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Imaging of Conductivity Distributions Using Audio-Frequency 
Electromagnetic Data 

Ki Ha Lee (Earth Sciences Division, Lawrence Berkeley Laboratory, Berkeley, 
CA. 94720, USA) 

H. Frank Morrison (Department of Materials Science and Mineral Engineering, 
University of California, Berkeley, CA. 94720, USA) 

Summary 

The objective of this study has been to develop mathematical methods for 
mapping conductivity distributions between boreholes using low frequency 
electromagnetic (em) data. In relation to this objective this paper presents 
two recent developments in high-resolution crosshole em imaging techniques. 
These are (1) audio-frequency diffusion tomography, and (2) a transform 
method in which low frequency data is first transformed into a wave-like field. 
The idea in the second approach is that we can then treat the transformed 
field using conventional techniques designed for wave field analysis. 

The audio-frequency imaging technique is new and has been developed for 
fracture detection, reservoir description, and ground water monitoring. The 
frequency range used for this application is from essentially dc to 100 kHz. 
Unlike high-frequency radar systems with applications mostly in shallow 
reflection surveys, an audio-frequency em tool would be useful for achieving 
deeper penetrations. Laboratory experiments show that the seismic velocity 
does not change significantly until the rock is fully saturated. The electrical 
conductivity in unsaturated rocks, however, increases dramatically as the 
saturation is increased. At higher saturation, after most of the individual pore 
spaces are fully connected by fluids, the increase in conductivity slows down. 
In this respect a joint application of seismic and em methods can be highly 
complementary in characterizing geomechanical, and ultimately 
geohydrological properties of rocks. 

For the development and subsequent verification of imaging techniques to be 
efficient it is critically important that high quality em data is readily available. 
However, the effort involved in developing high precision instruments and 
state-of-art field techniques for carrying out a survey on a realistic field scale is 
prohibitive. For this reason we have been conducting a scale-model em 
experiment at the Richmond Field Station (RFS), University of California, 
Berkeley. Our initial data from the experiment show excellent agreements 
with numerical solutions. 
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Diffusion tomography 

A tomographic inversion -scheme has been developed (Zhou, 1989) for 
interpreting audio-frequency em data. The formulation of this new approach, . 
called diffusion tomography, is related to the recent developments in acoustic 
diffraction tomography (Devaney, 1982; Wu and Toksoz, 1987). There exists, 
however, a significant mathematical difference in that the background wave 
number in the acoustic case is real while that in the em case is complex. By 
extending the acoustic image reconstruction formulation through the 
introduction of an inverse Laplace transform in place of the inverse Fourier 

. transform, the method can now be applied to map electrical conductivity 
distributions between boreholes. Although the algorithm development is 
based on the traditional Born or Rytov weak scattering approximation, it has 
been found later that the technique is surprisingly effective even when the 
conductivity anomaly is strong. The approach was first investigated using 
two-dimensional (2-D) models. Following this simple but useful model 
studies, more complex and realistic structures with a cylindrical symmetry and 
3-D problems have been examined. The results from these last two cases 
have been found to be similar to that of the 2-D case if a geometrical 
correction factor is applied to the data. 

The 2-D diffusion tomography algorithm is based on the integral equation for 
the electric field 

E'(r" r,) = L d(J E(r, r,) G(r, r,) dxdz (1 ) 

where the superscript's' indicates the secondary field. In this development 
we assume that the source is located in one borehole (rs) and the receiver in 
the other (rr). Applying the Born approximation by which the electric field 
inside the integral is replaced by the primary field, and Fourier transforming 
both sides of the resulting equation from rr and rs to kr and ks, respectively, 
equation (1) becomes 

'E'(k,., k,) W(Yr, y,) = L O(r) exp (-oxx - ikzz) dxdz (2) 

where the object function O(r) is defined as the conductivity ratio of the 
anomalous to the background. The weight function W in this expression is 
essentially identical to the one used for the diffraction tomography (Wu and 
Toksoz, 1987). Note that a Laplace variable Sx is used instead of the spatial 

\; 



() 

'.) 

