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Abstract

COMPUTATIONAL STRATEGIES FOR OPTIMIZING WOUND HEALING:

FROM NEURITE ANALYSIS TO DEEP REINFORCEMENT LEARNING

by

Sam Teymoori

Abstract The primary objective of this thesis is to expedite the intricate process

of wound healing through a multifaceted computational approach. Our journey

commences by delving into the relationship between neurites and wound recovery, a

relatively unexplored yet pivotal facet of this biological phenomenon.

In the initial phase of our research, we introduce an innovative computational

methodology designed to establish correlations between neuronal activity and the

progression of wound healing. Employing advanced data analytic techniques, we

unravel the pivotal role neurites play in the overall healing process. This newfound

understanding significantly enriches our comprehension of wound healing mechanisms.

The second phase of our study harnesses a state-of-the-art deep learning

algorithm. This algorithm is engineered to identify and quantify neurites within

microscopic images autonomously. This high-throughput approach equips us with the

ability to investigate how various pharmaceutical interventions impact neurite growth

meticulously. This foundational research lays the cornerstone for the development of

optimized strategies aimed at expediting wound healing.

As we progress to the final phase of our investigation, we take a more

comprehensive approach. Here, we introduce a Deep Reinforcement Learning (DRL)

model, which is tailored to optimize wound healing based on the analysis of wound

ix



images. While the DRL model does not directly incorporate neurite data, the

insights gleaned from our earlier studies significantly enhance the model’s effectiveness.

Trained to recognize various stages of wound development through image analysis,

the DRL model adapts in real time, offering a flexible framework for making critical

medical decisions.

This thesis, commencing with a focused exploration of neurites and culmi-

nating in applying DRL to wound images, signifies a substantial breakthrough in

computational medicine. The fusion of deep learning and reinforcement learning

techniques presents a potent arsenal for comprehending and enhancing the intricate

biological processes underlying wound healing. Ultimately, this research lays the

groundwork for more efficient and personalized therapeutic approaches in wound care,

promising significant advancements in patient outcomes and healthcare practices.
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Chapter 1

Introduction

1.1 Background and Motivation

Wound healing is a complex and vital biological process in which the

body strives to restore tissue integrity and function following injury. While this

process is essential for maintaining health, it often presents challenges due to its

multifaceted nature. The traditional approaches to wound care have limitations in

terms of effectiveness and personalization, highlighting the need for innovative and

data-driven solutions [1].

Recent studies suggest that neurites, projections from nerve cells, may play

a role in wound healing. While neurites are well-documented in the context of the

nervous system, their function in tissue repair is not extensively researched. This

lack of understanding allows computational studies to investigate the relationship

between neuronal activity and wound-healing mechanisms [2].

This research is motivated by leveraging advanced computational method-

ologies to enhance our understanding of wound healing mechanisms and ultimately

optimize therapeutic interventions. Within this context, we embark on a multi-phased
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investigation to address the complexities of wound healing.

1.2 Identification of Problem

Traditional wound healing approaches are not specific enough to meet

patients’ needs [3]. Current methods often lead to prolonged healing times and

unpredictable results, leaving much room for improvement [4]. Additionally, the

potential role of neurites in wound healing is poorly understood, creating a significant

knowledge gap. In this context, an alternative control method, such as model

predictive control, can be explored. This allows for desired constraints, such as

control effort, to be placed.

1.3 Contributions and Objectives

This research is poised to make significant contributions to the field of

wound care and computational medicine:

• Enhanced Understanding: By elucidating the role of neurites in wound healing,

this research contributes to a deeper understanding of the biological mechanisms

at play during the recovery process.

• High-Throughput Analysis: The development of automated neurite identifi-

cation techniques using deep learning enables efficient analysis, fostering the

assessment of pharmaceutical interventions and their impact on neurite growth.

• Dynamic Optimization: Implementing a DRL model for real-time wound healing

optimization offers a novel and adaptable approach to wound care, ultimately

improving patient outcomes.

3



The primary objectives of this research are to unravel the complexities of wound

healing, bridge the gap between neuroscience and medical imaging, and develop

strategies for more efficient and personalized wound care. Through these objectives,

we seek to pave the way for a future where advanced computational methods are

seamlessly integrated into clinical practice, revolutionizing wound care and improving

patients’ lives worldwide.
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Chapter 2

Previous Work

2.1 The role of neurites in wound healing

Wound healing is a fundamental physiological process, essential for the

survival of an organism. It is a complex and dynamic series of events that restores the

integrity of damaged tissue following injury. This intricate process is categorized into

four distinct but overlapping phases: hemostasis, inflammation, proliferation, and

remodeling. Each phase is characterized by specific cellular behaviors and biochemical

responses, which must occur in a precise and regulated sequence to ensure successful

tissue repair.

The discovery of the Nerve Growth Factor (NGF) marked a significant

milestone in neurobiology [5]. Initially identified for its critical role in the growth,

maintenance, and survival of nerve cells, NGF has since been recognized as a pivotal

player in various biological processes, including wound healing. NGF is a member

of the neurotrophin family, a group of proteins that are key regulators of neural

development.

NGF’s influence extends beyond the nervous system. It is a potent healing

5



agent, capable of stimulating cell proliferation, differentiation, and survival. In

the context of wound healing, NGF serves as a biochemical signal that promotes

the repair and regeneration of damaged tissues. It acts on a variety of cell types

involved in the healing process, including fibroblasts, keratinocytes, and immune

cells. Through its high-affinity interaction with specific receptors, such as TrkA and

p75NTR, NGF activates signaling pathways that lead to cellular responses essential

for healing.

The role of NGF in wound healing is multifaceted. It enhances angiogenesis,

the formation of new blood vessels, which are crucial for supplying nutrients and

oxygen to the healing tissue. NGF also modulates the inflammatory response,

ensuring it is robust enough to ward off infection but controlled to prevent excessive

tissue damage. Furthermore, NGF stimulates the production of extracellular matrix

components, facilitating the formation of new tissue and ultimately, scar formation.

The review paper by Zhenxing Liu et al. [6] aims to synthesize the current

understanding of NGF’s role in wound healing. It examines the molecular and

cellular mechanisms by which NGF influences the healing process, and it discusses the

therapeutic potential of NGF in treating wounds. By exploring the interplay between

NGF and wound healing, the review sheds light on the possibility of developing new

treatments that harness the regenerative power of NGF to improve healing outcomes,

particularly in chronic wounds where healing is impaired.

As the scientific community continues to unravel the complexities of wound

healing, the significance of NGF becomes increasingly apparent. The review not only

highlights the therapeutic applications of NGF but also sets the stage for future

research that could lead to innovative strategies for managing wounds. The potential

of NGF to enhance wound healing represents a promising frontier in regenerative
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medicine and underscores the continued relevance of [5] groundbreaking discovery.

Previous investigations into wound healing have consistently underscored

the vital role of NGF [7]. NGF interacts with each phase of wound healing in specific

and critical ways. Initially, during the hemostasis stage, NGF is involved in the

formation of a fibrin clot. This clot acts as a temporary platform, enabling cells to

migrate to the wound site and initiate the repair process. As the wound enters the

inflammatory phase, NGF plays a role in modulating the body’s immune response,

attracting essential immune cells that help combat infection and clear away debris [6].

The role of NGF becomes particularly significant during the proliferative

phase of healing. Here, NGF stimulates the growth and movement of fibroblasts

and keratinocytes, which are central to tissue repair. Fibroblasts are responsible for

producing and arranging new matrix materials, while keratinocytes migrate to form a

new protective layer over the wound. Additionally, NGF is crucial for angiogenesis in

this phase, promoting the development of new blood vessels that supply the necessary

nutrients and oxygen to the regenerating tissue [8].

During the final remodeling phase, NGF continues to play a supportive role

in the maturation and differentiation of the new tissue. It assists in structuring the

new matrix and regulates the process of cell turnover, ensuring the removal of cells

that are no longer needed. This phase can be prolonged, but the presence of NGF is

essential throughout, as it ensures that the new tissue develops proper strength and

functionality [7].

At the molecular level, NGF’s function is to bind to a specific receptor

that triggers a series of cellular responses. This binding initiates a chain reaction

that activates various pathways responsible for cell survival, growth, adaptation, and

movement all vital for effective wound healing [6].
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NGF also influences another pathway that is implicated in controlling

inflammation and immune responses. The precise coordination of NGF’s activity

ensures that cellular responses are timely and appropriate throughout the healing

process [6].

To summarize, NGF’s role in wound healing is comprehensive, impacting

a broad spectrum of cellular functions and pathways. Its capacity to regulate cell

behavior and communication highlights its potential as a therapeutic agent for

enhancing wound repair and regeneration. The continued research into the actions of

NGF is revealing new ways in which this protein can be leveraged to improve clinical

outcomes in wound management.

2.2 The development of neurite identification techniques

using deep learning

The development of neurite identification techniques using deep learning

has seen significant advancements, particularly with the introduction of the Neurite

Annotation Prediction Algorithm (NAPA) [9]. Neurites, the delicate extensions

from neuronal cell bodies, are challenging to trace manually due to their thin, dim,

and complex nature. Traditional methods of neurite annotation are labor-intensive

and subject to limitations in accuracy and scalability, especially when dealing with

high-throughput imaging data [10].

Traditional methods of neurite annotation are labor-intensive and limited

in their capacity to generalize across various imaging conditions, especially in high-

throughput settings like time-lapse or longitudinal imaging. This limitation has

necessitated the development of more robust and efficient techniques for neurite
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quantification.

NAPA, a deep learning-based neurite annotation prediction algorithm, ad-

dresses these challenges by learning broader features crucial for neurite recognition. It

utilizes a small number of annotated examples from a dataset to generate annotations

for the entire dataset. This approach significantly reduces the time and labor involved

in neurite tracing, enabling broad neurite prediction across large and diverse datasets.

It also allows for the longitudinal tracking of neurite connections, which is essential

for understanding the progression of neurological conditions.

The algorithm was developed using an auto-encoder model, a framework

previously employed in applications like image denoising [11]. In this context, the

neurite signal is designated as the target feature to learn, while other sources of

intensity in the images (such as debris, soma, and imaging artifacts) are considered

noise to be removed. The model was trained on datasets with varying degrees of

neurite annotation, using binary neurite trace masks paired with original raw images

as inputs. This training enabled the model to predict neurite masks with high

accuracy, approaching and sometimes exceeding the quality of manual curation.

While deep learning techniques like NAPA represent a significant advance-

ment in neurite identification and analysis, their direct application to wound healing

research is limited. The differences in biological processes, imaging data, and specific

requirements for algorithm training and interpretation in the context of wound

healing present significant challenges that currently hinder the applicability of these

techniques in this field.
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2.3 Implementing a ordinary differential equation model

for real-time wound healing optimization

The exploration of personalized precision treatments in wound healing,

particularly through the lens of artificial intelligence (AI), deep learning, and rein-

forcement learning, represents a significant shift in modern medical practices [12].

This shift is rooted in the understanding that individual patients respond differently

to medications due to molecular variations. These variations can occur not only

among different individuals but also within the same individual over time. The goal

of personalized treatment is to customize drug dosages, types, and the timing of their

delivery based on each patient’s unique response, utilizing experimental data and

statistical analysis for guidance [13].

Historically, wound healing has been understood as a multifaceted process

involving several stages: hemostasis, inflammation, proliferation, and maturation [14].

This process is characterized by the nonlinear interaction of different cells (like

platelets, neutrophils, macrophages, myofibroblasts, fibroblasts, and keratinocytes)

and biomolecules (including blood coagulation factors and various cytokines). The

complexity of this process has traditionally posed a challenge in determining the op-

timal timing and dosage for drug administration, especially considering the nonlinear

dynamics of drug absorption and the specific biological targets of each drug [15].

In response to these challenges, researchers have been developing innovative

methods to improve the precision and effectiveness of wound healing treatments [16,17].

One such approach is the use of online self-adaptive controller methods that employ

deep learning and reinforcement learning, tailored to the patient’s real-time response

to treatments. However, these methods have not yet been extensively explored by
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researchers.

The development of these advanced treatment methods has been influenced

by the need to account for individual variability in pharmacokinetics and pharma-

codynamics. Factors such as gender, age, weight, and overall health conditions can

significantly impact how a patient responds to a particular treatment [18]. Reinforce-

ment learning-based approaches are particularly advantageous in this context, as

they allow for the development of adaptable control algorithms that can optimize

drug dosing in real-time, even in the presence of patient variability [19].

These learning-based control strategies have found applications in various

medical settings, enhancing the precision of drug dosing and optimizing treatment

regimens. However, a significant limitation of these approaches is their lack of con-

sideration for safety exploration in reinforcement learning. The inherent complexity

of deep neural networks and the non-convex nature of objective functions make it

challenging to achieve a globally optimal control policy [20]. The challenge in this

area of research lies in finding the optimal mapping between nonlinear systems and

linear models.

In summary, the field of wound healing stands to gain significantly from

the integration of AI, deep learning, and reinforcement learning techniques. These

methods are propelled by the necessity for personalized precision treatments that cater

to the unique variability of individual patients. Despite facing challenges in ensuring

the safety and optimality of treatment protocols, the research and development in

this domain have the potential to make a substantial impact on the advancement of

personalized medicine.
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Chapter 3

Quantifying innervation facilitated by

deep learning in wound healing

This chapter is from [21] as it appears in Scientific Reports. The dissertation

author was a co author of this paper.

Abstract

The peripheral nerves (PNs) innervate the dermis and epidermis, and are

suggested to play an important role in wound healing. Several methods to quantify

skin innervation during wound healing have been reported. Those usually require

multiple observers, are complex and labor-intensive, and the noise/background

associated with the immunohistochemistry (IHC) images could cause quantification

errors/user bias. In this study, we employed the state-of-the-art deep neural network,

Denoising Convolutional Neural Network (DnCNN), to perform pre-processing and

effectively reduce the noise in the IHC images. Additionally, we utilized an automated

image analysis tool, assisted by Matlab, to accurately determine the extent of skin

innervation during various stages of wound healing. The 8 mm wound is generated

using a circular biopsy punch in the wild-type mouse. Skin samples were collected
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on days 3, 7, 10 and 15, and sections from paraffin-embedded tissues were stained

against pan-neuronal marker- protein-gene-product 9.5 (PGP 9.5) antibody. On day

3 and day 7, negligible nerve fibers were present throughout the wound with few only

on the lateral boundaries of the wound. On day 10, a slight increase in nerve fiber

density appeared, which significantly increased on day 15. Importantly, we found

a positive correlation (R = 0.96) between nerve fiber density and re-epithelization,

suggesting an association between re-innervation and re-epithelization. These results

established a quantitative time course of re-innervation in wound healing, and the

automated image analysis method offers a novel and useful tool to facilitate the

quantification of innervation in the skin and other tissues.

