
Lawrence Berkeley National Laboratory
Recent Work

Title
Application of Semiclassical Methods to Reaction Rate Theory

Permalink
https://escholarship.org/uc/item/8sf5p0wq

Author
Hernandez, R.

Publication Date
1993-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8sf5p0wq
https://escholarship.org
http://www.cdlib.org/


LBL-34925 
UC-411 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

CHEMICAL SCIENCES DIVISION 

Application of Semiclassical Methods 
to Reaction Rate Theory 

R. Hernandez 
(Ph.D. Thesis) 

November 1993 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

---;0 
0 ...... , ..., ..., 0 

0 )> 
~c z _, 
:( Ill 0 
II) r+o 
II) ID"'' 
A" VI < 
VI ---
m _, 
0. 
Ul . 
U1 
tSI 

r 
r m ...... r 
t:rO I ..., o. w 
111"0 ~ 
>"< 10 
"< 

r\> 
N . U1 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor­
nia, nor any of their employees, makes any warranty, express or im­
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac­
turer, or otherwise, does not necessarily constitute or imply its en­
dorsement, recommendation, or favoring by the United States Gov­
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur­
poses. 

Lawrence Berkeley Laboratory is an equal opportunity employer. 

i 

•' 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



··~ 

Application of Semiclassical Methods 

to Reaction Rate Theory 

Rigoberto Hernandez 
Ph.D. Thesis 

Department of Chemistry 
University of California 

and 

Chemical Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

November 1993 

LBL-34925 

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, 
Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, 

and in part by the National Science Foundation. 



Application of Semiclassical Methods 

to Reaction Rate Theory 

Copyright© 1991 

by Rigoberto Hernandez 

The U.S. Department of Energy has to right to use this thesis for any purpose 
whatsoever including the right to reproduce all or any part thereof 

@ recycle:! paper 



Abstract 

Application of Semiclassical Methods 

to Reaction Rate Theory 
by 

Rigoberto Hernandez 

Doctor of Philosophy in Chemistry 

University of California at Berkeley 

Professor William H. Miller, Chair 

1 

This work is concerned with the development of. approximate methods to 

describe relatively large chemical systems. This effort has been divided into two pri­

mary directions: First, we have extended and applied a semiclassical transition state 

theory (SCTST) originally proposed by Miller* to obtain microcanonical and canon­

ical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, 

i.e. most reactions. Second, we have developed a method to describe the fluctuations 

of decay rates of individual energy states from the average RRKM rate in systems \ 

where the direct calculation of individual rates would be impossible. Combined with 

the semiclassical theory this latter effort has provided a direct comparison to the 

experimental results of Moore and coworkers. t 

In SCTST, the Hamiltonian is expanded about the barrier and the "good" 

action-angle variables are obtained perturbatively; a WKB analysis of the effectively 

one-dimensional reactive direction then provides the transmission probabilities. t The 

advantages of this local approximate treatment are that it includes tunneling effects 

*W. H. Miller, Faraday Discussions Chem. Soc. 62, 140 (1977). 
tw. F. Polik, D. R. Guyer and C. B. Moore, J. Chem. Phys. 92, 3453 (1990). 
1W. H. Miller, R. Hernandez, N. C. Handy, D. Jayatilaka and A. Willetts, Chem. Phys. Lett. 

172, 62 (1990). 
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and anharmonicity, and it systematically provides a multi-dimensional dividing sur­

face in phase space. The SCTST thermal rate expression has been reformulated pro­

viding increased numerical efficiency (as compared to a naive Boltzmann average), 

an appealing link to conventional transition state theory (involving a "pre-reactive" 

partition function depending on the action of the reactive mode), and the ability to 

go beyond the perturbative approximation.§ 

In addition, the distribution of unimolecular decay rates at threshold en­

ergies to dissociation has been modeled by describing the quasi-bound states ·as 

strongly-mixed. The possible existence of globally conserved symmetries - which 

would break this ansatz - is included by treating each symmetry block of the Hamil­

tonian separably and assuming the ansatz for each symmetry manifold. Use of SCTST 

to describe the reaction dynamics converts the model into a predictive theory depend­

ing only on the assumed dynamical symmetries. Comparison to the experimental 

decay rate distributions for 50 for~aldehyde dissociation 11 has revealed the presence 

of strong-mixing between the quasi-bound states and has further suggested that an 

electric field can break the C8 symmetry of the dissociation.ll 

§R. Hernandez and W. H. Miller, Chem. Phys. Let. 214, 129 (1993). 
11W. F. Polik, D. R. Guyer and C. B. Moore, J. Chem. Phys. 92, 3453 (1990). 
IIR. Hernandez, W .. H. Miller, C. B. Moore and W. F. Polik, J. Chem. Phys. 99, 950 (1993). 
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Chapter 1 

Statistics and Mode-Specificity 

In the treatment of unimolecular dissociation there has been a long stand­

ing debate with regards to the mode-specific - state-specific - chemistry of highly 

excited molecules. The two competing standard views have been the Slater theory3 

and the RRKM (Rice, Ramsberger, Kassel and Marcus) theory.4- 11 In the Slater 

theory, the vibrational modes are assumed to be harmonic, and the rate is the fre­

quency that a combination of these vibrations achieves a critical extension.3•
12 In the 

RRKM theory, one assumes that intramolecular vibrational redistribution (IVR)13 is 

fast compared to the dissociation rate and consequently all energy-allowed vibrational 

states are effectively involved in the dynamics. The rate is obtained as the ratio of the 

partition functions at the barrier - i.e. that of the activated complex - to that at 

the quasi-bound reactant well. The primary advantage of the RRKM theory is that it 

can readily include anharmonicity and this has been seen to be important in chemical 

reaction dynamics.14 Its disadvantage is that it treats the dynamics statistically, and 

can be in error if there is mode-specific behavior. 

The natural questions to ask are whether or not mode-specific behavior 

occurs, and if so, what is the proper theory with which to treat it? The answer 

to the first question is that mode-specificity does occur, but it can be seen only in 

experiments with very detailed state preparation and/or observation. At the most 

rigorous level of detail the answer to the second question is "simple": write down the 

Schrodinger equation - within the Born-Openheimer approximation, for example -
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and solve the scattering problem; the rate is obtained from the S-Matrix by averaging 

over all the reactant and product quantum numbers which are not selected by the 

experimental apparatus and Boltzmann averaging over the energy.15 Even if one re­

duces the cost of the calculation by demanding that the dynamics is solved only to the 

extent that one directly obtains averaged quantities, the largest exact calculation that 

has been performed to date is a bimolecular reaction of a four atom system. 16 What 

is needed, then, are approximate theories which readily provide dynamical quantities 

with reasonable accuracy for large systems. 

In this work, we have developed and extended a semiclassical theory which 

provides averaged microcanonical and canonical rates in good agreement with exact 

theories. Although no explicit applications to truly large systems- e.g. 5 to 50 atom 

systems - are presented, the method is certainly applicable to these systems. The 

most detailed quantities that this semiclassical transition state theory (SCTST) pro­

vides are the transmission probabilities through the states of the activated complex. 

While these quantities are "mode-specific," they refer to the quantum states of the 

activated complex and not to the quantum states of the reactants or products probed 

in the experiment. In order to use this method to consider the mode-specificity of re­

actant states, one could use a vibrationally adiabatic approximation17- 20 to connect 

the quantum states; however this approximation can be quite poor in high energy 

regimes where IVR between the quantum states is rapid. 

. An alternative approach is to treat the dynamics in the reactant region sta­

tistically while including the internal dynamics of the activated complex through the 

use of the SCTST. The random matrix f transition state theory (RM/TST) that we 

have developed builds upon this philosophy in order to describe the probibility distri­

butions of decay rates at energies near threshold. Comparison to the experimentally 

obtained state-specific decay rates21 of formaldehyde suggests that this theory can 

indeed account for the fluctuations of the decay rates away from the average transi­

tion state rate. The fact that a theory which includes statistical and mode-specific 

components provides a good description of this process suggests that these concepts 

are not entirely incompatible. 
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1.1 Semiclassical Transition State Theory 

This section· provides a brief review of the fundamental concepts of semi­

classical mechanics and transition state theory which will be assumed in this work. 

In addition, a brief review of the semiclassical transition state theory to be developed 

in Chapters 2 to 4 is provided at the end. No attempt is made to make the citation 

list complete; ·the cited works are simply pointers to more thorough accounts. 

1.1.1 Semiclassical Mechanics 

Several excellent references exist describing the semiclassical treatment for 

bound state problems22
- 26 and that for systems with arbitrary boundary condi­

tions which includes scattering events of relevance to the discussion of chemical 

reactions. 27
- 32 In this short review, we restrict attention to scattering systems in 

which the dynamics is dominated by a single barrier and at energies where tunneling 

is important; the remainder of this work will almost exclusively be concerned with 

describing this regime. 

WKB 

By far the most common semiclassical method is the WKB method devel­

oped by Wentzel, Kramers and Brillouin. 33- 36 A rigorous derivation of the time­

independent £orin of this approximation_ begins by rewriting the wavefunction in the 

WKB form, 

1/;(?) = exp[iS(?)/h]. (1.1) 

This expression diverges at classical turning points in the limit as n -+ 0, and so 

predicts an infinite density at these points whereas classically the density is zero at 

these points. 28 The difficulty has emerged because Eq. (1.1) is nonanalytic in the 

region of n = 0, and Berry and Mount resolve this issue by recognizing that this limit 

is not quite the same as the classical limit, and hence define then-+ 0 of Eq. (1.1) as 

the semiclassicallimit.28 Substituting Eq. (1.1) into the time-independent Schrodinger 
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equation leads to the following nonlinear equation in the complex quantity, S(T): 

iii 1 
--'V2 S(T) + -(\7S(f})2 + V(r) =E. 

2m 2m 
(1.2) 

where E is the energy at which the stationary solution is obtained. At this stage S(r) 

is expanded in powers of li, 

1i· 
S(T) = So(r) + (-:-)St(r) + 0(1i2

), 
z 

(1.3) 

where 50 and 5 1 are independent of li. Using the abov.e expansion one can easily see 

that the 0(1i0
) equation is the Hamilton-Jacobi equation37 for S0 (T), 

1 
-(\750 (T))2 + V(T) =E. 
2m 

and at 0(1i1
) one obtains the amplitude-transport equation: 

(1.4) 

(1.5) 

which has the classical interp~etation of a continuity equation in the density, 151 12 • 

In one dimension, the independent WKB solutions of the Schrodinger equa­

tion are thus 

(1.6) 

These solutions diverge at caustics which, for this one-dimensional case in the x­

representation, reduce to the classical turning points: Xtp such that p(Xtp) = 0. 

In order to write down the general solution for a one dimensional barrier problem, 

for example, one needs to obtain a connection formula between the coefficients of 

the solution on the left to those on the right of each such caustic. A particularly 

elegant approach to this is to switch representations, e.g. x to p, transform the 

solutions on either side using the stationary phase approximation of the Fourrier 

transform (= ( -21ri1i )-112 J dx e-ixpf1i], and match these to the WKB solution in the 

p-representation. 38 The result of such a calculation for the transmission probability 

IS 

P(E) = e-29
, (1.7) 
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where the barrier penetration integral f) is defined by 

f) = k ll~r p(x')dx'l ' (1.8) 

where XI and Xr are the left and right caustics, respectively. This result is valid 

· only for energies well below the barrier height in which the barrier is wide enough to 

support a WKB wave equation between the turning points. 

Uniform Approximations 

In order to extend the result of the WKB approximation, the method of 

comparison equations is used. 39 One first constructs a model or comparison equation 

which contains the essential physics of the Schrodinger equation for the problem of 

interest, and which is also mathematically tractable. If one can then obtain a transfor­

mation which exactly or approximately transforms the correct Schrodinger equation 

into the the comparison equation, then the solution that is desired is obtained by 

using the corresponding transformation of the solutions of the comparison equation. 

This method is ideally suited for the treatment of tunneling because the solution of 

an inverted parabolic barrier is known, and hence one can compare the exact poten­

tial to the parabolic barrier in order to obtain the .connection formula between the 

solutions across the barrier.39 The result is, (see, e.g., Ref. 28) 

(1.9) 

where f) is defined as in Eq. (1.8): Because this solution is correct for all energies, 

and not just below the barrier, it is often referred to as the uniform semiclassical 

approximation. In particular, an expansion of the uniform approximation in the 

tunneling regime results in the WKB result, Eq. (1.8), which suggests that this is the 

correct extension of the WKB theory. 

Although the semiclassical treatment of one-dimensional tunneling is evi­

dently well advanced, an open problem is to find equally good theories to describe 

multidimensional tunneling for nonseparable systems. (If the tunneling direction is 

separable from the rest, then the problem can be treated as one-dimensional with no 
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loss of generality, and hence is well understood.) If the Hamiltonian is chaotic then 

the dynamics may be solved through the use of Gutzwiller's trace formula for the 

Green's function. 40 The situation in which the Hamiltonian is not fully chaotic and is 

also non-separable is much less understood. One attempt at constructing a semiclas­

sical theory for non-separable integrable Hamiltonians was proposed by Miller,41 in 

which he takes advantage of the integrability condition which requires the existence 

of good action-angle variables, and obtains a solution by quantizing the good action 

variables. This method will be described more fully in Sec. 2.2.1, and it forms the 

basis for the semiclassical methodology developed in this work. 

1.1.2 Transition State Theory 

The foundations of transition state theory (TST) were developed as early 

as 1938.42 Remarkably, Wigner43 understood from the outset the three primary as­

sumptions of transition state theory: 

1. The electronic and nuclear motions are treated through the use of the Born­

Oppenheimer approximation and the nuclear motion proceeds on a single adi­

abatic potential energy surface. 

2
1

• The nuclear motion is treated classically, or through the use of an approximate 

quantum mechanics. 

3. No dynamical recrossings through the transition state (surface) are permitted. 

The first of these assumptions is ubiquitous in chemical physics and will not be 

explored further in this work. (However, see Ref. 44 for non-adiabatic treatments of 

collision dynamics.) The remaining two assumptions are deeply connected and have 

been the subject of the advances that have occurred since the inception of transition 

state theory; several excellent reviews of these advances are available. 45
-

49
•
15 

In order to explore the stronger.- classical -version of Wigner's second 

condition, we first recall the exact classical canonical - or thermal - rate from 
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reactants a to products b, 

(1.10) 

where Qa is the reactant partition function, and the microcanonical cumulative reac­

tion probability is 

(1.11) 

where f(~) is a field over the coordinate space and it takes the value zero on the 

dividing surface between reactants and products, i.e. the transition state surface, 

and Xa ..... b(E, 2) contains all of the dynamical information: 

_ { 1, if ~(t --t -oo) is in reactant region a; 
Xa ..... b(P, q) = . 

- - 0, otherWise. 
(1.12) 

To obtain the ·transition state theory result, one need only adopt Wigner's third 

condition, and the infinite-:-time dynamics needed to obtain Eq. (1.12) is reduced to 

the short-time - i.e., zero-time - result:45 

(1.13) 

where h is the Heaviside function which is one for positive arguments and zero oth­

erwise. Thus TST will be exact if trajectories do not return to the transition state; 

Lafferty and Pechukas50 made this condition more precise for collinear reactions by 

presenting the geometric condition on the transition state surface which ensures that 

TST is exact below a given energy. 

While the rate, Eq. (1.10), is invariant with respect to the choice of the 

transition state, the TST approximation is not. Here use is made of a variational 

principle which ensures that the optimal dividing surface is that for which the rate 

is minimized. 51
•
52

•
48 The use of this principle is tantamount to minimization of the 

number of recrossings and thus improves the accuracy of Wigner's third assumption. 

The result is called a variational transition state theory (VTST), and can be further 

classified depending on whether the optimization of the thermal rate is performed 

using the same transition state surface for each energy - canonical VTST ( CVT) -
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or whether transition states are optimized at each energy - microcanonical VTST 

(ttVT).48 The latter is always smaller than the former and hence more accurate in 

accord with the variational principle, but it involves more computation time. 

Pechukas and Pollak have further shown that TST is exact if there exists a 

single periodic orbit dividing surface (PODS).45•53- 55 The PODS is defined as a peri­

odic orbit which fills a dividing surface separating the reactant and product regions. 

If there are several such PODS, then the optimal choice of the variational transition 

state is still a PODS, and in this case TST is not exact.55 

A natural extension of this TST or VTST is to extend f to be a field over 

phase space - i.e. the space of coordinates and momenta. 52 This generalization is 

necessary if the expression is to be invariant with respect to transformations of the 

phase space coordinates, and it is this generalized TST which will be referred to as 

TST throughout this work. (Since the fundamental objects in semiclassical mechanics 

live in phase space, this generalization is also a necessary prerequisite for the use of 

semiclassical quantization.) 

The unresolved issues in TST primarily involve its application to quantum 

processes - i.e. the relaxation of Wigner's second assumption - such as reactions 

involving light atoms, e.g., hydrogen. 56•38•45•57 Given that a quantum particle cannot 

be confined to a single phase space point, it is not immediately obvious how to imple­

ment the zero-time assumption within a quantum framework. 45•15 Even in the most 

ingenious quantum applications in which one uses optical potentials - or absorbing 

boundary conditions (ABC) - in order to restrict the size of the potential energy 

surface needed for the rate calculation, one is still required to solve the dynamics 

exactly.15 Thus, in order to maintain the spirit of Wigner's third assumption, one 

needs to treat the mechanics at best semiclassically.38 In standard practice, the clas­

sical variational principle is used to optimize the transition state and quantum effects 

are included through the semiclassical treatment of an effective one-dimensional path 

projecte'd from the multidimensional coordinate space'. 58•59 The optimal choice .of this 

one-dimensional path is, unfortunately, not clear and many ad hoc choices of the path 

have been tried. 48 · 
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1.1.3 SCTST 

In this work, we will further develop a semiclassical transition state the­

ory (SCTST) develped by Miller41 which incorporates the non-separability of the 

Hamiltonian in the region of the transition state.46 Following the spirit of Keck's gen­

eralized TST,52 the transition state is obtained not by variational optimization but by 

calculating perturbatively the approximate good action-angle variables of the local 

Hamiltonian. (Note that this surface need not be constructed explicitly in this for­

malism in order to calculate transmission probabilities or rates.) The SCTST avoids 

the indeterminacy of an effective path to be treated semiclassically but it introduces 

errors due to the perturbation theory. 

This theory has further suggested a new semiclassical thermal rate expres­

sion which focuses attention on the calculation of a reduced dimensional Hamiltonian 

for the activated complex. The possibility that the vibrational modes may be cou­

pled strongly and hence not be in a perturbative regime can be treated within this 

formalism by the construction of a mixed-diagonalization procedure to be developed 

in Chapter 4. 

1.2 Random Matrix / Transition State Theory 

Rather than focus on intrinsically non-RRKM behavior, here we are inter­

ested in the situation in which the chemical system agrees with the RRKM rate on the 

average, but that each state-selected decay rate does not. Stopping short of directly 

computing these values, the question which we will explore is how to describe the 

energy dependence of the fluctuations of these rates about the RRKM average. As in 

the previous section, the established theories are first described with a focus on the 

presentation of terminology and results which will be useful in the later discussion of 

the RM/TST theory in Chapters 5 and 6. A prelude of the RM/TST is also provided 

in Sec. 1.2.4. 
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1.2.1 The x2 Distributions 

The established theory has used the x2-family of distributions to describe 

the experimentally observed decay rate distributions. The members of this family as 

parametrized by v are: 

{1.14) 

where G is the gamma function, and I' is the average rate.60 In the literature, v has 

alternately been called the number of degrees of freedom or the effective number of 

channels, depending on whether the emphasis is on statistics or physics, respectively. 

Here, we adopt the latter convention since v is allowed to be non-integral and it will 

be seen that it can be interpreted as the number of channels effectively available to 

reaction. The moments of this distribution can be readily obtained: 

00 

(rn) = j di' rn Pv(f) 
0 

I'G(n + ~) 
(~r G(~) . 

{1.15) 

From this result it is evident that v can be expressed directly in terms of the moments: 

2f'2 
v = (f2)- f2 . {1.16) 

and this expression has often been used to parametrize observed distributions.61
•
62 

This procedure is an approximate way to choose an optimum member of the x2 

family, avoiding the direct computation in which one minimizes the x2 error. 

1.2.2 Maximum-Likelihood Method 

In their study of nuclear energy level widths or decay rates, Porter and 

Thomas63 motivate the choice of the x2 family of distributions by the use of a 

maximum-likelihood analysis.64 To obtain an optimum estimate, Pe{r), of a dis­

tribution one maximizes the log likelihood, 

N 

l(Pelfl, ... ,rN) =- 'ElnPe(ri), (1.17) 
i=l 
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where {r;} are a set of independent identically distributed observed rates, subject 

to smoothing constraints which guarantee the existence of a non-trivial maximum. 65 

In the analysis of Porter and Thomas,63 they consider the continuous case within 

the assumption that the frequency of a given observable, r, is correctly given by the 

estimate, Pe(r), i.e., one maximizes the functional, 

S[Pe(·)] =- j dr Pe(r)lnPe(r), (1.18) 

subject to constraints which depend on the observed data. The x2 family of distri­

butions results from the following choice of constraints: 

j di' r Pe(r;) - f' , 

j dl'In(r)Pe(r;) - (In(r)) . 

Since a x2 distribution satisfies 

where 

F(z) = G(z)d~~z) -lnz, 

(1.19a) 

(1.19b) 

(1.20) 

(1.21) 

it is apparent that the procedure to obtain v for a given set of independent identically 

distributed observables is to solve the transcendental equation: 

N 

F(~) = ~ L:In(r;Jr). (1.22) 
i=1 

Note that if one were to require the second moment instead of (lnx) as a constraint 

in a maximum-likelihood analysis, the resulting distribution would not be a x2 dis­

tribution. Thus the use of the second moment to obtain the best fit x2 distribution 

for the data is incompatible with the maximum-likelihood method. 

A particularly useful result66 ·of the maximum likelihood analysis results 

from the observation that v is related to the Lagrange multiplier for the constraint 

( 1.19b), and that this can be turned around to obtain an error estimate on v. The 

uncertainty in v is:67•68 

2s 
c5(v) ~ ~[In(r jr)] ' (1.23a) 
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82 - ~J;(fl!;/!;)2' 
j 

(1.23b) 

fi is the frequency of a given discretized observable j, and fJ fi is the difference be­

tween fi and the probability of seeing that observable given a x2 distribution with 

v effective channels. The principal disadvantage of this formula is that in order to 

calculate s, one needs to use a density estimate to obtain fi from the independent 

identically distributed observables {ri}, and so the result depends strongly on the 

parametrization of the density estimate. Although there exist many sophisticated 

density estimates,65 in practice68 one estimates the density by binning the data into 

a histogram with each j in Eq. (1.23) referring to a given bin. Note that from the 

comments above the error estimate in Eq. (1.23) is only appropriate if one obtains 

v using Eq. (1.22), and consequently the v. obtained from the moments, Eq. (1.15), 

does not have a prescribed error estimate. 

The x2 family of distributions have been used to model nuclear energy 

level statistics successfully by several authors63•69•70•61 and its application to atomic 

transitions dates back to 1962.71 In applications to chemical physics, Levine and 

coworkers72
•
68

•
73 have actively pursued the interpretation and analysis of reaction rates. 

using a similar analysis. Because of parallels with the information theoretic entropy, 

Levine72
•
68 calls the functional in Eq. (1.18) an entropy, and uses the term maximum 

entropy instead of maximum likelihood. Different constraints on the maximization 

of the entropy functional provide different dynamical results, and with subsequent 

comparison to experimental observations, these·have been used to obtain information 

regarding the symmetries in the observed dynamics. 72•68 

1.2.3 Random Matrix Theory 

An alternative approach for obtaining a statistical description of highly ex­

cited decajring states was proposed by Wigner.74 Several excellent reviews75
- 78•61 •79 of 

this random matrix theory exist and here we concentrate only on those results which 

·~ 
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are pertinent to the discussion of the decay rate distributions. The philosophy behind 

this approach was eloquently proposed by Dyson: 75 

[ ... ] It is improbable that level assignments based on shell structure 
arid collective or individual-particle quantum numbers can ever be pushed 
as far as the millionth level. It is therefore reasonable to inquire whether 
the highly excited states may be understood from the diametrically oppo­
site point of view, assuming as a working hypothesis that all shell structure 
is washed out and that no quantum numbers other than spin and parity 
remain good. The result of such an inquiry will be a statistical theory. 
The statistical theory will not predict the detailed sequence of levels in 
any one nucleus, but it will describe the general appearance and th~ de­
gree of irregularity of the level structure that is expected to occur in any 
nucleus which is too complicated to be understood in detail. 

[ ... ] What is here required is a new kind of statistical mechanics, in 
which we renounce exact knowledge not of the state of a system but of the 
nature of the system itself. We picture a complex nucleus as a "black box" 

·in which a large number of particles are interacting according to unknown 
laws. The problem then is to define in a mathematically precise way an 
ensemble of systems in which all possible laws of interaction are equally 
probable. 

A natural question to ask then is how one chooses the ensemble77 and this will be 

reviewed below. Of more immediate relevance for the application to chemical sys­

tems is the question of whether this statistical view of the nuclear energy levels is 

appropriate for molecular energy levels. 

