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ABSTRACT 

 

Do fuel reduction treatments alter forest fire severity and carbon stability in California 

forests? 

 

by 

 

Kristofer L. Daum 

 

 

 

Forest fire frequency, extent, and severity have rapidly increased in recent decades across 

the western United States (US) due to climate change and suppression-oriented wildfire 

management. Fuels reduction treatments are an increasingly popular management tool, as 

evidenced by California’s plan to treat one million acres annually by 2050. However, the 

aggregate efficacy of fuels treatments in dry forests at regional and multi-decadal scales is 

unknown. We develop a novel fuels treatment module within a coupled dynamic vegetation 

and fire model to study the effects of dead biomass removal from forests in the Sierra Nevada 

region of California. We ask how annual areal treatment extent, stand-level treatment 

intensiveness, and spatial treatment placement alter fire severity and live carbon loss. We 

find that a ~30% reduction in stand-replacing fire was achieved under our baseline treatment 
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scenario of 1000 km2 year-1 after a 100-year treatment period. Prioritizing the most fuel-

heavy stands based on precise fuel distributions yielded cumulative reductions in pyrogenic 

stand-replacement of up to 50%. Both removing constraints on treatment location due to 

remoteness, topography, and management jurisdiction and prioritizing the most fuel-heavy 

stands yielded the highest stand-replacement rate reduction of ~90%. Even treatments that 

succeeded in lowering aggregate fire severity often took multiple decades to yield 

measurable effects, and avoided live carbon loss remained negligible across scenarios. Our 

results suggest that strategically placed fuels treatments are a promising tool for controlling 

forest fire severity at regional, multi-decadal scales, but may be less effective for mitigating 

live carbon losses. 
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1. Introduction 

Fire is a critical part of the Earth system, facilitating essential biogeochemical and 

ecological processes including nutrient cycling and secondary succession in forests (Pausas 

and Keeley 2019; Scott L Stephens et al. 2021; Safford et al. 2022; Walker et al. 2020). 

However, in the past several decades forest fire frequency, annual area burned, and severity 

have rapidly increased in western North America (Abatzoglou and Williams 2016; Dennison 

et al. 2014; Kasischke and Turetsky 2006; R. Kelly et al. 2013; Westerling et al. 2006). For 

example, annual burned forest area in the western United States (US) has increased by 1,200 

percent since 1984 due to a confluence of drought and fire weather resulting from climate 

change (Williams et al. 2022; Williams et al. 2019; Abatzoglou and Williams 2016; 

Abatzoglou et al. 2021). Additionally, in some forest types (Stephens et al. 2013; 

Schoennagel et al. 2017), large fuel-burdens from a century of fire exclusion have 

contributed to wildfire trends in the 21st century (Kolden 2019; Stephens and Ruth 2005; 

Vaillant and Reinhardt 2017). In the state of California, eighteen of the twenty largest 

recorded fires have occurred since the year 2000, including during the historic 2020 fire 

season in which 17,000 km2 burned, resulting in over $19 billion USD in economic losses 

(Safford et al. 2022). Further, an increasing number of people are being affected by wildfire 

due to the expanding wildland-urban interface (WUI), where homes are interspersed with 

wildland vegetation (Radeloff et al. 2018), compounded by the fact that atmospheric dryness 

(or vapor pressure deficit) that affects fuel moisture and wildfire risk varies spatially and has 

risen most rapidly in seasonally temperate areas where WUI expansion is most notable (Rao 

et al. 2022). 



 
 

2 

High-severity wildfires strongly affect biodiversity (Kelly et al. 2020), water quality 

and quantity (Williams et al. 2022), forest carbon sequestration (Anderegg et al. 2022), and 

human health and safety (Radeloff et al. 2018). In the future, there is strong potential for 

wildfire severity and area burned to increase manyfold with continued anthropogenic climate 

change, even as fuels become more limiting than they are at present (Abatzoglou et al. 2021; 

Anderegg et al. 2022; Balch et al. 2022). However, some research suggests that although fire 

severity has increased in recent decades, mean annual burned area across North America is 

still lower than in the era preceding Euro-American settlement (Safford et al. 2022; Swetnam 

et al. 2016; O’Connor et al. 2014).  Forest management practices that reduce overall fire 

severity while allowing wildfires to burn may therefore offer a strategic compromise between 

limiting risk to human lives and livelihoods while promoting vital ecosystem services. 

In recent years, fuels reduction treatments (Agee and Skinner 2005; Hessburg et al. 

2016; Prichard et al. 2021; North et al. 2021) have gained attention among policymakers as a 

wildfire severity mitigation tool. For example, in 2021, California more than doubled its 

annual budget for forest management projects to $536 million after a devastating fire season 

in 2020 burned more than four percent of the state, destroyed 10,500 buildings, and killed 33 

people (Porter, Crowfoot, and Newsom 2020). The California Wildfire and Forest Resilience 

Action Plan (Blumenfeld, Porter, and Crowfoot 2021), the Forest Carbon Plan (Johnston 

2018), and activities by numerous county and local California management agencies (Gilles 

et al. 2018) highlight the rapid expansion of fuels reduction treatments as a tool for wildfire 

mitigation. In 2022, California Governor Newsom also pledged to fund “beneficial fire” and 

“cultural burning” on 400,000 acres (1619 km2) in a partnership between state, tribal, local, 

and federal agencies, adding to previous commitments to fund fuel reduction treatments 
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across one million acres (4,047 km2) of CA lands per year by 2050. At the national level, the 

2021 Infrastructure Investment and Jobs Act (IIJA) and the 2022 Inflation Reduction Act 

(IRA) allocated an additional $2.56 billion and $2.87 billion USD respectively for fuels 

reduction treatments, and $2.14 billion and $2.22 billion USD respectively for prescribed fire 

(Yarmouth 2022; DeFazio 2021). In light of the magnitude of expenditure and millions of 

vegetated acres targeted by fuel treatment policies, it is important to understand their 

mitigation potential and long-term ecological consequences. 

Studies of watershed-scale fuels reduction treatments have shown near-term 

reductions in severity of subsequent wildfires (Kolden 2019; Burger 2009; North and 

Hurteau 2011). However, to understand how new state and federal fuels reductions policies 

may factor in future wildfire mitigation and adaptation, it is critical to constrain how the 

overall treatment strategy will affect fire severity and ecological impacts across tens of 

thousands of square kilometers and multiple decades into the future. A key determinant of 

fuels management policy outcome will be the interaction of political and technical factors 

controlling spatial allocation of fuels reduction treatments across a region, including land 

ownership and jurisdiction, road access, terrain ruggedness, and the availability of quality 

information about fuel distributions. 

Process-based vegetation models are useful tools for understanding how fuels 

reduction interventions influence the coupled vegetation-wildfire system at large spatial and 

long temporal scales through the incorporation of scalable hypotheses for how vegetation 

fuel prevalence and type influence wildfire impacts (Hansen et al. 2022; Seidl et al. 2020). 

However, few vegetation models are suitable for assessing state or federal fuels management 

policies, as vegetation models are either too computationally-intensive to apply at scales 
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larger than watersheds (Burke et al. 2021; Albrich et al. 2020; Hansen et al. 2022; Hurteau et 

al. 2019; Seidl, Rammer, and Spies 2014; Serra-Diaz et al. 2018), or they operate at very 

coarse scales (~100 km2) and do not include sufficient mechanistic detail of wildfire-

vegetation interactions to inform the efficacy of region-specific management interventions 

(Sanderson and Fisher 2020; Hantson et al. 2020; Fisher et al. 2018; S.S. Rabin, Gérard, and 

Arneth 2022). 

To address these challenges, we use the DYNAmic Temperate and Boreal Fire and 

FORest-EcosySTem simulator (DYNAFFOREST) (Hansen et al 2022), a dynamic vegetation 

model equipped with a probabilistic fire module. DYNAFFOREST is well suited to model 

how fuels reductions protocols impact fire severity and forest dynamics at medium to large 

spatial and temporal extents for the following reasons. First, DYNAFFOREST is 

purposefully designed to operate at an intermediate degree of computational complexity, 

allowing for rigorous but computationally tractable modeling of regional- and centennial-

scale ecological processes. Second, DYNAFFOREST explicitly simulates the impacts of 

climate and seed bank composition on secondary succession and how these factors 

subsequently determine post-fire forest trajectories, fuel accumulation, and flammability. 

Third, the relationship between fuels and fire dynamics, including fire size and severity, has 

been extensively benchmarked in DYNAFFOREST using historical fire databases (Hansen et 

al. 2022). Finally, the probabilistic nature of model outcomes allows for a rigorous 

quantification of uncertainties across different management interventions due to stochasticity 

in wildfire occurrences and post-fire seedling recruitment.  

We pose the following questions. First, how does the areal extensiveness and 

intensiveness of fuels reduction treatment, such as the fraction of biomass removed, affect 



 
 

5 

fire severity and subsequent forest dynamics? Second, do spatial constraints imposed by land 

jurisdiction hamper treatment coordination efforts and decrease treatment efficacy? Third, 

how important are physical restrictions such as topography and road access for treatment 

efficacy? Lastly, how much can a detailed spatial knowledge of regional fuels distributions 

increase treatment efficacy? 

 

 

1. Methods 

2.1 Model Overview 

Our study uses DYNAFFOREST, a cohort-based spatially-explicit dynamic 

vegetation and fire model that includes a stochastic representation of forest fire and 

vegetation recruitment following disturbance (Hansen et al 2022). DYNAFFOREST includes 

12 vegetation plant functional types (PFTs) that are representative of the major forest types in 

the western US. Heterogeneity in vegetation size classes and functional type is simulated at a 

1-km2 resolution, enabling the model to capture heterogeneity in fuels in topographically 

complex landscapes. The spatial resolution of fire characteristics and their responsiveness to 

climate operates at a 12-km2 grid scale.  

