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Abstract

Genome-wide association studies (GWAS) in psychiatry, once they reach sufficient sample size 

and power, have been enormously successful. The Psychiatric Genomics Consortium (PGC) aims 

for mega-analyses with sample sizes that will grow to (cumulatively) >1 million individuals in the 

next 5 years. This should lead to hundreds of new findings for common genetic variants across 

nine psychiatric disorders studied by the PGC. The new targets discovered by GWAS have the 

potential to restart largely stalled psychiatric drug development pipelines, and the translation of 

GWAS findings into the clinic is a key aim of the recently funded phase 3 of the PGC. This is not 

without considerable technical challenges. These approaches complement the other main aim of 

GWAS studies on risk prediction approaches for improving detection, differential diagnosis, and 

clinical trial design. This paper outlines the motivations, technical and analytical issues, and the 

plans for translating PGC3 findings into new therapeutics.

The state of drug discovery in psychiatry

In psychiatry, conventional drug discovery is at an impasse1. In 2015, three (cariprazine, 

aripiprazole lauroxil, and brexpiprazole) out of 45 new drugs approved by FDA were related 

to psychiatry. The mechanisms of action of these drugs are not novel as their pharmacology 

primarily targets dopamine and serotonin receptors. There still remain significant unmet 

medical needs and societal costs for psychiatric disorders that necessitate novel 

therapeutics.2 In disorders where partially effective treatments already exist, drug 

development has a higher investment risk, because any new drug has to exceed the clinical 

efficacy of existing treatments, or show equivalent efficacy together with significant 

improvements in safety and tolerability, as well as competing for market share with 

established standards of care. This is particularly difficult where there is a lack of novel 

targets with adequate validation. This has resulted in relatively higher drug discovery and 

development costs and longer than average cycle time in both clinical trial execution and 

regulatory agency review. Some companies have paused or de-prioritised their drug 

discovery and clinical trial efforts in psychiatry3. However, there are many (183) clinical 

trials underway or registered, showing there is still considerable investment in the field. 

(Supp Table 1 provides details of current and recent trials in psychiatry, including the nine 

PGC3 disorders).

The challenges in developing novel therapeutics for psychiatric disorders result from the 

paucity of novel, valid targets. This results from etiological heterogeneity, the complex and 

polygenic nature of genetic risk and the definition of psychiatric disorders based on the 

range and duration of symptoms (that are subjective, self-reported or observational). In 
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addition, the complexity of the human brain means that large gaps exist in our knowledge of 

how brain expressed biochemical pathways relate to identified brain circuits and neuronal 

networks. The few examples of aetiology relevant higher order human behavioural 

functional domains and behavioural quantitative trait dimensions4 limit the potential targets 

and measurable readouts that can used in animal and human experimental medicine studies. 

While target identification based on genetics and biology looks increasingly feasible, 

concerns about the validity of existing model systems, especially rodents, have hampered the 

assessment of the value of potential new drug targets (target qualification) and have led to 

calls for proof of concept human studies as the ultimate approach in hypothesis testing for 

target validation.5 However clinical proof-of concept validation studies are expensive and 

carry risk, and will always be limited in number. Other challenges arise from the lack of 

informative biomarkers to guide proof of concept clinical studies and clinical development 

(for example by patient stratification), subjective clinical endpoints, and high placebo 

response rates (particularly in major depression)6.

What can genetic studies offer for drug discovery?

Human genetic studies have made tremendous progress in identifying loci linked to human 

disorders. Outside of psychiatry, these include high-risk mutations in single genes that 

identify specific targets for manipulation4. These include PCSK9, where individuals with 

‘knockout’ mutations have lower LDL cholesterol without obvious deleterious effects, that 

has led to promising results in clinical trials7, loss of function mutations in SLC30A88 

which reduce the risk of type 2 diabetes, and loss of function LPA mutations which reduce 

plasma lipoprotein(a) levels and cardiovascular disease risk.9

With the notable exception of autism with intellectual disability, however, rare mutations 

account for a relatively small proportion of cases in psychiatry, although this varies among 

disorders and their exact contribution is debated. Where they have been found, there is 

evidence that they converge on the same biological pathways as common variants: genes in 

schizophrenia GWAS associated regions overlap with those identified by sequencing studies 

focussed on de-novo damaging mutations in intellectual disability and autism101112.