3.1 Introduction

Wound regeneration is a complex process that is regulated by orchestrated

mechanisms, influenced by chemical, cellular, and molecular factors [22, 23]. The

healing process begins at the time of injury and eventual maturation could continue

for months or even years until the wound completely heals and is structurally and

functionally similar to uninjured skin [24]. The four overlapping phases of wound

healing are homeostatic, inflammatory, proliferative, and remodeling. The homeo-

static phase lasts a few hours, producing a fibrin plug followed by an inflammatory

phase, which can last between hours and days, during which aggregated platelets and

cells release pro-inflammatory mediators [25]. The early inflammatory phase is suc-

ceeded by the proliferative phase lasting a few weeks during which macrophages and

fibroblast cells invade the wound bed forming granulation tissue and active migration

of the wound epithelial cells occurs [26]. The last phase of wound healing is the
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remodeling phase, which is characterized by proliferative cell apoptosis, adjustment

of extracellular matrix (ECM), and replacement of type 3 with type 1 collagen in

the dermis. It can last for weeks to years [24].

During healing phases, a strong interaction between the nervous system and

skin involving a variety of neuromodulators, cytokines, hormones, and other effector

molecules has been reported [27, 28]. The nervous system can be influenced both

at the local and central levels by the stimuli at the skin and vice versa. The brain

can alter skin function during the pathophysiological state and skin can modulate

the nervous system by releasing a variety of neuropeptides [27,29]. The cutaneous

nerves therefore positively affect all the stages of wound healing [30]. Numerous

neuropeptides e.g. substance P (SP) released from cutaneous nerves have been

reported to activate vital mechanisms during the inflammatory phase [31]. Similarly,

neuropeptides released by cutaneous nerves influence the proliferation phase. They

can promote the proliferation of fibroblasts, keratinocytes, and endothelial cells by

stimulating DNA synthesis, can stimulate angiogenesis, support granulation tissue

remodeling, and many more [26, 32–35]. The effect of innervation on the remodeling

stage has also been studied in the past. It has been demonstrated that a significantly

higher number of nerve fibers correlate with normotrophic scars in comparison to

hypertrophic scars during the remodeling phase [36,37]. Hence, the literature strongly

suggests a regulatory role for skin nerves in wound healing and any impairment in

skin innervation is one of the leading causes of occurrence of chronic wounds e.g.,

diabetic neuropathy can lead to foot ulcers and plegias to sacral and trochanteric

pressure sores [38,39].

Previously, numerous studies have been conducted on quantifying skin

innervation [40–48]. However, most such studies are not fully automated, have
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manual counts of IHC-stained structures that are prone to user errors and variation,

require multiple observers, and are complex and labor-intensive. One such example

is dendrite analysis involving manually tracing neurons using the simple neurite

tracer plug-in of ImageJ software [22,42]. While this semi-manual approach has been

proven effective, it involves identifying the beginning and end points of dendrites and

digitally drawing individual branch segments throughout the entire neuron, making

it a labor-intensive and time-consuming process. Another example is semi-automated

Sholl analysis for quantifying changes in the growth and differentiation of neurons

and glia [43]. The method offers several advantages over conventional manual

quantification, including faster analysis time and increased statistical sensitivity.

However, the method has some limitations, such as reliance on manual input from the

user, which introduces a risk of user error and variation impacting the accuracy and

reliability of the results. Additionally, the semi-automated Sholl method is complex

and time-consuming to set up initially, which could act as a barrier for researchers

who do not have the technical expertise or resources to implement the method

effectively. In an effort to quickly, objectively, and reproducibly quantify cutaneous

innervation, we developed a fully automated Matlab-assisted image analysis tool

aided by the deep neural network, DnCNN, for pre-processing (de-noising) of the

IHC-images. This network can detect and remove high-frequency image artifacts

and increase image resolution. Image noise is minimized, resulting in higher-quality

images that can be more accurately analyzed. The DnCNN is particularly developed

for image processing [49], and has shown effectiveness in a wide range of applications,

including medical imaging [50].

Utilizing an automated Matlab-assisted tool aided with DnCNN we quanti-

fied skin innervation during wound healing stages at days 3, 7, 10 and 15 (Figure
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3.1). The data show a positive correlation between the increase in nerve fiber density

and re-epithelization.
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Figure 3.1: The experimental design and schematic depicting the methodology used

to quantify skin innervation. (A) A biopsy punch of 8 mm in diameter is used to

create the wound, and skin samples are collected and fixed on days 3, 7, 10 and

15. After fixation, the wounded tissue is paraffin-embedded and sectioned (5µm

thickness) for immunofluorescence analysis against PGP9.5 protein, a neuron-specific

marker. (B–E) Illustration portraying different stages of wound healing. (B) The

homeostatic phase lasts a few hours, during which nerve fibers in the wound bed are

damaged, followed by the (C) inflammatory phase, which can last between hours

and days. (D) The proliferative phase lasts a few weeks, during which re-innervation

might be initiated, and (E) during the remodeling phase wound matures and can

last between weeks to years. In our study, we chose to quantify skin innervation

at days 3, 7, 10 and 15 as an attempt to cover all phases of wound healing. (F)

The immunohistochemistry (IHC) samples are analyzed using automated Matlab-

assisted tools aided by DnCNN-based image denoising. The images were created

with BioRender.com.

18



3.2 Materials and Methods

3.2.1 Animals

All methods were approved and performed in accordance with the relevant

guidelines and regulations of the Institutional Animal Care and Use Committee at

UC Davis, were reviewed and approved by the institution’s IACUC and performed

at the UC Davis Teaching and Research Animal Care Services (TRACS) facility.

Male C57BL/6 (older than 28 weeks, 30–35 g) mice were obtained from Jackson

Laboratory. The animals were acclimated for one week after transfer from the vendor

to the UC Davis vivarium. All male mice used in this experiment were kept in the

containment unit of the animal facility, housed in cages with free access to food

and water. Mice would be excluded from the experiment when they were at the

anagen phase of hair cycle due to variation of healing rate, or when they lost > 20%

weight during the experimental period. The animals were randomly assigned to the

treatment groups based on their weight prior to the surgery. All experiments were

performed in a biosafety cabinet and were done in triplicate (n=3). The study is

reported in accordance with ARRIVE guidelines.

3.2.2 Wounding

The animals were sedated with 3–5% isoflurane two days prior to wounding

surgery and the dorsal surface was shaved. To remove the remaining hair depilatory

cream was applied and removed within 5–10 s of application. For surgery, all mice

were anesthetized with isoflurane. Buprenorphine (0.05 mg/kg) was administered

subcutaneously prior to the wounding procedure. Iodine and ethanol wipes were used

to sterilely prep experimental mice. An 8 mm sterile skin biopsy punch instrument was
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used to create full-thickness wounds on the dorsal skin as described previously [28,51].

In this study, we used a splinted wound model to avoid wound contraction [52,53].

At the end of the experiment, mice were euthanized by cervical dislocation under 5%

isoflurane, and skin samples were collected on days 3, 7, 10, and 15 post-wounding.

3.2.3 Immunohistochemical analysis of wound tissues

After fixation, the wound tissue was paraffin-embedded and sectioned (5 µm

thickness) for immunohistochemical analysis as described previously [54,55]. Primary

antibodies against PGP9.5 (Invitrogen, Catalog # PA5-29012), and β-III tubulin

(Invitrogen, Catalog # MA5-16308) were used. Donkey anti-Rabbit IgG (H+L)

highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 594 (Invitrogen, Catalog

# A21207), and donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary

Antibody, Alexa Fluor™ 488 (Invitrogen, Catalog # A21202), respectively were

used. VECTASHIELD® Antifade Mounting Media with DAPI (Vector Laboratories,

Catalog # H-1200-10) was used to stain nuclei. Slides were imaged with an Olympus

FV3000 Confocal Laser Scanning Microscope (Shinjuku City, Tokyo, Japan) as

described previously [56–58] and analyzed using Matlab 2021 Image processing.

3.2.4 Quantification

In order to accurately quantify wound healing, several steps are taken to

ensure precision and accuracy in counting PGP9.5 positively stained pixels. One

of the most important steps is preprocessing the images to remove any unwanted

noise or artifacts that could potentially interfere with the analysis. Many factors can

contribute to image noise, including non-specific staining, autofluorescence, equipment

malfunctions, motion blur, and environmental factors. To eliminate noise from the
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images, a deep neural network known as the DnCNN network is employed. It is a

convolutional neural network (CNN) specifically designed for image denoising [49]. It

works by learning to map between noisy images and clean images and then use this

mapping to remove noise from new images. The DnCNN network is trained on a

large dataset of noisy and clean images and has shown effectiveness in a wide range

of applications, including medical imaging [50].

The DnCNN employed in this study is a trained model derived from the

deep network training in MATLAB. Utilizing the Deep Learning Toolbox’s pretrained

DnCNN model, we integrated it within the MATLAB environment and invoked

it through the MATLAB Deep Learning Toolbox. Our process involved denoising

images by employing the DnCNN model from the Deep Learning Toolbox, ultimately

producing denoised outputs. DnCNN effectively addresses this by enhancing capacity

and flexibility for exploiting image attributes. Moreover, it can accelerate training

and enhance denoising outcomes. Additionally, DnCNN, grounded in trained data,

can discern pixels to filter and retain, thereby eliminating the need for manual

adjustments across diverse images.

Once the images have been denoised, the next step is to count the PGP9.5

positive pixels in the images. Positive pixels representing innervation were identified

by their immunoreactivity to PGP9.5 antibody (red color). However, identifying

those pixels can be challenging because of the variation in the intensity of fluorescence

due to different wound depths, healing stages, expression levels and sizes of expression

areas. Additionally, the background intensity can pollute the pixel value counted

as nerve fibers and nerve terminals. To overcome these challenges, we calculate

the background value. This is achieved by identifying the low spectrum values of

pixels and removing outliers. The background value serves as a reference point for
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subsequent analyses. By subtracting the background value from all pixels in the

image, we effectively normalize the pixel values, making them more comparable across

different images. This normalization step is essential for accurate comparisons and

ensures that variations in background intensities do not influence our results. Next,

we employ a robust method for identifying and omitting outliers from the image. We

utilize a percentile-based approach where we focus on the 5 percent of data points

that have the longest distance from the median. This 5 percent threshold has been

carefully adjusted based on the specific characteristics of the image under analysis. It

allows us to address the unique properties and variations in pixel intensity that may

exist in different types of images. If a pixel value falls within this 5 percent range, it

is considered an outlier and is excluded from further analysis. With the fluorescence

threshold in place, we proceed to count the number of PGP9.5-positive pixels in the

image. Each pixel’s (red fluorescence value) is compared to the threshold, and any

pixel with a value above the threshold is considered a positive neurite containing

pixel count. This process is repeated for all the pixels in the image, determined

together as the total number of neurites containing pixels. Next, to identify nerve

fiber density in a target region of interest we divided the total number of positive

pixels by the corresponding area. In addition to measuring nerve fiber density in the

whole wound, we also analyzed the density of nerve fibers (positive pixels) separately

for both the epidermis and dermis to get a spatial understanding.

3.2.5 Reepithelization

After fixation, the wound tissue was paraffin-embedded, sectioned to 5

µm and H&E stained for determination of wound re-epithelialization as described

previously [51, 55]. Briefly, the BioRevo BZ-9000 inverted microscope (Keyence,
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Osaka, Japan) was used to image all the histological sections. Measurements were

done by an investigator blinded to experiment with the BZ-II viewer and analyzer

(Keyence, Japan). The absence of underlying adipose tissue and hair follicles defines

wound edges and wound healing is determined by the re-epithelialization of the

epidermis layer [53,59]. The outgrowth of the newly formed epidermis was tracked

manually from the wound edges and the percentage of the combined length of the

re-epithelialization to the total length of the wounds was calculated.

3.2.6 Statistics

Statistical analysis was performed using an unpaired, two-tailed student

t-test as described previously [60,61]. Data are expressed as mean ±SD. A P-value

less than 0.05 was considered statistically significant.

3.3 Results

3.3.1 PGP9.5 as a specific neuronal marker

Anti-PGP9.5 antibody labels UCHL1/PGP 9.5 protein in the tissue sections.

The protein is highly conserved and localized in neurons and is considered as a pan-

neuronal marker that stains both sensory as well as autonomic nerves [62, 63]. To

deduct background signal, we carried out experiments with negative control for every

sample, omitting the primary antibody (Figure 3.2). The background signals from

the negative control are determined and used for generating a cutoff window for

quantification of the true PGP9.5+ signals during MATLAB-based quantification.

PGP9.5 staining is used widely and considered the gold standard for labeling

skin innervation [47, 48, 62, 64], so throughout the study, we quantified PGP9.5
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immunofluorescence staining for the detection of nerve fibers.

Figure 3.2: Stitched Immunohistochemistry images of 5 µm vertical sections of punch

biopsies as a negative control for PGP9.5. PGP9.5 is a pan-neuronal marker and

DAPI stains the nuclei (In blue). (A) Uninjured skin. Skin samples were collected

on (B) day 3 (C) day 7 (D) day 10 (E) day 15. The red color is autofluorescence

from a dead skin flap.
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3.3.2 Automated image processing and quantification of skin inner-

vation

The quantification method used in this study employed an automated

Matlab-assisted image analysis tool with a deep neural network to pre-process images

and determine the range of skin innervation during different stages of wound healing.

The use of the deep neural network ensured that noisy pixels did not affect the

calculation of total neuronal coverage (Figure 3.3). The depicted layers present how

DnCNN operates, transforming a noisy wound image into a clearer and diagnostically

valuable representation. Each layer embodies a distinct phase of noise reduction and

feature enhancement, showcasing the model’s capacity to discern between essential

wound structures and undesirable noise. The first layer of the DnCNN model is

responsible for capturing the low-level features of the image. During this stage, the

initial noise present in the wound image is identified and basic filters are applied to

smooth out the noise while preserving the main structures of the wound. As the

image progresses through the second layer, which is part of the intermediate layers of

the DnCNN model, more complex features and patterns are recognized, contributing

to enhanced noise reduction and structure preservation. Each subsequent layer

refines the denoising process, gradually enhancing the clarity of the image. The

last layer of the DnCNN model is designed to further refine the denoised image

and restore it closer to its original state. By this stage, most of the noise has been

removed, and wound structures are significantly clearer. The final layer ensures

that the denoised image maintains its clinical relevance by minimizing any artifacts

introduced during the denoising process, thereby preserving the fidelity of the wound’s

clinical representation [49,65,66].
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Figure 3.3: DnCNN network architecture for image denoising. (A) Noisy image as

DnCNN input. (B) The DnCNN network architecture consists of multiple convolu-

tional layers. Each convolutional layer includes batch normalization (BN), convolution

(Conv), and rectified linear unit (ReLU) layers. The first layer takes the noisy image

as an input, and the subsequent layers process the image to remove noise. (C) Output

image after de-noising.

