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Abstract

A fourth-order accurate finite-volume method is presented for solving time-

dependent hyperbolic systems of conservation laws on mapped grids that are

adaptively refined in space and time. Novel considerations for formulating the

semi-discrete system of equations in computational space are combined with de-

tailed mechanisms for accommodating the adapting grids. These considerations

ensure that conservation is maintained and that the divergence of a constant

vector field is always zero (freestream-preservation property). The solution in

time is advanced with a fourth-order Runge-Kutta method. A series of tests

verifies that the expected accuracy is achieved in smooth flows and the solution

of a Mach reflection problem demonstrates the effectiveness of the algorithm in

resolving strong discontinuities.
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1. Introduction

The algorithm described herein for solving time-dependent hyperbolic sys-

tems of conservation laws features three main elements: mapped grids, a fourth-

order finite-volume method, and an adaptive-mesh-refinement (AMR) scheme.

Challenges arise from the integration of the three elements. Specifically, some

care is required to ensure the solution maintains three properties: freestream-

preservation, conservation, and fourth-order accuracy in smooth regions. Ac-

cordingly, novel strategies are designed, implemented, and verified. In this sec-

tion, the rationale for the core elements is summarized along with an explanation

for the complexity of the algorithm.

The addition of the metric terms can introduce subtle difficulties. For ex-

ample, a constant solution in physical space may appear with gradients when

mapped to computational space. Therefore, it is important to design methods

that guarantee freestream preservation, a property that ensures a uniform flow

is not affected by the choice of mapping and discretization. Colella et al. [1] have

developed a high-order method that retains the freestream preservation property

at any order of accuracy on mapped grids. In this work, we merge the fourth-

order AMR work of McCorquodale and Colella [2] for Cartesian grids with the

freestream-preserving technology on mapped grids of Colella et al. [1] to achieve

a fourth-order, freestream-preserving, finite-volume method on mapped grids

with AMR. To maintain conserved quantities as the grid levels appear, disap-

pear, and migrate within the computational domain following solution features,

we adopt the procedure described by Bell et al. [3]. In that procedure, spe-

cial adjustments precede a modification of the grid hierarchy to ensure that the

transfer of solution information between grid levels is conservative. The combi-

nation of mapped grids with AMR requires additional treatment, discussed in

Section 5, to ensure the freestream-preservation property.

The resulting algorithm is somewhat complex and results from a desire

to support non-analytic mappings and maintain high performance. Logistics

related to maintaining conservation and freestream-preservation in regions of

2



AMR can be avoided if the mapping is analytic or if metric terms are calcu-

lated at the finest resolution everywhere in the domain. If metric terms can

be evaluated exactly for an analytic mapping, the need for the considerations

we employ to maintain conservation and freestream preservation is obviated. If

performance is not of concern, one can evaluate all the metrics on the finest

grid everywhere in the domain and average the result, in a consistent manner,

to any coarser grid. Again, the need for special treatment is obviated. How-

ever, doing so undermines the whole point of AMR, that we cannot tolerate the

memory or expense of the fine-grid calculations everywhere in the domain. This

work applies to cases where these shortcuts cannot be taken: the metrics may

only be known to some degree of accuracy (ideally at least fourth-order) and

fine-grid calculations are only applied where strictly necessary. Versus a second-

order accurate algorithm, accommodating the differences in grid metrics, due

to changing grid resolutions, imposes additional difficulty. At second-order ac-

curacy, the geometry can be treated as piecewise linear elements; changes in

geometry induced by changes in grid resolution are therefore more easily under-

stood. At fourth-order accuracy, maintaining consistency between grid levels

requires the more rigorous algorithm defined herein and changes in geometry

are instead understood by a volume-flux.

The methods devised for accommodating the mapped AMR grid follow the

philosophy of finite-volume methods—especially the notion of a volume flux—

and the same is used for solving the flow equations. Finite-volume methods are

well suited for problems with discontinuities because the resulting discretization

satisfies a discrete form of the divergence theorem, leading to a local conserva-

tion property for time-dependent problems. High-order finite-volume methods

(fourth-order and beyond) are advantageous in that they can produce solu-

tions to smooth flows much faster than low-order schemes, to the same level of

accuracy. This can be especially important in applications, such as all-speed

combustion, where the simulation time is extremely long. Moreover, high-order

methods increase the computation per unit memory which makes better use of

modern and upcoming computer architectures.
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The approach for accommodating the mapping is orthogonal to the particu-

lar details of the finite-volume algorithm used for discretizing the partial differ-

ential equations to obtain a high-order solution with limiters. Any finite-volume

method, applied to Cartesian grids, can be adapted to use the methodologies

outlined here for AMR on mapped grids. For example, the approach is equally

applicable to the essentially non-oscillatory (ENO) [4] and weighted (WENO) [5]

family of methods or the piecewise parabolic method (PPM) [6]. The mapped

grids algorithm can be directly applied to many of the methods summarized

by van Leer [7], with the exception of residual distribution which requires a

dual mesh. A thorough comparison of underlying technologies from several

reconstruction methods was performed by Liska and Wendroff [8] for several

solutions of the Euler equations. Another comparison between many of these

methods on unstructured grids is given by Wang [9]. The PPM method is used

herein, only because it is an area of research in which the authors have devoted

much previous effort [6]. For the high-order finite-volume scheme used in this

work, our implementation follows the techniques described by McCorquodale

and Colella [2] for achieving fourth-order accurate solutions of time-dependent

hyperbolic conservation laws on adaptively-refined Cartesian grids.

Adaptive mesh refinement is an important aspect in our solver, allowing for

the mesh resolution to change in response to the characteristics of the solution.

The AMR technique is extremely advantageous for applications involving dis-

continuities, shock waves [10], space plasma physics [11], and combustion [12] or

in any regions that require high resolution. AMR has been applied to high-order

methods [13], and more recently to high-order ADER-WENO methods [14, 15].

AMR has been successfully applied to unstructured grids [16], overlapping

grids [17], mapped grids [18], and body-fitted curvilinear grids [19]. Recent

research in AMR extends to hp-refinement (grid and order refinement) [20, 21]

and using adjoint error estimates to govern the refinement [22]. For this work,

block-structured AMR is used with grids locally refined in space and time [10].

In addition to our approach of mapping [23] a structured grid in physical

space to a Cartesian grid in computational space, other methods exist for apply-
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ing finite-volume schemes to more complex geometry. One can resort to applying

the finite-volume method directly to structured curvilinear meshes or unstruc-

tured meshes, or using embedded boundary (cut-cell) techniques [24, 25]. Our

preference for mapped grids stems from the computational efficiency afforded by

solving on a Cartesian grid in computation space and the ease at which bound-

ary layers can be resolved. The other methods have their own advantages; a

significant advantage of the embedded boundary approach is elimination of mesh

generation from the standard workflow for generating a CFD solution.

The remainder of this paper is organized as follows. We discuss the fourth-

order finite-volume method in Section 3, and the freestream-preserving mapping

of coordinates in Section 4. Adaptive mesh refinement for mapped grids is

described in Section 5. Results are presented in Section 6 where all solutions

are for the Euler equations with the assumption of a perfect gas. We verify

that both freestream preservation and conservation are not violated, that the

expected accuracy is achieved, and finally demonstrate the algorithm on an

unsteady problem featuring shock reflections.

2. Notation

The notation is generally explained as it is introduced. Bold type is reserved

for real physical vectors, such as solution variables of a system of the governing

equations. However, a bold symbol can also represent vectors in integer space

and examples are given below. Matrices are named with capital letters, such

as N, and the entries are named with subscripts, Ni,j , where i and j are the

indices for the row and the column, respectively. The vector symbol~ is used

for vectors (or column matrices) depending on space dimensions. Some symbols

are listed and defined here for convenience.

~F flux dyad, e.g., [Fx,Fy,Fz] for 3 dimensions space

(e.g. in Cartesian coordinates)

Fd the dth component of ~F

F flux vector, e.g., [F1,F2, · · · ,Fn] for n solution variables
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Fd the dth component of F

~x physical space, e.g., (x, y, z) for 3 dimensions in space

xd the dth component of ~x

~ξ computational space, e.g., (ξ, η, ζ) for 3 dimensions in space

ξd the dth component of ~ξ

~∇x ~∇ in physical space, a subscript with x representing

the operator is in physical space

~∇ξ ~∇ in computational space, a subscript with ξ representing

the operator is in computational space

i grid indices, e.g., (i, j, k) for 3 dimensions in space

ed unit vector in direction d

∆ Laplacian operator

h grid spacing

D dimensions

τ temporal interval or time step

n̂ outward unit normal of cell face

3. Fourth-Order Finite-Volume Method

The fourth-order accurate finite-volume method developed by McCorquo-

dale and Colella [2] for solving time-dependent hyperbolic systems of conser-

vation laws on Cartesian grids with multiple levels of refinement serves as the

base algorithm for our work on mapped grids. A brief review of the fundamen-

tal Cartesian method follows, since many details of the Cartesian algorithm,

especially the limiting mechanisms and the methods for interpolating in time

between two levels of refinement, remain unchanged when applied to mapped

grids. The work by McCorquodale and Colella [2] should be consulted for further

information.

