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PHYSICAL REVIEW B 104, 195430 (2021)

Ground and excited states of coupled exciton liquids in electron-hole quadrilayers

Chao Xu and Michael M. Fogler
Physics Department, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92009, USA

(Received 4 August 2021; accepted 9 November 2021; published 24 November 2021)

Interlayer excitons are bound states of electrons and holes confined in separate two-dimensional layers. Due
to their repulsive dipolar interaction, interlayer excitons can form a correlated liquid. If another electron-hole
bilayer is present, excitons from different bilayers can exhibit mutual attraction. We study such a quadrilayer
system by a hypernetted chain formalism. We compute ground-state energies, pair correlation functions, and
collective mode velocities as functions of the exciton densities. We estimate the critical density for the transition
to a paired biexciton phase. For a strongly unbalanced (unequal density) system, the excitons in the more dilute
bilayer behave as polarons. We compute energies and effective masses of such exciton-polarons.

DOI: 10.1103/PhysRevB.104.195430

I. INTRODUCTION

An indirect exciton or, equivalently, an interlayer exciton
is a neutral quasiparticle in a semiconductor nanostructure
that contains two parallel layers: one filled with electrons and
the other with holes. An interlayer exciton can be created by
a photoexcitation of an electron-hole (e-h) pair followed by
separation of the two particles via interlayer tunneling induced
by a strong out-of-plane electric field. Low-disorder GaAs-
based nanostructures have proved to be particularly suitable
for realization of interlayer exciton systems with tunable den-
sity, long lifetime [1,2], high mobility [3], and long diffusion
length [4–11]. In a theoretical analysis of such systems, it
has been common to treat excitons as composite bosons with
no internal dynamics. (Henceforth, exciton always means in-
terlayer exciton.) In this approximation, each exciton has a
permanent dipole moment proportional to the separation of
the electron and hole layers. The interaction of such oriented
dipoles located in the same two-dimensional (2D) plane is
strictly repulsive.

Recent experiments [12,13] explored a more advanced type
of GaAs/GaAlAs nanostructures containing two e-h bilayers,
as shown schematically in Fig. 1. In these e-h-e-h quadrilayer
systems, the dipolar interaction between excitons that belong
to different e-h bilayers can be of either sign. This interaction
is repulsive at large but attractive at small in-plane distances
r between the excitons, see the curve labeled u12 in Fig. 1.
Experimental evidence for the interlayer attraction [12,13]
was deduced from the dependence of the exciton photolu-
minescence energy and the exciton density distribution [13]
on the separately controlled average exciton densities in the
two bilayers. Motivated by these experiments, in this paper
we undertake a quantitative analysis of the ground state and
excitations of an e-h-e-h quadrilayer system.

Our study is a continuation of extensive prior theoretical
work on e-h bilayers and 2D dipolar bosons. For exam-
ple, the phase diagram of a single e-h bilayer for the case
where electrons and holes have equal densities n and masses

me = mh has been explored by several Monte Carlo simu-
lations [14–17]. Such simulations are considered to be the
most reliable tool for the case of strong correlations. These
studies have shown that the excitons are stable when n is
below a certain threshold (Mott critical density) nc2 = c2a−2

e .
Here c2 ∼ 0.02 is a numerical coefficient that depends on
the dimensionless ratio d/ae of the e-h separation d and the
electron Bohr radius ae = h̄2κ/mee2

0 with κ and e0 being the
dielectric constant and the elementary charge, respectively.
Neglecting internal dynamics of excitons is justified if n �
nc2. The ground state of the system is determined by the
competition between the kinetic energy of the excitons and
their dipole repulsion that scales as d2. In the experimentally
relevant regime [12,13] d/ae ∼ 0.3, excitons are expected to
form a strongly correlated Bose liquid (which is a superfluid).
At much larger or much smaller d’s, other phases of exciton
matter, e.g., exciton solid are possible.

Phase diagram of 2D dipolar bosons inferred from Monte
Carlo simulations shows a close correspondence to that of the
e-h bilayer in regard to the position of the liquid-solid phase
boundary [18–20]. Numerical results for the ground-state en-
ergy and density correlation function of 2D dipolar bosons
have been conveniently summarized in Ref. [21] and we will
use some of them in this paper. The excitation spectra of such
systems [18,22,23] have also been studied. Additional work in
this subject area includes investigations of the thermal melting
of dipolar solids [24] and the scattering-length instability [25].
The latter has implications for the normal-superfluid transi-
tion. For systems of dipoles whose orientation is tilted away
from the vertical, a unidirectional density wave (stripe) phase
was predicted to appear [26,27].