The DYNAFFOREST model attributes offer a significant advantage to understand the 

feedbacks between fire and vegetation fuels compared to Earth system models that operate at 

course spatial resolutions without demographic processes, and often do not include fire 

(Sanderson and Fisher 2020; Hantson et al. 2020; Rabin et al. 2017). At fine spatial scales, 

several models have been developed to represent both wildfire and vegetation demographic 

processes, but all are too computationally intensive to be used to study vegetation-wildfire 
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dynamics, and anthropogenic modification of vegetation fuels, at broad spatial domains 

(Albrich et al. 2020; Hansen et al. 2022; Hurteau et al. 2019; Seidl, Rammer, and Spies 2014; 

Serra-Diaz et al. 2018). One such domain is the ~77,000-km2 Sierra Nevada Mountains in 

California, a region of major concern for wildfire risk under changing climatic conditions 

(Kennedy et al. 2021; Vachula, Russell, and Huang 2019). DYNAFFOREST’s parsimonious 

representation of vegetation processes allows for sufficient computational efficiency to both 

simulate broad spatial domains of forested area in the western US and provide a nuanced 

map of evolving forest structure and fuels. These combined attributes make 

DYNAFFOREST uniquely capable of capturing how fires can alter forests, how fuels 

feedback to impact forest fire spread and burn severity, and how management interventions 

modify this dynamic feedback loop at scales relevant to recent politically-mandated fuels 

treatment interventions. 

 

2.2 Model Technical Details 

Here we summarize several key components of the DYNAFFOREST model (Fig. 1). 

A full model description, including model functionalities and benchmarking, is available in 

Hansen et al. 2022. Vegetation and fire dynamics in DYNAFFOREST operate on an annual 

timestep. Each 1-km2 vegetation grid cell comprises an even-aged cohort of one of 12 

possible forest PFTs or a grassland PFT. Cohorts grow and reallocate biomass annually 

according to PFT-specific allometric growth-curves derived from the USDA Forest Inventory 

and Analysis Program (Bechtold and Patterson, 2005). Biomass is added to the system 

through three live biomass pools (leaves, branches, and stems), and cycles into three dead 

biomass pools (litter, coarse woody debris, and snags) at PFT-specific rates, or as a result of 
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drought or fire mortality. Dead biomass pools decompose at pool-specific decomposition 

rates, or are removed through combustion. Crown-kill within a 1-km grid cell is simulated for 

cells experiencing fire, and is proportional to available fuel loads. Here, we define fire 

severity as a statistic scaled between zero and one that is equivalent to modeled percent 

crown-kill, a common fire severity metric (Keeley 2009). Pyrogenic stand-replacement is 

defined an instance in which fire results in 100% crown kill within a given 1 km2 grid cell, 

initiating a renewed cycle of recruitment and regrowth. In this study, a quantity of stand-

replacement “events” denotes the number of 1 km2 grid cells that experienced pyrogenic 

stand-replacement within a given period. Seed availability in DYNAFFOREST is determined 

by age- and PFT-specific fecundity and dispersal rates from neighboring cells, while 

recruitment success following stand-replacement is determined probabilistically based on 

PFT-specific climate tolerances. If tree recruitment fails, grassland can establish within a grid 

cell, which lowers the probability of future forest recruitment over time. 

Fire ignition occurs probabilistically within a 12-km2 fire grid according to observed 

lightning strike frequency, observed mean aridity (defined as the ratio of total annual 

precipitation to potential evapotranspiration), modeled forest connectivity between 1-km2 

vegetation grid cells, modeled live and dead fuel loading, and observed terrain slope. A 

maximum attainable fire size is selected pseudo-randomly from a database of observed fires 

between 1985-1994 that includes perimeters from the Monitoring Trends in Burn Severity 

(MTBS) database for fires > 400 ha and the point locations of fires smaller than 400 ha 

(Juang et al. 2022). This representation allows fire size to be implicitly constrained by factors 

not represented in prognostic model processes, including anthropogenic and meteorological 

suppression, even when fuel geography might allow for further growth. If sufficient 
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vegetation fuels exist, fires can reach their maximum size, which can exceed the 12-km2 fire 

grid cell. However, model-predicted fire extent may not reach maximum predicted size if 

there are insufficient connected forest grid cells to burn due to grass recruitment. In practice, 

complex model-simulated fire perimeters emerge due to grass-dominated vegetation grid 

cells across the model domain that increase in prevalence following stand-replacement 

events. Importantly, the current parameterization of the fire module within DYNAFFOREST 

does not allow for understanding how fire dynamics are expected to evolve under future 

climate conditions expected with anthropogenic climate change, or even the increasingly 

severe conditions experienced in the western US after 2000. However, the model has been 

benchmarked for its representation of fuels accumulation and fuels effects on fire size, 

perimeter complexity, area burned, and percent stand-replacement (Hansen et al. 2022), 

making DYNAFFOREST an ideal tool to understand how vegetation management affects 

forest fire and the forested landscape.  

 

2.3 New Fuels Management Module 

In this study, we developed a fuels treatment module to simulate controlled burning 

by removing a user-specified fraction of litter, downed coarse wood, and snags in each 1-km2 

forest tiles selected for fuels management (Fig. 1). In the fuels reduction module, forest cells 

are inventoried at each 1-year time step for non-static eligibility factors (live and dead 

biomass loading, fuels connectivity, and minimum re-treatment interval) from a pool of cells 

pre-constrained by static eligibility factors (land management jurisdiction, proximity to 

roads, proximity to homes, hillslope, forest type, stand age, lightning strike frequency, and 

aridity). We test 19 scenarios. In each scenario, a cell’s treatment eligibility, as well as the 
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parameters for the model, were informed by conversations with forest managers, model 

sensitivity tests, and a literature review (Fig. S1). “Treatment Base” represents a realistic 

baseline treatment protocol that is moderately ambitious with respect to existing political and 

technical challenges; treatment locations are constrained by slope, road access, and public 

land ownership, and are prioritized using relatively coarse spatial knowledge of downed 

woody fuels, capturing the fact that in practice managers have limited knowledge of dead 

fuels distributions at the kilometer scale (Fig. 2). When a larger number of cells is eligible for 

treatment than meets the annual treatment extent target, locations are chosen pseudo-

randomly from the pool of eligible cells unless a factor is chosen as a sorting factor (detailed 

below in the different model experimental scenarios). In this case, the pool of available cells 

is sorted hierarchically with respect to that factor and the highest ranking cells are selected up 

to the treatment areal target. We compare all treatment scenarios to a “Control” scenario of 

no vegetation treatment.  

 

2.3 Experimental Overview 

We simulated a ~77,000-km2 area in California’s Sierra Nevada region, where 

aggressive vegetation management strategies have been legislated in order to mitigate rapidly 

increasing fire risk (Wang et al. 2022; Gilles et al. 2018; Hazelhurst 2020). Following the 

protocol in Hansen et al. (2022), vegetation in the model was initialized with a gridded PFT 

map (Buotte et al. 2019), remotely-sensed stand age (Pan et al. 2011), and information on 

fuel loads based on PFT (Prichard et al. 2019). The dynamic vegetation module was forced 

with 1965–1994 downscaled 1 km2 mean daily temperature observations (Oyler et al. 2015) 

to calculate tree-seedling germination and establishment thresholds and average growing 
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season volumetric soil moisture in the rooting zone (0- to 100-cm depth) (Park Williams et 

al. 2017), fire severity, PFT-specific regeneration probability, and drought mortality (Hansen 

et al. 2022). Fire module forcings include 1984–2019 climatological mean annual aridity 

(ratio of total annual precipitation to total annual potential evapotranspiration) for each 12-

km2 grid cell (Williams et al. 2020), topography (Hastings and Dunbar, n.d.), and 1987–2019 

mean lightning strike density, which influences ignition probability (Cummins, Krider, and 

Malone 1998). 

Fuel loads at model initialization reflect forest type distributions but lack disturbance-

driven heterogeneity. Thus, we ran the model for 250 years without simulated management 

to allow the coupled vegetation-fire response in the study region to generate initial fuel 

conditions. We used year 250 from this simulation as the common origin (“spin-up”) for all 

model experiments (Hansen et al. 2022). In total, we ran a total of 500 x100-year model 

simulations across 19 different treatment scenarios in which we systematically varied annual 

areal treatment extent, stand-level treatment intensiveness, and treatment site selection 

parameters across two feasibility axes representing political and technical constraints, 

respectively (Fig. S1). Several processes in the model are probabilistic (stochastic) including 

fire ignition, stand mortality (due to fire or senescence), and tree recruitment. Thus, each 

model experiment includes 25 replicate ensemble members to account for stochastic 

variability. Ensemble size (replicate count) was chosen by calculating the intra-ensemble 

variance of representative model diagnostics (including pyrogenic stand-replacement rate, 

live C loss, and forest coverage) for n pseudo-randomly selected simulations at 100 years 

from within a 50-member replicate ensemble (n = 1:50). Where the variance of these 

diagnostics among n members approached asymptotic stability, we selected n = 25 as our 
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standard experimental replicate size. All experimental scenarios shared a common control 

(no-treatment) ensemble and “Treatment Base” ensemble to account for residual stochastic 

variability and provide a common point of comparison. 