3 

wave number kx (Zhou, 1989). By inspection the solution for the object 
function can be formally written as 

(3) 

The above operation involves inverse Fourier transform from kz to z, and 
inverse Laplace transform from Sx to x. It is well known, however, that the 
numerical inverse Laplace transform is unstable. To ensure the stability of 
the numerical solution one needs to apply constraints to the solution process 
as required by regularization theory for ill-posed problems in general. If we 
assume that the zone of interest is electrically more conductive than the 
background, for example, the object function has to positive. We can 
incorporate this positivity constraint by first discretizing the integral equation 
(2), and then solving the resulting constrained least squares or a quadratic 
programming problem. In addition to constraints for stability a smoothing step 
may also be necessary. Any sharp variations in the numerical solution is 
usually artificial and algorithm dependent, since in most cases high spatial 
wave number information is absent and the noise can be easily amplified in 
the repeated numerical process. 

Figure 1-(a) shows a sample model representing a cylindrically symmetric 
conductive plume as a result of an injection experiment. The conductivity of 
the plume is 0.02 S/m. This is only slightly more conductive than the 
background conductivity of 0.01 S/m. The question in this exercise has been; 
can we, at least in principle, use the diffusion tomography to monitor the 
laterally expanding plume as injection is continued? Based on the result of 
our numerical test, it seems that the answer to this question is positive. Using 
computer simulated data in a crosshole environment, the image of the 
expanding plume has been successfully constructed as shown in Figures 1-
(b), 1-(c), and 1-(d) corresponding to Lx = 20m, 40m, and GOm, respectively. 

To provide data for testing numerical algorithms an em scale model study has 
been conducted at the Richmond Field Station (RFS), University of California, 
Berkeley. The scale model consists of a container of size 9'x1S'xS' filled with 
salt water of approximately 14 S/m. Graphite blocks are used as targets and 
an array of transmitter and receiver coils are used to measure the resulting 
magnetic fields. The system has been deSigned such that data is collected at 
a fixed position while the transmitter is moved continuously. This provides for 
both low noise measurements and relatively quick acquisition. 

'. :t .. " 
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Wave-field transform method 

There have been several studies in the past implying that there is an 
interesting parallelism between the mathematical form for the em diffusion 
equation and the wave equation (Weide It, 1972; Kunetz, 1972; and Levy et aI., 
1988). The subject of these studies has been essentially limited to the 
magnetotelluric (MT) method in a layered (1-0) medium. 

For practical situations, typically involving a multi-dimensional space and an 
arbitrary source, Lee et al. (1989) have presented a more fundamental 
relationship between fields satisfying a diffusion and the corresponding wave 
equations. The relationship is defined by an integral transform that is 
completely independent of space variables. In this relationship the diffusive 
field, the electric field E for example. is uniquely represented by an integral of 
a corresponding wave field U weighted by an exponentially damped kernel. 
This fictitious field U would be dispersionless and would have a well defined 
phase, as well as a group, velocity. It has been shown that, as an application, 
the transform can be used for numerical modeling of em fields. In this 
application the wave field is first computed numerically, and then the em field 
is subsequently calculated using the integral. More importantly, it was also 
suggested (Lee, 1987) that an inverse transform could be used to transform 
field data measured in time (or in frequency) to the wave field in a time-like 
variable q. The inverse transform requires that the data be of wideband to 
yield waveforms of reasonable resolution. The other important factor that 
determines the resolution of the constructed wave field is the level of 
estimated noise contained in the data. For stability reasons a stochastic 
approach has been used to construct the wave field. Thus constructed wave 
field could then be used for further analysis for conductivity mapping using 
migration techniques, or even more sophisticated wave equation imaging or 
tomographic reconstruction techniques. 

The following is a brief description of the study by Lee et al. (1989) concerning 
the formal relationship between quantities satisfying the diffusion and the 
wave equations. In the presence of a current source, S(r ,t), the electric field 
satisfies the vector diffusion equation in 3-D 

a 
VxVxE(r,t) + J,1a(rr:-E(r,t) = S(r,t) 

at (4) 

With the introduction of functions U(r,q) and F(r,q), such that 

t\ , . 
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V'xV'xU(r,q) + ~O'(r~U(r,q) = F(r,q), 

dq2 (5) 

It has been shown that the diffusive electric field E in equation (4) and the 
wave field U in equation (5) are uniquely related by 

q . 1
00 1 

. E(t) = b q e- 4t U(q) dq. 
2 1tt 0 

(6) 

The wave equation (5) implies that each components of the wave field U 
-112 

would have a velocity of (~O') m/q: The position vector r has been 
dropped from the expression since the transformation is independent from it. 

