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Abstract 

Climate induced extreme weather events and weather variations will affect both energy demand and energy supply 

system resilience. The specific potential impact of extreme events on energy systems has been difficult to quantify 

due to the unpredictability of future weather events. Here we develop a stochastic-robust optimization method to 

consider both low impact variations and extreme events. Applications of the method to 30 cities in Sweden, by 

considering 13 climate change scenarios, reveal that uncertainties in renewable energy potential and demand can 

lead to a significant performance gap (up to 34% for grid integration) brought by future climate variations and a drop 

in power supply reliability (up to 16%) due to extreme weather events. Appropriate quantification of the climate 

change impacts will ensure robust operation of the energy systems and enable renewable energy penetration above 

30% for a majority of the cities.  

  



2 
 

According to the Fifth Intergovernmental Panel on Climate Change (IPCC) report,1 climate change will most likely 

accelerate, causing increasingly frequent and strong extreme climate events that make humans, as well as built and 

natural systems, more vulnerable to those events. Failure to address climate change mitigation and adaptation could 

lead to disaster and serious short- and long-term issues,2 including partial or total blackouts due to energy supply 

disruptions.3 These consequences could be very costly to cities and urban areas. Currently, 3.5 billion people live in 

these areas, consuming two-thirds of global primary energy and producing 71% of the directly energy-related global 

greenhouse gas (GHG) emissions. By 2050, urban areas are expected to hold more than half of the world’s 

population, which will multiply the costs and impacts.4 Therefore, the urban sector plays an important role in both 

climate change adaptation and mitigation. Conserving energy and using renewable energy technologies in these 

areas will be essential to minimize the carbon footprint of the energy infrastructure. Distributed energy systems that 

support the integration of renewable energy technologies will support the energy transition in the urban context5 

and play a vital role in climate change mitigation and adaptation. 

Climate change affects the energy use of urban areas extensively, by influencing energy demand, generation, 

systems and infrastructure.6,7 Renewable energy generation can be affected in various ways, too, depending on the 

renewable source (e.g., wind, hydropower or solar)8,9 and geographical location.10 Due to extreme weather events, 

impacts of climate change on peak electricity demand will reach well beyond simple changes in net annual demand 

and become more critical due to their influence on system design and power supply.11,12 For example, Sweden’s 

existing residential building stock may experience an approximate 30% decrease in 20-year average heating demand 

during 2081–2100 compared to 1991–2010, while during extreme conditions the hourly heating and cooling demand 

may reach between 50% and 400% above the 20-year average values.13 Such extreme conditions make climate 

change adaptation difficult.6  

Uncertainty in energy demand, renewable energy potential, and grid conditions associated with climate change is 

defined in this study as the Climate Induced Energy Uncertainty (Climate Induced Energy Uncertainty: CInU). CInU 

can lead to low probability, high impact (LPHI) events, usually induced by extreme weather events, and/or high 

probability, low impact (HPLI) conditions, such as variations in the average energy demand and generation. LPHI 

events may lead to blackouts, while HPLI conditions will lead to significant degradation of energy system 

performance (such as an increase in operation costs), which will notably retard the integration of renewable energy 

technologies. Understanding the effect of CInU on energy systems is challenging due to the complexity of the climate 

and energy systems, high stochasticity and multidimensional impacts.14 To break the vicious cycle and to support 

renewable energy integration, it is vital to quantify the impacts of climate change by translating future climate data 

into energy system relevant data15 and using them to design climate resilient energy systems.  
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Here we develop a methodology to investigate impacts of climate change on urban energy systems, taking into 

consideration future variations in climate conditions, including the increasingly frequent duration and intensity of 

extreme weather events. We then investigate the impacts of CInU on the performance of urban energy systems and 

attempt to understand the limitations in integrating renewable energy technologies due to CInU by investigating a 

wide range of scenarios for 30 Swedish cities. 

Modeling future climate variations and extreme weather 

Operational strategies of an energy system are determined by hourly changes in demand, renewable energy 

generation, grid conditions and other factors. Therefore, time-series data over a one-year period is usually used 

when designing urban energy systems. This means that although HPLI and LPHI affect both hourly operation 

strategies and design of the energy system, those are not being considered in the present state of the art based on 

deterministic models. Deterministic models use a single time series to represent demand, renewable energy 

potential and grid conditions. Therefore, deterministic models fail to represent CInU. Even with this limitation, it 

may take several days to design energy systems considering its hourly operation strategy while using deterministic 

models.16 

A pool of scenarios is required to consider LPHI and HPLI conditions, and such an evaluation requires a set of time 

series of energy demand, renewable energy potential and grid conditions. However, the number of scenarios 

considered needs to be limited, to make the energy system design evaluation process computationally feasible (i.e., 

to avoid the curse of dimensionality issue). Therefore, a set of time series are synthesized (as explained in the 

Methodology) considering several future climate scenarios as outputs of a regional climate model (RCM) to achieve 

a better representation of the possible future conditions that the energy system would encounter due to HPLI 

scenarios (Figure 1). Each time series within a set is introduced as an “expected scenario,” while the set is defined 

as “set of expected scenarios.” This set of expected scenarios enables users to obtain a qualitative and quantitative 

understanding of the changes in weather patterns, and consequently, the expected future conditions (more details 

can be found in the Methodology section).  