On first inspection, one might argue that, in principle, the molecular Hamil­

tonian is known, and consequently there is no need to represent it by some ad hoc 

ensemble of Hamiltonians. While this may be true, it is also the case that for rea­

sonably large molecules the cost of computing all of the vibrational states at high 

energies is prohibitive. Moreover, in a standard Born-Oppenheimer treatment, the 

potential energy surface would be sufficiently inaccurate in this high energy regime 

that the computed energy levels would be incorrect even if one were to attempt such 

a calculation. Thus, the need for a statistical theory is as relevant to molecular prob­

lems as it is to nuclear problems. But what is the analogue of "the large number of 

interacting particles in the complex nucleus" in the molecular system? In practice this 

is interpreted as the set of zeroth order states which are determined by diagonalizing 
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an approximate Hamiltonian whose exact nature is unimportant, as the statistical 

results should not depend on it. The coupling between these zeroth order states as 

determined by the true Hamiltonian provides the unknown interaction between the 

zeroth order states. Given that the results of this formalism for various spectral mea­

sures - e.g., the nearest neighbor distribution of the energy spacings, P(s), or the 

variance of the number of levels in a given energy interval, ~2 (E) - have provided 

good agreement with observed results for various chemical systems,80- 84•21 it does 

therefore seem that random matrix theory is an appropriate model to use to describe 

molecular systems in high energy regimes; the interpretation of this agreement with 

regards to quantum chaos and IVR is still very much an open question. 85- 89•79•80•90 

Ensembles 

The three standard ensembles used in Random Matrix Theory are the Gaus­

sian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian 

symplectic ensemble (GSE).74
•
75

•61 The simplest classification of these ensembles was 

shown in Dyson's threefold way in which their algebra is related to real, complex 

and quaternion numbers, respectively.91 The GOE is the ensemble of d-dimensional 

orthogonal matrices and it necessarily includes all bound state finite dimensional 

Hamiltonians, i.e., their matrix representation. in a given· finite dimensional basis. 

The probability that a given Hamiltonian is a member of the GOE is the joint proba­

bility distribution of its independent matrix elements where the diagonal elements are 

Gaussian distributed with variance .fijd, and the off-diagonal elements are Gaus­

sian distributed with variance .jlid. The GUE is an ensemble with complex unitary 

matrices and corresponds to a system with no time reversal; for example, it includes 

the effective Hamiltonians of metastable states whose imaginary part corresponds to 

decay. The GSE is the ensemble of d-dimensional symplectic matrices - i.e., those 

which commute with the symplectic matrix, 

( 0 I) J= 
-I o 

(1.24) 

where I is the d/2-dimensional identity matrix- and physically corresponds to sys­

tems which have time-reversal but not rotation invariance, e.g., relativistic Hamil-
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tonians. In the present work, only quasibound real orthogonal Hamiltonians will be 

treated statistically, and as such the GOE is the one which will receive the most atten­

tion. (Note, though, that the full Hamiltonian for the decay process is complex and 

if it were to be treated entirely statistically, the GUE would be a more appropriate 

choice for the ensemble.) 

The primary advantage of the standard ensembles is their mathematical 

tractability; their disadvantage is that the symmetry requirements are minimal and 

consequently there is little specification of the particular symmetries of a chosen 

system. 92 It is surprising that given this lack of specification of the system in the 

standard ensembles, it nonetheless provides spectral measures in excellent agreement 

with those of a large majority of physical systems.61 Motivated by the goal to attain 

more physical insight from spectral measures, however, much of the work in this field 

has been focused on the development of new ensembles whose restrictions correspond 

to further symmetries of a system; the review in Ref. 61 and several references therein 

describe various choices of these ensembles. In particular, Leitner and coworkers93
•
94 

have defined several ensembles in which coupling between different states is treated 

at different orders and so can account for partial breakdown of dynamical quantum 

numbers. While the RM/TST to be described in Chapter 5 only accounts for the 

possibility that quantum numbers are either entirely conserved or strongly mixed, the 

possibility of relaxing this assumption in the calculation of decay rate distributions 

will be discussed in Chapter 7, within the context of Leitner's ensembles. 

Decay Rate Distributions 

The decay rate from a given quasi-bound state i to a final continuum state 

f is 

(1.25) 

where T is the transition operator representing the dynamics of the decay. If T is a 

projection operator onto a single quantum state- i.e., the decay channel,95
- then 

the probability distribution of r after averaging over· i is a x2-distribution with 1, 2 

or 4 degrees of freedom depending on whether the statistics of the quasi-bound states 



16 CHAPTER 1. STATISTICS AND MODE-SPECIFICITY 

i are treated as those of the GOE, GUE or GSE, respectively.77
•
61 Arbitrary integer 

values of v can be obtained using the GOE to describe the quasi-bound states, but 

now considering a decay process in which several channels n are equally open. How 

exactly one considers deviations from the x2:...distributions through the use of a non­

statistical and a priori treatment of the transition strengths of these decay channels 

is the subject of the RM/TST distributions to be developed in this work. 

1.2.4 The RM/TST Decay Rate Distributions 

The question which was suggested by the results of Polik et al.96•
21 is: Can 

one find a theoretical basis for describing decay rate distributions which differ from 

the x2 distributions but whose underlying spectral energies are in agreement with the 

GOE? In a study of decay rate distributions for systems with two coupled surfaces, 

Cederbaum and coworkers97 use a less simplistic model of the decay than that sug­

gested by Eq. (1.25), but the energy spectrum also differs from the GOE. Thus Polik 

et al.98•99 suggest a model in which the quasi-bound (or metastable) states obey GOE 

statistics, the decay rate for each of these metastable states is calculated within a first 

order treatment (appropriate when the widths are resolved), and the probability dis­

tribution obtains by averaging over the rate of each metastable state weighted by its 

GOE density. As will be shown in Chapter 5, this model includes the x2 distributions 

as a limiting case but, in general, can be quite different from the x2 family. 

Encouraged by the fact that this model can be fit to the experimental his­

tograms with excellent agreement,l00 in Chapter 5 we proceed to use a semiclassical 

model to describe the decay through the barrier in order to obtain a predictive theory 
/ -

for the distributions. Furthermore this model readily allows for the possibility that 

there may exist dynamical symmetries which are obeyed throughout the dissociation. 

In order to satisfy the GOE requirement that the states in the ensemble are labeled 

by all known symmetries, one simply separates the Hamiltonian into its block di­

agonal form (labeled by the appropriate symmetry quantum numbers) and uses the 

single symmetry analysis on each block. The resulting distributions are no longer 

necessarily unimodal and this further extends the family of allowed distributions. 
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Chapter 6 presents an analysis of the D2CO dissociation (decay) rate distri­

bution observed by Polik et al.96
•
21 including a treatment of angular momentum. Use 

of semiclassical transition state theory provides an estimate of the barrier height to 

dissociation. The only adjustable "parameter" in the RM/TST distributions is the 

choice of dynamical symmetries which are assumed to be conserved throughout the 

dissociation; comparison of the theory, given each of these choices, to the experimental 

results then determines the dynamical symmetries of the physical system. 

1.3 Summary 

The semiclassical transition state theory (SCTST) is developed in this work 

affords the possibility to include quantum effects in large systems, albeit only approx­

imately. In particular, the SCTST plays a crucial role in the use of RM/TST theory 

to determine a priori probability distributions of the D2 CO decay rates at energies 

near the dissociation threshold. The remarkable agreement between the RM/TST 

distributions and the experimental results suggests that in at least some molecules, 

state-specific behavior can be described within quasi-statistical theories . 

• 
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Chapter 2 

Semiclassical Transition State 

Theory- The ''Standard'' Model 

2.1 Introduction 

The thermal rate constant for a chemical reaction can be conveniently ex­

pressed as a Boltzmann average (or Laplace transform) of the cumulative reaction 

probability (CRP) N(E),1o1,1o2,38 

00 

k(~) = (21rnQr t 1 j dE e-/3E N(E) , (2.1) 
Eo 

where Qr is the reactant partition function (per unit volume), Eo is the quant11:m me­

chanical reaction threshold below which N(E) is zero, and (3 = (kT)- 1 is proportional 

to the inverse temperature as usually defined. The microcanonical rate, typically of 

most interest for unimolecular reactions, is also given in terms of the CRP as 

k(E) = [27r1ipr(E)r1 N(E) , (2.2) 

where Pr is the reactant density of states (per unit energy). 

Considerable effort has been focused recently on developing numerically ef­

ficient methods to evaluate the CRP exactly, 15 but at a much simpler level it can 

be evaluated through the implementation of a semiclassical transition state theory 
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(SCTST) approximation41 for the CRP.103•104 Because SCTST is much easier to im­

plement than more rigorous numerical approaches, it can be more readily applied to 

complex reactions. Though this SCTST clearly contains the basic transition state ap­

proximation of "direct dynamics", it nevertheless includes the effect of non-separable 

couplings between all degrees of freedom - including the reaction coordinate - in 

the transition state region. We also note that SCTST is similar to the most general 

form of variational TST52 in that it corresponds41 to computing flux through a di­

viding surface in the full phase space of the system; the commonly used version48 of. 

variational TST only considers dividing surfaces in coordinate space. 

The use of ab initio methods105•106 to obtain up to quartic derivatives of the 

potential energy surface has recently enabled the use of the semiclassical formulae (to 

be presented in Sec. 2.2) to include anharmonicity in the calculation of the CRP103 

and thermal rates104 for systems of chemical interest. In analogy to the assignment of 

rovibrational energy levels performed with canonical Van Vleck perturbation theory 

(CVPT),107
- 109 the (not-necessarily) separable Hamiltonian is obtained by expanding 

the Hamiltonian in a Taylor expansion about the saddle point (or transition state) and 

performing the perturbation to an order consistent with the expansion. For example, 

as will be shown in Sec. 2.3, to obtain the second order vibrational Hamiltonian one 

need only include the cubic and a limited set of the quartic terms in the anharmonic 

part of the original expansion. The formulae presented in these sections also explicitly 

include angular momentum J. This affords the possibility of computing experimental 

thermal rate constants which is particularly relevant in the application to probability 

distributions which is the subject of Chapters 5 and 6. 

Results using this method with J = 0 are presented in Sec. 2.4. In particular, 

the CRP for the reaction 

(2.3) 

is obtained for vanous cases of dimensionality of the reactive space: (a) a one­

dimensional (Eckart) barrier; (b) a collinear reaction; and (c) in full dimensionality. 

The transmission probabilities for the D2CO dissociation are also presented in this 

section. As manifested by this list of systems, the SCTST is clearly applicable both 
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to unimolecular and bimolecular reactions. 

2.2 SCTST Transmission Probabilities 

2.2.1 Miller's Good Action-Angle Variables 

The formally exact. quantum mechanical expression for the cumulative reac­

tion probability38 in Eq. (2.1) is 

N(E) = 21r1itr [c(E -1i)h(j)jP] , (2.4) 

where f is an operator that defines the transition state surface --,- e.g. (x IJI x) < 0 

for x in the reactant region - and P is a projection operator which projects onto all 

states which have evolved from reactants in the infinite past. Miller41 has shown how 

this expression may be evaluated semiclassically to obtain a transition state CRP 

for non-separable Hamiltonians. This theory relies on the existence of good (global) 

action-angle variables for the Hamiltonian, and it is briefly described in this section. 

Following Ref. 41, if the Hamiltonian is integrable, but not necessarily sep­

arable in the F good actions, { ni}, then the quantum system can be described by 

energy eigenstates, I'G), i.e. 

(2.5) 

The CRP is then obtained by replacing the quantum wavefunctions with the corre­

sponding semiclassical wavefunctions and performing the trace in Eq. (2.4). Since all 

but one of these integrals can be performed by the stationary phase approximation, 101 

it is natural to choose the last remaining integral to be over the angle variable corre­

sponding to the reactive direction. The result is41 

where the action corresponding to the reaction coordinate, nF, has been distinguished 

from the remaining actions, 'Gt· (The notation is suggested by the separable case in 

which ~t are the good actions corresponding to motions perpendicular to the reaction 

coordinate.) 
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After reversing the order of the integration and the summation in Eq; (2.6), 

the integral with respect to nF provides the standard result: 101 

N(E) - L [1 + e211" hnnF(E.~l)r1 (2. 7a) 
n1 

(2.7b) 

where P~t[={1 + exp(27r Im nF)} - 1
] is the transmission probability through a given 

state of the activated complex. Use of the Bohr-Sommerfeld quantization rule, sug­

gests the association, 

(2.8) 

where f) can be viewed as the generalization of the one-dimensional barrier penetration 

integral.110 This allows the CRP to be cast in the suggestive form: 

N(E) = L [1 + e26(E.~l)r1 
~~ 

2.2.2 Methodology 

(2.9) 

The starting point for the extension of the semiclassical TST just described 

is to note that the classical Hamiltonian can, in general, be expressed in terms of 

a set of locally conserved ("good") actions associated with the transition state (i.e., 

saddle point) region of the potential energy surface. The first step in constructing 

the SCTST is thus to determine the classical Hamiltonian 1-lcl(l) = 1-lcl(J~, ... , IF) 

in terms of the Factions {h} (where F is the number of degrees of freedom.) The 

(F- 1) actions associated with the bound degrees of freedom are quantized in the 

usual semiclassical (Bohr-Sommerfeld) fashion, 111 

h = (nk + !)h for k = 1, ... , F- 1, (2.10) 

where ~t = { nk} are the quantum numbers for states of the activated complex. The 

action IF - the one associated with the reaction coordinate -is pure imaginary and 

defines the generalized barrier penetration integral110 f), 

(2.11) 
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(We refer to () as the generalized barrier penetration integral because it is given by 

the well-known integral 

fJ = {b . dqJ2m (V(q)- E) 
Jl arner 

(2.12) 

for a one-dimensional barrier.) () is determined as a function of total energy E and 

the ( F - 1) quantum numbers of the activated complex by energy conservation 

(2.13) 

i.e., for 1]t fixed, one must invert the E-fJ relation defined by Eq. (2.13) to obtain 

fJ(E, 13t). Since the dynamics is integrable in terms of the "good" actions, the trans­

mission probability for state 1]t and energy E has the same form as in one dimension, 

i.e., (1 + e26)-1 , so the CRP is given by41 

N(E) = L [ 1 + e26(E,']*)rt (2.14) 
'1* 

Note that while in this discussion the semiclassical Hamiltonian has been 

constructed from the classical Hamiltonian, it is also possible to obtain it from the 

quantum Hamiltonian 1-lqm( 11) if one is able to _determine the latter in terms of a 

complete set of good quantum numbers 7J· [This connection has recently been made 

more explicit by the demonstration that the semiclassical energies of the activated 

" complex correspond to the (Siegert) eigenvalues of the complex Hamiltonian with 

imposed outgoing wave boundary conditions.l12
] The generalized barrier penetration 

integral is defined in analogy with Eq. (2.11) as 

(2.15) 

where nF is the vibrational "quantum number" associated with the reactive mode. 

Because this mode is not bound, () is again a contifnious variable and may be obtained 

by inverting the Hamiltonian equation, 

(2.16) 

It may appear that this procedure is difficult to implement because of the difficulty 

associated with obtaining the quantum Hamiltonian 1-l(1Jt, fJ). In fact, 1-l( 1]t, fJ) can be 

easily obtained using perturbation theory as will be described in Sec. 3.2.3. 

.;. 
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Angular momentum is included in the above formulae simply by noting that 
) 

the classical Hamiltonian will, in general, also be a function of the magnitude of the 

angular momentum J and its projection onto a body-fixed axis K. (If the molecule 

is not a symmetric top, K is not a good quantum number but may still be used to 

label the rotational energy levels. In either case, there will be F = 3N- 6 vibrational 

quantum numbers, for anN atom non-linear system.) Eq. (2.16) is thus changed to 

read 

(2.17) 

which determines B(E, '1}, J, K) and thereby the transmission probability is 

(2.18) 

Moreover, the Hamiltonian may be obtained quantum mechanically and use of the 

correspondence, 

8('1}, J, K; E)= T ( np('T}, J, K; E)+~) , (2.19) 

leads to a Hamiltonian of the form in Eq. (2.17) which can then be inverted to obtain 

Pf},J,K(E). 

2.3 Perturbation Theory for the Activated Com­

plex 

2.3.1 General Theory 

Determining the Hamiltonian as a function of the good action variables re­

quires an analytic solution of the classical equations of motion and is thus not possible, 

in general. It can, however, be accomplished to a useful level of approximation by 

perturbatively including anharmonicity, coriolis coupling, etc., in essentially the same 

way they are handled in determining rovibrational energy levels of a stable molecule 

(i.e., about a minimum on the potential energy sudace.) Therefore the Hamiltonian 

is expanded at the transition state and only those terms which contribute to the sec­

ond order eigenvalues are retained, i.e., the vibrational terms up to quartic order with 



24 CHAPTER 2. SCTST - THE "STANDARD" MODEL 

respect to the mass weighted normal coordinates Qk of the transition state, the rigid 

rotor terms, and the rovibrational coupling terms arising from the coriolis interaction: 

F 

+ 2: Bf3JJ- 2 2: QkPt 2: Bf3(e,,Jf3 , (2.20) 
(3 k,l (3 

where Vo is the potential energy at the saddle point, the sums over lowercase letters 

are unrestricted sums over the F vibrational modes, and the sums over Greek let­

ters are sums over the rotational axes. The primary differences .from the standard 

rovibrational expansion107 are that at zeroth order the potential along the reaction 

coordinate (mode F) is a harmonic barrier vis-a-vis the frequency WF is imaginary, 

(2.21) 

and the action of the reactive partition in Eq. (2.19) is complex. The complex nature 

of these values will propagate throughout the perturbative expansion and so in the 

following sections these terms will be written out explicitly in order to show those 

that are imaginary and to show that the resulting perturbative eigenvalues are indeed 

real. 

Using second order Van Vleck perturbation theory,107 the Hamiltonian in 

Eq. (2.20), is given in terms of the local good vibrational quantum numbers (or 

action variables, Ik = nk + ~) by 

(2.22) 

which is correct only if there are no degenerate vibrations. (Note that the reac­

tive mode F is assumed to be non degenerate.) The result for doubly degenerate 

perpendicular vibrations is presented in Sec. 2.3.3 and it is particularly relevant for 

symmetric tops, e.g., the H + H2 transition state, in which there necessarily exists 

such a degenerate pair. 104 For almost-symmetric tops, this degeneracy is not enforced 
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by symmetry and the vibrations can be treated through Eq. (2.22) while including 

rotation with symmetric top rotational levels.113 

The rotational Hamiltonian in Eq. (2.22) can be diagonalized numerically 

for asymmetric tops. For approximately symmetric tops, it reduces to: 

E = Vo +Eo+ B1.J(J + 1) + (B11 - B1.)K2 

F 

+ L [wk- a~J(J + 1)- (a~- a~)K2] (nk + !) 
k 

F 

+ L xkk'(nk + t)(nk' + !) , 
k<k' 

(2.23) . 

where B11 and a~ correspond to the values of the unique axis, and B 1. and at cor­

respond to the average of the values of the perpendicular axes. Through the use of 

Eq. (2.19), this can be rewritten as a quadratic equation in () with real coefficients 

and inverted to obtain: 

where 

B('I},J,K;E) = 27rbE/~ ' 1 + J1 + 4xFFbEjwJ. 

bE - Vo- E +Eo+ B1.J(J + 1) + (B11 - B1.)K2 

F-1 

+ L [wk- a~J(J + 1)- (a~- a~)K2] (nk + t) 
k=1 
F-1 

(2.24a) 

+ L;: Xkk'(nk + !)(nk' + !) (2.24b) 
k5k' 

F-1 

~ 4- + ia'iJ(J + 1) + i(a~- a-i)K2 - i L XkF(nk + !) ; (2.24c) 
k=1 

i = V-1; and a-J;, a~, a-J;, and XkF for k = 1, ... , F -1 will be shown to be purely 

imaginary in the following sections. (The root, Eq. (2.24a), of the quadratic equation 

in B, Eq. (2.23), is chosen so that in the xFF -+ 0 limit, () reduces to the standard 

harmonic result.) 

Before proceeding to present explicit expressions for the anharmonic con­

stants in Eqs. (2.22) and (2.24), it is interesting to note some qualitative aspects of 
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the present expressions. For small bE the generalized barrier penetration integral of 

Eq. (2.24a) is given by 

(2.25) 

from which one can see several features. The first term in Eq. (2.25) is the purely 

harmonic (i.e. parabolic barrier) expression 114 for B, with the exception that the 

frequency f2F has been renormaJized from the One-dimensional barrier frequency Wp 

by coupling to the F -1 other modes ( cf Eq. 2.25). Modes k for which XkF is positive 

will decrease nF, which decreases the tunneling probability, and the converse is true 

for modes with negative XkF. The effect of the second term in Eq. (2.25) depends 

on the sign of xFF, the diagonal anharmonic constant for the reaction coordinate 

mode: xFF > 0 decreases the value of B and thus increases the tunneling probability, 

and vice versa if xFF < 0. Anticipating the result in Eq. (2.28b ), one sees that the 

one-dimensional anharmonicity (i.e. fFFFF, which will typically be positive, and !iFF) 

tends to make xFF negative, and thus to decrease the tunneling, while the last term 

in Eq. (2.28b ), which results from coupling of the reaction coordinate to the other 

modes, tends to make xFF positive and thus increase tunneling. This last effect is 

that of reaction path curvature which is known in many different contexts115-
119 to 

increase tum.ieling probabilities. 

It should also be noted that this theory will break down when 

4xFFbE 
-2 < -1' 

WF 
(2.26) 

which can result either from a resonance between the rovibrational modes or from too 

low an order in the perturbation treatmenL In the former case, the offending resonant 

term can be treated at lower order and explicitly diagonalized.104 In the latter case, 

a higher order perturbative treatment is required and it can formally be carried out 

easily using symbolic manipulation with a computer.120 However, the higher order ab 

initio rovibrational derivatives of the activated complex are not available and thus 

the higher order perturbative calculation is not within reach. 
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2.3.2 N ondegenerate ·Vibrational Modes 

If the Hamiltonian has no degenerate vibrational modes, the zeroth or­

der states are simply direct products of F - 1 on~dimensional harmonic oscilla­

tor states and a one-dimensional harmonic oscillator scattering state with complex 

argument.103•112 The degeneracy of the scattering state is lifted by imposing out­

going wave boundary conditions. Moreover, it satisfies the algebra of the raising and 

lowering operators, and hence one can readily use the results107 obtained for a regu­

lar harmonic oscillator direct product basis, modifying only the signs of those terms 

according to the number of imaginary terms which are now present. 

The zeroth order constant energy correction121 accounting for the reaction 

coordinate is, 

Eo = 

where lis the moment of inertia tensor. 

Similarly, the anharmonic terms with k, l and m running over all modes 

except for the reactive mode F, can be written explicitly as:103 

Xkk = 1i
2 

{ 1 RkF(Bwi + 3wi) ~ Rk,(Bwi- 3wl)} 
16 2 Jkkkk + -2(4 2 -2) - ~ 2(4 F 2) 

Wk WF Wk + WF l Wz Wk - Wz 
(2.28a) 

1i
2 

{ 5fiFF ~ f~1 (8w}. + 3w[}} 
-16-2 JFFFF + J-2 - ~ 2(4-2 + 2) ' 

WF WF l WI WF WI 
(2.28b) 

n2 {1. fkkFfllF 2RIF(wi+w[+w}.) 
4wkw1 kkll + wJ + [(wk + w,)2 + wJ][(wk- w,)2 + wJ] 

L: JkkmJllm + L: Jklm wk w, - wm F-1 i i F-1 2 +2 ( 2 + 2 2 ) } 

- m w~ m [(wk + Wt) 2 - w~][(wk- w,)2 - w~] 
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+ (~+ ~) "B ((a)2 ~1 ~k ~ a kl ' (2.28c) 
a 

(2.28d) 

Since, xkF is purely imaginary, it is convenient to define the purely real coupling 

between the perpendicular mode k and the generalize barrier penetration integral as: 

xkF = -ixkF. (2.29) 

Substitution of these expressions into Eq. (2.24c) demonstrates explicitly that the 

vibrational anharmonic terms are indeed real. 

2.3.3 Degenerate Vibrational Modes 

Because symmetric tops are ubiquitous, and because they neccessarily have 

at least one degenerate pair of vibrational modes, one must also consider transition 

states with degenerate vibrational modes. For simplicity, we discuss only the case 

with doubly degenerate modes as it illustrates all the new physics and it is also the 

most general case which will be encountered in the applications of this and subse­

quent chapters. In this case, the harmonic oscillator direct product zeroth-order 

basis used in the previous section to describe the modes perpendicular to the reactive 

modes is not applicable; instead the degenerate vibrations must be treate.d as a 2-

dimensional harmonic oscillator, and the perturbation theory done anew. (Note that 

since the transition state, by assumption, contains only one direction with an imagi­

nary frequency, degeneracy can only occur in the perpendicular vibrational modes.) 

