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ABSTRACT OF THE DISSERTATION

Distortion of low-frequency acoustic signals by interaction with the

moving ocean surface

by

Stephen Dennis Lynch

Doctor of Philosophy in Oceanography

University of California San Diego, 2008

Professor Gerald L. D’Spain, Chair

During multiple experiments in shallow water, low-frequency, narrowband acous-

tic tones were transmitted from stationary sources to hydrophone arrays about 1

km away. The spectrum of the received field depended strongly on ocean surface

wave conditions. Doppler-shifted sidebands invariably are observed in the received

spectra, with spectral content and levels depending on the prevailing ocean surface

wave spectrum. Moreover, through the use of horizontal hydrophone arrays, the

directionality of these scattered sidebands is also shown to depend on the direc-

tional surface wave spectrum. At times when the ocean surface waves were small,

increased levels of higher order sidebands were observed.

First-order and higher-order perturbation theories based on normal mode prop-

agation are explored in an effort to understand the observed dependence depen-

dence on ocean surface waves. Bragg scattering from first-order perturbtation

theory is shown to predict the deviations in angle of arrival of the scattered side-

bands. Higher order perturbation is explored as a possible explanation of the

higher order sidebands, but it is shown to be insufficient to predict all the features

observed in the measured spectra. A simplified model is developed that repro-

duces the increased levels of the higher order scattering by modeling the the phase

deviation that arises from path-length time-dependence caused by motion of the

upper, reflective surface. This model is useful for predicting the effects of multiple

xv



interactions with a moving reflective ocean surface.
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Chapter 1

Introduction

1.1 A moving upper boundary in ocean acoustics

The study of ocean acoustics is made simulataneously complicated and interest-

ing by the fluctuation of propagation characteristics over a wide range of temporal

and spatial scales. Temporal variability in the propagation environment can distort

the received acoustic field and create fundamental performance limits on acoustics-

based communications or tomography systems. The relative importance of various

sources of variability in the ocean on the received acoustic field is determined in

part by the relative temporal and spatial scales of the ocean phenomena and the

acoustic band of interest. Wave propagation theory links temporal frequency to

spatial scales through the speed of propagation and dispersion relation, thereby

linking the temporal and spatial scales of seemingly disparate phenomena. Perhaps

more importantly, details of the acoustic propagation environment and relative ar-

rangement of the acoustic instrumentation also determine what aspects of ocean

variability will have the greatest effect on received acoustic fields. For example, in

a deep ocean environment with a source and receiver deployed near the deep sound

channel axis, ocean surface waves will have little impact on recorded signals while

internal gravity waves and undersea currents will have a greater effect. Conversely,

in a shallow environment with a well mixed water column, surface roughness and

1
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motion will play a significant role in distorting the received acoustic signal, while

internal waves may be absent entirely.

During an experiment off the San Diego coast in 2001, low-frequency (< 1

kHz), narrowband acoustic tones were transmitted from a source deployed from

R/V Acoustic Explorer to a 64-element hydrophone array deployed along an under-

sea ridge of nearly uniform depth (170 m) about 1 km away. The array’s data were

recorded by a computer aboard R/P FLIP, which was moored atop the same ridge.

Though there was diverse instrumentation measuring environmental variability of

many types – ocean surface waves, internal gravity waves, wind, temperature and

salinity profiles – in the vicinity of the experiment, one of the greatest impacts

on the measured acoustic signals was made by the ocean surface waves. Spectral

analysis using long Fast Fourier Transforms (FFT’s) of the pressure field recorded

by the array reveals strong temporal variation of the received spectra. During a

period of several hours, when measurements an Acoustic Doppler Current Profiler

(ADCP) mounted below the surface on R/P FLIP’s hull showed that a strong, 16-

second period swell was propagating through the experiment site from the south

(Fig. 1.1), the spectra of the received signals divided into multiple, distinct peaks

centered about the original transmitted tone. During other times, when the surface

wave conditions were different (Fig. 1.2), the received acoustic spectra changed

accordingly (Fig. 1.3).

The acoustic environment during this experiment consisted of a uniformly shal-

low (∼ 170 m) waveguide with a roughly 10 m thick warm, mixed layer over cooler

water with a downward refracting sound speed profile. Ray- and normal mode-

based models demonstrate that the multi-path nature of the waveguide included

considerable interaction of the acoustic waves with the surface. While there is clear

evidence that the surface waves greatly influenced the received acoustic spectrum,

the experiment’s execution was such that the influence of other factors (e.g., mo-

tion of the ship-suspended source) could not be ruled out, and more specific and

detailed information about the acoustic waves’ interaction with the moving sur-

face was impossible to obtain. Nonetheless, these observations bring to question,

Through what mechanisms do ocean surface waves influence low frequency acous-
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Figure 1.4: The coast off Camp Pendleton Marine Corps Base, north of San Diego,
where the 1996 experiment was conducted. The bottom point of the red triangle
denotes the location of the acoustic source.

tic propagation, and how can surface waves lead to such strongly varying received

acoustic spectra when viewed at extremely high spatial- and frequency-resolution?

To this end, this work is devoted to the investigation of the mechanisms by which

ocean surface waves distort propagating acoustic signals, and what the observed

effects will be.

Given the limitations of the experiment conducted in 2001, the remainder of this

study focuses on data that originated from an experiment that took place in 1996.

This experiment was conducted just outside the surf zone off the coast off Camp

Pendleton Marine Corps Base in southern California (Fig. 1.4). The water depth

at the experiment site was uniform (approximately 10 m), and the sound speed

was constant throughout the water column (1510 m s−1). Whereas in the 2001
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experiment the acoustic source was deployed from a surface ship, during the 1996

experiment the source was moored on the bottom, and was thus truly stationary.

The two hydrophone arrays deployed in this experiment consisted of 64 elements

each, with 1.875 m inter-element spacing. The arrays were each deployed in a

roughly linear configuration on the bottom, with one oriented roughly broadside

and the other roughly endfire to the acoustic source, which was approximately

1.25 km away (Fig. 1.5). Additionally, surface wave measurements were obtained

throughout the 1996 experiment using both a pressure sensor array deployed and

maintained by the Coastal Data Information Program (CDIP), and a pressure and

2 horizontal water velocity component (PUV) sensor deployed approximately 200

m away from the source. More detailed information of the experiment configuration

and data follow in Chapters 2 and 3.

1.2 Expanding on the Doppler shift problem

The observed acoustic spectra recorded in the 2001 experiment clearly varied

significantly in their frequency content in response to the changing ocean surface

wave conditions. Moreover, given the shallow and isospeed character of the 1996

experiment, mechanisms by which the surface waves impart the Doppler shift on

the propagating acoustic waves are explored in this investigation. A common

example of Doppler shift is the observed change in pitch of an approaching ambu-

lance’s siren, in which a stationary observer hears the siren’s frequency drop as the

ambulance passes. The motion of the ambulance causes the acoustic path between

the ambulance and observer to change in time, with the ambulance’s advancement

causing an up-shift in frequency through a shortening of the acoustic path, and

the ambulance’s retreat causing a down-shift in frequency through a lengthening

of the acoustic path.

The Doppler shift has been implemented extensively at high frequencies (> 2

kHz) as part of many ocean acoustic tools for investigating properties of the ocean

and for undersea navigation. Acoustic Doppler velocimeters (ADV) are a large

variety of monostatic sonar tool that employ range gating on received echoes off
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scatterers suspended in the water column or at the surface to measure the one

component of fluid motion over a range of radial distances from the instrument.

The Doppler shift of these signal returns contains information about the velocity

of the fluid volume, given certain assumptions about local sound propagation char-

acteristics. These ADV instruments and concepts have been employed extensively

in myriad configurations in physical oceanography to investigate surface waves,

internal waves, turbulence and larger scale currents[VT98]. Typically they are

configured with multiple transducers projecting pencil-beams in different, known

directions.

A variation on the ADV concept is the phased-array Doppler sonar system

(PADS). PADS systems use curved arrays of transducers to project fans of beams,

using relative phasing of the individual transducers to shape and steer the beam.

While the ranges of these instruments are much shorter than those of the more

typical ADV’s, their spatial coverage and high sampling rates (pulses every 0.5 s)

allow for high resolution wavenumber-frequency decomposition of the measured ve-

locity field, especially when 2 instruments are used in together, separated slightly

in space[Smi02]. In this case, fully 3-dimensional, high-resolution wavenumber

decompositions of the velocity field are possible. PADS systems have been em-

ployed to study internal and surface wave fields, turbulence, and various aspects

of near-shore dynamics[Smi08], among other oceanographic phenomena.

A Doppler velocity log (DVL) turns the problem around, and uses velocities

inferred from Doppler-shifted returns from a static surface or scatterer to measure

the motion of the platform on which the DVL instrument is mounted. Rather than

measuring the velocity of a volume of water over a range, DVL’s typically measure

the velocity of a single scatterer at a single distance using the Doppler shift. With

an initial coordinate fix and a record of motion obtained from integrating a time-

series of velocities relative to the sea floor obtained using a DVL, a submarine or

underwater autonomous vehicle (AUV) can confidently keep track of its position

without continuous surface contact [WYS99].

The Doppler shift has been integrated as part of a useful set of acoustics-based

tools at lower frequencies, as well. Matched Field Processing (MFP) is a method
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of doing the inverse problem in acoustics, wherein a propagation model’s param-

eter space is searched for the best fit to measurements. While this process typi-

cally requires extensive, accurate, a priori knowledge of the acoustic environment

for the numerical model, it has been implemented with some success using data-

derived normal modes[HHK01]. Using a formulation for Doppler shifted normal

modes[SK94], it has been proposed to utilize the Doppler shift as a tool to sepa-

rate and extract normal modes (depth functions) in a shallow waveguide[WRK07],

which would be useful in data-derived MFP.

There is tremendous interest in knowing the acoustic properties such as shear

and compressional sound speeds and attenuation of sediments and other seafloor

and sub-bottom materials. While efforts to investigate the properties of sediments

at higher frequencies (> 2 kHz) using time-of-flight and amplitude measurements

between a source and receiver have been largely successful, low frequency investi-

gations are complicated by the need to have greater distances between the source

and receiver, and the greater distances introduce complications related to inho-

mogeneities in the sediments [BGSH02]. However, the Doppler shift offers the

opportunity to investigate the desired sediment properties using only a single hy-

drophone buried in the sediments, and a moving sound source. The problem of

low-frequency sediment wave properties is difficult because the Doppler shift is pro-

portional to both the acoustic frequency and the Mach number (the ratio of the

source or receiver motion to the sound speed in the medium). High sound speeds

in the ocean and bottom environments require large source speeds to engender a

Doppler effect sufficiently large to be useful for investigation of these bottom prop-

erties. Investigations of sediment acoustic properties using the Doppler shift have

been successfully implemented using as a sound source the propeller noise from an

aircraft flying over the water[BGSH02].

If the example of the Doppler shift described above is expanded to include a

frequency shift of waves due to a time-dependence of the propagation time be-

tween two points, then several other examples warrant mentioning, including some

examples where fluctuations in the propagation medium itself induce frequency

distortions in the propagating waves. Temporal frequency broadening has been
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observed in shear spectra in the upper ocean, and the phenomena is attributed

to modulation by time-dependent background currents such as tides and inertial

waves [Pin08].

All of the examples of Doppler shift so far have involved waves that are tied to

their propagation medium. Environmental fluctuations have given rise to observ-

able frequency distortions of electromagnetic waves, as well. Frequency distortions

of inter-planetary electromagnetic radiation have been attributed to spatial vari-

ations in solar wind that advect through the path between an electromagnetic

source and receiver. Amplitude modulations result from time-dependent refrac-

tion, which can be formulated as a Doppler shift due to time-dependence of the

ray paths between source and receiver. These fluctuations have been used to as-

certain properties of the solar wind [Col78].

Some of these examples, while not strictly related to acoustics, are worth men-

tioning because of the aspect of fluctuations giving rise to signal distortions, much

like in the 2001 experiment. And, similar to the 2001 experiment, an important

factor is the mechanism(s) by which the medium causes the distortion. In these

cases, however, in contrast to those occurrences of the Doppler shift that become

a deliberately integrated part of a tool, distortion of a signal by medium-induced

Doppler shift has in the past been dubbed a ‘nuisance parameter’ of the received

field [MWW95]. In the case of underwater acoustics, there are various mechanisms

by which ocean surface waves can cause frequency distortions in received acoustic

signals, and thus multiple ways that interaction with the moving surface will man-

ifest in acoustic measurements, and discerning these is central to the work in this

dissertation.

Time-dependent flow is known as potential mechanism for spectral distortion.

This can be shown, for example, through a Lagrangian fluid mechanics approach

to acoustic propagation [Sal98], or by the propagation of shocks through a flowing

medium [Kor53]. Turbulence also affects sound propagation, and can lead to a

refractive profile and even frequency distortion [DF98].

However, in a shallow waveguide, where multi-path propagation is prevalent,

and the acoustic waves interact extensively with the ocean surface, distortions



12

in the received acoustic field will be much more affected by surface interactions

than by any volumetric mechanisms of distortion (except, perhaps, where there

are bubbles involved). The focus of this work, then, is to explore the effects of

acoustic interaction with a rough, moving surface.

The examples of Doppler-shifted, scattered acoustic waves mentioned so far

have been primarily high-frequency, monostatic cases involving back-scatter of the

acoustic waves. Pertinent to this study, however, is the bistatic case involving

forward scattering from a rough, moving surface. Scattering from a rough surface

is a problem that has been addressed extensively in a wide array of fields, including

ocean acoustics, a number of fields involving electromagnetic waves, and others.

While computational resources continue to improve rapidly, to address a realistic,

fully 3-dimensional, fully time-dependent problem involving forward scattering of

acoustic waves from a rough, moving surface nonetheless requires approximation

methods, due to the numerical complexity inherent to such a problem [EG04].

Many such approximation methods have been developed across many disci-

plines. In ocean acoustics, the three most prevalent methods are small wave height

perturbation, Kirchoff , and small slope approximations. The oldest and most com-

monly used method is the small wave height approximation, or small perturbation

approximation. This method is most relevant to this study, and is developed more

fully in Chapters 2 and 3. The basic premise of this method is to expand the wave

field solution in a series whose terms are scaled by increasing orders of a small ex-

pansion parameter, which is related to the surface roughness height scaled by the

acoustic wavelength (kh). The limitation of this method is obviously that it is only

valid where the surface roughness is small compared to the acoustic wavelength.

Like the small wave height approximation method, the Kirchoff approxima-

tion, also known as the tangent plane approximation, is an older method of study-

ing scattering of waves from a rough surface. The Kirchhoff method provides an

approximation for the wave field on the rough surface that depends on the in-

cident wave and the plane wave reflection coefficients. The scattering surface is

assumed to be locally flat, and thus this method is limited to cases where the

roughness is gently sloping [Ogi87, McD92]. The small slope approximation is an
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expansion of the wave field in a series of terms of increasing order of the rough-

ness slopes, as the name implies. The main limitation of these methods is nu-

merical complexity, which prevents the expansion past 2nd order in most cases.

However, first- and second-order small slope approximations have been studied

extensively[Ogi87, TB95]. These methods have all been employed extensively in

the study of scattering off rough, static surfaces, for example (in ocean acoustics)

scattering from a rough bottom or from a rough, icy surface[LS96]. In the case of

a rough, moving surface, time-dependence must be included explicitly.

1.2.1 Outline of the dissertation

The main thrusts of this study are divided between Chapters 2 and 3. Chapter

2 focuses on observations of scattering in the vertical plane and compares these

measurements to predictions from first-order perturbation theory. Scattering in a

propagation environment involving strong multi-path character, and diversity in

the ocean surface wave spectral and directional content are accounted for in the

modeling. Chapter 3 examines scattering in the horizontal plane through first-order

perturbational scattering theory. It then explores the effects of multiple interac-

tions with a rough, moving sea surface through the development of a simplified

model that approximates the acoustic frequency distortion as a phase deviation in-

duced by reflection off a heaving, reflective surface. The predictions of this simple

model are shown to agree quite well with observations in omnidirectional spectra.

Higher order scattering from perturbation theory is presented, but it is shown that

even higher order scattering cannot explain observed received acoustic fields when

only one interaction with the sea surface is allowed in the modeling. A summary

of the conclusions of this work, including statements of this work’s contribution to

ocean acoustics, is presented in Chapter 4. Additionally in Chapter 4, aspects of

the relationship between acoustical and ocean surface waves that did not fit into

the scope of this study and that are well worth being addressed in future investiga-

tive endeavors are proposed. In order to fully develop the ideas in these chapters,

a strong foundation of acoustic wave equation solution techniques, ocean surface

wave observation and analysis, and acoustic data processing concepts is required.
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These topics are reviewed throughout the rest of this chapter, with emphasis placed

on those methods that pertain directly to this study.

1.3 Foundations for studying ocean surface wave

influence on acoustic propagation

Investigation of Doppler frequency spreading of acoustic signals through inter-

action with ocean surface waves requires a diverse set of tools. Time-dependent

rough surface scattering of first- and higher-orders, and phase distortion by path-

length modulation are all mechanisms by which received acoustic spectra can be

affected by ocean surface waves. An analytical framework must be constructed

to guide each numerical modeling or experimental data analysis effort. Outlined

in this section are the basic foundation of ocean acoustics, ocean wave propaga-

tion, and digital array signal processing. Several of these ideas are expanded upon

in subsequent chapters with extensions that lead to predictions of some of the

phenomena observed in data, while others are employed in specific ways so as to

illuminate certain aspects of the acoustic propagation or interaction with the ocean

surface.

1.3.1 Acoustic propagation models

Acoustic propagation in the ocean is a challenging area of physics and efforts

to address these challenges have progressed along several distinct avenues. For

example several methods of describing acoustic propagation have been developed:

ray and normal mode-based approaches, spectral methods and parabolic equation

solutions. Because of the specific assumptions and mathematical approximations

that are necessary to develop them, each method has its own set of strengths and

weaknesses, and thus is appropriate to certain settings but not others. This study

focuses on ray- and normal mode-based approaches to acoustic propagation.
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Acoustic ray theory and computation

The acoustic ray method is similar to that used in optics in electromagnetic

theory, in that the computed rays describe propagation paths, and as such are

perpendicular to the iso-phase contours of the wave field. Development of rays in

their basic form requires a “high frequency” approximation, and this requirement

is one of the limits of ray theory, because it can lead to inaccuracies of predictions

using the model. However, the computation time requried for ray models is gen-

erally considerably less than for other models [JKPS94], and the approach has the

obvious advantage of presenting an intuitive picture of the propagation.

Acoustic rays are derived from the Fourier-transformed acoustic wave equation

with delta function-forcing, or the Helmholz equation.

▽2ψ̃(xxx, ω) +
ω2

c2(xxx)
ψ̃(xxx, ω) = δ(xxx− x◦x◦x◦) (1.1)

where ψ̃ is a scalar field, ω is temporal frequency, c is the sound speed, xxx and x◦x◦x◦

are the receiver and source location vectors, respectively, and ▽2 is the Laplacian

operator. The tilde will be used more extensively to denote transform pairs of

functions, and in this case indicates the Fourier tranform of ψ(xxx, t) into ψ̃(xxx, ω).

A series solution for ψ̃ is proposed for Eq. 1.1:

ψ̃(xxx, ω) = eiωτ(xxx)

∞∑

n=0

An(xxx)

(iω)n
(1.2)

where τ is the travel time parameter, and describes the acoustic wavefronts.

The ray approximation for ψ̃ (Eq. 1.2) is a high-frequency approximation, in

that frequency ω must be sufficiently large for the higher-order terms in the ray

series to vanish. Solution next involves computing derivatives with respect to xxx of

ψ̃ in terms of derivatives of the series terms in Eq. 1.2, and grouping by order of

ω−n. The resulting ω2-ordered equation is called the Eikonal equation:

| ▽ τ |2 =
1

c2
(1.3)

And the other ordered equations are known as the transport equations.

With the gradient of the wavefront function, Eq. 1.3 describes ray paths.

Solution of the Eikonal equation involves parameterizing xxx in terms of a path
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length variable s so that
dτ

ds
=

1

c(s)
(1.4)

In integral form this becomes

τ =

∫
ds

1

c
(1.5)

While the propagation paths are described by Eq. 1.3, the ray amplitudes are

computed from the first transport equation:

2 ▽ τ ·▽A0 + (▽2τ)A0 = 0 (1.6)

The solution to Eq. 1.6 accounts for geometrical spreading, ∼ 1
s
, as well as re-

fractive effects of the rays: the divergence of rays with similar take-off angles

corresponds to lower amplitudes, and tightening of ray bundles corresponds to

higher acoustic amplitudes.

In the time domain, the total pressure at a receiver is the summed contribution

of many rays:

ψ(t) =

Nrays∑

n=1

Anp(t− τn) (1.7)

where the travel times τn are given by the integral in Eq. 1.5 for each of the

contributing arrivals. While computing ray paths over an arbitrary range given

an initial angle for each is readily done using Snell’s law, it is slightly trickier to

compute rays that intersect two specific points. Such paths are often referred to as

“eigenrays”. Though their name may imply that they are related to eigenvalues of

a matrix, and as such can be computed exactly and easily, the name is somewhat

misleading. Eigenrays are found basically through a process of trial and error: a

take-off angle whose ray comes close to intersecting the two points of interest is

adjusted slightly until the desired tolerances are achieved.

Ray theory has been implemented numerically and extensively tested and

benchmarked in several available numerical model packages, including CASS/GRAB

[WK96]. The CASS/GRAB program is capable of incorporating environmental

variability of many types, and outputting a wide range of quantities. For the pur-

poses of this study, eigenrays are computed between a source and receiver for a

shallow water environment, and their paths and relative amplitudes are input into
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numerical models developed in Chapter 3 to predict ocean surface wave-induced

frequency distortions of propagating acoustic signals.

Normal mode theory and computation

Multiple approaches exist to model ocean acoustic propagation, and while these

approaches are fundamentally different from one another, they also possess similar-

ities. Without the ability to correctly predict basic phenomena, one theory would

be quickly discarded. In this vein, normal mode and ray theories are equivalent: a

family of rays can be computed that correspond to a given mode.