We consider time-dependent solutions to hyperbolic systems of conservation

laws having the general form

∂U

∂t
+ ~∇ · ~F(U) = 0 , (1)
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where U is the solution vector and ~F is the flux dyad. From the general di-

vergence form, the integral form of the governing equations can be derived as

∂

∂t

∫
V

U dV +

∫
V

~∇ · ~FdV = 0 , (2)

where V is the volume of a finite region of space. The governing equations must

be supplemented by an equation of state. The ideal gas law is assumed in this

work.

3.1. Fourth-Order Finite-Volume Scheme

In the Cartesian-grid finite volume approach, the grid is defined by the

integer points (i0, ..., iD−1) = i ∈ ZD, which mark the cell centers of the control

volumes. The control volumes take the form

Vi =

(
ih, (i+ I)h

)
, i ∈ ZD ,

where h is the grid spacing, ZD is the integer space, and I is defined as the

vector whose components are all equal to one. The solution is computed in

the problem domain, Γ ⊂ ZD, a bounded subset of the integer points. A finite

volume method satisfies the integral form of the conservation law, (2), to some

degree of approximation for each of many contiguous control volumes, Vi, in the

problem domain. The cell-average value of U in a control volume is defined as

〈U〉i ≡ 1

Vi

∫
Vi

U dV .

In this work, the control volumes are time-invariant; accordingly the first term

in (2) can be simplified to

∂

∂t

∫
Vi

U dV = hD
d

dt
〈U〉i .

Application of the divergence theorem of Gauss to the second term in (2) results

in ∫
V

~∇ · ~FdV =

∫
A

~F · n̂ dA

=
∑

±=[+,−]

D∑
d=1

±
∫
A±d

Fd dA , (3)
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where A±d are the high and low faces bounding V with outward unit normal, n̂,

in the dth coordinate direction.

Aside from grid structure, properties of different finite-volume methods gen-

erally arise from the specific algorithm used to evaluate the flux integrals in (3).

For example, second-order algorithms may use the midpoint rule to approximate

the flux integrals. Higher-order algorithms may use some form of quadrature to

evaluate the flux integrals. Furthermore, various interpolations may be devised

to interpolate properties on the face, including solution-adaptive variants such

as ENO [4] and WENO [5]. Flux evaluations may also include temporal gradi-

ents as in the ADER-WENO approach [14], in which case the method-of-lines

approach for temporal evolution of the solution is avoided.

We will be developing fourth-order methods using the approach in [26]. The

starting point for this approach is to replace the integrand in (3) by a Taylor

expansion about the center of the face:∫
Ad

FddA =
∑

0≤|r|<R

1

r!
~∇rFd|~x=~xi

∫
Ad

(~x− ~xi)rdAx +O(hR+D−1), (4)

r! = r1! . . . rD! . (5)

For example, if we take R = 4, we obtain

1

hD−1

∫
Ad

FddA = Fd(~xi) +
h2

24

∑
d′ 6=d

∂2Fd
∂x2

d′
+O(h4). (6)

If we replace the derivatives by finite-difference approximations of a suitable

order (in this case second-order is sufficient) that are smooth functions of their

inputs, the resulting approximation of the average of the flux divergence over a

cell is O(h4). Readers are referred to see Appendix A.1 for details.

This approach can now be applied to solve hyperbolic conservation laws.

The integrals over cells and faces are represented as averages yielding

d

dt
〈U〉i +

1

h

D∑
d=1

(
〈Fd〉i+ 1

2e
d − 〈Fd〉i− 1

2e
d

)
= 0 . (7)

A given implementation of the finite-volume method is defined by the tech-

niques used to determine the average flux on the faces, 〈Fd〉i± 1
2e

d , and the
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time-marching scheme used to resolve the derivative with respect to time.

3.2. Spatial Discretization

Our approach to computing 〈Fd〉i± 1
2e

d as a function of 〈U〉i primarily follows

the method described in McCorquodale and Colella [2] and is briefly summarized

here. As it often is done for second-order methods, we introduce a nonlinear

change of variables W = W(U). In the case of Euler equations of gas dynamics,

this is the conversion from the conserved quantities of mass, momentum, and

energy, U = [ρ, ρu, ρE], to primitive variables W = [ρ,u, p], where ρ is the gas

density, u is the velocity vector, E is the total energy per unit mass, and p is the

pressure. Some care is required in transforming from conservative to primitive

variables in order to preserve fourth-order accuracy. Specifically, the steps to

compute 〈Fd〉i± 1
2e

d are given by:

1. Compute average primitive state in cells: Convert from cell-averaged

conserved variables to cell-averaged primitive variables, through cell-centered

values. First, calculate a fourth-order approximation to U at cell centers,

Ui = 〈U〉i −
h2

24
∆〈U〉i ,

where ∆ is the Laplacian, accurate to at least second-order.

Next convert to primitive variables:

Wi = W(Ui) ,

Wi = W(〈U〉i) .

Then, calculate a fourth-order approximation to cell-averaged W,

〈W〉i = Wi +
h2

24
∆Wi . (8)

2. Compute average primitive state on faces: Interpolate from cell-

averaged W to fourth-order face-averaged W over faces in dimension d,

by

〈W〉i+ 1
2e

d =
7

12
(〈W〉i + 〈W〉i+ed)− 1

12
(〈W〉i−ed + 〈W〉i+2ed) , (9)
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(see Appendix A.2 for the derivation of (9)). Both slope flattening and

a variant of the piecewise parabolic method (PPM) limiter [6] are used to

adjust the face-averaged primitive state in order to suppress oscillations

near discontinuities. A complete discussion is given by McCorquodale

and Colella [2]. At domain boundaries, the face-averaged primitive state

is adjusted as required to enforce the desired boundary conditions.

3. Compute average flux on faces: First obtain a face-centered approx-

imation of W:

Wi+ 1
2e

d = 〈W〉i+ 1
2e

d − h2

24
∆⊥,d〈W〉i+ 1

2e
d

where the ∆⊥,d is a second-order accurate Laplacian computed only in

directions orthogonal to d, i.e.,

∆⊥,d = ∆− ∂2

∂x2
d

.

Then calculate the face-averaged fluxes in each dimension d,

〈Fd〉i+ 1
2e

d = Fd(Wi+ 1
2e

d) +
h2

24
∆⊥,dFd(〈W〉i+ 1

2e
d) , (10)

for every d-face i+ 1
2e

d. Finally, the divergence is computed as in (7).

In Step 1 above, the Laplacian in (8) is applied to Wi instead of Wi in

order to minimize the size of stencil required. The stencil to compute Wi has

radius 3, but the Wi can be computed from the known 〈U〉i for each cell.

This substitution makes a difference of O(h4) because the discrete Laplacian

is multiplied by h2. Similarly, in Step 3 above, ∆⊥,d in (10) is applied to

Fd(〈W〉i+ 1
2e

d) instead of Fd(Wi+ 1
2e

d) for the same reason. Also, the value

of W differs from that of 〈W〉 by a term of second order as shown in (A.6)

from Appendix A.1. As discussed in [2], stencils are modified near physical

boundaries to be one-sided.

3.3. Temporal Discretization

The semi-discrete system of ordinary differential equations, given by (7), is

discretized in time using an explicit, four-stage, fourth-order classical Runge-

Kutta scheme.
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3.4. Comments on Discretization

It is worth asking whether the Taylor expansion used to achieve high order

of accuracy may impose possible restrictions, for example, for long-time simula-

tions. There are no reasons to expect drawbacks in long-time simulations. The

method has been demonstrated to be stable, to the extent that any finite volume

method has been shown to be stable—a combination of von Neumann analysis

for advection and empirical observation for more complicated problems. Since

the method is also consistent, we expect convergence. The only other issue with

long-time solutions is the representation of steady-state or quasi-steady solu-

tions. Since we are using the method of lines, we can converge to a discrete

steady state solution that is independent of the time step. However, since we

are primarily interested in transient phenomena, we have not investigated that

issue.

4. Freestream-Preserving Mapping of Coordinates

The finite volume method described above for Cartesian grids is now applied

to mapped grids by extending the method in Colella et al. [27] to our case of

non-linear systems of conservation laws. The formulation begins again with the

integral form of the conservation laws, but applied to the control volumes in

physical space, ~x,

∂

∂t

∫
~x(Vi)

U d~x+

∫
~x(Vi)

~∇x · ~F d~x = 0 .