Throughout the layers, the DnCNN model employs a combination of convo-

lutional filters and nonlinear activation functions to transform the image and remove

noise while preserving important features. The progressive nature of the layers

enables the model to iteratively refine the denoising process, resulting in a cleaner

and clearer wound image that can aid in accurate diagnosis and assessment [58,67,68].

Keep in mind that the specific appearance and effectiveness of the images after

passing through each layer depend on the model architecture, training data, and

noise characteristics. It is recommended to visually analyze the images to understand

the improvements brought about by each layer.

In addition to visual analysis, assessing the Signal-to-Noise Ratio (SNR)

improvement at each stage is vital for a quantitative evaluation of the model’s

performance. By measuring the SNR before and after the image passes through the

DnCNN layers, one can quantitatively determine the extent of noise reduction and

clarity enhancement. This metric not only validates the perceptual observations

but also provides a standardized way to compare the effectiveness of different model
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configurations or training approaches in noise reduction.

Once the image has been processed by the DnCnn, our next step is to

accurately identify the neurites using a statistical approach. If a threshold is too high,

some neurites might not be detected, resulting in an underestimation of the neuronal

coverage. Conversely, if the threshold is too low, non-neuronal elements in the image

may be mistakenly identified as neurites, leading to an overestimation of neuronal

coverage. To address this issue, we employed a statistical approach to determine the

appropriate threshold value. First, we saved the R values of every pixel in the image

to a list. We then calculated several statistical measures, including the minimum,

maximum, mean, median, and interquartile range. Outliers were identified based

on this statistical analysis and excluded from further consideration. To determine

whether a pixel contained a neurite or not, we used the distance of the R-value from

the third interquartile (Q3). Pixels with a closer distance to the maximum value in

comparison to Q3 were selected as neurites. This method ensured that the threshold

value was based on a statistically robust approach, which increased the accuracy of

the quantification method.

Overall, the automated approach demonstrated in this paper required

minimal manual intervention, making it suitable for large-scale studies and a reliable

method for quantifying skin innervation during wound healing. Additionally, to

demonstrate the significance of DnCNN and its impact on noise reduction, we

compared two denoising techniques: the conventional threshold denoiser and the

advanced DnCNN model (Figure 3.4). Using only conventional threshold denoiser,

the nerve fiber density for uninjured skin (unwounded) at outer edge 1 of the wound

is found to be 0.04 ± 0.003 pixels/mm2 with a density of 0.08±0.03 pixels/mm2

found in the epidermis and 0.03±0.007 pixels/mm2 in the dermis. Comparatively
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incorporating the DnCNN model the nerve fiber density for the same set of images

is found to be 0.22 ± 0.03 pixels/mm2 with a density of 0.4±0.1pixels/mm2 in the

epidermis and 0.08±0.02 pixels/mm2 in the dermis. The conventional threshold

denoiser methods employ preset threshold values to detect and filter pixel noise and

these approaches struggle to differentiate true noise pixels from low-value pixels,

leading to potential misclassification. Further, setting threshold values for each image

proves cumbersome. To minimize noise, we adjusted the threshold iteratively until

background noise became imperceptible. As a result, the threshold denoiser tends

to inaccurately remove neurite positive pixels due to its indiscriminate approach,

resulting in underestimating the neurite pixel density. Conversely, the DnCNN

required no such adjustment as the DnCNN, grounded in trained data, learns to

discern pixels to filter and retain them (Figure 3.4). This highlights the advantage

of the DnCNN in accurately maintaining crucial diagnostic information in wound

images.
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Figure 3.4: Comparison between conventional threshold denoiser and the advanced

DnCNN model. (A) PGP9.5 staining (in red) at outer edge 1 of uninjured skin and

subsequent denoising of the stained image using the DnCNN model compared to

threshold denoiser, (B) Quantification of innervation in the epidermis, dermis, and

whole wound of uninjured skin outer edge 1 using conventional threshold denoiser

(Con Th De) and advanced DnCNN model. All quantification data are represented

as mean ± SD, n = 3 wounds from three mice in each group, *P < 0.05, ns =

non-significant.

Furthermore, we tested our automated method to analyze neurite innerva-

tion for 30 µm-thick cross-sections. The nerve fiber density at the dermis, epidermis

and whole wound together showed non-significant change on comparing 5 µm-thick

cross-sections to 30 µm-thick cross-section (Figure 3.5). Therefore, results clearly

demonstrate that the algorithm used in this study is efficient enough to detect neurites

in a 30 µm-thick cross-section of uninjured skin as well, where whole nerve fibers are

easier to visualize, but the background can blur the quantification.
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Figure 3.5: Comparison between 5µm thick and 30µm thick section. (A) PGP9.5

staining at outer edge 1 of uninjured skin for 30µm thick section. (B) Quantification

of innervation for 5µm and 30µm thick section in epidermis, dermis and whole wound

at outer edge 1 of uninjured skin. All quantification data are represented as mean ±

SD, n = 3 wounds from three mice in each group, ns = non-significant.

3.3.3 Wounding reduced nerve fiber density

Immunoreactivity was detected in intraepidermal and dermal nerve fibers

and cells. The positively stained nerve fibers are quantified for the whole wound bed

(Figure 3.6; Table 3.1) and separately for the lateral wound boundaries and the wound

center (Figure 3.8; Table 3.1). The nerve fiber density individually for the epidermis

and dermis is also quantified, respectively (Figure 3.7; Table 3.1). The nerve fiber

density for uninjured skin (unwounded) is found to be 0.29 ± 0.07 pixels/mm2, for

which a density of 0.64±0.21 pixels/mm2 is found in the epidermis and 0.27±0.07

pixels/mm2 in the dermis. Compared to uninjured skin, as expected after creating a

wound, there is a considerable reduction in nerve fiber density throughout the wound

bed (WB) (Figure 3.6; Table 3.1).
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Figure 3.6: Gradual increase in Re-innervation in the wound bed. PGP9.5 is a

pan-neuronal marker and DAPI stains nuclei. (A) Uninjured skin. Skin samples were

collected on (B) day 3, (C) day 7, (D) day 10, and (E) day 15 of wound healing. (F)

Quantification of skin innervation for the whole wound bed represented as mean±SD,

n=3 wounds from three mice in each group, *P< 0.05, ns is non-significant. The

wound bed is recognized by the absence of hair follicles. Scale bar=1000 µm.
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Figure 3.7: Intraepidermal and dermis innervation. Quantification of innervation

in epidermis and dermis for (A) Wound bed, (B) Wound outer edge 1, (C) Wound

center, (D) Wound outer edge 2. All quantification data are represented as mean ±

SD, n = 3 wounds from three mice in each group, *P < .05, **P < .001, ***P < .0001,

ns is non-significant.
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Figure 3.8: Gradual increase in Re-innervation at lateral wound edges and wound

center. PGP9.5 is a pan-neuronal marker (in red) and DAPI stains nuclei of cells (in

blue). (A′–E′, G′–K ′, M ′–Q′) Split images (in grey) show PGP9.5 immunoreactivity.

(A–E and A′–E′) Immunoreactivity to PGP9.5 at wound outer edge 1 for skin

samples. (A,A′) Uninjured, (B,B′) day 3, (C,C ′) day 7, (D,D′) day 10, (E,E′) day

15. (F) Quantification of skin innervation at wound outer edge 1. (G–K and G′–K ′)

Immunoreactivity to PGP9.5 at wound center for skin samples. (G,G′) Uninjured,

(H, H ′) day 3, (I,I ′) day 7, (J,J ′) day 10, (K,K ′) day 15. (L) Quantification of skin

innervation at wound center. (M–Q and M ′–Q′) Immunoreactivity to PGP9.5 at

wound outer edge 2 for skin samples. (M,M ′) Uninjured, (N,N ′) day 3, (O,O′) day 7,

(P,P ′) day 10, (Q,Q′) day 15. (R) Quantification of skin innervation at wound outer

edge 2. All quantification data are represented as mean±SD, n=3 wounds from three

mice in each group, *P< 0.05, **P< 0.001, ns is non-significant. Scale bar=50 µm.
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3.3.4 Innervation gradually appears and reaches a level close to

intact skin—15 days after wounding

On day 3 of wound healing, nerve fiber density in the wound bed is found

to be 0.02±0.01 pixels/mm2, which is significantly less than the unwounded skin

(0.29 ± 0.07 pixels/mm2). The nerve fiber density reported (0.02±0.01 pixels/mm2)

is found only in the dermis, yet the epidermis has not regenerated in the wound

bed, so the intraepidermal nerve fiber density value is 0. On day 7, the nerve fiber

density increases slightly to 0.045±0.004 pixels/mm2. The intraepidermal nerve fiber

density is still 0. The wound sections on day 10 show some traces of intraepidermal

nerve fibers; the nerve fiber density quantified is 0.080±0.005 pixels/mm2. The nerve

fiber density in the dermis, 0.10±0.004 pixels/mm2, also steadily shows an increasing

trend. The nerve fiber density for the whole wound bed is 0.098 ± 0.004 pixels/mm2

on day 10, which is still significantly less compared to unwounded skin (0.29 ±

0.07 pixels/mm2). Interestingly, on day 15 of healing, there was a huge increase in

intraepidermal nerve fiber density, 0.44±0.04 pixels/mm2. The nerve fiber density in

the dermis also substantially increases to 0.16±0.007 pixels/mm2. On day 15, the

changes in nerve fiber density for the whole wound bed compared to unwounded skin

(0.17 ± 0.009 pixels/mm2 vs 0.29 ± 0.07 pixels/mm2) are non-significant (Figures

3.6 and 3.7) and interestingly significant when compared to day 3 of healing ( 0.17

± 0.009 pixels/mm2 vs 0.02±0.01 pixels/mm2). The data narrates that there is a

gradual increase in nerve fiber density through the time series of wound healing, and

there is a significant re-innervation and values start reaching close to normal from

day 15 of healing onwards.
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3.3.5 The wound center and wound edge show a similar trend in

re-innervation

We also quantified nerve fibers separately for wound edges and wound center

on days 3, 7, 10, and 15 of wound healing and compared it with the innervation of

unwounded skin (Figures 3.8 and 3.7; Table 3.1). For unwounded skin, the density

values obtained at outer edge 1 are: intraepidermal (IE)=0.4±0.1 pixels/mm2; dermis

(D)=0.08±0.02 pixels/mm2; whole unwounded skin=0.22 ± 0.03 pixels/mm2. It

is evident that on days 3, 7 and 10, there is a significant decrease in the IE and

D nerve fiber density compared to uninjured skin (Table 3.1). As expected, the

nerve fiber density steeply increased on day 15 of healing: IE=0.2±0.02 pixels/mm2;

D=0.05±0.003 pixels/mm2; whole wound outer edge 1=0.12 ± 0.008 pixels/mm2.

The values for IE and D show non-significant change compared to uninjured skin

except for whole wound outer edge 1 where nerve fiber density is still significantly less

compared to uninjured skin (0.12 ± 0.008 pixels/mm2 vs 0.22 ± 0.03 pixels/mm2).

Also, the change found is significant compared to 3 days for IE, D and whole wound

outer edge 1 (Figures 3.8 and 3.7; Table 3.1). Therefore, data signify that at the

outer edge 1 of the wound, a considerable level of re-innervation takes place up to

day 15 of healing. However, total nerve fiber density cannot reach the normal level

i.e. the values are significantly less than the uninjured skin. This is contrary to outer

edge 2, where significant reinnervation happens and total nerve fiber density at day

15 also shows non-significant change compared to uninjured skin at IE, D, and whole

wound outer edge 2 (Figures 3.8 and 3.7; Table 3.1). Whereas the wound center

behaves like outer edge 1 where a significant re-innervation happens by day 15, the

nerve fiber density compared to uninjured skin (0.07 ± 0.007 pixels/mm2 vs 0.13
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± 0.02 pixels/mm2) shows significantly lower values. Stating that a considerable

increase in nerve fibers at the wound outer edge 1 and wound center is still to be

expected after day 15.

3.3.6 Re-innervation of the wound correlates strongly with re-

epithelialization

Denervation has a detrimental effect on cutaneous wound healing. Severing

the nerves hinders cutaneous wound healing, and sympathetic denervation of the

skin delays re-epithelization [30]. Re-epithelization is defined by the epithelial cells

migrating and growing over the wound bed and complete epithelial covering of

the wound is a criterion to evaluate if a wound has healed properly [51, 69]. We

investigated the correlation between nerve fiber density and re-epithelization on days

3, 7, 10, and 15 of healing and found a strong correlation (R = 0.96) between the

two (Figure 3.9). This corroborates our hypothesis that the regeneration of nerve

fibers is critical for proper wound healing in time.

3.4 Discussion

The skin is densely innervated with a complex architecture and network of

cutaneous nerves, which are present in both the epidermis and the dermis. The degree

of innervation has a direct effect on all the overlapping stages of wound healing [22],

and previously, it has been reported that denervated wounds take a longer time to

heal [70]. Therefore, precise quantification of nerve fiber density during different

stages of wound healing becomes critical. PGP9.5 staining is considered as a gold

standard for the quantification of nerves in skin samples in mammals [62,64]. However,
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Figure 3.9: Positive correlation between re-innervation and re-epithelization. A

representative image of H&E staining of the skin sample collected on (A) day 0, (B)

day 3, (C) day 7, (D) day 10, and (E) day 15. The original wound edge (yellow dashed

lines) on each side is determined by the absence of subdermal adipose tissue. Re-

epithelialization (red arrows) is defined by epithelial cell growth. (F) quantification

of re-epithelization, (G) correlation between nerve fiber density and re-epithelization

at day 3, 7, 10 and 15 of wound healing. R = 0.96 show strong positive relation. WE

wound edge, WB wound bed, RE re-epithelization.

precise quantification of cutaneous nerves is challenging because of background noise

and a different pixel intensity of PGP9.5+ neurons throughout the epidermis and

dermis. Therefore, to solve the problem, we used the deep neural network DnCNN

for pre-processing (de-noising) of the IHC-images, followed by stringent statistical

methods to formulate a threshold boundary, which is broad enough to include all

the features of interest and strict enough to exclude background, so that PGP9.5+

pixels are precisely quantified in cutaneous wounds.