To understand model sensitivity to fuels reduction treatment areal extent and 

treatment intensiveness, we conducted two sensitivity tests. First, we systematically varied 

treatment areal extent within a range of possible values mandated in 2020 by the state of 

California that could be allocated to the Sierra Nevada Mountains within California 

(Hazelhurst 2020). Specifically, we ran simulations with varying annual areal fuels reduction 

treatment extent set to 100 km2 year-1, 500 km2 year-1, 1000 km2 year-1, 1,500 km2 year-1, and 

2000 km2 year-1, keeping all other parameters the same as our “Treatment Base” experiment 

(see Fig. 2 for “Treatment Base” description). Second, we held areal extent and all other 

parameters constant at 1,000 km2 year-1 and varied the fraction of dead fuels removed during 

simulated fuels reduction treatments. In these two experiments, scenarios treating 1000 km2 

year-1 and removing 90% of dead biomass respectively were therefore equivalent with 

“Treatment Base”. 

Following model sensitivity tests to treatment area and dead fuel removal 

intensiveness, we performed a set of model experiments designed to understand the 

sensitivity of our results to treatment placement, measured through reductions in stand-

replacement events and overall fire severity (quantified according to crown kill fraction, see 

Methods), forest cover changes, and reductions in live carbon (C) lost to fire. In this set of 

model experiments, we varied treatment placement (for a fixed annual treatment area and 

fractional fuels reduction) according to factors constraining real-world treatment allocation, 

including: 1) land management agency constraints, where treatments were subject to the 
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majority of the “Treatment Base” parameters but constrained to US Forest Service and 

Bureau of Land Management Land (“Agency Low”), versus both public and private lands 

(“Agency High”); 2) landscape accessibility factors, where treatments were subject to the 

majority of the “Treatment Base” parameters but were either tightly constrained by access 

factors including hill slope and proximity to roads (“Access Low”), versus unconstrained by 

slope or road access (“Access High”); 3) stand-level knowledge of regional fuel-load 

distribution, where treatments were subject to the majority of the “Treatment Base” 

parameters but eligible cells were sorted based on dead fuels loading (“Knowledge High”) 

versus an experiment where dead fuels loading was not used to inform treatment location 

(“Knowledge Low”); and 4) combined effects of criteria 1-3 for our “Synergy Low” and 

“Synergy High” model experiments (Fig. 2). For all scenarios, we analyzed both transient 

(captured by our Time of Emergence statistic) and equilibrium treatment responses (model 

outcomes at year 100 and mean fourth quarter-century values). We hope that this will 

provide treatment evaluations on both policy-relevant time scales (on the order of a decade), 

and long-term forest ecological outcomes (on the order of a century). 

 

2.4 Analysis 

We calculated model diagnostics for each timestep on a 1-km vegetation cell-by-cell 

basis. During post-processing, grid cell values were summed or averaged annually for each 

ensemble member within each treatment scenario. Ensemble annual mean or cumulative 

values were calculated, and quantile values for each annual distribution were extracted. We 

considered several key modeled response variables with relevance both to human policy 

goals and safety, as well as forest ecosystem composition and structure. Diagnostics included 
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rates of pyrogenic stand-replacement and overall fire severity (see section 2.2), forest cover 

change, and quantity of live C lost (combusted or moved to dead C pools). Responses in each 

model experiment are shown as a median, interquartile, and full range of ensemble member 

values, depending on the visualization. Hereafter, any statistic not otherwise specified refers 

to the loess-smoothed (see below) ensemble mean value at year 100 of the simulation for a 

given scenario.  

For some figures and decadal statistics, we employed a loess (span = 0.2) smoothing 

function from R’s “stats” package (R Core Team 2022) on annualized model output to 

remove the influence of stochastic noise. We also averaged time series data for each 

ensemble. Inter-decadal values summarized in box plots were calculated as a distribution of 

the mean ensemble values for each scenario during all years. Compact letter display indicates 

a set of pairwise comparisons with an analysis of variance and subsequent Tukey honest 

significant difference (HSD) test using the functions “aov” and “TukeyHSD” from R’s 

“stats” package (R Core Team 2022). Within each simulation we used Time of Emergence 

(ToE) (Gaetani et al. 2020; Turk et al. 2019; Maraun 2013) to quantify  the point at which 

treatment diagnostics become statistically distinct from a no-treatment control scenario for 

regionally summed values. We defined ToE as the fifth year in a ten year moving window 

whose decadal median value for a given response variable fell outside of the control 

scenario’s IQR for that variable for the same period. If a simulation’s median value 

overlapped with the control scenario’s IQR for over ten consecutive years after achieving 

ToE, any ToE observations before this period were disqualified. 

Model code and all analyses were performed in R version 4.2.1 (2022-06-23). 
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2. Results 

Throughout the description of results, we refer to ensemble mean values relative to the no-

treatment control ensemble mean over the 100-year simulations.  

 

      3.1 Systematically varying treatment extent 

Increasing annual treatment area from 100 km2 yr-1 to 2000 km2 yr-1 within the 

77,000 km2 Sierra Nevada model domain decreased rates of pyrogenic stand-replacement, 

fire severity, and total live C lost to fire, and decreased the ToE for significant treatment 

effects by several decades. However, diminishing returns per acre treated occurred at >1000 

km2 yr-1 (Fig. 3). For example, stand-replacement rate, total forest coverage, and live C loss 

exhibited no statistically significant difference during the last quarter-century for treatment 

extents over 1000 km2 yr-1 (Fig. 3). When we examined cumulative values over the 100-year 

simulation, we found that increasing annual treated area from 0 to 500 km2 yr-1 yielded a 

16.5% (351 km2) reduction in total stand-replacement events over 100 years relative to the 

no-treatment control scenario (2,132 km2), and that doubling the annual treated area to 1,000 

km2 yr-1 yielded a further 12.7% reduction (622 km2, or 29.2% below the no-treatment rate). 

However, a second doubling of treated area to 2,000 km2 yr-1 yielded only a further 9% 

reduction (813 km2, or 38% below the no-treatment rate). Similar decreasing returns per km2 

treated were observed over the 100 year simulation with respect to cumulative avoided live C 

loss, where 500 km2 yr-1 treated yielded a 13.6% (1,466 MT C) reduction relative to control 

experiment (10,788 MT C) and each successive doubling of treated area (1,000 km2 yr-1 and 

2,000 km2 yr-1) only yielded additional reductions of 8.7% (2,404 MT C total) and a further 

5.3% (2,978 MT C total), respectively.  
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ToE was also impacted by treatment extent and varied with the response diagnostic of 

interest. For example, although ensemble mean distributions for stand replacement events 

showed no statistical difference between scenarios treating more than 1,000 km2 yr-1 over 

years 75-100 (Fig. 3b), increasing treated area from 1,000 km2 yr-1 to 1,500 km2 yr-1 

decreased the observed ToE from year 75 to year 40, and treating an additional 500 km2 yr-1 

(2,000 km2 yr-1 total) yielded an observed ToE at year 24 (Fig. 3a). In contrast, model-

predicted median annual fire severity displayed more rapidly diminishing returns: a 100% 

increase in treated area from 500 km2 yr-1 to 1,000 km2 yr-1 yielded an 18 year reduction in 

ToE (from 29 to 11 years), while a further doubling of treated area (1,000 km2 yr-1 to 2000 

km2 yr-1) yielded a further ToE reduction of only 5 years (from year 11 to year 6) (Fig. 3c). 

In some cases where treatments were not significantly different from one another, ToE was 

not consistent with overall treatment trends. For example, we observed the earliest ToE (year 

15) for the 1,000 km2 yr-1 treatment scenario when measuring changes in overall forest cover 

change, while treating 2,000 km2 yr-1 resulted in a ToE 7 years later (year 22) (Fig. 3e). This 

illustrates that ToE depends strongly on the response variable of interest, and that some 

variables exhibit more measurable decreases in effective returns per additional km2 treated 

than others. 

 

      3.2 Systematically varying fractional biomass reduction 

Next, we systematically increased the fraction of dead biomass removed as part of 

fuels treatment for the same areal treatment extent of 1000 km2 yr-1. With respect to some 

diagnostics, treatment impact on cumulative values scaled roughly linearly (Fig. 4). For 

example, a 30% increase in dead biomass removed per treated km2 from (30% to 60%) 
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yielded an 11.3% reduction (from 9.1% to 20.4%) in total stand replacement events relative 

to the control scenario over 100 years, and an additional 30% increase in percent biomass 

removal (from 60% to 90%) reduced that figure by a further 8.8% (from 20.4% to 29.2%) at 

the end of the 100 year simulation. Other diagnostics, notably changes in total forest cover, 

suggested a threshold response to increasing treatment intensity. For example, treatments 

removing 10% and 30% of dead biomass per treated km2 did not show statistically significant 

changes in total forest cover with respect to the no-treatment scenario across the fourth 

quarter-century, while treatments removing 60%, 90%, and 100% of dead biomass from 

treated stands were statistically insignificant with respect to one another, but were all 

significantly different from the control for that period. For the latter group, however, 

increased treatment intensity did accelerate ToE, with a 50 year decrease in ToE observed 

between the 60% reduction scenario and the 90% reduction scenario. Putting these figures in 

perspective, the maximum achieved increase in total forest extent achieved by fuels 

treatments (100% dead biomass removal) was 155 km2 by the end of the century (0.2% of the 

model domain). Total avoided stand replacement events over 100 years for the same scenario 

reached 621 km2 (0.8% of the model domain). 