As an initial step to imaging conductivity distributions it was suggested that we 
first solve this integral equation for the wave field U(q) from the data E(t). In 
what follows we will briefly discuss a closed form solution, among other 
potentially useful methods, presented by Lee (1987). First, both sides of 
equation (6) are Fourier transformed (from t to 0)) to yield 

E(ro) = L~ e-vtOOq U(q) dq_ (7) 

Taking only the imaginary part, for example, of this equation and applying 
change of variables 

0) = 2 e2u q = e-v 

• 

with following definitions 

it can be shown that solution for W is found to be 

100 -
1 D 11 . W(v) = • - _ ( ) e 'l1V dl1. 

21t _ 00 H(l1) 
(8) 

where ))(TI) and H(TI) are again Fourier transform (from u to 11) of functions 
O(u) and H(u). respectively. 
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Although the solution given by equation (8) is analytically in a closed form, it is 
extremely unstable to evaluate numerically. The deconvolution kernel H(1l) 

is exponentially damped in 11, and as a result, distributed noise, especially 
those in higher spectrum, contained in the data D(11) will be exponentially (\ 
amplified. This is well expected since the original linear inverse problem for 
the wave field U in equation (6) is ill-posed. A practically useful solution '1 

would involve a stochastic approach (Franklin, 1970; Aki and Richards, 1980), 
for which we may need an estimated noise to the problem. . If the noise is 
statistically unrelated to the model (wave field), the solution for the modified 
equation is simply 

1
00 ~ 

1 ~ D* . 
W*(v) = - - G(11) ~ (11) e 'Ttv d11, 

27t _ 00 H(11) (9) 

with its optimum inverse filter (](Tt) given by 

(10) 

Here <JtiTt) and <J~Tt) are estimated power spectrum of noise and signal, 
respectively. When there is no noise equation (9) would be identical to 
equation (8). However, if the noise increases in 11 the deconvolution integral 
would become a low pass operation. The inverse filter forces the 
deconvolution integral stable by effectively cutting off those harmonic 
contributions from below the specified noise level. This feature is in fact 
similar to that of the generalized inverse scheme, in which contributions 
associated with those eigenvalues below a threshold are selectively 
eliminated at the expense of reduced resolutions. The impulse response of 
G(v) can therefore be considered the upper limit of the resolution for the 
constructed wave field. t 

A numerical test has been made using a model shown in Figure 2. The 't, 
model consists of a circular cylinder in a whole space of conductivity 0.01 S/m. 
The cylinder is a 0.5 81m conductor with a radius of 100 m. A line source is 
located at 200 m to the left of the center of the cylinder, and the voltage 
induced in a vertical coil is computed at positions along the receiving 
borehole 200 m to the right of the center of the cylinder. The computed 
frequency-domain voltage corresponds to the line source whose current has 
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been abruptly turned off. A wide band frequency response has been used to 
construct wave fields in the receiving borehole. The simulated wave fields 
are shown in Figure 3 at every 20 m intervals. An inverse filter with an 
estimated noise level of three percent has been used for this exercise. By 
inspection one can now visualize the wave field propagate from the source to 
each receiver positions. For example, at the first receiver position opposite to 
the source, the first arrival seems to be made up of waves that propagate 
around the cylinder with the higher velocity of the surrounding medium. After 
a pronounced delay, the direct wave transmitted through the conductor arrives 
at this position with its amplitude much larger than the first arrival. As the 
receiver is moved down the effect of the diffraction by the cylinder gradually 
disappears, and the higher-velocity direct wave starts dominating. 

The wave field reconstruction from the i~tegral equation is still at its early 
stage. The most difficult problem in this approach is in finding ways to reduce 
the amount of data required for constructing wave fields without losing 
resolutions. Solutions for the wave field can also be obtained numerically 
from integral equations (6) and (7), depending upon the type of data available. 
The fundamental difficulty stemming from the ill-posedness of the original 
problem would remain no matter what we do. It is therefore a question of 
finding optimum constraints to individual problems and properly applying 
them to each solution process. 
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Figure caption 

Figure 1-(a) Simulated conductive plume with its horizontal extension Lx in 
meter. The plume is cylindrically symmetric about the injection 
borehole. 

Figure 1-(b) Reconstructed plume with its lateral extension Lx = 20m. 

Figure 1-(c) Reconstructed plume with its lateral extension Lx = 40m. 

Figure 1-(d) Reconstructed plume with its lateral extension Lx = 60m. 

Figure 2 

Figure 3 

A cylindrical conductor between boreholes with assumed 
straight ray paths. 

Computed total wave fields for a fixed source. 
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