Normal mode theory is a far-field approximation, in that the continuous portion

of the acoustic wavenumber spectrum, which decays rapidly and is not a significant

contribution to the field far from the source, is neglected completely. While the

earlier work in normal mode theory assumed range independence, modifications

to the theory such as the adiabatic approximation, have reshaped the theory to

address some cases of range dependence.

Normal mode theory applied to ocean waveguides describes the acoustic field

in terms of a sum of vertical standing waves in the water column that propagate in

range. The individual normal modes are subject to the upper and lower boundary

conditions, such that the total summed acoustic field also satisfies the boundary

conditions. This construction is similar to the modes of a vibrating guitar string, in-

cluding the relative amplitudes’ or excitiations’ dependence on source and receiver

location: strumming the guitar at one mode’s null will result in little-to-no exci-

tation of that mode. One key difference between the modes of the guitar and the

ocean waveguide is that ocean acoustic modes can propagate an infinite distance

in range whereas the guitar string is a medium that is finite in all 3 dimensions.

This difference causes a discretization in the frequencies created by a guitar string

through the dispersion relation (ω2/c2 = k2
x + k2

y + k2
z), where the wavenumbers

of the guitar string are confined to a single dimension, whereas the continuum of

frequencies can propagate in an ocean waveguide of infinite horizontal dimension.

Mode theory begins with the unforced version of the Helmholz equation in
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cylindrical geometry, with range-independent soundspeed c(z) and density ρ(z):

1

r

∂

∂r
(r
∂ψ̃(xxx, ω)

∂r
) + ρ(z)

∂

∂z
(

1

ρ(z)

∂ψ̃(xxx, ω)

∂z
) +

ω2

c2(z)
ψ̃(xxx, ω) = 0 (1.8)

As before, ψ̃ is a scalar function (pressure), with the tilde denoting the frequency

domain. The spatial variables r and z (xxx = [r, z]) are range and depth, respectively,

and azimuthal symmetry is assumed.

Equation 1.8 can be solved using separation of variables:

ψ̃(xxx, ω) = Φ(r, ω)Ψ(z, ω) (1.9)

Substituting Eq. 1.9 into Eq. 1.8 and dividing through by ψ̃(xxx, ω) results in

1

Φ

1

r

∂

∂r
(r
∂Φ

∂r
) +

1

Ψ
ρ(z)

∂

∂z
(

1

ρ(z)

∂Ψ

∂z
) +

1

Ψ

ω2

c2(z)
Ψ = 0 (1.10)

The reasoning behind the separation of variables is that the first term in the

unforced Helmholz equation involves only range, while the second term entirely

pertains to depth. Thus, they must both be constant. This constant is designated

k2
mr

, and is the horizontal wavenumber corresponding to a mode function

ψ̃m(xxx, ω) = Φm(r, ω)Ψm(z, ω) (1.11)

that satisfies Eq. 1.8 and the corresponding boundary conditions. Inserting ψ̃m

into Eq. 1.10, an eigenvalue problem is created:

ρ(z)
d

dz

1

ρ(z)

dΨm(z, ω)

dz
+ [

ω2

c2(z)
− k2

mr
]Ψm(z, ω) = 0 (1.12)

The functions Ψm(z, ω) are orthonormal, with the normalization definition

∫ ∞

0

dz
1

ρ(z)
Ψm(z, ω)Ψn(z, ω) = 0, m 6= n

= 1, m = n

(1.13)

Any solution to a linear, second-order partial differential equation can be ex-

pressed as the sum of the general solution to the homogeneous (unforced) case,

plus a specific solution to the inhomogeneous (forced) case. The general homoge-

nous solution is the sum of linearly independent solutions. The issue of forcing (in
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acoustics, the presence of a source) is addressed by applying the solution Eq. 1.11

to the inhomogeneous Helmholz equation and applying orthonormality condition

(Eq. 1.13).
1

r

∂

∂r
r
∂Φm(r, ω)

∂r
+ k2

mr
Φm(r, ω) = −

δ(r)Ψm(zs, ω)

2πrρ(zs)
(1.14)

Here there is an acoustic source located at r = 0 and z = zs, and azimuthal

symmetry is assumed. The solution to Eq. 1.14 is well known:

Φm(r, ω) =
i

4ρ(zs)
Ψm(z, ω)H0(kmr

r) (1.15)

where H0 is the Hankel function of the first kind of order 0, and it has been

assumed that as r → ∞, all acoustic energy is outgoing. Equations 1.11 and 1.15

indicate that the received acoustic amplitude depends on modal excitation at both

the source and receiver – if either one is located at a mode’s null, that particular

mode will be absent from the total received field.

Boundary conditions are a very important aspect of normal mode theory that

has not yet been thoroughly discussed. Often the acoustic setting is such that the

functions Ψm only exist between the surface (z = 0) and the ocean bottom z = D,

and the integral in Eq. 1.13 is only computed over the interval 0 ≤ z ≤ D. In

general the upper boundary condition is defined as a “pressure release” boundary:

ψ̃(z = 0, ω) = 0 (1.16)

This boundary condition is the same for all mode functions Ψm(z, ω), as well.

In this thesis, the pressure-release aspect is always true, but in some cases the

boundary itself is allowed to move, and this condition is therefore not true at

z = 0. For example, in perturbation theory, which is addressed more fully in

Chapters 3 and 2, the upper pressure release boundary is maintained through a

Taylor approximation about z = 0. The bottom boundary condition is in general

more complicated, even before boundary roughness is considered, and in fact there

are many types of environments each with their own distinct boundary conditions.

A half-space, or deep water approximation, is one where the bottom is taken at

z → ∞, but for the problem to be well behaved and physical, the acoustic pressure

field must vanish at infinity: ψ̃(z → ∞, ω) = 0.
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In shallower waveguides with depth D, properties of the bottom determine the

bottom boundary condition, which in turn affects the shape and even the number

of normal modes. A “rigid” bottom allows no vertical fluid particle motion through

it:
∂

∂z
ψ̃(z = D,ω) = 0 (1.17)

In the case of the rigid bottom, the modes Ψm form a complete set, and the acoustic

pressure field can be described completely in terms of them:

ψ̃(xxx, ω) =

∞∑

m=1

Φm(r, ω)Ψm(z, ω) (1.18)

However, acoustic waveguides often have bottoms with boundary conditions such

that the entire acoustic field cannot be described completely by the discrete sum

of contributions as in Eq. 1.18, but rather includes a sum of finite discrete com-

ponents, as well as a continuous spectral component. For such a waveguide with

a source located at xxxs = [0, zs], the received pressure field at xxx is

ψ̃(xxx, ω) =

N∑

m=1

Φm(r, zs, ω)Ψm(z, ω) +

∫ ∞

−∞

dζ Φ̄(r, zs, ζ, ω)Ψ̄(z, ζ, ω) (1.19)

Just as the functions making up the discrete portion of the total received field are,

the continuous functions Ψ̄(z, ζ, ω) are also subject to an orthonormality condition:

∫ ∞

−∞

dζ
1

ρ(z)
Ψ̄(z, ζ, ω), Ψ̄(z, ζ ′, ω) = 0, ζ 6= ζ ′

= 1, ζ = ζ ′
(1.20)

Since it is of concern primarily in the near field, in many cases the continuous

portion of the received wavenumber spectrum can be neglected. Spectral methods

of solving the wave equation incorporate the full wavenumber spectrum, and are

equivalent to Eq. 1.19.

One limitation of normal mode methods involves accounting for range depen-

dence. One practice is to compute modes at the source and receiver ranges, and

assume that the propagation is “adiabatic” – that the energy in each mode re-

mains in that mode. This technique works well for weakly range-dependent envi-

ronments, but leads to discrepancies when, for instance, when coupling between
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modes is significant. In these cases parabolic equation solvers predict the acoustic

field more reliably. Several numerical modeling packages are available that imple-

ment normal mode algorithms, such as KRAKEN, which is available freely online

(http://oalib.hlsresearch.com/). It is important to have a solid grasp of normal

mode theory in order to extend it into a regime with a moving, rough surface. The

ability to describe the ocean surface wave effects on the propagating acoustic modes

is a powerful tool for understanding acoustic and surface wave measurements, and

even predict the relationships between the two.

1.3.2 Ocean surface wave propagation and measurement

Ocean surface gravity waves are important from the standpoint of acoustics

research for many reasons, including, for example, the complicated processes of

wave breaking and bubble entrainment[FDV01]. However, for the topics explored

in this work, only the theory and measurements of linearly propagating waves are

considered. Linear propagation theory assumes no rotation (i.e. Coriolis frequency

is 0), time-independent vorticity, incompressibility, and a uniformly flat bottom

(no nonlinear coupling through interactions with changes in bathymetry). There

is also an amplitude restriction, in that surface displacement can be no greater in

magnitude than the wavelength of the disturbance, and a band limitation, in that

only those surface waves whose wavelengths are great enough to ignore surface

tension effects are considered[Lig78].

Expressions for the horizontal velocity components of flow u and v induced by

the passing surface waves can be written in terms of a scalar velocity potential A.

uuu(xxx, t) = −▽ A(xxx, t) (1.21)

where xxx = [rrr, z] is the 3-dimensional spatial coordinate vector defined under the

ocean surface, and t is time, and ▽ is the spatial gradient operator. The continuity

equation for an incompressible fluid is ▽·uuu = 0, where uuu is the fluid velocity, so

that the propagating part of the velocity field is Laplace’s equation:

▽2A = 0 (1.22)
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In linear ocean surface wave theory the solution to Eq. 1.22 is subject to the

boundary conditions at the mean surface z = 0

∂η

∂t
=
∂A

∂z
∂A

∂t
= −gη

(1.23)

where η is the surface displacement and g is the gravitational constant. Linear

ocean surface waves are dispersive – group speed is frequency dependent – because

of a frequency dependence to the depth to which waves are felt. The dispersion

relation for surface waves arises from the boundary conditions at the free surface

and the bottom.

σ2 = gκ tanh(κD) (1.24)

where σ is the surface wave frequency, κ is the wavenumber magnitude, and D is

the ocean depth.

The velocity potential A(xxx, t) = A◦ cosh(κ(D − z))e−i(σt−κκκ·rrr), where A◦ is the

value of A at the mean surface (z = 0). In terms of the surface wave frequency σ,

wavenumber κ and height η◦, and the ocean depth D, the horizontal component

of the surface wave-induced flow is

uuuh(xxx, t) = −
κκκ

κ

η◦σ

sinh(κD)
cosh(κ(D − z))e−i(σt−κκκ·rrr) (1.25)

The excess pressure under a propagating ocean surface wave (excluding the

hydrostatic and atmospheric pressure contributions to the total pressure) can sim-

ilarly be written in terms of the velocity potential.

pe = −ρ
∂

∂t
A(xxx, t) (1.26)

which becomes

pe = −ρη◦g
1

cosh(κD)
cosh(κ(D − z))e−i(σt−κκκ·rrr) (1.27)

where the dispersion relation (Eq. 1.24) has been substituted in. The excess

pressure pe and surface wave-induced horizontal flow uuuh then depend not only on

the wave height, but also on the depth z of measurement and the frequency σ (or,
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equivalently, the wavenumber κ). While Eq. 1.27 excludes the hydrostatic and

atmospheric pressures, the wave pressure sensor can be often be used to measure

tidal fluctuations, as well as higher frequency surface movement.

While Eqs. 1.27 and 1.25 describe surface waves of a single amplitude, fre-

quency and direction, real, linear surface wave fields will consist of a continuous

spectrum in frequency, direction and amplitude, which often can be approximated

as a sum of discrete components.

For most of this study, information about the temporal frequency and direc-

tional content of prevailing surface wave fields is needed, and two different sources

of data are used. One of the most common measurement types is a simple pres-

sure sensor, such as a piezo-electric device, deployed below the surface. By simple

extension through Eq. 1.27, an array of pressure sensors can be used to get direc-

tional spectral measurements of surface waves, where the relative phase between

sensors in the array gives the directionality of the surface waves. The Coastal

Data Information Program (CDIP), has deployed and maintained several arrays of

this type, and the processed data from these arrays are freely available from the

CDIP website (http://cdip.ucsd.edu/). Fully processed pressure sensor array data

were downloaded for this study. For a full description of processing techniques,

the reader is referred to the CDIP website.

Alternatively, devices that can measure pressure and individual horizontal flow

vector components (PUV) can be used to record directional spectral information for

surface gravity wave fields. This type of measurement requires no spatial separation

of the instruments. Equations 1.25 and 1.27 describe the relationship between the

horizontal velocity components u(xxx) and v(xxx) and pressure p(xxx).

Whereas the relative phase of individual spectral components across the pres-

sure sensor array describes directionality of the surface wave field, the relative am-

plitudes (including sign) of the horizontal flow components and at each frequency

of surface waves measured by a PUV sensor describes the direction of propagation,

with the phase relationship of each component to the pressure breaking the ambi-

guity. After transformation into the frequency domain by the Fourier transform,

the angle of propagation φw is computed from the cross-spectra of pressure with
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the orthogonal horizontal flow components:

tanφw(σ) =
Re[p̃(σ)ũ∗(σ)]

Re[p̃(σ)ṽ∗(σ)]
(1.28)

where p̃(σ), ũ(σ) and ṽ(σ) are defined as the Fourier transforms of p(t), u(t) and

v(t), the pressure and East-West and North-South flow amplitudes, respectively,

at temporal frequency σ. In Eq. 1.28 the phase p̃ relative to the phases of the

velocity components ũ and ṽ is used to solve the 180◦ ambiguity.

In general, ocean surface waves are modeled as a random process. Therefore,

in order to gain statistical reliability, long time series of p and uuuh are recorded, and

quantities of interest (η, φw) are computed multiple times for each frequency σ and

wavenumber κ, and ensemble averages are computed. The PUV sensor that was

deployed during the experiment of focus in this study was moored approximately

0.5 m above the bottom in 9 m of water, approximately 200 m away from the

acoustic source. The data were recorded at 2 samples s−1 for 20 minutes continu-

ously every hour throughout the experiment. Though the Nyquist frequency of the

instrument was 1 sample s−1, the data were low-pass filtered using a 4-pole Butter-

worth filter with a cut-off frequency of 0.5 samples s−1 to reduce instrument noise.

This cutoff frequency coincides with the Nyquist frequency of the data obtained

from CDIP, whose sensor array was recorded at 1 sample s−1.

Other post processing done on the PUV surface wave data was designed to

reduce the χ2 bounds of the measured quantities. Each 20-minute recording was

divided into approximately 40, 128-point, 50%-overlapping snapshots, and was

windowed with a Kaiser-Bessel window (α = 2.5) before being Fourier-transformed

into the temporal frequency (σ) domain. The values φw (Eq. 1.28) are then com-

puted for each logarithmically spaced frequency bin. Finally, ensemble averages

of the surface wave height spectral density and direction across frequency bins are

computed.

1.3.3 Digital array signal processing in acoustics

Given the emphasis on observation in this study, a full understanding of data

analysis techniques is of vital importance. Many tools have been developed for
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discrete signal processing [JD90, Hay96, OS99], and the task of choosing the proper

tool for a given application can be a daunting one. The data analysis issues involved

with measurement of ocean surface waves is discussed in Sect. 1.3.2. Here, the

issues of the analysis of acoustic hydrophone array data are presented. The analysis

of the acoustic time series in this work falls into two general categories: incoherent

and coherent processing. The difference between these two categories involves

the discarding (incoherent) or inclusion (coherent) of relative phase information.

Though more detailed information about specific processing methods is given in

the subsequent chapters, an overview of the techniques employed and why these

methods were chosen is outlined here.

Spectral estimations are computed using fast Fourier transforms (FFT’s). The

Fourier transform pair for well behaved functions a(t), ã(ω) is defined as

ã(ω) =

∫ ∞

−∞

dt e−iωta(t)

a(t) =
1

2π

∫ ∞

−∞

dω eiωtã(ω)

(1.29)

However, it is impossible to integrate over all time, so in practice a windowed

approximation is made. Because of this windowing in the time domain, and since

digital sampling results in discrete time series rather than continuous functions,

summations are performed in place of integrals. For sampling frequency fs = 1/∆t

and snapshot length N , the discrete Fourier transform pair b(n), b̃(m) is

b̃(m) =
N−1∑

n=0

e−i 2πmn
N b(n)

b(n) =
1

N

N−1∑

m=0

ei 2πmn
N b̃(m)

(1.30)

where N is the snapshot length[OS99]. Often a snapshot is zero-padded beyond the

content of actual data. While this does not add any more information, nor increase

the frequency resolution of the FFT, it does change the frequency bin size. Because

the FFT requires considerably less computation time when it is being applied to

a time series whose length is a power of 2, it is beneficial to zero-pad snapshots of

arbitrary length N out to the nearest power of two.
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The complex results of the FFT’s are then multiplied by their complex con-

jugates and averaged together incoherently. Since multiplication in the frequency

domain is the same as convolution in the time domain, this is equivalent to taking

the Fourier Transform of the autocorrelation function, thus yielding the acoustic

auto-spectrum. In some cases normalization may be implemented between the

transform and the averaging, depending on the desired outcome. Incoherent pro-

cessing produces results that can be thought of as omnidirectional, since relative

phase at a given frequency will depend on hydrophone spacing and propagation

properties, and discarding the phase information and averaging temporal spectra

incoherently serves the purpose of examining only the mean temporal frequency

content measured by the array.

Except where otherwise specified, temporal window functions (Kaiser-Bessel,

α = 2.5) are used for all spectral analysis, including in coherent processing (beam-

forming). Because such a window function “pinches” the ends of the snapshot and

reduces the effective snapshot length, the main lobe width increases, resulting in

coarser frequency resolution. However, sidelobes are reduced and inter-null spacing

is altered, such that side-lobe leakage is reduced, especially for non-bin-centered

signals [CZO87].

Since all the incoherent time series analysis performed in this study is “conven-

tional”, the frequency resolution is determined by the snapshot length: δf ∼ 1/T .

However, since the auto-spectral estimate is only an estimation of the true un-

derlying spectrum, there is a trade-off between resolution and statistical variance.

In general, the resolution needed is determined by independent phenomena – for

example, in Chapter 3, the acoustic spectral resolution must be sufficiently fine

to decipher ocean surface wave frequencies ∼ 0.06 Hz – and the shortest possible

snapshot that will allow for this type of resolution is chosen, so that as many snap-

shots as possible may be averaged together to reduce confidence intervals on the

estimate.

Most of the acoustic transmissions made during the experiment on whose data

this study is based were 5 minutes in duration, and 6, 50%-overlapping snapshots

were extracted from these segments and averaged incoherently for the higher res-
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olution portion of the study in Chapters 2 and 3. These incoherently averaged

spectra for each hydrophone were then divided further into frequency bands cen-

tered on the 8 transmitted narrowband tones’ frequencies (70, 95, 145, 195, 280,

370, 535 and 695 Hz). Each band was then normalized to the value of the peak at

the center frequency in order to emphasize the relative sideband levels and discard

waveguide-related amplitude effects. These normalized, averaged spectra for each

hydrophone were then incoherently averaged across most of the hydrophones in

the array. Hydrophones that recorded erratic or noisy data were omitted from

analysis. Typically the number of hydrophones whose recordings were included

in the analysis was about 60 for each of the two 64-element hydrophone arrays

deployed in the experiment. Thus, the maximum number of snapshots included

in any of the incoherent spectral estimates was potentially as many as 360. Given

windowing and overlapping, the effective snapshot count was most likely reduced

from this number by a factor of 0.98[Har78]. In any case, the 90% confidence

intervals for any of the measured spectra were as small as 0.1 dB.

For the coherent processing – the beamforming – done in this study, on the

other hand, data-adaptive techniques are employed, as well as the conventional

approach. Beamforming is a method of searching through angles of arrival for

the acoustic energy incident on the array by matching the data against a set of

replica vectors. In this study, the replica vectors are computed assuming plane-

wave propagation. While there are beamforming techniques that operate in the

time domain as well as the frequency domain, the methods employed in Chapters

2 and 3 are narrowband frequency domain techniques. The conventional (Bartlett)

beamformer is implemented at frequency ω as the multiplication of the steering or

replica vector ddd(θ, ω), a column vector, with a data covariance matrix R(ω). The

Bartlett beamformer output bB(θ, ω) for arrival angle θ at frequency ω is

bB(θ, ω) = ddd′(θ, ω)R(ω)ddd(θ, ω) (1.31)

where the jth element of ddd is eikkk(θ,ω)·xxxj , xxxj is the location vector of the jth hy-

drophone, and kkk(θ, ω) is the wavenumber vector for the plane wave with frequency

ω arriving from angle θ, and ddd′ is the conjugate transpose of ddd. The magnitude of

kkk(θ, ω) is related to frequency ω through the acoustic dispersion relation: |kkk| = ω/c.
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The covariance matrix estimate R(ω) is computed from the outer product of the

vector of complex values of the measured pressure field in the frequency domain.

In conventional processing, R can be estimated from the FFT of a single snapshot

in time across the hydrophone array, but since this results in a matrix of unity

rank, any processing that will involve inversion of R will require at least as many

independent snapshots in time as there are elements in ddd(θ, ω).

A data-adaptive beamformer works in the same basic way as the Bartlett beam-

former, except that the steering vectors are weighted using information from the

data, through some computation involving the covariance matrix R. The minimum

variance, distortionless response (MVDR) beamformer is constrained to unity gain

in the direction of the signal, and it seeks to minimize the output variance in all

other directions. The result of this optimization problem is a weighted steering

vector www(θ, ω):

www(θ, ω) =
R−1(ω)ddd(θ, ω)

ddd′(θ, ω)R−1(θ)ddd(θ, ω)
(1.32)

Once the weighted replica vectors www(θ, ω) are computed, the MVDR beamformer

output bMV DR(θ, ω) is found just the same way as the Bartlett beamformer:

bMV DR(θ, ω) = www′(θ, ω)R(ω)www(θ, ω) (1.33)

As was mentioned, in order to invert R(ω) without any instability issues, it must

be computed using at least as many statistically independent snapshots of the

pressure field as there are hydrophones involved in the processing (which equals

the dimension of R(ω)). If the vector z̃zz(m) is defined as the vector of the mth bin

of the FFT of a snapshot of the pressure time-series recorded on all hydrophones,

then the covariance R̂(ω) is estimated

R̂(ωm) ≃ 〈z̃zz(m)z̃zz′(m)〉 =
1

M

M∑

l=1

z̃zzl(m)z̃zz′l(m) (1.34)

where z̃zzl(m) is the FFT of the lth snapshot, M is the number of hydrophones

included in the search, ωm = m∆ω = 2πfs/N , N is the number of points in the

snapshot and and fs is the sampling frequency.

