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Abstract

We propose a unified explanation of contrastive and assimila-
tive adaptation aftereffects from the perspective of higher-level
cognitive processes: rational category learning and categorical
perception. We replicate (twice) previously reported assimila-
tive and contrastive effects (Uznadze illusion in visual modal-
ity), propose a rational computational model of the process,
and evaluate our model performance against the Bayesian lo-
gistic regression baseline. We conclude by discussing theo-
retical implications of our study and directions for further re-
search.

Keywords: adaptation aftereffects, perceptual biases, set il-
lusion, Uznadze illusion, computational modeling, categorical
perception

Introduction and Background
In many experimental settings, repeated exposure to stimuli
affects the perception of subsequent ones. These phenomena
are often referred to as the aftereffects of adaptation (Gibson
& Radner, 1937). For example, if a participant is repeatedly
presented with two circles, one bigger than another, she might
perceive equal circles as being different during the test trial
(Figure 1). Similar effects are manifest across a wide range of
experimental conditions, in different modalities, and on dif-
ferent levels of abstraction. Behavioral studies demonstrate
adaptation aftereffects in situations that run the gamut from
simple shape and motion perception under brief presentation
(Suzuki & Cavanagh, 1998; Chalk et al., 2010) to perception
and recognition of faces, facial expressions, gender, and race
(Webster & MacLeod, 2011; Leopold et al., 2001).

Contrastive and assimilative effects
It is possible to split all known adaptation aftereffects into
two broad categories: contrastive and assimilative (Howard
& Rogers, 1995). Contrastive aftereffects take place when the
test stimulus seems more different from those seen during the
adaptation phase (adaptors) than it would be perceived under
normal conditions. Assimilative aftereffects, in turn, produce
a reversed effect: the test stimulus is perceived as being more
similar to adaptors. There is evidence that these two types of
effects could occur in very similar and even identical experi-
mental settings (Uznadze, 1958; Fritsche et al., 2017; Chopin
& Mamassian, 2012). This raises a question: what deter-
mines whether a contrastive or assimilative aftereffect will
be present in a given trial?

A broadly accepted view is that the probability of con-
trastive aftereffects occurrence grows with increasing differ-
ence between the test stimuli and the adaptors, increased
length of adaptor presentation, as well as with the increase
of overall stimuli salience and contrast (Howard & Rogers,
1995; Palumbo et al., 2017; Fritsche et al., 2017; Chopin &
Mamassian, 2012).

Finding a mechanism that would explain the onset of both
types of adaptation aftereffects turned out to be challeng-
ing. Previously dominant framework of adaptation as neu-
ral fatigue proved unsuccessful in accounting for the wide
range of observed phenomena (Thompson & Burr, 2009). Re-
cent studies predominantly focused on uncovering the mech-
anisms of a particular type of aftereffect: either contrastive
(Webster & MacLeod, 2011; Rhodes & Jeffery, 2006; Grill-
Spector et al., 2006; Stocker & Simoncelli, 2006; Chopin
& Mamassian, 2012) or assimilative (Chalk et al., 2010;
Palumbo et al., 2017).

There are, however, models that propose potential mech-
anisms of both contrastive and assimilative effects in visual
(Wei & Stocker, 2015) and audial (Kleinschmidt & Jaeger,
2011) modalities. Wei and Stocker (2015) explained the op-
posite perceptual biases as a result of efficient coding con-
straints in a rational observer framework. Unfortunately, this
model falls short in accounting for the influence of the dif-
ference between the test stimulus and the adaptors on illusion
type (it predicts that this factor has no impact). At the same
time, similar aftereffects in phonetic adaptation were mod-
eled as Bayesian belief updating over two competing phonetic
categories (Kleinschmidt & Jaeger, 2011). The limitation of
this model is that it is designed for the task of forced choice
between two categories that are given in advance. In most
real-world and experimental adaptation scenarios, however,
the alternative categories are implicit.

Overall, none of the existing models provide a complete
account of the existing phenomena, which warrants further
research in this direction.