However, the perturbative treatment of a bound system with doubly degenerate vi­

brational modes is also a standard procedure, 107 and as before one need oi:U.y take 

care in substituting the imaginary quantities associated with the activated complex 

into the standard formulae. 
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The perturbative eigenenergies in Eq. (2.22) are now replaced by 

F 

E - Vo + E~ + L:wk(nk + !) + L:ws(ns + 1) + LXkl(nk + !)(n, + !) 
k 8 k9 

F F 

+ L Xst(ns + 1)(nt + 1) + L Xks(nk + ~)(ns + 1) + L 9stlslt 
ss:;t k,s 

+ L [B/3- L:a~(nk + !) - L:a~(ns + 1)] lJ. 
/3 k 8 

(2.30) 

where the terms have been divided according to the following classes of modes: 

{k, l, m} label nondegenerate perpendicular vibrational modes, { s, t, u} label dou­

bly degenerate perpendicular vibrational modes, and F is the reactive mode. Also 

recall that doubly degenerate vibrational modes have an additional quantum number 

I, here labelled by {a, b}, which corresponds to the vibrational angular momentum of 

the two-dimensional harmonic oscillator. 

The zeroth order energy correction 122 accounting for the reaction coordinate 

and for doubly degenerate vibrational modes is 

where Eo is the non-degenerate result in Eq. (2.27). 

The non-degenerate anharmonic terms presented in Eq.,(2.28) are also cor­

rect for the doubly degenerate case; the remaining terms can be readily obtained: 
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(2.32a) 

(2.32b) 

(2.32c) 

(2.32d) 

(2.32e) 

(2.32f) 

As is the case for the XkF term of the previous ·section, here the xsF term is purely 

imaginary, and suggests the definition, 

(2.33) 

Substitution of the anharmonicities here obtained into the degenerate vibrational 

pertubartive Hamiltonian, Eq. (2.30), explicitly demonstrates that the .eigenenergies 

are indeed real. 
·.+ 
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2.3.4 Rotations 

The rotational constant for mode F is also imaginary, 

,{3 - ,; .n,!3 . 
...._F- ~...._F l (2.34) 

and modification of the standard rovibrational expression107 yields the real quantity, 

.n,!3 -

...._F -

(2.35) 

where g/-r is the first derivative of the moment of inertia tensor, [,with respect to the 

normal mode coordinates. The remaining rotational constants are slight modifications 

of the standard result,107 

(2.36) 

If the molecule has a degenerate vibration then the a~ and a~ may be readily obtained 

from the standard expressions107 in a similar fashion. The conclusion to be drawn 

from Eqs. (2.35) and (2.36) is that coriolis coupling can be readily included into 

the formalism, and that the resulting perturbative eigenvalues of the Hamiltonian, 

Eq. (2.17), remain real. 

2.3.5 Summary 

In this section, we have presented the details of the construction of the per­

turbative Hamiltonian necessary for application to a rovibrational reactive system. 

Because of the analogy between the perturbative Hamiltonian of the activated com­

plex and that of a bound molecule, the constants appearing in the former will be 

referred to as the "spectroscopic constants" of the activated complex. The standard 

rovibrational expressions have been written explicitly in order to account for the 
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imaginary frequency of the reactive degree of freedom and to prove that the resulting 

perturbative eigenenergies contain only real terms. In actual applications, it is sim­

pler to take advantage of the complex arithmetic in ANSI FORTRAN, and program the 

expressions in general form. This suggests that existing higher order perturbation 

theory programs123•124 could be readily adapted for use with the SCTST, if higher 

order derivatives of the transition state are known. 

Fermi resonances among the vibrational modes may and will arise, e.g., the 

classic 2w8 ~ Wk resonance125 in symmetric tops affects X 88 , Xks and 9ss· The diagonal 

terms are obtained using the expressions in the preceding sections with the x's modi­

fied to exclude the resonant partial fraction. While there are now off-diagonal terms, 

only the matrix elements of the resonance operator coupling only the states of a given 

polyad are non-trivial. The energies of these states are obtained by diagonalizing the 

corresponding block of the Hamiltonian.107 In the same way, amended vibrational 
/ 

energy levels at the transition state can be obtained and used to calculate transmis-

sion probabilities. Note that there is no danger of a resonance developing between 

the reactive mode and any of the perpendicular modes as the reaction frequency is 

1magmary. 

The only new difficulty presented by the presence of Fermi resonances in the 

application to the activated complex is that each diagonal entry of a given polyad is 

non-linearly coupled to 6. Thus the simple quadratic formula in Eq. (2.24) is no longer 

correct, and the transmission probabilities for the polyad states need be obtained by 
t 

numerical diagonalization and subsequent numerical inversion. However, in previous 

work104 and in the work of Cohen et al.,126 this difficulty has been approximately 

circumvented by diagonalizing the polyads at () = 0 and using an effective linear 

coupling between the poly ad states and the reactive mode (). This approximation 

readily allows the use of the quadratic expression for the transmissio·n probability, 

and is therefore much easier to implement. The results under this appr~ximation for 

the H + H2 reaction are in reasonable agreement with those which will be shown in the 

subsequent section for the case in which the transmission probabilities are obtained 

without recourse to the approximation. 
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(i} (ii} 
WI 2066.9 2066.9 
W2 899.5 2066.5 
w4 1493.1i 2066.1i 
xu -25.4 -25.4 
X12· 455.3 -120.7 
X14 :699.1i -699.1i 
X22 -80.8 60.7 
X24 107. 7i 107.6i 
X44 -246.2 -246.2 
922 74.7 -38.2 
Eo -279.84 -138.32 

Table 2.1: The table contains the "spectroscopic constants" of the H + H2 acti­
vated complex either (i} including the near resonance, w1 :::::::: 2w2 or (ii} removing the 
resonance.104 In case (ii} the value of the force constant coupling the polyad states is . 
also needed and it is: fi44 = -2.2839 X 108

• Note that w2 = w3 and x 2k = X3k for all 
k, and all values are in units of cm-1 . 

2.4 Illustrative Examples 

In this section, SCTST transmission probabilities and CRPs are obtained for 

several reactive systems in order to explore the effect of including the nonseparability 

of the Hamiltonian at the transition state and to demonstrate the relative accuracy 

of the method as compared to exact results, where possible. 

In Sees. 2.4.1 through 2.4.3, the (J = 0) H + H2 reaction is studied by treat­

ing the reaction either as occurring on a one-dimensional Eckart barrier, the collinear 

arrangement on the DMBE surface or on the full-dimensional DMBE surface. (Note 

that the DMBE surface is the double many-body expansion fit to ab initio points 

by Varandas et al.127
) The force constants were obtained by finite differences, and 

use of the symmetric top equations in Sec. 2.3.3 readily provide the "spectroscopic 

constants" listed in Table 2.1 (Ref. 104). Because of the Fermi resonance between the 

degenerate bend (modes 2 and 3) and the symmetric stretch (mode 1), the "spectro­

scopic" constants obtained either by including or removing the resonance term are 
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presented. The treatment of the Fermi resonance affects only the constants involved 

in the full-dimensional calculation and will consequently play a role only in Sec. 2.4.3. 

Some representative transmission probabilities for the D2CO dissociation are 

presented in Sec. 2.4.4 for the J = 0 states of the activated complex. The nonzero 

angular momentum states are necessary for the application to the probability decay 

rate distributions in Chapter 6, and will be discussed in that context. For further 

applications including nonzero angular momentum, the reader is referred to Ref. 126. 

2.4.1 Eckart Barrier 

As an example of the results that ~an be obtained using the SCTST pre­

sented in the previous section, we first treat the dynamics of a one-dimensional Eckart 

barrier. The symmetric Eckart barrier128 can be written as 

(2.37) 

where the parameters Vo and a characterize the barrier height and length scale, re­

spectively. In order to make connection with the H + H2 reaction, these parameters 

( Vo = .425 e V, a = 4.22 x 10-9 m) are chosen so as to match the quadratic and 

quartic derivatives at the transition state of the DMBE surface with respect to the 

asymmetric stretch (mode 4) and the mass of the effective particle is also taken to 

match that mode 4 (J..t = 1060a.u.) as was done by Seideman and Miller.129 (Note 

that a more general set of parameters for the Eckart barrier will be considered in 

Sec. 3:3.1 in the context of evaluating SCTST thermal rate constants.) In Fig. 2.1 

the Eckart potential corresponding to the one-dimensional H + H2 reaction path is 

compared to its quadratic (harmonic) and quartic (anharmonic) expansions. In the 

remaining panels of the figure, the transmission probability obtained by the exact 

quantum mechanical result128 for this Eckart potential is compared to the harmonic 

and anharmonic SCTST results. 

Several important points about the effect of one-dimensional anharmonicity 

are illustrated in Fig. 2.1. Note, for example, that the transniission probabilities de­

crease upon inclusion of anharmonicity; this results from the thickening of the barrier 
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Figure 2.1: In the panel on the left, the Eckart potential with the parameters set 
to match the H + H2 reaction is compared to its harmonic (short-dashed) and quar­
tic (long-dashed) expansion. In the remaining panels, the transmission probability 
through the barrier is presented for the exact calculation128 (solid dots), the harmonic 
SCTST (short-dashed) and the anharmonic SCTST (long-dashed). The semi-log plot 
in the panel on the right emphasizes the agreement between the exact and anharmonic 
calculations in the low energy regime. 
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due to the positive sign of x". It .should be clear that the quartic barrier potential 

corresponding to the expansion of the exact potential would produce, if solved exactly, 

incorrect results. (This can be seen either semiclassically, since the barrier penetra­

tion integral would have no turning points below the minima of the quartic potential, 

or quantum mechanically, since the quartic potential does not contain a continuous 

set of eigenstates.) Here the anharmonic SCTST is in remarkably good _agreement 

with the exact results obtained for the exact potential. This is a consequence of the 

fact that the perturbative treatment in the SCTST is at a concomitant order to that 

of the potential expansion - that is, with respect to the perturbation theory, the 

Eckart barrier and it's quartic expansion are the same. A higher order perturba­

tive treatment would produce worse results if no further information- higher-order 

potential derivatives - about the barrier were obtained. 

2.4.2 Collinear H + H2 -+ H2 + H 

The collinear version of the H + H2 reaction involves only modes 1 and 4, i.e., 

the symmetric and asymmetric stretches of the H3 collinear transition state. In this 

case there is no question of Fermi resonance, and the only nonseparable effects arise 

because of the anharmonicity in the barrier and the coupling between the two modes 

(reaction path curvature). Figure 2.2 shows the CRP in the low energy tunneling 

regime, as given by our full semiclassical theory, compared to the exact quantum 

results2 and also to the harmonic limit of the theory. The "spectroscopic constants" 

used for these results may be found in Table 2.1, though with Eo set to zero. In 

Chapter 4, we will return to the issue of the proper evaluation of this value. 

One sees that the present perturbative anharmonic theory does well, far into 

the deep tunneling regime. Although not shown in Fig. 2.2, at higher energies the 

contribution to the CRP arising from transition states with quanta in the perpen­

dicular mode did not converge and this is because the large anharmonicity in the 

perpendicular mode causes the argument of the square root in equation (10) to be 

negative. However, in a system with more degrees of freedom the breakdown in the 

perturbation is mitigated by a cancellation of the anharmonicities in the various per-
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Figure 2.2: Cumulative reaction probability for collinear H + H2 • The points cor­
respond to the exact quantum calculations of Bondi and Connor. 2 The long-dashed 
curve is obtained by including the anharmonic terms in the semiclassical model. The 
short-dashed curve is obtained by including only the harmonic terms. 

pendicular modes. Thus we expect that the present anharmonic theory will improve 

as the degrees of freedom increase. 

2.4.3 Full-dimensional H + H2 ~ H2 + H 

The SCTST CRP for the H + H2 reaction in full-dimensionality is compared 

to the exact CRP in Fig. 2.3. It is apparent that the anharmonic SCTST results 

obtained using the anharmonicities including the Fermi resonance term is actually 

in better agreement with the exact results than the anharmonic SCTST results for 

which the Fermi resonance terms are excluded and the polyads matrices are diagonal­

ized. This result is surprising because the opposite conclusion was observed in earlier 

work100•126 in which the polyad matrices were only approximately diagonalized. In­

spection of the polyads suggests that this is a consequence of level repulsion between 

the diagonal energies which provides larger shifts than that which was obtained in 

the earlier studies. 

In order to further explore the agreement between the SCTST and exact 

results, the Boltzmann weighted CRP, exp ( -f3E) x N(E), for several temperatures 
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Figure 2.3: Cumulative reaction probability (CRP) for the full-dimensional H + H2 

reaction. The solid curve is the exact result of Seideman and Miller. 130 The dotted 
curve is the anharmonic SCTST result using the "spectroscopic constants" in column 
(i} of Table 2.1 corresponding to the inclusion of the Fermi resonant terms. The 
dot-dash curve is obtained for column (ii} corresponding to the removal of the Fermi 
resonant terms. In both SCTST cases, the CRP is multiplied by the symmetry 
number (a= 2) in order to account for the two possible exit channels (See, Sec. 3.3.2). 

in the tunneling regime are illustrated in Fig. 2.4. The SCTST results are generally 

in good agreement with t~e exact results, displaying many of the same qualitative 

features and with values of the correct order of magnitude. The anharmonic SCTST 

results including the Fermi resonance in the "spectroscopic constants" is again in the 

best agreement with the exact results. Nonetheless, the remarkable agreement be­

tween the SCTST for this extremely anharmonic system is encouraging, as it suggests 

that for typical systems the anharmonic SCTST can certainly provide qualitative, if 

not quantitative, estimates of fairly detailed dynamical quantities such as the CRP. 

The unimolecular dissociation of formaldehyde, 

(2.38) 

will be the focus of study in Chapter 6 in which RM/TST decay rate distributions are. 

obtained and compared to the experimental results of Polik et al. 21 Here we explore 
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Figure 2.4: Boltzmann weighted cumulative reaction probabilities (= e-!3E N(E)) for 
the full-dimensional H + H2 reaction are presented for various temperatures, T = 
200 K, 600 K, and 1000 K. In all cases, the solid points are the exact results of 
Chatfield et al., 1 the short-dashed curve is the harmonic SCTST result, and the dotted 
(long-dashed) curves are the anharmonic SCTST results using the "spectroscopic 
terms" which include (remove) the Fermi resonance. 

the transmission probabilities of the activated complex as an example of the use of 

SCTST to the unimolecular dissociation of a relatively large molecule. Attention is 

drawn to the paper by Gray et al.,131 where a theoretical treatment of the tunneling 

dynamics is presented using a reaction path Hamiltonian model.132 In that treatment 

it was found that anharmonic corrections had a small effect on the unimolecular rate 

constants for the dissociation (2.38). The ab initio calculation of the vibrational 

"spectroscopic constants" of the activated complex are described in Ref. 103, and the 

values are presented in Table 6.1 of Chapter 6. 

Figures 2.5 and 2.6 present the SCTST transmission probabilities as a func­

tion of energy for several states 1} of the activated complex. The two curves in each 

case correspond to the anharmonic model given by Eq. (2.24) (long-dashed curves) 

and the harmonic approximation to it, i.e. Xkl = XkF = xFF = 0 (short-dashed curves). 

For the ground state of the activated complex one sees that the anharmonic correc­

tions are very small for this reaction, as had been seen earlier in the more approximate 
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Figure 2.5: Transition state transmission (tunneling) probabilities as a function of 
energy (E- Vo). Long-dashed curves are the fully anharmonic SCTST and short­
dashed curves are the harmonic SCTST results. The top pair of curves is for the 
ground state ( ~ = Q) of the activated complex, and the remaining pairs correspond to 
its "fundamentals", i.e. one vibrational quantum in each of the 5 modes (the lowest 
pair corresponding to the highest frequency mode k = 1, and successively higher ones 
for k = 2, ... , 5). 
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2.0 4.0 6.0 8.0 10.0 12.0 14.0 
E-V 0 (kcallmole) 

Figure 2.6: Same as Fig. 2.5. The top pair of curves is for the ground state of the 
activated complex, and successively lower ones are for 1, 2, 3 and 4 quanta in mode 
k = 4, i.e. the "fundamental" and the first three "overtones" of this mode. 

treatment.131 Figure 2.6 shows that the corrections can become significant as more 

energy is placed into the activated complex, particularly for the low frequency mode 

4 that has a large coupling to the reaction coordinate (x1F = -28.2cm-1). 

The transmission probabilities have also been obtained including anhar­

monicity only in the reaction coordinate mode, i.e. setting Xkl = XkF = 0 for all 

k and l not equal to F. The anharmonicity along the reaction coordinate reduces to: 

(2.39) 

This is a commonly used approximation 133 and it corresponds to an anharmonic 

one-dimensional barrier uncoupled to a harmonic activated complex. Although not 

shown, the results under this approximation actually gave worse agreement with the 

fully anharmonic results than the completely harmonic approximation. This is be­

cause anharmonicity of the one-dimensional barrier thickens it and thus decreases 

the transmission probability, while coupling of the reaction coordinate to modes of 

the activated complex (reaction path curvature) typically increases the transmission 
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probability to more than off-set the effect of the one-dimensional barrier anharmonic­

ity. 

2.5 Concluding Remarks 

In this chapter, a semiclassical transition state theory has been developed 

which can be useful in obtaining averaged dynamical quantities for chemical reactions 

of large systems, be they unimolecular dissociation or bimolecular reaction. The only 

information about the chemical system which is required is the determination of the 

local potential energy surface in the vicinity of the transition state, i.e., higher order 

derivatives. These can be obtained either through direct ab initio techniques or by 

differentiation of known or supposed potential energy surfaces. 

Although not discussed explicitly in the examples of this chapter, thermal 

rates have also been computed using the SCTST by numerically integrating the Boltz­

mann average in Eq. (2.1) with agreement to the exact results similar to that seen 

for the CRP.100•126 In the next chapter, a new expression for the rate is derived which 

permits a direct calculation and thereby provides a more efficient route to determining 

thermal rate constants. 
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Chapter 3 

Semiclassical Transition State 

Theory- A New Perspective 

3.1 Introduction 

The emphasis in the previous chapter was on the approximate calculation 

of the cumulative reaction probability (CRP). In this chapter, we shift the focus 

onto the calculation of the thermal rate Eq. (2.1). Formally, this rate is simply the 

Boltzmann average (or Laplace transform) of the CRP and thus provides equivalent 

information. However, the thermal rate is typically of more experimental interest 

and in this chapter we obtain expressions for the SCTST thermal rate which can be 

computed directly without first computing the CRP. 

In particular, a difficulty with the CRP calculation described in the previous 

chapter is that the inversion will not be analytic for higher order perturbation theory 

and one must provide a prescription by which to choose the physical root. This was 

avoided in previous work because satisfactory results were obtained at second order 

in the perturbation. A more serious difficulty is that the presence of Fermi resonances 

may destroy quantum number assignments and thereby make it impossible to perform 

the inversion. In previous work104 and in recent work by Cohen et al., 126 this problem 

has been treated by diagonalization of the resonance polyads at () = 0 with subsequent 

use of these eigenvalues providing the approximate transmission probabilities. This 
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procedure is tantamount to assuming that the couplings between the reactive mode 

to each of the Fermi resonating states in a giyen polyad are approximately the same; 

but in general, this will not be true. The method to be described will obviate both 

of these difficulties. 

Thus the aim of this chapter is to show that the SCTST expression for 

the thermal rate constant, k(T), can be cast in a much more useful form, one that 

is simpler to implement than the standard theory and one that can more readily 

incorporate dynamical extensions to the theory. This new form of the SCTST thermal 

rate is presented in Sec. 3.2 in addition to present~ng an appealing conceptual link 

to standard TST which will be explored further in Chapter 4. Various aspects of 

this new rate expression within the context of perturbation theory are illustrated in 

Sec. 3.3 through the application to representative reactive systems. 

3.2 The "New" Semiclassical Rate Expression 

3.2.1 A Heuristic Derivation 

The rate expressions described in the previous chapter were constructed with 

the microcanonical formalism playing the central role. In that discussion, the most 

relevant quantity is the CRP, and a semiclassical expression for its direct evaluation 
' 

was presented in Eq. (2.14). The computation of the thermal rate then requires a 

further integration through the use of Eq. (2.1). In this subsection, we present a 

heuristic argument for a "new" semiclassical rate formula which casts it in a form 

which can be computed directly. Once the expression is obtained, it is easy to make 

the argument rigorous, and this will be done in the next subsection. 

By substitution of the SCTST CRP, Eq. (2.14), into Eq. (2.1), we obtain 

the rate formula, 
00 

k(T) = (27rnQr)-1e-!3E L j dE ( 1 + e20(E,fJ
1>) -1 

, 

'J1 eo 
(3.1) 

where the order of summation and integration have been interchanged as is permit­

ted by the theorem 134 on the integration of infinite series because the terms in the 
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summation are uniformly convergent to the CRP. Since one must integrate over all E 

in Eq. (3.1), it is convenient to change the integration variable from E to B and thus 

avoid having to invert the E-B relation. (This analysis assumes that the E-B relation 

is injective and consequently E(B) is invertible. The argument'is modified somewhat 

if this is not the case but the form of the result is essentially unchanged as will be 

presented in the next section.) Thus 
00 J dEe-f3E (1 +e29(~*.E))-1 

&o -oo 

(3.3) 

where the last line results from an integration by parts. [The surface terms vanish 

because E(B -+ oo) = £o, the reaction threshold, and E(B -+ -oo) = oo.] Use of 

Eq. (3.3) in Eq. (3.1) then gives 
00 

k(T) = (27r1iQrf3t 1 j dB ksech2( B) L e-.BE(~*,li) , 

-oo ~· 
(3.4) 

where we have again changed the order of summation and integration. This reordering 

is permitted if the summation, :E~t e-f3E(~*.o) is uniformly convergent. If the Hamilto­

nian were separable, this condition is satisfied because E( ~t, B) grows monotonically 

with the magnitude l~t I· In the more general non-separable case this latter condition 

must be satisfied if the semiclassical description is to be correct for the CRP. It should 

also be noted that this argument does not preclude the possibility that both terms 

are equal to infinity. 

TST, 

Noting that (21r1i{3)-1 = kT Jh, Eq. (3.4) takes the form of the traditional 

k(T) = kT Ql(T) 
h Qr(T) ' 

(3.5a) 

by defining the reactive partition function Ql(T) of the activated complex (including 

the tunneling correction factor from which it is not separable) as an average of the 

pre-reactive partition function Ql(T, B) with the weight function !sech2(B), 
00 

Ql(T) = j dB~ sech2(B)Ql(T, B) , (3.5b) 
-oo 
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where 

Qt(T,B) = Ee-.BE(!Jt,e). (3.5c) 
n1 

Equation (3.5) is the basic theoretical result of this chapter. Since E(1Jl, B) = 

1l(1Jt, B) is simply the semiclassical Hamiltonian, there is now no need to invert the 

E-B relation (as is necessary to determine the semiclassical CRP.) For applications to 

date ( cf Sees. 2.4 and 3.3) based on second order perturbation theory, 1l(1Jl, B) has 

been a quadratic function of B so the analytic inversion has been readily performed, 

but if one were to use higher order perturbation theory - or even non-perturbative 

treatments that are necessary when Fermi resonance-like interactions exist - it is 

a major advantage not to have to obtain B(1Jl, E) explicitly. (Though the quadratic 

expression is not actually invertible, a practical solution for the inversion obtains by 

a proper choice of the root- namely the one which agrees with the harmonic result 

in the limit that the E-B relation is linear. When an analytical expression is not 

available, establishing this connection will certainly be a more arduous task.) 

We also note that Eq. (3.5c) is the semiclassical equivalent to 

(3.6) 

where the quantum mechanical trace is taken over the (F- 1) dimensional space 

spanned by the modes perpendicular to the reaction path. This expression suggests 

that it is not even necessary to quantize the ( F -1) degrees of freedom of the activated 

compl~x explicitly but only to determine their partition function as a function of the 

action, fJ, in the reaction coordinate. This opens the door to the possibility of even 

more accurate ways of determining Ql(T, B) that go beyond the present treatments 

and which will be explored in Chapter 4. 

3.2.2 A Rigorous Derivation 

Now that the "new" thermal rate expression has be~n outlined, we present a 

more rigorous derivation of Eq. (3.5). To this end, we shift the focus even further away 

from the CRP by returning to an intermediate expression in Miller's derivation within 

the good action-angle formalism for the semiclassical CRPY Use of Eq. (2.6) with the 
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change of variable suggested by the correspondence relation (2.8), and substitution 

into the rate expression, Eq. (2.1), readily provides 

As described in Sec. 2.2.1, the CRP is obtained by integrating the b-function over 8. 

Therein, the existence of only one root of the transcendental equation, 

E = E(nt 8) - ' ' (3.8) 

for each set of perpendicular quantum numbers ~t has necessarily assumed that the 

E-8 relation is injective. This is certainly the case for a one-dimensional barrier 

in which the barrier penetration integral is strictly monotonic with the energy [ cf. 

Eq. (2.12)]. However, the generalized barrier penetration integral could conceivably 

not be so, and thus the possibility that the E-8 relation is not injective needs to be 

considered. 