Applying our newly developed technique, an automated Matlab-assisted

tool aided with the DnCNN, we quantified skin innervation in Female C57BL/6 mice
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during normal wound healing at days 3, 7, 10 and 15. The data show that (1) the

skin wound causes a substantial reduction in nerve fiber density, which significantly

increased by day 15 of wound healing, (2) one of the wound edges and wound center

still have significantly less nerve fiber density compared to uninjured skin at day 15

of wound healing, (3) re-epithelization and innervation share a strong correlation

(R = 0.96).

We found that on day 3 and day 7 nerve fiber density is almost negligible

when compared to the unwounded skin (Fig. 3; Table 3.1). From day 10 onwards, the

nerve fiber density starts increasing marginally but reaches a significant level at the

later stage of wound healing on day 15. At day 15, comparing the nerve fiber density

for the whole wound bed or individually for the epidermis as well as dermis shows

non-significant change when compared to the uninjured skin for the respective skin

regions. Moreover, interestingly, the values are significantly higher when compared

to the initial stages of wound healing, day 3, at respective skin regions (Figures 3.6

and 3.7; Table 3.1). This trend together suggests that re-innervation of the wound is

initiated at the later stages of wound healing and starts becoming substantial from

day 15 onwards during normal wound healing conditions in mammals. The data

seems logical because for re-innervation, the proliferation of neuronal cells (Schwann

cells) needs to be initiated, followed by orchestrated phenomena to develop new

cutaneous nerves [71–75], and the proliferation stage of neuronal cells (Schwann

cells) might overlap with the proliferation stage of wound healing, which begins

approximately at day 3 and lasts for a couple of weeks. Thus, re-innervation also

starts appearing substantially from day 10 onwards and shows a significant increase

by day 15. Quantifying nerve fiber density separately for wound edges and wound

center showed an interesting trend. At outer edge 2, similar to the whole wound, the
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nerve fiber density at day 15 showed a non-significant change compared to uninjured

skin at IE, D, and for the whole wound outer edge 2 (Figures 3.8 and 3.7; Table 3.1).

However, for the outer edge 1 and wound center, nerve fiber density cannot reach the

pre-injury level i.e., the values are still significantly less compared to uninjured skin

for the whole wound (Figure 3.8). This suggests that nerve fibers are continuously

innervating the cutaneous wound even beyond day 15 of wound healing. Also, on day

15 of healing, the nerve fiber density at outer edge 1 is less compared to outer edge 2

(0.12 ± 0.008 pixels/mm2 vs 0.16 ± 0.009 pixels/mm2) (Figure 3.8). This could be

due to the difference in distance between the two outer edges of the skin wound from

the cell bodies located in the dorsal root ganglia from where the cutaneous sensory

nerves originate [76]. Additionally, we have been able to find a strong correlation

(R = 0.96) between re-epithelization and nerve fiber density during time-series of

wound healing, which not only corroborates the fact that the regeneration of nerve

fibers is critical for proper wound healing in time but also validated our technique of

using automated Matlab-assisted tool aided with DnCNN for denoising to precisely

capture PGP9.5+ pixels, and thus calculate nerve fiber density.

3.5 Conclusion

This study demonstrates the use of automated deep-learning tools to ac-

curately quantify skin innervation within the wound area, including the wound

bed, wound center, and wound edges in mammals. By effectively reducing noise in

immunohistochemistry (IHC) images, this technique allows for precise quantification

of nerve fiber density in the epidermal and dermal layers of the wound region (bed,

center, and edges). This data-centric approach provides crucial insights that can
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contribute to creating predictive models for applications in precision medicine in

wound healing.

The statistical approach introduced in this study serves as a valuable

alternative to previously described methods [40–46]. It eliminates the need for

manual data labeling, a requirement in traditional machine learning approaches

for generating training data. The denoising method employed in this study has

already undergone training using biological images, obviating the necessity for further

training on wound-specific images. As a result, researchers can save considerable time

and resources that would otherwise be expended on data collection and annotation.

The data generated shows that there is a gradual increase in nerve fiber

density throughout the wound bed as well as at the wound edges, with maximum

value reaching on day 15 that indicates a significant trend in re-innervation when

compared to day 3 of wound healing. Additionally, on day 15 of healing nerve fiber

density for the whole wound bed and at wound edge 2 reaches close to the uninjured

skin. However, at wound outer edge 1 and the wound center the total nerve fiber

density at day 15 of healing is still significantly less compared to the uninjured skin,

asserting that re-innervation is still a continuous process beyond day 15 of healing

and is important for the complete healing of the wound. The correlation between the

increase in nerve fiber density and re-epithelization further supports the importance

of cutaneous nerve fibers in wound healing. Overall, while our method does not

elucidate the morphological characteristics of cutaneous nerves in three dimensions, it

does offer a simple and cost-effective way to analyze the variations in skin innervation

during different stages of wound healing.

Numerous treatments aimed at expediting and enhancing wound healing

have been documented. Electric stimulation, for example, has shown promising results
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in promoting innervation in human cutaneous wounds [77–79]. Many bandages e.g.,

Procellera claim to deliver electric fields to promote wound healing [79]. Our approach

and methodology developed in this paper can assist the quantitative determination of

nerve fiber density in space through the time of wound healing and facilitate assessing

the effects on wound treatment. This high throughput method can be adopted for

the quantification of innervation in various skin pathologies in addition to wound

healing and for the quantification of innervation of other tissues and organs.
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Chapter 4

Automated Neurite Identification

This chapter is from to be submitted paper title ”Neural Insights: Using

Deep Learning to Quantify Innervation and Assess Drug Efficacy in Wound Healing”

author is a first co author of this paper.

4.1 Abstract

Wound healing is a complex physiological process encompassing hemostasis,

inflammation, proliferation, and remodeling. A crucial, often underestimated, aspect

of wound healing is the regeneration and innervation of nerves in the affected region.

Optimal innervation is vital for reinstating normal tissue function and averting

complications such as chronic pain and reduced mobility.

Quantifying the number of neurons in a wound is essential to comprehend

its healing trajectory. Parameters like nerve growth, density, and neuron nucleus

count are pivotal for predicting healing status. However, precise measurement of

these parameters has been a formidable challenge, primarily due to the absence of an

automated, accurate technique. Detecting the wound region further complicates the

issue, given the variability in wound appearance depending on its origin. Traditional

43



methods involving manual neuron counting are not only time-intensive and reliant

on expert input but can also be subjective, leading to inconsistent results.

With the advent of artificial intelligence, and more specifically deep learning

algorithms, we present a novel approach to address these challenges. Our deep

learning and image processing technique can automatically and efficiently detect both

neurons and the wound region. By eliminating the dependence on expert judgment,

our method ensures reliability, consistency, and objectivity, providing accurate neuron

counts. We have validated our technique using images of neurons cultivated in cell-

culture dishes. A comparative analysis with manual counting affirmed that our

method surpasses the traditional technique in terms of consistency and precision.

This study seeks to utilize deep learning algorithms to underscore the

pivotal role of nerve regeneration in wound healing. Our automated technique

offers an expeditious, reliable, and precise means of quantifying neurons and wound

regions, thereby paving the way for a more profound understanding of wound healing

dynamics. This augmented comprehension is instrumental in devising superior

therapeutic approaches to benefit patients.

4.2 Introduction

Wound healing is a multifaceted process orchestrated by a sequence of

intricate physiological mechanisms that collaboratively reinstate tissue integrity and

function. Although considerable attention has been directed towards restoring tissue

integrity and functionality, the revival and reconnection of nerves within the affected

area have often been overshadowed [80].

The significance of proper nerve reconnection cannot be overstated, as it
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is pivotal for reinstating normal tissue function and averting complications such as

persistent pain and restricted mobility. When nerve regeneration and reconnection

are insufficient, patients can grapple with sensations of numbness, tingling, and other

discomforts that endure long after the wound’s closure. Moreover, compromised

nerve renewal may lead to muscle weakness and functional deficits, curbing patients’

capacity to carry out everyday activities [81].

Historically, evaluating nerve reconnection in wound healing posed challenges

and necessitated invasive measures. Techniques like tissue biopsy and staining were

commonplace, but their reliance on tissue removal often caused pain for patients.

Nonetheless, recent strides in artificial intelligence, particularly the advent of deep

learning algorithms, have unfurled novel avenues for non-invasive and streamlined

assessment of nerve density and distribution [82].

Deep learning algorithms, a variant of artificial neural networks, can be

educated to discern patterns within extensive datasets [83, 84]. In the context of

wound healing, these algorithms can be trained on wound images to precisely gauge

the concentration and arrangement of nerves in the affected zone. Scrutinizing these

patterns empowers researchers to glean insights into nerve revival and reconnection

during the wound healing journey [81].

Leveraging deep learning algorithms, researchers can appraise nerve recon-

nection in wound healing without invasive measures. This approach harbors several

merits over traditional methodologies. Primarily, it sidesteps the need for tissue

extraction, thus mitigating patient discomfort. Furthermore, it offers more detailed

and precise measurements, as the algorithms can sift through vast data volumes and

unearth nuances that might elude manual techniques [85].

Additionally, deep learning algorithms facilitate extended longitudinal inves-
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tigations. By scrutinizing wound images across distinct healing stages, researchers can

amass a richer comprehension of how nerve regeneration and reconnection transpire

during wound healing. This methodology holds promise for unraveling nerve revival

mechanisms and engendering more efficacious therapeutic strategies [86].

In essence, the quantification of nerve reconnection in wound healing bears

profound implications for comprehending the holistic healing trajectory. Recent

strides in artificial intelligence, particularly the evolution of deep learning algorithms,

have ushered in fresh prospects for non-invasive and efficient assessment of nerve

density and distribution. By harnessing these algorithms, researchers stand to uncover

valuable insights into the mechanisms governing nerve revival, thereby fostering swifter

and more efficient recovery. As these technological advancements continue to unfold,

the horizon of wound healing appears promising, kindling optimism for enhanced

recovery outcomes among patients.

4.3 Material and Methods

The primary objective of this study is to develop an automated method

for identifying the area of nerve growth in images and to create a technique for

assessing how nerves respond to various drugs, drug quantities, and delivery timings

in laboratory experiments. To achieve this, we devised an experiment involving

different drugs. In this experiment, neurons were deliberately scratched and then

cultivated in a controlled environment. Images were captured on the fifth and tenth

days following the scratches, and these outcomes were compared with a group of

neurons that didn’t receive any treatment. The central aim of this investigation is

to determine the extent of innervation by analyzing these images of the scratched

46



neurons.

To accomplish our goal, we are employing advanced image processing

methods and computer learning programs to automatically distinguish the nerve

growth region. This approach is faster and more efficient compared to manual efforts.

Once we have the segmented images, we will focus on the critical aspects and apply

computer algorithms to quantify the extent of innervation under different conditions,

such as varying drugs, drug quantities, and delivery timings.

The selection of drugs for our experiment is based on their known impacts on

nerve growth and recovery. We are exercising great caution in determining the drug

doses and administration times to ensure the reliability and accuracy of our findings.

By capturing images at multiple time points, we can observe how innervation changes

over time and make comparisons with the untreated control group.

Ultimately, the insights gained from this study could enhance our under-

standing of nerve regeneration and recovery processes. The automated image analysis

and innervation quantification facilitated by computer techniques allow us to effi-

ciently process a substantial amount of data, thus expediting advancements in this

field. Additionally, our research holds the potential to contribute to the development

of innovative drug therapies that can improve nerve regeneration outcomes, leading

to better results for patients.

4.4 Experiment

The experiments were conducted by a team of researchers from Tufts

University, who artificially wounded neurons using a scratch and subsequently exposed

them to various treatments, as illustrated in Figure 4.1. The primary objective of

47



this study was to investigate the effects of different treatments on the healing process

of neurons following an injury.

Figure 4.1: Artificially induced neuronal injury Artificial wound generation in neuron

cultures

The neurons were cultured under two distinct conditions: the control group

was maintained in normal culture media, while the treatment group was subjected

to specific compounds or agents to observe their effects on the healing process of the

wounded neurons. These treatments were administered at varying dosages and time

intervals, with the goal of identifying the most effective strategy for promoting nerve

growth. The team provided a set of high-quality images from the experiments to

facilitate further analysis.

To accurately quantify the degree of innervation achieved by each treatment,

an innovative image-based algorithm was developed. This algorithm employed

advanced image processing techniques and machine learning algorithms to identify
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and segment the regions of nerve growth within the images. Important features such

as cell density, neurite length, and branching patterns were extracted through various

methods. Machine learning algorithms were then trained using these features to

accurately classify the degree of innervation associated with each treatment.

This novel image-centered approach offers significant advantages over tradi-

tional methods for measuring nerve growth. It not only enables precise and efficient

quantification of innervation levels but also lends itself to easy scalability for handling

larger datasets. Consequently, this methodology provides a more comprehensive

understanding of how different drugs and treatments impact the process of nerve

growth and regeneration.

4.5 Implementation of the Scratch Assay

The scratch assay is a unique method that combines fundamental biology

with modern technology to study neuron growth dynamics and changes in their

density. Such insights are invaluable for understanding how neurons regenerate and

can set the foundation for potential treatments in cases of neural injuries.

The procedure begins with carefully growing and maturing human-induced

neural stem cells (hiNSCs). We chose hiNSCs because of their versatility in replicating

various neuronal systems. It’s crucial to ensure these cells mature correctly, setting

the stage for the subsequent phases of the experiment.

A key part of this assay is the custom devices developed by the Rolandi-

UCSC team. These devices accurately deliver specific ions and compounds to the

neuron cultures. With this precision, researchers can directly influence neuron

behavior, allowing for more specific and targeted observations.
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The crux of the assay involves introducing deliberate scratches or wounds

on the neuron-covered surface. This simulates real-world neural injuries, making the

model more relevant and comparable to actual neural injury responses.

After this injury, the neuron cultures are exposed to a range of biophysical

and biochemical agents, ranging from vital ions to potential therapeutic compounds.

Each is delivered under controlled conditions. The goal is to see how these agents

affect neuron growth and density following the injury.

One of our main tools for observation is time-lapse fluorescence microscopy.

This advanced imaging captures the ongoing responses of the neurons. With it, we

can see in detail how the neurons interact with the introduced agents, giving us a

clear view of regenerative processes in real-time.