<Insert Figure 1 here: Figure 1: Understanding the influences of future climate changes during the energy system 

design. The interlinks between the climate model and the energy system model are not straightforward, which 

makes it difficult to interlink climate models directly with the energy system models. We synthesize a pool of 

scenarios with the support of an urban simulation model to link the climate model with the energy system 

model.> 

Similarly, a set of scenarios are introduced to present the uncertainties in the grid. The set of scenarios obtained to 

represent HPLI conditions can be used to formulate the stochastic part of the optimization problem (as explained in 

the Methodology). Subsequently, a robust optimization technique is introduced to guarantee the robust operation 

of the energy system during extreme weather conditions. Multiple single time series are synthesized to present 
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extreme conditions (LPHI) for demand, renewable energy potential and grid conditions, which constitutes the robust 

part of the optimization problem. Finally, a hybrid stochastic-robust optimization algorithm is developed (Figure 2) 

to consider both HPLI and extreme conditions during the energy system optimization, as detailed in the Methodology 

section. 

<Insert Figure 2 here: Figure 2: Considering the climate induced uncertainties in the design phase. Performance of 

the energy system is evaluated under High Probable Low Impact (HPLI) and Low Probable High Impact (LPHI) 

scenarios as explained in the block diagram. The techno-economic and weather data are provided as the input 

data to the computational algorithm. A common model (Simulation block) is used to present the energy flow for 

both HPLI and LPHI scenarios. Stochastic and Robust blocks, respectively, are used to consider the influences of 

HPLI and LPHI scenarios during the design phase. A comprehensive description about the model is presented 

under the Methodology Section.> 

 

Representative energy demand for future climate conditions 

The common approach in building and urban energy studies is to use typical weather conditions for simulation 

purposes.17 Several types of typical weather data sets, such as typical meteorological year (TMY), are available.18 

In this study we applied typical downscaled year (TDY)19 for benchmarking. However, climate change may induce 

more frequent and stronger extreme events, and these can be the events that present the biggest challenge to 

maintaining an energy system’s healthy operation. Extreme cold year (ECY) and extreme warm year (EWY) were 

defined as the extreme conditions in this study, distinguishing the boundaries at which the system should be capable 

of operating. Figure 3 illustrates a significant shift in outdoor temperature, energy demand and renewable energy 

potential when moving from typical to extreme conditions. Seasonal variations are also visible for extreme 

conditions, though their patterns can be different from those of typical weather. For example, in Figure 3 energy 

demand increases due to extreme heating (extreme cold year) and cooling (extreme warm year) demand 

respectively during cold (Jan–Feb and Oct–Dec) and warm (May–Sep) seasons (a detailed description about the 

methodology to derive time series for extreme cold year and extreme warm year using RCM weather data is 

explained in the Methodology section). As a result, an energy system designed only for typical conditions may fail to 

meet the demand during extreme climate conditions, leading to a number of adverse consequences.  

<Insert Figure 3 here: Figure 3: Wind, temperature and energy demand variation under 13 climate scenarios. 

Hourly distributions of the (a) outdoor temperature; (b) total energy demand; and (c) wind speed at the wind 

turbine level (60 m); in Malmö for 13 climate scenarios during 2070–2099 (390 profiles – light grey lines) and the 

typical (typical downscaled year) and extreme scenarios (extreme cold year (ECY) and extreme warm year (EWY)) 

picked based on hourly distributions. A significant difference in temperature, energy demand and wind speed can 

be observed when moving from typical conditions to extremes.> 
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Besides extreme conditions, HPLI scenarios (or non-extreme conditions) strongly affect the energy system 

performance in the long run due to their higher probability of occurrence compared to extreme conditions. It is 

difficult to come up with a single time series to present HPLI scenarios for future climate. We developed four sets of 

future expected scenarios to present HPLI conditions for the stochastic optimization of the energy system for 

(1) energy demand, (2) wind energy potential, (3) solar energy potential, and (4) grid conditions (more details are 

presented in the Methodology section). Each set of future expected scenarios consist of three, five, seven and nine 

scenarios (namely P3, P5, P7 and P9 in Figure 4(a–d)) to show the impact that the number of synthesized time series 

has on representing CInU.  

When we analyzed the four different sets obtained for energy demand, the expected scenarios having the highest 

probability of occurrence followed the pattern of the typical year (typical downscaled year) with moderate energy 

demand. As a result, seasonal variations such as higher demand in winter and lower demand in summer can be 

observed. By moving towards the expected scenarios with lower probabilities (moving from the center to the 

periphery in Figure 4) seasonal variations diverge from the typical pattern, and converge to patterns more closely 

aligned with extreme conditions. This is obvious for the sets with a higher number of expected scenarios (e.g., in 

Figure 4, compare P7-7 with P7-4 and P9-9 with P9-5). Apparently, by increasing the number of synthesized time 

series, the chances to represent extreme conditions increase. This is elaborated further in Figure 4(e) by comparing 

distributions of the expected scenarios with extreme scenarios; extreme cold year and extreme warm year cover a 

larger span of extreme conditions. The sets with a higher number of expected scenarios, such as P9, can be useful in 

estimating extremes; however, they do not cover the whole range of variations.  