Assuming that each E-8 relation is injective over the energy domain between 

£0 and oo, we first integrate Eq. (3.7), not over 8 but over E, to obtain the rate 

(3.9) 

where 80 n1 satisfies E(~t, 80 nd = £o. (Note that as in the derivation of the previous ,_ ,_ 

section, the order of summation and integration need be interchanged at several 

points, and this is permitted here because of analogous arguments.) Integration by 

parts results in: 

(3.10) 

<X> 

but, J dz'~sech2 (z') = (1 + e2z)-1 , and so the result may be written as, 
z 

<X> 

k(T) = (27rnQa/3t 1 j d8 L !sech2 (8)e-i3E(~t,e) , 
-ex> ~1 

(3.11) 
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where E(7Jt,8) is set equal to £0 for 8 > 80,1}:. This result reduces to Eq. (3.5) in the 

limit that each E-8 relation is injective and that 80,'1: ~ oo. (In fact, in this limit, 

the integral over 8 need not be interchanged with the summation over 7Jt during the 

derivation.) 

More generally, though, each E-8 relation may be injective only for a re­

duced range between some £0 nt and oo. For example, when a perturbation theory is ,_ 

constructed for the Hamiltonian we have seen that the E-8 relation at second order 

is not injective. At this order there exist only two branches and it is evident that 

the second branch -.for which E( 7Jt, 0 ~ oo) = oo - is unphysical and should not 

be included in the summation. Thus, for each 7Jt, E(7Jt,O) is set equal to Co,'J*' for 

8 > 80 nt, with 80 nt corresponding to the point at which the two branches meet, i.e., ,_ ,_ . 

(3.12) 

If the perturbation theory were carried out to a higher order, it would be natural to 

ask how each of the new branches would be treated. By extension from the choice 

for the second order case, one might argue that all but the last be included, thereby 

allowing for the possibility of resonant energies. However, it is difficult to determine 

which branches should be included because they result from the nonseparability of 

the Hamiltonian and which should be excluded because they are simply an artifact of 

the mathematics. Hence, in order to obtain a systematic method the energy domain 

to be used in Eq. (3.11) is taken to be between oo and the energy at which the fir;t 

sta:tionary point with respect to 0 is encountered. 

3.2.3 Construction of the Hamiltonian, 1i( B) 

For a general multi-dimensional system the classical Hamiltonian will seldom 

be integrable, and when it is, it may not be obvious how to obtain the corresponding 

good global action-angle variables. A standard procedure for avoiding these di:fficul-_ 

ties is to characterize the local dynamics using perturbation theory in the local region 

of interest.135 Since the rate expression derived in Sec. 3.2 focuses on the transition 

state region, it is natural to expand the Hamiltonian about the saddle point and use 
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perturbation theory to successively obtain an approximate Hamiltonian to an order 

consistent with the expansion. 

As described in Sec. 2.2.2, the semiclassical .Hamiltonian may also be ob­

tained from the quantum Hamiltonian. Perturbative methods already developed to 

describe rovibrational eigenvalue problems107, i.e., stationary minima, can be readily 

adapted to describe the transition state region, i.e., saddle points. The application 

of canonical Van Vleck perturbation theory (CVPT)136 to a rovibrational transition 

state region was discussed in detail in Chapter 2. In this section, we briefly review 

the methodology for J = 0 in order to make a connection with the notation of this 

chapter. 

The vibrational Hamiltonian expanded in mass-weighted normal mode co­

ordinates about the saddle point is: 

1i = Vo + t t (-n2 
8
8
Q

2

2 +wZQ%) + ~ E!klmQkQlQm + ;4 t !klmnQkQlQmQn' 
k klm klmn 

(3.13) 

where Vo is the potential energy at the saddle point, {fklm} ( {!klmm}) are the cubic 

(quartic) derivatives at the saddle point, and the sums over lowercase letters are 

unrestricted sums over the F vibrational modes. Recall that the difference from 

the standard vibrational expansion 107 is that at zeroth order the potential along 

the reaction coordinate (mode F) is a harmonic barrier so that the frequency WF is 

tmagmary, 

(3.14) 

Using CVPT at second order, the Hamiltonian Is gtven m terms of the 

"good" quantum numbers by 

8 8 

'H = Vo + L 1iwk ( nk + t) + L 1ixkk' ( nk + t) ( nk' + t) , (3.15) 
k=l k$k' 

where the w's and x's are the "spectroscopic constants" describing the transition 

state. The resulting E-8 relation may be written explicitly as 

(3.16) 
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where 
F-1 F-1 

V'1: - Vo + 2: fiwk (nk + ~) + L fixkk' (nk + ~) (nk' + ~) (3.17) 
k=1 . k$.k' 

F-1 . 

* W'1: - -iWp + i L XkF ( nk + !) . (3.18) 
k=1 

Note that Vnt and w* t are real numbers because both the anharmonic coupling { XkF} 
- '1 

between the perpendicular and reactive modes and the reactive mode frequency Wp, 

are imaginary. While only second order perturbation theory has been described ex­

plicitly, the generalization to higher order perturbation theory using CVPT120 (taking 

care of the imaginary terms) follows readily. 

The thermal rate can now be obtained by substitution of Eq. (3.16) into 

the expressions developed in Sec. 3.2. However, if there exists a resonance in the 

expansion at second order, then the corresponding coupling terms cannot be removed 

pertur batively. 107 These terms must be retained in the zeroth order 'Hamiltonian and 

the remaining coupling terms are successively removed using perturbation theory. The 

resulting Hamiltonian is block diagonal, characterized by resonance polyads describing 

each set of resonating states. This Hamiltonian will remain diagonal with respect 

to () because the frequency corresponding . to the reactive mode is imaginary and 

consequently cannot cause a small resonance denominator. Thus the Hamiltonian 

parametrized by () can be diagonalized and use of Eq. (3.5) provides the SCTST 

thermal rates. 

In analogy with the use of diagonalization of the resonance polyads, one 

can instead retain a large part of the vibrational Hamiltonian at zeroth order, and 

still be able to use the rate expressions in Sec. 3.2. The only good action that need 

be identified in the pre-reactive partition function is the action, or quantum number 

np, associated with the reaction coordinate. Thus one need only use perturbation 

theory to identify this good action in the Hamiltonian. The remaining off-diagonal 

couplings can be treated at zeroth order and the pre-reactive partition function calcu­

lated using a full Hamiltonian matrix. For large systems in which only a few modes 

are strongly coupled to the reaction, the weakly coupled modes may still be treated 

perturbatively thereby reducing the dimensionality of the the pre-reactive partition 
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function calculation. The use of these mixed-diagonalization methods is the subject 

of Chapter 4. 

3.3 Illustrative Examples 

3.3.1 Eckart barrier 

As a test of the semiclassical expressions presented above, we first consider 

the one-dimensional Eckart barrier, Eq. (2.37), for which 1-l(B) can be obtained exactly . .. 
Evaluation of the barrier penetration integral, 110 

B(E) = j dxJ2m [V(x)- E] jn 2
, (3.19) 

leads to 

B(E) = f§-a ( Vvo- YE) , (3.20) 

for 0 ~ E < Vo. The restriction forE < Vo is removed by appealing to the uniformly 

convergent semiclassical theory. 137 Inversion of Eq. (3.20) results in a Hamiltonian 

E(B) which is identical in form to that obtained by perturbation theory, Eq. (3.16), 

except that here the expression is exact. This system thus provides a direct test of 

the semiclassical approximation involved in the SCTST theory. 

The pre-reactive partition function for the Eckart barrier is 

where 

1 

* ( 2Vo) 2 w 
ma2 

x* 
n 

- 2ma2 • 

The integral over 8 in Eq. (3.5b) then gives. 

kT -.tWo 
k(T) = r·- _e -

h Qr ' 

(3.21) 

(3.22) . 

(3.23) 

(3.24) 
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where the tunneling correction factor r· is 
* _ oo ( n ((31iw*)2m((31ix*)n-m) 

r - L L ( ) I ( ) I bn ' 
n=O m=O 2m . n - m . 

(3.25) 

with 

(3.26) 

and where B 2n are Bernoulli Numbers. 

In the harmonic limit x* ~ 0, the tunneling correction factor reduces to, 

* oo ( ((31iw*)2n) 
rhb = E (2n)! bn. 

.. 

Using the equality, (which can be shown using generating functions138
) 

Eq. (3.27) can be shown to be equal to the standard result:45 

r* = 1iw(3 /2 . 
hb sin(hw(3 /2) 

(3.27) 

(3.28) 

(3.29) 

While it is satisfying that the harmonic result is reproduced, it is disappointing that 

it also reproduces the divergence of the rate found in the standard result for (3 < 
27r. This is not surprising given that the expressions are formally equivalent. The 

primary advantage of the new expression, however, is that it allows for the inclusion 

of anharmonicity, which will often extend the limit of convergence beyond that of the 

harmonic result. 

To illustrate the level of accuracy that can be expected of SCTST, Fig. 3.1 

presents the SCTST result for r• as a function of temperature given by Eq. (3.25), 

compared to the exact quantum results reported by Johnston139 for various ratios of 

lx* /w*j. The accuracy of the SCTST result is extremely good up to anharmonicities 

lx* /w*l of""' 20% (~ 1r /16), and only about a factor of 2 too small by the time it has 

increased to""' 80% (~ 1r /4). Therfore for systems of chemical interest it is reasonable 

to expect that the rate expressions in Sec. 3.2 will provide good estimates of the 

thermal rates in a wide thermal range. 
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Figure 3.1: The tunneling correction factor r* for the transmission through Eckart 
barriers for various relative anharmonicities lx* f w* I· Exact results139 (points) are 
compared to the SCTST result (curves). The dotted curve (filled circles) corresponds 
to lx* /w*l = 7r/32. The short-dashed curve (filled triangles) corresponds to lx* fw*l = 
1r /16. The long-dashed curve (filled squares) corresponds to lx* fw*l = 1r /8. The dot­
dashed curve (filled diamonds) corresponds to lx*fw*l = 7r/4. The solid·curve (open 
diamonds) corresponds to x* fw* = 0 - i.e., the harmonic 1limit - which diverges at 
/3 = 27r. 
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3.3.2 Full-dimensional H + H2 -+ H2 + H 

The transmission probabilities and thermal rates for the distinguishable 

H + H2 reaction with zero angular momentum have recently been obtained using 

the SCTST discussed in Sec. 2.2.2.104 For this reaction, 1l( 71 t, B) is constructed using 

the perturbation theory described in Sec. 3.2.3. The cubic and quartic derivatives at 

the saddle point were obtained by finite differences of the DMBE127 (direct many­

body expansion) surface and these can be transformed to provide the "spectroscopic 

constants" characterizing the transition state region.104 Since the out-of-plane de­

generate bends are in Fermi resonance with the symmetric stretch, it is necessary 

to use the degenerate form of perturbation theory. The perturbative Hamiltonian, 

1l(B), is block diagonal with each block labeled by the polyad quantum number of 

the degenerate modes. In the calculation of the CRP the required inversion of the 

E-8 relations must be performed numerically since one must diagonalize each of these 

blocks as a function of 8. (In previous work104 this inversion was approximated using 

a quadratic form determined by the eigenvalues of the Hamiltonian at 8 = 0.) How­

ever, the 8-dependent anharmonic coupling may be easily included without requiring 

this inversion by using the SCTST thermal rate expression developed in Sec. 3.2. 

To obtain the thermal. rate th~ reactant partition function, Qr, must also 

be obtained. If one ignores ortho-para spin statistics, the partition function can be 

written as 140 

' 

( )

3/2 1 2~~ · E . 
Qr = -;; h2(3 L e-{3 v,J,K ' 

v,J,K 

(3.30) 

where Ev,J,K are the rovibrational levels of H + H2 and a = 2 is the symmetry 

number for the homonuclear H2 molecule. The usual practice, however, has been to 

associate the factor 0' with the number of reactive pathways and include it within 

the CRP calculation. 49 The rovibrational energy levels for H2 were obtained by an 

exact diagonalization on the asymptotic DMBE surface by Chatfield et aU and here 

we use their values.141 This insures that any differences between the calculated rate 

constants using SCTST and the exact results1 are due to the approximate calculation 

of the reactive partition function. For the aid of future studies, the reactant partition 

functions - not including a - calculated at various sample temperatures for the 



3.3. ILLUSTRATIVE EXAMPLES 

T(K) 1/(hQr) k'ft 

200 1.12x1016 
00 

300 2.36x1013 
00 

400 8.73x1011 1.51x 10-16 

600 2.41 X 1010 l.llx10-15 
700 7.82x109 2.21x10-15 

1000 8.47x108 .79x10-14 

' / 

p 

8.91x10 20 

12.1x10-18 

1.65x10-16 

2.29x10-15 

4.80x10-15 

1.76x10-14 

55 

kar kex 

9.23x10 20 6.428x10 20 

12.4x10-18 8.505x10-18 

1.68x10-16 1.291 X 10-16 

2.38x10-15 1.988x10-15 

5.07x 10-15 4.250x10-15 

2.00x10-14 1.578x10-14 

Table 3.1: The J = 0 reactant partition function and thermal rate constants for the 
H + H2 reaction. The inverse of the reactant partition function, 1/ ( hQ r), is presented 
in units of J-1 cm3 s-1, and the thermal rates are presented in units of cm3 molec1 s-1. 
kh is the harmonic SCTST rate. ka ( kar) is the anharmonic SCTST rate including 
(removing) the Fermi resonance. kex is the exact thermal rate ·of Chatfield et aU 

H + H2 system are presented in Table 3.1. 

In Fig. 3.2, the semiclassical anharmonic thermal rate for the H + H2 reaction 

is compared both to the harmonic rate and to the exact rate1 on the DMBE surface. 

Semiclassical rates at various sample temperatures within the range of the figure 

are also presented in Table 3.1. The anharmonic SCTST results compare well with 

the exact values, and they converge well below the harmonic limit of nw* f3 = 21r, 

T = 323K for this system. As seen in the CRP results of Sec. 2.4.3, the removal of 

the Fermi resonance provides poorer results than those seen when it is included; this 

is in disagreement with calculations in which the removal of the Fermi resonance is 

treated only approximately.104·126 , 

The pre-reactive partition functions at vanous sample temperatures are 

shown in Fig. 3.3. As can be seen, they peak in the positive () region and broaden 

with increasing temperature. The broadening results from the increasing impor­

tance of non-tunneling transmission, while the peaking in this system results from 

the strong anharmonicity. The integrands of the semiclassical reactive partition func­

tion in Eq. (3.5b) are also shown and they exhibit even stronger peaking around () = 0. 

The peaking manifests itself in the convergence of the rate, while the asymmetry in 

the integrand results from tunneling effects. As the temperature increases, tunneling 

is less significant, and the peaks in the integrand are narrower and more symmetric. 
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Figure 3.2: The thermal rate for the H + H2 reaction on the DMBE surface. The 
standard harmonic result (solid) and the anharmonic semiclassical rate (dashed) are 
compared to the exact results of Chatfield et al.1 (points). 
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Figure 3.3: SCTST results for the H + H2 reaction at various temperatures. The 
long-dashed (dotted) curves are the harmonic (anharmonic) pre-reactive partition 
functions Qt ( 0) with the scaling determined by the axes on the righ. The short­
dashed (solid) curves are the harmonic (anharmonic) integrands of Eq. (3.5b) with 
the scaling determined by the axes on the left. 
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Figure 3.4: The reactive partition function for the formaldehyde dissociation for the 
harmonic case (solid) is compared to the anharmonic case (dashed). 

At temperatures for which there is a non-negligible rate for the dissociation 

of formaldehyde D2CO, the dynamics take place on the excited potential energy 

surfaces T1 and St, in addition to the low~st lying surface 50 •
142 Since the theory 

outlined in Sec. 3.2 does not account for multiple potential energy surfaces nor for non­

adiabatic effects, here we focus on the calculation of the reactive partition function, 

making the non-physical assumption that the dynamics occurs exclusively on the So 

surface. Nonetheless the application to this system illustrates the feasibility of the 

method for unimolecular dissociation on adiabatic surfaces. 

The "spectroscopic constants" for the D2CO dissociation have been deter­

mined using the derivatives of the surface calculated by second-order Moller-Plesset 

perturbation theory (MP2/DZP).103 The reactive partition function, Eq. (3.5b ), can 

be readily obtained and is shown in Fig. 3.4. As has already been noted, 131 the 

anharmonic effect on the reactive partition function is small. Unfortunately, the 

anharmonicity of the reactive mode is also small and, at temperatures below the har­

monic cut-off - 400K - is not sufficient to ensure the convergence seen in the H + H2 

reaction. 

In Fig. 3.5, the pre-reactive partition function, and the integrand for the 

semiclassical rate [see, Eq. (3.5)] are shown. At the temperatures presented, the ther­

mal· rate converges although it is clear that the tail of the integrand is rising with 

I 
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decreasing temperatures; at still lower temperatures, this tail is not damped andre­

sults in the diverging integral. The use of higher order perturbation theory could 

provide stronger damping terms, and result in convergence at these lower tempera­

tures. This. conjecture has yet to be explored. 

3.4 Concluding Remarks 

The primary theoretical development of this chapter has been the determi­

nation of a new form for the semiclassical rate expression allowing for the inclusion of 

anharmonicity (either through perturbation theory or mixed-diagonalization) using 

a direct analysis of the local Hamiltonian in the transition state region. The pre­

reactive partition function, defined in the chapter, is readily computed in analogy to 

the calculation of standard partition functions and offers a new tool for the analysis 

of the convergence of the thermal rate. Moreover, anharmonic effects can actually 

D lead to convergence at low temperatures where the harmonic rate diverges. 

These conclusions have been illustrated for the H + H2 reaction where the 

strong anharmonicity of the transition state converges the rate at low temperatures. 

The presence of a Fermi resonance between some of the modes did not present a 

difficulty because the new thermal rate expression focuses directly on the eigenvalues 

of the 8-labeled Hamiltonian. 

In the formaldehyde dissociation, at second order in perturbation theory, 

the anharmonic semiclassical rate expression gave a small correction to the harmonic 

result; but it did not extend the region of convergence. This latter failing is attributed 

to the small anharmonic coupling of the reaction coordinate at this order in perturba­

tion theory. It is possible that this result can be improved by using still higher order 

perturbation theory or mixed-diagonalization; the latter approach will be explored 

in the subsequent chapter. 
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Chapter 4 

Seniiclassical Transition State 

T-heory - Perturbation Theory 

Revisited 

4.1 Introduction 

In the previous chapter a semiclassical rate formula was obtained whose 

only required input is a Hamiltonian 7-l( 8) parametrized by the generalized barrier 

penetration integral. Following the work ill' Chapter 2 in which perturbation theory 

was used to construct a diagonal Hamiltonian of this form - but also labeled by 

the states of the activated complex - the thermal rate was calculated for several 

systems. However, if there exists a Fermi resonance, the perturbative Hamiltonian 

is no longer diagonal; in fact it is block diagonal with each block labeled by a given 

polyad quantum number. This suggests that, in general, one could treat all the 

perpendicular modes as if they were in resonance, and obtain a thermal rate constant 

by diagonalizing the Hamiltonian in the F- 1 vibrational degrees of freedom. To this 

aim, the perturbation theory expressions for a vibrational Hamiltonian in which only 

some degrees of ~eedom are treated perturbatively and the remaining modes are not, 

are derived in Sec. 4.3. Because the solution of this Hamiltonian subsequently requires 

the diagonalization of the reduced degree-of-freedom Hamiltonian, it is referred to 
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as mixed-diagonalization. 

The least trivial case in which these formulae will apply is two-dimensional 

as there must be one degree of freedom corresponding to the reaction path- which 

is treated perturbatively - and at least one additional vibrational perpendicular 

motion for which the Hamiltonian will be diagonalized. The use of the method is 

thus illustrated by the collinear H + H2 reaction in Sec. 4.4. 

4.2 CVPT for Vibrational Hamiltonians 

The standard vibrational perturbation theory Hamiltonian can most eas­

ily be obtained us~ng contact transformations;107 the method is known by ;everal 
) 

names, but perhaps the most commonly used term in chemistry is canonical Van 

Vleck perturbation theory ( CVPT) .108•109 In this section, the derivation of the pertur­

bative Hamiltonian is outlined in order to make connection with the derivation of the 

results of mixed-diagonalization which are to follow. 

The vibrational normal mode Hamiltonian may be written as: 

1i = 1i2o + 1i3o + 1i4o + · · · (4.1) 

where 

1i2o - ~ Lwk(Pk + q~) (4.2) 
k 

1i3o - ~ L Kklmqkqlqm (4.3) 
k,l,m 

1i4o - '.l. L: Kklmnqkqlqmqn · (4.4) 24 
k,l,m,n 

In the harmonic basis, 1i20 , is diagonal by construction, and the zeroth-order Hamil­

tonian expanded as a multidimensional Taylor series about a stationary point - e.g. 

the barrier - is written as: 

( 4.5) 

where 
(n) 

1io = 1i(n+2)0 , (4.6) 
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for each n. Using CVPT, one can successively transform this Hamiltonian to a given 

order, n; the nth order Hamiltonian is also expanded and written a.S: 

1i = 1£(0) + 1£(1) + 1£(2) + ... 
n n n n ' (4.7) 

The CVPT result for the second order Hamiltonian, for example, is readily found to 

be 

1£~0) - 1£~0) = 1£~0) 
1£~1) _ 1£~1) = 1£~1) + i[S(1), 1i~o)] 

1£~2) 1£~2) + i[S(ll, 1£~1)] _ ~[S(1), (S(ll,'Ji~o)] + i[S(2), 'Ji~o)], 

(4.8) 

(4.9) 

(4.10) 

were S(o) and S(1) are the generating functions for zeroth and first order contact 

transformations, respectively. In the standard approach, the aim of the perturbation 

expansion is to obtain a 'lip> which is diagonal and this is accomplished by a prodigious 

choice of S(l). Since the diagonal matrix elements of odd powers of the position 

operator in the zeroth order harmonic basis are necessarily zero, then the diagonal 

matrix elements of 1i3o are as well, thus, 

"1../(1) - "1../(1) - 0 
H2 - Tl-1 - l (4.11) 

which is equivalent to: 

(4.12) 

Since only a second order result is desired, S(2) can be set to zero, and the final 

expression for the second order Hamiltonian reduces to: 

(4.13) 

The vibrational expression, 

E(2
) =Eo+ L:wk(nk + !) + LXkl(nk + !)(nl + t), (4.14) 

k k$1 

results by taking the diagonal matrix elements of the second order Hamiltoni~, 

Eq. (4.12). 
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4.3 Mixed-Diagonalization 

In contrast to the CVPT derivation, in mixed-diagonalization the removal 

of the full1£P) term is not desired. Instead, only those terms in 1-lp) which involve 

the modes treated perturbatively need be removed. For simplicity in the following 

sections, only mode F will be treated perturbatively. 

There is no loss in generality by doing this special case. The formula ob­

tained converts a Hamiltonian in F degrees of freedom into one which is parametrized 

by the quantum number of the selected mode, which has been treated perturbatively, 

and is off-diagonal in the remaining F - 1 degrees of freedom. By repeated applica­

tion, this prescription can be used to obtain a Hamiltonian which is diagonal in an 

arbitrary number of modes, D, which are treated perturbatively and off-diagonal in 

the remaining F - D degrees of freedom. 

4.3.1 Notation 

In order to simplify the ensuing discussion, we first introduce some notation. 

Each of the vibrational terms in the Hamiltonian will be denoted in by: 

1ikk !wk(P% + q~) , 

1iklm "-klmqkqzqm , 

1lklmn (4.15) 

and, we also define the following particular forms of 1iklm, 

1ls;kkl 1ikkl if k =I= l ' 

1ls;klm - 1iklm if l€klm I = 1 , (4.16) 

where €klm is the antisymmetric tensor. The operators, S3;kkk, Ss;kkl, and Ss;klm, are 

defined by the following requirements, 

i[S3;kkk, 1i~0)] - -1l3;kkk , 

i[Ss;kkl, 1£~0)] - -1-ls;kkl , 
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·[s (o)] Z B;klm, 'Ho = -1is;klm · 

After some algebra, these terms may be evaluated to yield: 

S3;kkk 

Ss;kkl 

Ss;klm 

where 

fhlm 

-

-

-

wk(w~- w[- w!) 

nklm 

(4.17) 

(4.18) 

nklm - (wk +wl +wm)(-wk +w1 +wm)(wk -Wl +wm)(Wk +wl-wm). (4.21) 

It is not hard to show that upon defining 

Skim = Ss;klm , ( 4.22) 

with order of the operators in Ss;klm :fixed, then,· 

Ss;kkl Skkl , 

(4.23) 

and consequently the single form, Skim, suffices to do all calculations. In actual 

calculations, however, it is convenient to use the particular forms. 

