
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Powering up causal generalization: A model of human conceptual bootstrapping with
adaptor grammars

Permalink
https://escholarship.org/uc/item/8sh6k4rd

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Zhao, Bonan
Bramley, Neil R
Lucas, Chris

Publication Date
2022

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8sh6k4rd
https://escholarship.org
http://www.cdlib.org/

Powering up causal generalization: A model of human conceptual bootstrapping
with adaptor grammars

Bonan Zhao (b.zhao@ed.ac.uk)
Department of Psychology

University of Edinburgh

Neil R. Bramley (neil.bramley@ed.ac.uk)
Department of Psychology

University of Edinburgh

Christopher G. Lucas (clucas2@inf.ed.ac.uk)
School of Informatics

University of Edinburgh

Abstract

Human learning and generalization benefit from bootstrapping:
we arrive at complex concepts by starting small and building
upon past successes. In this paper, we examine a computational
account of causal conceptual bootstrapping, and describe a
novel experiment in which the sequence of training data results
in a dramatic order effect: participants succeed in identifying
a compound concept only after experiencing training data in
a “helpful” order. Our computational model represents causal
relations as reusable, modular programs, which can themselves
be “chunked” and flexibly reused to tackle more complex tasks.
Our specific approach is based in combinatory logic and adaptor
grammars, building on previous theories that posit a “language
of thought” for concept representation, but making the learning
process more sensitive to a learner’s experiences than any partic-
ular choice of conceptual primitives. Crucially, we demonstrate
that a caching mechanism like that used in adaptor grammars
is key to explain human-like bootstrapping patterns in causal
generalization.
Keywords: Causal reasoning; generalization; bootstrapping;
adaptor grammar; approximate Bayesian inference

Introduction
Human babies do not stop at recognizing “one”, “two” or “lots”
of something. Soon enough, most “bootstrap” their way to a
conceptual understanding of a number system (Carey, 2004;
Piantadosi et al., 2012). This unlocks more complex mathemat-
ical concepts, paves the way to novel mathematical discoveries,
and ultimately technological feats like sending rockets into
space. Previous computational approaches to generalization
suggested that people are equipped with rich learned represen-
tations in novel situations (e.g. Kemp et al., 2012; Wu et al.,
2018), but it is less clear how such representations are actu-
ally learned. Here, we take a constructive and compositional
view, and suggest that we acquire those rich representations by
building on existing knowledge structures and enriching them
with insights from new observations, which eventually leads
to the generation of new concepts (Figure 1). When the world
is too complex to make sense of wholesale, bootstrapping
provides a way to start small and build incrementally on past
successes in order to ultimately arrive at richer representations
that can unlock useful new options (Carey, 2004; Khan et al.,
2011; Krueger & Dayan, 2009; Piantadosi et al., 2012). Such
a process may also help explain the nested structure of our
concepts, reflected in the high degree of compositionality and
transferability exhibited in human learning (Lake et al., 2017).

This dynamic and adaptive view of generalization calls for
a systematic mental mechanism for concept formation from

Figure 1: Bootstrapping forms complex concepts by ex-
tending existing concepts to account for novel observations.
Without the process of bootstrapping, the world may be too
complex to conceptualize. Dots represent data points.

re-combination of existing concepts. Under this view, we
expect learning and generalization to be influenced by the
order in which learners see evidence: An order from simpler
problems to ones that rely on more complex or numerous con-
cepts should support faster and better learning. In the machine
learning literature, this idea has inspired fruitful researched la-
belled “curriculum learning” (e.g. Bengio et al., 2009; Graves
et al., 2017; Mao et al., 2019). For human concept learning,
recent work has been exploring compositional and symbolic
frameworks for abductive generalization drawing upon a range
of methods including Probabilistic Context-Free Grammars
(PCFGs, Bramley et al., 2018; Goodman et al., 2008; Zhao et
al., 2022), lambda calculus (Ellis et al., 2021; Piantadosi et
al., 2016) and fragment grammars (O’Donnell et al., 2009).
Inspired by Liang et al. (2010) and Dechter et al. (2013), in
this paper we extend on these previous work and propose a
computational account of human-like causal concept boot-
strapping based on combinatory logic (CL, Schönfinkel, 1924)
and adaptor grammars (AGs, Johnson et al., 2007).

As a Bayesian-symbolic model, our formalization shares all
of the virtues of the PCFG framework, but crucially, supports
abstraction and reuse in ways that a PCFG framework does
not. We describe a causal learning experiment, showing our
model predicts bootstrapping order effects—benefiting from
a “facilitatory” curriculum order while suffering under a mis-
leading “learning trap” curriculum (cf. Gelpi et al., 2020). We

1819
In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

show that approaches based on exhaustive inference over a
concept grammar (without bootstrapping), fail to capture these
patterns.

Modeling Conceptual Bootstrapping
We adapted our task interface from Zhao et al. (2022): In each
learning trial, participants see an agent object collide with
a stationary recipient object, which consequently transforms
in some way. Participants are instructed to reason about the
causal relationship between features of the agent and recipient
objects, and the resulting changes in the recipient.

Causal relationships as functional programs
We treat causal representations as fundamental cognitive mod-
els (cf. Chater & Oaksford, 2013) for predicting, explaining
and controlling the world (Gopnik et al., 2007; Griffiths et al.,
2010; Sloman, 2005). In particular, we use CL to formalize
causal concepts as programs that take the agent and recipient
objects as input, and output the result object. These programs
are essentially functions operating over object features that are
available and salient to participants, making our account com-
patible with a structural equation model perspective (Duncan,
1975; Pearl, 2000).