Therefore, to accurately estimate extreme conditions when using the expected scenarios, the number of scenarios 

should increase. Such an extension is computationally expensive since it will exponentially increase the size of the 

scenario tree (when extending the number of scenarios for renewable energy potentials and grid conditions) during 

the energy system optimization. For example, considering nine climate scenarios can lead to a total of 531,441 

scenarios when considering grid restrictions to a similar level. By considering both the expected and extreme 

scenarios and using two different optimization techniques, it is possible to handle the problem in a reasonable way 

while considering the influences of both the extreme (LPHI) and non-extreme (HPLI) conditions. 

<Insert Figure 4 here: Figure 4: Hourly distribution of the total energy demand in Malmö during 2070–2099 for 

13 climate scenarios (390 profiles – light grey lines) and expected scenarios considering (a) three, (b) five, (c) seven 

and (d) nine sets of scenarios. Figure 4(e) compares the distribution of hourly total energy demand of the 

representative urban area in Malmö during cold and warm seasons, considering typical (typical downscaled year), 

extreme cold (ECY) and extreme warm (EWY) years, as well as extreme high demand values of the expected 

scenarios with nine (P9-9), seven (P7-7), five (P5-5) and three (P3-3) sets. The 95th and 99th percentiles of each 

case are written above the corresponding boxplot. > 
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Climate induced energy uncertainty and renewable integration  

The approach introduced in this study (Hybrid Stochastic-Robust optimization algorithm [SRO]) considers both HPLI 

and LPHI conditions. Stochastic formulation considers the HPLI conditions, while the robust component guarantees 

smooth operation during extreme events (more details are presented in the Methodology section). Three other 

methods were used to benchmark this approach, which represents uncertainty induced by climate on different levels 

(Table 1). Stochastic Optimization (SO) considers HPLI scenarios through stochastic formulation without considering 

extreme events. Robust Optimization (RO) takes care of extreme events by using a robust technique without 

considering HPLI events. And the Deterministic (DT) model includes a deterministic scenario without considering 

HPLI and extreme events. A detailed description about these different techniques are presented in Supplementary 

note 7. The energy system was optimized to consider the net-present value (i.e., to represent the financial aspect of 

the project) and grid integration level (level of energy autonomy) by using all the aforementioned methods. A Pareto 

front represented all the non-dominant set of solutions. When moving from one solution to another, the value of 

one objective function may improve with the sacrifice of the other. The Methodology section presents a 

comprehensive description of the formulation of the objective functions.  

<Insert Table 1 here: Table 1: Techniques used to represent climate uncertainty and extreme climate events. A 

comprehensive overview of SRO and SRO-Ex algorithm is presented in the Methods section. A brief overview of 

the other approaches is presented in Supplementary 07.>  

To investigate the impact of both HPLI and extreme events, we selected four cities—Hudiksvall, Kalix, Linköping and 

Malmö—that represent four different climate zones in Sweden. Our investigation considered the renewable energy 

generation potential, which shows a significant variation when compared to the energy demand (a detailed 

illustration about the renewable energy generation of each city is presented in Supplementary note 10). Among the 

four cities, Hudiksvall has the lowest renewable energy potential. The potential to integrate renewable energy 

technologies improves when moving from Hudiksvall to Kalix, Linköping and Malmö (Figure 5 (e)). Pareto fronts 

obtained using SRO, SO and DT showed the objective function values close to each other (Figure 5 (a)). A clear 

separation of RO was observed, and it could be observed for other locations as well. The system designs obtained 

using SO show that the potential to integrate renewable energy technologies is up to 34.5% (16.5% in addition to 

the SRO model in Figure 5 (g)) while reducing the net present value by 16.7% as a result of neglecting the extreme 

events (HD1 in Figure 5 (a)). However, these design solutions with higher renewable energy integration levels 

compared to SRO will lead to a power supply drop during an extreme event by up to a probability of 3% (30 times 

higher than the threshold value set (0.1%); see Figure 5 (f)). This clearly shows that maintaining power supply 

reliability during extreme events will retard renewable energy integration and add an additional cost to the system. 

<Insert Figure 5 here: Figure 5: Renewable energy generation potential in four cities. In the figure, SRO, SO, DT 
and RO denote different optimization methods, namely: stochastic-robust, stochastic, robust and deterministic 
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optimization techniques used to generate the Pareto fronts. Figure 5 (a)–(d) present the Pareto solutions obtained 
for the four cities: (a) Hudiksvall, (b) Kalix, (c) Linköping and (d) Malmo, respectively. To understand the 
performance gap, deterministic design solutions are simulated by using the pool of scenarios, and objective 
function values obtained are presented as PG. Figure 5 (e) presents the renewable energy integration levels for 
Pareto solutions of the four cities (Hudiksvall, Kalix, Linköping and Malmo, respectively). Figure 5 (f) presents the 
loss of load probability as a consequence of neglecting extreme climate conditions. Finally, Figure 5 (g) presents 
the renewable energy integration levels obtained respectively by SRO and SO method for Hudiksvall. In 
Figures 5(a) and 5(c), HD1 and LN1 present the deviation in the objective function values when using SO/SRO and 
DT/SRO techniques. In Figure 5(b), KL1 presents the PG when using the DT.> 

 