It is also useful to define several summation conventions. A single prime on 

a sum corresponds to the exclusion of mode F for each of the summation variables 

under the summation symbol, e.g., 

F-1 F-1 

I:'= I: I: (4.24) 
k,l k=1 1=1 

A double prime on a sum excludes an additional mode from the summation and this 

will be identified in the rare cases that it is used. Variables under the summation 

which are set apart by parentheses exclude equality, e.g., 

F-1 F-1 

I:' =I:I: (4.25) 
m,(k,l) m=1 k::f:l 
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4.3.2 Obtaining the Generator 

Now, suppose that we wish to do perturbation theory only on a single chosen 

mode; call this special mode F. The form of the Hamiltonian which we want to obtain, 

should then be: 

- ~I 1 ~I 1 ~I 
1inp = L..J 1ikk + 6 L..J 1iklm + 24 L..J 1iklmn 

k k,l,m k,l,m,n 

+(operators in q and p with coefficients depending on nF) , ( 4.26} 

where the vector operators qand p do not include those in mode F. In analogy with 

the derivation in Sec. 4.2, 5(1
) should be chosen such that, 

'1../(1) - '1../(1) 
Tl-2 - £1.1 

I . 

~ 2: 1iklm 
k,l,m 
~I 1 ~I 1 ~I 
L..J 1is;klm + 2 L..J 1is;kkl + 6 L..J 1i3;kkk · (4.27) 

k<l<m (k,l) k 

This is tantamount to requiring that 5(1
) satisfy: 

'[ (1) (0)] 1 1 ~I 1 ~I -z 5 1 1io = 61£FFF + 2 L..J 1iFFk + 2 L..J 'Jipkl 1 ( 4.28} 
k k,l 

or, alternatively, 

'[ (1) (0)] - 1 1 ~I( ) 1 ~I -z S , 1io - 61i3;FFF + 2 L..J 1is;FFk + 1is;Fkk + 2 L..J 1is;Fkl , (4.29} 
k (kj) 

Because of the linearity of this expression, the previous results can be combined to 

obtain: 
(1) - 1 1 ~I( ) 1 ~I 

S - 653;FFF + 2 L..J Ss;FFFk + Ss;Fkk + 2 L..J Ss;Fkl , (4.30} 
k ~~ 

4.3.3 Commutators Involving the Generating Function 

To proceed, we need to evaluate the commutators in Eq. (4.10} which, with 

the choices already made, reduces to: 

1£~2) - 1£~2) +i[s<1),7i~1)]- ~ [s(l),i (7i~1) -7iP))] 

_ 1£~2) + ~ [ 5 (1), ( 1£~1) + 1iP))] 
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- 1i~2> + ~ [s<1>, {21ip> + ~1i3;FFF + ~ L 1

(1is;FFk + 1is;Fkk) + ~ :L'1is;Fkl}] , 
k (k,l) . 

(4.31) 

with S(l) from Eq. (4.30). Since in the end we will take matrix elements of the 

Hamiltonian with respect to the lnF) harmonic oscillator states, only those terms in 

Eq. (4.31) which have diagonal contributions in lnF} need be evaluated. 

We first evaluate the titled commutator. Since 1i~1 ) has no terms in F, the 

only terms that can contribute along the diagonal correspond to the terms in S(l) 

which are even in F. Thus, 

(n,.l[s<'>, n('>JinF) - (n.l [ ( t ~· s,, ... ) , n(>>]ln,.) 

- ~ 2::' [(nFISs;FFklnp), 1ip>] · 
k 

Use of Eq. (4.19) with 'lip> taken from Eq. (4.27), readily provides, 

(npi(S(l), 1ip>] lnF) = -! ~' K:k ( np + !) [Pk, 1ip>] 

_ _!I:' Kppk (nF + !) -i81i.1 
. . { (1)} 

2 k wk 2 oqk 
i :L' KFFk ( + 1) A(2) -- --np- k 
2 k Wk 2 ' 

where we have defined the quadratic operator, Ai2), as 

and the double primes on the sums correspond to the exclusion ofF and k. 

Evaluating [ S(1 >, 1i3 ;FFF] 

(4.32) 

(4.33) 

In calculating the titled commutator of this subsection, we first observe that 

only terms in S(l) which are odd in F will contribute; as opposed to the previous 
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subsection, the reduction in terms is not as dramatic: 

( nF I [ s(l)' 1l3;1'FF] I nF) = H np I[ S3;FW' 1i3;FFF ]I nF) 

+~ L'(nFI[Ss;Fkk, 1l3;FW]inF) 
k 
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+! L 1

{nFI[Ss;Fkl, 1i3;FFF]inF). (4.35) 
(k,l) 

The first commutator in Eq. (4.35) is the same as that obtained in the standard 

CVPT formalism; the result can be found in several texts (e.g. Ref. 143), and is 

. 2 

HnFI[S3;wF, 1l3;FW]InF) = z;::; [145 (nF + ~) 2 + 1~] (4.36) 

The second commutator in Eq. (4.35) is 

(4.37) 

The third commutator in Eq. (4.35) is 

(4.38) 

Collecting Eqs. (4.36), (4.37), and (4.38), we obtain: 
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and this reduces to 

which is the desired result of this subsection. 

Evaluating [S(1
), 2:~(1is;F7"k + 1is;Fkk)] 

Although the titled commutator of this subsection in toto does not have 

the symmetry properties which have been used to simplify the commutators in the 

previous subsections, it does separate into two such pieces, e.g., 

(1) ~' l ~' (1) l ~' (1) l [ S , Li ( 1is;F7"k + 1is;Fkk) = Li [ S , 1is;F7"k + Li [ S , 1is;Fkk , ( 4.41) 
k k k 

and this leads to 

[ (1) ~' l S , Li (1is;F7"k + 1is;Fkk) "' 
k . 

~ L:'[Ss;l'Fl, 1is;F7"k] +! L:'[S3;.FFF' 1is;Fkk] 
k,l k 

+~ L:'[Ss;Fll, 1is;Fkk] + ~ L 1 

[Ss;Flm, 1is;Fkk], (4.42) 
k,l ' k,(l,m) 

where the "' symbol serves as a reminder that the equality is satisfied only for diagonal 

matrix elements on the harmonic oscillator basis. 

The first commutator in Eq. ( 4.42) is 

and now we need to differentiate between cases with and without equality between k 

and l, 

~I:' {nFI[Ss;"l' 1is;F7"k]lnF} = 
k,l 
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To evaluate this last expression, we need to recall the following commutators: 

( 4.45) 

Thus, 

which reduces to 

(4.47) 

which is the desired result for the first commutator. 

The second commutator in Eq. (4.42) is 

where we have used the commutators: 

-i(nF + ~) 
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The third commutator in Eq. (4.42) is 

! _'E'(nFI(Ss;Fll, 1is;Fkk]lnF) 
k,l 

( 4.49) 

and, as with Eq. ( 4.43), we now need to differentiate between cases with and without 

equality between k and l, 

Making use of the commutators, 

{nFI[<IF(Pkqk + qkPk),<IFqi]lnF) - -4i(nF + ~)qi 
{nFI[lpp~,<1f'qi]lnF) - -~(piq~ + q~pi), 

leads to the following simplifications, 

~ _'E' { nF I [ Ss;Fll, 1is;Fkk] lnF) 
k,l 

The cases can now be combined to yield 

( 4.52) 

1 ""'' { I [ ] I ) i ""' { 8 2 2 2 n -1 ( 2 2 2 2)} 2 L., nF Ss;Fll, 1is;Fkk nF - -2 L., K,FllK,Fkk Fllqkql - V4-Wl HFll Pl qk + qkPl 
k,l k,l 

-2iL:' 1'\,Fkk/'\,FkkekkF(nF + ~)q~, (4.54) 
k 

which is the desired result for the third commutator. 
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The fourth commutator in Eq. (4.42) is 

t L 1 

(nFJ[Ss;Flm, 1is;Fkk]JnF} = 
k,(l,m) 

t L 1 

K:F[mK:Fkk(nFI [ (eFlmPFqlqm + elmFlJFPlqm + emFllJFqlPm 
k,(l,m) 

~W[Wm ) 2]
1 - nFlm PFPlPm 'cg..qk nF} . 

It is easy to obtain the following commutators for l # m: 

(nF J[cg..plqm, cg..q~]JnF} -

(nFJ(PFPlPm, cg..q~]JnF} -

-2i(nF + !)qmqz8z,k 
. 2 2 

-~(pzpmqk + qkPlPm) 

where 8 is the Kroneker delta function. Thus 

! L 1 

(nFJ[Ss;Fim, 1is;Fkk]JnF} = 
k,(l,m) 

-~ L 1 

K:F[mK:Fkk { eFlmq~qlqm- ~W[WmO;L!n(PlPmqi + q~PIPm)} 
k,(l,m) 
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(4.55) 

(4.56) 

-2i L 1 

K:FzmK:FllBlmF(nF + !)qzqm , (4.57) 
l,m 

is the desired result for the fourth commutator. 

Combining Eqs. {4.42), (4.47), {4.48), (4.54), and (4.57), leads to 

L 1

(nFI[S(1), (1is;wk + 1is;Fkk)]JnF} = 
k 

- 2i L 1 

K:wk K:FFIBFFI ( nF + ! ) qkql 
k,l 

3i '""'' K:FFkK:FFk {4( 2 2)( 1)2 2} + 16 L..J (4 2 - 2) 3 8wF - 3wk nF + 2 - wk 
k Wk WF Wk 

i '""'' K:FFFK:Fkk ( 1 2 · '""'' 1 2 +2 L..J nF + 2)qk- 2z L..J K:FkkK:Fkkekkf(nF + 2 )qk 
k ~ k 

i '""'' {Ll 2 2 2n-1{ 2 2 2 2)} -2 L..J K:FllK:Fkk uFuqkql - ~w, HFll P1 qk + qkPI 
k,l 

-~ L 1 

K:F[mK:Fkk (BFlmq~qlqm- ~W[WmO;i!n(PIPmq~ + q~PIPm)) 
k,(l,m) 

-2i L 1 

K:FzmK:FllBlmF(nF + !)qzqm . {4.58) 
l,m 

This expression can be simplified to: 

L 1 

(nFI[S(l), (1is;FFk + 1is;Fkk)]JnF} = 
k 
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(4.59) 

which is the main result of this subsection. 

In calculating, the titled commutator of this subsection, we observe that it 

has the same symmetry property as the commutator in Eq. (4.35); 

I:' ( nF I[ s(l), 1is;Fkl] lnF} 
(k,l) 

- ~I:' (nFI[S3;.FFF, 1is;Fkl]lnF} 
(k,l) 

+~ I:' (nFI[Ss;Fmm, 1is;FkdlnF} 
m,(k,l) 

+~ I:' (nFI[Ss;Fmn, 1is;Fk,]lnF} · 
(m,n),(k,l) 

(4.60) 

The first of these commutators is similar to Eq. (4.48), and one can readily obtain: 

~I:' (nFI[S3;.FFF, 1is;Fk,]lnF} = ~I:' K,FFFKFkl (nF + ~)qkql. 
~~ ~~ ~ 

(4.61) 

The evaluation of the other commutators is more subtle as one has to consider the 

non-commutativity of the modes not equal to F. 

The second commutator in Eq. (4.60) is 

~ I:' (nFI[Ss;Fmm, 1is;Fkt]lnF} = 
m,(k,l) 

1 ~~ KFmm K,Fkl [{ 2 2 2 
-2 L..J (4w2 _ 2) (nFI (2wm- wF)PFqm 

m,(k,l) ~ m WF 

+wm~<JF(pmqm + qmPm) + 2w!PFP!}, <]Fqkq,] lnF} •(4.62) 

and, as with Eq. (4.43), we now need to differentiate between cases with and without 

equality between m and k or l, 

~ I:' (nFI[Ss;Fmm, 1is;FklJinF} = 
(k,l,m) 
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Evaluation of the matrix elements in this expression results in: 

which further reduces to: 

The third commutator in Eq. ( 4.60) is 

! 2:' (nFI(Ss;Fmn, 1i3;Fkl]lnF) = 
(m,n),(k,l) 

! 2:' II:Fmnii:Fkl(nFI [(eFmn.PFqmqn + BmnFCJFPmqn 
(m,n),(k,l) . 

2"-PWmWn ) ]I } +9nFmCJ.FqmPn -:- OFmn .PFPmPn , qpqkql nF · 

We first evaluate the following commutators, [with (m # n) and (k # l)]: 

(nFI[.PFqmqn, CJpqkql]lnF) -zqmqnqkql 

(nFI[CJ.Fpmqn,CJ.Fqkql]lnF) - -i(nF + ~)qn(ql8m,k + qk8m,l) 

(nFI[CJ.FqmPn, lJFqkq,]lnF) - -i(nF +! )qm(ql8n,k + qk8n,l) 

(4.64) 

(4.65) 

(4.66) 

(4.67) 
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and 

(nFj(PFp'!'p", q,..qkqz]lnF) = 
-ZPmPnqkql, 

-~pnqz(qmPm + Pmqm), 

-~pnqk(qmPm + Pmqm), 

-~pmqz(qnPn + Pnqn), 

if (m # k,l) and (n # k,l); 

if ( m = k) and ( n # k, l) ; 

if (m = 1) and (ri # k, l) ; 

if (m =J k, 1) and (n = k) ; 

-~pmqk(qnPn + Pnqn), if (m-:/; k, l) and (n = l); 

-~(qmqnPmPn + PmPnqmqn), otherwise. 

Insertion of these commutators into Eq. (4.66) leads to: 

and this reduces to: 

~ L 1 

(nFj(Ss;Fmn, 1i3;Fkz]jnF) = 
(m,n),(k,l) 

-~ L 1 

K.FmnKFkl { (}Fmnqmqnqkql- ""T;mWn (PmPnqkql + qkqlPmPn)} 
(m,n),(k,l) ~mn 

(4.68) 

(4.69) 

-2i L 1 

K.FmnKFkmBmnF(nF + !)qnqk, {4.70) 
(m,n),(m,k) 

which is the last term needed to evaluate Eq. ( 4.60). 

Insertion of Eqs. (4.61), (4.65), and (4.70) in Eq. (4.60) results in: 

L:'(nFj[s<t), 1is;Fkz]lnF) = 
(k,l) 

i "'""' K,FFF K,Fkl ( 1 ) . "'""' 1'\p-kk K.FklWk 1 
2 L.; nF + 2 qkql + 2z L.; (4w2 _ 2 ) ( nF + 2 )qkql 

(k,l) ""F (k,l) k . WF 

i "'""' K.FmmKFkl {( 2 2) 2 2 ( 2 2 )} +2 L.,; ( 4 2 _ 2) 2wm - WF qkqlqm + Wm qzqkPk + Pkqlqk 
m,(k,l) ""F wm WF 
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i ~ { ~~~ } -2 L....t KFmnKFkl BFmnqmqnqkql- n (PmPnqkql + qkqlPmPn) 
(m,n),(k,l) !Fmn 

-2i L 1 

KFmkKFlm(}mkF(nF + ~)qkql. (4.71) 
(m,k),(m,l) 

Collecting terms and using the definition of Bktm provides, 

(k,l) 

.(4.72) 

· This can be further simplified, 

providing the desired result for this subsection. 

In the last section all of the commutator terms in Eq. (4.31) were evaluated 

onto the lnF) state. In this section we evaluate the remaining term needed in that 

expression, namely, 

{nFI1i~2)lnF) = {nFI ( 2
1
4 KFFFFCJi. + ~ L 1 

Kppklq}.qkql + 2~ L 1 

Kklmnqkqlqmqn) lnF) , 
k,l k,l,m,n 

( 4.74) 
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where terms odd in F have already been dropped since they vanish inside the matrix 

element. The first term in this expression is the same as in standard CVPT while the 

remaining terms, may be obtained trivially, resulting in 

(nFI'Ji~2)lnF} = 1
1
6 KFFFF { (nF + !)2 + ~} + ~ L 1 

KFFkl(nF + !)qkql 
k,l 

(4.75) 

4.3.5 The Second Order Hamiltonian Operator 

To second order in the perturbation, the Hamiltonian is 

(n 11£(0) + 1£(1) + 1£(2) + i [s(l) { 2,1_Al) + !1£ 
'F 0 1 0 2 1 /1.1 6 3;FFF 

+! L 1

(1is;FFk + 'H..s;Fkk) +! :L' 'H..s;Fkl}]lnF) . 
k (k,l) . 

(4.76) 

Substitution using Eqs. (4.2), (4.27), (4.33), (4.40), (4.59), (4;73), and (4.75) results 

In: 
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Rearranging and combining terms leads to: 

(4. 78) 

This reduces further to the final expression: 

(4.79) 

For example, in the 2-dimensional case, we obtain: 
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. ( 4.80) 

where !labels the perpendicular mode. 

The multidimensional mixed-diagonalization Hamiltonian ( 4. 79) and its 2-

dimensional trivialization, Eq. ( 4.80), are in the form that has been sought. The 

terms in the original Hamiltonian, which involve only the F - 1 degrees of free­

dom not treated perturbatively and the standard perturbation theory result for a 

!-dimensional vibrational system as applied to mode F, are all contained therein. If 

there were no coupling between mode F and the rest,. there would be no additional 

terms, and this is manifested in the mixed-diagonalization Hamiltonian. In general 

there is anharmonic coupling between these modes, and the additional terms in the 

mixed-diagonalization Hamiltonian represent operators in the reduced F- 1 dimen­

sional space whose coefficients are parametrized by the quantum number of mode 
\ 

F. 

4.3.6 Summary 

In this section, perturbation theory has been used to obtain a Hamiltonian in 

which at least one normal mode corresponds to a good quantum number of the system 

which is only partly coupled to the remaiming degrees of freedom. Although only the 

results for the case with one such mode is explicitly, the general result follows readily 

by repeated application. (The only detail that need be recognized in carrying out 

this recursive procedure is that the terms in the mixed-diagonalization Hamiltonian 

which have arisen during a given recursion step should be treated as second order 

terms in subsequent recursion steps.) In particular, it is an easy- but lengthy! -

calculation to check that in the limit that this recursion is applied F times to an 
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F -dimensional Hamiltonian, the standard CVPT expressions107 obtain. 

Use of the correspondence relation- e.g. Eq. (Z.15)- connecting nF to the 

generalized barrier penetration integral 9 results in an effective Hamiltonian, ?i( 9), 

which can be used in the semiclassical formulae of Sec. 3.Z to obtain thermal rate 

constants. For example, in order to compute the rate, 
00 

k(T) = (Z7r1iQrf3t1 j d9 !sech2 (9) L e-f3E('I}*.B), 

-oo '}: 

(4.81) 

one needs only diagonalize the effective Hamiltonian for each value of 9 in a quadrature 

scheme. By analogy with the standard rate formula involving the Boltzmann average 

of the CRP, this result suggests that the CRP can also be more accurately computed 

by first diagonalizing the mixed-diagonalization Hamiltonian (as one does when there 

are Fermi resonances), and then performing a numerical inversion to obtain 9J(E) 

where j is now a collective index for the eigenvalues of ?i( 9). This extends the view 

of the semiclassical calculation discussed in Seideman and Miller112 in which the 

eigenergies of the SCTST are shown to be related to Siegert144
-

146 eigenvalues. 

4.4 Application to Collinear H + Hz ~ Hz·+ H 

In order to apply the mixed-diagonalization Hamiltonian obtained in the 

previous section all that is needed are the force constants of the potential at the 

transition' state. Since this is precisely the information which is needed to obtain the 

"spectroscopic constants" for the full perturbation theory approach of the SCTST em­

ployed in earlier chapters, this information is readily available for each of the systems 

discussed thus far, in which there are no degenerate vibrational modes. However, for 

a one dimensional system there are no perpendicular modes, and it is therefore nec­

essary to apply the theory to a system with dimensionality greater than or equal to 

two. The smallest system studied thus far which meets this criterion is the collinear 

H+H2 --+ H2 +H reaction for which the force constants may be found in Ref. 104. This 

system will thus serve to illustrate the use of the mixed-diagonalization Hamiltonian 

in obtaining the CRP, in principle, a stricter test than that afforded by a thermal 

rate calculation, as it involves less averaging. 
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Figure 4.1: The CRP for the collinear H + H2 reaction is presented for several cases: 
exact results2 (points); anharmonic SCTST with Eo = 0 (short-dashed curve); an­
harmonic SCTST with Eo = -138.3cm-1 (dotted curve); anharmonic SCTST with 
Eo= -936.6cm-1 (solid curve); and SCTST with mixed-diagonalization Hamiltonian 
(dot-dashed curve). 

In Fig. 4.1, the mixed-diagonalization result for the CRP in the lgw energy 

regi:me is compared to the exact results of Bondi et aP and to the anharmonic SCTST. 

(Note that the exact results were actually obtained for the LSTH surface; but these 

differ from the DMBE results by less than the resolution of the figure.) In the figure, 

several anharmonic SCTST CRPs are presented and these differ only by the choice of 

Eo: (i) if the perturbation theory calculation is performed only for the 2-d\mensional 

collinear system, the resulting Eo = -936.6cm-1; (ii} if instead, Eo is taken from 

the full-dimensional calculations, then Eo · -138.3cm-1 for the case in which the 

Fermi resonant term is excluded; and (iii) if Eo is ignored and set to 0, i.e., the 

result presented in Fig. 2.2. For the mixed-diagonalization calculation, the result 

follows directly from the force constants and there is no ad hoc modification of the 

Hamiltonian. 

The results in Fig. 4.1 suggest that the anharmonic SCTST provides an 

approximately correct non-exponential behavior, but the correction to the threshold 

energy as provided by Eo is incorrect. This latter error is evidently due to the pertur­

bation theory, and the mixed-diagonalization offers an improvement of the threshold 
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error although it is not in pedect agreement with the exact result. It should be em­

phasized, though, that the collinear H + H2 reaction is highly anharmonic - as may 

be seen from the large anharmonic "spectroscopic constants" in Table 2.1 - and it 

is also one in which quantum mechanical effects predominate as is exhibited by the 

resonance features in the CRP. Thus the fact that the SCTST results using mixed­

diagonalization are in reasonable agreement with the exact results is encouraging, 

and further work is in progress. 

4.5 Concluding Remarks 

The mixed-diagonalization method developed in this chapter appears to be 

quite general. It could be used, for example, in order to construct effective Hamiltoni­

ans for bound molecules with only a few wide amplitude motions. The only difficulty 

in this procedure is the identification of the limited subspace of quasi-bound modes 

which are to be treated only perturbatively. 

In this chapter, the mixed-diagonalization approach has been explicitly used 

to construct the semiclassical Hamiltonian 1-l( 8) needed in the SCTST thermal rate 

expression, and in the computation of the SCTST CRP. This application may seem 

counter-intuitive as the scattering motion along the reaction path should, in principle, 

involve the widest amplitude motion, and thus by the arguments of the bound-state 

paradigm should be the one in which perturbation theory should be the least effective. 

From a practical point of view, however, 8 corresponds to the only quantum nu.mber 

that need be "good" and so the construction requires a local treatment of this degree 

of freedom while the non-perturbative treatment of the remaining degrees of freedom 

allows for a more accurate treatment of their motion. 

Moreover, returning to classical mechanics, if a Hamiltonian with F degrees 

of freedom is not integrable but contains a constant of the motion which can be 

associated with the reactive degree of freedom, then a. canonical transformation will 

produce a new Hamiltonian parametrized by a good action variable which is bound in 

the remaining degrees of freedom. This good action is the one which is associated with 

8 in the situation where there exist F -1 additional constants of the motion leading to 
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an integrable Hamiltonian in Miller's good-action angle variable theory. Thus by an 

analogous extension of Miller's theory when the good action-angle variables are only 

locally known, the locally "good" action variable for the reactive degree of freedom of 

the otherwise nonintegrable Hamiltonian can be associated with (). The error incurred 

with respect to the unbound motion should be of the same order as that when all F 

modes are treated locally; here, however, the bound motions can be treated exactly. 

Thus we obtain a generalization of Miller's theory which, in principle, should provide 

systematically better results as the number of perpendicular modes which are treated 

exactly is increased. 

The preliminary results seen in the application to the collinear H + H2 re­

action are encouraging, but more work still needs to be done. For example, if the 

potential energy surface is known only to second order, there may be no advantage . 

to performing a more "accurate" calculation than the anharmonic SCTST presented 

in previous chapters, as is evident from the discussion of the Eckart barrier CRP in 

Sec. 2.4.1. 
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Chapter 5 

A Random Matrix/Transition 

State Theory for the Probability 

Distributions of U nimolecular 

Decay Rates 

5.1 Introduction 

83 

· In a remarkable series of experiments, Polik et al.96•21 determined the uni­

molecular reaction rates for the decomposition of formaldehyde in its ground elec­

tronic state, 

(5.1) 

for individual quantum (i.e., rovibrational) states of the reactant molecule. Al­

though standard statistical theory (i.e., RRKM, microcanonical transition state the­

ory, etc.12•147•45) provides a good description of the rate as a function of the energy 

of the molecule on the average, the decay rates of individual quantum states with 

energies in a given energy interval show significant fluctuations about the average 

rate for that energy (interval). Fig. 5.1 shows a schematic depiction of this situation. 
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<I'(E)> 
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E 

Figure 5.1: Unimolecular decay rate vs. energy. The points indicate the decay rates 
and energies for individual quantum states of the reactant molecule. (f(E)} is the 
average rate averaged over all the states in a given narrow energy interval, 8E. 