It may be more straightforward to identify a new target via rare mutations, but it is often not 

clear whether manipulating these targets will be effective in the wider disease population. 

The common disease-associated polymorphisms identified by GWAS in psychiatry and other 

complex disorders also have the potential to identify novel drug targets as well as new 

aetiologies that can kindle the generation of new model systems for therapeutic development 

in the wider population.13 Several examples indicate that although GWAS loci have small 

effect sizes, they nonetheless may help identify targets for novel therapeutics, as shown in 

GWAS meta-analyses of lipid levels,14 or existing drugs that can be repurposed for the 

treatment of diseases that they were not initially developed to treat, an approach known as 

drug repositioning15,16. Integration of genetic data can be used for target selection, matching 

targets to indications while allowing a reduction in clinical trial costs such as by allowing 

more accurate identification of high risk individuals. Targets with genetic support have been 

shown to have a higher chance of success17.
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What genomics can offer

The discovery of common genetic variants associated with risk for psychiatric illness has the 

capability of restarting hypothesis-led drug discovery. As for other complex genetic 

disorders, the application of human genetics to schizophrenia, led by the PGC (URLs), has 

identified multiple disease susceptibility loci with increasing sample sizes. In 2014, over 100 

robustly associated loci were identified through case-control GWAS meta-analysis by the 

PGC10. Similar progress is underway in other psychiatric disorders, with new successful 

GWAS reports expected for ADHD, autism, major depressive disorder, anorexia nervosa, 

and bipolar disorder in the next year.

The discovery of GWAS loci for these disorders is likely to continue for many years to come 

with, ultimately, many hundreds or thousands of independent genetic associations expected 

for each disorder18. This does not mean the whole genome will eventually be implicated - 

rather we expect thousands of physically overlapping and independently associated loci to 

cluster onto hundreds of gene regions. The available evidence suggests these hits will 

converge onto both specific genes and biological pathways.

Insight into which genes (and which gene-products) are implicated and the direction of 

effect is needed to determine the most appropriate therapeutic strategy. A general 

understanding of the additional steps in the target identification and qualification process has 

developed: GWAS locus-to-gene mapping to determine which gene(s) give rise to the 

association, plus functional studies of how the disease-associated SNPs operate (modality), 

either via regulatory effects (e.g. affecting RNA splicing or levels) or through direct 

functional effects (affecting the nature and function of a protein). In this way, therapeutics 

targeting single GWAS identified targets, such as HMGCR in the LDL cholesterol 

metabolism responsible for hypercholesterolemia19, have been successfully developed. This 

process is beginning for schizophrenia20, and the PGC aims to accelerate this for all 

psychiatric disorders.

One problem is that GWAS hits identify variants, usually SNPs, that mark regions of the 

genome, so-called ‘loci’, but in most cases do not directly identify the genes themselves nor 

their causal alleles. A GWAS locus often includes multiple genes within the region of 

statistical significance, and a hit within a gene does not guarantee that that is the gene 

involved; the functional effect of the variants is not usually obvious, and it may even have a 

regulatory effect on a gene outside the GWAS risk locus. Data from large scale genomic and 

systems biology experiments are being used to identify expression, protein and methylation 

quantitative trait loci (e, p and m-QTLs) to try to better map causal alleles2122. This includes 

imputation of gene expression profiles2324. A caveat is that linkage disequilibrium between 

markers often results in multiple genes in a region being implicated by expression 

imputation, recapitulating the initial problem. In addition, the lack of large samples of 

available brain tissues from both patients and healthy donors at appropriate stages of 

development as yet hampers the wide scale application of this approach, although the 