The most directly relevant to our work are Monte Carlo
simulations done for bilayer systems of magnetic dipolar
bosons [28–30], which have essentially the same interaction
law as excitons. Based on these studies, we can surmise the
following structure of the zero-temperature phase diagrams
of e-h-e-h quadrilayers. To avoid confusion, we will use the
term plane in relation to excitons and layer for electrons or
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FIG. 1. Exciton interaction potentials: u11 and u22 are intraplane
potentials; u12 is the interplane potential. The inset shows a schematic
of the system (see text). Parameters: d1 = 20 nm, d2 = 25 nm, D =
43 nm, κ = 13, c = 5 nm.

holes. (Hence, a plane is made of a pair of adjacent lay-
ers.) Let us start with a symmetric case, i.e., two parallel
planes each filled with excitons of dipole moment e0d and
density n. The planes are separated by a distance D > d . The
dimensionless parameters of the problem are obtained by mul-
tiplying D, n, and d by appropriate powers of the dipole length
a = d2/ax, where ax = h̄2κ/me2

0 = aeme/m is the effective
exciton Bohr radius and m = me + mh is the exciton mass. As
shown schematically in Fig. 2(a), if D/a and na2 are small,
so the mean in-plane exciton distance n−1/2 is relatively large,
the interplane attraction of excitons favors paired phases. This
means that excitons from the opposite planes bind into biex-
citons if n is less than some critical density nc1 = nc1(D). The
biexcitons would typically form a correlated liquid but a small
region of the solid phase is also possible. When D/a or na2 is
large, the intraplane repulsion dominates over the interplane
attraction, so the unpaired exciton fluids are stable. However,
the excitons should dissociate once n increases beyond the
Mott critical density, which is the rightmost part of the phase
diagram. The rectilinear phase boundaries in Fig. 2(a) are
meant to be schematic only.

In principle, more exotic phases of matter are possible
in this system. For example, intraplane exchange interaction
and spin-related effects can become important at high exciton
density. In this paper, we focus on the moderate and low-
density regimes, and so we ignore such effects. Note that the
interplane exchange interaction can be usually neglected at all
exciton densities.

The dashed line in Fig. 2(a) indicates the interplane dis-
tance representative of the experiments cited above [12,13].
In such experiments, the exciton density n can be controlled
by photoexcitation power; however, very small or very larger
n are usually difficult to access due to, respectively, disorder
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FIG. 2. (a) Schematic zero-temperature phase diagram of a sym-
metric two-plane exciton system, n1 = n2 ≡ n. (b) Schematic phase
diagram for arbitrary exciton densities n1, n2. The interplane distance
D is fixed at the position of the dashed line in panel (a); e, h, and
x stand for electron, hole, and exciton, respectively. The biexciton
fluid contains some unpaired excitons if n1 �= n2. The dashed square
indicates the n1–n2 range plotted in Fig. 4.

and heating effects. Therefore, the biexciton and the unpaired
exciton fluids are the most relevant phases.

In practice, excitons in the two planes may have different
densities n1 and n2. In Fig. 2(b), we present a crude phase
diagram for a representative range of n1 and n2. This diagram
is based on the notion that plane k contains unbound e-h pairs
if nk > nc2 and unbound excitons if nk > nc1. In this paper, we
estimate nc1 and compute other basic many-body properties
of the system as functions of n1 and n2. To do so, we use the
hypernetted chain (HNC) method, which is only slightly less
accurate than the Monte Carlo simulations.

The remainder of this paper is organized as follows. In
Sec. II, we define the model we study. In Sec. IV, we report
the ground-state energies and sound velocities calculated for
relatively high exciton densities. We verify the accuracy of our
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HNC method by comparing it with the available Monte Carlo
simulations for the single-plane problem. In Sec. V, we qual-
itatively discuss the low-density paired phase. In Sec. VI, we
study the regime where only one of the planes is dilute. Here
the analysis can be made more quantitative using the analogy
to the polaron problem. We compute the energies and effective
masses of such exciton-polarons. We give concluding remarks
in Sec. VII. Additional calculations and technical details are
presented in the Appendixes.

II. MODEL

Our model is sketched in the inset of Fig. 1. The white
strips indicate the tunneling barrier regions, which are clas-
sically forbidden for the carriers. The dark strips represent
the layers populated alternatively by electrons (−) and holes
(+). We assume that all the electrons and holes are paired
into excitons and that the pairing occurs only in the two top
and two bottom layers that have center-to-center separations
d1 and d2, respectively. We ignore the possibility of exciton
formation by binding carriers from the two middle layers.
This should be legitimate if the corresponding interlayer dis-
tance D − (d1 + d2)/2 is sufficiently large. We also ignore
any internal dynamics of excitons, which allows us to treat
the quadrilayer as two coupled planes of excitons. Here, as in
Sec. I, the term layer pertains to electrons and holes, while
plane describes a 2D sheet of excitons. Specifically, the exci-
ton plane α = 1 (2) represents the two top (two bottom) layers
seen as a unit. The effective Hamiltonian we study is the sum
of the kinetic and interaction energies:

H = H1 + H2 + H12, (1)

Hα = − h̄2

2m

Nα∑
i=1

∇2
i +

∑
i< j

uαα

(
ri
α − r j

α

)
, (2)

H12 =
N1∑

i=1

N2∑
j=1

u12
(
ri

1 − r j
2

)
. (3)

Here ri
α’s are the exciton coordinates, Nα is their number,

and nα = Nα/� is their density in plane α; � is the system
area. We assume that the effective mass m of the excitons is
the same in the two planes (approximately 0.20 of the bare
electron mass in GaAs/GaAlAs nanostructures [13]).