Adaptation aftereffects and categorization
We propose a high-level interpretation of adaptation biases
from a categorization standpoint. We argue that during the
adaptation phase a person forms the categories of “typical”
and “other” (atypical) stimuli. Learning is formalized us-
ing the ideal observer approach. The structure of the “typi-
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Figure 1: Uznadze visual illusion experimental procedure
During the adaptation phase, a subject is repeatedly exposed
to two circles, one being bigger than another. On the test
trial, two equal circles are presented, and the subject responds
whether they appear the same (no illusion) or, if not, which
one appears bigger (contrastive or assimilative illusion).

cal” category is estimated from observed adaptors, while the
“other” category is determined through its relationship to the
already learned one. The main assumption is that an observer
expects different visual categories to lie relatively far from
each other in the feature space. On the test phase, the ob-
server reconstructs the most likely true stimulus, given the
learned category structure and the noisy sensory observation.

There is some evidence that provides conceptual support
for our approach. First, in the domain of category learning,
there is a notion of categorical perception which refers to
phenomena whereby the same stimuli seem more different
or similar, depending on whether they belong to the same or
different categories in the learned conceptual structure (Gold-
stone, 1994, 1995; Goldstone & Hendrickson, 2010; Kuhl &
Iverson, 1995). Second, in the domains of color and speech
perception, perceptual bias toward the category prototype was
formalized as an optimal statistical inference of real stim-
ulus in high uncertainty conditions (Feldman et al., 2009;
Cibelli et al., 2016). These perceptual shifts resemble the
assimilative aftereffects. Third, a similar idea was success-
fully applied earlier in the domain of face perception: it was
shown that the contrastive aftereffects are directed precisely
toward the anti-prototype of the seen examples (Leopold et
al., 2001, 2005; Rhodes & Jeffery, 2006). Assimilative after-
effects were not, however, considered in these studies.

Overall, there is evidence that category attribution plays
an important role in perception. Although visual adaptation
is most commonly viewed as a low-level process, current
low-level models may not be able to fully capture the broad
spectrum of visual adaptation aftereffects and their dynamics
(Leopold et al., 2005) and are hardly compatible with inte-
rocular transfer of adaptation biases (Raymond, 1993). We
believe that the difficulties encountered by low-level expla-
nations, together with the successes of categorical perception
models, warrant considering alternative, high-level explana-

tions of perceptual aftereffects.
Our model builds upon the previous results and provides

a simple and unified interpretation of both assimilative and
contrastive aftereffects from a categorical perception stand-
point.

To test our interpretation, we use a visual version of the
Uznadze illusion (Figure 1). We replicate previously reported
results on the association between the probabilities of oppo-
site illusions with the length of the adaptation phase and the
difference between the adaptation stimuli (Uznadze, 1958,
1966). After that, we evaluate the performance of our model
on these data.

Experiment 1
This experiment replicated the findings reported in Uznadze
(1958, 1966).

Hypothesis: Difference between the adaptors and the test
stimulus, together with the number of adaptation trials, de-
termine the probability of assimilative vs contrastive afteref-
fect occurrence. In particular, the assimilative aftereffect is
associated with lower differences between stimuli sizes and
smaller numbers of adaptation trials, while the contrastive af-
tereffect onset probabilities follow a reversed pattern.

Procedure
Pairs of circles of different sizes were presented as adaptors.
We varied the magnitude of difference between adaptation
stimuli (from 1 to 3 individual differential thresholds) and
the number of adaptation trials (from 1 to 8) to evaluate their
effect on the probabilities of assimilative and contrastive illu-
sions. The procedure is illustrated in 1.

1. Estimation of individual differential thresholds. Two
circles (diameters: left 2.5cm, right 2.5 or 3.0cm) were pre-
sented to participants. They were asked to focus on the dot
in the center of the screen. We estimated participants’ dif-
ferential thresholds by the method of adjustment (Geschei-
der, 1997). That is, subjects saw two different circles and
altered the size of one of them until the circles appeared
equal to each other. In the second condition, the circles
were initially the same and subjects made them different.
We repeated this procedure six times and averaged the re-
sults to obtain the differential threshold estimate.

2. Adaptation phase. Subjects focused at a central dot on
the screen, while they were exposed to two circles (for 150
ms) several (1-8) times. The difference in size between the
two circles was 1, 2 or 3 individual differential thresholds.