 

      3.3 Technical and political restrictions on spatial treatment allocation 

Next, we held both annual treated area and fractional fuels reduction constant (1000 

km2 yr-1 and 90% removal, respectively) (Fig. 2; Fig. S1) and tested how spatial constraints 

on regional treatment allocation associated with land management jurisdiction and ownership 

(“Agency High” and “Agency Low” scenarios), infrastructural and technical access (“Access 

High” and “Access Low” scenarios), degree of prioritization placed on of fuel-loading 
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(“Knowledge High” and “Knowledge Low”), and the combined effects of the three 

(“Synergy High” and “Synergy Low”) impacted treatment efficacy (Fig. 5). We found that 

the most appreciable reductions in fire severity and pyrogenic stand-replacement rate (Fig. 

5a-d) occurred in simulations that highly prioritized treatment placement according to dead 

biomass-loading (“Knowledge High”, “Synergy High”; 1,104 km2 and 1,984 km2 cumulative 

avoided pyrogenic stand-replacement events relative to the total figure of 2,132 km2 for the 

no-treatment control scenario, respectively). In treatments where fuel loading was not highly 

prioritized, such that all stands above the 20th percentile for dead biomass loading qualified 

for treatment (e.g. “Agency High”, “Agency Low”, “Access High”, and “Access Low”), few 

significant differences in response variables were notable, even as constraints related to 

topography and road access (“Access High”), and multi-jurisdictional cooperation (“Agency 

High”) were eliminated. This result suggests that prioritizing more spatially homogeneous 

(extensive) treatment allocation is less effective than spatially heterogeneous (intensive) 

retreatment of stands known to exhibit high rates of fuel accumulation (Fig. 6). Decreased 

efficacy resulting from lower fuel loading prioritization (as in “Agency High”, “Agency 

Low”, “Access High”, “Access Low”, and “Synergy Low”) can be partially compensated for 

by increasing annual treated area above 1,000 km2 yr-1 (Fig. 3). However, a doubling of 

annual treated area (from 1,000 km2 yr-1 to 2,000 km2 yr-1) was required to achieve similar 

fire severity reductions similar to those observed in experiments where fuel-loading was 

highly prioritized (e.g. “Knowledge High”). 

Including high prioritization of fuel loading (“Knowledge High”), releasing 

infrastructural and technical access constraints to remote and rugged areas (“Access High”), 

and allowing for multi-jurisdictional cooperation in treatment application (“Agency High”), 
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resulted in similar 100-year treatment outcomes with respect to cumulative avoided 

pyrogenic live C loss (either combusted or moved to the dead C pool; 2,714 MT, 2,993 MT, 

and 2,330 MT, respectively). “Synergy High” also yielded a relatively large increase in 100-

year cumulative avoided live C loss—a total reduction of 4,857 MT C relative to no-

treatment (a 81.3% increase from 2,679 MT C, the mean of the constituent three scenarios: 

“Agency High”, “Access High”, and “Knowledge High”). 

Efficacy of a particular treatment scenario and ToE strongly depended on the 

‘outcome’ (or response variables of interest). While all nine scenarios achieved ToE with 

respect to forest cover by mid-century (Fig. 5e), only four scenarios (“Synergy High”, 

“Knowledge High”, “Agency High”, and “Access High”) achieved ToE with respect to 

pyrogenic stand-replacement rate during that period, with three more (“Knowledge Low”, 

“Treatment Base”, and “Agency Low”) only exhibiting ToE around the outset of the final 4th 

quarter-century (Fig. 5a). 

The spatial patterns of deployed treatments reflect technical and political constraints 

associated with infrastructure and land ownership (Fig. S2), and the natural vegetation type 

distribution (Fig. S3), which affects fuel loading. Collectively, the constraints and 

prioritizations associated with different treatment scenarios resulted in intensive treatment 

regimes in both highly restrictive scenarios (e.g. “Synergy Low”), and the scenarios targeting 

vegetation cells with high fuel-loads (e.g. “Synergy High”) (Figs. 6,S4). In spatially 

restrictive scenarios characterized by access or land ownership constraints, treatments 

clustered and manifested lower re-treatment intervals due to the limited number of cells 

eligible for treatment in the model domain. By contrast, in scenarios targeting higher fuel-

loads, treatments clustered in forest types that were associated with the most rapid fuel 
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accumulation (notably Hemlock/Cedar, in higher elevation portions of the mid-latitude Sierra 

Nevada). Net quantity of dead biomass removal by fuels treatments (Fig. S5) varied by 

scenario and was closely correlated with treatment efficacy across a number of model 

diagnostics. 

 

3. Discussion 

Vegetation fuels reduction treatments are increasingly being legislated as a means to 

mitigate accelerating wildfire risk in the western US (Gilles et al. 2018; Hazelhurst 2020). In 

this study, we developed a new fuels management module within the coupled vegetation-fire 

model DYNAFFOREST. We applied DYNAFFOREST to the California Sierra Nevada 

Mountains, a region where vegetation management is legislated to increase sharply over the 

coming decade. We evaluated treatment outcomes with respect to pyrogenic stand-

replacement rates, fire severity (crown kill fraction), forest coverage change (with respect to 

nonforest landcover types), and live C loss to fire to understand how fuels reduction 

treatments impacted the magnitude and earliest measurable achievement (ToE) of treatment 

effects. Specifically, we tested how annual treatment area, stand-level intensiveness of dead 

biomass removal, land ownership constraints, landscape accessibility factors, and detailed 

knowledge of spatial fuels distribution influence subsequent forest fire severity and 

ecological impacts. 

We found that the most appreciable treatment effects occurred in simulations that 

prioritized treatment allocation based on fuel-loading. Lower treatment efficacy occurred 

when overall area eligible for treatment was constrained by political or technical limitations, 

or when knowledge of fuel loading was a lower priority. Decreased priority on fuel-loading 
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could be compensated for by increasing annual treated area, however in some cases a 

doubling of annual treated area was required to achieve similar measured reductions in fire 

severity or live C loss. 

 

4.1 Impacts of management on fire severity 

All of the nine simulated treatment scenarios that varied fuel placement according to 

different land constraints and fuel loading priorities showed statistically significant 

reductions in fire severity during the final 4th quarter-century (Fig. 5d), and all eight 

scenarios that achieved ToE (“Synergy High”, “Knowledge High”, “Access High”, “Agency 

High”, “Treatment Base”, “Knowledge Low”, “Agency Low”, and “Access Low”) did so 

before mid-century, with all but “Access Low” occurring by year 12 (Fig. 5c). The scenarios 

that yielded the largest reductions in pyrogenic stand-replacement events, percent crown kill, 

and live C loss (“Synergy High” and “Knowledge High”) achieved ToE with respect to stand 

mortality reduction after only 6 years of simulation. Because DYNAFFOREST does not 

currently simulate fire suppression or rate of spread, reductions in fire intensity did not 

translate into reductions in overall fire size in our results. However, observational studies link 

reduced fire severity (ecological outcomes from fire) to reduced intensity (total combustive 

energy output), in turn suggesting reduced rates of spread and increased suppressibility 

(Wagner 1977), reducing the damage potential to homes and infrastructure (Kramer et al. 

2019). Thus, our results indicate that coordinated fuels treatments at a regional scale, 

particularly those that prioritize forest patches with high fuel-loads, have the potential to 

reduce some economic losses and human health and safety impacts, other factors held equal. 
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4.2 Impact of management on forest extent and carbon balance  

We found statistically significant differences with respect to the no-treatment control 

scenario over the final fourth quarter-century for all but one simulated treatment (“Synergy 

Low”) when measuring changes in forest cover, and for all simulated treatments when 

measuring differences in live C loss (Fig. 5f, h). The treatment scenario with no spatial 

constraints that prioritized grid cells with high dead fuel loads (“Synergy High”) achieved 

ToE with respect to cumulative live C loss in 25 years, while only one other scenario 

(“Access High”) reached ToE in the 100-year simulation period (at year 70). In all cases, the 

overall avoided C loss was small compared to regional C budgets. For example, in “Synergy 

High”, where we allow precise prioritization of dead fuel-loading and assumed no spatial 

constraints on treatments, cumulative avoided live C loss amounted to 4,857 MT C over 100 

years, relative to no treatment. In this case, total avoided loss is equivalent to the annual C 

footprints of ~1.5 typical upper-income (or ~4 typical low-income) US residents (Feng, 

Hubacek, and Song 2021), and would offset just a small fraction (0.0012%) of California’s C 

emissions from the year 2020 (annual) (California Air Resources Board 2022).  

While the removal of dead biomass during treatments also acts in and of itself to 

decrease total C loss during forest fires (by removing dead biomass that would otherwise 

burn), cleared dead biomass is typically stacked and burned on-site during fuels treatments, 

meaning net C flux and C stabilization is not typically reduced through dead biomass 

removal, except where burn conditions during treatment differ significantly from those in 

uncontrolled fire (Belcher et al. 2018). Moreover, not all biomass removed during fuels 

treatments would otherwise burn in forest fires (Campbell, Harmon, and Mitchell 2012). 

Thus, a substantial fraction of treated fuels are diverted away from heterotrophic respiration 
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and abiotic weathering processes rather than uncontrolled combustion. Since combustion and 

decomposition of treatable fuels both reallocate C from dead biomass pools to the 

atmosphere, we consider these fates as functionally equivalent for the purposes of this study, 

and do not consider differences in the composition of greenhouse gas species released in 

these distinct processes. This still leaves the C impact of fuels treatment implementation 

itself, which typically involves the extensive use of internal combustion engines for 

transportation, gathering fuels, sawing, mastication, and other mechanical processes 

(Stephens et al. 2009), and would imply net positive C fluxes not accounted for in this study. 