Next, the switch to computation space, ~ξ, is made using the metric terms such

that
∂

∂t

∫
Vi

JU d~ξ +

∫
Vi

~∇ξ · (NT ~F) d~ξ = 0 , (11)

where the metric Jacobian is defined by J ≡ det(~∇ξ~x) and the transformation

matrix, NT , describes the grid metrics. Given that NT = J ~∇x~ξ, with
∑
j
∂Ni,j

∂ξj
=

0 (note that the column of NT is divergence free), the relation, ~∇ξ · (NT ~F) =
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∑
j
∂(Ni,jFi)

∂ξj
= J ~∇x · ~F, exists, so that∫

~x(Vi)

~∇x · ~F d~x =

∫
Vi

~∇ξ · (NT ~F) d~ξ .

Then, application of the divergence theorem of Gauss to (11) results in

∂

∂t

∫
Vi

JU d~ξ +

∫
∂Vi

(NT ~F) · n̂dS = 0 . (12)

Following (7), the integrals can be represented as averages yielding

d

dt
〈JU〉i +

1

h

D∑
d=1

(
〈(NT

d
~F)〉i+ 1

2e
d − 〈(NT

d
~F)〉i− 1

2e
d

)
= 0 , (13)

where the subscript d denotes the dth row of NT .

Our approach to determining fourth-order accurate averages of 〈(NT
d
~F)〉 on

the faces is to use a product rule of the form

〈uv〉i+ 1
2e

d = 〈u〉i+ 1
2e

d〈v〉i+ 1
2e

d +
h2

12

∑
d′ 6=d

∂u

∂ξd′

∂v

∂ξd′
+O(h4) , (14)

which is valid on Cartesian grids (see (A.7) from Appendix A.1) and where a

fourth-order estimate of 〈~F〉 is known.

For a single solution variable, the averages in equation (13) can be obtained

from

〈(NT
d
~F)〉i± 1

2e
d =

D∑
s=1

〈NT
d,s〉i± 1

2e
d〈Fs〉i± 1

2e
d +

h2

12

D∑
s=1

∑
d′ 6=d

∂NT
d,s

∂ξd′

∂Fs
∂ξd′

+O(h4) .

(15)

Some care is required to obtain freestream preservation, the property that

the discrete divergence of a constant vector field is zero. If the flux, ~F, in (15) is

constant, then the second term vanishes and we only need to derive quadrature

formulas for 〈NT 〉 so that the discrete divergence of a constant vector field given

by (15) is zero. The existence of such quadratures is a consequence of Stokes’

theorem and the Poincaré lemma. The columns of the matrix NT (or rows of N)

are divergence-free as can be seen by a direct calculation. The column vectors

of NT (the row vectors of N) are denoted by Ns.
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The Poincaré lemma implies the existence of vectors ~Ns such that, in three

dimensions, Ns = ~∇ξ × ~Ns, and thus ~∇ξ · (~∇ξ × ~Ns) = 0. Stokes’ theorem then

states that ∫
Σ

(~∇ξ × ~Ns) · n̂dS =

∮
∂Σ

~Ns · d~r , (16)

with Σ being an oriented face and ∂Σ being the boundary edge of Σ, oriented

using the right-hand rule. Using Stokes’ theorem, the integral of Ns can in-

stead be evaluated by integrating ~Ns; for example, in three dimensions, ~Ns is

integrated on the edges of a face to find Ns on the face of a cell.

The extension to general dimensions is made by the observing that the three-

dimensional cross product can be represented as

~∇ξ × ~Ns =


0 Ns,(3) −Ns,(2)

−Ns,(3) 0 Ns,(1)

Ns,(2) −Ns,(1) 0

 ·


∂
∂ξ1

∂
∂ξ2

∂
∂ξ3

 , (17)

where subscript () selects a component of ~Ns. Note the anti-symmetry of the

matrix. The rows represent indices of d, the (hyper)face, and the columns

represent indices of d′ 6= d. As such, this matrix can be expressed by

~∇ξ × ~Ns =


0 Ns,(1,2) Ns,(1,3)

Ns,(2,1) 0 Ns,(2,3)

Ns,(3,1) Ns,(3,2) 0

 ·


∂
∂ξ1

∂
∂ξ2

∂
∂ξ3

 , (18)

where

Ns,(d,d′) = −Ns,(d′,d) . (19)

The general formula for a row of the matrix in (18) is

NT
d,s =

∑
d′ 6=d

∂Ns,(d,d′)
∂ξd′

with Ns,(d,d′) = −Ns,(d′,d) , (20)

By Stokes’ theorem, the integral of (20) over a cell face Ad is given by

hD−1〈NT
d,s〉 =

∫
Ad

NT
d,s dAξ =

∫
Ad

∑
d′ 6=d

∂Ns,(d,d′)
∂ξd′

dAξ =

∮
ld,d′ 6=d

Ns,(d,d′) drξ ,

(21)
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where ld,d′ 6=d = ∂Ad are the (hyper)edges of face Ad. This can be written as

〈NT
d,s〉 =

1

hD−1

∑
±=[+,−]

∑
d′ 6=d
±
∫
ld,d′,±

Ns,(d,d′) drξ , (22)

with quadratures of sufficient order replacing the integrals. Equations (21)

and (22) are the extension of (16) to any number of dimensions and applied

on a Cartesian grid with spacing h. Because (22) only involves terms normal

to the face (consider the left hand side of (16)), only the normal components

of 〈NT 〉 can be determined using (22). However, this is all that is required for

hyperbolic conservation laws. If ever required, transverse components of 〈NT 〉
can be computed directly or averaged from the normal components of 〈NT 〉 on

nearby faces in orthogonal directions.

For each edge, the same integrals of ~Ns over the edge appear for the integral

over each face adjacent to that edge but with opposite signs. Therefore, the

integration of 〈NT 〉 over the complete cell volume is zero as long as the inte-

grals of ~Ns are approximated with the same quadrature formulas wherever they

appear.

The family of functions, Ns,(d,d′), d′ 6= d, satisfying (20) is not unique. The

form of Ns,(d,d′) used herein is given explicitly by

Ns,(d,d′) =
1

D − 1
det((~∇ξ~x)T (d|es)(d′|~x)) , (23)

where A(p|v) denotes a modification of matrix A by replacing row p with vector

v. That (23) is anti-symmetric is trivial; simply swap rows d and d′. The proof

that (23) satisfies (20) is obtained by applying Leibnitz’ rule to determinants [1].

Note that the preceding discussion on freestream preservation concerns only

the flux divergence. The treatment of source terms is straightforward on the

mapped grid, as long as the control volumes are stationary, since freestream

preservation concerns do not arise.

4.1. Discretization

The method for determining 〈~F〉 and evolving the solution is the same as

that described by McCorquodale and Colella [2] for solving time-dependent hy-

perbolic systems of conservation laws on Cartesian grids with multiple levels of

14



refinement. A centered spatial interpolation is used to obtain 〈~F〉 to fourth-

order accuracy on the faces. Slope limiting (a variant of the limiter proposed

by Colella and Sekora [28]), slope flattening, and artificial viscosity are all ap-

plied to stabilize the method and minimize oscillations near large gradients. To

evolve the solution in time, the standard fourth-order Runge-Kutta method is

employed.

4.2. Artificial Viscosity

The dissipation produced by the limiters is insufficient to suppress oscilla-

tions at strong shocks (see [6] for a detailed discussion). The two mechanisms

proposed by Colella and Woodward [6] for introducing additional dissipation,

flattening of the interpolated profiles and artificial viscosity, were implemented

by McCorquodale and Colella [2] for fourth-order solutions to the hyperbolic

system in Cartesian coordinates. For mapped grids, the application of artificial

viscosity needs to be modified. Using the relation, ~∇x · ~F = J−1~∇ξ · (NT ~F), the

divergence of the velocity in physical space, λ, can be computed as

λi+ 1
2e

d = ~∇x · ui+ 1
2e

d =J−1~∇ξ ·
(
NTu

)
i+ 1

2e
d

=
1

J

[
D∑
s=1

(
〈us〉

D∑
d′=1

∂〈NT
d′,s〉

∂ξd′

)
+

D∑
d′=1

D∑
s=1

〈NT
d′,s〉

∂〈us〉
∂ξd′

]
i+ 1

2e
d . (24)

The velocity, u, is known at the cell centers while row d of NT is only known on

the d-direction faces. The first term in the brackets of (24) drops out because

the columns of matrix NT are known to be divergence free. The second term

in (24) is approximated by(
D∑
d′=1

D∑
s=1

〈NT
d′,s〉

∂〈us〉
∂ξd′

)
i+ 1

2e
d

=

D∑
s=1

{(
〈NT

d′=d,s〉i+ 1
2e

d

〈us〉i+ed−〈us〉i
h

)

+
∑
d′ 6=d

[
〈NT

d′,s〉i+ 1
2e

d

1

2

( 〈us〉i+ed′−〈us〉i−ed′

2h
+
〈us〉i+ed+ed′−〈us〉i+ed−ed′

2h

)]}
.