The renewable energy integration level increased up to 34% (based on SRO) in Kalix, where three Pareto fronts 

behaved similar to each other, as they did in Hudiksvall. However, we observed a clear separation for the objective 

function values obtained by the DT model when grid integration levels were low. The performance degradation 

brought by CInU will lead to a notable performance gap for the design solutions obtained using the DT model (KL1 in 

Figure 5 (b)). A significant increase in the grid integration level was observed as a consequence of HPLI scenarios. For 

example, the grid integration level increased from 19.7% to 26.4% in certain instances, creating a performance gap 

of 34%. The performance gap will make the Pareto solutions dominated by the design solutions obtained using both 

SO and SRO, as shown by PG in Figure 5 (a–d), which presents the objective function values of DT design solutions 

after simulating them for the pool of scenarios considered for SO and SRO. Such a large performance gap will 

adversely affect the operation of the transmission network, making it difficult to accommodate distributed energy 

systems. In addition to the performance gap, we observed a break in power supply for the design obtained using SO 

and DT, similar to Hudiksvall.  

In Linköping, renewable energy integration potential further increased, up to 56% (Figure 5 (e)). A clear separation 

among the Pareto fronts was observed for Linköping, as opposed to the results from both Hudiksvall and Kalix 

(Figure 5 (c)). We observed a notable improvement in net present value when moving from DT to SO and SRO 

scenarios. In this specific instance, considering CInU acted favorably due to the reduction in demand and 

improvement in renewable energy potential. Neglecting the CInU will lead to a pessimistic energy system design 

with higher net present value values, potentially causing losses of up to 2.21 million euros while increasing the net 

present value by 19%, considering the lowest cost designs of the SRO and DT Pareto fronts (LN1 in Figure 5 (c)). 

Similarly, the loss of load probability increased up to 10% as the result of neglecting the extreme events when using 

SO (100 times higher than the set point; see Figure 5(f)). Therefore, one can conclude that considering CInU can 

bring favorable conditions to distributed energy systems. Although HPLI favors distributed energy systems, 

considering the HPLI scenarios through stochastic optimization will lead to a significant drop in the power supply 

reliability by up to 10%. 

Of the four cities considered, Malmö is the most promising for renewable energy integration. The distributed energy 

system shows that the potential to integrate renewable energy technologies is higher than the annual energy 
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demand of the system while contributing to the main transmission grid (Figure 5 (f)). The Pareto fronts obtained by 

using different techniques show a notable split in objective function values when moving from one to another. 

Design solutions obtained by using DT presented the cheapest design solutions. However, HPLI scenarios will result 

in notable performance degradation (as marked by PG in Figure 5 (d)), which makes SRO and SO the dominant 

solutions. We observed performance degradation in both grid integration level and net present value in this context, 

which can be introduced as an extension of Kalix. In addition, neglecting extreme events when using the SO could 

result in a drop in power supply reliability (up to 16%). Based on results from the four representative cities, we 

conclude that the impacts of extreme climate events become more and more challenging when the penetration level 

of renewable energy technologies is increased. However, the Pareto fronts obtained by using RO show a very 

conservative picture of the energy system, having a very high net present value and low renewable penetration 

levels. Hence, considering extreme events by using a robust technique alone will no longer support the renewable 

energy integration process. These results demonstrate the importance of considering a hybrid approach that 

includes both stochastic and robust optimization techniques, like the one introduced in this study. This strategy will 

present a more optimistic picture of renewable energy integration while guaranteeing robust operation. 

A clear separation of the obtained Pareto fronts is visible with the improvement in renewable energy integration 

levels. This highlights the sensitivity of the method used to represent CInU. In addition, loss of load probability and 

performance gap due to HPLI scenarios increased as a consequence of neglecting climate uncertainty and extreme 

events. The analysis clearly indicates that extreme events will notably decline the renewable energy integration 

process by 16.5% in Hudiksvall. Retarding the integration of renewable energy technologies will lead to further 

dependence on fossil fuel-based energy technologies, which will further accelerate climate change and increase 

climate change-induced uncertainties, creating a vicious cycle. Hence, it is important to understand the potential to 

integrate renewable energy technologies that are resilient to climate change. Such potential was evaluated for 

30 major cities in Sweden in this study.  

Renewable energy integration at the national scale  

Sweden is divided into four climate zones; each of which follows its own building and energy regulations. The 

30 cities considered in this study represent the residential building stock in the country and more than 30% of 

Sweden’s population (see Figure 6(d)). A clear difference in renewable energy integration potential is observed when 

moving from one climate zone to the other. Except for Kalix and Sundsvall, respectively, in Climate Zones 1 and 2, 

the potential for renewable energy integration using solar photovoltaics and wind is less than 20%. The potential to 

integrate renewable energy technologies notably improves for Climate Zone 3 (Figure 6(a)). Usually, direct grid 

integration of renewable energy technologies is possible where the renewable energy integration is below 25%. In 

Climate Zone 3, most of the cities (except Gnesta) have the potential to integrate renewable energy technologies 

that supply up to 30%–50% of the annual energy demand. The level of renewable energy integration reaches above 

the annual demand in Malmö, Tjörn and Strömstad in Zone 4. Distributed energy systems present a promising 



9 
 

method for Zone 3 and Zone 4, which accommodate renewable energy above 25% of the annual demand. More 

importantly, the potential to integrate renewable energy technologies such as solar photovoltaic and wind turbines 

in climate zones 3 and 4 are well above the present installed capacity. Hence, there is ample opportunity to harness 

these resources while guaranteeing robust operation of the energy infrastructure. Therefore, although climate 

induced uncertainties and extreme events can challenge renewable energy integration, upgrading the methods used 

to design distributed energy systems can help to improve the renewable energy integration above 30% of the annual 

demand for a majority of the main cities in Sweden. 