While opportunities exist for the stabilization of cleared biomass through its integration into 

novel forestry products (Cabiyo et al. 2021), these technologies are still nascent and are not 

usually employed in conjunction with fuels treatment protocols. As a result, we conclude that 

while fuels-reduction treatments may decrease combustive C loss, they will not necessarily 

increase standing forest C storage, or result in a net negative C balance, a result that is in line 

with a number of observational studies (Stephens et al. 2009). 

 

4.3 The importance of treatment strategy on forest fire outcomes 

We found wide variation in fuels reduction treatment efficacy across all diagnostics 

including stand kill events, crown kill fraction, live C loss, and forest extent change, 

depending on how treatment location was prioritized. Model experiments that leveraged 

hierarchical prioritization based on a detailed knowledge of fuels across the landscape, even 

with some restrictions to access, reduced fire impacts, mediated forest transitions to grassland 

(Hill et al. 2023), and achieved a larger treatment effect across other diagnostics compared 

with simulations with less emphasis on fuel loading. This speaks to the importance of (i) 
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further developing and maintaining updated fuels maps and (ii) employing coordinated 

treatments informed by known fuel-loading geography.  

Current vegetation management strategies can be subject to strong path dependencies 

depending on when funding is allocated, the source of the funding, and the availability of 

wildland firefighters to oversee treatments, which can often delay management by several 

years when intense wildfire seasons require resources to be devoted elsewhere. Our treatment 

scenarios indicate that management strategies that are subject to these constraints may be 

operating well below than their maximum potential. Further, our results show the importance 

of prioritizing fuel-heavy stands, emphasizing the relevance of ongoing fuel-mapping and 

modeling efforts to identify candidate stands for intensive treatments. Finally, though we do 

find potential for management to mitigate forest fire impacts, significant treatment effects 

may take a decade or more to manifest at a regional fire-regime scale, depending on the 

outcome variable of interest. In a policy environment where projects and funding frequently 

operate on 2- to 4-year time scales commensurate with the standard election cycle, and are 

typically legislated and evaluated at regional scales, these results highlight the importance of 

sustained forest management policies that operate on ecological as opposed to political 

timescales. 

 

4.4 Future work to determine management outcomes across broad spatial and long temporal 

scales 

 The effects of fuels reduction treatments have implications for a wide variety of 

domains such as nature-based C management or insurance risks for housing in the wildland 

urban interface. However, most empirical studies, due to costs and practicality constraints, 
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occur at the stand scale (Moreau et al. 2022). Process-based models that are benchmarked for 

key processes like prognostic fuels accumulation and fire-fuels sensitivities are one of the 

only tools available for understanding the sensitivity of wildfire regimes to fuels reduction 

treatments across large spatial scales and at long temporal scales. Remote sensing data on a 

number of wildfire diagnostics such as fire severity, subcanopy fuels, and C combusted from 

wildfire have the potential to be leveraged to further understand how fuels reduction 

protocols influence outcomes of interest and improve model benchmarking. Presently, many 

of these desired remote sensing capabilities are limiting, but provide an exciting opportunity 

for future research (Gale et al. 2021).  

 

  

4. Conclusion 

Vegetation fuels treatments are emerging as a key strategy to mitigate rapidly 

increasing wildfire risk in the western US. We found that treatment scenarios that strongly 

prioritize stands based on the regional fuel distribution were most successful at controlling 

fire severity and secondarily at reducing live C loss. However, we also found that extensive 

inter-jurisdictional participation across public and private lands, as well as ambitious 

treatment of remote and rugged areas can compensate for lowered prioritization of the 

regional fuel distribution. Even treatments with substantial spatial constraints that strongly 

prioritized stands according to regional fuel distributions yielded statistically significant 

results across all measured response variables, but these effects did not become measurable 

until several decades later than less spatially constrained scenarios with the same fuels 

distribution information. Though the best performing scenario yielded impressive reductions 
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in fire severity, stand-replacement events, and forest cover loss, the cumulative quantity of 

avoided live C loss to fire relative to the control scenario was relatively small (up to 4,857 

MT C over one century for extremely intensive treatment scenarios) in the context of 

California’s overall carbon budget (equivalent to 0.0012% of annual statewide emissions in 

2020) (California Air Resources Board 2022).  

While further research is needed to understand the efficacy of fuels management as a 

strategy for C emissions reduction, our results suggest that fuels treatments may not represent 

an efficient strategy for limiting statewide C emissions or increasing naturally sequestered C. 

More relevant gains are represented by the overall control on fire severity achieved by fuels 

reduction treatments. Research suggests that low-severity wildfire can promote important 

ecosystem functions, including elevated soil C sequestration, the maintenance of higher floral 

biodiversity, and increased stream water quality. In our treatment protocols that were most 

effective at reducing fire severity, fire severity was maintained below stand-killing thresholds 

almost universally across the region. Although this result may be unattainable in practice due 

to practical limitations on treatment allocation and intensiveness, our work suggests that fire 

severity-mitigation through fuels treatments may help promote a fire regime characterized by 

lower severity, more containable, and less ecologically deleterious forest fires. However, 

these ameliorating effects may only manifest after several decades of coordinated fuels 

treatments across the region. 

  

 

 

 

 



 
 

26 

 
References 
 
Abatzoglou, John T., David S. Battisti, A. Park Williams, Winslow D. Hansen, Brian J. 

Harvey, and Crystal A. Kolden. 2021. “Projected Increases in Western US Forest Fire 
despite Growing Fuel Constraints.” Communications Earth & Environment 2 (1): 
227. https://doi.org/10.1038/s43247-021-00299-0. 

Abatzoglou, John T., and A. Park Williams. 2016. “Impact of Anthropogenic Climate 
Change on Wildfire across Western US Forests.” Proceedings of the National 
Academy of Sciences 113 (42): 11770–75. https://doi.org/10.1073/pnas.1607171113. 

Agee, James K., and Carl N. Skinner. 2005. “Basic Principles of Forest Fuel Reduction 
Treatments.” Forest Ecology and Management 211 (1–2): 83–96. 
https://doi.org/10.1016/j.foreco.2005.01.034. 

Albrich, Katharina, Werner Rammer, Monica G. Turner, Zak Ratajczak, Kristin H. 
Braziunas, Winslow D. Hansen, and Rupert Seidl. 2020. “Simulating Forest 
Resilience: A Review.” Edited by Thomas Hickler. Global Ecology and 
Biogeography 29 (12): 2082–96. https://doi.org/10.1111/geb.13197. 

Anderegg, William R. L., Oriana S. Chegwidden, Grayson Badgley, Anna T. Trugman, 
Danny Cullenward, John T. Abatzoglou, Jeffrey A. Hicke, Jeremy Freeman, and 
Joseph J. Hamman. 2022. “Future Climate Risks from Stress, Insects and Fire across 
US Forests.” Edited by Joshua Lawler. Ecology Letters 25 (6): 1510–20. 
https://doi.org/10.1111/ele.14018. 

Balch, Jennifer K., John T. Abatzoglou, Maxwell B. Joseph, Michael J. Koontz, Adam L. 
Mahood, Joseph McGlinchy, Megan E. Cattau, and A. Park Williams. 2022. 
“Warming Weakens the Night-Time Barrier to Global Fire.” Nature 602 (7897): 442–
48. https://doi.org/10.1038/s41586-021-04325-1. 

Belcher, Claire M., Stacey L. New, Cristina Santín, Stefan H. Doerr, Rebecca A. Dewhirst, 
Mark J. Grosvenor, and Victoria A. Hudspith. 2018. “What Can Charcoal Reflectance 
Tell Us About Energy Release in Wildfires and the Properties of Pyrogenic Carbon?” 
Frontiers in Earth Science 6 (October): 169. 
https://doi.org/10.3389/feart.2018.00169. 

Blumenfeld, Jared, Thom Porter, and Wade Crowfoot. 2021. “CALIFORNIA 
ENVIRONMENTAL PROTECTION AGENCY.” 

Buotte, Polly C., Samuel Levis, Beverly E. Law, Tara W. Hudiburg, David E. Rupp, and 
Jeffery J. Kent. 2019. “Near‐future Forest Vulnerability to Drought and Fire Varies 
across the Western United States.” Global Change Biology 25 (1): 290–303. 
https://doi.org/10.1111/gcb.14490. 

Burger, James A. 2009. “Management Effects on Growth, Production and Sustainability of 
Managed Forest Ecosystems: Past Trends and Future Directions.” Forest Ecology and 
Management 258 (10): 2335–46. https://doi.org/10.1016/j.foreco.2009.03.015. 

Burke, William D., Christina Tague, Maureen C. Kennedy, and Max A. Moritz. 2021. 
“Understanding How Fuel Treatments Interact With Climate and Biophysical Setting 
to Affect Fire, Water, and Forest Health: A Process-Based Modeling Approach.” 
Frontiers in Forests and Global Change 3 (January): 591162. 
https://doi.org/10.3389/ffgc.2020.591162. 

Cabiyo, Bodie, Jeremy S. Fried, Brandon M. Collins, William Stewart, Jun Wong, and 



 
 

27 

Daniel L. Sanchez. 2021. “Innovative Wood Use Can Enable Carbon-Beneficial 
Forest Management in California.” Proceedings of the National Academy of Sciences 
118 (49): e2019073118. https://doi.org/10.1073/pnas.2019073118. 

California Air Resources Board. 2022. “Current California GHG Emission Inventory Data 
(2020).” https://ww2.arb.ca.gov/ghg-inventory-data. 

Campbell, John L, Mark E Harmon, and Stephen R Mitchell. 2012. “Can Fuel‐reduction 
Treatments Really Increase Forest Carbon Storage in the Western US by Reducing 
Future Fire Emissions?” Frontiers in Ecology and the Environment 10 (2): 83–90. 
https://doi.org/10.1890/110057. 