As described in Sec. 1.2.3, the standard model which has been useq to de­

scribe the fluctuations has been the Porter-Thomas model63 or its generalization 

which results in the x2 distributions. However, the experimental results of Polik et 

al. did not agree with the best fit x2 distributions, and this led them to posit a gener­

alization of the Porter-Thomas model. 98 A more rigorous derivation of this model was 

later obtained and will be described in Sec. 5.2.100 The essential assumptions of this 

statistical model are that the states in the quasi-bound region of the potential energy 

surface be non-overlapping and strongly mixed. The first assumption is clearly satis­

fied if the experiments resolve individual quantum states. By strongly mixed we mean 

that the system behaves like the Gaussian Orthogonal Ensemble (GOE) of random 

matrix theory.69
•61 Physically, this latter requirement is equivalent to the assumption 

that the expansion coefficients (in some generic basis) of the eigenstates-in a given 

energy interval all behave as independent random variables. The good agreement 

of various spectral measures between the experimental results and predictions of the 

Gaussian Orthogonal Ensemble indicates that the eigenstates of D2 CO are indeed 

well described as strongly mixed. 99 

It is interesting to note that the Porter-Thomas model has previously been 

obtained within the formalism of random matrix theory,61 but stopped short of look-



5.2. THE RM/TST MODEL 85 

ing at the decay rate matrix itself, which is the object that has afforded us progress·. 

In particular, the interpretation of the x2 parameter, v, as an effective number of 

channels is given a rigorous footing within this formalism, and the noninteger values 

it can attain are a manifestation of quantum mechanical tunneling. Both this fact and 

the wealth of distributions that this statistical model can represent are illustrated in 

Sec. 5.3. In Sec. 5.4, this model is converted into a predictive theory, with the demon­

stration that the eigenvalues of the decay rate matrix are related to the semiclassical 

transition state transmission probabilities described in earlier chapters. This theory 

is consequently called a random matrix/ transition state (RM/TST) theory. 

In practice, it may often be the case that there will be dynamical symme­

tries - e.g. angular momentum conservation - which are obeyed throughout the 

dynamics; but this is incompatible with the strong mixing assumption in RM/TST 

theory. Nonetheless, the strong mixing assumption can be used to describe each of the 

symmetry manifolds as is presented in Sec. 5.5. Thus the only adjustable parameter 

within the RM/TST theory is the set of symmetries that are assumed to be obeyed 

throughout the reaction dynamics. 

The application of the RM/TST methodology to the formaldehyde dissoci­

ation ( 5.1) and subsequent interpretation of the experimental result is presented in 

the next chapter. 

5.2 The RM/TST Model 

5.2.1 The Construction of the Model 

A system undergoing unimolecular dissociation can, in general, be described 

by an effective Hamiltonian matrix148•149 of the form 

eff i 
1-lm,m' = 1-lm,m' - 2 r m,m' ' (5.2) 

where {lm)} is some bound-state (L2
) basis which spans the (Hilbert) space of the 

reactant molecule. The real symmetric matrix 1-lm,m' describes coupling (anharmonic, 

coriolis, etc.) in the reactant molecule. The decay rate matrix r m,m' describes the 
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coupling of the bound states {In}} to a continuum of unspecified scattering states 

of the dissociated molecule. The complex eigenvalues of ~eff, {E;- ~r;}, give the 

energies {E;} and decay rates {r;} of the individual quantum (metastable) states of 

the reactant' molecule provided they are non-overlapping, i.e., 

(5.3) 

(Alternatively, {E;} and {r;} are the positions and widths of scattering resonances 

between bimolecular collisions of the fragment molecules.) In light of Eq. (5.3), it is 

reasonable to treat the imaginary part of ~eff by first order perturbation theory: the 

"zeroth order" eigenstates, 

(5.4) 
m 

are thus the eigenvectors of the real Hamiltonian matrix, ?j, and the imaginary parts 

of the eigenvalues are given (within first. order perturbation theory) by 

r· J - (w;lrlw;} 

- L Cm T 1 Cm 1 • · ~ m,m ~ 

m,m' 

- cf • r · Cj. (5.5) 
-J ::: -

The unimolecular decay rate for a state characterized by eigenvector ~ is therefore 

r(~) = ~r. I.~· 

One next assumes that the eigenstates of 1j are strongly mixed, i.e., that 

the dynamics of the (highly excited) reactant molecule is chaotic, ergodic, etc. This 

corresponds to assuming that the statistics of the eigenstates within a given narrow 

energy interval are equivalent to sampling over all states consistent with normaliza­

tion, ~T • ~ = 1.. Physicall!, this uniform sampling will involve a random mixture of 

only a finite number of basis states since random coupling of an infinite basis would 

entail ·the loss of energy information. Thus the "zeroth order state" reduces to the 

generic form, 
f 

I'll;}= L lm} c~.i, (5.6) 
m=l 
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where f is the effective number of strongly mixed states in a generic basis. (Sec. 

5.4.2 discusses more fully the physical significance of the parameter, f.) Thus the 

probability distribution of the decay rate may be written as 

00 00 

P(r) = j · · · j de~··· dcj P}(~')h (r- !;
1T ·I·~) ', (5.7) 

-oo -oo 

where the probability of a given state is 

P'(c') = t5 (c'T · c'- 1) 
f - - - ' 

(5.8) 

which enforces the uniform sampling of the normalized states. 

Now, we suppose that the decay rate matrix, f, has only a finite number of 

non-zero eigenvalues, n. A transformation of the state vectors, !:', to a space in which 

the first n basis states span the same space as that spanned by those eigenvectors of 

I with nonzero eigenvalues, reduces Eq. (5.7) to 

00 00 

P(f) = j · · · j dc1 ···den PJ,n(!:)h (r- !:T ·I·!:) , (5.9) 
-oo -oo 

where!; is an n-dimensional vector and 

00 00 

PJ,n(!:) =I··· I dcn+l···dc!PJ(cl,···,cn,cn+ll···,cf). (5.10) 
-oo -oo 

As shown by Ullah150
, the probability distribution for the vector !: can be readily 

integrated to obtain, 

G(J/2) ( n ) (f-n-2)/2 
P (c) = rr- 112 1 - ""c~ f,n - G( J;n) {:: ' ' (5.11) 

where G is the gamma function60 which is normally denoted r, but here we need to 

avoid confusion with our notation for the decay rater. Moreover, in the large f limit, 

the asymptotic result is: 
n 

pf (c) = IT fie- fc} /2 
,n - V 2;' ' (5.12) 

j=l 

as can be anticipated77 from the central limit theorem. Although in what follows we 

shall assume that f is large and consequently use the asymptotic form [Eq. (5.12)] in 
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Eq. (5.9) to obtain the decay rate probability distribution, it should be noted that this 

assumption can be relaxed. However, since this general result for Pj is not separable 

with respect to each of the coordinates of d, its multidimensional integral can not be 

reduced further, and is thus not amenable to applications. 

5.2.2 The Decay Rate Probability Distribution 

1 Using the results from the previous subsection, the decay rate probability 

distribution may be written as: 

.co co n 

P(r) = J ... J del ... den n {£e-fc'J12fJ (r- c;T. I. c;) ' 
-co -co J=l 

(5.13) 

in the asymptotic limit where f is large. Introducing the integral form of Dirac's 

a-function, h(z) = (27r)-l f~oo eiztdt, and changing the order of integration, 

co 00 00 

P(r) = / dteirt(trr
12 J ... J del .. ·den e-fr:T·fl2ef'T'f·C.:. (5.14) 

-co -oo -oo 

The Gaussian integrals in this last equation can be readily evaluated to provide 

00 

P(r) = (21rt1 j dt eirt D'(t)-112
, (5.15a) 

-oo 

where 

D'(t) - det [{ + 2itff f] 
n 

- Il(1+2ihi/J), (5.15b) 
j=l 

and { /j} are the n non-zero eigenvalues of the f matrix. (Note that, in general 

n ~ J, i.e. most of these eigenvalues are zero.) 

It is useful to define the dimensionless reduced probability distribution in 

terms of P(r) as 

p(x) = I'P(I'x), (5.16) 
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where X= r;r is the decay rate in units of the average rater. From Eq. (5.15),and 

making.use of the calculated value of[' in Eq. (5.24) obtained below, one sees that 

00 

p(x) = (27r)-1 j dteixt D(t)-1/2' (5.17a) 
-00 

where 

D(t) - det[{ + 2itf/tr(f)] 
n 

- Il(1 + 2it-y;/tr(f)). 
j=l -

(5.17b) 

If there are exactly n equal non-zero eigenvalues, i.e. 'Yi = 1 for j :::; n, 

Eq. (5.17) reduces to a x2-distribution with n degrees of freedom - the Porter­

Thomas result - and this has also been the traditional model used to describe fluc­

tuations in the unimolecular decay rate of chemical reactions.151•152 Various simpli­

fied but nontrivial models for the { /;} beyond this approximation will be explored 

in Sec. 5.3. In the most general case one can obtain the distribution from Eq. (5.17) 

by numerical integration provided, of course, that one has the eigenvalues { /j} of f. 
Note that these expressions are written as Fourier transforms in order to suggest the 

use of an FFT numerical procedure for their evaluation. If instead a direct integra­

tion is desired then these expressions can be written in a manifestly real form; see 

Eqs. (3.1) and (3.2) in Ref. 100. 

5.2.3 The Microcanonical Quantum Survival Probability 

The "microcanonical quantum survival probability" 12 is defined as a sum 

over a continuum of states with exponential decay, e.g., 

P(t) = fooo dr P(r)e-rt . (5.18) 

This would correspond to the survival probability of a broad band excitation or 

collision experiment in which a dense set of exponentially decaying excited states are 

prepared uniformly in a narrow energy interval. Miller151 and Hase152 have considered 
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this quantity explicitly for the case of Porter-Thomas distributions for P(r). With 

the more general result for P(f) given by RM/TST, Eq. (5.57) above, it is relatively 

straightforward to obtain the following result for P(t), 

P(t) =II (1 + 2tf''Y;/tr(f))-
112 

j 

(5.19) 

If all the 1/s are the same, then Eq. (5.19) reduces to that given previously151 for a 

x2 distribution. 

Further progress in elucidating the result in Eq. (5.19) can be made by 

anticipating the result to be described in Sec. 5.4. The result is that 

li = €N'}' (5.20) 

where j is a collective index in one-to-one correspondence with ?:?- which labels the 

states of the activated complex, N'} is the transmission probability through a given 

state of the activated complex, and € is a constant of proportionality. Thus Eq. (5.19) 

can be written· as 

P(t) =II (1 + N'}t) -1/2 

'} 7r p 
(5.21) 

In the limit that t ~ 0, this equation reduces to, 

· ( II ( 1 Nnt) ( ~ Nnt) - -I't p t) ~ 1 - 2-- ~ 1 - L.t -- :::::::: 1 - rt :::::::: e ' 
1j 7rp 1j 7rp 

(5.22) 

which demonstrates in the short time limit the exponential fall-off of the survival 

probability as determined by the average rate. 

5.2.4 The Effective Number of Channels: Veff 

As discussed in Sec. 1.2, it has been common practice to use the x2 fan:iily 

of distributions to fit to experimental data. The single parameter v which uniquely 

determines a member of this family has traditionally been determined from either 

the second moment of the experimental data or from the expectation value of the 

logarithm of the rate as motivated by the maximum-likelihood method. 
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Although the RM/TST family of distributions do contain the family of x2 

distributions, they are not equal and consequently lief f does not uniquely specify a 

given member of the RM/TST family of distributions, as is illustrated in Sec. 5.3. 

Nonetheless one can associate a value of lief! to each of the RM/TST distributions as 

one does for observed distributions. In this section, we obtain analytic results for the 

value of lleff as obtained using the two most commonly imposed constraints discussed 

above. 

ll2ff Using Moments 

Recall that the effective number of channels may be written in terms of the 

first and second moments of the decay rates as, 

We now proceed to calculate these moments. 

To obtain the RM/TST moments, it is actually most convenient to use the 

form of the probability distribution in Eq. (5.13), from which it follows that: 

00 

(rn} = j drrn P(r) 
-oo 

oo oo oo n 

- _£ drrn _£ .. ·_£ dc1 ... den }l J?;e-fcj/
28 (r- fT. r. f) 

- _l·. ·_l de, ... de,!! .;?;e-f<j/2 (~ "Y;c; r ' (5.23) 

where { "Yi} are the eigenvalues of r and an orthogonal transformation of the inte­

gration variables has been effected. The first moment reduces readily into a sum of 

Gaussian integrals: 

r = (r} 
f 00 "'j dc·"~·C~ fie-fcj/2 LJ J I) JV 2; 

j=l-oo 

f 

I L "Y; = }tr(f) . (5.24) 
j=l 
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[Note that this determines the effective number of mixed states as 

f = tr~r) .] 
r 

The second moment is only slightly more involved: 

and the variance of the distribution takes on the simple form: 

n 

(r2)- (r)2 = J. L 1} = l• tr(f2). 
j=l 

{5.25) 

Combining Eqs. {5.24) and (5.27), the effective number of channels for a 

given RM/TST distribution can be written directly in terms of the r matrix or its 

eigenvalues, 

{5.28) 

and this provides an analytic value of v21 f if the eigenvalues of :r are known. 

v~f Using the Maximum-Likelihood Method 

Within the maximum-likelihood formalism,68 the effective number of chan­

nels is computed by inverting the transcendental equation, 

F(z) = G(z) 8~~z) -lnz, (5.29) 

for z = v:Jf /2, where G is the gamma function60 and F(v:jf /2) is computed directly 

from the data, 
p 

ML 1" -F(veff/2) = ;;~ln(f;jr). 
a=l 

(5.30) 

Given a continuous distribution, this result takes its continuous form, e.g., 

F(v:Jf/2) = {ln(f/f')) = {lnx), (5.31) 
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where the averages in this equation are taken with respect to the RM/TST distri­

butions in Eqs. (5.15) and (5.17), respectively. The calculation of F(v:Jf /2) for 

the RM/TST distributions, in the most general case of the eigenvalues of f, can be 

readily computed numerically with a standard integrator. In this section, analytical 

expressions for (lnx) are derived for various special cases. 

Using the reduced probability distribution, Eq. (5.17), the expectation value 

of the logarithm is 

()() 00 

(lnx) - J dx lnx 2~ J dt eixt D(t)-112 

0 -oo 
00 00 J dt D(tt112 2~ J dt eixt lnx, (5.32) 

-oo 0 

where D(t) is defined by Eq. (5.17b). If the limits are taken carefully, the indefinite 

integral over x can be evaluated by an integration by parts, resulting in 

{ 

00~ } 

(ln x) =lim -2
1

. J dt D(tt112 be+ ln( -it)] , 
f-+0 lrl 

-oo+if 

(5.33) 

where leis Euler's constant.60 The le term in this integral can be evaluated by closing 

the contour on the lower half plane, using the residue theorem 134 for the only pole 

contained within it at t = 0, and noting that D(O) = 1; the result is: 

(ln x) = -{e +lim [-
2
1 . oo/+if dt D(t)-112 ln( -it)] 

f-+0 lrl 

-oo+if 

- -1e + ¥~ { 2~i jif dt ln( -it) ft [1 + 2it.:Yir112
} 

-oo+if J=l 

(5.34) 

where D(t) has now been written explicitly, and the normalized eigenvalues are defined 

by 

(5.35) 

If each of the eigenvalues off is precisely doubly degenerate, then Eq. (5.34) 

can be evaluated by closing the contour on the upper half plane and making use of 
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the residue theorem for each of the poles associated with each degenerate eigenvalue; 

the result is: 

(In X) = -,,+ E [ ln(272k) !{ {1 - 'hd'h•) -l] ' (5.36) 

where the prime on the product refers to the exclusion of 1 = k, and the eigenvalues 

{ 'Yi} are assumed to be ordered from largest to smallest. 

Alternatively, if each of eigenvalues off is non-degenerate, then Eq. (5.34) 

can be written as a sum of one-cdimensional integrals, 

( ) 
l ~ 2-'Y(/21<-1) In t II" ( - I )-1/2 

ln X = -/e + 271' L..J dt (2- - t)1/2(t - 2- )1/2 1 - 2/j t ' 
k=1 2- /(2k-1) /2k j 

'Y2k 
(5.37) 

where the double prime on the product refers to the exclusion of j = 2k and j = 

(2k- 1). Note that some of the square root terms within the product are complex 

and are evaluated properly using the plus sign convention for all complex square 

root function evaluations. H the { /i} are sufficiently separated, then this can be 

approximately computed taking the product to be slowly varying and evaluated at 

an effective value oft, i.e., 

2'Y2k-l 

(lnx) ~ -~e + 2~ ~ [n" (1- 27j/t'k)-
112

] 
k=1 J 

J d lnt 
t (2!(2k-1) - t)112(t- 2/2k)112 

2'Y2k 

~ -!e + ~ [ln(2t;;)JJ" (1- 'Yi/t;;)-112] 
k=1 J 

(5.38) 

where the remaining integral is evaluated usmg Eq. 4.293.13 m Gradshteyn and 

Ryzhik153, and 

t;; = ~ [ J7(2k-1) + ~] 
2 

(5.39) 

is chosen so that the result reduces to Eq. (5.36) in the limit that the eigenvalues are 

doubly degenerate. 

In order to discuss the relative accuracy of implementing these expressions, 

the results for the D2 CO dissociation to be described in Chapter 6 need be antic­

ipated. In all cases except for case (a) in which the degenerate eigenvalues corre­

sponding to ±IKI are/included in the same symmetry manifold, Eq. (5.38) provides 
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accurate results compared to the direct computation of (ln x). However, the approx­

imate result, Eq. (5.39), provides qualitative agreement only for case (c), in which . . 

the eigenvalues were well-separated. In practice, both the exact result, Eq. (5.38), 

and the direct computation of (ln x) were performed as a further check of the code. 

Inversion of Eq. (5.31) subsequently provides the effective number of channels within 

the maximum-likelihood formalism. 

5.3 Model Calculations 

Before converting the model just developed into a predictive one .by evalu­

ating the eigenvalues { /j} of the decay rate matrix I (up to a proportionality fac­

tor), it is useful to first exhibit some possible distributions and compare them to 

x2-distributions. 

5.3.1 The Porter-Thomas Limit 

An adiabatic picture of the dissociation process suggests that the vibrational 

quantum numbers corresponding to the modes orthogonal to the reaction path coordi­

nate will remain approximately conserved throughout the dynamics. The eigenvalues 

{ /j} of r will thus correspond to the decay rates of an effective one-dimensional 

Hamiltonian where the collective index j corresponds to the adiabatic quantum num­

bers and labels the "channels" through the barrier. If the reactions were classical 

or the intramolecular energy redistribution (IVR) between the perpendicular modes 

were fast compared to the motion along the reaction coordinate, then the non-zero 

eigenvalues of I are equal and all of the eigenvalues may be described by a step 

function, 
. _ {'' ifj E {l, ... ,v}; 

l}- .f . 
0, 1 J > v ., 

(5.40) 

with v non-zero channels. (Note that the actual rate of the fastest mode is irrelevant, 

as this scales away in the reduced probability distribution, Eq. (5.17a), which is to 

be obtained.) As mentioned earlier, with this form of the eigenvalues the distribu­

tion obtained in the previous section reduces to a x2-distribution with v degrees of 
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Figure 5.2: Characteristic functional forms for {!;} with lleff = 6 compared to the 
step-function form which leads to a x2-distribution. The short dashed and medium 
dashed curves correspond to the smooth step function form with {a= .5, v0 = 2.109} 
and {a = 1.0, v0 = 4. 738}; the distributions obtained with these models are presented 
in Fig. 5.3. The long dashed curve is a hi-step function with {v0 = 1, v1 = 10} and 
the distribution it generates is presented in Fig. 5.5. Note also that all curves have 
been renormalized so that the { /;} sum to one. 

freedom. 

5.3.2 Smooth Step Function Model 

A non-trivial modification to the classical picture just described can be 

obtained by assuming that the eigenvalues /j are described by a smooth step function. 

This is tantamount to assuming that the system exhibits tunneling but that the 

activated complex has little or no quantization. The explicit form of the smooth step 

function is 

(5.41) 

for each integer index j, and with a and v0 parameters characterizing the assumed 

form. Since distributions are classified using Veff, v0 is chosen for a given value of 

a such that the variance criterion, Eq. (5.27), is satisfied. (Smooth step functions 

obtained using a's characteristic of those studied and with Veff = 6 are compared to 

a step function with v = 6 non-zero 1's in Fig. 5.2.) Note that in the limit a --t oo, 
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Figure 5.3: The reduced probability distributions [cf. Eq. (5.17)] with Veff = 6 
obtained using the smooth step function model. The solid curve is the x2-distribution, 
and the short dashed and long dashed curves correspond to the smooth step function 
form with {a= .5,vo = 2.109} and {a= l.O,v0 = 4.738}, respectively. 

Eq. (5.41) reverts to the step function defined in Eq. (5.40) with v0 = v ( = Vef!) 

thereby reproducing the x2-distribution; with finite values of a - as illustrated in 

Fig. 5.2 - the fall-off of the 1/s is more gradual and this leads to deviations from 

the x2-distribution. 

Although the distributions for various values of Veff have been explored, only 

the distributions with Vef! = 6 and 2 are presented in Figs. 5.3 and 5.4, respectively, 

because these cases illustrate the behavior seen in general. As can be seen, the 

models deviate only slightly from the x2-distribution with respect to all features 

except for the small rate behavior in the Veff = 2 case. Unfortunately, as will be 

elaborated later, experimental results often miss many of the small rates and this 

region would not be useful in differentiating between candidate distributions. Thus 

the markedly different behavior from the x2-distributions seen in the experimental 

results for the formaldehyde dissociation could not be accounted for by this not-quite­

classical model. 
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Figure 5.4: Same as Fig. 5.3 except that Veff = 2 and {a= 1.25, v0 = -.291} and 
{a= 1.75, v0 = 1.0173}, respectively. · 

5.3.3 Bi-Step Function Model 

An alternate model describing the eigenvalues of the decay rate matrix is 

motivated by considering the quantization of the activated complex. Within the 

vibrational adiabatic approximation17•19•20 the multidimensional potential is assumed 

to be separable and the perpendicular modes are taken to be harmonic, e.g., 

F-1 

V(s) = Vo(s) + L wk(nk + !) , (5.42) 
k=1 

where s is the reaction coordinate, wi is the frequency of the perpendicular mode i and 

Vo(s) is the effective one-dimensional potential along s. Within this approximation, 

the eigenvalues of the multidimensional decay rate matrix are related to the one­

dimensional decay rate, lm(E), for the potential, Vo(s): 

( 

F-1 ) 
TIJ = /1D ET- ?: 1iwi(ni + t) 

a=1 

(5.43) 

where ET is the total energy. In the limit that 1i is small, /ID (E) is monotonically 

increasing withE, and there is a simple ordering of the eigenvalues of the decay rate 

matrix as determined by the number of quanta in the perpendicular modes: 

F-1 F-1 

TIJ ~ T~J' / ¢=} L liwi ( ni + t) ::; L liwi ( n~ + t) 
k=1 k=1 

(5.44) 

.. 
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(This representation can be improved, and this is the subject of the discussion in 

Sec. 5.4.1.) If one further assumes that the perpendicular mode frequencies are ( ap­

proximately) equal, Wi ~ w, then there will be a single large eigenvalue of the decay 

rate matrix corresponding to no quanta in the perpendicular modes - the "ground 

state" of the activated complex. The next largest eigenvalue is ( F - 1) degenerate 

and corresponds to those states with a single quanta in only one of the perpendicular 

modes - the "fundamentals" of the activated complex. This suggests an approxi-
. . 

mate model of the decay process in which there is fast decay through a single channel, 

there is slow decay through a degenerate set of channels, and the remaining decay­

which is even smaller- is ignored. 

A slight generalization of this model, permitting the degeneracy of the fast 

channel, may be described by the hi-step function, 

{ 

I, if j E { 1, ... , Vo} ; 

/j = A/, if j E {vo + 1, ... , vo +vi} ; 

0, if j > Vo + VI , 

(5.45) 

with v0 fast channels and VI slow channels. For this model, Eq. (5.27) yields, 

(5.46) 

which varies from v0 to v0 + VI as ,\ varies from 0 to 1. The reduced probability 

distribution, Eq. (5.17a), is 

00 

p(x) = (21rri j dteixt (1 + 2itjs)-vol2(1 + 2it.\fStvt12
, ( 5.4 7) 

-oo 

with 

( 5.48) 

and can be evaluated analytically yielding (see, for example, Eq. 3.384. 7 in Grad­

shteyn and Ryzhiki53) 

( 5 /2)( xS j2)(vo+v1 )/2-Ie-xS/2>. 
p(x) = ,\Vi/2G((vo + vi)/2] IFI [!f; vn;v~; ~ (t -1) x] ' (5.49) 



100 CHAPTER 5. RM/TST - THEORY 

1.75 ..-----.--~-~-.------....----r--~-.-------.----, 

1.50 

1.25 

- 1.00 
~ .._, 
c:l. 0.75 

0.50 

0.25 

0.5 1.0 1.5 2.0 2.5 
X 

Figure 5.5: The reduced probability distributions (cf. Eq. (5.17)] with lleff = 6 
obtained using the hi-step function model. The solid curve is the x2-distribution, and 
the short, medium and long dashed curves correspond to the smooth step function 
form with {lit= 10,..\ = .183}, {lit= 20,..\ = .0801} and {lit= 40,..\ = .0380}, 
respectively. 

where tFt is the hypergeometric function, which can be simply related to a confluent 

hypergeometric function, 60 and G is the gamma function. In the special case that 

llo = lit = 1, this reduces to the result derived by Polik et al.,98 

(5.50) 

where 10 is the Bessel function of imaginary argument. 

