Bian et al. (2022) constructed a machine learning model using
preoperative radiomic features to evaluate tumor biology and predict postoperative out-
comes, illustrating the predictive ability of radiomics in clinical settings [56]. Most recently,
an investigation by Lu et al. (2024) developed a radiomics nomogram to predict the progno-
sis of PDAC patients undergoing immunotherapy, finding that their model could accurately
stratify patients based on predicted outcomes [58]. Collectively, these studies underscore
the critical role of radiomics in advancing the precision of PDAC immunotherapy.

3.4. Machine Learning Applications for PDAC Immunotherapy

Machine learning (ML) has emerged as a powerful tool in enhancing the efficacy
of immunotherapy for PDAC. By leveraging complex datasets, ML models can uncover
intricate biological mechanisms and predict treatment outcomes, thereby aiding in the
development of personalized treatment strategies. Applications in this area include TME
analysis, treatment response prediction, and prognostic assessments, among others.

For TME analysis, where ML’s ability to decode multifaceted immune interactions is
crucial, ML models trained on over 1000 TME features from PDAC patients have been ap-
plied to predict treatment response and disease-free survival (DFS) following neoadjuvant
anti-CD40 therapy. These models revealed that anti-CD40 therapy reduces T-cell exhaustion
and is associated with increased CD44+CD4+ Th1 cells, which correlate with improved
DFS outcomes [59]. Additionally, a metabolism-derived signature (MBS) developed via ML
predicted immunotherapy outcomes by identifying connections with immune-resistant
pathways and antitumor immunity. The analysis of data from 1188 patients underscored the
significance of the metabolic landscape in shaping the TME, offering potential therapeutic
targets for personalized PDAC treatment [60].

For treatment response prediction, ML’s capacity to discern patient-specific resistance
mechanisms enables tailored therapies. ML plays a crucial role in differentiating resis-
tance mechanisms in PDAC during PD-1 blockade therapy. Findings have indicated that
increased MHC-I expression in malignant cells, combined with MHC and PD-1/PD-L
suppression in CD8+ T-cells, is linked to nonresponse, underscoring ML’s potential to
predict cellular-level treatment outcomes [61]. In another study, ML models based on
routine hematologic and biochemical parameters demonstrated a high prediction efficiency
for PD-1 combination therapy efficacy, with the AdaBoost classifier particularly effective in
early therapeutic response prediction [62].

For prognosis, ML’s strength in handling large-scale gene expression data aids in
robust survival prediction. A study utilizing LASSO, XGBoost, and Random Forest de-
veloped a risk signature linked to hypoxia and lactylation to predict PDAC prognosis
and immunotherapy response, identifying CENPA as a promising therapeutic target [63].
Furthermore, a 12-gene prognostic signature based on naive B-cell-related genes was con-
structed using CIBERSORT and scRNA-seq data to investigate tumor-infiltrating immune
cell interactions within the TME. This model, validated across multiple cohorts, demon-
strated robust predictive power and highlighted notable immune infiltration differences
between high- and low-risk groups, providing insights for immunotherapeutic strategies
and individualized treatment plans for PDAC [64].

Machine learning is a versatile tool in PDAC immunotherapy, driving advancements
in TME analysis, treatment response prediction, and prognostic modeling. Despite its
promise, challenges remain, including the need for extensive, high-quality datasets and
the effective integration of ML findings into clinical practice. Furthermore, the complexity
of tumor biology and patient response variability calls for the continual refinement of ML
models to enhance their accuracy and generalizability across diverse patient populations.
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3.5. Deep Learning-Based Surveillance of Risk, Early Detection, and Immunotherapy
Response/Outcomes of PDAC

Deep learning, a basis of AI, involves training artificial neural networks with multiple
layers to learn complex patterns from large datasets. In cancer research, deep learning
has become a powerful tool, enabling the analysis of vast amounts of biomedical data to
uncover insights that were previously unattainable. Its ability to detect subtle patterns
in medical images, genomic data, and other complex datasets has significantly advanced
the field, leading to more accurate diagnostics, personalized treatment strategies, and a
deeper understanding of cancer biology [65]. Unlike radiomics, which can be challenging to
standardize, validate, and reproduce across different patients and imaging conditions [66],
deep learning offers the advantage of better generalization and transferability, potentially
improving the reliability and accuracy of biomedical analyses.

Early detection is particularly significant in PDAC due to its typically late diagnosis
and poor prognosis. Early detection can significantly improve the efficacy of immunother-
apy by identifying tumors at a stage where they are more likely to respond to treatment.
One significant advancement is the use of deep learning models to analyze disease trajecto-
ries and predict pancreatic cancer risk. A study utilizing data from millions of patients in
Denmark and the United States demonstrated that machine learning models could predict
cancer occurrence with high accuracy, achieving an AUROC of 0.88 for predictions within
36 months [67]. This capability is instrumental in designing surveillance programs for
high-risk patients, potentially improving early detection and patient outcomes. Addition-
ally, a deep learning model, PANDA, was developed to non-invasively detect and classify
PDAC using non-contrast Computed Tomography (CT). Trained on a dataset of 3208 pa-
tients, PANDA achieved an AUC of 0.986–0.996 in a multicenter validation, demonstrating
high accuracy for PDAC detection. This model offers a promising tool for the large-scale,
non-invasive screening and early detection of PDAC [68].