<Insert Figure 6 here: Figure 6: Potential to integrate renewable energy technologies. In the figure, (a) Climate 
zones 1 and 2: Jokkmokk, Kalix, Luleå, Falun, Hudiksvall and Sundsvall, (b) Climate zone 3: Bengtsfors, Gnesta, 
Grästorp, Habo, Karlstad, Linköping, Lidingö, Sala, Solna, Stockholm, Tranås, Ulricehamn, Vallentuna, Värnamo, 
Västerås and Vaxholm, (c) Climate zone 4: Broom, Göteborg, Kristianstad, Landskrona, Lund, Malmö, Strömstad 
and Tjörn, (d) Climate resilience of the urban energy systems in 30 cities in Sweden are investigated in this study, 
and each city belongs to one of Sweden’s four climate zones.> 
 
 

Conclusions and future perspectives 

Climate change induces variations that affect the urban energy system at different temporal scales, from changes in 

long-term patterns to short-term extreme conditions. Calculations based on typical weather conditions may reflect 

the gradual changes; however, a robust design is highly dependent on considering extreme climatic conditions. In 

addition, it is important to consider HPLI conditions induced by climate change and quantify those when designing 

the energy system. To do so, this study introduced the concept of synthesizing expected scenarios and incorporating 

them into the energy system design process. Using a larger number of expected scenarios will help to introduce 

necessary deviations and extreme climate into the optimization process for energy system design. However, 

increasing the set of expected scenarios will increase the scenario tree and prolong the energy system optimization 

computation process. Therefore, it is important to split the process into two parts and present possible climate 

change variations and extreme events as separate time series. As a result, they can be analyzed respectively by 

stochastic and robust optimization techniques during the energy system optimization. Multiple future climate 

scenarios should be used while synthesizing such time series, enabling analyses to consider energy uncertainty 

induced by climate change (CInU). 

The case study for Sweden shows that renewable energy integration levels can be notably reduced when considering 

both HPLI and extreme events. In addition, HPLI will create a performance gap of up to 20% and 34%, considering 

net present value and grid integration levels, respectively (considering 13 climate change scenarios). When 

integrating distributed energy systems into the transmission grid, such a significant increase in the grid integration 

level can cause several technical issues. Although stochastic models may represent long-term climate variations, 

these models do not guarantee robust operation of the energy system during extreme events. As a result, power 
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supply reliability could drop as much as 16% during such events. Such a significant increase in the loss of load 

probability can easily lead to blackouts. Therefore, it is important to consider HPLI and extreme events when 

designing distributed energy systems. Quantifying the impacts of climate change and adapting the energy system 

designs appropriately will help to increase the renewable energy fraction up to 30% while guaranteeing robust 

operation. 

 

 

 

 

 

 

 

Methods 

Analytical approach 

Energy systems should possess the capability to manage climate variations without a significant drop in 

performance. Stochastic optimization, rather than robust optimization, is a better way to consider climate variations 

when formulating the objective functions,29 as presented in detail in Supplementary 05. Extreme climate occurs 

during shorter time spans (days to weeks) in comparison to the time span of the time series simulation (one year). 

Scenarios corresponding to extreme climatic conditions will therefore have a lower probability when converted into 

a time series of 8,760 time steps. Consequently, it is difficult to consider them in the stochastic optimization process 

due to the computational limitations (discussed in detail earlier). Therefore, it is important to consider climate 

variations and extreme climate events at two different levels by using a hybrid stochastic-robust optimization 

algorithm that has been applied to unit commitment problems related to power systems30,31 but has not yet been 

used for energy system design, as shown in Supplementary 05. However, it is difficult to translate climate relevant 

data to energy system relevant data and to create scenarios for the stochastic-robust optimization. 

Representative weather data sets from climate models 

We synthesized hourly weather data considering 13 future climate scenarios for the 30-year span of 2070–2099 as 

the outputs of RCA432 (the fourth generation of the Rossby Centre RCM). We then used these data to create two 

groups of typical and extreme weather data sets (based on hourly and monthly distributions), as well as five expected 

scenarios. 

RCMs are climate models that downscale global climate models (GCMs) dynamically to a regional scale. GCMs, forced 

by representative concentration pathways (RCPs), are used to simulate future climate conditions on a global scale, 
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providing future climate scenarios. Since the spatial and temporal resolutions of GCM outputs are coarse, they need 

to be downscaled to finer resolutions by means of a statistical or dynamical downscaling technique.33 Although the 

common practice for technical applications is statistical downscaling, it has the disadvantage of focusing on the long-

term trends of climate change and underestimating extreme weather conditions. Compared to statistical 

downscaling, RCMs better represent topography and mesoscale processes, and have the advantage of generating 

physically consistent data sets across different variables with fine spatial and temporal resolutions. The weather 

data, which are commonly used in energy simulations, are meso-climate data with hourly temporal resolution, and 

RCMs can provide such weather data for our simulations. For this work, RCA4 downscaled five GCMs — CNRM-