To model the effective interaction potentials uαβ (r), we
need to know the charge distribution of the exciton. In princi-
ple, it can be determined by solving the two-body e-h binding
problem numerically. However, the result depends on many
microscopic details, such as the thickness of the layers, the
electric field, and the properties of the tunneling barriers
[31,32]. As a simpler alternative, we assume that the charge
density distribution of every electron (hole) in a given layer j
is an isotropic Gaussian:

|ψ (r, z)|2 ∝ exp

[
− (z − z j )2 + r2

2c2

]
. (4)

Here r is the in-plane distance of the particle from the center
of the exciton and z is its out-of-plane coordinate, with z j

being the midpoint z coordinate of layer j. The Coulomb
interaction energy of two such Gaussians of charge e0 each

has the following analytic form:

v(r, z) = e2
0

κ
√

r2 + z2
erf

(√
r2 + z2

2c

)
, (5)

which is familiar from the Ewald summation method. The
second factor in Eq. (5), containing the error function erf (x),
smooths out the short-range divergence of the Coulomb po-
tential. Later we will need the 2D Fourier transform of v(r, z)
with respect to r, which is given by

ṽ(k, z) ≡
∫

v(r, z)e−ik·rd2r, (6)

= e2
0

κ

π

k

∑
σ=±1

ek2c2+σkzerfc
(

kc + σ z

2c

)
, (7)

where k = |k| and erfc(x) = 1 − erf (x).
In our approximate model, the charge density distribution

of the exciton consists of two oppositely charged Gaussians
[Eq. (4)] aligned in plane. Accordingly, the interplane u12(r)
and intraplane uαα (r) exciton interaction potentials are given
by

u12(r) = v

(
r, D + d1 − d2

2

)
+ v

(
r, D − d1 − d2

2

)

− v

(
r, D + d1 + d2

2

)
− v

(
r, D − d1 + d2

2

)
, (8)

uαα (r) = 2v(r, 0) − 2v(r, dα ). (9)

These potentials are plotted in Fig. 1 for representative pa-
rameter values [13]. In this example, u11(r) and u22(r) are
always positive while u12(r) is negative at r < 57 nm, see
also Fig. 7(d) below. All the potentials decay as uαβ (r) ∝ r−3

at large r, which classifies them as short-range interactions.
The width c of the Gaussian in Eq. (4) mainly affects the
short-distance behavior of the intraplane potentials uαα (r).
Since the excitons in the same plane strongly avoid each other
(Sec. IV), this adjustable parameter has only a minor influence
on the many-body properties. The properties of our main inter-
est are the ground-state energy and the low-energy excitation
spectrum. In the following section, we discuss methods we
employ to study them.

III. HNC FORMALISM

The primary many-body quantities we were able to com-
pute include the pair correlation functions (PCFs) gαβ (r), the
structure factors Sαβ (k), and the energy density per unit area
e = e(n1, n2). The PCF is defined by

gαβ (r) = �

NαNβ

Nα∑
i=1

Nβ∑
j=1

〈
δ
(
ri
α − r j

β − r
)〉 − δαβ

nα

δ(r). (10)

The structure factor is Sαβ (k) = δαβ + √
nαnβ h̃αβ (k), where

hαβ (r) ≡ gαβ (r) − 1. The tilde in h̃αβ denotes the 2D Fourier
transform, as in Eq. (6).

The energy density can be expressed in terms of the PCF.
The simplest result is obtained within the mean-field approx-
imation, gαβ = 1, Sαβ = δαβ that neglects correlations. This
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mean-field energy density is

emf (n1, n2) = 1

2

∑
αβ

ũαβ (0)nαnβ. (11)

For our model interaction potentials, we find

ũαα (0) =
∫

uαα (r)d2r = 2 lim
q→0

[ṽ(q, 0) − ṽ(q, dα )] (12)

= 4πe2
0

κ

[
dα erf

(
dα

2c

)
− 2c√

π

(
1 − e− d2

α

4c2

)]
, (13)

so in the zero-thickness limit, c → 0, we get

ũαα (0) → 4πe2
0

κ
dα, ũ12(0) → 0. (14)

This simplified expression yields the capacitor formula

ecap(n1, n2) = 2πe2
0

κ

(
n2

1d1 + n2
2d2

)
, (15)

which is so named because it resembles the total energy of
two parallel-plate capacitors of dielectric thickness d1 and
d2. There is no n1n2 term in this quadratic form since such
parallel-plate capacitors do not produce external electric field,
and so do not interact. Equation Eq. (15) implies that any
appreciable effect of interplane interactions can arise only
from correlations.