It is useful at this point to introduce the term “white noise gain” (WNG), which

is mathematically defined as the square of the magnitude of the steering vector,
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and conceptually is a measure of the robustness of a processor to phase error, or

mismatch. The white noise gain of the Bartlett beamformer GB is independent

of frequency or arrival angle, and depends only on the number of hydrophones M

included in the beamformer processing:

GB(θ, ω) =ddd′(θ, ω)ddd(θ, ω)

=M
(1.35)

Similarly, the expression for the white noise gain GMV DR for the MVDR processor

is not so simple.

GMV DR =www′(θ, ω)www(θ, ω)

=(
R−1(ω)ddd(θ, ω)

ddd′(θ, ω)R−1(θ)ddd(θ, ω)
)′(

R−1(ω)ddd(θ, ω)

ddd′(θ, ω)R−1(θ)ddd(θ, ω)
)

(1.36)

While the MVDR processor works extremely well for situations with large SNR

at sharpening the beamformer’s resolution so that it is considerably finer than the

Bartlett beamformer, it is also extremely susceptible to errors. Phase discrepancies

that may be the result of error in locations xxxj , error in sound speed estimation, or

deviation from the plane wave assumption will quickly degrade the performance of

the MVDR beamformer. Additionally, MVDR processing is prone to introduce bias

into the results, not just degrade when there is mismatch in the input parameters.

To account for this, several modifications have have been developed that make

it a much more robust algorithm. Most common among these is the technique

of “diagonal loading” of the covariance matrix, which increases stability for the

inversion, and diminishes the effect of phase errors.

R∗(ω) = R(ω) + γI (1.37)

where γ is a constant and I is the identity matrix. The trick in this type of

technique is to choose the appropriate level of diagonal loading, such that the high

resolution properties of the data-adaptive technique remain intact, while some of

the robustness of the Bartlett algorithm is gained.

The white noise constraint (WNC) beamforming algorithm is an attempt to

do just that: to put bounds on the diagonal loading of the robust adaptive beam-

former, measuring the WNG “on the fly” so that the best of both processing worlds
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is achieved. To accomplish this, the value of γ is chosen so that the WNG of the

beamformer does not exceed a certain level, usually chosen in relation to GB. For

example, in many applications, the WNC is chosen such that the white noise con-

straint GWNC does not exceed 10 logGB − 3 dB. Unfortunately, since this value

depends largely on the covariance matrix R through its influence on the weighting

vector, there is no analytical way to compute the appropriate value for γ, and it

must be computed iteratively for every look direction θ and every frequency ω,

using as a check the relative values of the white noise gain for the diagonal loaded

beamformer and the specified WNG constraint. The weight vector wwwW (θ, ω) for

the WNC beamformer then becomes

wwwW (θ, ω) =
R−1

∗ (ω)ddd(θ, ω)

ddd′(θ, ω)R−1
∗ (θ)ddd(θ, ω)

(1.38)

and the WNC beamformer output is computed the same way as the Bartlett and

MVDR beamformers.

bWNC = www′
W (θ, ω)R(ω)wwwW (θ, ω) (1.39)
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Figure 1.6: Narrowband beamformer search through azimuthal (horizontal axis)
and vertical (vertical axis) for simulated multipath arrivals at 4 frequencies (clock-
wise from upper left: 280, 370, 695 and 535 Hz), with added uncorrelated noise.
Beamformer algorithm uses white noise constraint of -3 dB.



Chapter 2

Evidence of Doppler-shifted

Bragg scattering in the vertical

plane from interaction with a

rough, moving surface

2.1 Abstract

Vertical plane beamformer output for several received narrowband acoustic

tones (280, 370, 535 and 695 Hz) shows evidence of Doppler-shifted Bragg scat-

tering of the transmitted acoustic signal by the ocean surface waves. The re-

ceived, scattered signal shows dependence on the ocean surface wave frequencies

and wavenumber vectors, as well as on acoustic frequencies and acoustic mode

wavenumbers. Sidebands in the beamformer output are offset in frequency by

amounts corresponding to ocean surface wave frequencies, while deviations in ver-

tical arrival angle agree with those predicted by the Bragg condition through first-

order perturbation theory using measured directional surface wave spectra and

acoustic modes measured by a horizontal hydrophone array on the ocean bottom.

32
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2.2 Introduction

A common method of studying Doppler shifting and scattering of acoustic

signals by ocean surface waves is to model the received omnidirectional spec-

trum, integrating the received signal over spatial frequency and studying only

the temporal frequency deviations introduced through interaction with the mov-

ing surface[WJ93]. Studies of the directional characteristics of scattered acoustic

signals often examine the phenomena in a 2-dimensional plane. Most commonly,

scattering in the vertical plane has been examined numerically by limiting the

problem to two dimensions, i.e. the surface waves are propagating in one direction

along the vertical plane between the acoustic source and receiver(s)[WJ95].

Experimental results showing clear evidence of Doppler-shifted Bragg scattering

by ocean surface waves are less common. Lebedev and Salin[LS04] and Lynch et

al. [LBD08] successfully related measured horizontal beamformer output over a 1

Hz band centered on received, low-frequency (f◦ < 1500 Hz) narrowband acoustic

signals to measured ocean surface waves using first-order perturbation, verifying

the Bragg condition in the horizontal plane. While several authors have used

numerical models to predict the received pressure field resulting from scattering

in the vertical plane from a moving surface[WJ95], few have presented similar

measured results relating acoustic frequency and wavenumber deviations arising

from interaction with ocean surface waves.

In this paper measurements are presented that show a clear dependence of

acoustic frequency shift and vertical angle of arrival of scattered acoustic sidebands

on measured surface wave frequencies and directions of surface wave propagation.

These results were recorded using a stationary source and receiving hydrophone

array during an experiment outside the surf zone off the southern California coast.

Over the course of the experiment surface wave and tidal conditions varied, and

this variability is reflected in the acoustic measurements. The relationship be-

tween the acoustic and environmental measurements is explained using first-order,

time-dependent perturbational scattering theory and normal mode theory of acous-

tic propagation. This theory is coupled with measurements of the non-frequency

shifted, non-scattered acoustic spatial spectrum to predict the angle deviations in
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the vertical plane and frequency shifts associated with the dominant frequencies

and wavenumber vectors of the measured ocean surface waves. The acoustic spa-

tial spectra are computed two ways: directly, from a Hankel transform pressure

measurements spanning the entire array, and from vertical plane-wave beamformer

output. Observed angle- and frequency- acoustic spectra show clear dependence

of the scattered and Doppler-shifted pressure signal on the non-distorted acoustic

modes, which agrees with perturbational scattering theory.

Most studies of Doppler-shifted Bragg scattering from a rough, moving ocean

surface employ statistical models relating surface wave spectra to measured wind

velocities[LS04, WJ95, Gra03, BT97]. This paper instead employs measured sur-

face wave spectra. The reason for this approach is that the experiment site was

too close to shore for the assumptions on which the surface wave models are typi-

cally based to be valid. The observed surface wave conditions changed significantly

continously throughout the experiment, and these variations did not always corre-

spond to changes in local wind.

In Sect. 2.3 measured, spatial acoustic spectra and beamformer results for two

times during the study are presented, following a brief overview of the experiment

site and instrument set-up. Horizontal acoustic mode numbers are inferred from

the wavenumber spectra estimates and plane-wave vertical beamformer results

at each of the transmitted acoustic frequencies. Predictions of Doppler-shifted

scattering in the vertical plane using the measured acoustic mode numbers are

compared to vertical beamformer output over a range of frequencies centered on

the transmitted narrowband tones in Sect. 2.3.3. Section 2.4 contains a summary

of acoustic normal mode propagation, including a derivation of the scattered modes

and their dependence on the ocean surface waves using first-order perturbational

theory, as well as estimation of acoustic wavenumber spectra using a spatially

windowed Hankel transform. Finally, the implications of these measurements in

the context of first-order scattering theory are discussed in the context of the

possibility of using the results in this paper to invert received acoustic spectra for

ocean surface wave directional spectra in Section 2.5.
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2.3 Experiment and results

2.3.1 Instrumentation and processing methods

The experiment was conducted in a shallow (10 m), iso-speed (1510 m s−1)

waveguide. The low-frequency acoustic source was moored 0.5 m above the bottom

approximately 500 m offshore, and transmitted narrow-band tones (280, 370, 535

and 695 Hz) for 5 minutes continuously every half-hour or hour to a hydrophone

array whose data were digitized at 1500 samples s−1 per channel. The hydrophone

array was deployed on the bottom approximately 1.25 km away from the source and

1.5 km offshore. The source was approximately 20◦ true bearing from the array.

The array consisted of 64 hydrophones spaced 1.875 m apart, and was oriented

roughly endfire to the source (Fig. 2.1). The sturdy mooring of the source and the

partial burial of the hydrophone array under sediments deposited by ocean currents

and surface waves at the beginning of the experiment ensured that both the source

and receiving array were stationary throughout the experiment. All frequency

shifts observed in the acoustic data can therefore be attributed to motions in the

environment and not in the acoustic transmitting and recording system.

Data from an instrument measuring ambient pressure and two horizontal com-

ponents of water velocity (PUV) deployed near the source were used to compute

directional ocean surface wave spectra throughout the experiment (Fig. 2.2). Fre-

quencies and wavenumber amplitudes for ocean surface waves are related through

the dispersion relation for linear surface waves:

σ2 = gκ tanh(κD) (2.1)

where σ and κ are the ocean surface wave frequency (Hz) and wavenumber mag-

nitude (rad m−1), respectively, g is the gravitational constant (9.8 m s−2), and D

is the depth (m) of the ocean bottom. Directional spectral analysis of PUV data

for surface waves, as implemented in this study, assumes that waves propagate

from a single direction at each frequency. The PUV sensor recorded 2 samples s−1

per channel continuously for 20 minutes every hour throughout the experiment.

Significant wave height Hs, defined as four times the square root of the variance
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Figure 2.1: Geometry of the horizontal hydrophone array. The solid line through
the origin and 20◦ marks the direction towards the source. While the whole ar-
ray consisted of 64 elements, only those 61 that operated reliably throughout the
experiment are depicted.
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Figure 2.2: Directional surface wave spectra measured by the PUV sensor. Signif-
icant wave heights for the two s time periods shown are 0.49 m (solid traces) and
0.56 m (dashed traces). Black traces are surface displacement (left-and vertical
scale) and gray traces are direction of origin (right-hand vertical scale).
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Figure 2.3: Narrowband beamformer, sweeping in azimuthal and vertical angles.
Vertical axis units are dB, normalized by the peak value in the known source
direction (20◦ azimuth). The four images correspond to four acoustic frequencies
(clockwise from upper left: 280, 370, 695 and 535 Hz). The steeper arrivals at 535
and 695 Hz are grating lobes.
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of the surface height, and directional spectra are computed for each surface wave

time-series. Wavenumber vectors κκκ for surface waves at each spectral frequency

component σ are computed using the measured propagation direction φσ.

κκκ = −κ sin φσx̂− κ cosφσŷ (2.2)

= κxx̂+ κyŷ (2.3)

Here φσ is the angle from north of the direction of origin of the surface wave

component with frequency σ, and x̂ and ŷ are the east-west and north-south unit

vectors, respectively. These measured ocean wavenumber vectors are projected

into the vertical plane of acoustic propagation between the source and the center

of the hydrophone arrays. If φac is the angle from North of the direction from

source to receiver, then

κκκ = κ‖r̂ + κκκ⊥φ̂ (2.4)

where

κ‖ = |κκκ‖| = κx sinφac + κy cosφac (2.5)

is the projection of the ocean surface wavenumber into the vertical plane between

the acoustic source and receiving array. The unit vector r̂ is horizontally oriented

outward from the source, and the angle φ increases clockwise out of the vertical

plane connecting the source to the receiving array (Fig. 2.1).

The Bragg condition for scattering of acoustic waves from a rough surface is

kkks = kkki ± κκκ (2.6)

where kkks and kkki are, respectively, the scattered and incident acoustic wavenumber

vectors, and κκκ is the wavenumber vector of the surface roughness. If the vectors

of Eq. 2.6 are broken into components parallel and perpendicular to the vertical

plane of acoustic propagation between the source and receiving array, then the

scattered acoustic wavenumber in the vertical plane becomes

kkkr,s = (kr,i ± κ‖)r̂ − kzẑ (2.7)

Thus, by first-order perturbation, the vertical component kz of the incident surface

wavenumber kkki is unchanged by interaction with the rough ocean surface. Accord-

ing to Eq.2.7, the Bragg condition for the 2-dimensional scattering problem, the
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scattered acoustic arrival angles θ±n are altered from the non-perturbed arrival an-

gles θn = arctan kzn

krn
by addition and subtraction of the parallel components κ‖ of

the surface wavenumber vectors with the horizontal acoustic wavenumbers krn
:

θ±n = arctan
kzn

krn
± κ‖

(2.8)

The temporal frequencies of these scattered acoustic arrivals are likewise Doppler-

shifted from the transmitted frequency by an amount equal to ±σ, the surface

wave frequency. The origins of Eqs. 2.6 and 2.7 are described more thoroughly in

Section 2.4.

In order to relate the received scattered signal to the measured directional sur-

face wave spectra, ambiguities in the acoustic directional spectra arising from hy-

drophone array geometry must be reduced. This is especially important for a search

that is restricted to two dimensions, since scattering is spatially a 3-dimensional

problem (Eq. 2.6). The manner in which the hydrophone array was deployed re-

sulted in a less-than perfectly linear geometry (Fig. 2.1), thereby giving the array

not only endfire aperture useful for resolving horizontal acoustic wavenumbers, but

also limited broadside aperture useful for reducing conical ambiguities that arise

when using a perfectly linear array in an isospeed propagation medium. Moreover,

directional acoustic spectra are estimated using a data-adaptive technique with

a white-noise constraint (WNC) of -6 dB. Such techniques can offer much better

resolution than their conventional counterparts. Narrowband beamformer results

for a search in vertical and azimuthal angles (Fig. 2.3), when using the array’s

full 2-dimensional aperture, show clear evidence of acoustic multipath, as well as

diminished conical ambiguity surfaces. When the same search was performed using

only the central, nearly perfectly linear segment of the array (omitting the portions

adding broadside aperture), the vertical angle resolution and ambiguity surfaces

worsened considerably.

Because adaptive processing algorithms such as this require the cross-spectral

density matrix (CSDM) to be full rank for stable inversion in their incorporation

into the steering or replica vectors [Hay96], there is a natural trade-off between

spatial and temporal resolutions. In order to achieve the ability to resolve acous-

tic temporal frequency deviations caused by the surface waves that are small (.06
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Hz) compared to the acoustic carrier frequencies (280, 370, 535 and 695 Hz), long,

zero-padded FFT’s (Ndata ∼ 30000 points, NFFT = 215 points) are used to estimate

the temporal spectrum of the signal received on each hydrophone. It was found

that a maximum of 52 hydrophones could be used for this processing when two

consecutive, 5-minute recordings of the CW tones are processed without sacrific-

ing temporal resolution, while including sufficient snapshots to ensure statistically

reliable results, and while confining the processing to times when the surface waves

were steady throughout. These 52 hydrophones are chosen to span the entire length

of the array to optimize the vertical and azimuthal angle resolutions in processing.

The hydrophone array was constructed to offer optimal resolution at 400 Hz when

the sound speed uner water is 1500 m s−1. Therefore, all acoustic signals with fre-

quency conent > 400 Hz will be spatially aliased by this array when it is stretched

to its full length. However, since the location of the source relative to the arrays is

well known, and because of the effectiveness of the WNC beamforming algorithm,

grating lobes arising from spatial aliasing of the 535- and 695-Hz tones is not of

major concern (Fig. 2.3).

2.3.2 Measured acoustic modes

During the experiment, in addition to the acoustic instrumentation and the

PUV sensor, which could also be used to measure depth fluctuations through-

out the experiment, Conductivity and Temperature vs. Depth (CTD) profiles

were taken. These profiles showed that the acoustic environment was a shallow

(10 m), iso-speed (1510 m s−1) waveguide. The bottom consisted of a layer of

sediments (1 m thick, cs = 1575 m s−1, αs = 0.9 dB/λ) overlying a hard bottom

(cb = 1680 m s−1, αb = 0.3dB/λ)[McA02]. Over the course of the experiment,

surface wave conditions varied widely in amplitude, and in frequency σ and di-

rection φσ of the dominant spectral components (Fig. 2.2). At times, multiple,

independent surface wave systems were present, with multiple simultaneous peak

frequencies and directions of arrival. These changes are reflected in the acoustic

vertical beamformer output. This study focuses on two time periods during the

experiment. During the first, the significant wave height was 0.66 m, and the
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dominant component had a frequency of 0.09 Hz and originated from -142◦ from

North. The water depth was 9.7 m. Later in the experiment, during the second

time period of focus, the significant wave height was 0.56 m, and there were two

dominant frequencies, 0.06 and 0.14 Hz, originating from two different directions,

-91◦ and -38◦, respectively (Fig. 2.2), and the water depth was 9.5 m.

Table 2.1: Vertical Bragg scattering: fw = 0.09 Hz, kw = 0.063 rad m−1, φw =
−142◦, Hs = 0.66 m, D = 9.7 m

f◦ (Hz) krn
(m−1) θn (◦) k+

rn
(m−1) θ+

n (◦), “△” k−rn
(m−1) θ−n (◦), “▽”

280 1.131 14.0 1.070 14.7 1.191 13.3
1.088 21.0 1.027 22.1 1.149 20.0

370 1.464 18.0 1.403 18.7 1.525 17.3
535 2.123 17.5 2.062 18.0 2.184 17.0
695 2.834 11.5 2.773 11.7 2.895 11.3

2.750 18.0 2.690 18.4 2.811 17.6

Table 2.2: Vertical Bragg scattering: fw = .06 Hz, kw = 0.04 rad m−1, φw = −91◦,
Hs = 0.56 m, D = 9.5 m

f◦ (Hz) krn
(m−1) θn (◦) k+

rn
(m−1) θ+

n (◦), “△” k−rn
(m−1) θ−n (◦), “▽”

280 1.105 18.5 1.088 18.7 1.121 18.2
370 1.456 19.0 1.439 19.2 1.472 18.8

1.384 26.0 1.367 26.2 1.400 25.7
535 2.145 15.5 2.129 15.6 2.162 15.4

2.092 20.0 2.075 20.1 2.108 19.9
2.026 24.5 2.009 24.7 2.042 24.3

695 2.709 20.5 2.692 20.6 2.725 20.4
2.632 24.5 2.615 24.6 2.648 24.4

Horizontal mode numbers are found using a Hankel transform approximation

using the pressure field measured by the entire endfire array (Fig. 2.1).

p̃(kr, ω) =

∫ ∞

0

dr r H◦(krr)p(r, ω) (2.9)

where p(r, ω) and p̃(kr, ω) are a scalar function transform pair of distance r and

wavenumber kr (respectively), and freqency ω. H◦ is the Hankel function of the

first kind (order 0). Here it has been assumed that the acoustic wave field at

frequency ω is entirely outgoing, and that the geometry is radially symmetric.

Equation 2.9 describes the complete spatial spectrum, including both the discrete
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Figure 2.4: Acoustic horizontal spatial spectrum computed at four temporal fre-
quencies using a Hankel Tranform of data measured on the endfire array. The
water depth during this time period of the experiment was 9.7 m. Vertical dashed
lines indicate acoustic wavenumber amplitudes at the 4 transmitted frequencies
k◦ = 2πf◦/c. Circles (“◦”) indicate modes included in predictions of Bragg scat-
tering in Fig. 2.6.
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Figure 2.5: Acoustic horizontal spatial spectrum computed at four temporal fre-
quencies using a Hankel Tranform of data measured on the endfire array. The
water depth during this time period of the experiment was 9.5 m. Vertical dashed
lines indicate acoustic wavenumber amplitudes at the 4 transmitted frequencies
k◦ = 2πf◦/c. Circles (“◦”) indicate modes included in predictions of Bragg scat-
tering in Fig. 2.7.
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Figure 2.6: Plane-wave vertical beamformer showing Doppler shifting and Bragg
scattering from ocean surface waves with peak frequency 0.09 Hz propagating from
-142◦. Black lines indicate the continuous directional surface wave spectrum. Cir-
cles (“◦”) indicate measured modes. Triangles indicate predicted Bragg scattered
arrivals (“▽” for −σ Doppler shift and “△” for +σ Doppler shift).
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Figure 2.7: Plane-wave vertical beamformer showing Doppler shifting and Bragg
scattering from ocean surface waves with peak frequencies of .06 Hz and .14 Hz,
propagating from -91◦ and -38◦, respectively. Black lines indicate the continuous
directional surface wave spectrum. Circles (“◦”) indicate measured modes. Tri-
angles indicate predicted Bragg scattered arrivals (“▽” for −σ Doppler shift and
“△” for +σ Doppler shift).
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Table 2.3: Vertical Bragg scattering: fw = .14 Hz, kw = .10 rad m−1, φw = −38◦,
Hs = 0.56 m, D = 9.5 m

f◦ (Hz) krn
(m−1) θn (◦) k+

rn
(m−1) θ+

n (◦), “△” k−rn
(m−1) θ−n (◦), “▽”

280 1.105 18.5 1.156 17.7 1.054 19.3
370 1.456 19.0 1.507 18.4 1.405 19.6

1.384 26.0 1.435 25.2 1.333 26.9
535 2.145 15.5 2.196 15.2 2.094 15.9

2.092 20.0 2.143 19.6 2.041 20.5
2.026 24.5 2.077 24.0 1.975 25.1

695 2.709 20.5 2.760 20.2 2.658 20.9
2.632 24.5 2.682 24.1 2.581 24.9

and continuous parts. Singularities in this complex integral (Eq. 2.9) correspond to

the propagating modes, and they appear as large peaks in the approximated spec-

trum. Section 2.4 further discusses of the relationship between spectral methods

and mode theory, and their role in time-dependent scattering theory.