3. Test phase. Participants saw two equal circles for 150ms
and reported whether they appeared the same. If there was
a perceived difference, participants identified which of the
two appeared larger. They were instructed to respond as
fast as possible and to rely only on their sensations. The
test trial was repeated until the “same” relationship was re-
ported 3 times in a row. This ensured that the aftereffect has
faded before the start of the next trial. We did not analyze
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the fading dynamics and only used the first test response in
further analysis.

This procedure was repeated 24 times for every participant
using all the combinations of experimental conditions. The
order of conditions was randomized.

4. Post-experimental interview. Participants shared their ex-
perience and strategy. The results of this stage were used
to check whether subjects responded purely based on what
they saw (as opposed to realizing that they experience an
illusion and correcting their answers).

Experiment was programmed and presented using Psy-
choPy software package (Peirce, 2007).

Participants
The initial sample consisted of 30 adult participants. Data
from 4 participants were excluded after the post-experimental
interview: they figured out that test circles are always equal,
and based their answers on this assumption, not on their ac-
tual perception. This results in a final sample of 26 partici-
pants (11 male, 15 female) aged from 18 to 47 years (mean
age: 22.27, sd: 5.65). All had normal or fully corrected vi-
sion.

Experiment 2
The second experiment investigated how robust are the ob-
served regularities. In particular, whether it is necessary to
account for individual differential thresholds.

Procedure
Experiment 2 replicates Experiment 1 with one qualitative
change: the difference between adaptation circles varies
in absolute units, not in individual differential thresholds.
Therefore, there is no stage of differential threshold estima-
tion. The left circle again has the diameter of 2.5cm, and the
diameter of the right circle is 0.1, 0.2, 0.3, 0.4, or 0.5cm big-
ger. The number of adaptation trials varies from 1 to 6. The
conditions are randomized.

Participants
Initial sample consisted of 55 adults. 5 adults were excluded
from subsequent analyses, because they figured out that test
circles are always equal and based their responses on this as-
sumption. This results in a final sample of 50 participants (22
male, 28 female) aged from 18 to 34 years (mean age: 22.91,
sd: 3.47). All of them had normal or fully corrected vision.
The sample was divided into two groups based on the results
of post-experimental interview:

1. Naive (35 adults). These participants did not realize that
test circles are always equal.

2. Non-naive (15 adults). These participants realized that
test circles are always equal, but followed the instruction
and tried to base their responses only on their sensations.

X s
iXi

µt µo σt σo

σnoise

zi

δµ

c

δµ ∼ Gamma(10,1)

µt ∼ Normal(0,6)

µo = µt −δµ

σt ,σo ∼Cauchy(0,5)

Xi ∼ Normal(µi,σi)

X s
i ∼ Normal(Xi,σnoise)

i ∈ {1...N}

Figure 2: Graphical model
Variables: Xi - real stimulus; X s

i - perceived stimulus (af-
ter adding perceptual noise); zi - indicator variable for the
class from which a real stumulus was generated (distributed
according to the Chinese Restaurant Process); µt and σt - µ
and σ of the typical class; µo and σo - µ and σ of another
(unobserved) class; δµ - the expected difference between two
classes; c - coupling probability for CRP; σnoise - perceptual
noise.

Computational Model
We formalize the process of adaptation as rational acquisition
of the “typical” and “other” stimuli categories. Perception is
modeled as an optimal probabilistic inference over the true
stimulus parameters given the learned category structure and
the noisy sensory input. Graphical model is presented on Fig-
ure 2.

1. Category learning. Category learning during the adapta-
tion phase is modeled as Bayesian inference of the “typ-
ical” category structure. Stimuli in our experiment could
be aligned along one relevant dimension (the magnitude of
difference between two circles) so we formalize a category
as a univariate normal distribution in this dimension. An
observer assumes that the true stimuli come from a normal
distribution with a mean difference between two circles µ
and a standard deviation σ. These are the parameters she
estimates to represent a category. Priors on the category’s µ
and σ are chosen arbitrarily and are set to be relatively dif-
fuse (given the scale of our feature): µ∼ normal(0,6) and
σ ∼ cauchy(0,5). These parameters are estimated purely
from the adaptive stimuli for every particular experimental
trial. The adaptive stimuli, in turn, are randomly gener-
ated from a normal distribution where µ is the difference
between adaptional stimuli in a given condition, and σnoise
is some random perceptual noise. We used 0.2 as a noise
in final model evaluation, however, we also checked that
changing this number does not influence the results. At the
end of this stage, the observer has estimations of µ and σ
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of the category.