(25)

The transverse metrics components, 〈NT
d′ 6=d,s〉i+ 1

2e
d , can either be computed by

numerical quadrature or averaged from nearby faces in direction d′.
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We then compute the artificial viscosity coefficient νi+ 1
2e

d by

νi+ 1
2e

d = (∆xdλ)i+ 1
2e

d min

(
((∆xdλ)i+ 1

2e
d)2

(cmin
i+ 1

2e
d)2β

, 1

)
(26)

at faces where λi+ 1
2e

d < 0; otherwise, νi+ 1
2e

d is set to zero. Here, β = 0.42 and

cmin
i+ 1

2e
d is the minimum speed of sound given by

cmin
i+ 1

2e
d = min(ci+j , ci+ed+j), jd = 0 and max

d′=1...D
(|jd′ | ≤ 1).

The physical mesh spacing on a face is computed by (∆xd)i+ 1
2e

d = h/‖J−1NT
d ‖

with J averaged from adjacent cells. The artificial viscosity is then applied as

follows

~∇x〈U〉i+ 1
2e

d = J−1Ni+ 1
2e

d · ~∇ξ〈U〉i+ 1
2e

d , (27)

〈µd〉i+ 1
2e

d = ανi+ 1
2e

d

∂〈U〉i+ 1
2e

d

∂xd
∆xd ,withα = 0.3 , (28)

〈JU〉i := 〈JU〉i −
∆t

h

∑
d

(
〈NTµd〉i+ 1

2e
d − 〈NTµd〉i− 1

2e
d

)
. (29)

4.3. Time-Marching Constraint

For the Runge-Kutta time-marching scheme, the most severe constraint on

the time step results from the first-order fluxes produced by the limiter [27]. An

analysis, performed by Colella et al. [27], revealed that a stable time-step in a

cell for first-order upwind fluxes is given by

∆t

h

D∑
d=1

∣∣v · ed∣∣ / 1.3925 . (30)

This estimate is based on a constant-coefficient problem and ignores contribu-

tions from transverse gradients. For the Euler equations, the maximum acoustic

wave speed, v, is determined in computational space. The contravariant veloc-

ity, aligned with the grid in computational space, is obtained from J−1NTu and

the speed of sound, c, is scaled by h/∆x = ‖J−1NT ‖. In practice, NT is known

on the faces so we first determine the face-averaged primitive state, 〈W〉i+ 1
2e

d ,

using second-order methods. For each direction, the maximum acoustic wave
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speed in a cell is determined from the average of the opposing faces as∣∣v · ed∣∣ =
1

2J

∑
±=+,−

(∣∣NT
d u
∣∣+ c

∥∥NT
d

∥∥)
i± 1

2e
d . (31)

A global minimum of the local time-step in each cell is used as the global time

step. For multi-level AMR grids, the time-step constraint is also determined on

finer levels and scaled to the coarsest grid before computing a global minimum.

The global time step is then scaled by the grid refinement-ratio,

∆t`+1 =
∆t`

n`ref
,

before being sent back to the finer levels.

5. Adaptive Mesh Refinement for Mapped Grids

To implement adaptive mesh refinement, we make use of the Chombo library

for parallel AMR [29] and follow the strategies used therein. The concept of the

discretized problem domain as a subset of an integer lattice, Γ ⊂ ZD, is extended

to a nested hierarchy of grids, Γ0. . .Γ`max with Γ` = Cn`
ref

(Γ`+1). The integer

x

y

Figure 1: A three-level grid with nref = 2 and nesting

sufficient for one cell to separate level `+1 from level `−1.

A single layer of invalid ghost cells surrounding the middle

grid level is shown by dashed lines.

n`ref is the refinement ratio

between level ` and ` + 1

so that the Cartesian mesh

spacings h` = n`refh
`+1.

The operator C is a coars-

ening of the grid. Adap-

tive mesh refinement calcu-

lations are performed on a

hierarchy of nested meshes

Ω` ⊂ Γ`, with Ω` ⊃
Cn`

ref
(Ω`+1). The grid lev-

els are considered as over-

lapping rather than embed-

ded. An example grid hier-

archy is shown in Figure 1. At level `, we label all cells inside Ω` as being valid
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and all cells outside Ω` (such as ghost cells) as being invalid. We assume that

there are a sufficient number of cells on level ` separating the level ` + 1 cells

from the level `−1 cells such that interpolations to fill invalid ghost cells on finer

levels can be independently performed. We will refer to grid hierarchies that

meet this condition as being properly nested. Typically, Ω` is decomposed into a

disjoint union of rectangles (boxes) in order to perform calculations in parallel.

Two boxes are shown on each grid level in Figure 1 and are outlined with thick

lines. Any relationships between boxes on the same level, or between different

levels, are known simply through the vectors describing the corner locations on

the integer lattice. Consequently, there is no need for tracking connectivity be-

tween boxes (although data-motion patterns are cached when the grids change

for better efficiency).

The typical work-flow for advancing level ` is:

1. Regrid levels finer than ` if required. This involves tagging all cells which

should compose the finer levels, often based on the magnitudes of solution

gradients, and constructing a new, properly nested mesh hierarchy. In

regions where new fine cells appear, the solution is interpolated from the

coarser level. Additional considerations for mapped grids are described in

the next section.

2. Advance level `. The solution state is first computed using a cell-centered

product rule (a rearrangement of (14)),

〈U〉 =
1

J

(
〈JU〉 − h2

12

D∑
d

∂Ū

∂ξd

∂J

∂ξd

)
(32)

before using the methods described in Section 4.1 to find 〈~F〉, compute

〈NT
d
~F〉 using (15), and evolve the semi-discrete form (7) with a Runge-

Kutta time-stepping method. In (32), only second-order accuracy is re-

quired for the gradients. Therefore, Ū can be obtained from 〈JU〉/〈J〉
and gradients of J can be evaluated using 〈J〉.

3. Interpolate to the invalid ghost cells surrounding level `+1. Interpolation

in time requires a careful tuning to the Runge-Kutta advancement on the
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coarser level [2]. In space, a least-squares algorithm is used to compute

the interpolating polynomial in each coarse cell. Our expectation was that

the interpolation need not be conservative because the resulting values in

the ghost cells are only used to reconstruct the flux on the faces of the

valid cells. However, through verification, we found it necessary to impose

a conservation constraint for this interpolation. The details are presented

in Section 5.3.

4. Start level `+ 1 at step 1. Level `+ 1 is refined in time (sub-cycled) with

a time step ∆t`+1 = ∆t`/n`ref .

5. Average the solution from `+ 1 to underlying cells on level ` and correct

fluxes at coarse-fine interfaces to ensure conservation [30, 10]. In the latter

correction, the fluxes computed on the coarse grid are replaced by fluxes

computed on the fine grid at the interface between the two grid levels.

5.1. Freestream Preservation at AMR Interfaces

Freestream preservation at AMR interfaces must also be maintained. The

solution will be freestream-preserving as long as ~Ns is made consistent between

the (hyper)edges that are shared between the two levels, and 〈NT 〉 is computed

from that consistent value. This concept is shown in Figure 2 where 〈NT
d=1〉`

and 〈NT
d=2〉` are computed using the same ~Ns

`
=
∑ ~Ns

`+1
.

However, on faces in Ω`valid, adjacent to and orthogonal to the exterior of

Ω`+1 (e.g., consider the face where 〈NT
d=2〉` is indicated in Figure 2), there is

a one-order loss of accuracy due to a lack of error cancellation that otherwise

occurs when the error in the quadratures approximating ~Ns are smoothly vary-

ing functions of space. The cancellation is lost because ~Ns
`

is overwritten with

sums from the finer level on edges within the interface. In other words, when

calculating 〈NT
d=2〉` using (22), the methods used to compute ~Ns

`
are not con-

tinuous across the face. For this reason, it is necessary to have ~Ns computed to

O(hp+1) accuracy in order for the 〈NT
d 〉 to be accurate to O(hp) everywhere.
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〈NT
d=2〉`

〈NT
d=1〉`

~Ns
`

=
∑ ~Ns

`+1

~Ns
`+1

~Ns
`+1

Figure 2: By overwriting ~Ns with a sum of fine-grid values, we ensure that 〈NT
d=1〉

` =

(
∑
〈NT

d=1〉
`+1)/(n`

ref )D−1 on the coarse face (shown in bold) that overlaps the fine faces.

Additionally, since this single value of ~N `
s is used to compute both 〈NT

d=1〉
` and 〈NT

d=2〉
`, the

scheme is still freestream-preserving.