In this study the acoustic spatial spectrum is estimated by first implementing a

temporal FFT of the pressure time series recorded by a set of hydrophone elements

whose ranges from the source vary, and then numerically computing the integral

in Eq. 2.9 at the frequencies transmitted by the acoustic source. While the limits

of integration in Eq. 2.9 are 0 to ∞, in practice the integral must be truncated

from rmin to rmax, the minimum and maximum distances, respectively, from the

source to the hydrophone elements. As with the FFT, the snapshot length, or

the total aperture in range of the array (rmax − rmin) determines the wavenum-

ber resolution limit that can be obtained when computing the numerical Hankel

transform using conventional computation methods. Since the waveguide where

the experiment was conducted was iso-speed with known sound speed, measured

horizontal wavenumbers associated with vertical acoustic modes are easily related

to the vertical beam pattern of the non-Doppler-shifted signal through vertical

angles of arrival:

tan θn =
kzn

krn

(2.10)

where each θn is a vertical angle of arrival, and the vertical and horizontal wavenum-

ber components kzn
and krn

(respectively) associated with θn are related to the

acoustic wavenumber k through k2 = k2
zn

+ k2
rn

.
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Horizontal mode numbers are also computed indirectly using the plane-wave

vertical beamformer, where peaks in the output are θn. While it may seem that

these two methods are identical, they are actually arriving at the same result from

very different approaches. Equation 2.9 is a mathematical mapping of a function

from one space into another, much like the temporal Fourier transform maps func-

tions of time into functions of frequency. Thus, it is always true, and can always

be computed when the locations of the hydrophones are known, and is not based

on assumptions of propagation parameters. In order to infer arrival angles or full

wavenumber vectors, however, information about the physical setting is required.

The vertical beamformer, on the other hand, begins with assumptions of the en-

vironment, and matches data with replica vectors based on those assumptions.

Discrepancies between the wavenumbers computed from Eq. 2.9 and those com-

puted from the beamformer output may indicate mismatch between the assumed

and actual propagation parameters.

In a shallow, iso-speed waveguide such as that where the experiment took

place, water depth significantly influences the received acoustic field through its

effect on the number and shape of propagating modes, as well as the excitation of

them. Tidal changes stretch and compress the mode functions at a given acoustic

frequency, and alter the horizontal mode numbers. In some cases tidal fluctuations

can cause the number of propagating modes to change with time. With the source

held in a fixed position, the changing water depth effectively moves the source

vertically along the mode functions, thereby altering the excitation of each in

time. Horizontal spatial spectra computed from pressure time series recorded on

the endfire array show a temporal dependence of relative mode levels. While a

normal mode model using inputs based on the measured acoustic properties of

the experiment site might predict more propagating modes, the current study is

restricted to those that were positively identified in the measured spatial spectra

(Figs. 2.4 and 2.5) and vertical beamformer output. Horizontal mode numbers for

each of the 4 transmitted frequencies inferred from the measured spatial spectra

(Figs. 2.4 and 2.5) are listed in Tables 2.1, 2.2 and 2.3. In Figs. 2.6 and 2.7, a “◦”

marks the each of the angles corresponding to the modes identified at each of the
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four transmitted frequencies.

Given that the number of propagating acoustic modes increases with acoustic

frequency, and higher order modes change more rapidly in space than do lower

order modes, the sensitivity to depth changes of the received acoustic field likewise

increases with frequency. During the first time period, when the depth was 9.7

m, two horizontal mode numbers were identified at 280 Hz with values of 1.131

and 1.088 rad m−1 (Figs 2.4 and 2.5), corresponding to vertical arrival angles of

14◦ and 21◦ (Figs. 2.6 upper left and 2.7 upper left). During the second time

period, when the depth was 9.5 m, a single mode was identified at 280 Hz with

a horizontal wavenumber of 1.105 rad m−1 (vertical arrival angle 18.5◦). At 370

Hz, the opposite occured: one mode was identified during the first time period,

with a value of 1.464 rad m−1, and two were found during the second time period,

with values of 1.456 and 1.384 rad m−1. The vertical angles corresponding to these

modes were 18◦ during the first time period and 19◦ and 26◦.

The most drastic changes in mode excitation occur at 535 Hz. Though there

are more propagating modes at this higher frequency than at 280 or 370 Hz, during

the first time period only one was positively identified in both the horizontal spatial

spectrum and the vertical beamformer output. The value of this single horizontal

wavenumber during the first time period of 2.123 rad m−1 (vertical arrival angle

17.5◦, Figs. 2.5 and 2.7, lower left) is lower than the highest value (2.145 rad

m−1, vertical arrival angle 15.5◦) but higher than the second mode (2.092 rad m−1,

vertical arrival angle 20.0) during the second time period (Figs. 2.4 and 2.6, lower

left). The third mode during the second time period had a horizontal wavenumber

of 2.026 rad m−1 (vertical arrival angle 24.5◦).

Two modes were positivley identified at 695 Hz during both the first and second

time periods in both the spatial spectrum (Figs. 2.5 and 2.5) and the vertical

beamformer output (Figs. 2.6, lower right and 2.7, lower right). The two horizontal

mode numbers were 2.834 and 2.750 rad m−1 (vertical arrival angles 11.5◦ and

18.0◦, respectively) during the first time period (Figs. 2.4 and 2.6, lower right),

and 2.709 and 2.632 rad m−1 (vertical arrival angles 20.5◦ and 24.5◦, respectively)

during the second time period (Figs. 2.5 and 2.7, lower right).
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2.3.3 Scattering in the vertical plane: measurements and

predictions

A comparison of the directional acoustic spectrum for two time periods during

the experiment clearly illustrates the dependence of the received, scattered acous-

tic signal’s frequency and angles of arrival on the ocean surface wave spectrum

through the Bragg and linear surface wave dispersion relations (Eqs. 2.7 and 2.1,

respectively). Associated with all of these observed propagating modes are pairs

of sidebands in the (±1 Hz) vertical beamformer output, with variable frequency

and angle offsets. Sidebands in the acoustic directional spectra are symmetric in

frequency, and the peaks’ offsets are equal to ±σ, the dominant surface wave fre-

quencies (Figs. 2.2, 2.6 and 2.7). This observation is consistent with first-order

perturbation theory [HL75a, PW91], as well as phase modulation without scatter-

ing [LBD08, PN78]. Deviations in the vertical angles of arrival of the scattered

sidebands obey Eq. 2.8, where the ocean surface wavenumber vectors are found

using the linear dispersion relation (Eq. 2.1) and the measured directional surface

wave spectrum (Fig. 2.2). The sizes of the angle deviations increase with lower

acoustic carrier frequency, since at lower frequencies the magnitudes of the acous-

tic and ocean surface wavenumbers are more similar, and the relative changes in

horizontal acoustic wavenumber resulting from scattering (Eq. 2.7) are larger at

lower acoustic frequencies than at higher frequencies. The sign of the vertical angle

deviation resulting from scattering from the rough, moving surface is determined

by the direction of the parallel component of the surface waves relative to the

acoustic propagation direction (Fig. 2.1). If kr,i and κ‖ are the same sign (Eq.

2.7), then the −σ Doppler-shifted sideband will correspond to the shallower angle

of arrival θ−, whereas if kr,i and κ‖ are opposite sign, then the −σ Doppler-shifted

sideband will correspond to a steeper vertical angle of arrival, θ− > θ◦. When the

plane-wave beamformer output is viewed in f − θ-space, horizontal wavenumber

differences associated with the positively and negatively Doppler shifted sidebands

are symmetrical about the horizontal modenumbers, the angle deviations associ-

ated with them are not symmetrical about the non-scattered, non-frequency-shifted

arrival, due to the trigonometric relationship between the acoustic wavenumbers
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and measured vertical arrival angles (Eq. 2.10). The vertical angles of arrival θ

are measured from the horizontal, positive upwards.

Tables 2.1, 2.2 and 2.3 contain the measured surface wave dominant frequencies

σ, their respective wavenumbers κ, directions of origin φσ, and the associated

vertical angles of arrival θ±n expected for each of the measured acoustic horizontal

mode numbers krn
, where θ± is the angle associated with the ±σ-Doppler-shifted

sideband. The expected angles of arrival θn of the propagating acoustic modes,

and the expected angles θ±n of the scattered sidebands are marked on Figs. 2.6

and 2.7 (“◦” for unperturbed arrivals, “▽” for −σ Doppler shift and “△” for +σ

Doppler shift).

During the earlier time period, when the dominant surface wave spectral com-

ponent had a frequency of 0.09 Hz (11 s period) and was arriving from -142◦

from North, both positively and negatively frequency-shifted sidebands are visible

in the directional acoustic spectrum around 695 Hz. Predictions from Eq. 2.8

of the angles of arrival for the scattered sidebands agree well with the measured

sidebands for whole measured surface wave spectrum and the steeper non-shifted

arrival (18◦). The peaks of these sidebands (18.4◦ and 17.6◦) coincide well with the

dominant surface wave frequency, ±σ. Though there is frequency spreading at the

lower angled arrival (11.5◦), there are no nearby, distinct peaks or patterns that

can be attributed confidently to the Bragg condition associated with this mode.

The results observed at 535 Hz during the first time period are striking. While

the negatively Doppler-shifted sideband lacks a distinct peak at the surface wave

dominant frequency, its shape nonetheless echoes that predicted from the Bragg

condition for the full directional ocean surface wave spectrum (Eq. 2.5). Mean-

while, the positively Doppler-shifted sideband clearly coincides in both frequency

and angle deviation with the prediction of Eqs. 2.8 and 2.5 for the full surface

wave spectrum and measured acoustic mode. Moreover, other frequency-shifted

sidebands are visible in the beamformer output at 535 Hz that may be associated

with an acoustic mode that was not fully resolved in the spatial spectrum measured

during this time period.

From Eqs. 2.1, 2.5 and 2.7, it can be expected that the vertical angle deviations
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associated with Bragg scattering will be greater at lower acoustic frequencies. Pre-

dictions of angle deviations (0.7◦ for +σ and −0.7◦ for −σ) at 370 Hz for a main,

unshifted arrival at 18◦ are greater than those predicted and observed (0.3◦) at 695

Hz for an arrival of similar angle. While the peak of the negatively Doppler-shifted

sideband is less distinct (Fig. 2.6, upper right), both sidebands roughly follow the

shifts predicted by Eqs 2.5 and 2.8 for the continuous ocean surface wavenumber

spectrum. As with the results at 535 Hz, at 370 Hz, while one mode is positively

identified (Figs. 2.4 and 2.6, upper right), there are sidebands observed that seem

to coincide with the predictions of Eqs. 2.7 and 2.5 for a higher-angled arrival not

positively identified in the spatial spectrum or beamformer output.

Similar results are visible for both modes identified at 280 Hz, with the asym-

metry in angle of arrival deviation arising from the trigonometric relationship in

Eq. 2.8 made more clear at the lower acoustic frequency. There is a measured

asymmetry in the level of the received, scattered sidebands for both of the identi-

fied modes. The level of the positively Doppler-shifted sideband at 21◦ is higher

than that of the negatively shifted band, but the opposite is true for the 14◦ arrival

(Fig. 2.6, upper left). Both these higher level peaks coincide well with predictions

of scattered sidebands, though the other components of the surface wave spectrum

have less effect on the received field at 280 Hz.

During the later time period there are multiple peaks in the surface wave spec-

trum, with dominant frequencies of 0.06 and 0.14 Hz, propagating from −91◦

and −38◦, respectively. Though the lower frequency ocean surface wave peak is

much higher than that of the higher frequency component (Fig. 2.2), the scatter-

ing effects of that spectral component are not readily identifiable in the measured

acoustic directional spectra. While a general broadening in frequency of the acous-

tic arrivals is observed (Figs. 2.6 and 2.7), the separation of the Doppler-shifted

signals in angle and in frequency is too small to be discerned. The smaller, higher

frequency wave component is visible in the beamformer output, however. In fact,

for multiple modes at multiple of the transmitted acoustic frequencies, Doppler

shifting and angle deviations are observed that coincide exactly with the predic-

tions of the distortions resulting from the continuous surface wave spectrum. The
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projections of the dominant ocean surface wavenumber vectors into the vertical

acoustic plane result in oppositely signed horizontal wavenumbers in the scatter-

ing Equations (2.7 and 2.8). Additionally, the higher peak frequency component

measured during the later time period is both slightly higher frequency than the

lone dominant component observed during the earlier time period, and the sign of

the wavenumber projections are also opposite. Therefore, by Eq. 2.8, the expected

vertical scattered angle deviations (Tables 2.2 and 2.3) will be of opposite sign as

those seen in the earlier time period (Fig. 2.6), and the deviations are of different

magnitude.

The scattered Doppler-shifted sidebands associated with both the modes iden-

tified at 695 Hz (vertical arrival angles 20.5◦ and 24.5◦) coincide with the vertically

scattered angles of arrival predicted by Eqs. 2.7 and 2.8 (Fig. 2.7, lower right)

for the higher frequency of the two dominant surface wave components during the

second time period. Moreover, the scattered sidebands, which extend in frequency

well beyond the higher of the dominant surface wave frequencies, agree with pre-

dictions for frequency and wavenumber shift for the entire measured directional

surface wave spectrum (Fig. 2.7, lower right).

Similar to the observations at 695 Hz, Doppler-shifted, Bragg scattered acous-

tic arrivals are observed corresponding to all 3 identified modes at 535 Hz. The

correspondance between predictions from time-dependent, first order perturbation

mode theory and the recorded acoustic field is most clear for the second mode (ver-

tical angle 20.0◦), as both the positively and negatively Doppler shifted sidebands

show peaks at the higher of the two dominant surface wave frequencies. While

the peaks of the scattered sidebands for the first and third modes (vertical angles

15.5◦ and 24.5◦, respectively) are less distinct, the shape suggests the same pat-

tern of Doppler-shifted Bragg scattering (Fig. 2.7). Predictions of Doppler shift

and scattering for the whole of the continuous surface wave spectrum agree with

observed sidebands for each of the three positively identified modes.

At 370 Hz, at the higher of the two dominant surface wave frequencies σ dur-

ing the second time period, the observed scattered, +σ Doppler-shifted sideband

associated with the higher order propagating acoustic mode occurs as Eq. 2.8 pre-
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dicts, while the negatively Doppler-shifted sideband cannot be identified above the

noise background (Fig. 2.7, upper right). While the scattered sidebands associ-

ated with the lower order mode at 370 Hz are weaker in amplitude than the those

observed at higher acoustic frequencies and during the first time period, their dis-

placements in both frequency and vertical angle agree with those predicted by the

time-dependent scattering theory (Eq. 2.7). During the second time period, while

there are Doppler-shifted sidebands observed at 280 Hz, and while their breadth in

frequency coincides with that predicted by time-dependent perturbational theory,

they do not coincide exactly to the single mode identified in both the spatial spec-

trum (Fig. 2.5) and the beamformer output (Fig. 2.7, upper left). However, their

width in frequency and their following the same directional trend as indicated by

the predicted results for the positivley identified mode suggests that it is possible

that these sidebands are the Bragg-scatttered version of some higher-order mode

that could not be fully resolved.

2.4 Normal mode propagation and first-order per-

turbation

Data analyses such as those presented in Sect. 2.3.3 are much more instructive

when guided by an analytical approach that describes the complicated scattered

acoustic field. A perturbational approach to scattering acoustics begins with the

premise that the total acoustic field is comprised of the original, unperturbed

contribution that is the solution to the ideal case. The unperturbed solution is

then corrected by a series of contributions of increasing order of some positive real

expansion parameter (e.g. kh, where k is the acoustic wavenumber and h is the

scale of ocean surface roughness). Each subsequent term or contribution decreases

in relative importance: the size of the expansion parameter is defined as “small”

(kh ≪ 1). In this section one such expansion is computed for the purpose of

illuminating the observed broadband scattering. The approach here is similar to

that of Harper and Labianca[HL75a], in that it is a small wave height expansion

based on a normal mode acoustic propagation model. Other approaches base the
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expansion on more generalized plane-wave fields [PW91], or use small slope [TB95],

Kirchoff [McD92] approximations.

The range-independent acoustic wave equation with point-source forcing can

be written as

[ρ(z)▽·
1

ρ(z)
▽−

1

c2(z)

∂2

∂t2
]ψ(x,xs, t) = Sωδ(x − xs)e

−iω◦t−iγ◦ (2.11)

where ω◦ is the source frequency, γ◦ is a constant, Sω is the source amplitude,

c(z) is the sound speed, and ρ(z) is the medium density. The scalar function

ψ is a function of source and receiver locations x ( = [x, y, z] = [r, z]) and xs

(= [xs, ys, zs] = [rs, zs]), respectively, and time t.

The Fourier Transform pair is defined as

ψ̃(x,xs, ω) =

∫ ∞

−∞

dt e−iωtψ(x,xs, t)

ψ(x,xs, t) =
1

2π

∫ ∞

−∞

dω eiωtψ̃(x,xs, ω) (2.12)

If a Fourier Transform with respect to the time variable is performed on the wave

equation (Eq 2.11), the result is the inhomogeneous Helmholz equation:

[ρ(z)▽·
1

ρ(z)
▽−k2]ψ̃(x,xs, ω) = Sωδ(x − xs)δ(ω − ω◦) (2.13)

where k(z)2 = ω2/c(z)2 is the square of the acoustic wavenumber. This equation

can be rearranged to

[ρ(z)
∂

∂z

1

ρ(z)

∂

∂z
+ ▽2

H + k(z)2]ψ̃(x,xs, ω) = −Sωδ(x − xs)δ(ω − ω◦) (2.14)

Here ▽2
H is the Laplacian operator in the horizontal coordinates.

Examining the homogeneous (unforced) version of Equation 2.14, it becomes

apparent that each of the terms on the left-hand side is either strictly a function

in horizontal coordinates or is strictly a function of depth.

▽2
Hψ̃(x,xs, ω) + [ρ(z)

∂

∂z

1

ρ(z)

∂

∂z
+ k(z)2]ψ̃(x,xs, ω) = 0 (2.15)

Thus, in order for Eq. 2.15 to be true both terms must be a constant. This

constant is designated knr
and it is clear from Eq. 2.15 that this corresponds to

the horizontal component of the acoustic wavenumber:

k2
nr

=
ω2

c2
− k2

nz
(2.16)
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The solution to Eq. 2.15 takes the form

ψ̃(x,xs, ω) =
N∑

n=1

Φn(r, zs, ω)Ψn(z, ω) +

∫ ∞

0

dζ Φ̄(r, zs, ζ, ω)Ψ̄(z, ζ, ω) (2.17)

where x = [r, z] and the coordinate base has been defined such that the source

range is zero, xs = [0, zs]. The integral term in Eq. 2.17 represents the continu-

ous spectrum of the received field, and the term of summed discrete components

corresponds to the propagating modes of the waveguide. The functions Ψn and Ψ̄

are orthonormal:
∫ ∞

−∞

dz
1

ρ
Ψn(z, zs, ω)Ψm(z, zs, ω) = 1, n = m

= 0, n 6=∫ ∞

−∞

dz
1

ρ
Ψ̄(z, zs, ζ, ω), Ψ̄(z, zs, ζ

′, ω) = 1, ζ = ζ ′

= 0, ζ 6= ζ ′ (2.18)

Substituting Eq. 2.17 into Eq. 2.14 yeilds

N∑

n=0

Φnρ(z)
∂

∂z

1

ρ(z)

∂

∂z
Ψn + Ψn ▽2

H Φn + k2ΦnΨn = −Sωδ(x − xs)δ(ω − ω◦)

(2.19)

where the continuous spectrum portions of the solution Ψ̄ and Φ̄ have been ne-

glected. Rearranging and using the homogeneous Helmholz equation (Eq. 2.15),

and subsequently applying the orthonormality condition (Eq. 2.18) results in

[▽2
H − knr

]Φn = −Sω
Ψn(zs)

ρ(zs)
δ(ω − ω◦) (2.20)

This equation has the solution

Φn(r, zs, ω) =
i

4ρ(zs)
Ψn(zs)H0(knr

r)δ(ω − ω◦) (2.21)

where H0 is the Hankel function of the first kind, order 0, and it has been assumed

that as r → ∞, there are only out-going waves. The normal modes Ψn(z) in

Eqn. 2.17 are subject to the boundary conditions of the full solution ψ̃. In ocean

acoustics the upper (z = 0) boundary is a pressure release boundary:

ψ(x,xs, t) = 0, z = 0 (2.22)
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The bottom boundary condition is in general more complicated. The full solution

to Eq. 2.14 for the range-independent waveguide with a source at rs = [0, zs]

radiating at frequency ω◦ is

ψ̃(x, zs, ω) =
∞∑

n=0

iSω

4knz

Ψn(knz
zs)Ψn(knz

z)H0(knr
r)δ(ω − ω◦) (2.23)

The mode functions Ψn individually satisfy the upper and lower boundary condi-

tions of the waveguide. The field in Eq. 2.23 includes only the discrete portion

of the total field (Eq. 2.17). Recalling the spatial spectrum discussed in Section

2.3.2, it is easy to see that a Hankel transform (Eq. 2.9) of ψ̃ in Eq. 2.23 will

result in a series of delta functions δ(k − krn
). Thus it is a useful tool to find the

mode numbers of the acoustic field using the measurements of a horizontal array.

As it will soon be seen, it is the horizontal mode numbers krn
that are affected by

scattering from ocean surface waves.

Departing now from ideal wave guides with perfectly flat boundaries, a solution

is sought for a wave guide whose upper, pressure-release boundary is given some

roughness and allowed to move, in order to begin to understand the effects that

ocean surface waves have on shallow water acoustic propagation.

The surface wave field is assumed to be a linear superposition M of sinusoidal

components, and is zero-mean in space and time:

η(r, t) =

M∑

m=1

am cos(κκκm· r − σmt+ γm) (2.24)

κm = |κκκm| = (κ2
mx

+ κ2
my

)1/2 (2.25)

where am is amplitude and γm is the phase offset of the mth component. The

wavenumbers κκκm have horizontal components κmx
and κmy

, and, with frequencies

σm obey the linear wave dispersion relation (Eq. 2.1).