In summary, the scratch assay is a comprehensive approach that merges

basic biological principles with the latest technology. By using hiNSCs, precision

devices, controlled injury models, and detailed observations, we gain deep insights

into how neurons heal. This knowledge is crucial for developing strategies to improve

recovery in cases of neural injuries.

4.6 Drug Stimulation

The study investigated the impact of zolmitriptan and serotonin, two distinct

drugs, on the growth of artificially wounded neurons [87,88]. Alongside, a control

group that underwent no drug treatment and was cultivated in standard media was

included. Subsequently, the neurons were subjected to imaging on the fifth and tenth

days of the experiment.

To delve into the influence of varying dosages, serotonin was administered at
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concentrations of 500 and 1000 micromolar, while zolmitriptan was introduced at 50

and 1000 micromolar levels. Additionally, the timing of drug administration exhibited

diversity, with specific wells being treated prior to scratch induction, and others

receiving treatment post-scratch formation. The obtained images were furnished by

Prof. M. Levin’s Lab and some examples are depicted in Figure 4.2.

[a] [b]

Figure 4.2: Neuron scratch in vitro. Control well with no treatment. Images captured

on day 5 (a) and day 10 (b) post-scratch. Scale bar is 100 µm.

The visual data chart the progression of neuron growth over time, with

images from the tenth day displaying a more pronounced surge in growth compared

to those on the fifth day. Notably, the images also illustrate the presence of neuron

branches, signifying that the administered drugs have spurred the generation of fresh

neurites and synaptic connections.

4.7 Deep Learning Growth Area Detection

Accurately quantifying nerve growth and innervation depicted in images

plays a pivotal role in comprehending the impacts of diverse drugs on neuron

regeneration. This necessitates precise identification of the scratch area within each
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image. To address this, a novel deep learning model was crafted to autonomously

detect the scratch area in the images.

4.7.1 Labeling

Labeling the images was a meticulous manual process to ensure the utmost

accuracy in our dataset. Each image was first visually assessed to get a clear

understanding of potential areas showing nerve growth. With the help of Matlab,

we carefully selected the regions that displayed signs of nerve tissue growth or

regeneration. After identifying these areas, they were labeled as ”nerve growth” to

set them apart from the other regions in the image. This labeling plays a crucial role,

acting as a beacon for our model to recognize similar patterns in other images. To

maintain the integrity of our data, a verification step followed the labeling process.

This was to confirm that the marked regions truly represent nerve growth and to

ensure that no regions were either overlooked or inaccurately labeled. This detailed

manual method is particularly vital in fields like ours, where precision can greatly

influence the outcomes and interpretations of our research Figure 4.3.
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[a] [b]

Figure 4.3: Neuron image analysis. (a) shows a black-and-white image of neurons and

(b) presents the results of scratch area detection using deep learning. The scratch

region is indicated in black. Scale bar is 100 µm.

The black region in Figure 4.3. b shows where new neurons are expected to

appear. To enhance the diversity and strength of our training dataset, we employed

standard image manipulation techniques. These included cropping, adjusting the

contrast, blurring, flipping, and introducing noise to the images. By doing this,

not only did we expand the volume of our training data, but we also improved the

model’s resilience against various disturbances, ensuring it can handle noise and

other unforeseen factors efficiently.

4.7.2 Deep Learning

In our research, we employed the U-net architecture [89] for labeling regions

indicating nerve growth from scratch areas. U-net is a distinguished deep learning

framework specifically tailored for image segmentation (Figure 4.4). This network

is fundamentally based on the fully convolutional network, but its architecture has

been thoughtfully modified and expanded. Such modifications allow U-net to work
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effectively with fewer training images and yet produce highly precise segmentations.

Originating from the biomedical imaging domain, its design facilitates pixel-wise

classification, crucial for tasks like nerve growth region detection. The architecture’s

strength lies in its symmetrical contracting and expanding pathways, enabling it to

extract intricate details at multiple resolutions without requiring repeated iterations.

Moreover, U-net’s inherent design features enable it to train effectively, especially

when dealing with a limited dataset, addressing a common challenge in medical

imaging where obtaining abundant labeled data is often challenging.

Figure 4.4: Visual Depiction of the U-net Segmentation Model.

For this study, we utilized a dataset comprising 1951 images. These images
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were derived through the application of image augmentation techniques to the original

dataset furnished by Prof. M. Levin’s Lab. Additionally, the labeled images from

the output of Matlab have been instrumental in training the U-net model. Given

its tailored architecture and our specific training data, the U-net demonstrated a

commendable ability to learn and discern the intricacies of nerve growth efficiently.

It’s worth highlighting that the efficiency of U-net is particularly pronounced when

working with limited dataset images.

For the deep learning model, we utilized a standard approach to dataset

partitioning to ensure efficient training and evaluation. The available images were

divided into two distinct categories: training and validation images and test images.

A significant majority of the dataset was allocated for training and validation. The

training images form the backbone of the model’s learning process, while a subset

of this allocation serves for validation. Validation is essential as it continually

assesses the model’s performance during training, helping to fine-tune it and prevent

overfitting. The remaining portion of the dataset was reserved for testing. Test

images play a vital role in gauging the model’s real-world performance since the

model isn’t exposed to them during the learning phase. This segregation ensures a

well-trained model that is both validated for optimal performance and tested for its

accuracy on new, unseen data.

4.8 Deep Learning Nerve Growth Detection

To study how neural growth rates change with different treatments, we

needed to count the pixels that show neurons in the scratch area. At first, we used a

deep learning model to tell the difference between the scratch and non-scratch parts.
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Based on the results from this model, we found the growth area. In this growth area,

we used MATLAB tools to spot the new neurons.

To make sure our results were right, we carefully checked the output image

by hand. During this check, we removed the wrong pixels that looked like noise. We

also double-checked pixels that looked like neurons, making changes where needed to

make sure our nerve growth detection was accurate.

After all this work, we could see and label the pixels that showed neural

growth in the scratch area. We then built a better deep learning model using the

U-net structure. This new model was trained to find neurons in the scratch area, so

it shows the nerves that grew there (Figure 4.5).

[a] [b]

Figure 4.5: (a) Side-by-Side Comparison of the Neuron Image, and (b) Highlighted

Neurons Grown within the Scratch Area deep learning output. Scale bar is 100 µm.

In Figure 4.5. b, you can see the results: the white pixels are the neurons

that grew in the scratch area.
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4.9 Standardizing Analysis Techniques for Neuronal Growth

and Innervation in Scratch Assays

In our previous section, we utilized a deep learning model to analyze in vitro

responses to various drug treatments, concentrations, and delivery timings. While

neurite growth is a critical parameter for innervation, it is not the sole metric. Every

experimental image showcases two distinct regions: the scratch area and the intact

cell culture area. It’s essential to note that the size of the scratch area fluctuates

across different images. Consequently, an image showcasing a more expansive scratch

area might be mistakenly interpreted as manifesting more significant neurite growth.

To neutralize any potential bias arising from this variability, we’ve anchored our

quantification of innervation and cell body count to a standardized region size located

at the scratch’s boundary.

In our endeavor to compute neuron growth density, it’s pivotal to ensure

consistency in the scratch region area utilized for determining innervation density.

To achieve this, we meticulously examined all the images in our dataset, searching for

the smallest consistent scratch region that could be uniformly applied across images.

Within this specific collection of images, the narrowest consistently replicable width

was determined to be 68 pixels. Intriguingly, while the width was standardized, the

vertical dimension of this region always matched the full height of the respective

image, as illustrated in Figure 4.6. It’s important to highlight that although the

contour or edge shape of the scratch may vary across different images, the designated

area for analysis remains constant.
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Figure 4.6: Minimum area selection in scratch assays, only part of the scratch region

(68 pixels wide) is taken for further analysis.

4.10 Quantification of Neuronal Cell Bodies within the

Scratch Region

Counting cell bodies provides a direct way to evaluate potential growth

within the wound area. Through this method, we aim to determine whether the

quantity of cell bodies serves as a reliable indicator of neuronal growth. To achieve

this, we made use of images from different channels. The ”Red Dye Image” presents

us with a broad view of the entire neuron structure, capturing the complete context.

In contrast, the ”Blue Dye Image” has been designed specifically to emphasize and

bring out the cell bodies, ensuring they are distinct and countable. For a hands-on

understanding and visualization of how these images facilitate the identification

and enumeration of cell bodies, Figure4.7 offer a clear depiction of the cell bodies

prominently showcased.
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Figure 4.7: Compilation of Neuronal Images: Cell Bodies (Blue) and Neuron Nucleus

and Branches (Red).

4.10.1 Cell Body Detection Method

To ascertain the number of cells within specific regions of our neuron images,

we devised a sophisticated image processing algorithm. This algorithm hinged

on the capabilities of several Python libraries: Trackpy [90]: A high-dimensional

particle-tracking package. Matplotlib [91]: Renowned for its visualization capabilities.

Numpy [92]: Facilitates diverse mathematical operations on arrays. Our primary

task was to represent the image as an n-dimensional array, detailing intensity values

ranging between [0, 255] for an 8-bit image. Once the image was processed, our

focus shifted to identifying and cataloging the salient features of each cell, such as its

spatial positioning and appearance traits like mass and size, denoted in pixels. To

fine-tune our detection capabilities and minimize errors, we employed filters based

on mass and size.

The algorithm followed these core steps: Grayscale Conversion: The image
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was transitioned to grayscale to simplify intensity analysis. Binarization: A threshold

was set, beyond which the image underwent binarization. Connected Component

Analysis: This technique facilitated the recognition of individual cells. Cell Feature

Calculation: Each identified cell’s mass and size were computed. Filter Application:

To ensure precision in cell detection, we applied filters based on the computed mass

and size, eliminating abnormally small or large cells. Cell Counting: Finally, cells

within our defined region of interest were counted. Upon implementation in Python,

the algorithm was subjected to rigorous testing using a diverse set of neuron images.

In every instance, it demonstrated remarkable accuracy in identifying the correct

number of cells within the defined regions.

4.10.2 Detecting the Number of Cell Bodies

To validate our algorithm’s effectiveness, we began by determining the total

count of cell bodies within the scratch area. Subsequently, we’ll be contrasting this

count with the cell body density found in a predetermined fixed area.

For accurate cell counting, we employed an algorithm which had been

previously designed for macrophage image processing.

4.10.3 Determination of Cell Body Density in Neuronal Scratch

Assays

In our endeavor to produce consistent and reliable data, we employed

standardized analysis techniques for evaluating neuronal growth and innervation in

scratch assays. Central to this approach is the concept of cell body density. Rather

than merely counting the absolute number of cell bodies, we sought to understand

their concentration in a specific area, providing a more nuanced view of neuronal
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response.

To achieve this, we focused on the minimum scratch edge area we had

previously identified. Within this confined region, we undertook a methodical count

of the cell bodies. This count, when normalized to the area’s size, can offer us better

insight into the connection between the cell body density and growth. By using such

a standardized method, we ensure both the reproducibility of our results and their

alignment with established analytical benchmarks in the field.

4.11 Results

In our pursuit to understand the intricate response of neurons to various

treatments, we delved into quantitative analyses using advanced pixel detection

methodologies. This enabled us to assess the effect of specific drugs on neuronal

growth, thus paving the way for potential therapeutic applications. Within this

framework, we examined two primary compounds: serotonin and zolmitriptan. Their

impacts on neuronal growth were analyzed under varied conditions and dosages, and

the outcomes of these investigations are presented below.

4.11.1 Serotonin Treatment

In our first experiment, neurons were pre-treated with a 500 µM concen-

tration of serotonin 24 hours prior to the scratch. This was complemented by an

additional serotonin dosage on the day the scratch was made. As we evaluated the

outcomes depicted in Figure 4.8, we noted the variance in drug concentrations in the

medium post-scratch.
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Figure 4.8: Innervation Analysis in Scratch Assay: Effect of Serotonin Dosages Post

500 µM Pre-treatment, Highlighted with 10 and 90 Percentile Error Bars.

From our assessments with serotonin, it emerged that a concentration

of 1000 µM had the most pronounced impact on promoting neuronal growth. In

our subsequent experiment focused on serotonin treatment, neurons received the

treatment just post-scratch, with variations on the day of application. Observations

from Figure 4.9 provide insights into how treatment day and dosage influence

innervation.
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Figure 4.9: Deep Learning Analysis of Scratch Innervation: Varying Dosages and Ap-

plication Days of Serotonin Post-Scratch. Error bars represent 10 and 90 percentiles.

Notably, the scratch treated with 500 micromolar serotonin exhibited max-

imum growth by the 10th day. However, it’s worth noting that certain images

presented significant discrepancies, prompting the need for further validation of some

results.

4.11.2 Zolmitriptan Treatment

For the Zolmitriptan treatment, a two-step process was employed. Initially,

a priming concentration of 50 µM of Zolmitriptan was introduced 24 hours prior to

creating the scratch. This served as the pre-treatment phase. Subsequent to the

scratch, the media was updated to include varying concentrations of Zolmitriptan to
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investigate its impact. The treatment timeline corresponding to this is illustrated in

Figure ??. An analysis of the Zolmitriptan pre-treatment experiments is shown in

Figure 4.10.

Figure 4.10: Neuronal Growth Analysis Post Zolmitriptan Treatment: Deep Learning

Quantification Following 50 µM Priming. Error Bars Indicate 10 and 90 Percentiles.

Figure 4.10 reveals that the 50 µM concentration yielded the maximum

neuronal growth.

For the subsequent study with zolmitriptan, the drug was administered

post-scratch, with variations in both dosage and timing across different samples. The

regimen detailing dosage schedules and imaging intervals can be seen in Figure ??.

As depicted in Figure 4.11, the highest neuronal growth was observed on the 10th

day post-scratch for samples treated with 50 micromolars of zolmitriptan.
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Figure 4.11: Innervation Quantification via Deep Learning Analysis: Variations in

Neuronal Growth with Diverse Dosages and Timing of Zolmitriptan Post-Scratch

Treatment. Error bars represent the 10th and 90th percentiles.

Intriguingly, as the zolmitriptan dosage was ramped up, there was a notice-

able decline in growth. However, even at the heightened dose of 1000 micromolar,

the growth outpaced that of the control well, which had no zolmitriptan exposure.

4.11.3 Standardizing Innervation Density

To attain a precise understanding of drug and dosage effects on innervation,

we’ve standardized our analysis by focusing on the minimum scratch area. By

employing a deep learning model, we have quantified the mean neurite density across

the image collection. Additionally, the 10th and 90th percentiles provide further
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insights into the range and distribution of results.