5.2. Regridding

Periodically, it is necessary to change the grid hierarchy in response to

changes in the solution. During a regrid, we generate a new grid hierarchy,

{Ω`,new}`=`base+1,...,`max
leaving the mesh at `base and all coarser levels un-

changed. We also will use the old grid information, which we will denote by

the superscript old. This process is significantly more complicated than in the

Cartesian grid case, since the geometry of the cells on the mapped grid changes

depending on the extent to which they are covered by finer grids. In particular,

the ratio between the volumes of a cell in physical and computational space may

change according to the finest resolution at which the geometry is prescribed

(the finer specifications are averaged down to coarser levels and can change the

coarser cells). We organize the regrid process into three steps:

1. Generate the geometric information for the new grid hierarchy.

2. Adjust the values of the solution on the old hierarchy to be consistent with

the new grid geometry. This step is critical for ensuring conservation of

the solution.
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3. Construct the solution on the new grid hierarchy.

Calculation of the new geometry proceeds from the finest level to `base and

begins with the integration of ~Ns, using (23), on all codimension two (hyper-

edge) centerings of Ω`. We assume in this work that a single analytic expression

of the mapping applies everywhere in the domain, allowing ~Ns to be easily

computed at any resolution. Next, the ~Ns from a finer level, if it exists, are

summed to this level, overwriting the ~Ns just computed where there is overlap.

The normal components of 〈NT 〉 are computed using (22). We note that a

fourth-order accurate approximation to the cell volumes can be determined from

our usual divergence formula by instead letting ~F(~x) = ~x/D. In that case, we

have

1

hD

∫
x(Vi)

d~x =〈J〉i

=
1

hD

∫
Vi

~∇ξ · (NT ~χ)d~ξ (33)

=
1

h

D∑
d=1

〈NT
d ~χ〉i+ 1

2e
d − 〈NT

d ~χ〉i− 1
2e

d ,

where ~χ( ~ξ ) = ~x(~ξ)
D . Continuing with the geometry calculation, 〈NT

d ~χ〉`,new

i+ 1
2e

d ,

which we label as a volume flux, is computed using a product rule and replaced

by averages from finer levels where there are overlapping grids. Finally, 〈J〉` is

computed using (33). Because ~Ns and 〈NT
d ~χ〉 are overwritten from finer levels,

the metrics 〈NT 〉 and 〈J〉 are made consistent between all the levels of the grid.

For example, in Figure 2, 〈NT
d=1〉` = (

∑〈NT
d=1〉`+1)/(n`ref )D−1 on the interface

as a result of overwriting ~Ns
`

with
∑ ~Ns

`+1
on the edges of that face.

The second step is to modify the cell volumes and the conserved quantities

on the old grid hierarchy so that they are consistent with the geometry of the

new grid hierarchy, while still maintaining conservation. At level `, this is

done by computing on the faces of Ω` the changes in the contributions to the

volume fluxes corresponding to the changes in the grid geometry, and fluxing the

conserved quantities in response to those changes in the volumes. These fluxes
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are labeled snapback fluxes and express changes due to regridding at finer levels.

On Ω`,old, define the snapback volume and solution flux as:

FδJ,i+ 1
2e

d =


〈NT ~χ〉`,new − 〈NT ~χ〉`,old

on the faces of

Ω`,old ∩ Ω`,new,

0 otherwise.

(34)

F dδ(JU),i+ 1
2e

d =

−Ui+ed(F d
δJ,i+ 1

2e
d) if F d

δJ,i+ 1
2e

d > 0,

−Ui(F
d
δJ,i+ 1

2e
d) otherwise.

(35)

The snapback solution flux is replaced by averages from finer levels. Now the

conserved quantities 〈JU〉`,old are corrected to the new mesh as follows,

〈JU〉`,old := 〈JU〉`,old − 1

h

D∑
d=1

F dδ(JU),i+ 1
2e

d − F dδ(JU),i− 1
2e

d . (36)

Once we have realigned the values on all of the levels to be consistent with

the new geometry, we then can proceed to step 3 and interpolate solution values.

For ` = `base, . . . , `max− 1 (where `max may be a new grid level), we use a least-

squares algorithm to interpolate solution values on new overlapping fine cells.

We solve a least-squares system for the coefficients of a polynomial interpolant∑
‖p‖1≤3

ap〈~ξ p〉j` = 〈U〉j` , j` ∈ I(i`) ,

where I denotes the stencil around cell i`, subject to the constraint∑
i`+1∈C−1{i`}

∑
p

ap〈J~ξ p〉i`+1 = 〈JU〉i` .

The term 〈~ξ p〉 expands to 〈ξp11 ξp22 ξp33 〉 (or equivalently 〈∏d ξ
pd
d 〉) in three di-

mensions and ‖p‖1 ≤ 3 ≡ p1 + p2 + p3 ≤ 3 limits the degree of the polyno-

mial. Related to the familiar form min
Bx=d ‖Ax− b‖2, A = 〈~ξ p〉j` , b = 〈U〉j` ,

B = 〈J~ξ p〉i`+1 , d = 〈JU〉i` , and x = ap. The moments 〈~ξ p〉 can be computed

analytically, and the 〈J~ξp〉 are computed using the product formula. Given this

interpolant, we can construct 〈JU〉 on the control volumes at level `+ 1,

〈JU〉i`+1 =
∑
p

ap〈J~ξp 〉i`+1 , i`+1 ∈ C−1(i`) .
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This interpolation step is both freestream-preserving and conservative. The

solution from the old grid level is then copied over the interpolated solution on

the new grid where there is overlap. The solution is therefore interpolated only

where new grid levels appear.

5.3. Ghost Cells

As mentioned earlier, the grid Ω` on level ` is partitioned into boxes that

are distributed among processors to perform calculations in parallel. In order

to keep the calculations independent, ghost cells surround each box. Away from

domain boundaries, two types of ghost cells are defined:

Valid ghost A ghost cell within the valid region of Ω`. These result

from partitioning and are filled by means of exchange.

Invalid ghost A ghost cell outside the valid region of Ω`. These result

from grid refinement and are use to couple a finer grid level

to a coarser grid level. They are filled by interpolation from

the coarser level.

In the Cartesian algorithm [2], 5 layers of ghost cells containing 〈U〉 are required

to ensure the calculations are independent. In the mapped algorithm, 5 ghosts

cells of 〈U〉 are also required to compute the flux in computational space. Fewer

ghosts cells are needed for the metric terms and 〈JU〉. In general, 1 layer of

ghost cells is required for 〈J〉 and 〈JU〉 in order to compute the gradients in (32)

everywhere using a centered stencil. As 〈J〉 itself is computed using a product

formula involving 〈NT 〉, the latter is required on the faces of two layers of ghost

cells. Note that ~Ns is only required on the same ghosts as 〈NT 〉 because it is

one codimension higher. Although 〈NT 〉 is also one codimension higher than

〈J〉, it is needed on an extra ghost in order to compute the volume flux, 〈NT ~χ〉,
via a product rule, which is then used to compute 〈J〉.

The calculation of 〈U〉 in valid cells is preceded by an exchange of 〈JU〉 so

that it is available in one layer of valid ghost cells. Equation (32) is applied to

obtain 〈U〉 in valid cells. A second exchange, this time of 〈U〉, is used to fill all

five layers of valid ghost cells.
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The filling of invalid ghosts is achieved through interpolation from the coarser

level. A summary of the ghost cells at an AMR interface is presented in Fig-

ure 3 The interpolator must fill 〈U〉 in the five ghost cells and obtain 〈JU〉 in

one ghost cell adjacent to the interface. From the invalid ghost cells, 〈U〉 is

Coarse-Fine Interface

〈U〉

〈J〉

〈JU〉
〈NT 〉

Figure 3: Extent of invalid ghost cells

at an AMR interface for several solution

variables and grid metrics.

only used to help compute the flux in the

valid cells, and 〈JU〉 is only used to compute

Ū, so that a centered difference of Ū can be

used in (32) to compute 〈U〉 in the valid

cells adjacent to the interface.

Arguably, a fourth order interpolation

should be sufficient to ensure a fourth-order

accurate, conservative scheme. However,

verification experiments revealed some cases

where expected convergence was not ob-

served. It appears necessary to constrain the

interpolation so that the sum of 〈U〉 in the

interpolated fine cells equals (nref )D〈U〉 in

the underlying coarse cells. A least-squares

procedure is used to determine the coefficients of an interpolating polynomial

from neighboring coarse cells. As the system is over-determined, there is suffi-

cient freedom to constrain the solution. We solve a least-squares system for the

coefficients of a polynomial interpolant∑
‖p‖1≤3

ap〈~ξ p〉j` = 〈U〉j` , j` ∈ I(i`) , (37)

where I denotes the stencil around cell i` (see [2] for the interpolation stencils),

subject to the constraint ∑
i`+1∈C−1{i`}

∑
p

ap〈~ξ p〉i`+1 = 〈U〉i` .

The moments 〈~ξ p〉 can be computed analytically. To simply the constraint, we

follow the procedure of McCorquodale and Colella [2] and modify the moments
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to be

~ξ p =
∏
d

(ξpdd −K(pd)) , (38)

where

K(q) =


1

2q(q + 1)
if q > 0 and q is even,

0 otherwise .