The scalar acoustic pressure field is expanded in a perturbation series in small

parameter kh, where k = ω/c is the acoustic wavenumber:

ψ̃ =

∞∑

n=0

(kh)n

n!
ψ̃(n) (2.26)
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With the surface allowed to deviate from flat, the upper, pressure-release boundary

condition is maintained as a Taylor expansion about z = 0 of the pressure field.

ψ(x, zs, t) =
∞∑

n=0

ηn(r, t)

n!
(
∂

∂z
)nψ(x, zs, t) |z=0 (2.27)

which, after transformation into the frequency domain via Eq. 2.12, becomes

ψ̃(x, zs, ω) =

∞∑

n=0

η̃n(r, ω)

n!
⊗ (

∂

∂z
)nψ̃(x, zs, ω) |z=0 (2.28)

where ⊗ denotes convolution in temporal frequency. It should be noted that

η̃n(r, ω) is the Fourier Transform of the nth power of the surface wave height

ηn(r, t),

η̃n(r, ω) =

∫ ∞

−∞

dω e−iωtηn(r, t) (2.29)

and as such is the nth convolution in frequency of the surface wave spectrum.

Inserting Eq. 2.24 into Eq. 2.29 yields

η̃(r, σ) =

M∑

m=1

am

2
[ei(κκκm·r+γm)δ(σ − σm) + e−i(κκκm·r+γm)δ(σ + σm)] (2.30)

Equations 2.15 and 2.16 allow for grouping of terms by order of kh in expansions

2.26 and 2.28. The result is a series of boundary value problems describing the

scattered and Doppler-shifted pressure field. The order (kh)0 problem is

▽2
Hψ̃

(0)(x, zs, ω) + [ρ(z)
∂

∂z

1

ρ(z)

∂

∂z
− k2] ×

ψ̃(0)(x, zs, ω) = Sωδ(x − xs)e
−iω◦t−iγ◦ (2.31)

ψ̃(0)(x, zs, ω) = 0 |z=0 (2.32)

plus the appropriate bottom boundary condition. Equations 2.31 and 2.32 are

identical to the unperturbed problem in Eqs. 2.14 and 2.22, and thus have the

solution detailed in Eq. 2.23:

ψ̃(0)(x, zs, ω) =

∞∑

n=1

Ψ(0)
n (z, ω)Φ(0)

n (r, zs, ω) (2.33)

Φ(0)
n (z, zs, ω) =

iSω

ρ◦
Ψn(zs, ω)H0(k

(0)
nr
r)δ(ω − ω◦) (2.34)
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where, as in the unperturbed problem, the horizontal and vertical wavenumber

components are related geometrically, k
(0) 2
nr = k2 − k

(0) 2
nz .

The set of boundary value problems for order (kh)n for all n ≥ 1 take the form

▽2
Hψ̃

(n) + [ρ
∂

∂z

1

ρ

∂

∂z
− k2]ψ̃(n) = 0 (2.35)

ψ̃(n) =
n∑

m=1

(kh)n−m

(n−m)!

η̃m

m!
⊗

∂m

∂zm
ψ̃(n−m) | z=0(2.36)

plus the appropriate bottom boundary condition. Once again the ⊗ denotes con-

volution in temporal frequency, and D is the ocean wave guide depth, h is RMS

surface wave height, and k = ω/c is acoustic wavenumber. These problems all

submit a solution that takes the form of Eq.2.17 in that they can be separated into

horizontal (r) and vertical (z) parts.

ψ̃(n)(x, zs, ω) =
M∑

m=1

Φ(n)
m (r, zs, ω)Ψ(n)

m (z, ω) +

∫ ∞

0

dζΦ̄(n)(r, zs, ζ, ω)Ψ̄(n)(z, ζ, ω)

(2.37)

From Eq. 2.30, it is apparent that the nth term of the perturbation expansion (Eqs.

2.26 and 2.27) introduces a scattered sideband whose width in temporal frequency

is n-times the width of the surface wave spectrum, and whose peak is located ±n-

times the peak frequency of the surface wave spectrum from the acoustic carrier

frequency. Harper and Labianca[HL75a] and Pourkaviani and Willemsen[PW91]

showed that, when the full 3-dimensional problem is addressed, the width of the

spatial spectrum of the received nth contribution of the perturbational terms is n-

times the width in wavenumber space as the ocean surface wavenumber spectrum.

For the current work, however, only the 0th and 1st terms will be explored.

Some insight into the Doppler-shifted, scattered portion of the received spec-

trum arises form examining the order (kh)1 terms of the expanded series. In per-

turbation theory, the surface waves’ influence on the acoustic field enters through

the upper boundary condition. Writing the upper boundary condition for the order

(kh)1 problem (Eq. 2.36) and inserting the random surface wave spectrum (Eq.

2.30), the first order contribution ψ̃(1) of the scattered field to the total received
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acoustic pressure becomes

ψ̃(1)(x, zs, σ) =
M∑

m=1

am

2
[ei(κκκm·r+γm)δ(σ − σm)+

e−i(κκκm·r+γm)δ(σ + σm)] ⊗σ
∂

∂z
ψ̃(0)(x, zs, σ)|z=0

(2.38)

Then, inserting Eqs. 2.33 and 2.34 and writing out the convolution integral, Eq.

2.38 becomes

ψ̃(1)(x, zs, σ) =

∫ ∞

−∞

dσ′
M∑

m=1

N∑

n=1

Sωam

i8
[ei(κκκm·r+γm)δ(σ′ − σm)+

e−i(κκκm·r+γm)δ(σ′ + σm)]
∂

∂z
Ψ(0)

n (k(0)
nz
zs)H0(k

(0)
nr
r)δ(ω◦ − σ − σ′)|z=0

(2.39)

It is apparent in Eq. 2.39 that the first order perterbation contribution to the total

received pressure ψ̃ gives rise to a Doppler-shifted version of the original acoustic

signal. If the asymptotic form of the Hankel function H0(kr) ≃
√

2
πkr
eikr−iπ/4 is

used, then the Bragg condition also becomes obvious in this setting.

ψ̃(1)(x, zs, σ) ≃
M∑

m=1

N∑

n=1

Sωam

i8

∂

∂z
Ψ(0)

n (k(0)
nz
zs)e

−iπ/4×

√
2

πk
(0)
nr r

[ei(κκκm·r+k
(0)
nr r+γm)δ(σ − ω◦ − σm)+

e−i(κκκm·r−k
(0)
nr r+γm)δ(σ − ω◦ + σm)]|z=0

(2.40)

If the surface wavenumbers κκκm are decomposed into components parallel and per-

pendicular to the vertical plane of propagation between source and receiver, κm⊥

and κm‖
, respectively, and the search for distorted signals is limited to within

this vertical plane (thereby paralleling Sir Rayleigh’s and others’ work in this

field[For70, WJ95]), then the Bragg condition becomes

kn,m = kn ± κκκm (2.41)

where kn is the wavenumber vector for the nth propagating mode and κκκm is the

mth surface wave component. The in-plane component of Eq. 2.41 is

k‖n,m = (krn
± κ‖)r̂ + knz

ẑ (2.42)
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which is the origin of Eq. 2.7 and gives the basis for searching for Doppler-shifted,

scattered sidebands in the vertical acoustic arrival structure. The Doppler shift

associated with these wavenumbers will be ±σm (Eq. 2.40). In the vertical plane of

acoustic propagation, scattering off surface waves will give rise to received acoustic

signals whose horizontal wavenumber component has been offset from the original.

Vertical beamformer output will reflect this as a vertical deviation in received

angle of arrival. Of course, Eq. 2.40, taken in 3 spatial dimensions, predicts

horizontal angle deviations associated with these Doppler shifted signals, and this

has been previously demonstrated [LS04, LBD08]. In order to address the fully

3-dimensional problem at higher orders, transform techniques have been applied

by some authors[HL75a]. Few observational or experimental studies have been

done to verify these concepts, as the equipment and logistical demands to perform

such work are prohibitively difficult.

It should be noted that perturbational theory relies on the premise that the

perturbation parameter, which in this work is kh, is much less than 1. When kh

becomes large enough that raising it to higher powers does not diminish, in effect

the different ordered equations become coupled, and independent solution is not

possible. This is important in scattering acoustics since surface wave heights are

in general variable, and these changing conditions may lead to breakdown in the

ability to predict or understand measurements.

2.5 Discussion

Examination of the plane-wave vertical beamformer during varying ocean sur-

face wave conditions shows clear dependence of the Doppler-shifted Bragg scattered

contributions to the total received acoustic field on the entire directional surface

wave spectrum. Variation in directionality within a single surface wave spectrum

gives rise to dramatically different scattering directions at the receiving array, given

a fixed source position. Additionally, the received scattered field depends on each

individual acoustic mode comprising the total received, non-scattered field. Dif-

ference in scattering angles are seen for different modes at the same frequency, at
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the same time. The ability to observe these phenomena requires instrumentation

to record the full directional surface wave spectrum, since in open ocean experi-

ments the local surface wave field is not just subject to local weather, but it is also

influenced by distant swell systems.

In the theory summarized in Section 2.4 and in the measurements presented in

Section 2.3.3 it is clear that the results of the Bragg condition (Eq. 2.6) become

more pronounced when the horizontal acoustic and ocean surface wavenumber

magnitudes are more comparable, when viewing the relationship as a function of

angle, as in beamforming. In the shallow, iso-speed waveguide and with the surface

wave fields observed during the experiment, this relationship is shown both through

the dependence of scattering on acoustic frequency and on vertical angle of arrival.

The horizontal acoustic wavenumber decreases with frequency, and with increased

steepness of arrival, bringing its magnitude closer to that of the observed ocean

surface waves, whose wavenumber magnitude is related to temporal frequency

through the linear dispersion relation (Eq. 2.1). The net effect of decreasing the

horizontal acoustic wavenumber in the context of the Bragg condition is an increase

in the vertical angle deviations observed in the vertical beamformer output. The

scattered angle’s dependence on acoustic frequency would masked, had the data

in Figs. 2.6 and 2.7 been presented as scattered intensity vs. frequency f and

horizontal wavenumber k.

Observed amplitudes of the scattered sidebands do not follow any simple de-

pendence on surface wave height or frequency, or acoustic frequency or arrival

angle. Though perturbation theory predicts the sideband amplitudes (Eq. 2.39),

the observed sideband amplitudes were inconsistent (Figs. 2.6 and 2.7). Similar

discrepancies have been observed by previous authors[LS04, LBD08].

While the results of Section 2.3.3 show vertical beamformer output and Eq.

2.8 relates the observed sidebands to specific surface wave interactions, the ability

to invert the results for the surface wave field still relies on the receiving array

having horizontal aperture. While a vertical array could be used to perform similar

analyses as have been shown in Sect. 2.3.2, a purely vertical array will be limited

by its inability to resolve horizontal angles and the conical ambiguity will result
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in azimuthally integrated measurements of scattered acoustic energy. That being

said, any array that can resolve vertical angles of arrival and whose beam can be

confidently steered azimuthally towards a known, stationary source location can

be used to unambiguously invert the received beam pattern for the ocean surface

wave spectrum using Eqs. 2.8 and 2.1.

If the scattering is strong, and higher order terms in Expansions 2.26 and 2.27

become important in the full pressure field solution, or if multiple interactions with

the surface lead to increased levels of higher order sidebands, then the ability to

invert measured acoustic field for the surface waves becomes difficult, since the

higher order (kh)n terms (n ≥ 2) introduce multiple convolutions of the ocean

surface wavenumber and temporal spectra into the total acoustic field. While

there is the possibility to perform such an inversion using a full, 3-dimensional

spatial search at known Doppler-shifted frequencies (for example using indepen-

dent measurements of the surface wave temporal spectrum), previously explored

methods[LS04, LBD08, WJ95, WJ93] may be insufficient in these circumstances.

Of considerable interest in scattering acoustics is the ability to perform the in-

verse problem: to deduce environmental parameters from acoustic measurements.

Wild and Joyce[WJ95] proposed inverting received narrowband tones for the sur-

face wave spectrum using a moving source or receiving array, and produced simu-

lated results that showed promise. In a shallow environment, this ability is compli-

cated somewhat by bottom roughness, unless the source and receiver are stationary,

since bottom roughness can produce similar results as the surface waves when the

acoustic system is moving [Mar63]. Results presented by Lebedev and Salin[LS04]

and Lynch et al.[LBD08], as well as the results presented in Section 2.3.3, along

with the predictions of Section 2.4 produce an opportunity accomplish an inver-

sion of received narrowband transmissions using a fixed source and fixed receiving

array by examining the beam output of the received signal. While Lebedev and

Salin[LS04] showed that, with 2 measured, Doppler-shifted sidebands in the hor-

izontal beamformer output, the surface wave peak frequency and direction could

be measured. These results were dependent on both the positively and negatively

Doppler shifted sidebands being visible. This is generally true, unless the search
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through acoustic wavenumber space of the Doppler shifted signal is performed in

three dimensions. Otherwise, in a 2 dimensional search, a single sideband leaves

an ambiguity in the Bragg condition where the surface wavenumber vector κ is

sought. Nonetheless, the results presented in this paper demonstrate that the

full surface wave spectrum can be deduced from observations of Doppler-shifted

scattering from a rough, moving surface.

2.6 Conclusions

Plane-wave beamformer output in the vertical plane shows scattered sidebands

whose frequency displacements coincide with frequencies of measured surface wave

spectra. Measured vertical angle deviations from the vertical arrival angles of the

measured non-Doppler-shifted propagating acoustic modes agree with predictions

of Bragg scattering and Doppler shifting from first-order perturbation theory.



Chapter 3

First-order scattering in the

horizontal plane, higher order

scattering and multiple

interactions with the surface

3.1 Abstract

During an experiment just outside the surf zone, a bottom-moored source trans-

mitted eight low-frequency (< 700 Hz) tones to two nearly perpendicular, bottom-

lying hydrophone arrays 1.25 km away. Surface gravity waves were measured using

an on-site pressure sensor and a directional pressure sensor network deployed 40

km away and maintained by the Coastal Data Information Program (CDIP). Re-

ceived omnidirectional spectra of the acoustic tones show dependence on the ocean

surface wave spectra, exhibiting a broadening that is wider band than the surface

wave spectra, with harmonic-like sidebands spaced at regular intervals equal to the

peak frequency of the surface waves. Beamformer output shows Doppler-shifted

sidebands asymmetrically offset from the direction of the sound source, suggestive

of Bragg scattering by surface waves. Increased levels of higher order sidebands

during smaller surface wave conditions suggest that higher order scattering does

65
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not wholly explain the distortion mechanism behind the observed distortions. A

simplified phase modulation model is developed that incorporates multiple surface

interactions and reproduces some of the features of the observed omnidirectional

spectra.

3.2 Introduction

Acoustic tones recorded during an experiment off the Southern California coast

showed significant variability that depended heavily on the prevailing ocean sur-

face wave activity (Fig. 3.1). Incoherently averaged acoustic spectra contained

sidebands that very much mimicked the measured surface wave spectrum (Figs.

3.2 and 3.3). Moreover, additional sidebands, spaced evenly by integer multiples

of the surface wave peak frequency, also were observed. Curiously, the sidebands’

levels did not always decrease with decreasing ocean wave activity as might be

expected from perturbation theory[PW91]. Rather, at times they persisted out to

at least 3rd order during quiescent wave conditions (Fig. 3.3), suggesting multiple

interactions between the rough, moving surface and the perturbed acoustic field.

Additionally, through the use of the horizontal array deployed on the ocean bot-

tom, out-of-plane scattering of Doppler-shifted side lobes was observed, indicating

Bragg scattering (Fig. 3.4). Clearly, the relatively long propagation (1.25 km)

through this very shallow (10 m) waveguide results in extensive interaction of the

acoustic field with the ocean surface, causing a variety of received signal variations

as a function of ocean roughness conditions.

In this paper, a relationship is sought between this observed temporal and spa-

tial frequency broadening of narrowband acoustic tones and the spectrum of ocean

surface waves. The observed broadening in temporal frequency exceeds that ex-

pected from first-order pressure field perturbation theory[Chu78, Par71, HL75a],

including Bragg scattering [LS04]. Higher order scattering[HL75b, PW91] can lead

to broader distortion of received narrowband acoustic tones, and even harmonic-

like sidebands, and this possibility is explored through the implementation of nu-

merical models as an explanation of the data obtained from this very shallow water



67

experiment. Additionally, a simplified model for higher order scattering including

multiple interactions with the moving surface is proposed that can predict received

omnidirectional field given any surface wave field by modeling the surface motions

as a mechanism of acoustic path length modulation. The modulation of acous-

tic phase by a surface wave-induced time dependence of the acoustic path length

(and therefore the travel time) results in a potentially complicated spectrum due

to non-linear behavior (with respect to surface deviations), and can result in a

frequency spectrum that is broader than that of the modulating phenomenon, and

can easily incorporate multiple interactions with the moving ocean surface.

The ocean’s dynamics impart fundamental performance limits on many acoustics-

based systems, including passive synthetic aperture [DTC+06] and communica-

tions [PD04] systems. Surface motions distort signals by randomizing propagation

conditions, rendering impossible a deterministic characterization of these acoustic

effects in most applications. A considerable body of work exists in the theoreti-

cal development and numerical modeling of the problem of acoustical interaction

with a rough, moving surface. Previous efforts to map surface wave statistics into

received acoustic spectra have employed various mathematical methods, mostly

based on perturbation expansions of pressure field contributions [WJ95, Gra03],

or small slope approximations[TB95]. Whereas some approaches begin with a

perturbation of the total acoustic field[HL75a] and take into account the relative

source and receiver configuration, others remain more general and examine the

perturbation of a single, generic plane wave [PW91].

Some modeling methods have focused on broadband acoustic propagation [MHDC03],

but many more methods center on modeling narrowband acoustics. Transmission

of narrowband tones is a useful platform for the purpose of inversion for surface

activity, in that the initial delta-function spectrum is convenient mathematically,

especially when investigating a process such as the ocean surface, which can have

such a wide range of spatial and temporal behavior. Other investigators have em-

ployed a more brute-force method of marching modified versions of existing, ideal

waveguide propagation models through a series of frozen, rough surfaces[Ros99].

Wild and Joyce [WJ95] propose using received acoustic signals to invert for
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surface wave spectra, and they construct a series of experimental scenarios with

varying motion of the receivers relative to the wind and dominant surface wave

direction as input for their model . Their approach is based on first-order pertur-

bation. Gragg[Gra03] carries the perturbation to 2nd order in order to derive ana-

lytically the influence of the surface wave field on the cross-spectral density matrix

(CSDM) for beamforming and other related analysis algorithms. Rosenberg[Ros99]

takes a different approach of modifying a parabolic equation propagation model to

account for a rough surface, and introducing surface motions directly into modeled

acoustic data by way of a series of frozen surface approximations. This approach

reproduces some interesting aspects of their recorded data, namely harmonic-like

sidebands centered at integer multiples of the surface wave frequency.

Much of the work on observation of forward scattering from a moving bound-

ary has concentrated on high acoustic frequencies (> 1000 Hz)[McD92, Dah96,

Uri83]. Lower frequency investigations have either concentrated on incoherent

effects[Chu78], or have depended on very specific source-receiver geometries with

respect to the ocean surface wave field[LS04]. While considerable progress has been

made in developing favorable comparisons between models of acoustic interaction

with surface waves and measurements in controlled laboratory settings[TD05],

much work remains to be done in examining open ocean observations. Several

authors have shown in observations that interaction of acoustic waves with the

moving ocean surface affects the received narrowband acoustic transmissions such

that the received acoustic spectrum includes a replication of the moving surface’s

spectrum in the form of side-bands [HL75b, Chu78, LS04, Wil73], or, equivalently,

that the received acoustic spectrum is a convolution of the transmitted acoustic

spectrum with the ocean surface waves’ spectrum [Par71]. Commonly, these re-

sults are related to the surface wave spectrum by applying first-order perturbation

theories. In some instances, the acoustic sidebands are narrower band than the

ocean wave spectrum [Chu78, LS04]. Azimuthal scattering with Doppler shift also

has been modeled successfully[WJ95] using first order perturbation techniques, and

has been observed by other authors[LS04].

The present work’s analytical approach is similar to those previously mentioned



69

in that a small ocean surface wave approximation is made, but differs in that, in

general, no redirection of acoustic energy occurs in the mechanism of Doppler

shift. A simplification is presented here that approximates all higher order acous-

tic scattering as arriving in the specular direction. This approach admits to a ray

solution, with a flat surface approximation: all ocean surface wavenumbers are

approximated as zero while surface wave frequencies remain finite, so that the flat,

pressure-release upper boundary moves as the ocean surface wave temporal spec-

trum. The modeling of phase modulation in this paper is similar to the modeling

effort of Rosenberg[Ros99] in the use of a series of frozen surfaces to introduce

surface motions into the waveguide. However, whereas a parabolic equation solver

was used before, a ray-based propagation model is used in the model here. Also,

whereas other authors have often successfully employed analytically derived ex-

pressions for surface wave fields based on wind speeds in their studies of acoustical

interaction with a rough, moving surface, the measurement of surface wave con-

ditions over the course of the experiment reported here shows clearly that these

analytically derived surface wave spectra are not applicable. In particular, the

experiment setting and surface wave fields do not fit several of the assumptions

that these derivations require, such as fully developed seas or uniqueness of sur-

face wave-generating systems. Therefore only measured surface wave spectra are

included in the modeling efforts presented in this paper.

Some of the features of these data have not been otherwise observed. For exam-

ple, while the multiple, harmonic-like sidebands observed in the experiment here

are similar to those observed by other authors[Ros99], they are different in their

persistence during times when the surface waves were smaller and lower frequency

(Fig. 3.3). In addition, the number of sidebands is higher than previously ob-

served. Instrumentation deployed in this experiment and measurement over an

extended period where ocean surface conditions varied dramatically lend them-

selves to further insight into the dependence of received low-frequency acoustic

fields on oceanographic conditions.