2. Representation of the unknown category. The key as-
sumption of a rational observer in our model is that the
centers of two categories are more likely to be relatively
distant from each other than to be close (Figure 3). It is
formulated by adding a new parameter: difference between
category prototypes δµ with a prior Gamma(10,1) (model-
ing the opposite symmetric tail is not necessary in this case,
as its likelihood is always practically zero on the test trial).
Then, the estimation of the “other” category’s mean (µo)
for each experimental condition is simply µ̂t − δµ. Hence,
the prior assumptions on the structure of the unknown cat-
egory are shifted outward from the learned one. Thus, the
prior on µo is completely defined by an estimated µ of the
typical stimuli and the assumption on the difference be-
tween categories.

(a) After a small number of tri-
als, there is still a lot of variation
in the estimated typical distribu-
tion shape. The noisy test stim-
ulus is attributed to the typical
category with higher probability
and thus the reconstructed true
stimulus is shifted towards the
“typical” category prototype.

(b) After more trials, the
estimated typical distribution
shrinks, thus making the attri-
bution to the typical category
unlikely. Thus the reconstructed
source of the noisy stimulus is
shifted towards the closest peak
of the “other” category.

3. Test phase. Perception of the test stimulus is determined
by the decision of what category (“typical” or “other”) is
more likely to have generated it. Conditional probabilities
of the categories are calculated using Bayes’ rule (where zi
is a variable indicating category membership):

P(zi = j|X s
i ) =

f (X s
i |zi = j) ·P(zi = j)

f (X s
i )

=

=
f (X s

i |zi = j) ·P(zi = j)

∑
#cat
j=1 f (X s

i |zi = j) ·P(zi = j)

(1)

Likelihoods of the test stimulus for both categories are
taken from the corresponding estimated normal probabil-
ity density functions. The priors on whether a new stim-
ulus is coming from the known or a new category are es-
timated using the Chinese Restaurant Process (Anderson,
1991; Navarro & Kemp, 2017). Thus, the prior probability
that a new stimulus is generated from the “typical” cate-
gory is

P(zn+1 = typical) =
c ·n

1− c+ c ·n
(2)

where c is a probability that two observation come from the
same category (the coupling probability) and n is a number
of adaptation trials. The prior probability that a new stim-
ulus comes from an unknown category is

P(zn+1 = other) =
1− c

1− c+ c ·n
(3)

To efficiently reconstruct a real stimulus, perception is
shifted toward the probability density of its category. Due
to the aforementioned inference bias, the “atypical” and
“typical” category densities are shifted in opposite direc-
tions. Thus, assimilative illusion onset is formalized as
Bernoulli random variable with p = P(typical|test), and
the contrastive - as Bernoulli r.v. with p = P(other|test)
respectively.

Model fits 3 parameters: c (coupling probability), δµ (dif-
ference between prototypes of two categories), and σ (stan-
dard deviation of the “other” category).

Bayesian modeling for the paper was implemented using
Stan probabilistic language (Carpenter et al., 2017).

Results
Experiment 1
Assimilative aftereffect appeared 103 times (17%), con-
trastive - 153 times (25%). Notably, more than 50% of the
data consisted of the reports of stimuli equality, which corre-
spond to no illusion registered. “No illusion” instances were
excluded from the analysis. We applied mixed effects logis-
tic regression and Bayesian mixed effects logistic regression
(with non-informative priors). We used the difference be-
tween adaptation circles and the number of adaptation trials
as predictors, and the illusion type (contrastive (1) vs assim-
ilative (0)) as the outcome variable. This model can be ex-
pressed using the following formula:

illusion type ∼ number of adaptation trials +
difference between stimuli sizes + (1|participant)

The ANOVA comparison with a zero model was significant
(p< .001), as well as the tests for both individual coefficients:
number of adaptation trials (p < .001, est.= .133, sd = .036,
BF10 = 2.5) and difference between stimuli’ sizes (p < .001,
est.= .365, sd = .108, BF10 = 56.3). Both estimates are pos-
itive, in line with the the initial hypotheses.