Returning now to the more common physically relevant cases with llo = 
1, Figs. 5.5 and 5.6 exhibit the dramatic deviations from the corresponding x2-

distributions that this model affords. The deviations certainly increase with the 

number of slow channels, lit. In a chemical system, the slow channels will not be 

degenerate and the deviations will not be as dramatic. Nonetheless, these deviations 

do persist for chemical systems as presented in the next section in which the eigenval­

ues, up to a proportionality constant, are evaluated using the semiclassical transition 

state theory described in earlier chapters. 
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Figure 5.6: The reduced probability distributions [cf. Eq. (5.17)] with lleff = 2 
obtained using the hi-step function model. The solid curve is the x2-distribution, 
and the dotted, short, medium and long dashed curves correspond to the smooth step 
function form with {v1 = 5, >. = .0883}, {v1 = :J.O, >. = .0427}, {v1 = 20, >. = .0210} 
and {v1 = 40, >. = .00833}, respectively. 

5.4 A Predictive RM/TST Theory 

5.4.1 The Eigenvalues of the Decay Rate Matrix 

In order to convert the distribution described in the previous section into 

a predictive formula, one needs to evaluate the eigenvalues of the decay rate matrix 

{ li} up to an overall multiplicative factor. In the deep tunneling regime, the classical 

S-Matrix154 result is 

-v·(E) = ...L ( 8E) e -28~t(E) 
'' 211" 8np ' 

(5.51) 

where j is a collective index in correspondence to the (F -1) perpendicular quantum 

numbers, ?}.i, which adiabatically connect to the states of the activated complex 

labeled by !J-t, np is the vibrational quantum number associated with the reaction 

path, and 81Jt (E) is the barrier penetration integral.U0 This result has the form of 

Ferrhi's Golden Rule 155 

' 
(5.52) 
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where the square of the probability amplitude from a state of the activated complex to 

the continuum, Nf'}:, is identified by the semiclassical transmission probability in the 

deep tunneling regime, e-26 • At higher energies, Carrington et al.156 extended this 

result to approximately include the coupling between the reaction coordinate and 

the perpendicular modes in the reaction path Hamiltonian. 132 Within the Feshbach 

formalism described in Sec. 5.2 and to second order in the coupling to the continuum, 

they obtain the decay rate matrix: 

r f'}.f'}'(E) = <5f'}.f'}'r f'}(E) +I: 21rp (7J IHI7J:, E) ( 7J:, E IHI1/) , 
f'}t 

(5.53) 

where 7}, 7]
1 label the zeroth order quasi-bound states, and 

f n(E) = ..L ( aE )1n (1 + e -26
!.'.L(E)) 

- 2
11" . 8np 

(5.54) 

The first term in Eq. (5.53) is the tunneling contribution obtained within the vibra­

tional adiabatic approximation in the S-Matrix theory; the second term effects the 

energy transfer between the zeroth order states. In order to obtain the 1/s needed 

for the distributions of the previous section, one is forced to diagonalize this matrix. 

However, in the limit in which there exist good local action-angle variables 

in the transition state region - i.e. the regime in which the SCTST results of the 

previous chapters obtain -the eigenvalues of the decay rate matrix are approximately 

given by 

(5.55) 

where f) '1: (E) is now the corresponding good action variable of the reaction coordinate, 

the quantum numbers 7Jt are the good local -. vibrational or rotational - actions 

of the activated complex, and € is a proportionality constant that depends only on 

energy. The disadvantage of this description relative to that of Carrington et al.156 is 

that here there is no explicit reference to the dynamics of the quasi-bound region and 

consequently one needs a further computation in order to obtain €. But in calculating 

the RM/TST reduced probability distributions, Eq. (5.17), knowledge of € is not 

required since the formula involves the 1's only up to a proportionality constant. 

In the next subsection, the RM/TST formalism is used to relate € to the RM/TST 
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parameter, j, and thereby make further connection to the result of Carrington et 
az.tss 

Thus given an ab initio calculation of various "spectroscopic" parameters at 

the saddle point of the potential energy sudace, one can readily insert the transmis­

sion probabilities [Eq. (5.55)] into Eq. (5.17) in order to predict the reduced decay 

rate probability distribution. (The "spectroscopic" parameters include: the frequen­

cies and anharmonicities obtained from the quadratic, cubic and a limited set of the 

quartic force constants; the rotational constants; and the a:'s in the coriolis interac­

tion.) 

In summary, therefore, the normalized eigenvalues of f are given by 

/n/tr(r) = Nn/N - - - (5.56) 

where N(= :E~ N~) is the cumulative reaction probability (CRP) and 7] is a collective 

index of all the quantum numbers of the activated complex. With this association, 

Eq. (5.17) becomes 
00 

p(x) = (27rtl j dteixt D(t)-1/2 ' (5.57a) 
-00 

where 

D(t) = IJ(1 + 2itN~jN) . (5.57b) 

5.4.2 Relation Between f and E 

The value of the proportionality constant, €, in Eq. (5.55) can be related 

to the effective number of mixed states, j, in RM/TST theory. Recall that the 

microcanonical rate is simply related to the cumulative reaction probability, N, and 

the density of states, p, by 

Eq. (5.25) then gives 

- N 
f=-. 

21rp 

f = tr~r) = :E~ ~~ = 27rp€ (:E~ N~) = 27rp€. 
r Nj21rp N 

(5.58) 

(5.59) 
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If the states are not mixed, then f = 1 and € = (27l"pt1 as expected. In this case € is 

the average energy spacing. If the states are mixed, then f characterizes the average 

number of mixed levels and € is the average energy interval which contains f states. 

Calculation of tr(f) could therefore provide a direct check on the applica­

bility of RM/TST theory with large f being favorable. While this calculation is 

presently not within reach because the reactant density of states is too high, the re­

lation specified in Eq. (5.59) demonstrates that the notion of a set of strongly mixed 

states in a given energy interval is consistent with the semi-classical model described 

in Sec. 5.4; the size of that interval being €. 

5.5 Symmetry Consideration.s 

5.5.1 The RM/TST Probability Distributions 

The "good" quantum numbers associated with the transition states dis­

cussed in Sec. 5.4 are in general not globally conserved quantum numbers. If they 

were, the molecular Hamiltonian would be integrable, and thus certainly not chaotic, 

strongly mixed, etc. Most of the "good" quantum numbers of the transition state -

e.g., the vibrational quantum numbers { nk; k = 1, ... , F - 1} - are "good" only in 

the transition state region and thus only relevant for approximating the eigenvalues 

of f· The total angular momentum J (in field-free space), however, is a globally 

conserved quantum number; and as a consequence states of different J are non­

interacting. In applying any statistical theory one should thus be cognizant of all 

globally conserved quantum numbers- e.g., total angular momentum (in field-free 

space), global discrete symmetries (the molecular symmetry group), etc. - and in­

voke the statistical assumption of strong mixing only within each manifold of states 

labeled by the globally conserved quantum numbers. How the globally conserved 

symmetries are included into RM/TST is the subject of the present analysis. The 

role of symmetry in statistical theories has been treated in other contexts by several 

authors. 45,157-159 

Let us suppose that ~ are the globally conserved quantum numbers, and 
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that ~ are the quantum numbers conserved only locally in the transition state region. 

The eigenvalues, "Y(tt~), of the r matrix are labeled by the comple~e set of quantum 

numbers arising from the direct product of t' and ~. One then applies the RM/TST 

theory separately for each set of the conserved quantum numbers tt= the distribution 

of unimolecular decay rates for the tt-manifold of strongly mixed states is given by 

[noting Eqs. (5.16) and (5.57)] 

P~(r) r~~P~(r;r~) 
00 

- (27rf~)-I j dteitf/tl! D~(t)-I/2' (5.60a) 
-oo 

with 

(5.60b) 

where r ~ is the average decay rate for the states in the tt-manifold, N(tt~) is the 

transmission probability through the state t'~ of the activated complex, and N~[= 

:EI! N(tt~)] is the cumulative reaction probability for the t'-manifold. [Note that 

N(tt~) can be distinguished from Nl!. because the latter does not have enough quan­

tum numbers to specify a state of the activated complex.] The combined or total 

distribution is the sum over all the tt-distributions weighted by the density of states, 

t.e., 

with 

Ptot(r) = :E f~P~(r) 
I! 

p,., 
!,., = -- ' - p 

(5.61) 

(5.62) 

where pi!. is the density of states of the tt-manifold and p is the total density of states. 

This is rewritten in terms of the reduced distributions, Eq. (5.17), as 

Ptot(x) = ~JI!.{I!PJ!. (x~) . (5.63) 

Note that this distribution yields the usual transition state (or RRKM) expression 

for the average rate: 

(5.64a) 
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with 

(5.64b) 

The total distribution can also be written, in terms of the cumulative reaction prob­

abilities of the different '!-manifolds, as 

(5.65) 

In the limit that there is only a single symmetry manifold (i.e. n = 1), thenf = 1 

and TJ = 1; hence this expression does include the reduced probability distributions 

obtained in the Sees. 5.2 and 5.5. 

As written, it may seem that to evaluate Eq. (5.65), one needs to Fourier 

transform each of the reduced '!-distributions to obtain the combined reduced distri­

bution. In fact, this is not necessary. After expanding Eq. (5.65) using Eq. (5.17) for 

each symmetry manifold, transforming the integrating variables, and reversing the 

oder of integration, one readily obtains: 

(5.66a) 

where 

D~(t) = Il(1 + 2itN(p,1f)fN~) . - - -
(5.66b) 

However, in practice it has been found that this expression has more numerical noise 

than Eq. (5.65), and consequently the latter is used in the applications presented in 

Chapter 6. 

5.5.2 Veff Using Moments 

The moments of the combined RM/TST reduced distribution can be written 

analytically in terms of the moments for each manifold as 

(5.67) 
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where (·}JJ denotes an average with respect to PJJ(x). Using the results from Sec. 5.2.4, - -
the effective number of channels for the combined distribution can be written as 

(v2n)-
1 

= I:J~(1J~t2 (v~t1 +~I:!~ [(TJ~)-2 -1] , (5.68) 
IJ IJ - -

where v~ is the effective number of channels for the t'-manifold calculated using 

Eq. (5.28). 

5.5.3 Veff Using the Maximum-Likelihood Method 

The average of the logarithm of the decay rate integrated over the combined 

RM/TST reduced distribution evaluates to: 

00 

(lnx} = j dxlnx I:J~7J~P~(7J~X) 
0 ~ 

00 

I:J~ J dyln(y/TJ~)p~(y) 
~ 0 

- I:J~ [(lnx}~- (ln7J~)] . 
~ 

(5.69) 

Thus, the effective number of channels within the maximum-likelihood formalism is 

the solution of the transcendental equation, 

F(v:jj) = I:JI! [F(v~L)- (ln7J~)] , 
IJ -

(5.70) 

where v~L is the effective number of channels for the tt-manifold calculated using 

Eq. (5.31), and F(z) is defined in Eq. (5.29). 

Similarly the average of the square of the logarithm is: 

(5. 71) ' 

and this can be used to obtain the error estimate in the v:Jf parameter. 
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5.5.4 Summary 

A simple example of the expressions obtained in this section for the RM/TST 

theory incorpor~ting dynamical symmetries results when the only underlying sym­

metry divides the states into two uncoupled manifolds, each with an equal density 

of states. This does not necessarily imply that the corresponding CRP's are equal 

as the states in a given manifold access only the transition states labeled by the cor­

responding global symmetry of the manifold. (This case is physically relevant as it 

can arise if the molecular symmetry group is C8 .) The combined reduced probability 

distribution, Eq. (5.65), for this case is 

Ptot ( x) = ~ ( ~ P1 ( ;~ ) + ~ P2 ( ;~ ) ) (5.72) 

The moments of this distribution in Eq. (5.67) simplify to: 

(5. 73) 

which for n = 2 can be used to obtain the effective number of channels, 

_2_ _ 4(Nl/v2ff,l + Nifv2ff,2) + (N1 - N2)2 
0 - ' veff (N1 + N2)2 (N1 + N2)2 (5.74) 

where v21 J,i is the effective number of channels for the i-manifold. 

In order to predict a decay rate probability distnbution for a given system, 

one first searches for any conserved symmetries or quantum numbers. Eq. (5.60) is 

used to obtain the distribution for each of the symmetry blocks. These are combined 

using Eq. (5.65) to obtain the final result. Note that if only the moments are desired 

then one first uses the l'(~~)'s to obtain (xn}~ analytically [e.g. Eq. (5.27) for the 

second moment] and then use of Eq. (5.67) provides the symmetry adapted RM/TST 

moments directly. This can also provide a useful check on the numerical evaluation 

of the probability distribution. 

5.6 Concluding Remarks 

It may be helpful to recapitulate briefly the basic assumptions behind the 

derivation of the RM/TST model- Eq. (5.17) in Sec. 5.2. (a) The imaginary part 
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of the effective Hamiltonian matrix, Eq. (5.2), is treated by first order perturbation 

theory; this is essentially the assumption that the resonances are non-overlapping 

(r k < I Ek- Ek•l on the average). (b) The real part of the effective Hamiltonian matrix, 

Eq. (5.2), is assumed to be a "random" matrix,69•61 i.e., the quantum states are 

assumed to be strongly mixed ("chaotic"). (The only result of random matrix theory 

which is actually used is that the projections of the eigenstates onto an arbitrary 

basis are Gaussian random numbers.) Assumption (a) is not very severe since under 

assumption (b) the state-selected decay rates would be experimentally accessible only 

if the resonances were non-overlapping or weakly overlapping. However, assumption 

{b) can hold only if the effective number of mixed states, f, is large enough that the 

association specified by Eq. (5.12) will hold; this can only happen in a region with 

~ high density of states. Thus this analysis is applicable in an intermediate energy 

regime in which there is a balance between a high density of states and resolvable 

widths. 

The primary new development of the RM/TST model is the generalization 

to include globally conserved quantities (e.g., total angular momentum and discrete 

molecular symmetries). The use of the semiclassical transmission probabilities de­

scribed in Sec. 5.4 also converts this model into a predictive theory. The probability 

distribution of unimolecular decay rates that results from this RM/TST theory can 

depend sensitively on which degrees of freedom one assumes are strongly mixed and 

which are approximately conserved. In practice, therefore, one carries out the statis­

tical calculation for various such assumptions and compares these to the experimental 

results in order to deduce information about the unimolecular dynamics of the system. 
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Chapter 6 

Random Matrix Transition State 

Theory- Application to 

Forntaldehyde 

6.1 Introduction 

In this chapter, random matrix / transition state theory (RM/TST) is ap­

plied to the D2CO dissociation (5.1). The primary new results are the dependence of 

the probability distributions on total angular momentum, J, and the exploration of 

the dynamical symmetries of the dissociation. Since the results given by the RM/TST 

theory depend sensitively on which degrees of freedom one assumes are strongly mixed 

and which are approximately conserved, the calculations were carried out with vari­

ous assumptions to see which gave the best agreement with experiment. Specifically, 

RM/TST theory is used to obtain the probability distribution for the individual ]­

states of D2 CO assuming conservation of total angular momentum, J, conservation 

of the angular momentum projection onto a space-fixed axis, M, and either: (a} no 

additional conserved quantities, (b) conservation of C8 symmetry, or (c) conservation 

of C8 symmetry and the absolute value of the angular momentum projection onto a 

body-fixed axis, IKI. In addition, the distribution for all the decay ratesis obtained 

under these conditions. Comparison to the experimental distributions indicates that 
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case (a} can account for the unimolecular reaction dynamics at high electric field. 

However, it is possible that J-mixing can also provide similar agreement. 

In order to apply the RM/TST theory developed in the previous section 

to D2CO, the quartic potential and rovibrational constants must be known at the 

transition state. However, as Schneider and ThieP60 observed for bound state systems, 

the only quartic derivatives needed to obtain the Xi/s are those of the form /kkll· 

Handy and coworkers105•106 have shown that all of the cubic derivatives and this . 

limited set of quartic derivatives can be efficiently calculated by central differences of 

analytic second derivatives obtained at second order M~ller-Plesset theory (MP2).161 

This method is directly applicable to the determination of the perturbed Hamilt<;>nian 

near the transition state and results for the (J = O)-D2 CO transmission probabilities 

as illustrated in Figs. 2.5 and 2.6 indicate that there is a small but measurable effect 

due to the anharmonicity.103 

The coefficients needed for the rovibrational Hamiltonian are listed in Table 

6.1.162 Since the transition state geometry of D2CO is a near prolate symmetric top 

- c.j., the asymmetry parameter 

2B-A-C 
K, = c = -.95' A-

(6.1) 

-its rotational energy levels were approximated as a symmetric top. (The rotational 

constants used for the ..l-direction are taken to be the average of the x and y direc­

tions.) The vibrational modes, however, do not have a near-degenerate pair, and so 

may be treated with the non-degenerate perturbative Hamiltonian of Sec. 2.3.2. 

6.2 The Reduced Probability Distributions 

Before comparing to experiment, it is useful to study the degree to which 

the RM/TST distributions depend on energy and dynamical symmetries. As pointed 

out in Sec. 5.5, a given system can consist of non-interacting manifolds of states 

which will not be strongly mixed due to symmetry. For formaldehyde in a Stark field 

the only rigorously conserved quan~um number is M, the projection of total angular 

momentum onto the constant electric. field (space fixed) direction. In field-free space, 



Xk,k1 

k Wk k' = 1 k' = 2 k' = 3 k' = 4 k' = 5 k' = 6 a% a~ ak 
1(a') 2478 -15.1 -.001 -.002 -.004 

2(a') ·. 1730 -19.6 -7.6 -.002 -.002 -.011 

3(a') 1125 1.1 -16.0 -13.8 -.003 -.0002 -.162 

4( a") 698 -14.9 2.0 -4.2 -3.1 .000 -.0003 -.624 

5(a') 660 0.9 -16.8 -1.0 2.0 -2.0 .003 -.002 .529 

6(a') 1579i . 57.1i 3.3i -14.6i 28.2i -3.0i -6.7 .0003i .0006i .075i 

Table 6.1: The coefficients of the rotational Hamiltonian expanded about the, saddle point of the D2CO potential energy 
surface. 103•162 The rotational constants are: Bx = .76, By= .89 and Bz ·= 5.59. All values are in units of cm-1
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to the extent that the mixing of states caused by the Stark field is negligible, the total 

angular momentum J and the molecular symmetry Cs are also globally conserved.* 

Since D2CO is a near symmetric top, there is also the question of whether K- the 

projection of J onto the body-fixed axis- is better described as strongly mixed or 

(approximately) conserved globally. But one can at most require the conservation of 

IKI because the +II<I and -II<! states are needed to obtain the Cs symmetry adapted 

states. (The conditions for labeling a given transition state as even (A') or odd (A"} 

are given by Miller.163 Note that v4 , the out-of-plane mode, is the only vibrational 

mode which is non-trivial with respect to C8 symmetry.) 

Thus four cases of dynamical symmetry which are pertinent to the D2CO 

dissociation are: 

(a} J and M are the conserved quantities. 

{b) J, M, and C8 are the conserved quantities. 

{c) J, M, IKI, and Cs are the conserved quantities. 

(d) M and C8 are the conserved quantities, with J partially broken and IKiless so. 

Although case (d) is potentially very relevant to the dynamics, we can not use the 

present form of RM/TST to obtain the corresponding distributions since it would 

require the use of "partially" mixed states. For the remaining cases, we can construct 

J -resolved distributions, i.e., 

(6.2) 

where PJ,M,,.. are the RM/TST reduced probability distributions labeled by J, M and 

I!• and the sum is over all values of I! which are accessed in the experiment. (In 

the symmetric top limit, the transmission probabilities are independent of M and 

consequently so is the ]-resolved distribution; PJ,M = PJ·) 

*c. is the symmetry of the transition state and the related reaction path. There are actually two 
such (symmetrically equivalent) transition states and they combine to give a molecular symmetry 
for D2CO as C2V. Because these two transition states are far enough apart to be non-interacting, 
one can use the lower symmetry c. as we do here. 159 
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In case (a), the sum in Eq. (6.2) collapses into a single term: Eq. (5.60) 

labeled by J and M. In the remaining cases, it is also necessary to make an assump­

tion concerned with which ~-states are accessed by the experiment and consequently 

should be included in the sum in Eq. (6.2). In case (b), we make the most democratic 

choice by including all such states. Since states in A' or A" will have essentially 

the same density of states, the J-resolved distribution in case (b) is obtained using 

Eq. (6.2) with fi = !, in analogy to Eq. (5.72). In
1 
case (c), if II<I is conserved in 

the preparation of the metastable states, then only those states with II<I = J will be 

observed in the experiments. With this restriction, the sum in Eq. (6.2) only includes 

the two C8 states corresponding to IKI = J and is reduced to Eq. (5. 72) as in case 

(b). 

In Figs. 6.1-6.3, the RM/TST J-resolved reduced probability distributions 

are presented at selected sample energies relative to the bare barrier and for differ­

ent values of J. (The energies are chosen to sample energy regimes well below, just 

above and well above the zero point energy adjusted barrier.) The figures indicate 

that there is a pronounced variation in the shape of the predicted distributions as a 

function of energy, J, and symmetry. In particular, the distributions tend to be nar­

rower and more strongly peaked with either increasing energy or decreasing dynamical 

symmetry. 

As has already been discussed in previous chapters, the effective number of 

channels, Veff, is often used to characterize the probability distributions by a single 

parameter. However, one should be careful not to rely too heavily on this measure. 

One reason for this is that very different distributions can have the same value of Vef 1 

as illustrated in Sec. 5.3. A second reason is that if Eq. ( 5.28) is used to obtain a 

Veff for a finite number of observables -we refer to this value as v2JJ - then the 

largest rates will bias the value of v21 1 unequ~y. ~oreover, large rates correspond 

to broader peaks which are poorly resolved experimentally. This bias is partially 

corrected by using the maximum-likelihood method63•
68 in which the average of the 

logarithm of the rates is used to determine v:Jf.t 

tsee Sec. 1.2.2 for a review maximum-likelihood results relevant to this discussion, and Sees. 5.2.4 
and 5.5.3 for a discussion on the computation of v:J f for RM/TST distributions. 
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Figure 6.1: RM/TST probability distributions with J = 0 at various energies. The 
solid curves are obtained assuming no additional conserved quantities, case (a). The 
short-dashed curves are obtained assuming that C8 symmetry is also obeyed, case 
(b). 
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Figure 6.2: RM/TST probability distributions with J == 2 at various energies. The 
solid and short-dashed curves correspond to the same cases as in Fig. 6.1. The long­
dashed curves are obtained assuming that C8 symmetry and IKI are also obeyed, case 
(c). 
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Figure 6.3: RM/TST probability distributions with J = 4 at various energies. All 
curves correspond to the same cases as in Figs. 6.1 and 6.2. 
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Figure 6.4: x2-distributions with best fit values of v2ff and v:Jf versus the experi­
mental histogram.99 

To illustrate the qualitative differences in the best fit values of Vef J using 

either of these methods, the experimental histogram of the D2CO decay rates is 

compared in Fig. 6.4 to the x2-distributions with v determined by the best fit values 

of v2JJ and v:Jf. It should be clear that while the difference in the fitted values 

of Veff is large, the difference between the two x2-distributions is small. Although 

both distributions are in . reasonable agreement with the experimental result (the 

histogram), one can discern qualitative differences, e.g., the experimental distribution 

is narrower and dies off faster at the high end. Thus, the values of Veff determined by 

either fitting procedure are not presented for the RM/TST distributions illustrated 

in Figs. 6.1-6.3 as this would not provide further information about how strongly 

the RM/TST distributions differ from the x2-distributions. However, in Sec. 6.4 

these values are presented both for the experimental distributions and the RM/TST 

distributions as a (weak) measure of the agreement or disagreement between them. 

6.3 D2CO Barrier Height 

In the previous section, the RM/TST distributions. were shown to vary 

strongly with E, the energy relative to the bare barrier: 

E = hvexp+E~PE- Vo, (6.3) 
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where Vexp is the frequency of the excitation in the experiment, E~PE is the zero 

point energy (ZPE) of the bound state and Vo is the bare barrier height. Since the 

theoretical calculations are performed about the barrier, the values of E~PE and Vo 
are required in order to match to the experiment. E~PE is readily computed from the 

ground state force field of formaldehyde; the force field has been computed by Handy 

et al.105•106 using analytic second derivatives within MP2 and compares well with the 

experimental results of Duncan and Mallinson164 and Reisner et aU65 (For D2CO, 

E~PE = 13.0 kcal/mole.) However, ab initio calculations are just beginning to reach 

agreement on VQ166 and it is useful to obtain an estimate of the barrier height by a fit 

of the J-resolved experimental results with the semiclassical anharmonic transition 

state model described in Sec. 5.4. 