Cummins, K.L., E.P. Krider, and M.D. Malone. 1998. “The US National Lightning Detection 
Network/Sup TM/ and Applications of Cloud-to-Ground Lightning Data by Electric 
Power Utilities.” IEEE Transactions on Electromagnetic Compatibility 40 (4): 465–
80. https://doi.org/10.1109/15.736207.Dennison, Philip E., Simon C. Brewer, James 
D. Arnold, and Max A. Moritz. 2014. “Large Wildfire Trends in the Western United 
States, 1984-2011: DENNISON ET. AL.; LARGE WILDFIRE TRENDS IN THE 
WESTERN US.” Geophysical Research Letters 41 (8): 2928–33. 
https://doi.org/10.1002/2014GL059576. 

Feng, Kuishuang, Klaus Hubacek, and Kaihui Song. 2021. “Household Carbon Inequality in 
the U.S.” Journal of Cleaner Production 278 (January): 123994. 
https://doi.org/10.1016/j.jclepro.2020.123994. 

Fisher, Rosie A., Charles D. Koven, William R. L. Anderegg, Bradley O. Christoffersen, 
Michael C. Dietze, Caroline E. Farrior, Jennifer A. Holm, et al. 2018. “Vegetation 
Demographics in Earth System Models: A Review of Progress and Priorities.” Global 
Change Biology 24 (1): 35–54. https://doi.org/10.1111/gcb.13910. 

Gaetani, Marco, Serge Janicot, Mathieu Vrac, Adjoua Moise Famien, and Benjamin Sultan. 
2020. “Robust Assessment of the Time of Emergence of Precipitation Change in 
West Africa.” Scientific Reports 10 (1): 7670. https://doi.org/10.1038/s41598-020-
63782-2. 

Gale, Matthew G., Geoffrey J. Cary, Albert I.J.M. Van Dijk, and Marta Yebra. 2021. “Forest 
Fire Fuel through the Lens of Remote Sensing: Review of Approaches, Challenges 
and Future Directions in the Remote Sensing of Biotic Determinants of Fire 
Behaviour.” Remote Sensing of Environment 255 (March): 112282. 
https://doi.org/10.1016/j.rse.2020.112282. 

Gilles, J. Keith, Mark S. Andre, Chris Chase, Katie Delbar, Susan Husari, Marc Huertos, 
Mike Jani, Richard Wade, and Darcy Wheeles. 2018. “THE 2018 STRATEGIC FIRE 
PLAN.” Cal Fire. https://osfm.fire.ca.gov/media/5590/2018-strategic-fire-plan-
approved-08_22_18.pdf. 

Hansen, Winslow D., Meg A. Krawchuk, Anna T. Trugman, and A. Park Williams. 2022. 
“The Dynamic Temperate and Boreal Fire and Forest-Ecosystem Simulator 
(DYNAFFOREST): Development and Evaluation.” Environmental Modelling & 
Software 156 (October): 105473. https://doi.org/10.1016/j.envsoft.2022.105473. 

Hantson, Stijn, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, 
Dominique Bachelet, Matthew Forrest, et al. 2020. “Quantitative Assessment of Fire 
and Vegetation Properties in Simulations with Fire-Enabled Vegetation Models from 
the Fire Model Intercomparison Project.” Geoscientific Model Development 13 (7): 
3299–3318. https://doi.org/10.5194/gmd-13-3299-2020. 



 
 

28 

Hastings, David A, and Paula K Dunbar. N.d. “Global Land One-Kilometer Base Elevation 
(GLOBE), 1999.” 

Hazelhurst, Sherry. 2020. “Agreement for Shared Stewardship of California’s Forest and 
Rangelands Between the State of California and the USDA, Forest Service Pacific 
Southwest Region (Memorandum of Understanding).” Gov.ca.gov/. August 12, 2020. 
https://www.gov.ca.gov/wp-content/uploads/2020/08/8.12.20-CA-Shared-
Stewardship-MOU.pdf?emrc=60feea. 

Hessburg, Paul F., Thomas A. Spies, David A. Perry, Carl N. Skinner, Alan H. Taylor, Peter 
M. Brown, Scott L. Stephens, et al. 2016. “Tamm Review: Management of Mixed-
Severity Fire Regime Forests in Oregon, Washington, and Northern California.” 
Forest Ecology and Management 366 (April): 221–50. 
https://doi.org/10.1016/j.foreco.2016.01.034. 

Hill, Avery P, Connor J Nolan, Kyle S Hemes, Trevor W Cambron, and Christopher B Field. 
2023. “Low-Elevation Conifers in California’s Sierra Nevada Are out of Equilibrium 
with Climate.” Edited by Adelia Bovell-Benjamin. PNAS Nexus 2 (2): pgad004. 
https://doi.org/10.1093/pnasnexus/pgad004. 

Hurteau, Matthew D., Shuang Liang, A. LeRoy Westerling, and Christine Wiedinmyer. 
2019. “Vegetation-Fire Feedback Reduces Projected Area Burned under Climate 
Change.” Scientific Reports 9 (1): 2838. https://doi.org/10.1038/s41598-019-39284-1. 

Hurteau, Matthew D., Michael T. Stoddard, and Peter Z. Fulé. 2011. “The Carbon Costs of 
Mitigating High-Severity Wildfire in Southwestern Ponderosa Pine: CARBON 
COSTS OF MITIGATING WILDFIRE.” Global Change Biology 17 (4): 1516–21. 
https://doi.org/10.1111/j.1365-2486.2010.02295.x. 

Johnston, Emma@CNRA. 2018. “California Forest Carbon Plan – May 2018.” 
Juang, C. S., A. P. Williams, J. T. Abatzoglou, J. K. Balch, M. D. Hurteau, and M. A. Moritz. 

2022. “Rapid Growth of Large Forest Fires Drives the Exponential Response of 
Annual Forest‐Fire Area to Aridity in the Western United States.” Geophysical 
Research Letters 49 (5). https://doi.org/10.1029/2021GL097131. 

Kasischke, Eric S., and Merritt R. Turetsky. 2006. “Recent Changes in the Fire Regime 
across the North American Boreal Region—Spatial and Temporal Patterns of Burning 
across Canada and Alaska.” Geophysical Research Letters 33 (9): L09703. 
https://doi.org/10.1029/2006GL025677. 

Keeley, Jon E. 2009. “Fire Intensity, Fire Severity and Burn Severity: A Brief Review and 
Suggested Usage.” International Journal of Wildland Fire 18 (1): 116. 
https://doi.org/10.1071/WF07049. 

Kelly, Luke T., Katherine M. Giljohann, Andrea Duane, Núria Aquilué, Sally Archibald, 
Enric Batllori, Andrew F. Bennett, et al. 2020. “Fire and Biodiversity in the 
Anthropocene.” Science 370 (6519): eabb0355. 
https://doi.org/10.1126/science.abb0355. 

Kelly, Ryan, Melissa L. Chipman, Philip E. Higuera, Ivanka Stefanova, Linda B. Brubaker, 
and Feng Sheng Hu. 2013. “Recent Burning of Boreal Forests Exceeds Fire Regime 
Limits of the Past 10,000 Years.” Proceedings of the National Academy of Sciences 
110 (32): 13055–60. https://doi.org/10.1073/pnas.1305069110. 

Kennedy, Maureen C., Ryan R. Bart, Christina L. Tague, and Janet S. Choate. 2021. “Does 
Hot and Dry Equal More Wildfire? Contrasting Short‐ and Long‐term Climate Effects 
on Fire in the Sierra Nevada, CA.” Ecosphere 12 (7). 



 
 

29 

https://doi.org/10.1002/ecs2.3657. 
Kolden, Crystal. 2019. “We’re Not Doing Enough Prescribed Fire in the Western United 

States to Mitigate Wildfire Risk.” Fire 2 (2): 30. https://doi.org/10.3390/fire2020030. 
Kramer, Heather Anu, Miranda H. Mockrin, Patricia M. Alexandre, and Volker C. Radeloff. 

2019. “High Wildfire Damage in Interface Communities in California.” International 
Journal of Wildland Fire 28 (9): 641. https://doi.org/10.1071/WF18108. 

Maraun, Douglas. 2013. “When Will Trends in European Mean and Heavy Daily 
Precipitation Emerge?” Environmental Research Letters 8 (1): 014004. 
https://doi.org/10.1088/1748-9326/8/1/014004. 

Moreau, Guillaume, Catherine Chagnon, Alexis Achim, John Caspersen, Loïc 
D’Orangeville, Martina Sánchez-Pinillos, and Nelson Thiffault. 2022. “Opportunities 
and Limitations of Thinning to Increase Resistance and Resilience of Trees and 
Forests to Global Change.” Edited by Che Elkin. Forestry: An International Journal 
of Forest Research, March, cpac010. https://doi.org/10.1093/forestry/cpac010. 

North, M P, R A York, B M Collins, M D Hurteau, G M Jones, E E Knapp, L Kobziar, et al. 
2021. “Pyrosilviculture Needed for Landscape Resilience of Dry Western United 
States Forests.” Journal of Forestry 119 (5): 520–44. 
https://doi.org/10.1093/jofore/fvab026. 

North, Malcolm P., and Matthew D. Hurteau. 2011. “High-Severity Wildfire Effects on 
Carbon Stocks and Emissions in Fuels Treated and Untreated Forest.” Forest Ecology 
and Management 261 (6): 1115–20. https://doi.org/10.1016/j.foreco.2010.12.039. 