The goal of this paper is to develop a mapping of the statistics of the ocean’s

surface dynamics into the received underwater acoustic spectrum in shallow water
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environments, given limited environmental measurement, and to compare predic-

tions from physical models of this mapping with recorded data from a real ocean

setting. Presented in this paper are data obtained from an ocean experiment

showing multiple manifestations of frequency spreading by interaction with sur-

face waves. An acoustic model incorporating higher order scattering and multipath

propagation including multiple interactions with the moving surface is developed

in order to explain some of the more curious features of the observations. In Sect.

3.3, a general derivation for spectral broadening of received acoustic fields by in-

teraction with ocean surface waves in single path and multi-path environments is

given. Following this derivation is an overview of perturbational scattering the-

ory. Numerical models are introduced using these concepts. In Sect. 3.4, the

experiment during which the measurements were made for this study is described,

followed by presentation of data analysis results in Sect. 3.5. In Sect. 3.6, results

from this experiment are compared to predictions of numerical models based on

those spectrum-broadening mechanisms presented in Sect. 3.3. Section 3.7 is a

comparative discussion of the theories explored here, in relation to the preceding

experimental and numerical observations. Finally, a summary of the conclusions

from this work is discussed in Sect. 3.8.

3.3 Analytical Approach

The commonly understood idea of Doppler shift, in which a received signal’s

frequency is shifted due to either a moving source or moving receiver, is extended

to include any frequency shift that results from time dependence of the acoustic

path. This generalized formulation of Doppler shift is then used as the basis

for a simplified model of higher order acoustic scattering in an environment with

multipath propagation. A general mathematical construct is sought to explain

Doppler broadening of acoustic tones by the motion from surface gravity waves, in

particular, when higher order sidebands’ levels remain high in small surface wave

conditions.
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Figure 3.1: Ocean surface wave height (vertical displacement, cm) spectra at three
different times during the experiment.
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Figure 3.2: The measured omnidirectional acoustic spectra at three different fre-
quencies during a large wind-wave event. The horizontal axis quantity ∆f is the
offset from the acoustic tone frequency f◦. The peak period of the ocean surface
waves at this time was approximately 7 seconds (fsig ∼.16 Hz) with a significant
wave height Hs of approximately 1.0 m (re: Fig. 3.1, light gray trace). Arrows
indicate locations of integer-multiples of the peak surface wave frequency.
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Figure 3.3: The measured omnidirectional acoustic spectra from a period when
only a small, long-period swell (Hs ∼ .6m) was present (re: Fig. 3.1, black trace).
Arrows indicate locations of integer-multiples of the peak surface wave frequency.
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Figure 3.4: Horizontal angle dependence of Doppler-shifted acoustic spectrum at
280 Hz suggests Bragg scattering. The directional spectra (dB) are computed
using data from the broadside array, and are normalized to the peak located in the
direction of the source, with zero frequency offset.
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3.3.1 First order perturbation and Bragg scattering

First order perturbation[Chu78, Par71, HL75b] of the acoustic field by surface

waves results in the scaled convolution of the surface wave spectrum with the nar-

rowband acoustic spectrum, and is equivalent to an amplitude (linear) modulation

of the pressure field by the surface waves. Then perturbed modes’ amplitudes are

a function of the surface displacement, a time-dependent function, and the result is

an incoherent, Doppler-shifted contribution to the received spectrum. It should be

noted that, without the motion of the surface – if the surface could be frozen – no

frequency shift would occur, though out-of-plane and/or non-specular scattering

is still would be present.

There is also a component of the horizontally deflected, surface-scattered con-

tribution to the received pressure field resulting from Bragg scattering. Scattering

from a moving corrugated surface within an area that is located such that con-

structive interference occurs at the receiver array will result in a relatively large

arrival with a Doppler shift, and can appear in beamformer output as a pair of

signals shifted symmetrically in frequency, but generally asymmetric in amplitude

and in deviation in angle from the original source. The additional phase evolution

of the scattered acoustic signal from adjacent peaks and/or troughs in the ocean

surface wave field results in constructive or destructive interference, depending on

the scattering site and the wavelength of the sound. Only certain regions will re-

sult in a Doppler shifted signal at the receiver. The incident and scattering angles

associated with these regions are related by

ksksks = kikiki ± κκκ (3.1)

where ksksks and kikiki are the scattered and incident horizontal acoustic wavenumber

vectors, respectively, and κκκ is the wavenumber vector of the dominant ocean wave,

whose magnitude and associated frequency are related through the dispersion re-

lation

σ2 = gκ tanh(κH). (3.2)

Here σ is the frequency of the ocean wave in radians per second, g is the gravita-

tional acceleration (∼ 9.8 m s−2), H is the depth (m) of the ocean in the region
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of interest, and κ = |κκκ| (rad m−1). From Eq. 3.1 the dependence of the scattered

wavenumber on acoustic frequency and geometry (via the acoustic wavenumber,

ω = c|kkk|) is apparent.

Equation 3.1 in the x- (EW) and y- (NS) components of the horizontal wavenum-

bers can be rewritten in terms of the magnitudes k and directions θ of the acoustic

wavenumbers. These equations are transcendental in φw, the direction of prop-

agation of the surface wave, unless they can be simplified by some assumptions

relating the relative sizes or directions of the constituent wavenumbers ksksks, kikiki, or

κκκ. Assuming low surface grazing angles [LS04], where |ksksks| ∼ |kikiki| ∼ k = 2π
λ

(λ is

the acoustic wave length), the angle of surface wave propagation φw can be found

using the measured offset angles θ±s of the acoustic sidebands (the + and - signs

correspond to up-shift and down-shift in frequency, respectively):

φw =
π

2
sgn(θ+

s ) +
θ+

s + θ−s
2

. (3.3)

The amplitude of the scattered signal relative to the transmitted signal ampli-

tude is determined by the size of the first Fresnel zones. The magnitude of the

acoustic sidebands created by Bragg scattering depends on several geometric com-

ponents, including the depth H of the acoustic waveguide, the source-to-receiver

distance, the size of the resonant scattering area, the acoustic wavelength λ, and the

distances from the scattering area to the source and receiver. Acoustic frequency

impacts the amplitude of the Bragg-scattered sidebands through the interference

pattern it creates. The sizes of the Fresnel zones also depend on the geometry

of the experimental set-up through the horizontal distances from source to the

scattering patch and from the scattering patch to the receiver. The locations of

the scattering patches will change with the direction of propagation of the ocean

surface waves. The reader is referred to Lebedev and Salin[LS04] for a complete

treatment of the Bragg scattering amplitude and angle.
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Figure 3.5: Ray paths from a near-bottom source to a bottom receiver in a range-
dependent waveguide that approximates the conditions of the experiment. In this
study, the ocean surface is modeled as a moving reflector.
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3.3.2 Phase modulation by acoustic path length fluctua-

tion

In the high frequency limit, the received acoustic signal on a single hydrophone

prcv(t) can be written as the sum of pressure contributions traveling along rays

connecting the hydrophone to the source.

prcv(t) =

Nrays∑

k=1

Akpsrc(t− τk) (3.4)

Here the travel time for ktheigenray is τk, and Ak is its amplitude that takes into

account reflection coefficients, geometric spreading, and attenuation, and it has

been assumed that the ocean surface is flat and perfectly reflecting. The phase Θ◦

of an acoustic source that creates a sinusoidal signal at temporal frequency ω◦ is

Θsrc(t) = ω◦t+ Θ◦(ω◦) (3.5)

where Θ◦(ω◦) is the phase at time t = 0 of the signal with frequency ω◦. Assuming

propagation in a homogenous waveguide with a flat pressure-release surface and a

rigid bottom, the phase at the hydrophone receiving this signal propagating along

ray path k will be

Θrcv,k(t) = ω◦(t− τk) + Θ◦(ω◦) +mkπ (3.6)

Here the initial phase is Θ◦, mk is the number of reflections off the pressure-release

surface and time is t. In a shallow water waveguide, rays connecting a source and

receiver can interact with the surface and bottom several times (Fig. 3.5). The

travel time τk that it takes for the signal to travel along ray path k from the source

to the receiver is dependent on the separation of the source and receiver, as well

as the medium sound speed along the path.

τk =

∫ s2

s1

ds

vvv(s)· ŝss(s) + c(s)
(3.7)

The positions of the source and receiver along the ray path are s1 and s2, respec-

tively, the sound speed is c, the velocity of the fluid at points along the ray path

is vvv and the direction of the ray path (i.e. acoustic propagation direction) is given
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by the unit vector ŝss. If s1, s2 and the medium motion vvv(s) are all time-dependent,

then the travel time τk that an acoustic signal takes to propagate from the source

to the hydrophone along ray path k also becomes time-dependent:

τk(t) =

∫ s2(t)

s1(t)

ds

vvv(s, t)· ŝss(s) + c(s)
(3.8)

where s is the path length parameter, or distance along the ray path.

Time dependence of the positions of the source or receiver (s1 or s2), or time

dependence of the motion of the medium (vvv) leads to time dependence in the

acoustic travel time, and ultimately leads to a variation in the received signal’s

phase. The receiving hydrophone records this variation as a shift in the frequency

ωk from the frequency ω◦ emitted by the source.

ωk(t) =
∂

∂t
Θrcv,k(t)

=
∂

∂t
[ω◦ (t− τk(t)) + Θ◦ +mkπ]

ωk(t) = ω◦ (1 −
∂τk
∂t

(t)) (3.9)

Inserting the path integral[JKPS94] for travel time (Eq. 3.8) into the equation

for the time-dependent received frequency ωk(t) (Eq. 3.9), a modified acoustic

dispersion relation is obtained:

ωk(t) = ω◦ (1 −
∂

∂t

∫ s2(t)

s1(t)

ds

vvv(s, t)· ŝss(s) + c(s)
) (3.10)

which, when the fundamental theorem of calculus and the chain rule for derivatives

are employed, becomes

ωk(t) = ω◦ [1 − (
ds2(t)

dt

1

vvv(s2(t), t)· ŝss(s2(t)) + c(s2(t))
−

ds1(t)

dt

1

vvv(s1(t), t)· ŝss(s1(t)) + c(s1(t))
) +O(c−2(s)) ]

(3.11)

If the wave-perturbed surface is treated as a secondary source (Huygen’s prin-

ciple), and the surface is approximated as perfectly flat and heaving vertically,

then s1 and s2 become functions of the zero-mean surface vertical displacement

η(t) (Fig. 3.5, gray ray path trace).

sj(t) ∼ s̄j + η(t) sin(α); j = 1, 2 (3.12)
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where s̄j is the mean or unperturbed coordinate and α is the angle (from horizontal)

of incidence of the ray path on the moving surface. The above relation (Eq. 3.12)

assumes purely vertical motion of the purely horizontal surface, and low grazing

angles. Realistic surface gravity waves have finite slope. Thus, this model omits

any redirection of the acoustic waves by interaction with a rough surface.

For a ray that interacts with the surface multiple times, the integral in Eq. 3.8

can be split into multiple path segments, where each reflection off the surface is

treated as a separate secondary source (Fig. 3.5), and the integral in Eq. 3.10 is

computed over each segment between surface reflections.

It is well known, for example in the field of frequency modulated (FM) com-

munications [Zie95], that the spectrum of a sinusoid at carrier frequency ωc that is

modulated in phase by a sinusoidal function with amplitude β and frequency ωm

can be written as a sum of Bessel functions[MF53].

pk(t) = AkRe[e
iωct+iβ sin(ωmt)] (3.13)

= AkRe[e
iωct

∞∑

n=−∞

Jn(β)einωmt] (3.14)

If the modulating function has more than one frequency component, the resulting

spectrum is the product of the sum of Bessel functions of the first kind for each

frequency.

pk(t) = AkRe[e
iωct

∞∑

l=−∞

Jl(β1)e
ilωm1t

∞∑

n=−∞

Jn(β2)e
inωm2t... (3.15)

= AkRe[e
iωct

∞∑

l=−∞

∞∑

n=−∞

Jn(β1)Jl(β2)...e
inωm1t+ilωm2t+...] (3.16)

The form of the phase modulation in Eq. 3.13 might lead to the expectation

that the distribution of frequency of the received signal pk(t) is confined to within

the range ωc ± βωm. It is perhaps surprising, then, that the spectrum of the

received signal pk(t) will have frequency components at integer multiples of ωm

– potentially much wider than βωm (re: Eq. 3.14). Moreover, the presence of

multiple modulating frequencies can lead to non-linear (with respect to surface

waves) effects, with every integer-multiple combination of modulating frequencies

present in the modulating time series (i.e. the vertical surface motions).
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If the reflective surface of an ocean acoustic waveguide heaves up and down

at the surface reflection point of a single eigenray connecting source and receiver,

thereby lengthening and shortening the acoustic travel times, then the travel time

τk can be written as the sum of two integrals of similar form to Eq. 3.8, each one

corresponding to one segment of the path: source to moving surface and moving

surface to receiver. The appearance of η(t) in both these integrals is the cause

for the factor of 2 in the frequency shift associated with the canonical bistatic

Doppler shift problem[Uri83]. In general, the displacement η(t) at the ray’s point

of reflection can be written as a Fourier series

η(t) =

N∑

n=1

Sn sin(ωnt+ γn), (3.17)

In Eq. 3.17, Sn is the amplitude and γn is the phase of the nth frequency component.

The amplitudes Sn are inferred from the measured surface height spectrum P (σn):

Sn = (∆σnP (σn))
1/2 (3.18)

where ∆σn/2π is the width of the nth surface wave frequency band. Equations

3.16 and 3.17 result in a received acoustic field consisting of the original acoustic

frequency ωc, plus information about the surface waves.

prcv(t) = Re[

Nrays∑

k

Ake
iωct

∏

n

∞∑

l=−∞

Jl(βk,n)e
ilωnt] (3.19)

The terms βk,n individually are analogous to β in Eq. 3.14, and contain information

about the grazing angles of the kth eigenray, as well as the amplitude of the nth

surface wave component.

The sinusoidal nature of the modulation leads to positive and negative Doppler

shift, and if the argument β is small, then the linear behavior of the first few Bessel

functions (Fig. 3.6) will result in ‘copies’ of the surface wave spectrum whose levels

relative to that of the unshifted center frequency will increase with an increase in

surface wave height. If β is larger (∼ 1.5), then the modulation will result in a

more complicated relationship of the sideband levels. Through its relation to the

travel time for eigenray k (in its influence on ’source’ and ’receiver’ positions s1
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and s2 in Eq. 3.12), the argument of the Bessel function βk,n for the nth component

of the surface wave spectrum contains information about the angle of incidence α

of the acoustic wave fronts on the surface, and the number of surface interactions

mk, the average speed of sound in the waveguide c, the carrier frequency ωc (in

rad s−1), and amplitude Sn of the surface wave:

βn,k =
mk

c
Snωc sin(αk) (3.20)

It is worth noting that, for this model of frequency spreading, the modulated

acoustic spectrum is independent of the direction of propagation of the surface

waves relative to the acoustic source and receiver positions. Only the acoustic

path’s dependence on surface height affects the phase and frequency of the acoustic

signal.

Spectral broadening by phase modulation can occur even in a setting where

there is only one surface-interacting eigenray connecting the source and receiver.

The magnitude of the distortions depends on several factors, including the steep-

ness of the angle of incidence between the ray and the reflective surface, and the

height of the surface waves. Therefore, in an environment with multiple eigenrays

interacting with the surface, the resulting total received acoustic spectrum will

depend on each arrival. Because the Doppler-shifted sidebands’ levels depend not

only on the ray amplitudes, but also on the acoustic-surface wave interaction of

each eigenray, a relatively weak (i.e. small amplitude Ak) eigenray that reflects

off the surface multiple times may cause a greater distortion in the received signal

than a stronger eigenray that interacts with the surface only a few times. As will

be seen in Sect. 3.5, the conditions during the experiment were, for the most part,

such that the value of β fell into the region where the first several sidebands’ levels

will increase in level with steepness of intersection of the acoustic ray paths with

the surface (Fig. 3.6). These insights become clearer through the use of numerical

models.
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3.3.3 Higher order perturbation

A considerable body of work treats the problem of acoustic interaction with

a rough, moving surface through perturbational expansion[Chu78, HL75b, PW91,

WJ95]. The basic premise of such approaches is that the deviations of a solution

from the ideal case are small enough to allow grouping of terms by order and

treatment of each ordered problem independent of the ideal case. When a per-

turbational problem is set up, terms in equations are grouped by power of some

expansion parameter that is assumed to be small (i.e. ≪ 1), so that no term can

affect the problem involving terms of lower order than it. The order 0 (unper-

turbed) problem is independent for all problems of order ≥ 1. In the problem of

scattering in ocean acoustics, the parameter most often chosen naturally involves

the surface wave field, such as the RMS surface wave height, and is scaled by some

characteristic length of the acoustic field, such as the acoustic wavenumber. For

example, for the acoustic pressure ψ,

ψ(xxx, t) =
∞∑

n=0

(kh)n

n!
ψn(xxx, t) (3.21)

where k is the acoustic wavenumber and h is the RMS wave height. Closely related

to this is the Rayleigh parameter, kh sinα, which takes into account the angle of

incidence α of the incident acoustic field with the mean surface plane.

As has been implied in the Introduction (Sect. 3.2), it is easy to show using

first order perturbation theory with time dependence that interaction of a narrow-

band acoustic signal with a rough, moving ocean surface will result in a received

signal that contains the surface wave spectrum as sidebands to the transmitted

tones[HL75a]. The above terms ψn are solutions to the wave equation, with their

own forcing and boundary conditions. The upper boundary condition for ψ1, for

example, introduces a frequency-dependence of the received acoustic field on the

surface waves:

ψ̃1(rrr, z = 0, ω) = −η̃(rrr, ω) ⊗
∂

∂z
ψ̃0(rrr, z, ω)|z=0 (3.22)

Here the convolution in frequency arises from a Fourier transform of the perturbed

wave equation, the tilde denotes the Fourier transform in time, and the position

vector xxx = [rrr, z].
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In the context of the observations of multiple, harmonic-like sidebands in Figs.

3.2, 3.3 and 3.4, however, it makes sense to seek an extension to this expression

that results in a received spectrum whose broadening exceeds that predicted by

the first order theory, and can lead to harmonic-like sidebands. To this end, higher

order perturbation theory is explored here. The treatment follows that of Pourka-

viani and Willemsen[PW91] for a pressure field that is comprised of incident and

scattered plane waves with wavenumber vector [kkkr, kz;ω], where |kkkr|
2 +k2

z = ω2/c2

and amplitude described by f(i,s)(kkk(r,sr), ω).

p(i,s)(rrr, t) =

∫∫
dkkkr

∫
dω eikkkr ·rrre−iωte∓ikzzf(i,s)(kkkr, ω) (3.23)

The “T-matrix” is defined as the mapping of incident radiation fi(kkkr, ω) into the

scattered field fs(kkksr
, ωs):

fs(kkksr
, ωs) =

∫∫
dkkkr

∫
dω T (kkksr

, ωs;kkkr, ω)fi(kkkr, ω) (3.24)

where ωs and kkksr
are the frequency and horizontal component of the scattered

acoustic wavenumber vector, respectively. For an incident field consisting of delta

functions in frequency and spatial wavenumber, the scattered field is then the

T-matrix.

By expanding the T-matrix asymptotically into a series of components Tn as

in Eq. 3.21, and expanding the plane wave expression (Eq. 3.23) in a Taylor series

about z = 0, and grouping terms by order of kh, a series of equations relating Tm

to all Tn for all 0 ≤ n ≤ m is found.

Tm(kkksr
, ωs;kkkir , ωi) =

∫∫
drrr

∫
dt eirrr·(kkksr−kkkir )e−it(ωs−ωi)[−ikzη(rrr, t)]

m

×
m−1∑

n=0

(
m

n

)
[ikzη(rrr, t)]

m−nTn(kkkr, ω;kkkir , ωi) (3.25)

where η is the surface wave field, and ω(i,s) and kkk(i,s)r
are, respectively, the temporal

frequency and horizontal part of the wavenumber vector of the scattered (subscript

s) and incident (subscript i) acoustic wave contributions. The spatial and temporal

Fourier Transform in the expression for the mth term of the T-matrix results in

the convolution of the incident acoustic field with the Fourier Transform of the
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mth power of the surface wave field, ηm(rrr, t). This gives rise to a contribution to

the received pressure field that is m-times the width of the surface wave field. In

temporal frequency, these terms predict the Doppler shift induced by scattering

from a moving, rough surface, while in spatial frequency (or wavenumber), they

lead to the Bragg condition for integer multiples of surface wavenumber finds its

way into the higher order perturbation terms[HL75a, PW91].

Thus, higher order ((kh)n, n ≥ 2) perturbation can lead to evenly spaced peaks

in the received acoustic spectrum, so long as the width of the surface wave spectrum

is smaller than the dominant surface wave frequency. In this regard it is similar

to frequency distortion by phase modulation (Eq. 3.19), as the sum-and-difference

frequencies resulting from the product of sums will tend to broaden the higher

order sidebands in that mechanism, as well.

Both these expressions (Eqs. 3.19 and 3.25) are based on certain assumptions.

Neither expression addresses the issue of caustics or surface wave focalization

of sound, as discussed by Preisig and Deane[PD04]. The solution of a wave equa-

tion with perturbational expansions requires that the expansion term kh be small

enough that the equation’s left- and right-hand sides can be grouped by order, and

each order can be solved independently. However, if the expansion parameter is

too large, then there is coupling between orders and this solution is no longer valid.

In scattering in ocean acoustics, the expansion parameter can become too large

when the surface wave amplitudes become too large with respect to the surface

wavelength (i.e., the surface wave slopes become too steep). In contrast, the phase

modulation model is constructed so that any eigenray connecting (without dis-

ruption) the source and receiver that sees surface motion will impart information

about that motion into the acoustic spectrum.

3.3.4 Numerical modeling

To test Eq. 3.19 as a model of spectral broadening for shallow ocean acoustic

waveguides, a model is developed that integrates the pressure field computed from

rays with a random realization of surface waves. For each computed eigenray (Eq.