The barrier height can be determined by varying the energy of the RM/TST 

cumulative reaction probability (CRP) calculation until agreement is reached with the 

experimentally inferred CRP. The latter quantity can be obtained, in principle, by 

either of two equivalent methods. The most straightforward is to write: 

N = 21rpf' with p = LPJ. (6.4a) 
J 

Alternatively, the CRP is the sum: 

N = :LNJ = 27r LPJf'J. (6.4b) 
J J 

The two methods are clearly equivalent if f' is the weighted average of f' 1 as in 

Eq. (5.64). The extent to which these expressions are not equal is therefore a con­

sistency check on the experimentally21 obtained rates and density of states, Pexp(J). 

In gen~ral, one also needs to. include ;the appropriate symmetry numbers in the rate 

expressions.: This is hidden in Eq. (6.4) and subsequent expressions by including the 

symmetry numbers in the density of states. 

A difficulty in carrying out this procedure arises from the nature of the 

Stark level-crossing spectroscopy experiment. 50 resonances are necessarily observed 

at varying electric field strengths, giving rise to a density of states anomaly which is 

t See remarks at bottom of page 113. 
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not directly accounted for i~ the calculation. The density of 50 vibrational states is 

observed to increase by a factor of four over a typical electric field strength scan of 

20k V /em. 21 This increase in density of states is attributed to partial breakdown of 

the J quantum number. The varying density of states introduces an uncertainty in 

the determination of the experimental CRP and hence in the calculated decay rate 

distributions. To limit this effect, the density of states used in the CRP calculation 

is obtained by extrapolating the observed density of states to zero electric field. 21 

Although all of the data is used to obtain the average rate, a restriction to those rates 

obtained at low electric field yields at most a .2 kcal/mole lowering in the barrier 

height, suggesting that the electric field has a small effect on the average rate. 

Since cases (b) and (c) are the most likely candidates to describe the dynam-
' 

ics of the reaction at zero electric field, only these cases are considered in calculating 

the barrier height. In case {c), the restriction to include only the IKI = J states low­

ers the CRP relative to that of case (b), and consequently a lower barrier is needed 

to fit to the experimental value. Thus a fit to the experimentally inferred CRP also 

provides some information about the metastable states which are being accessed by 

the experiment. 

If all the K states are accessed in the experiment, as in case (b), then the 

density of states is given by a state count, i.e., 

p(J) = (2J + 1)p(O) , (6.5) 

where p(J) is the density of states as a function of J. The density of states is thus 

determined by a single multiplicative constant; the first two experimental columns in 

Table 6.2 present the results of this calcUlation with either Pexp(O) or Pexp(l) fixing this 

multiplicative constant. (Note that Pexp(O) is a further extrapolation of the observed 

Pexp(J) assuming linear dependence with a slope of (.45±.16) instead of the statistical 

value of 2.21
) If only the IKI = J states are accessed in the experiment, as in case 

{c), then the density of states will be independent of J. However, the density of 

states observed experimentally by Polik et al. 21 did not quite follow either of these 

statistical regimes. In fact, they found that "although the density of states increases 

slightly with J, K appears to be predominantly conserved".21 The last experimental 
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RM/TSTa 

NJ=t 0.98 
NJ=2 1.59 
NJ=3 2.13 
NJ=4 2.58 
"£J NJ 7.28 
21rpf' 7.28 

°For case {b). 
bFor case (c). 

RM/TST6 

1.97 
1.90 
1.78 
1.63 
7.28 
7.28 

cusing p(1) = (21 + l)Pexp(O). 
dUsing p(1) = (21 + l)Pexp(l)/3. 

Exp.c Exp.0 Exp.e 
3.47 1.36 1.36 
4.09 1.60 1.50 
6.31 2.46 1.72 
9.76 3.81 2.70 

23.63 9.22 7.28 
23.11 9.02 7.13 

eusing p(1) = Pexp(1) in the case that K is predominantly 
conserved. 
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Table 6.2: The cumulative reaction probability for the J -resolved and combined 
probability distributions compared to experiment.99 

column in Table 6.2 presents the CRP's obtained using Pexp( J). The relative ratios 

in the calculation of the total CRP using Eqs. (6.4a) and (6.4b) between each of the 

experimental columns of Table 6.2 are similar, and thus this consistency check does 

not resolve the issue of which is the correct choice of the density of states. 

The RM/TST CRP's presented in Table 6.2 are obtained at a value of the 

barrier height such that the total CRP agrees with the experimentally inferred CRP 

using Pexp(J). In case (b), the CRP is fit to the third experimental column with 

Vo = 85.4 ± 1.0 kcaljmole; a decrease in the barrier height by .2 kcal/mole would 

increase the total CRP to match that of the second experimental column whereas 

a 1.3 kcal/mole decrease is required to match the first. In case (c), the CRP is fit 

to the third experimental column with V0 = 84.1 ± 1.0 kcal/mole; a decrease in the 

barrier height by .3 kcaljmole would increase the total CRP to match that of the 

second experimental column whereas a 2.3 kcal/mole decrease is required to match 

the first. In both sets of cases, the error arises from the same sources as in Ref. 

21 with an additional .2 kcal/mole arising from the energy spread of the observed 

rates. Assuming that the dependence of the density of states on J is correct in 

the experiments, then the barrier heights are taken to be those which matched the 

\.: 
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Method Barrier Height Reference 
MCSCF+CI 86.0±2.5 167 
MP4SDTQ 85.9 168 
CCSDT-1 86.8 166 
RRKM (J = 0) 84.6±0.8 21 
RM/TST (b) 85.4±1.0 
RM/TST (c) 84.1±1.0 

Table 6.3: Ab initio and empirical bare barrier heights in units of kcal/mole for the 
D2CO-+ D2 +CO reaction. 

third experimental column. In any event, we note that a change in the RM/TST 

distributions caused by up to a .5 kcal/mole decrease of the barrier height does not 

significantly alter the qualitative features of the RM/TST distributions. 

In Table 6.3, the RM/TST results for the bare barrier are summarized and 

compared to previous ab initio results and to the earlier result of Polik et al. 21 ob­

tained using a harmonic RRKM fit of all of the rates extrapolated to J = 0. The 

RM/TST barrier heights are within the error bars of the J = 0 extrapolation. Al­

though the result under case (b) is closer to the ab initio results than that for case 

(c), the agreement is insufficient to conclude that all the I< states are accessed in the 

experiment. 

6.4 Comparison to Experiment 

A comparison between the RM/TST and experimental reduced probability 

distributions should reveal which local quantum numbers are approximately conserved 

throughout the reaction, and which are strongly mixed. In case (b), for example, 

the energy of the experiment relative to the bare barrier is 8.7kcal/mole. Since 

this is near the zero point energy of the transition state("-' 9.5kcal/mole), IJ;lany of 

the contributing states of the activated complex are in the tunneling regime and an 

adequate description of their transmission probabilities must account for tunneling 

and anharmonicity. This, therefore, justifies the need for the semiclassical transition 

.. 
" 
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state theory described in Sec. 5.4. 

6.4.1 The J-Resolved Distributions 

The J-resolved RM/TST distributions are compared to the experimental 

histograms for individual J states21 •99 in Fig. 6.5. (Note that in case (a), the cal­

culations are performed using the barrier height obtained in case (b).) The poor 

agreement between the histograms and distributions obtained for case (c) indicates 

that IKI is not conserved. The experimental distribution seems to lie in between the 

theoretical distributions for cases (a) and {b), and this suggests that the system has 

some mixing between the Cs states, but not complete mixing. 

For completeness, the values of Veff for cases (a), (b) and (c) are compared 

to those of the experiments in Table 6.4. As is the case for the total distribution 

described in Sec. 6.2 there is disagreement between the experimentally determined 

values, v2JJ and v:Jf, providing further support for their limited utility. The differ­

ence in the values of v2JJ and v:Jf for the RM/TST distributions reflects the fact 

that these distributions ate not x2 and consequently fits based on different observ­

ables will differ. Similarly the large errors in the maximum-likelihood Ven's for the 

RM/'l'ST distrib'!ltions are a consequence of the fact that the logarithm constraint 

in the maximum likelihood method is not the correct constraint for the RM/TST 

distributions. 

Nonetheless the experimentally obtained values of Veff fall roughly in be­

tween the RM/TST results for cases (a) and {b). It should also be noted that to 

a good approximation the primary effect of Cs symmetry is to halve the available 

states of the activated complex (i.e. Veff,a ~ 2vefJ,b) and this is seen in the RM/TST 

results in Table 6.4. Thus, the J -resolved results indicate that the K states are 

. strongly mixed and that C8 symmetry is to some extent broken, but not completely 

mixed in the random matrix sense. 
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Figure 6.5: RM/TST probability distributions at the energy of the experiment for 
various values of J compared to the J-resolved experimental histograms.21 •99 The 
solid, short-dashed and long-dashed curves are as in Figs. 6.1 and 6.2. 
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Experimental Veff 
All Rates LowE-Field High E-Field 

J 0 
veil 

ML 
veii 

0 
veil 

ML 
veil 

0 
vell 

ML 
veil 

1 7.0 6.8±1.0 5.2 4.5±1.6 7.4 7.8±1.4 
2 4.0 6.0±1.5 2.0 3.6±1.0 8.0 8.4±1. 7 
3 4.7 6.3±0.9 3.3 4.2±1.5 9.2 9.0±1.4 
4 6.2 6.9±1.1 5.3 6.0±1.4 7.7 7.6±1.2 
all 5.0 6.1±0.7 3.4 4.3±0.9 7.4 7.7±0.8 

RM/TST Veff 
case (a) case (b) case (c) 

J 0 
vell,a 

ML 
vell,a 

0 
vell,b 

ML 
velt,b 

0 
velt,c 

ML 
velt,c 

1 4.61 5.22±200 2.12 2.68±4.4 2.08 2.84±6.2 
2 7.66 8.22±38 3.63 4.21±45 2.04 2.80±5.8 
3 10.7 11.2 ±2.0 5.11 5.70±200 1.97 2.72±5.3 
4 13.6 14.0 ±4.9 6.55 7.14±110 1.89 2.63±4.7 
all a 8.70 9.62±5.7 4.14 4.94±6.7 1.35 2.22±2.3 
allb 8.70 8.78±8.1 4.25 4.60±2.1 1.63 2.44±3.0 

3 0btained using (2J + 1) weights. 
bObtained using Pezp( J) for which K is predominantly conserved. 

Table 6.4: The values of Veff for the 1--:resolved and combined probability distribu­
tions obtained from the experimental results of Polik et al. 21 (top panel) and from 
the RM/TST results (bottom panel). Recall that v~ff is computed from the second 
moment, Eq. (5.28), and v:Jf is computed using the maximum-likelihood method. 
In the RM/TST results, v;ff,a' v;ff,b and v;Jf,c are obtained under cases (a), (b), and 
(c), respectively. 
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Figure 6.6: RM/TST probability distributions at the energy of the experiment with 
p(J) = (2J + l)Pexp(O) in the top panel (a) and with p(J) = Pexp(J) in the bottom 
panel (b) compared to the experimental histogram for all rates. The solid, short­
dashed and the long-dashed curves are obtained assuming cases (a), (b) and (c), 
respectively. 

6.4.2 The Combined Distributions 

In order to combine the J-resolved RM/TST distributions using Eq. (5.65), 

the relative density of states of each J manifold must be determined. The combined 

RM/TST distributions using either the statistical density of states, where p( J) = 
(2J + l)p(O), or the experimental densities of states, Pexp(J), are compared to the 

experimental histogram in Fig. 6.6. As is the case for the J-resolved distributions, 

the total RM/TST distributions for cases (a) and (b) bracket the observed histogram 

·while the peak of the distribution for case (c) is shifted somewhat to the left of the 

experimental histogram. This once again leads to the possible conclusion that states ' 

of different Cs symmetry are partially mixed by the Stark field. 
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While the above calculations suggest total breakdown of the IKI quantum 

. number as a candidate for the origin of the additional degrees of freedom observed 

in the experimental decay rate distributions, it is acknowledged that several other 

potential sources for degrees of freedom also exist. First, vibrational anharmonicity 

arising from still higher order terms in the transition state region of the potential 

energy surface could result in a higher VeJJ·
100 Second, J breakdown induced by 

the Stark field will increase the number of available decay channels and could provide 

similar agreement between experimental and calculated distributions. Third, only the 

limiting cases of no breakdown or complete breakdown of the IKI quantum number 

have been considered in this treatment. An intermediate case - e.g. case (d) -

of partial K breakdown, in combination with other decay channels, could account 

for the experimental distributions. Note that this would increase the barrier height 

-although by less than l.Okcal/mole- because the sum in the CRP would now 

include additional states of the activated complex. While the results of this section 

have been inferred through the examination of the decay rate distributions observed 

in 50 D2CO, other experimental data suggest the opposite conclusion, namely that 

IKI may not be strongly mixed. The lack of a 2J + 1 dependency of the experimental 

density of states and the lack of a 1/(2J + 1) dependency of the average squared S1-S0 

coupling matrix element each suggest that IKI is only partially mixed. 21 

6.4.3 The Effect of The Electric Field 

Thus far the effect of the electric field on the rates has been ignored since the 

energetic effect is minimal. However, the isotropy of space is broken in the presence 

of an electric field and this minimally breaks the C s symmetry in the molecule­

fixed frame of the transition state at sufficiently high field strengths. The loss of Cs 

symmetry can have a strong effect on the statistical distributions as evidenced by 

the difference in the RM/TST distributions in Fig. 6.6. In fact, the results for cases 

(a) and (b) might suggest that at low electric field strengths C8 symmetry would be 

conserved, whereas at high electric field strengths it would be broken. This is further 

suggested, for example, in Figure 10 of Ref. 99, in which Veff is plotted versus the 
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Figure 6. 7: RM/TST probability distributions at the energy of the experiment com­
pared to the experimental histogram for rates at low electric field (a) and at high 
electric field (b). The RM/TST distributions are obtained with p(J) = Pexp(J), and 
the solid, short-dashed and long-dashed curves are obtained as in Fig. 6.6. 

electric field; although a linear fit is shown in that presentation, its behavior is more 

like that of a sigmoid with Veff going from rv 4 in thelow field region to rv 8 in the 

high field region. The ratio of two in Vef f between these two regions indicates that the 

electric field is breaking a symmetry which has only two labels, such as C8 symmetry. 

In Fig. 6. 7 a, the experimental histogram is obtained using all of the 212 

observed rates with electric field strength less than 6.5 k V /em and is compared to the 

RM/TST distributions With C8 symmetry. In Fig. 6.7b, the experimental histogram 

is obtained using all of the 617 observed rates with electric field strength greater than 

12.0 kV /em and is compared to the RM/TST distributions without C8 symmetry. 

For completeness, the histograms labeled by J for each of these electric field cases 

are also compared to the J -resolved distributions in Fig. 6.8.. Although there are 
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High E-Field 
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Figure 6.8: J-Resolved RM/TST probability distributions at the energy of the ex­
periment compared to the experimental histogram for rates at low electric field (left) 
and at high electric field (right). The solid [case (a)], short-dashed [case (b)] and 
the long-dashed [case (c)] curves in both the low and high electric field panels are 
the corresponding RM/TST distributions prese~ted in Fig. 6.5. As is evident the 
statistics for some of the histograms are rather poor, but the results are in general 
suggestive of what was seen for the combined distribution in Fig. 6.6. 
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. not enough experimental decay rates to obtain good statistics in every case, the 

results for J = 4, for example, and the combined distributions exhibit a shift in 

the peaks from the low electric field histograms to the high electric field histograms 

which is mimiced by the RM/TST distributions from case (b) to case {a). (Note 

that, the values of lief/ for these electric field cases are compared to the RM/TST 

values in Table 6.4.) The agreement is remarkable and suggests that C 8 symmetry is 

approximately conserved at low electric field, while at sufficiently high electric field the 

symmetry is completely broken. Nonetheless, while this markedly different behavior 

in the experimental distributions is mimicked by the breaking of C s symmetry, the 

possibility that the breakdown of J by the Stark field could account for this behavior 

has not been ruled out. 

6.5 Concluding Remarks 

Application of the RM/TST theory to the distribution of state-specific uni­

molecular decay rates of D2CO for individual values of total wgular momentum J 

shows quite good agreement with the experimental results of Polik et al. 21 In par­

ticular, if one assumes that all of the K states are accessed in the experiment and 

that IKI is strongly mixed, one obtains very good agreement between RM/TST and 

the experiment; the differences between the low and high field distributions may be 

attributable to the breaking of C8 symmetry by the Stark field. However, this agree­

ment may be deceptive in that previous analysis21 •99 of the experimental data suggest 

that IKI is not strongly mixed. In this case, the RM/TST results suggest that if one 

is to treat IKI as conserved then one must allow J to break·down. Thus while this 

work does not unambiguously resolve the issue as to which rovibrational states are 

strongly mixed, there seems little doubt that some states are strongly mixed and that 

the Stark field is inducing further.m.ixing. 

The picture which seems to emerge from this ancllysis is that although certain 

dynamical quantities may be conserved locally -for example in the quasi-bound 

region - these quantities need not be conserved throughout the entire dynamics of 

the scattering event. In the present study, this has been exhibited for the quantum 
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numbers associated with angular momentum. Independently, Hase and coworkers169 

have also suggested models in which I< is conserved (adiabatic) or strongly mixed 

(active) in the transition state region 1independently of whether I< in the quasi-bound 

region is treated as conserved or strongly-mixed. 
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Chapter 7 

Discussion 

In this work, we have developed a semiclassical transition state theory which 

can be used to obtain the cumulative reaction probability (CRP) and thermal rates 

for large systems. Use of this theory in conjunction with a statistical theory describ­

ing the dynamics of the quasi-bound reactants has led to the development of the 

random matrix / transition state theory (RM/TST) that describes the distributions 

of unimolecular decay rates. All that remains is a discussion of the future directions 

which this work now suggests. 

7.1 SCTST 

To date, SCTST has been applied only to a handful of systems.103•
104

•
170 

It will certainly be interesting to see how well the theory can agree with experi­

ment for large gas-phase systems. As a prerequisite to the calculation, however, one 

needs to obtain the "spectroscopic constants" of the activated complex. In the ini­

tial work there was much optimism that through the use of ab ~nitio analytic higher 

order derivative calculations, a catalogue of such constants describing the activated 

complex of various molecular systems would soon be available. In fact, the original 

calculation on the D2CO dissociation was performed with such a set of "spectroscopic 

constants.'; 103 Unfortunately, this promise has remained .largely unfulfilled, and the 

remaining applications to date have been performed using force constants obtained by 
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finite differeq.ces on known surfaces.104•126 Given that, in principle, it should be easier 

to obtain only the local information of the transition state then it is to construct 

an entire potential energy surface, the utility of SCTST to describe thermal rates of 

large reactive systems certainly rests on the feasibility of ab initio force constants of 

the activated complex, and these should become increasingly available in the near 

future. (This statement has an obvious proviso: the saddle point on the potential 

energy surface corresponding to the activated complex is not known a priori and the 

search for this point may involve an effort equal to that needed to obtain the points 

for the entire potential energy surface.) 

The SCTST thermal rate expression developed in Chapter 4 has a very 

appealing interpretation in light of the theory of the activated complex. Its form 

suggests that there is a well-defined sense in which the activated complex can be 

described by a partition function even when the reactive degree of freedom is not 

entirely separable from it. The {}-dependence of the pre-reactive function thus con­

tains the non-separable dynamics. By the use of the Weyl correspondence, we have 

thus suggested a quantum mechanical form of the reactive partition function whose 

Hamiltonian is parametrized by the generalized bariier penetration integral lJ. 

The use of mixed-diagonalization in SCTST explored in Chapter 4 also 

offers a novel attempt to construct more accurate rates than those offered by the 

perturbative SCTST in which the anharmonicity of the perpendicular modes can 

be treated exactly rather than perturbatively. The possible improvement offered by 

this method, however, needs to be compared to the additional effort which it entails. 

In the form presented, the dimensionality of the exact diagonalization has only been 

reduced by 1, and so the limitations on the feasibility of completely exact calculations 

are also limitations on this method. Here, however, one can consider treating only 

some of the modes by diagonalization in an obvious generalization of the formula 

presented. The difficulty with this procedure would lie in obtaining a systematic 

method by which to choose the modes to be treated perturbatively, and this has yet 

to be explored. 

The limit of this attempt to systematically improve the semiclassical for­

mula is evidently the correct quantum mechanical expression. Of note is the work of 
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Seideman and Miller112 in which the eigenenergies of the activated complex obtained 

perturbatively in SCTST were shown to correspond to the exact Siegert eigenvalues144 

of the system. Here the use of mixed-diagonalization permits this correspondence to 

persist beyond those eigenenergies in which the quantum number assignments are lost. 

Similarly the eigenreaction probabilities of Manthe and Miller171 are seemingly related 

to the transmission probabilities of the activated complex. Although not shown, the 

disagreement between the eigenreaction probabilities of Manthe and Miller and the 

perturbative SCTST is a manifestation that not all of the non-separable effects of 

the coupling between the reaction coordinate are included in the SCTST. The most 

important of these is that scattering resonances are still not described properly in the 

SCTST, and this drawback is not removable within the TST spirit of the method. 

An ambitious direction that should be pursued is to use SCTST to develop 

a semiclassical theory for the reaction rates of truly large systems whose dynamics 

may be. described by a generalized Langevin equation ( GLE). In this application one 

takes advantage of the isomorphism between the GLE and the Hamiltonian describing 

a one-dimensional reactive degree of freedom bilinearly coupled to ~ infinite bath 

of uncoupled harmonic oscillators. 172•173 This Hamiltonian system can certainly be 

cast in the form which is prerequisite for the SCTST through an expansion about 

the barrier associated with the activated complex. In principle, there in only one 

change in the SCTST formalism in including quantum effects semiclassically to the 

GLE system compared to the gas-phase systems: rather than a finite number of 

perpendicular modes of the gas-phase activated complex, in the GLE system there 

exists an infinite number of modes which must be averaged over to provide the thermal 

rate. How this averaging is performed will be the subject of future work. 

7.2 RM/TST 

The inclusion of dynamical symmetries in theRM/TST developed in Chap­

ter 5 allows the treatment of the natural limits of symmetry conservation that can be 

satisfied by a given quantity; that, is the quantity is either conserved or completely 

mixed (and treated statistically). However, in many systems the dynamical behavior 
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will lie somewhere in between, and so one is motivated to construct a theory which 

can account for this possibility. In the present work, this has been avoided in order 

to restrict the number of adjustable parameters of the theory to only a discretized 

set of possibilities depending on those rotational quantum numbers which are treated 

actively or statistically. Unfortunately this prevented a treatment of partial J non­

conservation in the D2 CO dissociation and so this possibility could not be ruled out. 

In order to extend the RM/TST theory to account for partial symmetry 

breaking, it is natural to consider an ensemble of block-diagonal matrices in which 

each block is a GOE labeled by the quantum numbers of the symmetry, as before, 

but one now includes off-diagonal coupling between these blocks. This ensemble has 

recently been proposed by Leitner.94 The difficulty in implementing this procedure 

in RM/TST is that one now needs to consider the matrix elements of the decay rate 

matrix r between states which do not uniformly sample the same Hilbert space. One 

possible way to get around this difficulty is to only consider coupling between adjacent 

blocks of the bock-diagonal Hamiltonian - an ensemble of banded block-diagonal 

matrices- and to further treat the coupling perturbatively. 

Conceptually the most interesting question that this work has explored is: 

What is the origin of the fluctuations of the state-specific decay rates? Wolynes 

and coworkers174 have used a semiclassical path analysis to calculate a given rate 

constant and their results lead them to sugges~ that "fluctuations in the state-specific 

rates from the average depend upon the probability of the system to recross the 

transition state." 174 However, the RM/TST developed in this work intrinsically uses 

a transition state theory to describe r and as such does not include recrossings; yet 

the distributions evidently exhibit fluctuations about the average rate. The answer 

does not seem to be that they result from the unique properties of a given mode­

specific state, as these were treated statistically. The only solution that remains is 

that quantization of the activated complex - i.e., the differing weights of each of 

the decay channels - is at the origin of the fluctuations, and this behavior can be 

accounted for within a semiclassical TST, but not a classical one. 
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7.3 Final Observations 

At the outset of this work two competing paradigms were introduced to de­

scribe energy transfer during dissociation: complete IVR in the RRKM theory verses 

no IVR in Slater's theory. The results of this work suggest that intermediate ap­

proaches between these extremes - in which some aspects of the dynamics is treated 

adiabatically and others statistically - can offer a better description of observed 

phenomena. In order to treat systems larger than those for which exact theories are 

numerically feasible, the semiclassical method developed in this work can be used to 

treat the non-statistical dynamics. 

It may seem counterintuitive to use a statistical method in order to describe 

state-specific information, however only the dynamics which determine the observed 

state-specific behavior need be treated non-statistically. This, of course, depends 

on the nature of the behavior of interest; if, for example, the correlation between 

energy levels and their decay rates was desired then it would have been necessary to 

obtain the full dynamics and not just that of the activated complex. In this work 

only the fluctuations of decay rates were explored and for this quantity, only the local 

dynamics of the transition state were needed. 
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