To identify the most effective drug, we compared the effects of zolmitriptan

and serotonin on innervation. displays the neurite density observed 5 days post-

scratch following treatment with either serotonin or zolmitriptan. Figure 4.12 presents

the outcomes on day 10. The data in Figure 4.13 reveals that zolmitriptan at a

concentration of 1000 µM (mean value) induces a greater neurite outgrowth compared

to both serotonin and the control.

Figure 4.12: Day 5 Neurite Density Post-Scratch: Comparing Control, Serotonin,

and Zolmitriptan Treatments. Error Bars Indicate the 10th and 90th Percentiles.
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Figure 4.13: Innervation Density Comparison Post-Scratch: Control vs. Serotonin

vs. Zolmitriptan. Error Bars Represent the 10th and 90th Percentiles.

Furthermore, this significant increase in neurite outgrowth underscores

the potential therapeutic advantages of zolmitriptan over serotonin, warranting

further exploration into its mechanisms and broader implications in neuroregenerative

medicine.

4.11.4 Quantification of Cell Body Numbers

Figures 4.14 and 4.15 provide a comparative analysis of cell body counts

between serotonin and zolmitriptan experiments.
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Figure 4.14: ”Day 5 Post-Scratch Cell Counts: Comparisons Among Control, Sero-

tonin, and Zolmitriptan Treatments. Error Bars Represent the 10th and 90th

Percentiles from Replicates.

Figure 4.15: ”Day 10 Cell Counts Post-Scratch: A Comparison of Control, Serotonin,

and Zolmitriptan Treatments. Error Bars Denote the 10th and 90th Percentiles from

Replicates.
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The data underscores the relative consistency in cell body counts across

both treatments at different time points post-scratch.

4.11.5 Quantification of Cell Body Density Numbers

To calculate the cell body density, we tallied the number of cell bodies

within the specified minimum scratch edge area, same area that we used in the

Neurons growth minimum area.

When contrasting the effects of serotonin and zolmitriptan, it’s evident

that the condition without priming yields the highest average cell count within the

minimum scratch area on day 10. Yet, on day 5, the cell counts appear to be similar,

as illustrated in Figures 4.16 and 4.17.

Figure 4.16: Comparative Effects of Serotonin and Zolmitriptan on Cell Body Count

in the Minimum Scratch Area on Day 5.
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Figure 4.17: Comparative Effects of Serotonin and Zolmitriptan on Cell Body Count

in the Minimum Scratch Area on Day 10.

Upon comparing the outcomes, it is evident that treated cells typically

migrate further from areas of high density over time, leading to enhanced neurite

outgrowth. Conversely, in the control scenario, cells predominantly remain close to

the scratch boundary, resulting in subdued neurite growth.

4.12 Conclusion

The intricate process of wound healing is greatly influenced by nerve regen-

eration and innervation, which, if not properly assessed, can hinder our understanding

of wound healing dynamics and the development of effective therapeutic solutions. A

major challenge in this realm has been the quantification of neurons in wounds due

to the lack of automated techniques and inconsistencies in manual methods.

In our study, we employed deep learning algorithms and image processing

techniques to establish a new standard in the quantification of innervation, focusing

particularly on the healing trajectory. We demonstrated that our novel method is not
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only faster and more efficient but also more consistent and reliable than traditional

manual neuron counting. Our method was validated using neuron images from

cell-culture dishes, and comparative analyses with manual counting showcased its

superior precision.

Through meticulous experimentation, our research highlighted the significant

influence of drugs like serotonin and zolmitriptan on nerve regeneration. Notably, both

serotonin and zolmitriptan exhibited the capability to enhance neurite outgrowth

significantly. However, our findings suggest zolmitriptan’s potential as a more

effective therapeutic agent over serotonin in promoting neurite outgrowth, thus

emphasizing the importance of further exploration into its broader applications in

neuroregenerative medicine. This insight could redefine therapeutic approaches and

offer substantial benefits to patients.

The data also unveiled the consistent cell body counts across both serotonin

and zolmitriptan treatments. This stability in neuronal cell body count underscores

that the drugs primarily influenced neurite outgrowth without significantly affecting

the underlying cell numbers.

An intriguing observation was the association between increased drug con-

centration and decreased average cell body density in the zolmitriptan treatment,

whereas serotonin treatment did not showcase a similar pattern. Further research

might provide insights into the underlying mechanism responsible for this trend.

Furthermore, the differences in neurite outgrowth between treated cells

and control conditions suggest that cells in treated environments likely migrate

farther from dense areas, promoting enhanced neurite growth. In contrast, cells in

control settings mainly remain closer to the scratch boundary, thus restricting neurite

extension.
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In summary, our study underscores the transformative potential of artificial

intelligence in advancing our comprehension of wound healing dynamics. By lever-

aging the power of deep learning, we have forged a path towards more reliable and

objective quantification of innervation, providing an invaluable tool for researchers

and clinicians. As the field of neuroregenerative medicine evolves, these insights will

undoubtedly play a pivotal role in the development of next-generation therapeutic

solutions for improved wound healing.
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Chapter 5

Dynamic Optimization

5.1 Abstract

In the preceding chapters, we explored the foundational concepts of person-

alized precision treatments and the challenges posed by patient variability. As we

journey into Chapter 5, we delve deeper into cutting-edge solutions that bridge the

gap between intricate patient-specific requirements and advanced control strategies.

This chapter unveils transformative advancements, unveiling a holistic approach that

integrates artificial intelligence, deep learning, and reinforcement learning which is a

novel work in personalized medicine.

5.2 Transformative Advances in Personalized Precision

Treatments

In the ever-evolving landscape of modern medicine, personalized precision

treatments have become the focal point of research, propelled by the remarkable

progress in artificial intelligence [93–95]. The urgency for precision treatment arises
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from the inherent variability in patients’ responses to medications, reflecting molecular

disparities both among individuals and within the same person across different

contexts [96]. Personalized treatments strive to decipher bespoke dosages of drugs,

appropriate drug types, and optimal drug delivery timings for each patient. This

tailoring is meticulously crafted based on current and predicted patient responses,

weaving a rich tapestry of experimental data and rigorous statistical analysis into

the fabric of medical decision-making [97].

However, amidst the complexities of personalized precision treatments lies a

significant challenge: the design of optimal treatments that account for multifaceted

factors such as gender, age, weight, and the intricate interplay of pharmacokinetic

and pharmacodynamic elements [98]. Traditional controller design methods often

stumble in the face of such complexities. This challenge finds innovative solutions in

the realm of reinforcement learning (RL)-based approaches, offering real-time control

algorithms capable of optimizing and adapting drug dosing amidst the intricate maze

of patient variability [99].

5.3 Introduction

Deep Reinforcement Learning (DRL) has emerged as a transformative

approach in various fields, including healthcare and biological systems. In the specific

context of wound healing, DRL offers a novel and promising avenue for optimizing

treatment strategies. The crux of implementing DRL in wound healing lies in its

ability to interact dynamically with the biological system, adapting to real-time data

and iteratively improving its decision-making process.

The controller, a central component of the DRL framework, is responsible

74



for gathering and interpreting data from the biological system. It closely monitors

the healing process, constantly comparing the observed responses of the wound with

a set of predefined, desirable healing trajectories. This comparison is crucial as it

forms the basis for the controller to make informed decisions about the next course

of action.

However, the challenge in this application is not just in the collection and

interpretation of data, but also in establishing a method to accurately compare

healing timelines. This involves developing a robust model that can predict wound

stage probability profiles, which are then matched against real-world data. The aim

is to find the best correspondence between the predicted stages of wound healing, as

per the model, and the actual progression observed in real cases.

By leveraging DRL, the system can not only predict but also adapt its

strategies to align with the optimal healing path. It learns from each interaction,

adjusting its parameters and strategies based on the success or failure of previous

actions. This adaptive learning mechanism is key to handling the complexities and

variabilities inherent in biological systems, particularly in the context of wound

healing where each case can present unique challenges.

5.4 The Mathematical Model

To provide an in-depth understanding of the mathematical model being

utilized for training Deep Reinforcement Learning (DRL) in the context of wound

healing, it’s important to delve into the core aspects of the model and its relevance

to the biological process it represents. The mathematical model, in this scenario,

acts as a crucial bridge between theoretical understanding and practical application,
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especially in the nuanced field of wound healing.

5.4.1 Ordinary Differential Equation Model

The mathematical model at the heart of this application is designed to

simulate the complex dynamics of wound healing. Wound healing is a multifaceted

biological process involving several stages: hemostasis, inflammation, proliferation,

and remodeling. Each of these stages is governed by intricate biological processes and

interactions among various cells, growth factors, and extracellular matrix components.

The mathematical model encapsulates these stages through a set of equations and

parameters that reflect the underlying biological mechanisms [100]. For instance,

differential equations can represent the rate of cell proliferation, migration, and the

formation of new tissues. Parameters within these equations are adjusted to reflect

the variations in healing rates due to factors like age, health conditions, and the

severity of the wound.

The core of the model consists of differential equations that describe the

behavior and interaction of various biological factors. These equations can model the

proliferation and migration of cells, the formation and degradation of extracellular

matrix, and the action of growth factors and enzymes. For example, the rate of

fibroblast proliferation might be represented by a logistic growth equation, which

factors in the limited resources and space available in the wound area.

Wound healing is both a spatial and temporal process. The model must

account for changes over time as well as spatial variations within the wound. Partial

differential equations are often used to incorporate these aspects, allowing the model

to simulate how cells and substances move and change throughout the wound area

over time.
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Parameters in the equations are critical as they represent the rate constants,

diffusion coefficients, and other biological characteristics pertinent to wound healing.

These parameters are typically derived from experimental data or literature. They

are crucial for the model to accurately reflect the biological realities of wound healing.

The equation for the wound healing model has been provided based on the [100].

Ḋb = −k1DbM1 (5.1)

Ṁ1 = k2Db − k1DbM1 −
k4M
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Ċ = k5M2 − krC (5.4)

Ṅ = CαN(1−N) +Dn
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∂2N

∂r2

)
(5.5)

In these equations:

• Ḋb, Ṁ1, Ṁ2, Ċ, Ṅ represent the rates of change of wound debris, M1 macrophages,

M2 macrophages, temporary tissue, and new tissue, respectively.

• The constants k1, k2, k4, kd1, kd2, k5, kr, α,D1, and Dn are each associated with

specific processes in wound healing dynamics:

– k1 with the elimination of debris (k1DbM1),

– k2 with the attraction of M1 macrophages by debris,
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– k4 and kd1 with the polarization and natural death of M1 macrophages,

respectively,

– kd2 with the death of M2 macrophages,

– k5 with the production of temporary tissue by M2 macrophages,

– kr with the destruction of temporary tissue,

– α with the growth rate of new tissue,

– D1 with the spatial migration of M1 macrophages,

– Dn with the migration rate of new tissue cells.

• M1,M2, Db, C,N denote the concentrations or populations of M1 macrophages,

M2 macrophages, wound debris, temporary tissue, and new tissue.

• The terms involving partial derivatives ∂
∂r and ∂2

∂r2
account for spatial distribu-

tion and diffusion effects in the cylindrical coordinate system.

To ensure the model’s accuracy, it is calibrated against real-world data from

clinical observations or experimental studies. This process involves adjusting the

parameters until the model’s outputs align closely with observed healing patterns.

This validation step is essential for ensuring that the model is a reliable representation

of the actual healing process.

The parameters chosen for solving this ordinary differential equation (ODE)

model are detailed in table5.1.

5.5 Integrating the ordinary differential equation model

The ordinary differential equation (ODE) model serves as a quantitative

tool to simulate the dynamic interactions between different cells and tissues involved
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in wound healing. It not only helps in understanding the inherent mechanisms

but also provides a means to visualize how interventions might alter the healing

trajectory. The primary objective of the research is to harness this model to find

ways to expedite the healing process, which in turn could significantly reduce recovery

time for patients.

A critical factor in enhancing wound healing is the timing of therapeutic

interventions. The sensitivity of the healing speed to treatment timing necessitates a

strategic approach to when drugs should be administered. To optimize this timing,

comparisons of various treatment schedules are made using the ODE model, aiming

to identify which yields the fastest healing.

Integrating the ODE model with real-time data from wound healing ob-

servations allows for a more informed decision-making process regarding the timing

and expected outcomes of treatments. This integration is crucial for personalized

medicine, where treatment dosages and schedules can be tailored to the individual’s

response to therapy.

To effectively halve the wound healing time, a reference timeline—representing

the normal healing process without intervention—is required. This serves as a bench-

mark to measure the effectiveness of treatments. Furthermore, developing a reference

model for the post-treatment scenario enables predictions of expected outcomes

following therapeutic interventions. By comparing real-time healing data with these

reference models—both with and without treatment—researchers and clinicians can

evaluate whether the drug is achieving the desired effect.

The upcoming discussion in the document will delve into the construction

of reference models for both treated and untreated wounds and elucidate the process

of mapping real-time wound data onto these models. This is essential for assessing
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the efficacy of treatments and making any necessary adjustments to the therapeutic

regimen.

5.6 Standardizing Wound Healing Assessment: Utilizing

Ordinary Differential Equation Model

To effectively monitor the progression of wound healing, it is crucial to

establish a benchmark for comparison. The Ordinary Differential Equations (ODE)

model provides such a benchmark by simulating the chronological changes in the

wound environment from the moment of injury to complete healing. Specifically, the

model delineates the temporal dynamics of macrophage activity—a critical cellular

component in the healing process.

Our approach posits that while each patient’s wound undergoes the same

sequence of biological events, the rate of progression through these stages varies.

To illustrate this, we refer to Figures 5.1 and 5.2 , which depict the normalized

activities of macrophages and tissue components in the wound healing model over

time. The X-axis represents time in days, tracking the progression from the onset of

the wound healing process to 20 days and 12 days post-wound initiation. The Y-axis

indicates the activity levels of each entity, normalized to their respective peak values

observed during the simulation. A value of 1 on the Y-axis indicates 100 percent of

the peak activity for that entity. The graph shows the dynamics of debris clearance

(blue), M1 macrophage activity (red), M2 macrophage activity (yellow), temporary

tissue formation (purple), and new tissue growth (green). These entities represent the

biological processes occurring at the wound site, with macrophage activities reflecting

their roles in inflammation and repair, and tissue lines indicating the presence and
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Figure 5.1: Normalized activities of macrophages and tissue components in the wound

healing model over a 20-day period. The Y-axis represents the activity levels of each

entity, normalized to their respective peak values observed during the simulation.

maturation of wound tissue. Notably, Figure 5.1 indicates the peak of M1 macrophage

activity occurs near day 1, while 5.2 illustrates a faster wound healing model where

this peak is reached at approximately half a day. Although the underlying biological

dynamics remain consistent, the time scales differ significantly. By using the day as a

unit of measurement instead of the specific wound stage, we establish a standardized

reference point that is consistent across different patients. For instance, even though

the peak of M1 macrophage activity in Figure 17 is reached more rapidly, we can

standardize this as ’day 1’ in the healing timeline. This standardization allows us

to compare the healing progression of different wounds on a unified temporal scale.