3.4), the effective travel time fluctuations that result from the lengthening and
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shortening of the acoustic path by the motions of the surface are computed from

the measured surface wave spectrum, scaled by the sine of angle(s) of incidence for

each surface interaction. An acoustic signal is constructed consisting of the carrier

frequencies transmitted during an experiment, with the phase evolution governed

by the time-dependent travel time. The surface is modeled here as perfectly flat,

meaning rays are only specularly reflected. The contributions to the total pressure

field at the receiver from each eigenray are added coherently, scaled according to

the eigenray amplitudes Ak (Eq. 3.4) inferred from vertical beamformer output

(Fig. 3.7). In order to maintain independence of the modulating functions for each

eigenray and maintain surface waves as a random process, each individual surface

wave frequency component’s phase is randomized for each reflection on each path.

Single realizations of the surface waves in which the randomized phase offsets are

similar will give rise to unlikely phase distortions, which in turn will cause un-

likely sideband amplitudes. To mitigate against this likelihood, the received field

in this model is computed repeatedly, and an ensemble average of the spectrum is

computed. While their relative level may be lower due to the attenuation associ-

ated with multiple interactions with the waveguide bottom, the resulting Doppler

shifted received contribution associated with the steeper eigenrays may be just as

significant in their effects on the received spectrum sidebands as those associated

with the more direct paths. The analytical representation of the spectrum resulting

from this harmonic modulation lends itself to easy computation (or even look-up)

of results for relevant values of the magnitude β of the modulating function.

It is beneficial to plot Bessel functions Jn(β) over the relevant range of values of

β to predict the magnitudes of the sidebands introduced by the surface waves (Eqs.

3.14 and 3.20) because of the non-linear effect that the surface wave amplitude

term in the phase modulation (Eq. 3.20) has on the acoustic spectrum (Fig. 3.6).

The sound speed c during the experiment is estimated at 1510 m s−1, and the tone

frequencies range between 70 and 700 Hz. Significant wave height ηs varies from 0.5

to 1.6 m during the experiment. With a critical angle of around 30◦ [McA02] and a

propagation distance of 1.25 km, the maximum number of reflections off the surface

that an eigenray could undergo without having a significant part of its energy
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transmitted into the bottom for the experiment geometry described in the next

section is 100. However, losses from interactions with the bottom and geometrical

spreading further limit the range of vertical arrival angles that warrants inspection.

Vertical beamformer output shows that dominant acoustic arrival angles range

between 10◦ and 20◦ above horizontal, depending on the acoustic frequency and

the waveguide depth. The waveguide depth fluctuates with the tides. These steep

dominant eigenrays connecting source and receiver intersect the ocean surface at

steeper angles, and interact more times with the ocean surface. In terms of mode

theory, the depths of the source and receivers determine the modal excitation and

reception. If the source or receiver depth is near one mode’s node and another’s

anti-node, then the first mode will be strongly represented while the other will

have little presence in the received signal. Tidal fluctuations influence the arrival

structure at the array by stretching and compressing the vertical mode functions.

The static source and receivers are effectively moved along these mode functions,

and their moving positions relative to nodes and anti-nodes of the modal functions

emphasizes and de-emphasizes different modes (and therefore eigenrays) over the

course of the experiment.

The model just described is compared to results from a model based on Eq.

3.25 for scattering terms up toO[(kh)4] for a monochromatic, unidirectional surface

wave spectrum with the direction of propagation lying directly along the direction

of the vertical plane of acoustic propagation. Predictions of received spectra pro-

duced by higher order perturbation and phase modulation by surface waves are

compared for two sets of surface wave conditions mimicking the variety of waves

observed during the shallow water experiment.

The two surface wave frequencies chosen are 0.07 and 0.16 Hz, corresponding

to surface wavelengths of 135 and 50 m, respectively. The amplitudes for these

narrowband surface wave trains are likewise chosen to reflect observed surface

wave RMS heights, 0.15 m for the lower frequency waves and 0.4 m for the higher

frequency waves. Perturbation computations are carried out to 4th order, and

modulations are simulated for a single reflection and also for a series of reflections

where the surface wave phase is randomized for each one. The results show that



90

Eqs. 3.19 and 3.25 can predict quite different sideband levels, as discussed in Sect.

3.6.

3.4 Very shallow water experiment
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Figure 3.8: A spectrogram computed from the ocean surface displacement time se-
ries measured by the pressure sensor deployed on site (leftmost panel). Significant
wave height vs. time (second plot from left), significant frequency vs. time (second
plot from right), and water depth at the acoustic source location vs. time (right-
most plot). The three time segments of focus in this paper occur at approximately
hours 92, 100 and 119.

The data presented in this paper were collected during an experiment con-

ducted in the autumn time period immediately off the coast of Camp Pendleton

Marine Base in southern California. Located between San Diego County and San

Clemente, Camp Pendleton protects tens of miles of uniquely pristine coastline
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from development, and provides an excellent site for study. Over the course of the

experiment, ocean surface wave spectra varied significantly (Figs. 3.1 and 3.8), due

in large part to the distance from the wave-generating systems to the experiment

site and the dispersive nature of ocean surface waves (Eq. 3.2), with longer period

(lower frequency) waves traveling faster. At times during the five days the CW

transmissions were conducted, long period swell from distant systems (“ground

swell”) constituted the only surface wave activity, while larger, more broadband

surface waves with higher peak frequency (“wind swell”) originating from systems

closer to the experiment site contributed at other times. In addition, a period of

overlap when these two types of surface waves (Fig. 3.1) were present simultane-

ously (See Fig. 3.8, hours 85-105, and Fig. 3.1, medium-gray trace).

3.4.1 Acoustic receivers and source

Two acoustic arrays, each consisting of 64 equally spaced hydrophones, were

deployed horizontally on the ocean bottom during the experiment. The spacing

of the elements in the arrays was 1.875 m, and each channel was digitized at 1500

samples/sec. The sampled data were cabled back to shore by fiber-optic cable,

where they were recorded continuously on hard disk and tape. The two arrays

were deployed in approximately 12 m of water 1.5 km offshore, with one parallel

to the beach (the “broadside” array) and the other mostly perpendicular to the

beach (the “endfire” array) (Fig. 3.9).

Over the first few days of the experiment, variable wave and current conditions

resulted in both hydrophone arrays being buried by a thin (less than a few cm)

layer of sand. This layer of sediment proved insufficient to affect the received

acoustic levels significantly, and was beneficial in securing the array into place.

Because of this partial burial, it is believed that the motions of the hydrophones

were zero. Thus, any frequency shift observed in the acoustic spectra can be

confidently attributed to motions of the other than those of the receiving array.

The orientations of the two arrays (Fig. 3.9) offer the opportunity to obtain

direction-of-arrival information for the acoustic field in both the horizontal plane

(azimuthal angle) and the vertical plane. Beamforming in the vertical plane pro-
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vides information about the dominant acoustic modes involved in the propagation

(Figs. 3.5, 3.7), while the horizontal directionality offer insights into the surface

waves’ impact on the out-of-plane scattering (Figs. 3.4, 3.10).

The acoustic source used in this experiment was a J-15 source[Det], deployed in

approximately 9 m deep water, 500 m closer to shore and about 1 km up the coast

from the arrays. Over the course of the experiment, transmissions of 5-minute

duration consisting of 8 narrowband tones were made every half hour (hours 92

and 119) or every hour (hour 100) during the daylight hours. The frequencies of

the tones transmitted were 70, 95, 145, 195, 280, 370, 535 and 695 Hz, though

the noise field was such that lower of these tones were often indistinguishable.

Unlike the hydrophone arrays, the source was moored above the bottom and so

was not buried by shifting sediments. Moreover, the source mooring apparatus

was designed to hold the transducer firmly in place. Its mass and footing were

easily sufficient to keep the source from moving under forces of the surface waves,

and any frequency shifts in the acoustic spectrum therefore are not due to source

motions.

3.4.2 Environmental instrumentation

For measuring the ocean surface waves, a PUV (Pressure and 2 horizontal water

velocity components) sensor was deployed near the source over the course of the

experiment. Additionally, a 4-pressure-sensor system capable of directional surface

wave spectrum measurements was deployed and maintained at the San Clemente

Pier (approximately 40 km up the coast) by the Coastal Data Information Program

(CDIP) at Scripps Institution of Oceanography. These data are freely available on

the CDIP web site, http://cdip.ucsd.edu/. The PUV sensor sampled continuously

for 20 minutes every hour, with a sampling frequency of 2 Hz. The CDIP plat-

form was sampled at 1 Hz continuously, over the total duration of the experiment.

Given that the system was approximately 40 km up the coast from the experiment

site, the CDIP data are primarily used for an estimation of the arrival direction

of the dominant period. The pressure data of the PUV time series are used for

computation of the mean water column height, the tides, and the surface displace-
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ment spectra (Fig. 3.8), while the directionality of the surface waves is obtained

from the CDIP data archives. The horizontal flow velocity components of the PUV

data set are not used. For this study, definitions and methods pertaining to surface

wave data analysis are adapted from CDIP. Significant wave height, for example,

is 4 times the root-mean-square wave height: it is the minimum full wave height (2

times amplitude) of the largest 32% of observed waves. Significant (or dominant)

wave frequency – or equivalently, period – is the frequency at which the maximum

in the surface wave spectrum occurs. This definition allows for the identification

of multiple wave-generating systems in one set of measurements. Significant wave

direction is the direction in which the waves at the peak in the spectrum propa-

gate. CDIP’s online analysis does not provide identification of multiple significant

wave frequencies or directions.

Conductivity, temperature and depth (CTD) profiles were taken during the

experiment, and are used for characterizing the water column sound speed profile.

Geoacoustic properties at the experiment site were derived by McArthur[McA02].

The waveguide consists of a roughly iso-speed water duct (c = 1510 m s−1), with

a thin (∼1 m) sediment bottom (cs = 1575 m s−1, αs = 0.9 dB λ−1) overlying a

hard basement (cb = 1680 m s−1, αb = 0.3 dB λ−1) [McA02].

3.5 Measurement results

In the experimental data set, the arrangement of the hydrophones (Fig. 3.9) al-

lows for high resolution beamforming in both the vertical (using the end-fire array’s

aperture) and horizontal (using the broadside array’s aperture) angles especially

given the large, two-dimensional spatial aperture. In addition, the large number of

hydrophone elements provides a large number of degrees of freedom in computing

incoherently averaged spectra. Relating these ocean acoustic spectra to surface

wave activity is made possible by the presence of both the onsite pressure sensor,

and data from CDIP. Precise, fixed positioning of the instrumentation and prior,

in-depth study of the local propagation characteristics[McA02] are also crucial to

be able to perform this study. In this section results from the analyses of these
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data are presented.

3.5.1 Omnidirectional spectra

Omnidirectional acoustic spectra are estimated from 50%-overlapping temporal

snapshots spanning one complete 5-minute transmission, and then incoherently av-

eraged over most of the elements of one of the two acoustic arrays (approximately

60 elements). One remarkable feature of the acoustic data can be seen when the

spectrum is computed using long (217 points, δf ∼ .01 Hz) Fast Fourier Transforms

(FFT’s). Comparison of the omni-directional acoustic pressure spectra for 3 time

periods during the experiment with dramatically different surface wave conditions

(Fig. 3.1) indicates a complicated dependence of the spectral distortion on sig-

nificant wave height and spectral content of the surface waves (Figs. 3.2, 3.3 and

3.11).

The first noticeable features of incoherently averaged, long FFT’s of the acous-

tic recordings (Figs. 3.2 and 3.3) are sidebands that occur at frequencies f◦ ± fs,

the sum-and-difference frequencies of the acoustic carrier frequency f◦ and the

dominant surface wave frequency fs. The levels of these first sidebands show clear

dependence on acoustic carrier frequency, with higher frequencies exhibiting higher

sideband levels. This dependence, which is visible throughout the experiment and

is true at all frequencies, is consistent with first-order perturbation through the

expansion parameter kh (Eq. 3.21, k = ω/c) and the simplified phase modulation

model through the argument β (Eq. 3.20). To a lesser extent, the levels of these

first sidebands also show dependence on surface wave height, which is most pro-

nounced comparing the received spectra at 145 Hz and 280 Hz (light and medium

gray traces, respectively) in the Figs. 3.2 (Hs = 1.01 m), 3.3 (Hs = .58 m) and

3.11 (Hs = .72 m). The sidebands’ location in frequency and level dependences

on acoustic frequency and surface wave height are consistent with first-order per-

turbational scattering (Eq. 3.25) and the simplified phase modulation model (Eq.

3.20 and Fig. 3.6).

Even more curious than the behavior of the first sideband in acoustic frequency

redistribution is the regular, harmonic-like spacing of multiple spectral sidebands
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at frequency intervals equal to the dominant surface wave frequency. Arrows not-

ing integer multiples of the dominant surface wave frequency fs centered about

the acoustic carrier frequency align quite well with sidebands in the spectra (Figs.

3.2, 3.3, and 3.11). This spectral structure suggests phase modulation, such as

that in Eq. 3.14, or higher order perturbation, as in Eq. 3.25, of the initial nar-

rowband signal, especially where multiple interactions of the acoustic signal with

the moving surface have occurred. Both higher order scattering and the simplified

phase modulation model are non-linear with respect to the surface deviations (see

Section 3.3).

The higher order sidebands do not behave as predictably in the variety of ocean

surface wave conditions as the first sidebands do. Though the surface waves were

smaller in amplitude during the period near the end of the experiment (Fig. 3.8),

the sidebands are easily discerned at multiples of the surface wave peak frequency,

in part due to lack of noise contamination (Fig. 3.3). It is striking that the higher

order sidebands are at least as high in level when the surface waves – and therefore

the expansion parameter kh – are small amplitude and low frequency as when the

waves are larger amplitude and more broadband with higher peak frequency. At

hour 119 (Fig. 3.3), kh is approximately 0.4 at an acoustic frequency of 695 Hz.

If higher order scattering with only a single surface interaction leads to the 2nd,

3rd and higher ordered sidebands, it would be expected that the sidebands would

fall off faster in the smaller surface wave conditions than in conditions where kh

is larger, such as in Fig. 3.2. While similar decrease in level can be expected for

sidebands arising from scattering involving a single surface incidence (Eq. 3.19), if

coherence exists between reflections along a ray path, then the phase modulation

by surface waves could be additive. Such a cumulative phase deviation would lead

to raised levels of the higher order sidebands.

Further examination of the results in Figure 3.11 reveals additional interest-

ing aspects of the received acoustic field’s dependence on the ocean surface waves.

Spectra of received narrowband acoustic tones can become quite complicated when

more than one frequency of surface wave is significant (Eq. 3.16). Sidebands occur

at integer multiples of each of the dominant surface wave frequencies, as well as at



96

other frequencies that may be integer combinations of these frequencies. Higher-

order scattering also can lead to such a complicated received acoustic spectrum

as shown in Fig. 3.11 through the convolution of the transmitted acoustic spec-

trum with the Fourier Transform of the nth power of the surface deviations (Eq.

3.25). Equation 3.19 predicts the occurrence of sidebands at every integer multiple

combination of frequencies in the surface wave field when the surface wave field is

written as a Fourier sum, for example if amplitudes Sn and phases γn in Eq. 3.17

are specified in terms of the measured surface wave spectrum.

One final outstanding feature of Fig. 3.11 is the first sidebands’ levels relative to

the center peak at the transmitted frequency. At this time during the experiment

(approximately hour 100, Fig. 3.8), the first acoustic sidebands at 695 Hz reach

levels approaching that of the un-shifted, center frequency bin. It is worth noting

that, over the range of argument β of the Bessel functions that pertains to the

conditions of this experiment (Fig. 3.6), a value of β exists at which the 0th and

1st Bessel functions J0(β) and J1(β) are equal. Under these conditions, which

can be created by the right combination of acoustic carrier frequency, surface

wave amplitude and frequency, and number of phase-coherent interactions (Eq.

3.20), the first sidebands will be the same amplitude as the center peak. If, in

Fig. 3.11, these conditions have been approached, the negatively shifted side-

band’s level within 2 dB of the center peak would suggest β is approximately

1.5. Alternatively, this high-level sideband could be in part due to the presence of

surface waves with more than one dominant frequency, as could happen with two

independent ocean surface wave systems present. In this case, sidebands would

occur at integer multiples of each of the dominant surface wave frequencies, as well

as at other frequencies that may be integer combinations of these frequencies (Eq.

3.19). Thus, the high sideband during the time when multiple surface wave systems

were present could be the coincidence of multiple sidebands whose locations in the

spectrum are too close to discern given the limits of temporal frequency resolution,

as shown by the roses, diamonds and arrows in Fig. 3.11.
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3.5.2 Beamformer output

While omnidirectional data processing is a powerful method for investigating

the influence of surface gravity waves on received acoustic tones, it has the obvious

shortfall that it discards any directional information. Narrowband beamforming,

including over a range of frequencies centered on those of the transmitted tones,

of the acoustic array data reveal additional important physics of spectral distor-

tion of narrowband acoustic tones by surface gravity waves. The beamforming

algorithm used is the white-noise-constrained algorithm, which is a data-adaptive

technique[CZO87]. In order to guarantee stability in the adaptive beamformer

algorithm, at least as many snapshots as there are hydrophones must be used to

compute the covariance matrices – these matrices must be full rank. The con-

straint was set to a value of 3 dB below ten times the logarithm (base ten) of the

number of array elements. To achieve the spatial aperture required to resolve the

directional differences of various arrivals of sometimes less than 1 degree, nearly

the entire hydrophone array was employed for computing the directional spectrum.

Thus, in order to maintain sufficient temporal resolution of the beamformer (FFT

length = 215 points) to discern surface wave frequencies, consecutive 5-minute data

recording periods were spliced together when conditions remained stationary.

A search through vertical angle of arrival using the endfire array indicates that

lower mode numbers (small grazing angle rays), while present, do not represent a

majority of the incident acoustic energy (Fig. 3.7). Rather, near-horizontal energy

conspicuously absent in the measured data the received spectrum is dominated by

steeper angled arrivals that interact more often with a heaving reflective surface.

A steeper grazing angle at the ocean surface will result in a greater Doppler shift

of the propagating signal by the surface waves. In terms of the simplified phase

modulation model, an increase in surface interaction angle will increase β (Eq.

3.20), which will increase sideband levels in general if β is small (β < 2, see Fig.

3.6). In terms of perturbational scattering, a steeper interaction with the surface

increases kz in Eq. 3.25, and in general all sideband levels will increase. Figures 3.4

and 3.10 show the results for the horizontal beamfomer output at 280 Hz for two

different times in the experiment, hours 92 (Fig. 3.4 and 119 (Fig. 3.10). Plane
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wave beamformer output from the broadside array as a function of azimuthal angle

(vertical angle is fixed at 15◦ above the horizontal) at each of the 8 transmitted

frequencies shows a strong arrival originating from the known direction of the

moored source (approximately 20◦ E from true North, Fig. 3.9).

Horizontal angle beamformer output as a function of both azimuthal angle and

acoustic frequency also shows sidebands that are offset asymmetrically in direction

of arrival relative to the observed signal peak corresponding to the acoustic source,

but they are symmetrical about the center frequency, thus indicating Doppler

shifting by Bragg scattering of the surface waves. In the beamformer output for

the data recorded at hour 92, when a large ocean wind-wave event was occurring,

the Bragg-scattered sidebands are easily deciphered for most of the 8 transmitted

frequencies (poor signal-to-noise ratio at 70 Hz rendered identification of sidebands

impossible), and computed directions of ocean wave propagation (69.5◦ true North

propagation, or 249.5◦ origination) according to Eq. 3.3 are consistent with the

direction of the peak frequency waves as measured by the CDIP sensor system

(Fig. 3.4). The Doppler-shifted side lobes in Fig. 3.4 are clear evidence of first

order scattering (Eq. 3.25) and the Bragg condition (Eq. 3.1).

The weaker, longer period surface waves at hour 119 did not lead to such

easily identifiable features in the directional spectrum (Fig. 3.10). The lack of

scattered sidebands in the beamformer output later in the experiment could be

the result of the longer period (lower frequency) of the ocean waves, which would

require longer FFT’s to resolve small frequency deviations, and therefore longer

time series to achieve good statistics. Horizontal beamforming was performed such

that frequency of the longer period swell lies at the limit of the temporal frequency

resolution of the directional spectra in Figs. 3.4 and 3.10. Ocean wave and tidal

conditions proved too variable to allow more consecutive acoustic recordings to be

combined to allow for longer FFT’s that would yield the desirable level of temporal

frequency resolution.

A calculation of the scattering parameter kh using values reflecting the condi-

tions measured at hour 119 during the experiment offers another explanation for

the lack of two identifiable sidebands in Fig. 3.10, that less scattering may have
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occurred at 280 Hz than observed earlier in the experiment. That is, the surface

wave spectrum computed during this time shows a peak frequency of 0.07 Hz,

with a significant wave height of 0.58 m, and the concurrent spectrum measured

by CDIP placed the origin of this swell at 231◦. With an RMS wave height of about

15 cm, kh was 0.18 at acoustic frequency 280 Hz and 0.4 at acoustic frequency 695

Hz. Scattering at this time was much weaker than earlier in the experiment when

the data in Fig. 3.4 were recorded, when kh was 0.3 and 0.7 at 280 and 695 Hz,

respectively.

Considerable evidence exists that Bragg scattering contributes to the data in

Fig. 3.4, and first order scattering approximations do well to explain these obser-

vations. However, other results (Fig. 3.3) are not fully explained by first order

scattering, nor higher order scattering where only a single incidence of the acous-

tic signal on the rough surface is involved. While it is clear from all these results

that a scattering mechanism that is non-linear with respect to the surface waves

contributes to the received acoustic spectra, understanding the behavior of this

mechanism in a variety of surface wave conditions is in general very difficult, and

would require at the very least very long acoustic recordings in sustained conditions

supporting the assumption of ergodicity. Additional insights come from compar-

ing these measured results to those of numerical models based on the previously

mathematical constructs, as presented in the next section.