(39)

With this constant, the moments averaged over coarse cell i` equal 1 if ‖p‖1 = 0

and zero otherwise. The effect of this modification is to directly impose the

conservation constraint while also yielding the solution for the first coefficient

(when cast into form Ax = b, the first row of A is [1, 0, . . . , 0] so that x1 =

b1). The remaining coefficients can be solved using a QR factorization and the

method of normal equations, where Q is simply the identity matrix and R = 1.

The product of the remaining coefficients and moments for each fine cell equate

to balanced deviations from the conserved value, depending on the displacement

of the fine cell from the center of the coarse cell.

Although a formal conservation constraint could also be used as is done in

the regrid procedure (based on 〈JU〉 instead of 〈U〉), doing so requires inverting

a matrix in each cell to determine the coefficients of the polynomial. This results

from 〈J〉 varying in the cells. By instead imposing a constraint on 〈U〉, a matrix

inversion must only be performed for each stencil, and can be cached in advance.

The simplification imposed by (38) allows for the matrix to be multiplied by

the fine-cell displacements in advance. Then, in terms of computational costs,

filling a ghost cell only involves a dot product between a cached vector and the

right-hand side of (37). Note also that gradients of 〈U〉 can be determined from

derivatives of the polynomial obtained from the least squares procedure. Using

the product formula, the gradients can be used along with 〈J〉, 〈U〉, and a one-

sided, first-order approximation of ~∇ξ〈J〉 to find 〈JU〉 in one layer of invalid

ghost cells. As stated earlier, conservation is not strictly required in ghost cells;

and imposing a constraint on 〈U〉 is sufficient to obtain the expected accuracy

in the verification tests we performed.
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6. Results and Discussions

The results of several numerical experiments on a variety of mappings are

presented to verify that we have indeed retained the properties we desire of our

scheme, namely fourth-order accuracy, conservation, and freestream preserva-

tion. In the first experiment, the constant solution is not advanced. Refined grid

patches are added and removed to verify the freestream preservation property.

The second experiment is the advection of a Gaussian density profile to illustrate

solution accuracy with AMR. The objective of this example is to show that the

regions with large errors in the problem can be resolved with AMR to the same

accuracy as using a single grid of the same resolution as the finest AMR level.

The third case is a Gaussian acoustic pulse problem, which has a more complex

wave structure than the advection of the Gaussian density profile; its analytical

solution is unknown. We performed Richardson extrapolation for a 5th-order

solution as the “exact” solution in order to verify the error convergence rates

both with and without AMR. Additionally, a shear problem is tested. While

the fine patches logically follow the physics in the first two problems, in the

shear problem, the refined region is fixed in the center of the problem domain.

Although not logical, this test exposes the AMR interfaces to strong gradients

and errors; a situation that the algorithm must gracefully accommodate. Next,

the ability of the scheme to correctly recover wave dynamics is tested by solving

Sod’s shock tube on a mapped grid. Finally, we demonstrate the effectiveness

of AMR with mapped grids in resolving large discontinuities on a shock-ramp

problem. Note that the algorithm is multidimensional, but most of our exam-

ples are two-dimensional for the convergence studies. Two dimensional cases

are adequate for verification of solution accuracy.
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Figure 4: Freestream-preservation test.

6.1. Freestream Preservation

This test is designed to illustrate the freestream preservation properties of

the scheme. A three-dimensional mapping,

x = r sinϕ cos θ

y = r sinϕ sin θ (40)

z = r cosϕ

is used to map spherical coordinates, ξ, to physical space, X. The ranges of

both r and ϕ are limited to avoid singularities. The solution is not evolved;

instead, a region to be refined, 0.1 units in radius, is analytically tagged and

rotated about the axis (1,−1, 0) within the unit cube in computational space,

starting at position ( 2
√

2
5
√

5
, 2
√

2
5
√

5
, 2
√

2
5
√

5
). Once the tagged region has completed one

revolution, we verify that the constant solution is unchanged. Two levels of

refinement are used as shown in Figure 4. In this figure, gaps can be observed

between the various levels, illustrating how refinement can affect the volumes

of the cells and the necessity of correcting the solution with the snapback flux

during the regrid process to ensure conservation.
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6.2. Advection of the Gaussian Density Profile

To test the accuracy of the scheme, we initialize the density with a Gaussian

profile, and advect the solution on a two-dimensional periodic domain. The

density is initialized by

ρ = ρ0 + s(r) ∆ρ e−(100r2) (41)

where

s(r) =

 0 : |2r2| >= 1

cos6(πr2) : |2r2| < 1

, (42)

ρ0 = 1.4, ∆ρ = 0.14, and r specifies the distance of a point from the center of the

periodic domain, [0, 1]D. Smoothing with continuous 5th derivatives is applied

with s(r) so that the profile can be forced to zero at the domain boundaries.

The pressure is initialized to a constant of 1 and the velocity is set to (1.0, 0.5).

After advecting for two time units, the profile recovers its original location and

we measure the error against the exact solution.

For this problem, the mesh is deformed according to the mapping

xd = ξd +

D∏
p=1

sin(2πξp) d = 1, 2 . (43)

The initial solution in both computational and physical space is shown in Fig-

ures 5 and 6 , respectively. In both figures, the level 1 boxes (each containing

a number of cells) are shown by gray lines and the level 2 boxes are shown by

black lines. In order to obtain relevant or meaningful convergence rates, the

regions of refinement are analytically specified to be a distance of 0.35 from the

center of the Gaussian for level 1 and 0.225 from the center of the Gaussian for

level 2. Otherwise, fixed-size buffers of cells, associated with a solution-based

identification of refinement regions, tend to shrink with successively finer base

grids, thereby reducing the actual area covered by the finer grids. Solution error

was predicted for single-level grids and AMR grids, with the finest level on an

AMR grid matching the resolution of the corresponding single-level grid. The

error norms are plotted in Figure 7 showing that the convergence rates on the

single-level are 4.00 and those on the AMR grids are between 3.75 and 3.99.
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Figure 5: Initialized Gaussian density profile

in computational space.

Figure 6: Initialized Gaussian density profile

in physical space.

This example illustrates the objectives and compromises associated with

AMR. The objective is to resolve the large errors in the problem with the same

accuracy while reducing the expense of computing in areas with smaller errors.

For this problem, the largest solution error, indicated by the L∞ error norm,

are near the large gradients in the density profile, well within the finest level of

refinement. Consequently, the AMR mesh recovers nearly the same L∞ error

norm as the single level mesh and Figure 7 shows the L∞ curves overlap. The

compromise is that additional errors are introduced at the interfaces between

the coarse and fine levels. These errors are a consequence of maintaining con-

servation and can be explained by modified equation arguments which suggest

that up to one-order of accuracy can be lost in coarse cells adjacent to the inter-

faces (this is the same argument that requires ~Ns to be computed to an order

of accuracy greater than that of the scheme as discussed in section 5). These

small errors are further diminished when squared in the L2 error norm but are

quite apparent in the L1 norm.

With periodic boundaries, this example also provides a good opportunity to

test conservation. An integration of all conserved quantities in computational

space 〈JU〉 is performed at the start and end of the run. The double precision
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Figure 7: Solution accuracy for advection of a Gaussian profile using both single-level grids

and AMR grids. The single level grids are 256 × 256, 384 × 384, and 512 × 512. For the

AMR grids, each AMR grid has 3 levels. The resolution of the finest level of each AMR grid

matches the resolution of the corresponding single-level grid.
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Table 1: Initial and final conserved quantities for advection problem

JU Initial Final Difference

Jρ 2.299286119591301e+04 2.299286119591318e+04 0.000000000000017e+04

Jρu 2.299286119591301e+04 2.299286119591317e+04 0.000000000000016e+04

Jρv 1.149643059795651e+04 1.149643059795661e+04 0.000000000000010e+04

JρE 5.533053824744564e+04 5.533053824744603e+04 0.000000000000039e+04

results from the 512× 512 AMR case are shown in Table 1.

6.3. Gaussian Acoustic Pulse

A Gaussian acoustic pulse in a polytropic gas is tested in a periodic domain.

The initial conditions at a point in the domain are determined by the distance

from the center. Initially the velocity is zero, and the density is

ρ(r) =

ρ0 + (∆ρ0)e−16r2 cos6(πr) if r ≤ 1
2

ρ0 otherwise

, (44)

where ρ0 = 1.4, ∆ρ0 = 0.14, and r measures the distance between the point to

the center. The smoothing factor cos6(πr) ensures the condition of ρ = ρ0 on

the domain boundaries. For isentropic flows, the initial pressure is

p = (
ρ

ρ0
)γ , where γ = 1.4 .