CommonMind (http://commonmind.org) and Brainseq25 initiatives are taking strides in this 

direction (discussed below). It remains the case that each GWAS locus requires careful and 

bespoke examination (see Geschwind et al this issue26).).
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The available data indicate that psychiatric disorders are highly ‘polygenic’ and we now 

expect hundreds or thousands of individual variants to be associated with each disorder. A 

promising strategy to deal with the small effect sizes and plethora of results is to adopt a 

pathway- and network-informed interpretation of GWAS hits. An analysis by Cao and 

Moult27 found that while only a small fraction of known drug targets are in GWAS loci (12 

of 353 drug targets for 81 diseases), known drug targets are enriched three-fold in the 

nearest neighbour interactors (proteins that physically interact with a given protein) of genes 

in GWAS loci and are also enriched in second order interactors. This is supported by GWAS 

results in type 2 diabetes28 which found that pathways targeted by anti-diabetes drugs are 

enriched in genes from GWAS and their direct protein interactors. This pool of GWAS hits, 

their interacting partners and networks provides a resource for the identification of novel 

drug targets and for drug repositioning.

How can genetic and genomic data be used in the psychiatric drug 

development pipelines?

A critical issue in the field is how to use genetics information to drive drug discovery. As 

reviewed above, it often is not clear what genes are driving the association for GWAS 

significant loci. A potentially paradigmic example has recently emerged. C4 copy number 

was recently confirmed as a schizophrenia risk locus potentially affecting synaptic pruning 

in neurodevelopment; this study used PGC2 schizophrenia GWAS data, expression data 

from 700 postmortem brains, and genetic engineering of mice to confirm a potential 

mechanism20. This is already encouraging the development of new therapeutics, because 

synaptic pruning occurs as the brain develops to full maturity in the late teens/early 

adulthood, providing time during which therapeutic interventions may be possible.

Relatively few GWAS hits have thus far been studied in such detail. However, much GWAS 

evidence converges on particular biological pathways which are in themselves more 

druggable than single genes29. The pharmaceutical industry has also embarked on efforts to 

understand gene associations and the biological pathways impacted5. We need to link risk 

loci information to our understanding of pathways to help identify relevant biological 

processes, cell-types and brain circuits and to hone in on new molecular hypotheses and 

possible novel targets30. This need has sparked several academic projects and industry-

academia pre-competitive collaborations. There are currently a large number of open-source 

and/or publically available efforts. These include large databases, ranging from ChEMBL. 

DiGB, Drug Bank to KiDB from the Psychoactive Drug Screening Program (listed in Table 

c), which serve as portals for identifying known molecular targets of drugs and drug-like 

small molecules. PHAROS (https://pharos.nih.gov/idg/index; http://targetcentral.ws/) is a 

new resource enabled by the NIH Druggable Genome Initiative, which serves as a portal for 

a variety of useful information regarding druggable targets. Likewise the Open Targets 

(formerly the Centre for Therapeutic Target Validation) public-private initiative in the UK 

integrates a large number of data sources into one searchable platform for single targets 

(https://www.targetvalidation.org/).
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In order to enable the integration of functional genomic data from post-mortem brain 

samples from cases and controls new technologies are needed that enable the accurate 

identification of cell type specific omics profiles and individual level neuronal circuitry. Key 

examples driving the generation of large relevant datasets are industry-academia 

partnerships including the BrainSeq25, CommonMind (URLs), and psychENCODE (URLs) 

projects, which allow investigators to map genes identified in GWAS onto transcriptomics in 

postmortem tissue from controls and cases with schizophrenia or bipolar disorder (as well as 

iPSC neuronal cell lines from cases and controls31). A primary goal is to elucidate molecular 

mechanisms driven by risk variants with the additional benefit that using genetic data can 

allow causal anchoring of molecular changes and pathology thus avoiding incidental, 

downstream effects of the disorders themselves and their treatments25.