3.6 Modeling results

Numerical models are employed in an effort to better understand the physics

giving rise to multiple sidebands in the received acoustic spectra that are clearly

related to the ocean surface waves, particularly for any mechanisms in which the

relationship between the ocean surface wave field and the underwater acoustic

field is non-linear in nature. Figures 3.12, 3.13 and 3.14 show predictions from a

computational model prescribed by Eq. 3.19, using surface wave spectra recorded

by the PUV sensor (Fig. 3.1) to determine the values of βn,k. The predictions of

this model prescribed exhibit several features consistent with the experiment data
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shown in Figs. 3.2, 3.3 and 3.11. First, the modeled results show the presence

of sidebands offset from acoustic center frequencies f◦ centered at the significant

wave frequency ±fs, as measured by the on-site PUV sensor. Second, especially

with larger ocean waves, multiple side-bands spaced integer multiples of fs from

the center frequency (Figs. 3.12 and 3.14) are predicted by the model, as seen

in the data. All sideband amplitudes exhibit a dependence on acoustic frequency,

with higher carrier frequency giving rise to higher sideband amplitudes. Third, the

peaks observed in both the data and the model are symmetric in level about the

center frequency. The model of phase modulation in Sect.3.3.2 results in symmetric

sidebands, regardless of the propagation environment, whereas Bragg scattering

can result in asymmetry in frequency spreading, due to blockage of one of the

scattering surface patches by land, for example [LS04]. Results from the simplified

modulation model presented in Sect. 3.3.2 (Figs. 3.12, 3.13 and 3.14), when

employed as a sum of pressure ray contributions as in Eq. 3.19 and using ray

paths computed using CASS/GRAB[WK96] combined with amplitudes inferred

from measured vertical angle of arrival structure (Fig. 3.7), reproduce several

features seen in the data recorded throughout the experiment (Figs. 3.2, 3.3 and

3.11).

Although many features of the data are reproduced by the model, there are

some differences, as well. Direct comparison of the results of the phase modulated

model summed over the computed ray paths to the measured acoustic spectra

shows that the modeled Doppler shifted sidebands’ amplitudes are too small. Ex-

amination of sideband patterns of the model for individual ray paths lends insight

to this discrepancy. Figures 3.15 and 3.16 show the contribution to the total field

for the four most dominant arrivals for hours 92 and 119, respectively. These

results suggest that the sideband amplitude discrepancy between model and mea-

surement can largely be attributed to lack of coherence in the sidebands. That

is, because of the randomization in the phase modulation model, the sidebands

are not reinforced in the summation over ray paths the way the non-randomized,

center peak in frequency is.

When the modeled modulated spectrum associated with each individual arrival
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is examined, it is easily seen that the steeper-angled (with respect to horizontal)

eigenrays result in higher level sidebands, especially for the higher orders of side-

band (Figs. 3.15 and 3.16). More direct incidence on the heaving surface by the

acoustic wave results in a larger value of β, the argument of the Bessel functions

describing the spectrum of the phase-modulated signal (Eq. 3.16), in Eqs. 3.14

and 3.16. In Fig. 3.15, the direct and single-surface bounce paths contribute little

to the observed side-bands due to their low (or non-existent) surface grazing angle

and low number of reflections. In contrast, the paths that bounce 7 times or more

start to yield the multiple harmonic-like sidebands containing surface wave infor-

mation, with peaks spaced at integer-multiples of the significant ocean surface wave

frequency. Also at the steeper angles and at higher acoustic carrier frequencies the

3rd and 4th sidebands begin to blur, becoming noticeably more broadband than the

surface wave spectrum due to the sum-and-difference frequency terms (Eq. 3.16).

In Fig. 3.16, it is clear that smaller surface waves result in lower level sidebands,

which can also be expected from Bragg scattering and first order perturbation.

A higher order surface scattering model (Eq. 3.25) produces omnidirectional

acoustic spectra identical to those of the phase modulation model when each is

implemented with the same, narrowband surface waves with frequencies and am-

plitudes comparable to those observed during the experiment. Phase modulation,

as described in 3.3.2, does not involve any redirection of the sound wave, and dis-

torts the frequency spectrum of the received signal through time dependence of the

acoustic propagation path. Scattering by a rough, moving surface can also lead to

redistribution of narrrow-band acoustic tones (Eq. 3.25), including harmonic-like

sidebands in measured spectra, and its performance against the above modulation

model warrants testing. The conditions for which these models are run are outlined

at the end of Sect. 3.3.4. Acoustic waves are incident on the mean surface at an

angle of 15◦ for all these test cases. Higher order scattering (to 4th order) predicts

exactly the same results as the modulation model for a single reflection for 2 sets of

simplified conditions mimicking those measured during the experiment (Fig. 3.17).

While the treatment uses plane wave propagation, much like the treatment given

by Pourkaviani and Willemsen[PW91], similar spectral predictions arise from the
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approach by Harper and Labianca[HL75a], where the source/receiver configuration

are included explicitly.

Modeling the received field and allowing the acoustic field to interact multiple

times with the rough moving surface in the modualation model causes the falloff

of the sidebands to deviate quickly from the behavior the higher order perturbed

field with only a single interaction (Fig. 3.17). The distance between the source

and receiver during the shallow water experiment was approximately 30 times the

horizontal length of one complete bottom-surface-bottom ray path segment for an

eigenray whose angle of incidence with the mean surface is ∼ 15◦ (Fig. 3.5). With

the phase of the surface waves randomized at each interaction, the argument β of

the Bessel functions is realistic, and the sideband levels begin to overtake those

predicted by higher order perturbation in terms of relative sideband amplitude. If

the phase deviations remain coherent from reflection to reflection for one particular

ray path in the phase modulation model, then the value of β for that ray path

would increase considerably, and the total received signal would contain higher

order sidebands accordingly. The similarity of predictions of the higher order

perturbation and simplified phase modulation model, along with the observation

that, when the acoustic field interacts with the moving surface multiple times in the

phase modulation model the sidebands’ levels increase accordingly, suggest that

the simplified phase modulation model developed in Sect. 3.3.2 can be useful for

predicting features of received narrowband acoustic tones in an environment where

the acoustic field will interact multiple times with the rough, moving surface. It is

important to remember in each of these models that the total received signal will

be the sum of several arrivals, depending on the acoustic waveguide.

3.7 Discussion

Both the phase modulation model presented in Sect. 3.3.2 and the scattering

models formulated by previous authors (and summarized in Sect. 3.3.3 represent

intuitive ways to explain the observed character of spectral broadening that exceeds

the measured surface wave spectrum. The phase modulation model presented here
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bears similarity in its approach to Rosenberg’s[Ros99] method using a modified

parabolic equation solver, in that they both step through series of frozen surface

approximations in order to simulate surface deviation time dependence, though

the work here is based on a ray-based propagation model. Accordingly, both

these approaches similarly reproduce harmonic-like, Doppler-shifted sidebands as

observed in received spectra of narrowband acoustic tones propagating through

shallow waveguides with surface waves. It is believed here that these two models

illustrate the physics of phase modulation through path length time dependence.

It is not surprising that higher order plane wave scattering (Eq. 3.25) and

travel time modulation (Eq. 3.19) yield identical omnidirectional spectra for the

cases tested here when the following is considered: for monochromatic acoustic

plane waves scattered from a frozen, monochromatic surface (kh sin θ ≪ 1), the

scattered acoustic field is spatially phase-modulated. For a perfectly sinusoidal

surface then, amplitudes of the scattered wave fronts can be expected to take a

form similar to the sideband amplitudes in Eq. 3.14. Thus, when linear dispersion

of ocean surface waves (Eq. 3.2) and time dependence are submitted in this simple

test case, the omnidirectional spectrum, which will include plane waves at all

spatially scattered angles, will be identical to that of a signal whose phase is

modulated temporally as in Eq. 3.19. The obvious difference between these two

models then is that, whereas spatial scattering predicts Doppler shift only in the

non-specular contributions to the total pressure field, temporal phase modulation

predicts no redirection of acoustic energy in space. So while the simplified phase

modulation model is useful for replicating many of the features observed in the

received narrowband acoustic field, it clearly does not capture all of the physics of

higher order scattering.

While the phase modulation model outlined in Sect. 3.3.2 has been used with

some success in reproducing some features of observed spectra (e.g. Figs. 3.2 and

3.12), the implementation here is quite basic, and there are several possible modi-

fications that could render it more accurate and efficient. The results in Fig. 3.17

demonstrate that phase modulation due to multiple surface interactions gives rise

to significant frequency-shifted sidebands in the received spectrum, despite ran-
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domization of phase of the surface wave at each surface reflection site. The results

in Fig. 3.17 (gray dashed trace) were computed as an ensemble average. The phase

modulation model described in Sect. 3.3.2 might be implemented in ways other

than the ray-based approach presented here. A normal mode-based model, which

allows for acoustic full wave field effects to be included, rather than the ray-based

approach used here, might be used, where compression and elongation of eigenrays

(Eq. 3.8) translates to time-dependent fluctuations of the horizontal eigennum-

ber associated with the normal modes. This modification would be an extension

to a perturbational approach such one following Harper and Labianca[HL75a],

thereby incorporating both scattering and reflecting mechanisms into the surface

wave Doppler shifted acoustic field. However, the ray-based approach has the ad-

vantage of providing a simple, intuitive picture of the propagation of an acoustic

wavetrain through a changing ocean waveguide. Difficulties arise in any of these

modeling approaches for waves that are sufficiently large to introduce caustics, as

seen by Preisig and Deane [PD04] and Tindle and Deane [TD05].

Since the Doppler shift is a velocity-dependent phenomenon, it is somewhat

surprising not to see some functional dependence on surface wave frequency in the

formulation for the amplitude parameter β (Eq. 3.20), given that linear surface

wave orbital velocities are a function of surface wave amplitude and frequency.

Since higher frequency waves result in higher velocity amplitudes of the harmonic

motions at the surface, one could expect a larger frequency shift, or a broader

frequency smearing from a higher frequency wave than a lower frequency wave,

if the two wave components are of the same amplitude in height. Had shorter

FFT’s been used to compute the acoustic spectra, the low-frequency surface waves

would not be resolved from the narrow peak of the carrier frequency. In effect,

a frequency “smearing” would be observed. So the redistribution of the received

tone’s energy into sidebands is consistent in that the larger separation of the well

resolved, high frequency surface wave in the modulated acoustic spectrum would

result in a broader convolved main peak, especially since large surface waves (higher

amplitude modulation) lead to higher levels in the higher order sidebands. These

traits arise from the formulations of harmonic surface waves’ influence on received
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acoustic tones – the phenomena here differ from the Doppler shift arising from a

ship-towed source in the functional formulation of the motions, as well as the data

processing treatment.

On a final note, the waveguide in this study is modeled as iso-speed, in ac-

cordance with CTD measurements (see Sect. 3.4). In general, the propagation

environment has a large influence on the measure of phase modulation’s effect on

the received signal. In a downward refracting environment, for example, the angles

of incidence of those rays interacting with the surface would be shallower, which

would result in a smaller value of β, and would likely bring it into a range where

the first several Bessel functions are quite small. Some rays may not interact with

the surface at all, if the vertical sound speed gradient is sufficiently large. In effect,

downward refraction would decrease the impact of phase modulation by reflection

off the wavy surface. However, from Eqs. 3.9 and 3.11, it is possible for ocean

surface waves (or other time-dependent currents) to induce a Doppler shift on a

propagating acoustic signal without any interaction with the upper boundary or

any other scattering or reflecting. Time dependence of the flow of the medium

(and therefore the effective sound speed) results in a non-zero O( 1
c2

) term in the

definition of temporal frequency (Eq. 3.11). Thus, if eigenray endpoints s1 and

s2 are stationary (in this work, if no surface wave exists, or no interaction with

the surface, and source and receivers remain stationary), then the
ds(1,2)

dt
terms in

Eq. 3.11 are zero, but time-varying motions of the medium along the path (∂vvv
∂t

in

Eq. 3.10) still result in a temporal phase-dependence, i.e. a frequency shift. Since

this effect is second order with respect to the slowness c−1
snd (Eq. 3.11), the result

will be approximately 32 dB below any other motion effects (for a sound speed of

1500 m s−1), and so it has been neglected here. It could however prove relevant for

deep water, where no interaction with the heaving, pressure-release surface occurs,

but where signals propagate for hundreds or thousands of kilometers through a dy-

namic medium, or with atmospheric studies, where the ratio of the magnitude of

flow velocity to sound speed (the Mach number) can be much larger. A laboratory

setting where source and receiver configuration could be more easily manipulated

would be quite useful for investigating the ideas explored in this paper, particularly
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with respect to distinguishing the Doppler shift in the scattered and non-scattered

field contributions, and with respect to volumetric phase distortions caused by

time-dependent flows such as surface gravity waves.

3.8 Conclusions

Measurements of acoustic tones transmitted through a waveguide with a rough,

moving surface show clear evidence of Bragg-scattered, Doppler-shifted sidebands

as predicted by first order perturbational theory. Surface waves are also seen to

lead to higher order sidebands in received spectra of narrowband acoustic tones.

While higher order perturbation theory can predict such sidebands, the prevailing

surface wave conditions and measured directional spectra suggest that multiple

interactions of the acoustic field with the moving surface are also an important part

of the distortion mechanism. Phase modulation by specular reflection off a heaving,

pressure-release boundary is explored as a simplification of this mechanism, and

implemented as a model to explain these measurements. This model shows good

agreement with the measured data. The phase modulation model is compared

to a development of higher order perturbation theory, and it is found that they

agree identically for a simple test case. Phase modulation then helps explain

the observations in smaller surface wave conditions, where scattering by a rough

surface is less prevalent, and multiple interactions with the surface likely play a

much larger role in the distortion of the propagating signals.

This chapter was submitted for publication in the Journal of the Acoustical

Society of America in July 2008. The title of the submitted manuscript is “Tem-

poral variability of narrowband tones in a very shallow coastal waveguide”, and

the authors are Stephen D. Lynch, Gerald L. D’Spain and Michael J. Buckingham.
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Figure 3.9: The coast at Camp Pendleton where the experiment (marked by
the small circle) was conducted. The “broadside” (.) and “endfire” (+) arrays
(sparsely illustrated) were deployed nearly orthogonal to each other on the sea
bottom just outside the surf zone. The San Clemente Pier, where the directional
surface wave measurement network maintained by the Coastal Data Information
Program was located, is just off the upper left edge of the photograph.
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Figure 3.10: Azimuthal dependence of Doppler-shifted acoustic spectrum suggest-
ing Bragg scattering at 280 Hz. The directional spectra (dB) are computed using
data from the broadside array, and are normalized to the peak located in the
direction of the source.
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Figure 3.11: Omnidirectional acoustic spectrum measured while two distinct ocean
surface wave systems (Hs = 0.7m) were present. Arrows and diamonds show lo-
cations of the individual peak frequencies along the frequency displacement (hori-
zontal) axis, and roses indicate the sum and difference frequencies centered about
the carrier frequencies of the CW transmissions.
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Figure 3.12: Results of the path length modulation model, using the surface waves
recorded at hour 92 dominated by wind swell (Fig. 3.1, light gray trace) as the
modulating function and a multi-path acoustic environment based on the experi-
ment setting.
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Figure 3.13: Results of the path length modulation model, using the surface waves
recorded at hour 119 with only groundswell present (Fig. 3.1, black trace) as the
modulating function and a multi-path acoustic environment based on the experi-
ment setting.
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Figure 3.14: Results of the path length modulation model, using the surface waves
recorded at hour 100 with both wind swell and groundswell present (Fig. 3.1,
medium-gray trace) and a multi-path acoustic environment based on the experi-
ment setting.
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Figure 3.15: Modeled modulation results for individual eigenrays using the surface
wave spectrum at hour 92 during the experiment.
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Figure 3.16: Modeled modulation results for individual eigenrays using the surface
wave spectrum at hour 119 during the experiment.
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Chapter 4

Conclusions

Measurement of low-frequency, narrowband acoustic tones propagating through

a shallow ocean waveguide show strong dependence on the prevailing surface wave

conditions. Examination of the Doppler-shifted Bragg scattering in the vertical

plane connecting the source and receiving array clearly illustrates acoustic mode-

dependence of the scattered field. Angle and frequency deviations of the scattered

acoustic arrivals depend on all spectral and directional components of the measured

directional surface wave spectrum. Predictions of angles of arrival for scattered

acoustic modes given a directional surface wave spectrum from a physics-based

model agree well with measurements.

Evidence of Doppler-shifted Bragg scattering also is seen in the horizontal

plane, with angle and frequency deviations corresponding to those predicted by

first-order perturbation theory, given the measured directional surface wave field.

The frequency offsets, and measured angles of arrival of these azimuthally scat-

tered sidebands agree with predictions from perturbation theory. In addition, when

omnidirectional spectra are examined carefully, higher-order, Doppler-shifted side-

bands are observed, indicating higher order scattering. However, higher order side-

bands persisted at times when the ocean surface waves weakened, contradicting

predictions of higher order perturbation theory with a single surface interaction.

Thus, multiple interactions with the rough moving surface are shown to have a

strong influence on the received acoustic field, resulting in higher order sidebands

in omnidirectional spectra. A simplification of higher order scattering with multi-

116
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ple surface interactions agrees well with measured omnidirectional spectra.

The studies in this thesis quantitatively compare experimental observations

with model predictions of spatial and temporal frequency deviations caused by

acoustic interaction with a rough moving ocean surface. The results are presented

in a manner that coincides with the 2-dimensional numerical and theoretical ap-

proaches that appear in the literature, while also showcasing the effect of multi-

path acoustic interaction with an ocean surface wave field that is diverse in both

frequency and directional content. The data results presented herein show clear

and remarkable dependence of received acoustic spectra on surface wave condi-

tions. Possibilities are opened to allow for the inversion of surface wave conditions,

including the directional spectrum, from low frequency acoustic measurements.

4.1 Future work

In the development of this work several topics arose that warrant considerable

attention and effort but that did not fit within the scope of this study. During

the effort to model narrowband vertical beamformer output, the question of mode

correlation arises. In an ideal multi-path environment, individual modes remain

correlated, since they are all created by the same source. However, this is not

what is observed in this study. Thus, in order to model the mutlipath, a model

covariance matrix is computed as the sum of individual covariance matrices cor-

responding to the individual modes, such that the rank of the covariance matrix

is equal to the number of modes (before noise is added). This practice is often

employed in beamforming simulations involving source(s) and uncorrelated inter-

ferers. An interesting area to pursue would then be an investigation, supported by

oceanographic and acoustic data, of the dependence of mode correlation on various

ocean parameters.

When confidence intervals are assigned to an estimate from measured quan-

tities, assumptions are often implicitly made about the nature of the data be-

ing recorded and analyzed, and about the underlying processes sampled in those

recordings. For example, when acoustic spectral estimates are computed, it is
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most often assumed that the spectral density is a χ2-distributed random variable,

and the variance of the estimate of that quantity will depend on the number of

degrees of freedom. However, given the strong influence of ocean surface waves on

received spectra of narrowband acoustic tones, it may be also that the statistics of

the resulting spectrum deviate from the assumed Gaussian distribution. In fact,

in this study, it was observed that the variance of the Doppler-shifted sidebands

of the received narrowband tones, when computed numerically from individual the

contributions to the incoherently averaged spectra, exhibited strong dependence

on the prevailing ocean surface waves. An investigation into the dependence of the

statistics of spectral estimation on oceanographic conditions would be a worthwhile

pursuit.

While this study has served to strengthen the connection between observed

phenomena in the ocean and numerical and theoretical predictions in acoustical

interaction with a rough, moving surface, there is still much more to be investi-

gated, for which new experiments may be necessary. Especially in shallow water

environments where a propagating field interacts with the surface extensively, it is

not clear what higher order effects multiple interactions of an acoustic field with a

rough moving surface may have on the directional character of the received acoustic

field. Also, it may not always be clear when higher order perturbation theory alone

will suffice to describe the received acoustic field, particularly when the effects of

multiple interactions on higher order pertrubation theory predictions are included.

While this work has made progress in identifying these situations, primarily by

developing and testing new modeling approaches with real ocean data, some of

the aspects of the waveguide environment that create this type of higher sideband

variability in the received field still must be studied before these phenomena can be

quantitatively and reliably predicted. An experiment similar to the 1996 shallow

water experiment previously discussed, but with some key additions, would be an

excellent platform for pursuing these questions further. Use of hydrophone arrays

with broad aperture in two spatial dimensions would be a necessary component in

further study. However, one important way in which a future study should differ

would be to record the data on the arrays using a single computer, or otherwise
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sample all hydrophone elements simultaneously. In order to help distinguish higher

order scattering from multiple interactions with the rough surface, a decomposi-

tion of the measured acoustic field into frequency and 3-dimensional wavenumber

vector space would lend insight into the differences between these two effects, and

a hydrophone array that has large spatial aperture in two dimensions and whose

data are recorded simultaneously everywhere will greatly facilitate endeavor.

Additionally, in order to distinguish higher order perturbation with a single

interaction from multiple interactions of the propagating acoustic field with the

rough, moving ocean surface, further ocean surface wave measurements will be of

central importance. Because of the apparent dependence of the relative impor-

tance of these effects on the received acoustic field on the spatial coherence of the

surface roughness, multiple measurements of the directional surface wave field in

the vicinity of the acoustic source and hydrophones will be necessary for further

understanding of the phenomena observed in this study and discussed in Chapter

3. While the type of measurements offered by a PADS system (Chapter 1) over

the entire experiment vicinity would be ideal, such dense coverage on the spatial

scales (∼ 1 km) an ocean experiment would require is far from practical. However,

a PUV sensor located both near the acoustic source and hydrophone arrays would

be an improvement, and any additional such measurements in the area would only

further enhance the investigation.

It was also observed in the course of this study that ocean conditions changed

rapidly enough that 5-minute recordings that were more than an hour apart could

not be used together in data processing, and it is for this reason that temporal res-

olution was sacrificed for spatial resolution – the assumption of ergodicity was not

valid in these cases. Thus, another important difference between the 1996 experi-

ment and one implemented for future study should be transmission of narrowband

tones for longer durations, or continuously throughout the period of study. Con-

tinuous transmission of narrowband tones would allow for data processing that is

truly high resolution and smooth in time, without worry of algorithm instabilities,

and indeed the dependence of received, scattered and non-scattered acoustic fields

on ocean conditions can be observed as those conditions evolve.
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