CERFACS-CNRM-CM5, ICHEC-EC-EARTH, IPSL-IPSL-CM5A-MR, MOHC-HadGEM2-ES, and MPI-M-MPI-ESM-LR 

(hereafter called CNRM, ICHEC, IPSL, HadGEM and MPI, respectively) — to the spatial resolution of 12.5 kilometers 

(km). These driving models were forced by three RCPs; CNRM and IPSL were forced by RCP4.5 and RCP8.5, and the 

rest by RCP2.6, RCP4.5 and RCP8.5. The combination of the models and scenarios used resulted in thirteen future 

climate scenarios (these weather data sets are called “RCM data” hereafter). Two types of synthesized weather data 

were created based on the RCM data for optimizing energy system design: (1) typical and extreme weather scenarios 

(applied in reference and robust optimization algorithms), and (2) expected weather scenarios (applied in stochastic 

optimization). 

Typical and extreme weather scenarios 

We used RCM data to synthesize two groups of representative weather data sets for a 30-year period; each group 

includes three one-year weather data sets: one for typical downscaled year, one for extreme cold year (ECY) and 

one for extreme warm year (EWY).34 The difference between the two groups is in the time scale for picking the 

representative data; picking the representative month or hour. Synthesizing typical downscaled year, extreme cold 

year and extreme warm year on a monthly basis is explained in detail in 34. In short, the method is based on 

Finkelstein–Schafer statistics: picking the single month with the closest cumulative distribution temperature to 

whole months (13 × 30 = 390 months in this case). This will provide a typical downscaled year, while for extreme 

cold year and extreme warm year, the months with the largest differences are chosen. 

The method was developed further to track all the possible extremes at each time step for any climate variable. To 

do so, the typical and extreme values of a climate variable were chosen according to the hourly distribution at each 

time step (hour), considering all the years and climate scenarios (13 × 30 = 390 data points at each hour). This results 

in three time series (with the length of 8,760 hours), each containing the most typical, the lowest and the highest 

values at each time step. Note that the data generated are not supposed to reflect on realistic weather sequences 

since they do not reflect the realistic variations of the climate system (unlike the monthly based typical downscaled 

year, extreme cold year and extreme warm year, which reflect realistic variations). However, each hourly value is a 

possible future condition (according to climate models) that can challenge the energy system. In Figure 6, all the 390 
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probable future conditions (light grey lines) are compared with the monthly and hourly based typical and extreme 

data sets. 

Expected weather scenarios 

We synthesized a number of scenarios to represent future weather conditions, each containing a time series of 8,760 

time steps. Like the previous approach, all the 390 years of weather data were accommodated in one year. By 

generating the cumulative distribution of the values at each hour and calculating their percentiles, the values 

(e.g., wind speed) for different probabilities could be calculated. For example, if wind speed varied between 0 to 

20 meters per second (m/s) during one year, by dividing the range of values into nine time series (nine expected 

scenarios), the first 5% (percentile of 0%–5%) represented the lowest wind speed values during the whole year, while 

the last 5% (percentile of 95%–100%) represented the highest. In other words, the first 5% is a pseudo-sequential 

time series with one value at each time step that represents the percentiles between 0 and 5, while the last 5% 

represents percentiles between 95% to 100%. We generated four groups of expected scenarios in this work by 

synthesizing pseudo-sequential time series considering three (20-60-20%), five (10-20-40-20-10%), seven (10-15-15-

20-15-15-10%) and nine (5-5-15-15-20-15-15-5-5%) sequences; called “expected scenarios” hereafter. Note that the 

time series of the expected scenarios do not represent the realistic variations of the climate system. Therefore, two 

alternative representations considering the fluctuations in demand and renewable energy generations are 

presented in Supplementary note 6, and those clearly represent the influence of uncertainties on the Pareto fronts. 

The described method can be applied to any variable, with many possible values at each time step, for creating the 

expected scenarios for renewable generation potentials and energy demand. A more descriptive explanation about 

the method is presented in Supplementary note 4. 

Computational model for energy system optimization 

We developed a computational algorithm in this study to accommodate climate resilience in the energy system 

design process by extending the entire time series approach explained in Supplementary note 05. We used robust 

programming to compute the performance related to the reliability of the system (by introducing constraints to 

guarantee a minimum performance level) and used stochastic programming to evaluate objective function values 

considering climate variations. Hybridizing the two approaches has been used for unit commitment problems related 

to power systems,30,31 although it has not been applied to energy system design before. We used the dispatch 

strategy proposed by Perera et al.5 (as explained in Supplementary note 03) to consider complex interactions for the 

unit commitment problem, addressing the limitations with the entire time series models described in recent 

literature. We used graphical processor unit (GPU) computing to increase the number of scenarios through large 

scale parallelization while reducing the computational time.  
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Outline of the energy system 

The energy hub we considered in this study (a description about the design of energy hub is presented in 

Supplementary note 01) is operated in connection with the local electricity grid. It injects electricity to the grid when 

there is excess generation (and also when the cost of selling is competitive) and purchases electricity from the grid 

to cater to the mismatch between demand and generation. We introduced grid curtailments both for selling 

electricity to the grid and purchasing electricity from it to guarantee grid stability. The energy hub consists of wind 

turbines and photovoltaic panels, which are non-dispatchable energy technologies. We used an internal combustion 

engine as the dispatchable source. A battery bank was used as the energy storage, to help the internal combustion 

engine and grid absorb fluctuations in both demand and generation. We performed building simulations for the 

residential building stock of 30 cities in Sweden, using a verified model, which is thoroughly discussed in some 

previous studies.6 We used the energy demand of a combination of a certain number of buildings to represent a 

typical urban area in each city. We assumed that the heating demand was provided using heat pumps.  