To go beyond the mean-field theory, we employed the
zero-temperature HNC (more precisely, HNC/0) method for
multispecies systems [33,34]. In this method, the ground-state
wave function 
 is assumed to be in the Jastrow-Feenberg
product form:


 =
∏

α=1,2

∏
i< j

fα
(
ri
α − r j

α

)∏
i, j

f12
(
ri

1 − r j
2

)
. (16)

Functions f1, f2, f12 obey a set of nonlinear equations(
− h̄2

m
∇2 + uαβ (r) + wαβ (r)

)√
gαβ (r) = 0, (17)

where the so-called induced potentials wαβ (r) are defined via
their Fourier transforms

w̃αβ (k) = ε(k)

2
√

nαnβ

[3I − 2S − (S−1)2]αβ. (18)

S is the 2 × 2 matrix made of Sαβ (k), I is the identity matrix,
and

ε(k) = h̄2k2

2m
(19)

is the bare single-particle energy. These equations can be
solved numerically by iterations [33,34]. The energy density
of the system is then calculated from [34]

e = 1

2

∫
d2r

∑
αβ

nαnβ

[
gαβuαβ + h̄2

m
(∇√

gαβ )2

]
, (20)

− 1

4

∫
d2k

(2π )2
ε(k) tr(3I − 3S + S2 − S−1). (21)

The performance of the HNC method has been previously
shown to be very good [23] in a single-plane system, N1 = 0.
The corresponding ground-state wave function is obtained
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FIG. 3. Comparison of our HNC calculations with prior Monte
Carlo results [18–20] for a model system of single-plane dipolar
bosons. (a) PCF computed for two values of γ = na2 representative
of correlated exciton liquids in GaAs [13]. Note that the liquid-solid
transition occurs at γ ≈ 300. (b) Energy per particle E in units of
the capacitor self-energy 
0 (see text) as a function of γ for fixed
d = 6ax .

from Eq. (16) by dropping f1 and f12 terms while in the HNC
equations one needs to set S11 = 1, S12 = 0, and solve for g22

only. To simplify notations, we also drop the subscripts in n2,
S22, g22, etc. In this calculation, the point-dipole limit u(r) =
e2

0d2/r3 was used for which Monte Carlo results are available
[18–20]. Such a system can be characterized by the dimen-
sionless interaction strength γ = na2, where a = d2/ax is the
dipole length introduced in Sec. I. Note that γ ∼ 4 for density
n ∼ 1.0 × 1010 cm−2 and dipole length a ∼ 200 nm typical
of GaAs devices. We repeated this benchmark calculation on
a denser grid of density points in the practical range γ < 8
of moderately strong interactions. In Fig. 3, we present the
results for the PCF and the energy per particle E = e(n)/n in
units of the capacitor self-energy 
0 = (4πe2

0/κ )(nd ). From
Fig. 3, we can see that the HNC and the more accurate Monte
Carlo methods are indeed in good agreement. Both methods
predict that the particles strongly avoid each other at distances
shorter than the average intraplane spacing n−1/2, which en-
ables them to reduce the system energy significantly below
the mean-field value.

IV. HIGH TO MODERATE EXCITON DENSITIES

Let us turn to our main subject, the two-plane exciton
system. Including all three correlation factors f1, f2, f12, and
solving the HNC equations for a range of densities n1, n2,
we arrived at the results presented in Fig. 4. The geometrical
and physical parameters used in the calculations are specified

195430-4



GROUND AND EXCITED STATES OF COUPLED EXCITON … PHYSICAL REVIEW B 104, 195430 (2021)

FIG. 4. Energy density given by the HNC.

in the caption of Fig. 1. Qualitatively, the behavior of the
obtained energy density e(n1, n2) resembles the predictions of
the mean-field theory. However, the energy density is greatly
reduced compared to Eq. (15) and this reduction is stronger
at small n1, n2, as in the single-plane test case, Fig. 3(b). The
effect of many-body correlations can be seen more clearly in
derivatives of function e(n1, n2), which are also more directly
connected to quantities measured in experiments. For exam-
ple, the first derivatives, i.e., the chemical potentials


α = ∂e

∂nα

, α = 1, 2, (22)

are related to the exciton photoluminescence energies. Cal-
culations of 
α and their comparison with experiments in
GaAs systems have been reported in Ref. [13]. Here we focus
on the second derivatives ∂2e/∂nα∂nβ of the energy density,
which determine another physical observable: the spectrum of
low-energy excitations.

Recall that the elementary excitations of a single-
component Bose liquid with short-range interactions are
phonons with a linear dispersion at small momentum: E (k) �
h̄vk. Our two-plane system supports two phonon modes that
represent coupled oscillations of the exciton densities. Their
velocities v j , where j = 1, 2, satisfy the condition that mv2

j
are the eigenvalues of a 2 × 2 matrix with elements

√
nαnβ

∂2e

∂nα∂nβ

. (23)

We define v2 (v1) to be the larger (smaller) of the two veloci-
ties.