In order to advance our ability to understand GWAS data, the field will need to undertake 

further large-scale efforts to generate sufficient functional characterization of changes in 

brain gene and protein expression in patients and during development, and to move beyond 

schizophrenia and bipolar disorder to address many other disorders. The exploration and 

availability of large patient data sets is valuable. There are a number of initiatives in large, 

deeply phenotyped longitudinal samples aimed at mapping psychiatric genetic discoveries 

onto imaging, neurophysiological, and behavioral traits, to establish aetiologically related 

intermediate phenotypes that could be useful in the development of novel therapeutics. 

These and many other efforts aimed at linking genetic variations associated with risk with 

circuitry and molecular targets are a needed next step.

Precision medicine for psychiatry and polygenic risk scores

The customization of diagnosis and treatment to individuals - is likely to have a role in 

clinical psychiatry. However, the extent to which this will be important and the proportions 

of individuals with a particular psychiatric disorder who might benefit from precision 

medicine is unclear and is now the subject of considerable research. Genomics is an 

important tool in the precision medicine toolbox. It is already important for several disorders 

and becoming common in clinical practice (e.g., in the evaluation of children with 

intellectual disability and pervasive developmental delay). However, these studies are mostly 

focused upon rare genetic variants of uncommonly large effect. For most individuals with 

serious psychiatric disorders whose risk is mediated by the cumulative effect of large 

numbers of common genetic variant with or without important environmental impacts, it is 

not yet clear whether genomics will be an important part of precision medicine in psychiatry. 

We know that these genetic effects significantly impact risk10,29 but the effects are not 

deterministic.

An key approach is to use polygenic risk scores (extensively reviewed and discussed 

elsewhere32). A polygenic risk score (PRS)33 is an approximate measure of an individual’s 

common variant genetic propensity for a given disorder and, at a population level shows 

some predictive power34 for case-control status. PRS approaches provide several potential 

routes to drug development, including identification of genetically associated 

endophenotypes and biomarkers. PRS can also be exploited to improve clinical trial efficacy. 

Super controls can be chosen by selecting participants with very low PRS for the disease, or 
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PRS for low risk of side-effects or where differential diagnosis is unclear. This may convey 

particular benefit in trials for diseases such as Alzheimer’s (being investigated by a new 

workgroup in the PGC), where defining cases and controls is challenging. Furthermore, 

prevention trials could enlist high risk individuals from the top end of the PRS distribution35, 

which, amongst other benefits, may be less expensive and confounded than the sibling 

design36. Current studies in psychiatry are attempting to improve prediction of diagnosis or 

treatment response, for example in first episode psychosis37.

PGC phase 3: Target identification in Psychiatric GWAS data

To fully exploit GWAS data for drug development, we need to complement the direct 

identification of single targets and their interactors and the use of polygenic risk scores with 

pathway-driven approaches, explicitly targeting sets of GWAS implicated regions/proteins 

together. In our view, this may be a powerful means to discover new drug indications/targets 

that gains power by exploiting the underlying polygenic nature of these disorders. This 

mirrors the observation that many successful psychiatric (and other) drugs have complex 

receptor pharmacology profiles binding multiple targets with different affinities. The PGC is 

planning to exploit pathway analysis methods38 that show better control for type 1 error 

alongside chemoinformatically generated gene sets to identify drugs or molecules with sets 

of targets significantly enriched for association in GWAS data. Applying drug pathway 

analyses to psychiatric GWAS results will allow us to derive hypotheses about drug 

mechanisms of action and rational drug repurposing39. Rare variants, discovered by large 

scale sequencing efforts, can also be included in these analyses, particularly the known 

recurrent Copy Number Variations in Autism and Schizophrenia40. These are complemented 

by ongoing large scale sequencing efforts in these disorders. Although rare mutations are 

only found in a small percentage of cases with most common disorder4142, integrative 

pathway analysis including common and rare variants might increase power to detect 

statistically significant enriched pathways.