Decision space variables 

For the decision space variables, we considered variables related to both system design and operation strategy. Time 

series simulation was used to map decision space variables into the objective space, as explained before. The 

decision space includes both discrete and continuous variables. We represented variables related to system design 

using discrete variables, while continuous variables were used to present the dispatch strategy. The number of wind 

turbines, photovoltaic panels and battery banks, as well as the size of the internal combustion generator, were 

considered as decision space variables. The technology used for photovoltaic panels and the performance curve of 

wind turbines notably influence the power generation and cost. Hence, the type of wind turbine and photovoltaic 

panel were also considered as decision space variables, along with their capacity. 

Formulation of objective functions and constraints 

The computational model formulates the objective functions, and constraints map decision space variables into the 

objective space. Energy system optimization is performed using a simulation-based optimization algorithm. As 

shown in Figure 2, the decision space variables are mapped into the objective space through a life cycle simulation 

that computes the objective function values and constraint violation (in case there is one). Collecting techno-

economic data helps to formulate the model used for the simulation. RCM and building simulation help to develop 

the scenarios needed for stochastic and robust conditions. Scenarios related to stochastic and robust elements use 

a similar computational model for time series simulation. Hence, the computational model corresponding to this 

part is common for both. It is introduced as the Simulation block in Figure 2. Objective function values are computed 

using the Stochastic block, which corresponds to stochastic optimization. Constraint violation is evaluated using the 

Robust block. 
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Simulation block 

The Simulation block is the computational model common to both robust and stochastic elements. Evaluation of the 

energy flow based on hourly simulation is the part common to both sections. Hourly wind speed, solar irradiation, 

energy demand and other factors are taken as the input to the Simulation block, which determines the renewable 

power generation within the system. Based on the power generation, interactions with the grid, energy storage, and 

the internal combustion generator are determined using the dispatch strategy. A detailed description of the energy 

flow model is presented in Supplementary note 02.  

Robust block formulating constraints  

Performance indicators that guarantee robust operation under extreme scenarios are computed through the Robust 

block. Reliability of the system is assumed to be the main priority. Maintaining reliability is expected to maintain a 

reliable power supply during extreme climate events. Hence, loss of load probability is considered as a constraint in 

the optimization problem. Loss of load probability has been amply used in literature as a measure to evaluate the 

reliability of power systems.37,38 Energy systems are simulated considering the extreme scenarios, and energy flow 

is computed using the Simulation block to compute loss of load probability. Loss of power supply (LPS), computed 

using Eq. 1, will occur whenever there exists a mismatch between renewable power generation and demand that 

cannot be provided using the battery bank, internal combustion generator and grid.  

, , , , , ,RE ICG Bat Max
t s t s t s Max t s LimLPS ELD P P P IG t T s π−= − − − − ∀ ∈ ∀ ∈                         (1) 

In Eq. 1, ,
Bat Max

t sP − , LimIG , ICG
MaxP , and ,t sELD  denote maximum possible power flow from the battery bank (depending 

on the state of charge), maximum power purchased from the grid, and nominal power of the internal combustion 

generator and electricity load demand, respectively. 
,
RE

t sP  denotes renewable energy generation, using both 

photovoltaic panels and wind turbines.  

Loss of load probability (LOLP) is computed using Eq. 2. 

,

,

( ,0)
t s

t T
s

t s
t T

LPS
LOLP Max

ELDπ
∀ ∈

∈

∀ ∈

=
∑
∑

                   (2) 

The main weakness of Eq. 2 is that it considers the entire time series (a period of one year) when computing the loss 

of load probability. This might lead to erroneous results (since it averages the condition over one year) when 

considering extreme events that last for a shorter period, leading to higher loss of load probability during extreme 

climate events. To avoid this issue LOLP-Ex is introduced as an improved replacement, according to Eq. 3. 
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In Eq. 3, d denotes the time period the extreme climate condition is expected to last. 

Stochastic block formulating objective functions  

Stochastic-robust optimization has recently become popular for dispatch optimization problems.30,31,39 Different 

methods have been used in these studies to consider both stochastic and robust aspects of energy system operation. 

In most instances, stochastic and robust parts of the objective function are combined by weighting the impact of 

each.30,39 In certain instances, a penalty cost is introduced through robust programming,40 which is quite similar to 

introducing it as a constraint. When moving from dispatch optimization to energy system design, the context of the 

problem changes notably. Due to shorter time spans (mainly) during extreme climate conditions and the relatively 

low frequency of occurrence, the weight that should be assigned for the robust part in the objective function will be 

quite low. Hence, it is only considered as a constraint in the formulation of the optimization problem. Net present 

values of the system and grid integration level are considered as the objective functions. The computational model 

introduced in the common block is used to simulate energy flow within the system. Based on the energy flow, the 

cash flow of the system is computed for different scenarios within the stochastic block. Similarly, the autonomy level 

of the system is computed based on the hourly simulation.  