Within the mean-field theory, the second derivatives in
question are equal to the plane-integrated interaction poten-
tials, e.g.,

∂2emf

∂n1∂n2
= ũ12(0). (24)

Since ũ12(0) is small, the mean-field theory predicts that the
two phonon modes are nearly decoupled. The HNC method
should give a superior approximation for the energy density,
and thus for the coupling (mode repulsion) of the sound veloc-
ities. In Figs. 5(a) and 5(b), we plotted v1 and v2 deduced from
the HNC for the same parameters as in Figs. 1 and 4. The typi-
cal magnitude of the sound velocities is a few times 106 cm/s.
For reference, the kinetic energy of a free exciton with such
a velocity is of the order of several degrees K. Figure 5(b)
shows that as n1 increases at fixed n2, the dependence of v2 on
n1 flattens out. A similar trend is observed when n2 increases
at fixed n1. This occurs because the interplane correlations

FIG. 5. Sound velocities as functions of the exciton densities.
(a) v1, the slower velocity. (b) v2, the faster velocity. (c) �v =
v2 − v1, the difference of the two.

weaken at large densities. To reveal the mode coupling, we
plotted the difference �v = v2 − v1 in Fig. 5(c). The mode
repulsion is evidenced by the appreciable value of �v at the
bottom of the deep trough running roughly diagonally through
this plot.

The full momentum dependence of particle density
excitation spectra Ej (k) can reveal further information
about correlations. The mean-field (Gross-Pitaevskii) theory
predicts

E2
mf (k) = ε2(k) + ε(k)(n1ũ11 + n2ũ22)

± ε(k)
√

(n1ũ11 − n2ũ22)2 + 4n1n2ũ2
12. (25)

On the other hand, the exact Ej (k) are determined by the
poles of the dynamic structure factor (more generally, by the
regions of the k–E space where this factor has a nonzero
imaginary part). Unfortunately, the dynamical structure fac-
tor is not available from the HNC. Following previous
work [19,22,23,26], we estimate Ej (k) from the static struc-
ture factors Sαβ (k) using the Bijl-Feynman approximation
(BFA) [35].

The BFA can be derived by diagonalizing the Hamiltonian
in a subspace of density-wave states

|kα〉 ≡ 1√
Nα

|ρ†
α (k)|0〉, (26)
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FIG. 6. Collective mode spectra. (a) Mode dispersions for n1 =
n2 = 2.0 × 1010 cm−2 computed using the BFA. (b) A simplified
sketch of the excitation spectrum in the biexciton phase. The
grayscale shading represents the true spectral weight and the solid
lines indicate the BFA.

where ρα (k) = ∑Nα

j=1 e−ik·r j
α is the density operator in plane

α. The key to the derivation are the following identities [35]:

〈kα|kβ〉 = Sαβ (k) + √
NαNβ δk=0, (27)

〈kα|H ′|kβ〉 = δαβSαα (k)ε(k), (28)

where H ′ = H − e� is the Hamiltonian with the ground-state
energy subtracted. Using these relations, one can obtain and
easily solve a 2 × 2 matrix eigenvalue problem. The result is

E1,2(k) = 2ε(k)

S11 + S22 ∓
√

(S11 − S22)2 + 4S2
12

, (29)

and a representative BFA spectrum is shown in Fig. 6(a).
This figure demonstrates that the dispersion of the two modes
remains accurately linear up to k ∼ 1/

√
n j . At larger k, the

deviations from the linearity start to be noticeable. The disper-
sions subsequently develop plateaulike structures indicative of
strong short-range correlations in the system. At still larger k,
the two modes merge together as they both approach the free-
particle limit Ej (k) → ε(k). Note that the BFA is somewhat
misleading because the exact excitation spectrum at finite k
is not confined to two dispersion lines of infinitesimal width.
It is known that the excitations instead span a continuum of
energies and the BFA shows only the center-of-gravity (the
first moment) of this continuum.

V. LOW-DENSITY PAIRED PHASE

At low densities, our HNC simulations were hindered by
the lack of convergence. We attribute this to the proximity
of the paired superfluid phase, see Sec. I, which our stan-
dard implementation of the HNC does not describe. Hence,
we can offer only a qualitative analysis of the paired phase.
We focus on the symmetric case, n1 = n2 ≡ n, where all the
excitons should pair up into biexcitons. The biexciton is a
bosonic quasiparticle with the effective mass 2m and a certain
binding energy Eb to be discussed below. For simplicity, we
suppose that no other bound exciton states exist. At ener-
gies much smaller than Eb, the system can be modeled as a
single-component Bose liquid with the repulsive interaction
potential:

ub(r) = u1(r) + u2(r) + 2u12(r). (30)

Therefore, the lowest energy excitation mode E1(k) is again
acoustic. As k increases, the dispersion of E1(k) should
change from linear to the parabolic law for mass-2m particles:
E1(k) � h̄2k2/4m = ε(k)/2. We expect this excitation branch
to gradually lose spectral weight as k increases, as showed
schematically by diminishing shading in Fig. 6(b). The mode
should become essentially extinct at E1(k) > Eb. The spectral
weight gets transferred from this mode to the aforementioned
excitation continuum. The boundary of the continuum

E (k) = Eb + h̄2k2

4m
(31)

can be viewed as a Higgs-like mode predicted to exist in
superconductors [36] and electron-hole bilayers [37]. The gap
in the spectrum is the hallmark of the paired phase.

We used two methods to compute the important energy
scale Eb. First, we treated the biexciton as a bound state of
a pair of rigid excitons confined to two separate planes. This
problem amounts to solving for the ground state of a single
particle of reduced mass μ = m/2 in a potential u12(r) where
r is the distance between the excitons forming the pair. For the
parameters used throughout this paper, we found

Eb = 0.286 meV. (32)

The structure of the biexciton within this approximation is
described by wave function ψ0(r) shown in Fig. 7(d).