We tested this example in 2D on a single grid level; the size of the three cases

are 128× 128, 256× 256, and 512× 512, respectively. Throughout each run, the

time step was fixed and set to ∆t = 0.192∆x. We computed the convergence

of density at time 0.12 when the solution waves have developed and interacted.

We also ran this problem on two levels of AMR, with a refinement factor of 2

between the levels. Figures 8 and 9 show the density solution contours at time t

= 0.12 in computational and physical space, respectively. The warped mapping

from the previous case is reused here.
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Figure 8: Gaussian pulse density solution

contour at t = 0.12 in computational space.

Figure 9: Gaussian pulse density solution

contour at t = 0.12 in physical space.

Richardson extrapolation is performed on single-level grids to project a more

accurate solution based on the numerical solutions obtained at two different res-

olutions. The more accurate solution is then be used as an “exact” solution to

evaluate the convergence rate of the solver. The mapped grids solver makes

Richardson extrapolation easy to apply due to the uniform and Cartesian coor-

dinates in the computational domain.

We briefly describe the procedure of using Richardson extrapolation for the

convergence study. We run simulations on four single-level grids: 128 × 128,

256 × 256, 512 × 512, and 1024 × 1024. For each pair, e.g., 128 × 128 and

256 × 256, we extrapolate an “exact” solution for the coarser of the two grids.

Let ∆x be the grid spacing on the grid of 128× 128, and, correspondingly, the

finer grid spacing is ∆x/2. The “exact” solution, U(x) is evaluated by

U(x) =
1

(24 − 1)

(
24 u

(
x;

∆x

2

)
− u
(
x; ∆x

))
where u(x; ∆x) is the numerical solution on a grid with grid spacing of ∆x

and u(x; ∆x/2) represents the solution from the finer grid, averaged to the

coarser grid. Note that the “exact” solution has an error of order 5. As the

simulation produces averaged values in each cell, this averaging process is exact

and introduces no additional error. With an estimate of the “exact” solution,
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Figure 10: Solution error contour on a single

grid ∆x = 1/512 at t = 0.12.

Figure 11: Solution error contour on an AMR

grid with fine ∆x = 1/512 at t = 0.12.

the error can be found on the coarser grid. This procedure is repeated for the

next finer sequence of grids, e.g, 256 × 256 and 512 × 512. When the error

converges at an asymptotic rate, i.e., the slope becomes independent of the grid

size, we know that both the solution error and the extrapolation method is

asymptotic.

For the AMR grids, the resolution of the fine level of each AMR grid matches

the resolution of the corresponding single-level grid. For example, for the first

AMR grid, its fine resolution is equal to that of the 256×256 grid and its coarse

resolution is the same as that of the 128× 128 grid. The exact solution of each

patch on the AMR grid was computed by averaging down the exact solution of

the single 512× 512 grid, our best estimate of the “exact” solution.

Figures 10 and 11 show solution error distribution on the single grid with

∆x = 1/512 and the AMR grid with the same resolution on the finest grid,

respectively. The additional error introduced by AMR is apparent. The error

norms are plotted in Figure 12 showing that the convergence rates on the single-

level are 4.00 and the convergence rate on AMR grids is approximately on

the order of O(∆x15/4) in max norm, which is consistent with our previous

analysis [2].
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Figure 12: Solution accuracy for acoustic propagation of a Gaussian profile using both single-

level grids and AMR grids. The single level grids are 128 × 128, 256 × 256, and 512 × 512.

For the AMR grids, each AMR grid has 2 levels. The resolution of the fine level of each AMR

grid matches the resolution of the corresponding single-level grid.
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6.4. Shear Problem

We consider a 2D polytropic gas shear problem. The initial condition on the

unit square [0, 1]2 starts with constant density ρ = 1.4, pressure p = 7.0, and

the velocity profile of

u(x, y) = cos(2πy) , v(x, y) = cos(2πx) .

The warped mapping described in the advection test was also used here. For

this problem, the grid on the finer level was fixed in space from (0.25, 0.25)

to (0.75, 0.75). Whereas in the previous cases, the significant physics were well

inside the finest level, in this case large gradients are seen at the AMR interface.

The solution accuracy is measured at t = 0.12 and plotted in Figure 13, where

the slopes for the solution accuracy on the AMR grids are labeled. The error

on the AMR grid is slightly larger than that on the single grid with matching

resolution. This is not surprising as the interface is exposed to complex flows

rather than being situated far away. However, a fourth-order error reduction

rate is still achieved.

6.5. Sod’s Shock Tube

The ability of the scheme to accurately resolve shock and rarefaction waves

was validated by solving Sod’s classical shock tube problem [31]. In this problem

a diaphragm is imagined in a tube. On the left side, the pressure and density are

both given values of 1.0. On the right side, the pressure is 0.1 and the density

is 0.125. The diaphragm is instantly removed resulting in a Riemann problem.

Rarefaction waves propagate into the high-pressure region on the left. A shock

wave propagates into the low-pressure region on the right. The shock wave is

followed by a contact surface moving at the flow velocity. The pressure remains

constant across the contact surface while the there is a discontinuous change in

density.

The problem was solved in a two-dimensional domain (with no flow in the

y-direction), again using the warped mapping given by (43). Periodic boundary

conditions are used in the y-direction and the solution is terminated before any
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Figure 13: Solution accuracy for the trigonometric shear problem using both single-level grids

and AMR grids. The single level grids are 128 × 128, 256 × 256, and 512 × 512. For the

AMR grids, each AMR grid has 2 levels. The resolution of the finest level of each AMR grid

matches the resolution of the corresponding single-level grid.
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waves interact with boundaries in the x-direction. At time t = 0.2, the mesh

is shown in Fig. 14b. A trace of the density along the line y = 0.25 is plotted

in Fig. 14a. Along with an analytical solution, results are plotted for a single

grid level of size 64× 64 and a three-level AMR grid where two finer levels are

added on top of the 64× 64 base grid. Each new grid level refines the mesh by

a factor of two. The computed solution closely follows the analytical solution

and the speeds of all waves are properly captured. AMR is shown to be quite

effective at reducing the error near the shock and contact discontinuities.

In Fig. 15, the mesh and contours of density are plotted at the earlier time

t = 0.06. In this figure, AMR is used not only to resolve the discontinuities, but

also to add mesh resolution in smooth flow where the warping otherwise creates

cells that are too large. Cells are tagged for refinement when the magnitude

of the relative gradient of density exceeds some threshold (in this case, the

threshold is set to 0.15),

refine cell i if

(
D∑
d=1

(
ρi+ed − ρi−ed

ρi+ed + ρi−ed

)2
) 1

2

≥ 0.15 . (45)

This operation is applied to the primitive variables on the grid in computational

space.

6.6. Woodward-Colella Mach Reflection

The final test case illustrates the effectiveness of AMR in resolving large

discontinuities. In this case, an incident shock at Mach 10 reflects off a ramp

at 30 ◦ producing double Mach stems [32]. In front of the shock, the flow

conditions are p = 1, ρ = γ, and ~u = 0. Conditions behind the shock are

set using shock relations for a wave speed of Mach 10. The left side of the

domain experiences supersonic inflow while the right side is quiescent; at both

extents, Dirichlet boundary conditions are used. At the top side of the domain,

Dirichlet conditions are also used, but the conditions are adjusted based on

the analytical position of the shock wave. In addition, a Riemann problem is

solved between the imposed Dirichlet state and the interior solution at the top
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Figure 14: Sod’s shock tube at t = 0.2.
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Figure 15: Mesh at time t = 0.06. In the expansion fan, the AMR adds mesh resolution where

the mapping otherwise causes the cells to be too large. From left to right, the contours of

density mark the locations of the rarefaction wave, contact surface, and shock wave.
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boundary. Otherwise, there is a potential to trap small quantities of conserved

state in between the advancing shock wave and the imposed Dirichlet boundary

conditions. Adjustments along the slip wall at the bottom of the domain include

setting the wall-normal velocity to zero (a change in velocity given by adding

∆u) and then applying the acoustic correction

∆p = ρc∆u (46)

Figure 16: Contours of density are shown in physical space along with the shaded boundaries

of boxes belonging to various levels of grid refinement.

Three levels of refinement above a base grid of size 96 × 24 are used with

a four-times increase in resolution at each level. A Schwarz-Christoffel map-

ping [33] is used to generate the ramp. The solution is shown in Figure 16

after 0.25 time units. In addition to the shocks, Kelvin-Helmholtz instabilities

are quick to develop along the the slip line in the absence of viscosity and the

“jet” of fluid behind the first stem forms a mushroom characteristic of a classic
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Figure 17: A closeup to show details of fluid instabilities along the slip line as shown in

Figure 16.

Rayleigh-Taylor instability. These features are shown in greater detail in Fig-

ure 17. Some artifacts are also present, resulting from specifying an infinitely

thin shock for initial conditions and at the upper boundary.