O’Connor, Christopher D., Donald A. Falk, Ann M. Lynch, and Thomas W. Swetnam. 2014. 
“Fire Severity, Size, and Climate Associations Diverge from Historical Precedent 
along an Ecological Gradient in the Pinaleño Mountains, Arizona, USA.” Forest 
Ecology and Management 329 (October): 264–78. 
https://doi.org/10.1016/j.foreco.2014.06.032. 

Oyler, Jared W., Ashley Ballantyne, Kelsey Jencso, Michael Sweet, and Steven W. Running. 
2015. “Creating a Topoclimatic Daily Air Temperature Dataset for the Conterminous 
United States Using Homogenized Station Data and Remotely Sensed Land Skin 
Temperature: TOPOCLIMATIC DAILY AIR TEMPERATURE.” International 
Journal of Climatology 35 (9): 2258–79. https://doi.org/10.1002/joc.4127. 

Pan, Y., J. M. Chen, R. Birdsey, K. McCullough, L. He, and F. Deng. 2011. “Age Structure 
and Disturbance Legacy of North American Forests.” Biogeosciences 8 (3): 715–32. 
https://doi.org/10.5194/bg-8-715-2011. 

Park Williams, A., Benjamin I. Cook, Jason E. Smerdon, Daniel A. Bishop, Richard Seager, 
and Justin S. Mankin. 2017. “The 2016 Southeastern U.S. Drought: An Extreme 
Departure From Centennial Wetting and Cooling.” Journal of Geophysical Research: 
Atmospheres 122 (20). https://doi.org/10.1002/2017JD027523. 

Pausas, Juli G, and Jon E Keeley. 2019. “Wildfires as an Ecosystem Service.” Frontiers in 
Ecology and the Environment 17 (5): 289–95. https://doi.org/10.1002/fee.2044. 

Porter, Thomas W, Wade Crowfoot, and Gavin Newsom. 2020. “2020 Wildfire Activity 
Statistics.” 

Prichard, Susan J., Paul F. Hessburg, R. Keala Hagmann, Nicholas A. Povak, Solomon Z. 
Dobrowski, Matthew D. Hurteau, Van R. Kane, et al. 2021. “Adapting Western North 
American Forests to Climate Change and Wildfires: 10 Common Questions.” 
Ecological Applications 31 (8). https://doi.org/10.1002/eap.2433. 



 
 

30 

Prichard, Susan J., Maureen C. Kennedy, Anne G. Andreu, Paige C. Eagle, Nancy H. French, 
and Michael Billmire. 2019. “Next‐Generation Biomass Mapping for Regional 
Emissions and Carbon Inventories: Incorporating Uncertainty in Wildland Fuel 
Characterization.” Journal of Geophysical Research: Biogeosciences 124 (12): 3699–
3716. https://doi.org/10.1029/2019JG005083. 

R Core Team. 2022. “Stats.” https://www.R-project.org/. 
Rabin, Sam S., Joe R. Melton, Gitta Lasslop, Dominique Bachelet, Matthew Forrest, Stijn 

Hantson, Jed O. Kaplan, et al. 2017. “The Fire Modeling Intercomparison Project 
(FireMIP), Phase 1: Experimental and Analytical Protocols with Detailed Model 
Descriptions.” Geoscientific Model Development 10 (3): 1175–97. 
https://doi.org/10.5194/gmd-10-1175-2017. 

Rabin, S.S., F N Gérard, and A Arneth. 2022. “The Influence of Thinning and Prescribed 
Burning on Future Forest Fires in Fire-Prone Regions of Europe.” Environmental 
Research Letters 17 (5): 055010. https://doi.org/10.1088/1748-9326/ac6312. 

Radeloff, Volker C., David P. Helmers, H. Anu Kramer, Miranda H. Mockrin, Patricia M. 
Alexandre, Avi Bar-Massada, Van Butsic, et al. 2018. “Rapid Growth of the US 
Wildland-Urban Interface Raises Wildfire Risk.” Proceedings of the National 
Academy of Sciences 115 (13): 3314–19. https://doi.org/10.1073/pnas.1718850115. 

Rao, Krishna, A. Park Williams, Noah S. Diffenbaugh, Marta Yebra, and Alexandra G. 
Konings. 2022. “Plant-Water Sensitivity Regulates Wildfire Vulnerability.” Nature 
Ecology & Evolution 6 (3): 332–39. https://doi.org/10.1038/s41559-021-01654-2. 

Safford, Hugh D., Alison K. Paulson, Zachary L. Steel, Derek J. N. Young, Rebecca B. 
Wayman, and Morgan Varner. 2022. “The 2020 California Fire Season: A Year like 
No Other, a Return to the Past or a Harbinger of the Future?” Global Ecology and 
Biogeography 31 (10): 2005–25. https://doi.org/10.1111/geb.13498. 

Sanderson, Benjamin, M., and Rosie A. Fisher. 2020. “Transformative Change Requires 
Resisting a New Normal.” Nature Climate Change 10 (3): 173–74. 
https://doi.org/10.1038/s41558-020-0712-5. 

Schoennagel, Tania, Jennifer K. Balch, Hannah Brenkert-Smith, Philip E. Dennison, Brian J. 
Harvey, Meg A. Krawchuk, Nathan Mietkiewicz, et al. 2017. “Adapt to More 
Wildfire in Western North American Forests as Climate Changes.” Proceedings of 
the National Academy of Sciences 114 (18): 4582–90. 
https://doi.org/10.1073/pnas.1617464114. 

Seidl, Rupert, Juha Honkaniemi, Tuomas Aakala, Alexey Aleinikov, Per Angelstam, Mathieu 
Bouchard, Yan Boulanger, et al. 2020. “Globally Consistent Climate Sensitivity of 
Natural Disturbances across Boreal and Temperate Forest Ecosystems.” Ecography 
43 (7): 967–78. https://doi.org/10.1111/ecog.04995. 

Seidl, Rupert, Werner Rammer, and Thomas A. Spies. 2014. “Disturbance Legacies Increase 
the Resilience of Forest Ecosystem Structure, Composition, and Functioning.” 
Ecological Applications 24 (8): 2063–77. https://doi.org/10.1890/14-0255.1. 

Serra-Diaz, Josep M., Charles Maxwell, Melissa S. Lucash, Robert M. Scheller, Danelle M. 
Laflower, Adam D. Miller, Alan J. Tepley, Howard E. Epstein, Kristina J. Anderson-
Teixeira, and Jonathan R. Thompson. 2018. “Disequilibrium of Fire-Prone Forests 
Sets the Stage for a Rapid Decline in Conifer Dominance during the 21st Century.” 
Scientific Reports 8 (1): 6749. https://doi.org/10.1038/s41598-018-24642-2. 

Stephens, S. L., J. K. Agee, P. Z. Fulé, M. P. North, W. H. Romme, T. W. Swetnam, and M. 



 
 

31 

G. Turner. 2013. “Managing Forests and Fire in Changing Climates.” Science 342 
(6154): 41–42. https://doi.org/10.1126/science.1240294. 

Stephens, Scott L., and Lawrence W. Ruth. 2005. “FEDERAL FOREST-FIRE POLICY IN 
THE UNITED STATES.” Ecological Applications 15 (2): 532–42. 
https://doi.org/10.1890/04-0545. 

Stephens, Scott L, Sally Thompson, Gabrielle Boisramé, Brandon M Collins, Lauren C 
Ponisio, Ekaterina Rakhmatulina, Zachary L Steel, Jens T Stevens, Jan W van 
Wagtendonk, and Kate Wilkin. 2021. “Fire, Water, and Biodiversity in the Sierra 
Nevada: A Possible Triple Win.” Environmental Research Communications 3 (8): 
081004. https://doi.org/10.1088/2515-7620/ac17e2. 

Swetnam, Thomas W., Joshua Farella, Christopher I. Roos, Matthew J. Liebmann, Donald A. 
Falk, and Craig D. Allen. 2016. “Multiscale Perspectives of Fire, Climate and 
Humans in Western North America and the Jemez Mountains, USA.” Philosophical 
Transactions of the Royal Society B: Biological Sciences 371 (1696): 20150168. 
https://doi.org/10.1098/rstb.2015.0168. 

Turk, Daniela, Hongjie Wang, Xinping Hu, Dwight K. Gledhill, Zhaohui Aleck Wang, 
Liqing Jiang, and Wei-Jun Cai. 2019. “Time of Emergence of Surface Ocean Carbon 
Dioxide Trends in the North American Coastal Margins in Support of Ocean 
Acidification Observing System Design.” Frontiers in Marine Science 6 (March): 91. 
https://doi.org/10.3389/fmars.2019.00091. 

Vachula, Richard S, James M Russell, and Yongsong Huang. 2019. “Climate Exceeded 
Human Management as the Dominant Control of Fire at the Regional Scale in 
California’s Sierra Nevada.” Environmental Research Letters 14 (10): 104011. 
https://doi.org/10.1088/1748-9326/ab4669. 

Vaillant, Nicole M., and Elizabeth D. Reinhardt. 2017. “An Evaluation of the Forest Service 
Hazardous Fuels Treatment Program—Are We Treating Enough to Promote 
Resiliency or Reduce Hazard?” Journal of Forestry 115 (4): 300–308. 
https://doi.org/10.5849/jof.16-067. 

Wagner, C. E. Van. 1977. “Conditions for the Start and Spread of Crown Fire.” Canadian 
Journal of Forest Research 7 (1): 23–34. https://doi.org/10.1139/x77-004. 

Wang, Jonathan A., James T. Randerson, Michael L. Goulden, Clarke A. Knight, and John J. 
Battles. 2022. “Losses of Tree Cover in California Driven by Increasing Fire 
Disturbance and Climate Stress.” AGU Advances 3 (4). 
https://doi.org/10.1029/2021AV000654. 

Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. “Warming and 
Earlier Spring Increase Western U.S. Forest Wildfire Activity.” Science 313 (5789): 
940–43. https://doi.org/10.1126/science.1128834. 

Wickham, Hadley. 2016. “Ggplot2.” New York: Springer-Verlag. 
Williams, A. Park, John T. Abatzoglou, Alexander Gershunov, Janin Guzman‐Morales, 

Daniel A. Bishop, Jennifer K. Balch, and Dennis P. Lettenmaier. 2019. “Observed 
Impacts of Anthropogenic Climate Change on Wildfire in California.” Earth’s Future 
7 (8): 892–910. https://doi.org/10.1029/2019EF001210. 

Williams, A. Park, Edward R. Cook, Jason E. Smerdon, Benjamin I. Cook, John T. 
Abatzoglou, Kasey Bolles, Seung H. Baek, Andrew M. Badger, and Ben Livneh. 
2020. “Large Contribution from Anthropogenic Warming to an Emerging North 
American Megadrought.” Science 368 (6488): 314–18. 



 
 

32 

https://doi.org/10.1126/science.aaz9600. 
Williams, A. Park, Ben Livneh, Karen A. McKinnon, Winslow D. Hansen, Justin S. Mankin, 

Benjamin I. Cook, Jason E. Smerdon, et al. 2022. “Growing Impact of Wildfire on 
Western US Water Supply.” Proceedings of the National Academy of Sciences 119 
(10): e2114069119. https://doi.org/10.1073/pnas.2114069119. 

Yarmouth, John A. 2022. H.R.5376 – Inflation Reduction Act of 2022. H.R.5376. 
https://www.congress.gov/bill/117th-congress/house-bill/5376. 

 
  



 
 

33 

Figures 
 

 
Figure 1. Schematic illustrating DYNAFFOREST model processes including the model 
described fully in Hansen et al. 2022 (light green) and the new fuels treatment module 
developed in this study (right in dark green). 
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Figure 2. Experimental design showing our standard treatment scenario in the center (black), 
and four pairs (eight total) of modified treatment scenarios. More spatially restrictive scenarios 
due to political or technical constraints (left versus right columns) shown in the bottom rows 
and scenarios with larger eligible treatment areas are in the top rows. All scenarios share our 
standard (base) treatment’s parameters except where noted. 
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Figure 3. Increased annual fuels treatment extent decreases pyrogenic stand-replacement rates, 
wildfire severity, forest conversion to grassland, and live carbon loss rates, and results in an 
earlier time of emergence (ToE) for treatment effects. All values are plotted relative to the 
annual ensemble median value of the no-treatment control scenario. (a) Time series of relative 
areal differences in pyrogenic stand-replacement events (km2) and (b) percent difference in 50-
year ensemble mean values for pyrogenic stand-replacement events relative to the control 
scenario in the second half-century. Negative values correspond to a reduction in stand 
mortality events. (c) Time series of relative differences in annual mean fire severity for cells 
affected by fire and (d) percent difference in 50-year ensemble mean values for fire severity 
relative to the control scenario in the second half-century. Negative values correspond to a 
reduction in fire severity. (e) Time series of relative differences in overall forest coverage and 
(f) percent difference in 50-year ensemble mean values for overall forest coverage relative to 
the control scenario in the second half-century. Positive values correspond to an increase in 
forest coverage. (g) Time series of relative difference in live carbon (metric tons C) lost to 
wildfire and (h) percent difference in 50-year ensemble mean values for live carbon loss 
relative to the control scenario in the second half-century. Negative values correspond to a 
decrease in live C loss. For time series plots, the solid line is the ensemble median (50th 
percentile) relative to the control ensemble median, and ribboning indicates the IQR (25th-75th 
percentile range). For the box whiskers plots, the horizontal black line at center denotes the 
median of the ensemble distribution; the boxes denote the IQR; whiskers denote the range 
between the IQR and the end-members of the distribution, or 1.5 times the IQR if outliers are 
present; outliers are denoted by black dots above or below the whiskers; compact letter display 
indicates significant differences in ensemble means derived from a pairwise ANOVA test (see 
methods section 2.4). 
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Figure 4. Increased stand-level treatment intensiveness (percent reduction of dead biomass 
fuels during treatment) decreases wildfire severity, forest conversion to grassland, and live 
carbon loss rates, and results in an earlier time of emergence (ToE) for treatment effects. All 
values are plotted relative to the annual ensemble median value of the no-treatment control 
scenario. (a) Time series of relative areal differences in pyrogenic stand-replacement events 
(km2) and (b) percent difference in ensemble mean values for pyrogenic stand-replacement 
events relative to the control scenario over years 75-100. Negative values correspond to a 
reduction in stand mortality events. (c) Time series of relative differences in annual mean fire 
severity for cells affected by fire and (d) percent difference in ensemble mean values for fire 
severity relative to the control scenario over years 75-100. Negative values correspond to a 
reduction in fire severity. (e) Time series of relative differences in overall forest coverage and 
(f) percent difference in ensemble mean values for overall forest coverage relative to the 
control scenario over years 75-100. Positive values correspond to an increase in forest 
coverage. (g) Time series of relative difference in live carbon (MT C) lost to wildfire and (h) 
percent difference in ensemble mean values for live carbon loss relative to the control scenario 
over years 75-100. Negative values correspond to a decrease in live C loss. For time series 
plots, the solid line is the ensemble median (50th percentile) relative to the control ensemble 
median, and ribboning indicates the IQR (25th-75th percentile range). For the box whiskers 
plots, the horizontal black line at center denotes the median of the ensemble distribution; the 
boxes denote the IQR; whiskers denote the range between the IQR and the end-members of the 
distribution, or 1.5 times the IQR if outliers are present; outliers are denoted by black dots 
above or below the whiskers; compact letter display indicates significant differences in 
ensemble means derived from a pairwise ANOVA test (see methods section 2.4). 
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Figure 5. Multiple scenarios representing combinations of political and technical factors 
limiting spatial treatment allocation (Fig. S1) show relative success in severity reduction for 
scenarios utilizing precise knowledge of annual fuels distributions to prioritize treatment 
location. All values are plotted relative to the annual ensemble median value of the no-
treatment control scenario. (a) Time series of relative areal differences in pyrogenic stand-
replacement events (km2) and (b) percent difference in ensemble mean values for pyrogenic 
stand-replacement events relative to the control scenario over years 75-100. Negative values 
correspond to a reduction in stand mortality events. (c) Time series of relative differences in 
annual mean fire severity for cells affected by fire and (d) percent difference in ensemble mean 
values for fire severity relative to the control scenario over years 75-100. Negative values 
correspond to a reduction in fire severity. (e) Time series of relative differences in overall 
forest coverage and (f) percent difference in ensemble mean values for overall forest coverage 
relative to the control scenario over years 75-100. Positive values correspond to an increase in 
forest coverage. (g) Time series of relative difference in live carbon (MT C) lost to wildfire 
and (h) percent difference in ensemble mean values for live carbon loss relative to the control 
scenario over years 75-100. Negative values correspond to a decrease in live C loss. For time 
series plots, the solid line is the ensemble median (50th percentile) relative to the control 
ensemble median, and ribboning indicates the IQR (25th-75th percentile range). For the box 
whiskers plots, the horizontal black line at center denotes the median of the ensemble 
distribution; the boxes denote the IQR; whiskers denote the range between the IQR and the 
end-members of the distribution, or 1.5 times the IQR if outliers are present; outliers are 
denoted by black dots above or below the whiskers; compact letter display indicates significant 
differences in ensemble means derived from a pairwise ANOVA test (see methods section 
2.4). 
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Figure 6. High retreatment frequency of select stands occur in both very spatially restrictive 
scenarios shown in (a) which shows treatment distributions for model experiment “Synergy 
Low”, and more spatially unrestricted scenarios that prioritize treatment of the most fuel-
heavy stands shown in (b) which shows treatment distributions for model experiment 
“Synergy High”). Evenly distributed, lower-intensity treatments are emergent in treatment 
scenarios with intermediate spatial constraints and fuel-mapping information shown in (c) 
which shows treatment distributions for model experiment “Treatment Base”. Color legend 
shows the mean ensemble retreatment counts over a 100-year simulation. Untreated areas 
within the model domain are shown in cyan. Panel (d) indicates the map domain within the 
larger continental United States. 
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Supplemental Figures 
 

 

Figure S1. Parameterization of treatment factors for each model experiment.  
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Figure S2 Topographical, technical, and political factors influencing treatment distribution, 
clockwise from top left: a) Distance from roads by grid-cell, b) slope angle by grid-cell, c) 
distance from homes by grid-cell, and d) land management agency or stakeholder jurisdiction 
by grid-cell. 
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Figure S3 Biomass loading at year 0 after a 250 year spin up shows how pretreatment biomass 
distributions vary as a result of climate and forest type. (a) Live biomass, (b) Dead biomass, 
(c) Total biomass, (d) plant functional type (PFT). 
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Figure S4 Retreatment counts for each simulated scenario (untreated areas displayed in 
turquoise): (a) Treatment Base, (b) Access High, (c) Agency High, (d) Knowledge High, (e) 
Synergy High, (f) Control (no treatment), (g) Access Low, (h) Agency Low, (i) Knowledge 
Low, (j) Synergy Low 
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Figure S5 Mean annual dead biomass removed (plotted in metric tons) during fuels treatments 
for each scenario was closely correlated with treatment success. Shaded regions indicate 
standard deviation. 

 