Net Present Value 

Expected net present value ( ( )NPVE ) is computed considering all the cash flows that have taken place within the 

system’s lifetime. The net present value includes two main parts: initial capital cost and operation and maintenance 

cost. The price uncertainty related to the initial capital cost, which includes acquisition and installation costs, was 

not considered in this study. Hence, initial capital cost was computed only considering the deterministic part. 

Introducing scenarios that consider climate and grid uncertainty will result in a notable change in the operation and 

maintenance cost. Operation and maintenance cost consists of two main components: fixed costs (OMFixed) and 

variable costs (OMVariable). OMFixed considers recurrent annual cash flows (such as the maintenance cost of wind 

turbines, photovoltaic panels, and fuel and operation costs for an internal combustion engine). OMVariable considers 

the replacement cost for internal combustion engines and battery banks. Replacement time for the internal 

combustion engine is determined by considering the operating hours and rain-flow algorithm using the common 

block. Finally, net present value (NPV) is calculated using Eq. 4. 

var
, , ,( ) ( ( ) ) , , , ,Fixed l iable

s c s c c h s
s c C h H c C

NPV ICC OM CRF PRI OM t T s c C h Hδ
∀ ∈Ω ∀ ∈ ∀ ∈ ∀ ∈

= + + ∀ ∈ ∀ ∈Ψ ∀ ∈ ∀ ∈∑ ∑ ∑ ∑E            (4) 
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In Eq. 4, CRFc and ICC denote the Capital Recovery Factor for the cth component and initial capital cost. PRI denotes 

the real interest rate calculated using both interest rates for investment and the local market annual inflation ratio. 

δ and h denote the expected value of the scenario and the year considered. 

Grid integration level 

The autonomy level of a distributed energy system depends on the level of the interactions it maintains with the 

grid. Maintaining minimum grid interactions is always recommended from the perspective of grid stability. 

Therefore, grid curtailments are considered for both selling and purchasing electricity to and from the grid. According 

to Perera et al.,5 the autonomy level of a distributed energy system can be measured in different ways. In this study, 

grid integration (GI) was evaluated based on the units purchased form the grid (Eq. 5) in order to maintain a stable 

operation of the distributed energy system.  

,

,

( ) , ,

FG
t s

t T
s s

s t s
t T

P
GI t T s

ELD
δ ∀ ∈

∀ ∈Ψ
∀ ∈Ω

∀ ∈

= ∀ ∈ ∀ ∈Ψ
∑

∑ ∑
E               (5)  

In Eq.5, ,
FG

t sP  denotes the energy purchased from the grid. 

Implementation of the computational algorithm 

Simulation based optimization is a time consuming activity, which becomes more challenging when accommodating 

a large number of scenarios that consider lengthy simulations. Hence, efficient implementation of the computational 

program plays a vital role. To accomplish this objective, we introduced GPU computing in this study to conduct time 

series simulations (details are described in Supplementary notes 8 and 9). GPU computing facilitates large scale 

parallelization of a computational program. As a result, GPU computing has already been used in different fields such 

as image processing, machine learning, bioinformatics, and others. However, GPU computing is not well known 

among the energy system design community, despite its potential to speed computational processes. When 

considering stochastic optimization, GPU computing makes it feasible to handle a large number of scenarios within 

a reasonable computational time. For example the number of scenarios considered in this work (5,835 scenarios) is 

much higher than the number of scenarios considered by Narayan and Ponnambalam (200 scenarios).24 

Previously, the formulation of the objective functions was described using three blocks for ease of understanding. 

The computational algorithm begins in a similar manner, following the mathematical model. The techno-economic 

and weather data are collected and provided to the computational algorithm. The Simulation block (considered as 

one part), which includes the set of computational models, is divided into a stochastic and a robust part, and 

implemented in both the central processing unit (CPU) and the GPU. Scenarios related to the stochastic part are 

implemented in the GPU, which supports large-scale parallelization. Scenarios related to the robust part and 

deterministic part are implemented in the CPU. Subsequently, the objective function values and constraints are 
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computed in the CPU, aggregating the computation performed in both the CPU and GPU. Based on the objective 

function values, the population and archive are updated following the dominance check using the CPU. 

Optimization algorithm 

Different techniques based on convex optimization, non-convex optimization, linear programming, mixed integer 

linear programming and heuristic methods have been used to design distributed energy systems. Heuristic methods 

have been shown to be an effective way to design distributed energy systems in recent years.41 Soroudi and 

Amraee42 highlighted the importance of developing algorithms based on heuristic methods to design energy systems 

under uncertainty. Heuristic algorithms have been widely used for both stochastic43 and robust44 optimization 

problems. This study used the steady state ɛ-dominance method to conduct Pareto optimization. We used the 

constraint tournament method to handle the constraints in the optimization process. A polynomial mutation 

operator and a simulated binary crossover operator were used, along with differential evolutionary operators in the 

reproduction of the population. An extended explanation about the operators used for the optimization can be 

found in 45. Net present value and grid integration level, introduced before, were used as the objective functions. 

A comprehensive description of the energy flow model, dispatch strategy and optimization algorithms used to 

benchmark the method are presented in Supplementary notes 2 and 3. 
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