The second, more rigorous approach was to solve for the
ground state of four particles, two electrons and two holes,
in a quadrilayer. For this task, we adopted a stochastic varia-
tional method (SVM) previously shown to be highly accurate
for such few-body problems [38]. The SVM result Eb =
0.345 meV was only 20% larger than that of the simplified
first method. [For simplicity, the SVM calculation was done
in the limit c → 0 in Eq. (4)].

The existence of a gapped mode can also be deduced
from the BFA. Indeed, let Sb(k) = 1 + n h̃b(k) be the structure
factor and gb(r) = 1 + hb(r) be the PCF of rigid biexcitons,
i.e., the single-species bosonic system with the interaction
potential ub(r) [Eq. (30)]. The intraplane structure factors and
PCFs of our biexciton superfluid can then be approximated by

Sαα (k) = Sb(k), gαα (r) = gb(r), α = 1, 2. (33)
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FIG. 7. Parameters of a single exciton in plane 1 interacting with
a finite density plane 2. (a) Chemical potential as a function of
exciton density from the RSPT (blue) and HNC (red). (b) Effective
mass from the RSPT (blue) and CBFT (red). (c) Interplane PCFs
for densities indicated in the legend (in the units of cm−2). (d) The
energy [dashed line, Eq. (32)] and the wave function squared (thin
line) of a biexciton bound by the interplane interaction (solid line).

In turn, the interplane structure factor and PCF are

S12(k) = Sb(k) + ρ̃0(k), (34)

g12(r) = gb(r) + n−1ρ0(r), (35)

where ρ0(r) = |ψ0(r)|2. At small k, we must have ρ̃0(k) =
1 − bk2 with some coefficient b. Equation (29) then implies
a finite energy gap E2(0) = h̄2/(2mb). The dispersion of the
two BFA branches is sketched in Fig. 6(b). The described
calculation can be easily performed by the HNC. We do not
show results of such calculations because the BFA does not
accurately predict the true gap E2(0) = Eb and it does not

describe the full distribution of the spectral weight [shading
in Fig. 6(b)]. As already mentioned, the BFA determines only
the first moments of the eigenmodes of the spectral weight
matrix.

In the next section, we examine the case where only one
plane is dilute. We show that such a regime can be studied
using methods developed for the polaron problem.

VI. LOW DENSITY IN ONE OF THE PLANES ONLY

The HNC calculations become slowly converging when
the exciton densities in both planes is low. However, if only
one plane, say 1, is dilute, so n1 � n2, then we can simplify
the problem by ignoring the interactions in that plane. The
implementation of HNC in such a regime has been considered
to study impurities in correlated Bose liquids [34,39,40]. Es-
sentially, one needs to take the n1 → 0 limit of the full HNC
equations in Sec. III. In doing so, it is convenient to redefine
S12,

S12(k) ≡ √
N2 Sold

12 (k) = n2h̃12(k) (36)

to avoid indeterminate divide-by-zero expressions. Note that
S11(k) = 1. After some algebra, the interplane induced poten-
tial w̃12(k) in Eq. (18) reduces to [34]

w̃12(k) = − (S22 − 1)(2S22 + 1)

2S2
22

S12

n2
ε(k) (37)

and the chemical potential 
1 to


1 = −n2w̃12(0) − 1

2�

∑
k �=0

S12(k)w̃12(k). (38)

In the limit of high density, we can evaluate this expression
analytically using the formulas

S22(k) � ε(k)

h̄v2k
�

[
ε(k)

2n2ũ22(k)

]1/2

� 1, (39)

S12(k) � − ũ12(k)

ũ22(k)
, (40)

which follow from Eqs. (25) and (29). We obtain w̃12(0) �
−ũ12(0) and


1 � n2ũ12(0) − 1

2�

∑
k

ũ2
12(k)

ũ22(k)
, n2 → ∞. (41)

The first term, which corresponds to a weak interplane repul-
sion, can be recognized as the mean-field result. The second
term is due to interplane correlations, which lead to an effec-
tive attraction. The linear in n2 behavior predicted by Eq. (41)
is in agreement with the numerical evaluation of Eq. (38),
which we present in Fig. 7(a). Note that 
1 is negative and
becomes more negative as n2 decreases, i.e., the interplane
attraction dominates over repulsion. Next, the transition to the
paired phase can be estimated from the criterion 
1 = −Eb,
marked by the stars in Figs. 7(a) and 7(d). It occurs at n2 ≈
0.5 × 1010 cm−2. Although these calculations can be extended
to still lower n2, we do not trust such results and so do not
include them in the plot. The onset of the exciton pairing can
also be seen from the PFC shown in Fig. 7(c). The maximum
of g12(r) at r = 0 can be approximated by the biexciton wave
function squared ψ2

0 (r) [Fig. 7(d)] multiplied by a coefficient
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that increases as n2 decreases. At the lowest density in the
plot, this coefficient is close to n−1

2 , which is consistent with
Eq. (35).