Consequently, each patient’s healing rate can be assessed against this model, providing

a universal metric for evaluating the efficacy of treatments and interventions.

In essence, this ODE model-based standardization affords us a method to
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Figure 5.2: Normalized activities of macrophages and tissue components in the

wound healing model with higher healing rate over 12 days. The Y-axis represents

the activity levels of each entity, normalized to their respective peak values observed

during the simulation.
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quantify and compare the healing trajectories across diverse patient populations,

offering a more nuanced understanding of individual healing rates. This understanding

is pivotal for optimizing treatment protocols and tailoring them to accelerate the

healing process for each patient uniquely.

Utilizing advanced machine learning techniques, specifically a non-linear

Radial Basis Function Support Vector Machine (RBF SVM), we establish a correlation

between macrophage concentration levels and temporal stages of wound healing. This

sophisticated algorithm interprets outputs from the ODE model, assigning day-based

labels that correspond to distinct stages in the wound recovery process (as illustrated

in 5.3). These day-based labels serve as milestones against which the progression of

wound healing can be gauged. By applying this method, we can accurately predict the

day label for a given state of wound healing, enabling a comparison of observed wound

stage probabilities with these predictive labels. Such a comparison is instrumental in

assessing the effectiveness of healing over time, providing a quantitative measure to

monitor recovery and inform treatment decisions.

When dealing with wound healing, the ODE model provides the temporal

dynamics of the healing stages, but it might be non-linear and complex due to the

interaction of various biological processes. An RBF-SVM can learn this complex

relationship by fitting a model that can predict, for example, the stage of healing

based on the current state of the wound.

Specifically, it can take the output probabilities of the ODE model for

different stages of wound healing and use them as inputs to predict the time or stage

of the wound. The RBF kernel allows the SVM to capture the non-linear patterns in

how these probabilities change over time, providing a prediction of when a wound will

reach a particular stage in the healing process, which can then be used for making
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Figure 5.3: Linear model predicts wound time based on variables values. Predicted

vs actual time is shown.

clinical decisions.

5.6.1 Reference model after treatment

When therapeutic interventions are introduced to the wound healing envi-

ronment, they invariably alter the established timeline of cellular activities, particu-

larly those of macrophages. These changes, as delineated in the preceding section,

can accelerate the healing process. By leveraging the previously established linear

model—originally fitted to the untreated ODE model ( [100])—we can extend this

framework to include scenarios where treatment is administered. This allows us to

predict new time labels that reflect the accelerated healing trajectory post-treatment.

The treatment’s effectiveness is reflected in the rate at which the predicted

time labels are reached compared to the untreated model. Essentially, the treated

model’s time labels will be ’ahead of schedule,’ indicating a faster progression through
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the healing stages. By conducting a side-by-side comparison of the actual time elapsed

and the corresponding time labels for both the treated and untreated ODE outputs,

we gain valuable insights into the temporal shifts induced by the treatment. This

comparative analysis enables us to quantify the acceleration of the healing process,

providing a clear metric to assess the efficacy of the intervention.

For example, if the untreated model indicates that the peak macrophage

activity (M1) is expected at day 3, while the treated model reaches this peak at day

2, this suggests a 33 precent reduction in time to reach this critical healing phase

due to the treatment. Such data is invaluable, as it not only confirms the biological

impact of the treatment but also aids in fine-tuning the dosages and timing of future

therapeutic applications.

By integrating these findings with machine learning models, we can further

refine the predictive accuracy of our treatment timelines. The non-linear RBF SVM

model can adjust its parameters based on the treatment-induced changes, effectively

recalibrating the day-based labels to match the new accelerated healing rates. This

creates a robust, adaptable framework for real-time monitoring and management of

wound healing, tailored to the individual responses to treatment observed in clinical

practice.

5.6.2 Learning based on the ordinary differential equation data

The ODEmodel meticulously simulates the wound healing process, providing

output probabilities for the key physiological stages: Hemostasis, Inflammatory,

Proliferative, and Maturation. To translate these probabilities into actionable insights,

we employ machine learning techniques to construct a predictive model. Specifically,

a linear regression algorithm is designed to estimate the temporal progression of
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healing by correlating stage probabilities with time.

This regression model is calibrated using data representative of average

wound healing timelines. When fed data indicative of a more rapid healing process, the

model interprets the advanced stage probabilities to suggest that the corresponding

’day’ in the healing process is reached sooner than the average. In other words, the

model’s output will reflect a time label that progresses more quickly than real time,

for wounds healing at an accelerated rate.

These predictions enable a direct comparison with the actual data derived

from the ODE model, facilitating a nuanced analysis of the healing trajectory. Such

comparisons are not merely academic; they hold practical significance in clinical

decision-making. By quantifying the deviation from average healing times, clinicians

can make informed decisions about the necessity for intervention, the adjustment of

treatment plans, or the continuation of current therapeutic strategies.

Further, the integration of this regression model with real-time wound

healing data allows for continuous refinement of the predictive algorithm. As new

data is introduced, the model can adapt, adjusting its parameters to better reflect

the diverse healing rates observed across different patient populations. This iterative

process enhances the model’s accuracy and reliability, leading to a robust tool that

can be used to monitor wound healing progress, predict future stages, and guide

clinical interventions tailored to individual patient needs.

In our approach, the Ordinary Differential Equations (ODE) model plays a

pivotal role in quantifying the effect of treatments on the wound healing process. By

simulating scenarios with and without treatment, we can discern the acceleration or

deceleration caused by therapeutic interventions.

Consider a hypothetical situation to illustrate this: in the untreated scenario,
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the model predicts that the wound is at day 3 of the healing process. When we

introduce an ’actuator’—a proxy for the treatment—into the model, it simulates the

wound’s progress as if it were at day 4, indicating that the treatment has expedited

the healing process.

To translate this model’s insight into practical clinical assessments, we

incorporate real-time data into a linear regression model. This model, trained on the

probabilities output by the ODE model, is designed to predict the ’day’ of healing a

wound is experiencing. When we input real-world data into this regression model,

the output provides us with a day-based estimate of the healing stage.

If the regression model predicts a healing day less than 3, it suggests that

the wound is not as advanced in the healing process as the untreated model would

predict—implying that the treatment may be hindering rather than helping recovery.

Conversely, a prediction exceeding 3 days indicates that the treatment is beneficial,

accelerating the healing beyond the baseline untreated scenario. An output matching

4 days would suggest that the wound is healing at an optimal rate, as projected by

the treated model, following what we’ve defined as the ’ideal scenario’.

This method gives us a powerful decision-making tool: by comparing the

regression model’s predictions against the healing stages anticipated by the ODE

model, clinicians can gauge the relative success of treatments. Such a comparison

not only provides a snapshot of current healing status but also offers a predictive

glimpse into the future of the wound’s healing trajectory, allowing for adjustments

in treatment strategy to align with the desired outcome. Ultimately, this enhances

the potential for personalized wound care, tailored to the unique responses of each

patient. Figure 5.4 illustrates the healing progression as predicted by ODE models.

The graph plots ODE model predictions: simulating the natural healing process
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Figure 5.4: Deep Learning Training Reward based on ODE model, ODE with

treatment. The accelerated healing area means positive reward, and the Delayed

Healing area means negative reward.

without treatment (x=y line which is untreated), and another incorporating the

accelerated healing due to treatment (treated model).

The ODE model incorporates treatment effects, predicting outcomes like

accelerated or delayed healing based on various treatment actions. The DRL system

is trained using a reward mechanism aligned with these outcomes. When the model

predicts accelerated healing, the DRL agent receives a positive reward. This scenario

implies that the chosen treatment strategy is effective, enhancing the healing process.

Conversely, if the model predicts delayed healing, the DRL agent incurs a negative

reward. This indicates a less effective treatment approach, hindering the healing
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process.

The DRL agent’s objective is to maximize the cumulative reward over time.

Through iterative learning - a process of continuously adjusting its decisions and

observing the resulting rewards - the agent learns the most effective strategies for

applying treatment. It effectively understands:

Timing of intervention can be critical. The DRL agent learns the optimal

times to administer treatment to maximize healing.

This includes understanding the appropriate dosages, frequencies, and

types of treatment that lead to the best healing outcomes as per the ODE model’s

predictions.

By focusing on increasing the overall reward, the DRL agent is essentially

learning to make decisions that align with the most favorable healing outcomes as

predicted by the ODE model. This approach enables the DRL system to uncover

strategies that might not be immediately obvious and could potentially offer new

insights into effective treatment methodologies.

5.7 Deep Reinforcement Learning Model

In this model, I am using is a Deep Q-Network (DQN), which is a type

of Deep Reinforcement Learning (DRL) algorithm. To understand this model and

convergence we need to look at the fundamental components of the DQN and the

mathematical principles behind them.
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5.7.1 DQN

Deep Q-Networks (DQN) integrate deep learning with Q-learning, a type

of reinforcement learning algorithm, to create robust decision-making agents. This

document outlines the mathematical principles underlying DQN and discusses the

conditions under which these models are expected to converge.

DQN comprises several key components including a neural network for

function approximation, Q-learning for decision-making, exploration-exploitation

balancing for effective learning, and experience replay for stable training.

In the implementation of the DQN, we used Python [101] as the programming

language with Keras [29] and OpenAI Gym [102]. Keras provides a high-level neural

networks API that is capable of running on top of TensorFlow, which is used here

for building and training the neural network model. The DQN model is constructed

using a Sequential model from Keras-RL [29], with Dense layers for neural network

construction and ReLU and Linear activations for the hidden and output layers,

respectively. The Adam optimizer is employed for training the network.

OpenAI Gym provides the environment for training and testing the agent.

The rl package from Keras-RL [29] is utilized to define the DQN agent, with a

Sequential Memory from Keras-RL [29] for experience replay and an Epsilon-Greedy

policy for action selection. This setup is ideal for reinforcement learning tasks that

require a balance between exploration and exploitation.

The model’s training involves 5000 steps, with a warm-up phase of 10 steps

and a target model update frequency of 0.01. This specific configuration is designed

to efficiently learn from the environment ’wound-env’ that is developed based on

mathematical wound model. The details has been shown in the table 5.2.

91



Parameter Value/Recommendation

Learning Rate 0.001

Optimizer Adam

Batch Size 32

Minimum Epsilon 1 (decays to 0.001)

Epsilon Decay Factor 0.999

Steps before Training 10

Target Model Update Frequency 1000

Number of Hidden Layer Neurons 16

Activation Function for Hidden Layer ReLU

Activation Function for Output Layer Linear

Memory Limit 50,000

Number of Training Steps 5,000

Table 5.2: DQN Parameters for Highest Reward

5.7.2 Q-Learning Update Rule

Q-learning is an off-policy reinforcement learning algorithm used in DQN.

The update rule for Q-learning is given by:

Qnew(s, a) = Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(5.6)

where α is the learning rate, r is the reward, γ is the discount factor, s′ is the new

state, and a′ are possible actions in the new state.
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5.7.2.1 Loss Function for Neural Network

In DQN, a neural network approximates the Q-function. The loss function

used to train this network is typically the mean squared error between the predicted

Q-values and the target Q-values:

L(θ) = E

[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2
]

(5.7)

Here, θ− are the parameters of the target network, which are periodically updated

with the parameters from the primary Q-network.

5.8 Reward Function

In our reinforcement learning model for the wound healing process, the

reward function plays a critical role in guiding the agent’s behavior. It is formulated

to encourage actions that align with the optimal healing trajectory, as defined by

the ODE model.

The reward function is structured to address three distinct scenarios in the

healing process:

Reward(s, s′) =



−1 if s′ < normal healing stage

s′−normal healing stage
200 if s′ < 200

1 if s′ = 200

(5.8)

In this formulation:

• s represents the current state.

• s′ represents the next state.
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• normal healing stage refers to a predefined benchmark in the healing process.

The reward is determined based on the progression of the healing process:

• A penalty of -1 is applied if s′ is below the normal healing stage, indicating a

lag in the healing process.

• A reward is computed as s′−normal healing stage
200 if s′ is less than 200, reflecting

ongoing healing.

• A reward of 1 is given when s′ reaches day 20 which has been defined stage

200, marking the completion of the healing process.

5.8.1 Convergence of DQN

The convergence of my Deep Q-Network (DQN) implementation is influenced

by several key factors, which are detailed as follows:

1. Experience Replay: The use of Sequential Memory from Keras-RL [29] for

experience replay in DQN is a crucial factor for convergence. By storing past

experiences and sampling random mini-batches from this memory for training,

the DQN model breaks the correlation between consecutive learning updates.

This approach leads to more stable and efficient learning as it prevents the

model from overfitting to recent experiences and ensures a more comprehensive

learning from diverse situations encountered in the environment.

2. Stability through Fixed Q-Targets: The DQN implementation typically

involves using a separate target network for calculating the Q-value updates.

This mechanism stabilizes the learning updates. If the same network was used

for both predicting and updating Q-values, it could lead to oscillations or
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divergence in the learning process. By using a slowly updated target network,

my model maintains stability in learning, which is vital for convergence.

3. Function Approximation with Neural Networks: The neural network in

DQN approximates the Q-function, which maps states and actions to expected

rewards. The capability of neural networks to generalize from seen states

to unseen states is crucial, especially in complex environments. My model

successfully learned a generalized representation of the environment, this would

significantly contribute to its ability to converge to an optimal policy.

4. Empirical Indicators: my DQN model demonstrated a decrease in loss over

training epochs and an improvement in the agent’s performance for example

higher cumulative rewards, successful completion of healing in the wound

simulation environment, these are strong empirical indicators of convergence.

Such evidence suggests that the model was effectively learning the value function

and improving its policy over time.

5. Environment Complexity and Model Design: The convergence also

heavily depends on how well the DQN model’s architecture and hyperparameters

(like learning rate, discount factor, network structure) are suited to the specifics

of the wound simulation environment. These were well-tuned to the complexity

and the particular challenges of the environment, which facilitated effective

learning and convergence.
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Figure 5.5: Drug treatment timing

5.9 Optimized Treatment

In this section, we delve into the application of a DRL model to optimize

drug treatment regimens. We focus on the operational dynamics of an actuator

designed to execute the drug administration policy derived through DRL algorithms.