Experiment 2
Assimilative aftereffect appeared 164 times (11%), con-
trastive - 402 times (28%). To analyse these data, we applied
the same frequentist and Bayesian mixed effects models to
the three (all, naive, and non-naive) groups separately.

1. For the whole sample, the difference between adaptation
circles and the number of adaptation trials are significant
predictors with p < .001 (est. = .537, sd = .093, BF10 =
47995.7) and p < .05 (est. = .171, sd = .07, BF10 = 4.8)
respectively.
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Table 1: Performance of Cognitive Model and Bayesian Logistic Regression.

Standard deviations are indicated in parentheses.
Measure Bayesian LR Cognitive Model

Experiment 1: assimilative Recall 0.296 (0.086) 0.577 (0.082)
Precision 0.521 (0.12) 0.522 (0.034)

Experiment 1: contrastive Recall 0.817 (0.065) 0.65 (0.056)
Precision 0.637 (0.018) 0.701 (0.032)

Experiment 2: assimilative Recall 0.057 (0.0049) 0.293 (0.057)
Precision 0.378 (0.228) 0.426 (0.044)

Experiment 2: contrastive Recall 0.97 (0.03) 0.845 (0.032)
Precision 0.73 (0.006) 0.754 (0.012)

2. For the group of naive participants, the difference be-
tween adaptation circles is a statistically significant pre-
dictor (p < .01, est. = .489, sd = .163, BF10 = 215.5).
The number of adaptation trials is not significant (p > .05,
est.= .105, sd = .9, BF10 = 0.5).

3. For the non-naive participants, both predictors are statisti-
cally significant: the number of adaptation trials (p < .05,
est. = 1.21, sd = .523, BF10 = 23.8) and the difference
between stimuli sizes (p < .001, est. = .518, sd = .151,
BF10 = 254.6).

The subsequent ANOVA model test (frequentist) was signif-
icant (p < .05) for all groups. All the estimates are positive,
in line with the initial hypotheses.

Model Evaluation
We compared our cognitive model against the Bayesian lo-
gistic regression baseline:

illusion type ∼ number of adaptation trials +

difference between stimuli sizes

Both the regression and the cognitive model have 3 parame-
ters. Bayesian logistic regression was chosen as a baseline,
since it is a very successful descriptive model with the same
amount of parameters. In particular, it outperforms a frequen-
tist logistic regression for our data.

The cognitive model fits the whole dataset better than the
baseline logistic regression models, but this does not guaran-
tee that the cognitive model would demonstrate better perfor-
mance on the out-of-sample data as well. Therefore, we used
random subsample cross-validation in order to evaluate and
compare the generalization performance of the models.

1. The data were randomly split into two subsets: train (50%
of assimilative data, 50% of contrastive data) and test (re-
maining 50% of assimilative and 50% of contrastive data)

2. Parameters of the models were estimated on the training
set

3. The performance measures (precision and recall) were cal-
culated for models’ predictions for the upheld test subset.

We repeated the above steps 50 times and calculated mean
precision and recall measures for both assimilative and con-
trastive classes, along with their standard deviations. The re-
sults are shown in the Table 1.

Evaluation metrics: Precision and Recall measures allow
us to compare models based on their sensitivity and accuracy
for both classes. Recall shows the proportion of the target
class occurrences that were accurately predicted. Precision
shows the proportion of the target class occurrences among
the predictions of that class.

The cognitive model repeats the main regularities found
in both experiments. In particular, it predicts assimilative il-
lusion more frequently for the smaller differences between
adaptive stimuli and number of trials, while the predictions
of contrastive illusion follow the reverse pattern. Importantly,
the logistic regression does not yield these types of regulari-
ties when it predicts assimilative illusion.

The estimates of the “other” category center were always
negative, which corresponds to the contrastive shifts in per-
ception.