A complementary insight into the problem can be obtained
by treating plane 2 as a harmonic polarizable medium [12].
In this formulation, the excitons of the low-density plane 1
are analogous to polarons in materials with strong electron-
phonon interaction [35]. Adopting the BFA for the phonon
energies E2(k), we take the effective Hamiltonian of the
higher density plane 2 to be

H2 =
∑

k

E2(k)a†
kak, (42)

E2(k) = ε(k)

S22(k)
. (43)

Here a†
k and ak are the phonon creation and annihilation

operators, which are related to the exciton density ρ2(k) in
plane 2 via

ρ2(k) =
√

N2S22(k)(ak + a†
−k ), k �= 0. (44)

Note that Eq. (27) is satisfied. The effective Hamiltonian for a
single exciton with position r and momentum p in plane 1 has
the Fröhlich form

HF = H2 + p2

2m
+ 1

�

∑
k �=0

ũ12(k)eik·rρ2(k) + n2ũ12(0), (45)

where the last term represents the k = 0 contribution.
The two commonly studied properties of a polaron are its

energy shift and effective mass m∗. The former is equivalent
to our chemical potential 
1 [Eq. (22)]. A simple starting
point for estimating 
1 and m∗ is the Rayleigh-Schrödinger
perturbation theory (RSPT) [35]. According to the RSPT, the
self-energy 
(k) of the exciton in plane 1 is


(k) = n2ũ12(0) + n2

�

∑
q �=0

S22(q)u2
12(q)

ε(k) − ε(k − q) − E2(q)
. (46)

To compute 
1 and m∗ this self-energy is expanded near zero
momentum to the order O(k2):


(k) = 
1 − h̄2k2

2m
η + . . . , (47)

which yields


1 = n2ũ12(0) − n2

�

∑
k �=0

ũ2
12(k)

ε(k)

S2
22(k)

1 + S22(k)
, (48)

η = 2n2

�

∑
k �=0

ũ2
12(k)

ε2(k)

S4
22(k)

[1 + S22(k)]3 . (49)

The effective mass is given by

m∗ = m

1 − η
. (50)

We evaluated these expressions using the structure factor
S22(k) supplied by the single-plane HNC and plotted the re-
sults in Figs. 7(a) and 7(b). Comparing them with the more
reliable HNC calculations, we can conclude that RSPT can
be adequate only at densities above n2 ∼ 2 × 1010 cm−2. In
that regime, the mass renormalization is still less than 10%,

see Fig. 7(b). A possible improvement of the RSPT is the
Brillouin-Wigner perturbation theory. Besides 
1 and m∗, this
theory (Appendix A) also predicts some intriguing effects
such as repulsive polarons. However, it is difficult to judge
how reliable these predictions are.

Another polaron-theory-like approach for calculating the
effective mass is the correlated basis functions perturbation
theory (CBFT) [41]. As described in Appendix B, the CBFT
gives

η = 1

2n2�

∑
k

S2
12(k)

1 + S22(k)
. (51)

The corresponding m∗ as a function of n2 is shown in Fig. 7(b).
One can see that the CBFT and RSPT agree at high density.
[This can also be verified using Eqs. (39) and (40).] As n2

decreases, the two perturbation theories diverge from one
another. The CBFT predicts a steep increase of the effective
mass m∗ of the exciton-polaron at low n2, see Fig. 7(b).
From this plot, we can infer the paired-phase boundary us-
ing the criterion m∗ = 2m. The corresponding density n2 ≈
0.8 × 1010 cm−2 [marked by the star in Fig. 7(b)] is somewhat
larger than our previous estimate based on 
1 [the star in
Fig. 7(a)]. We speculate that the true phase boundary may be
located somewhere in between these two estimates.

VII. DISCUSSION

Our paper was motivated by recent experiments with e-
h-e-h quadrilayer systems [12,13] that showed evidence for
attraction of interlayer excitons. We modeled the quadrilayer
as a two-plane system of excitons with competing (attractive
and repulsive) dipolar interactions. Using two-species HNC
formalism, we calculated several zero-temperature properties
of the system, including the exciton chemical potentials, in
the strongly correlated low-density regime. Our calculations
predict a much weaker attraction effect compared to what was
observed experimentally. Within our model, the red shift of
the chemical potentials and thus the exciton photolumines-
cence energy cannot exceed the interplane biexciton binding
energy ∼0.3 meV [Eq. (32)]. On the other hand, photolu-
minescence red shifts as large as several meV have been
observed in the experiments [12,13]. Disorder effects may
play some role in explaining this discrepancy. As suggested in
Ref. [13], trapping by defects effectively enhances the exciton
mass, which in turn increases the polaron energy shift and
the biexciton binding. However, such an increase does not
seem to be large enough to fully account for the discrepancy
between the theory and experiment, and so further study of
this problem is needed.