The application of AI in pathology and clinical analysis has significantly advanced the
prediction of patient outcomes and the development of personalized treatment strategies
in PDAC. AI-powered pathology slide analyzers, such as Lunit SCOPE IO, have been
utilized to assess tumor-infiltrating lymphocytes (TILs) and classify immune phenotypes,
demonstrating that higher intratumoral TIL densities correlate with a better prognosis
in PDAC patients [69]. AI-based comprehensive analyses have integrated immune cell
profiling with cancer stem cells (CSCs) and tumor budding (TB) to predict patient survival,
outperforming traditional tumor–node–metastasis staging models [70]. The integration
of radiology, pathology, and genomics data through AI has also been explored to predict
PD-L1 expression and the tumor microenvironment, enhancing the selection of patients
likely to benefit from immunotherapy [71].

Using deep learning based on image biomarkers to monitor the immunotherapy re-
sponse has shown significant potential. A deep-learning algorithm, OrganoIDNet, was
developed to analyze live-cell imaging of PDAC organoids, accurately detecting responses
to chemotherapy and immunotherapy in real time. The study demonstrated the enhanced
tumor-killing effects of PBMCs in organoid co-cultures with the PD-L1 inhibitor Ate-
zolizumab, highlighting the platform’s potential for the dynamic assessment of the treat-
ment efficacy in patient-derived PDAC models [72]. An ensemble deep learning model
was developed using preoperative clinical and CT data to predict postoperative survival in
PDAC patients, showing superior performance in predicting 1-year recurrence-free survival
and comparable performance in predicting 2-year overall survival relative to the AJCC stag-
ing system, suggesting a similar potential in PDAC immunosurveillance [73]. Overall, AI’s
application in PDAC immunotherapy surveillance encompasses a wide range of tools and
methodologies, from digital pathology and deep learning models to integrated multi-omics
analyses, all contributing to more precise and personalized treatment strategies.
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4. Future Directions

The integration of AI in the detection and monitoring of PDAC represents a significant
advancement in precision oncology. However, several challenges remain that must be
addressed to fully realize the potential of AI in this field. One of the primary limitations is
the efficacy of ICIs as a monotherapy for PDAC, which is characterized by a cold tumor
microenvironment. This environment is typically resistant to immunotherapy, highlighting
the need for innovative strategies to either transform PDAC into a more immunogenic, “hot”
tumor or to develop effective combination therapies [19,28]. Future research should focus
on enhancing the efficacy of single ICI treatments and exploring synergistic combinations
that could overcome the immunosuppressive nature of PDAC.

Another significant challenge lies in the areas of data privacy and model explainability.
As AI systems increasingly rely on patient data to make clinical predictions, ensuring the
confidentiality and security of these data is paramount. Furthermore, the black-box nature
of many AI models presents a barrier to their widespread adoption in clinical settings.
Future studies should prioritize the development of transparent AI models that not only
offer a high accuracy but also provide interpretable results that can be easily understood by
clinicians. This will be crucial for gaining the trust of healthcare providers and ensuring
that AI tools are effectively integrated into routine clinical practice.

To advance the application of AI in PDAC, future research should focus on integrating
multi-omics and multi-modal data to enhance the precision of immunotherapy. Combining
genomic, proteomic, and imaging data can provide a more comprehensive view of the
tumor microenvironment and its response to treatment, leading to more personalized and
effective therapeutic strategies. Additionally, longitudinal studies are needed to assess
the long-term impact of AI-driven interventions on patient outcomes. These studies will
be essential for understanding the durability of AI’s predictive capabilities and its role in
guiding long-term treatment decisions.

Revolutionary technologies such as Large Language Models (LLMs) and Large Vision
Models (LVMs) offer promising solutions to some of the current challenges in AI-driven
oncology [74–76]. These models, pre-trained on vast amounts of data, can potentially be
fine-tuned on domain-specific datasets to improve both the precision and efficiency of AI
applications in PDAC. Tailoring these models to the specific needs of oncology could reduce
the time and cost associated with training AI systems, making precision oncology more
accessible and effective. Future research should explore the development and application
of such tailored models, with a focus on optimizing their performance for clinical use.

5. Conclusions

AI has emerged as a transformative tool in the detection and monitoring of PDAC,
offering novel approaches to overcome the limitations of traditional methods. The ability of
AI to analyze complex datasets and uncover subtle patterns has significantly advanced our
understanding of PDAC, leading to more accurate diagnostics and personalized treatment
strategies. However, the application of AI in PDAC is still in its early stages, and several
challenges must be addressed to fully harness its potential. These include improving the
efficacy of ICIs, ensuring data privacy, enhancing model explainability, and integrating
multi-omics data.

The future of AI in PDAC research lies in its ability to adapt and evolve with emerging
technologies. Integrating multi-modal data, conducting longitudinal studies, and devel-
oping revolutionary AI models tailored to oncology will be crucial steps in advancing
precision oncology. As these technologies continue to mature, they will undoubtedly play
an increasingly central role in the fight against PDAC, offering hope for improved patient
outcomes and the eventual transformation of this challenging disease into a more manage-
able condition. Continued collaboration between researchers, clinicians, and technologists
will be essential to achieve these goals and realize the full potential of AI in cancer care.
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