The actuator’s role is to initiate or cease drug delivery in response to a policy that

dictates the optimal timing and dosage based on a feedback from the environment.

The actuator, as depicted in the 5.5, operates under a binary schema: an ’on’ state

where the drug is actively administered and an ’off’ state indicating a pause in

treatment. This binary operation is reflective of the discrete action space typically

employed in DRL models, where the agent selects from a finite set of actions—in

this case, to administer or withhold medication.

The functionality of the actuator is governed by a policy learned through

a DRL framework. The DRL agent interacts with a simulated environment that

models the patient’s physiological response to drug treatment. Through continuous
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interaction and feedback, characterized by a reward system, the DRL agent learns

an optimal policy that maximizes therapeutic outcomes while minimizing adverse

effects.

The optimization process involves the agent evaluating the consequences of

actions taken at various states, informed by both immediate and future estimated

rewards. As the agent traverses the state-action space, it updates its policy to favor

actions that lead to higher cumulative rewards, which align with treatment objectives

such as efficacy, safety, and adherence to clinical guidelines.

The pattern observed in the figure suggests that the DRL model has identi-

fied a treatment schedule that alternates between drug administration and withhold-

ing. This intermittent dosing strategy could be aimed at preventing drug resistance,

managing side effects, or aligning with the drug’s pharmacokinetic properties. The

convergence of the DRL model to this pattern indicates successful learning, which is

validated by empirical evidence such as improved patient outcomes or adherence to

optimal treatment pathways.

The actuator’s operation reflects a nuanced understanding of the treatment

landscape, indicating that DRL can effectively handle complex decision-making

processes. The convergence of the DRL model to an optimal policy, as evidenced by

the figure, underscores the model’s ability to navigate the intricate balance between

various treatment factors.
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Chapter 6

Sliding Mode Controller

6.1 Introduction

A sliding mode controller is a type of nonlinear control system used to

regulate the behavior of a dynamic system [103] It is designed to work in the presence

of model uncertainties, external disturbances, and other types of nonlinearities. The

basic idea behind a sliding mode controller is to create a sliding surface, which is a

hyperplane in the state space of the system, that the system will ”slide” along to

reach a desired state. This sliding surface is designed such that when the system is

away from the desired state, the sliding mode controller generates a control signal that

drives the system towards the sliding surface. Once the system reaches the sliding

surface, the controller generates a different control signal that keeps the system on

the sliding surface, and hence at the desired state. The sliding mode controller uses a

discontinuous control signal to force the system onto the sliding surface. This means

the control signal switches between two or more values depending on the system’s

position in the state space. The discontinuous control signal is designed such that it

does not excite high-frequency oscillations in the system. Sliding mode control has
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been applied to a wide variety of systems, including electrical circuits, mechanical

systems, and aerospace systems. Its robustness to uncertainties and disturbances

makes it a popular choice in many applications [104]. Sliding mode control has also

been applied in various biological systems, including the control of gene expression,

the regulation of metabolic networks, and the control of glucose levels in diabetic

patients [105]. Sliding mode control has shown promise in the control of various

biological systems, providing a robust and effective control strategy in the presence

of uncertainties and disturbances.

6.2 Sliding mode controller for wound healing

Sliding mode control (SMC) is a form of control theory that is particularly

suited to managing systems characterized by nonlinearities and uncertainties, which

makes it an excellent candidate for regulating the complex biological processes

involved in wound healing. This method treats the healing wound as a dynamic

system, where various cellular interactions and the effects of growth factors are the

driving forces of recovery. In the application of SMC to wound healing, the ’sliding

surface’—a mathematical construct representing the desired system behavior—is

carefully designed to correspond with the stages of wound recovery, with the ultimate

objective of minimizing the time required for a wound to heal.

In the realm of potential therapies, electrical stimulation has garnered

attention due to its ability to accelerate wound healing. The mechanism by which it

operates involves the application of low-level electrical currents to the wound site,

which can be administered directly or through electrodes positioned nearby. This

technique has been found to foster various healing-enhancing biological responses, such
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as promoting cell migration, proliferation, and differentiation, alongside increasing

blood flow and angiogenesis.

Another therapeutic avenue being explored is the use of pharmacological

agents like fluoxetine, which is known to possess antioxidant and anti-inflammatory

properties. These characteristics are believed to help reduce the oxidative stress

and inflammation that can impede wound healing. Additionally, fluoxetine has been

associated with the promotion of angiogenesis and collagen synthesis, both of which

play a critical role in the repair and closure of wounds.

The advantage of SMC lies in its robust performance amidst the variability

inherent in biological systems like wound healing. Traditional control strategies may

fall short when faced with such complexity, but the adaptability of SMC allows for

precise management even when faced with unpredictable changes in the system’s

dynamics.

For instance, in the case of electrical stimulation therapy, SMC can adeptly

manage variations in wound resistance and other factors that may influence the

voltage requirements. By focusing on maintaining a consistent current, the SMC

ensures that the wound receives the necessary level of stimulation conducive to

healing. This is accomplished by adjusting the voltage in real-time to maintain

the target current, thereby ensuring the therapeutic benefits are delivered reliably

throughout the treatment duration.

When considering drug delivery, SMC can be instrumental in maintaining

the desired drug concentration at the wound site. It achieves this by regulating

the drug release in response to the monitored current, ensuring that the actual

concentration aligns with the therapeutic requirements. If the wound’s electrical

properties change—possibly indicating changes in tissue absorption—the SMC is
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Figure 6.1: Scheme of sliding mode controller.

capable of modifying the drug delivery rate to preserve the required drug concentration

at the site of the wound.

Figure 6.1 depicts the complex architecture of the Sliding Mode Control

(SMC) system, engineered specifically for this study on wound healing. The diagram

illustrates the synergy between various components of the SMC system, including

sensors to monitor wound parameters, the control algorithm that governs the sys-

tem’s response, actuators responsible for administering treatment, and the feedback

mechanisms that ensure treatment efficacy. This integrated system is designed to

administer precise dosages of therapeutic agents or electrical currents, modulating

the wound environment to optimize the healing process. The sophistication of the

SMC system lies in its ability to maintain the desired therapeutic conditions despite

the inherent uncertainties and variabilities of biological systems.
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6.2.1 Sliding mode controller for the device with 8 channels

In the landscape of modern wound management, the intricacies of the

healing environment demand a nuanced approach to treatment. This is where multi-

channel SMC comes into play, elevating the standard of care by offering bespoke

treatment modalities. A typical advanced wound care device may feature eight

distinct channels, each of which can be independently controlled by a dedicated SMC

system. The rationale behind such a design is to address the unique conditions of

various wound segments that may differ in terms of size, depth, severity, and healing

stage.

Each channel’s independent SMC allows for the precise application of

electrical currents tailored to the specific requirements of different wound areas. For

instance, parts of a wound that are deeper or more severely affected may necessitate

a different current intensity compared to more superficial or less severe areas. The

SMC’s ability to independently modulate these variables ensures that each section

of the wound receives optimal treatment without the risk of overstimulation or

under-treatment.

The independent channels also enhance the adaptability of the device. As

the wound heals and its characteristics evolve, each SMC can adjust the treatment

parameters in real-time, ensuring that the therapeutic action remains aligned with

the current healing stage. This dynamic adjustment is crucial, especially in wounds

with irregular shapes or those exhibiting heterogeneous healing patterns.

Moreover, the segmented control mechanism inherently enhances the safety

and reliability of the device. In the event of a channel malfunction or anomaly, the

system is designed to isolate the issue, allowing the unaffected channels to continue
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their function seamlessly. This ensures that treatment is not interrupted, maintaining

the continuity and effectiveness of the healing process.

6.3 Chicken Breast Sliding Mode Controller (SMC) test

In the development of cutting-edge wound care technology, empirical testing

plays an indispensable role in validating the functionality and dependability of the

device. For our SMC-equipped wound care device, the preliminary testing was

meticulously carried out using a chicken breast as a proxy for human tissue. This

initial experiment spanned three days and was instrumental in calibrating the device’s

performance under varied conditions reflective of real-world scenarios.

The chicken breast model was chosen due to its tissue consistency and

similarity to human flesh, providing a relevant medium for testing. During this

crucial phase, the device underwent rigorous trials to ensure the SMC controller

consistently maintained the target treatment values, such as drug concentration or

electrical current, across different test states. This step was vital to detect and rectify

any discrepancies in device behavior before proceeding to more complex models.

Throughout the testing period, the research team encountered and overcame

several challenges. Notably, interruptions in the wifi connectivity highlighted a

vulnerability in the system’s ability to maintain a closed-loop control. In response,

the team innovated the communication protocols between the controller and the

printed circuit board (PCB) code. By streamlining the data transfer and integrating

the closed-loop controller with the device controller code, the team effectively reduced

the computational burden and enhanced the system’s stability.

These modifications significantly improved the device’s resilience, ensuring
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that it could reliably administer the intended treatment even in the event of con-

nectivity issues. The iterative process of testing, identifying faults, and refining the

system was pivotal in advancing the device from a prototype to a reliable instrument

capable of delivering consistent care.

As a consequence of these meticulous efforts, the device’s performance was

optimized, paving the way for subsequent testing phases involving more complex

biological models such as pigs. This step-by-step escalation in testing complexity is

essential, laying a solid foundation for the eventual goal of clinical application. The

insights gained from the chicken breast tests were crucial, not only for immediate

improvements but also for informing the future direction of the research, ultimately

contributing to the development of more effective wound healing modalities.

6.4 Testing the SMC controller for wound care on Pig

Sliding Mode Control (SMC) technology is at the forefront of enhancing

wound care by administering meticulously controlled electrical currents to promote

faster healing and improved patient recovery. Following promising initial tests on

chicken breast tissue, which confirmed the SMC system’s functionality and allowed

for the rectification of technical issues, the research advanced to a more complex

biological model—wound care on a pig.

Testing the SMC system on porcine wounds was a decisive step, bridging the

gap between controlled laboratory conditions and the variable circumstances of live

biological systems. The pig’s wound offered a realistic platform for the SMC system to

adapt its operations to the nuanced changes in a live wound environment, showcasing

its ability to tailor the current to the wound’s specific healing requirements.
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During the practical trials, the SMC demonstrated its potential by accu-

rately managing the current over brief intervals, aligning with predefined treatment

durations. This experiment yielded critical data, informing subsequent iterations of

the device design to enhance its therapeutic efficacy.

Despite the system’s successes, challenges arose when attempting to sustain

high targeted currents over extended periods. Figure 3 illustrates these findings

through an error plot, revealing the variance between the target current and the

actual current delivered by the device. The graph indicates a consistent adherence to

the target current for approximately 3.5 hours before the actual current levels began

to wane. This discrepancy was attributed to hardware constraints and unforeseen

technical difficulties, which are being actively addressed by the hardware development

team.

The testing phase on the pig wound was not just a technical evaluation, but

a valuable learning experience, revealing both the capabilities and current limitations

of the SMC system. These insights are vital for driving hardware enhancements and

ensuring that future implementations of the SMC system can maintain consistent

treatment levels throughout the healing process. Such advancements are essential

for moving closer to the goal of a fully reliable and effective wound care treatment

system, one that can adapt in real-time to the changing demands of wound healing

and ultimately improve patient outcomes. In the practical application of the Sliding

Mode Control (SMC) for wound care, the controller faced challenges in consistently

maintaining the high targeted current necessary for optimal wound treatment. This

was evident in the data presented in Figure 6.2 , which provides an current plot

showing the targeted and the actual currents delivered by the device.

The slight variations in current delivery observed in this study suggest that
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Figure 6.2: Tracking Device and Target Currents Over Time: Target Shifts from 3

µA to 7 µA at 3 Hours

while the system is generally effective, there is room for improvement to enhance the

robustness of electrical therapies for wound healing. These minor deviations may

be due to subtle hardware constraints, such as the power supply’s output or the

precision of the current delivery mechanism. Incremental hardware enhancements

could lead to a more consistently accurate adherence to the target current, ensuring

a more reliable and stable treatment delivery.

The hardware team is dedicated to addressing these challenges by delving

into the root causes of the observed discrepancies. Potential solutions may involve

redesigning certain hardware components to handle higher loads, improving the

stability and responsiveness of the control algorithm, or enhancing the overall system

design to prevent such changes in current.

As these improvements are conceptualized and implemented, a continuous

feedback loop from testing will inform the iterative development process. With

each round of testing and refinement, the device moves closer to achieving a level of
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reliability and precision that meets the stringent requirements of medical treatment

devices. The ultimate objective remains clear: to develop a wound care system that

delivers consistent, reliable, and effective treatment to enhance the healing process

and improve patient outcomes.

The journey from prototype to a reliable medical device is often a complex

one, marked by challenges and learnings. The case of the SMC system for wound

care is no different. Through diligent testing, problem-solving, and engineering, the

team strives to perfect a device that can revolutionize wound management and set a

new standard in therapeutic care.

The experimental phase utilizing the SMC system for wound healing is more

than a test of current capabilities—it’s an invaluable learning experience that reveals

the system’s current limitations and potential enhancements. The insights garnered

from this phase are instrumental for the engineering team, who are now equipped

with real-world data to refine and optimize the device’s performance, ensuring that

it can stand up to the unpredictable and varied conditions of clinical use.

During the testing phase, the SMC system was subjected to a range of

scenarios, each designed to challenge the controller’s adaptability and responsiveness.

This rigorous evaluation not only confirmed the system’s potential but also highlighted

areas that required redesign to better serve the needs of patients, particularly those

with complex wound profiles that demand a higher degree of care.

The process of refining the SMC system is iterative and patient-centric.

With each iteration, the device inches closer to the ideal of providing tailored, precise

treatment. Adjustments to the hardware and software are made with the ultimate

goal of delivering consistent and effective therapy, addressing the unique healing

dynamics of each wound.
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Moreover, this phase of development underscores the importance of adapt-

ability in medical device technology. As the SMC system is fine-tuned, it becomes

more capable of accommodating a broader spectrum of wound types, severities, and

patient-specific factors. It’s a journey towards creating a device that not only treats

wounds but does so with an unprecedented level of precision and personalization.

6.5 Conclusion

In conclusion, the testing and subsequent refinement of the SMC controller

are integral to its evolution. This process is critical for ensuring that the final

product is not only effective in controlled trials but also successful in the hands of

medical professionals treating real wounds. By methodically addressing each challenge

and incorporating the feedback into the device’s design, the team is committed to

delivering a wound care solution that enhances healing outcomes, reduces recovery

times, and ultimately improves the quality of life for patients.
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