Discussion
Replication
We replicated the results reported in Uznadze (1958, 1966).
The difference between adaptation stimuli sizes was a signif-
icant predictor of the aftereffect type in all collected datasets.
The number of adaptational trials was not a significant pre-
dictor for naive participants in the second experiment, but it
was significant in the remaining datasets. The signs of all the
coefficients were consistent with the initial hypotheses. The
effect proved robust to the scale of the differences between
stimuli, and overall, Experiments 1 and 2 yielded similar re-
sults.

We view this replication as an important impact of our pa-
per. The works of Uznadze are predominantly focused on
the study of “set”, or “set illusions”, which denote the same
group of phenomena as perceptual aftereffects. He performed
extensive studies of these effects in visual, auditory and hap-
tic modalities (Uznadze, 1966). Nevertheless, although the
so-called “Uznadze illusion” (perceptual aftereffect in hap-
tic modality) received some attention (Janzen et al., 1976;
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Wohlwill, 1960), most of his contributions remain untrans-
lated and almost entirely unknown to the scientific commu-
nity outside the post-Soviet space. We find, however, that
some of his findings are still relevant and could lead to a bet-
ter understanding of perceptual aftereffects. We hope that our
results would encourage further use of Uznadze visual illu-
sion in the studies of perceptual adaptation aftereffects.

Modeling
The proposed cognitive model performs better than Bayesian
logistic regression, which makes it a useful baseline for fur-
ther research. In particular, it is sensitive to both types of
aftereffect and yields more accurate predictions within these
categories.

More importantly, our model provides a simple and uni-
fied interpretation of seemingly disparate phenomena of as-
similative and contrastive aftereffects. This explanation is
based on the principles of rational analysis and an intuitive
assumption about the category structure inductive bias (dif-
ferent categories have non-coinciding centroids). Thus, our
model shows that the apparently low-level perceptual afteref-
fects may be explained from the logic of higher-level cogni-
tive processes, such as categorization. Moreover, it allows us
to view the role of adaptation aftereffects in perception from
a new angle: we demonstrate that they may serve as an im-
portant part of an optimal stimuli reconstruction process, as
opposed to being an artifact or an epiphenomenon.

Future directions
Our model is based on the high-level logic of perception and
is not bound to specific low-level mechanisms. This greatly
broadens the scope of its potential applications.

Firstly, there is a number of promising extensions of our
model within the domain of adaptation aftereffects:

• The model could be extended to account for the cases
of illusion absence (this could be done by incorporat-
ing individual perceptual differential thresholds). Since
the “no illusion” case is very common in our data, this
would make our account of the perceptual aftereffect phe-
nomenon much more complete.

• The model can be scaled to higher dimensions by using
a multivariate normal distribution for category representa-
tion. This makes it a good candidate for describing percep-
tion of high-dimensional realistic objects, such as faces.
In case of success, such a unified explanation of higher-
and lower-level perceptual processes may contribute to the
ongoing debate about the role and even mere presence of
top-down effects in perception (Firestone & Scholl, 2016).

Secondly, our model may be broadly applicable outside of
the domain of visual perceptual adaptation:

• There is a number of well-known spatial context effects in
the visual modality (demonstrated by Delboeuf, Ebbing-
haus, and Müller–Lyer illusions, among many others (Goto

et al., 2007)). The patterns of contrastive and assimilative
bias onsets in this domain are very similar to the tempo-
ral illusion we studied in this paper (Goto et al., 2007) and
may be interpreted in an analogous fashion.

• Our proposed rational categorical perception model could
account for enhanced discriminability and perceptual
tuning effects resulting from long-term adaptation. Chi-
nese Restaurant Process used in our model allows to opti-
mally refine the learned category structure as a number of
seen examples grows. Shifting percepts towards the true
category will be more and more beneficial as the category
structure is updated and refined.

Overall, the proposed model has a high promise in demon-
strating the role of category learning in perception. While the
potential importance of categorical perception has been stud-
ied before (e.g. Kuhl & Iverson (1995)), such studies focus on
situations when the category structure is known in advance.
Our results suggest that assuming that a person always tries
to group stimuli into categories (even in the short-term exper-
iments where no obvious categories are apparent) can greatly
broaden the scope of this approach and provide a unified ex-
planation to a wide range of perceptual effects.

To facilitate further research, we make all the data, analy-
ses, and code openly available 1.
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