Using these data sources, three broad strategies are possible (see Figure 1). First, pathway 

analysis using the genetic variants found to be associated with psychiatric disorders using 

gene-sets (pathways) annotated for their drug associations or corresponding to sets of 

ligands in publically available resources such as ChEMBL and KiDB to test whether these 

gene sets together harbour a significant association signal using the PGC pathway analysis 

pipeline43. Second, use relevant gene expression profiles identified from case-control 

transcriptome data and examine their similarity to induced gene expression changes in cell 

lines, as identified by the NIH LINCS project (URLs) or in studies of neuronal cells derived 

from iPSC, to identify potential pathways and molecules which impact the expression and/or 

function of identified targets44. This strategy of ‘connectivity mapping’ allows identification 

of compounds with a similar or opposite effect on gene expression as our findings and can 

point to possible new treatment targets. Finally, we can layer onto these approaches 

“traditional” pathway annotations and ontologies (particularly GO and REACTOME) and 

newer data sources that may be less biased and more complete45 to allow us to develop a 

mechanistic understanding.
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Conclusions

These approaches require substantial and integrated efforts, involving consortia such as the 

PGC, other academic groups, and industry in pre-competitive framework to drive forward 

target identification and qualification to the point where confidence will be high enough to 

begin a clinical validation process; sharing of data and expertise will be essential. It will 

only be through collaborative work that the field will muster enough breadth of data and 

resources for this effort to fulfill its translational potential beyond polygenic risk score and 

prediction, to the identification of new biology and eventually towards resolving the current 

blockages in psychiatric drug discovery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PGC GWAS Drug Target Analysis Strategy: utilising diverse information sources for drug 

target discovery.
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Table 1

Large and commonly used chemoinformatics resources.

Name Bioactivities Link Summary Last updated

ChEMBL Various bioactivities (KtoEC50…) https://www.ebi.ac.uk/chembl/ ~1.6M 
compounds, 
14M 
activities, 
11K targets

2016

KiDB Ki http://kidbev.med.unc.edu/databases/kidb.php ~10K 
compounds, 
59K 
interactions, 
738 target

2016

Binding DB Various bioactivities https://www.bindingdb.org/bind/index.jsp ~542K 
compounds, 
1.2M 
activities, 
5K targets

2016

PhannGKB Drug response data https://www.pharmgkb.org/ – 2016

Guide to Pharmacology Various bioactivities https://www.guidetopharmacology.org/ ~8K 
compounds, 
14K 
bioactivities, 
2.7K targets

2016

DrugBank Drug/target interactions http://www.drugbank.ca/ ~8K drugs, 
15K drug/
target 
associations, 
4K targets

2016

CTD Chemical gene interactions, gene-
disease and chemical disease 
associations

http://www.ctdbase.org/ ~14M 
chemical 
gene 
interactions, 
20M gene-
disease 
associations, 
2M 
chemical-
disease 
associations

2016

STITCH Association scores http://stitch.embl.de/ new beta:http://stitch-beta.embl.de/ interactions 
between 
300K small 
molecules 
and 2.6K 
proteins 
from 1133 
organisms

2016

PubChem Various bioactivities https://pubchem.ncbi.nlm.nih.gov/ ~2M 
compounds, 
230M 
bioactivities, 
10K targets

2016

PHAROS Various bioactivities, target 
disease score

https://pharos.nih.gov/ ~134K 
compounds, 
140K 
bioactivities, 
1.8K 
targets, 
2.6K 
diseases

2016

Open Targets Target-disease and drug-target 
associations

https://www.targetvalidation.org/ ~2.1M 
target-

2016
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Name Bioactivities Link Summary Last updated

disease 
associations 
covering 
7.9K 
diseases and 
25K targets

DGIdb Drug/gene interactions http://dgidb.genome.wustl.edu/ Without 
PharmGKB: 
~12K 
compounds, 
26K 
structure/
gene pairs, 
~3.1K 
targets

2016

CARLSBAD CARLSBAD activity http://carlsbad.health.unm.edu/ ~435K 
structures, 
933K 
structure/
target pairs, 
3.7K targets

2014

ChemProt ChemProt activity http://potentia.cbs.dtu.dk/ChemProt/ ~1.7M 
structures, 
7.8M 
structure/
target pairs, 
19K targets

2016
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