The effect of AMR on the time required to obtain a solution is quite dramatic

for this example. In experiments performed using MPI across 40 cores of an

Intel E5-2670 v2 architecture (2 × CPU), a solution on a single-grid at the

same resolution as the finest AMR level took 42 times longer than the AMR

solution!
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7. Conclusion

We have presented a fourth-order finite-volume method for obtaining so-

lutions to hyperbolic conservation laws on mapped grids with adaptive mesh

refinement. The originality of this work lies in the numerical treatment to

ensure that the freestream-preservation property is retained in the case of com-

bining the high-order finite-volume method for mapped grids with the adaptive

mesh refinement scheme. For refined levels, we achieve a solution with the

freestream-preserving property by ensuring that ~Ns is consistent between the

(hyper)edges that are shared between the two levels, and 〈NT 〉 is computed

from this consistent value. Finally, we verified the scheme is fourth-order accu-

rate, freestream-preserving, conservative, and demonstrated the technology on

an unsteady Mach-reflection problem featuring strong discontinuities.
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Appendix A. Derivations for Mapped Grids

Appendix A.1. Relationship Between Center and Average Values

Averages 〈·〉 of a quantity, w, on a face in direction d of a D-dimensional

cell on a Cartesian grid are given by

〈w〉i+ 1
2e

d =
1

hD−1

∫
Ax

w(~x)dAx . (A.1)

Replacing w(~x) using a Taylor-series expansion about the center of the face,

up to O(h4), and integrating over the face of the cell results in (for D = 3,

~x = (x, y, z), d = z)

〈w〉i+ 1
2e

z =
1

h2

∫ xc+ h
2

xc−h
2

∫ yc+ h
2

yc−h
2

(
wc +

1

2

∂2w

∂x2
(x− xc)2 +

1

2

∂2w

∂y2
(y − yc)2

)
dy dx .

(A.2)

All coordinate terms with odd power from the Taylor-series expansion are not

included because they cancel out when integrated over the face. For a face in

coordinate direction d, this can be written generally as

〈w〉i+ 1
2e

d = wc +
h2

24

∑
d′ 6=d

∂2w

∂x 2
d′

+O(h4) , (A.3)

for any number of dimensions. By the same arguments, the average at the center

of a cell can be written as

〈w〉i = wc +
h2

24

∑
d

∂2w

∂x 2
d

+O(h4) , (A.4)

where subscript c is now the value at the center of the cell. Equations (A.3)

and (A.4) can be used to interchange between average and center values at

O(h4) accuracy.

Replacing 〈w〉 with 〈uv〉, one has on a face

〈uv〉i+ 1
2e

d = ucvc +
h2

24

∑
d′ 6=d

(
u
∂2v

∂x 2
d′

+ 2
∂u

∂xd′

∂v

∂xd′
+ v

∂2u

∂x 2
d′

)
+O(h4) . (A.5)

Using (A.3) to replace uc and vc results in

〈uv〉i+ 1
2e

d =〈u〉〈v〉+h
2

24

∑
d′ 6=d

[
(u−〈u〉) ∂

2v

∂x2
d′

+2
∂u

∂xd′

∂v

∂xd′
+(v−〈v〉) ∂

2u

∂x2
d′

]
+O(h4) .

(A.6)
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From (A.3), it can be seen that the difference between u and 〈u〉 is O(h2)

(assuming u = uc). Therefore, these terms do not affect the accuracy up to

fourth order such that

〈uv〉i+ 1
2e

d = 〈u〉i+ 1
2e

d〈v〉i+ 1
2e

d +
h2

12

∑
d′ 6=d

∂u

∂xd′

∂v

∂xd′
+O(h4) . (A.7)

Similarly, at cell centers,

〈uv〉i = 〈u〉i〈v〉i +
h2

12

∑
d

∂u

∂xd

∂v

∂xd
+O(h4) . (A.8)

Appendix A.2. Face Average Interpolation

i i+ 1 i+ 2i− 1
i+ 1

2

Figure A.18: Centered four-cell stencil for computing face averages.

We start with the assumption that the face average can be interpolated from

the indefinite integrals of w in each cell W =
∫
ξ
w(ξ)dξ such that

W (ξi+ 1
2
) = Wi+ 1

2
=
∑
k>i

〈w〉k∆ξk , (A.9)

where index i+ 1
2 is used to represent any face in Fig. A.18 (i = {i−1, . . . , i+2}).

The interpolating function W (ξ) = a+ bξ + cξ2 + dξ3 + eξ4 is defined from the

five faces, starting at the location of i− 3
2 in the stencil:

Wi− 3
2

= 0

Wi− 1
2

= 〈w〉i−1h

Wi+ 1
2

=
(
〈w〉i−1 + 〈w〉i

)
h

Wi+ 3
2

=
(
〈w〉i−1 + 〈w〉i + 〈w〉i+1

)
h

Wi+ 5
2

=
(
〈w〉i−1 + 〈w〉i + 〈w〉i+1 + 〈w〉i+2

)
h

. (A.10)
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Replacing the left-hand side of above equation with appropriate values of in-

terpolating function and rearranging the equations, we can solve a linear sys-

tem, Ax = b, for the coefficients in the interpolating function. Differentiating

the resulting interpolant yields the formula for computing face-averaged values,

〈w〉f = b+ 2cξ + 3dξ2 + 4eξ3. Evaluating this result at ξ = 2h yields

〈w〉i+ 1
2e

d =
7

12
(〈w〉i + 〈w〉i+ed)− 1

12
(〈w〉i−ed + 〈w〉i+2ed) +O(h4) . (A.11)

Appendix A.3. Derivation of the Metric Factors in 3-D

Consider a smooth 3-D mapping (ξ1, ξ2, ξ3) → (x1, x2, x3) and its inverse.

We define the matrices

~∇ξ~x ≡
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
=



∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3

∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3

∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3


(A.12)

~∇x~ξ ≡
∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
=



∂ξ1
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ2
∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ3
∂x1

∂ξ3
∂x2

∂ξ3
∂x3

 , (A.13)

and must have

~∇ξ~x~∇x~ξ = I . (A.14)

Let

J ≡ det(~∇ξ~x) (A.15)

=
∂x1

∂ξ1

∂x2

∂ξ2

∂x3

∂ξ3
− ∂x1

∂ξ1

∂x2

∂ξ3

∂x3

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1

∂x3

∂ξ3

+
∂x1

∂ξ2

∂x2

∂ξ3

∂x3

∂ξ1
+

∂x1

∂ξ3

∂x2

∂ξ1

∂x3

∂ξ2
− ∂x1

∂ξ3

∂x2

∂ξ2

∂x3

∂ξ1
.
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For a smooth 2-D mapping, the metric Jacobian reduces to

J =
∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1
.

The matrix term, NT , in (12), can be derived easily through the generalized

curvilinear coordinate transformation. Further, the use of the invariants of the

transformation helps arrive at a strong conservation-law form. Assuming the

coordinates are time invariant, we obtain

NT = J ~∇x~ξ (A.16)

Accordingly, N = J(~∇x~ξ)T . Readers are referred to [34] for details. Specifically,

each term in NT can be expressed as

NT
p,q = det

(
(~∇ξ~x)T (p|eq)

)
, (A.17)

where A(p|v) denotes a modification of matrix A by replacing row p with vector

v, eq is a unit vector in the qth coordinate direction.

Let’s illustrate the relations in 2D. Writing (A.14) out in detail∂x1

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ1
∂x2

∂ξ2


 ∂ξ1∂x1

∂ξ1
∂x2

∂ξ2
∂x1

∂ξ2
∂x2

 =

1 0

0 1

 , (A.18)

we verify using Cramer’s rule that

∂ξ1
∂x1

= J−1 det

1 ∂x1

∂ξ2

0 ∂x2

∂ξ2

 = J−1 det
(

(~∇ξ~x)T (1|e1)
)

= J−1NT
1,1, (A.19)

∂ξ2
∂x1

= J−1 det

∂x1

∂ξ1
1

∂x2

∂ξ1
0

 = J−1 det
(

(~∇ξ~x)T (2|e1)
)

= J−1NT
2,1, (A.20)

∂ξ1
∂x2

= J−1 det

0 ∂x1

∂ξ2

1 ∂x2

∂ξ2

 = J−1 det
(

(~∇ξ~x)T (1|e2)
)

= J−1NT
1,2, (A.21)
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∂ξ2
∂x2

= J−1 det

∂x1

∂ξ1
0

∂x2

∂ξ1
1

 = J−1 det
(

(~∇ξ~x)T (2|e2)
)

= J−1NT
2,2. (A.22)

Therefore,

NT =

NT
1,1 NT

1,2

NT
2,1 NT

2,2

 = J

 ∂ξ1∂x1

∂ξ1
∂x2

∂ξ2
∂x1

∂ξ2
∂x2

 = J(~∇x~ξ), (A.23)

and hence

N = J(~∇x~ξ)T . (A.24)
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