Another possible line of future investigation of exciton
interactions and correlations is probing their collective exci-
tations. To this end, we computed the velocities of the two
gapless sound modes that should exist in our system. We also
discussed qualitatively how one of the modes should become
gapped in the dilute limit due to the formation of interplane
biexcitons. To the best of our knowledge, collective modes
of exciton condensates have not yet been discovered experi-
mentally. However, dispersing modes have been detected in
(intralayer) exciton-polariton systems [42–44] using position-
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and angle-resolved optical spectroscopy. Additionally, dis-
crete collective resonances have been observed in trapped
exciton-polariton liquids [45] using time-resolved imaging.
The latter technique may be well-suited for excitons because
of their long lifetimes, relatively slow dynamics, and one’s
ability to manipulate or shake the traps using external electric
gates [46–48]. If excitons are confined in a trap of size L,
the lowest resonant frequency should be of the order of f ∼
v/2L, where v is the mode velocity. If we take L ∼ 50 μm
and v ∼ 5 × 106 cm/s (per Sec. IV), then f ∼ 5 GHz. The
detection of such a resonant mode does not require com-
plicated ultrafast optics. Given the detailed geometry of the
trap, more accurate computations of the resonant frequencies
could be done using our results for the sound velocities as an
input.

Note that exciton-polaritons have a very small effective
mass and interact weakly, and so they do not typically form
strongly correlated liquids. In fact, the measured collective
mode dispersions are only slightly different from the free-
particle ones and the difference can be adequately described
by the mean-field theory [similar to Eqs. (11) and (25)].
In contrast, interlayer excitons are usually strongly corre-
lated, so a more sophisticated many-body theory is needed
to study them. We hope that our paper will stimulate further
experimental and theoretical work on e-h and e-h-e-h exciton
systems.
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APPENDIX A: BRILLOUIN-WIGNER
PERTURBATION THEORY

In this variant of the perturbation theory, the self-energy of
the particle in plane 1 is energy-dependent, i.e., not restricted
to be on shell,


(k, E ) = n2

�

∑
q

S22(q)u2
12(q)

E − ε(k − q) − E2(q) + i�
, (A1)

where � > 0 is a phenomenological damping parameter. The
renormalized dispersion E (k) of this particle is found from the
maxima of the spectral function

A(k, E ) = −2 Im

[
1

E − ε(k) − 
(k, E )

]
. (A2)

As an example, we performed the calculation for n2 = 0.5 ×
1010 cm−2, k = 0, and � = 0.05 meV. For the nominal inter-
layer interaction strength, we find a strong peak [Fig. 8(a)],
whose location is near 
1 of the RSPT. Additionally, at higher
energies there is a hint of another weak peak. The additional
dispersion branch associated with this secondary peak is anal-
ogous to repulsive polarons in a system of excitons interacting
with a Fermi sea of electrons [49]. To make the repulsive
polaron more apparent, we repeated the calculation with the
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FIG. 8. Spectral functions for the particles in the dilute layer for
the (a) nominal, (b) ten times enhanced, and (c) 40 times enhanced
interlayer interaction strength.

interaction potential u12(r) artificially enhanced by a factor of
20 and 40, see Figs. 8(b) and 8(c), respectively.

APPENDIX B: CORRELATED BASIS FUNCTIONS
PERTURBATION THEORY

Let |0〉 and |1〉 be the ground states of the system con-
taining, respectively, zero and one excitons in plane 1. The
energy difference between these states is the self-energy of
the exciton in plane 1 at zero momentum, 
1 = 
(0). The
HNC results for 
1 have been discussed in Sec. VI. To obtain
the exciton effective mass, we need to know the self-energy

(k) at finite momenta. Following previous work [41], we
first consider a set of functions that are direct products of the
density wave states in the two planes:

|
k,q〉 = 1√
N2

ei(k−q)·rρ†
2 (q)|1〉, (B1)

We refer to the q �= 0 functions as the one-phonon states
and the q = 0 function as the zero-phonon state. Next, we
orthogonalize the former with respect to the latter:

|k, q〉 = |
k,q〉 − N−1
2 |
k,0〉〈
k,0|
k,q〉
N 1/2

k,q

, (B2)

Nk,q = 〈
k,q|
k,q〉 − N−1
2 |〈
k,0|
k,q〉|2, (B3)
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where N2 = 〈
k,0|
k,0〉 and Nk,q are the normalization fac-
tors. Note that

〈
k,q|
k,q〉 = S22(q), (B4)

〈
k,0|
k,q〉 = S12(q). (B5)

Ignoring the terms of order O(N−1
2 ), the matrix elements of

the Hamiltonian in this basis are

〈k, q|H ′|k, q〉 = ε(k − q) + E2(q), (B6)

〈k, 0|H ′|k, q〉 = − S12(q)√
N2S22(q)

h̄2

2m
(k · q). (B7)

The orthogonalization of the basis is important to get Eq. (B7).
The lowest-order perturbative correction to the energy of
|
k,0〉 state is


(k) − 
1 =
∑
q �=0

|〈k, 0|H ′|k, q〉|2
ε(k) − 〈k, q|H ′|k, q〉 . (B8)

Expanding this expression to the order O(k2), as in Eq. (47),
we recover Eq. (51) for the mass renormalization parameter
η. The CBFT can also be done [41] Brillouin-Wigner style by
replacing ε(k) with E in Eq. (B8) but we have not explored
that.
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