Functional terms CL programs are composed of terms
and input variables. Terms are interpreted as functions by
definition, and can be composed iteratively to generate new
terms. Starting with our assumption that relevant features
are salient to the learner, we let function getFeature(o) = v
take an object o as input and return its feature value v; func-
tion setFeature(o,v) = o′ sets object o’s feature value to v,
returning an updated object o′. For our task, as illustrated in
Figure 2a, we consider a minimal set of base terms: getSpot(),
getStripe(), getSegment(), and setSegment(). Since numbers
of spots, stripes or segments are all numerical, we include
some operations over these feature values as additional base
terms (or chunks that are salient from past experience): ad-
dition add(v,u) = v + u, subtraction sub(v,u) = v− u, and
multiplication mult(v,u) = v×u,

Types Since terms are functions, they are naturally con-
strained by their input domains and output co-domains, known
as being “typed”. Taking object (obj) and numeric value (num)
as base types, a type t for a term is written as tI → tO, where tI
and tO are types for the input and output respectively. Table 1
lists the type signatures for the primitive terms we introduced
earlier. Conventionally, type signatures are written as sub-
scripts, like getSpotob j→num. Type signatures are critical for
ensuring valid compositions. For instance, we can plug in
any subprogram that returns a number as one argument for
add. However, we cannot use setSegment as an argument for
add, because setSegment returns an object while add requires
numbers as inputs.

Routing variables When evaluating nested functions, it is
essential to make sure input variables are sent to the right
place. In lambda calculus, for example, this is done by ensur-

Table 1: Base terms.

Terms Type signature

getSpot, getStripe, getSegment obj→ num
add, sub, mult num→ num→ num
setSegment obj→ num→ obj

ing the unique and uniform use of symbols representing the
same variable throughout the nested layers. As a result, when
composing subprograms, additional machinery is necessary
to determine what symbols are re-used and where. To solve
this variable binding problem, CL introduces some terms that
serve as “routers” (Figure 2b): For a tree-like structure [router,
x,y], router B routes an incoming variable z to the right of the
tree—z is first fed to the right-hand y, and the result of this is
then sent to x. Similarly, router C routes z to the left, router
S sends z to both sides, and router I is an identity function
that returns an input as it is. For N input variables, we can
concatenate N routers in corresponding order.

Causal programs With variables, terms, types and routers
all at hand, we are now all set to consider an example program
as unpacked in Figure 2c:

[CS [BB setSegment [BC [B sub getSegment] getSpot]] I]

Evaluating this example program with the agent and recip-
ient objects in Figure 2a as input, the first router CS routes
the agent object to the left (solid arrows), and routes recipient
object to both sides (dotted arrows), so on and so forth. After
instantiating all the variables, this program reads as: “take
the recipient and make its number of segments to be its origi-
nal number of segments minus agent’s number of spots”, and
outputs a result object with two segments.

Program evaluation Let observational data D = ⟨X ,Y ⟩
where X are input data and Y the output. The likelihood
function of program mt producing observational data D is
given by:

P(mt |D) =

{
1 if mt(X) = Y
0 otherwise.

(1)

Taking the agent and recipient objects in Figure 2a as input,
the example program in Figure 2c returns the result object that
is a stick of two segment, hence its likelihood for producing
the example task is 1.

Bootstrapping with adaptor grammars
The core difference between AGs and PCFGs is that AGs allow
caching: a generated program can be added to the library of
“primitives” for later reuse; program generation can result
from either composing a new program, or sampling directly
from the cache. We may think about these cached programs
as “concepts”: They possess some internal complexity, serve
certain functional aims, and more importantly, can be reused
directly without having to be “rediscovered” by regenerating

1820

Figure 2: a. A task example: (i) A magic egg (agent) with one stripe and one spot (ii) moves rightward and hits a stick (recipient)
of three segments, resulting in (iii) the stick becomes one-segment shorter (result). Translucent icons mark the starting position of
the magic egg, but in the experiment movement was animated. b. Visualization for CL routers, adapted from Liang et al. (2010).
c. Example program. Black arrows denote routing of the agent (magic egg), and dotted arrows for routing of the recipient (stick).
d. Example frame (dotted box) and example programs. Shaded area in the bottom program reuses the program on top-right.

all the internal parts again. The caching mechanism of AGs
thus facilitates bootstrapping via chunking useful subprograms
and reusing them as building blocks anywhere that their type
constraints allow (Liang et al., 2010).

Generative process As in PCFGs, AGs implicitly define a
distribution over programs via a generative process. Let L
be a program library consisting of base terms and/or some
programs, with probability λ1 grammar G constructs new
programs of type t, and otherwise it returns a cached program
of type t with probability λ2. We employ a tail recursion for
the construction step as in Dechter et al. (2013) in order to
efficiently satisfy type constraints in Table 1. That is, we start
by sampling a left-hand side term LHS whose output type is
the same as the output type of t. Based on how many variables
are fed to this stage, grammar G then samples a router RT of
corresponding length that sends these variables to either/both
branches. Since both LHS and router RT are given, now
the type signature for the right-hand side of the tree is fully
specified, because it has all the input types (routed by RT)
and a required output type (to feed into LHS). Therefore, we
apply the same procedure iteratively to get this right-hand side
subprogram RHS, returning the final program [RT LHS RHS].

The constructed program [RT LHS RHS] is then added to the
program library L (caching).

Each step in this generative process comes with a probability
distribution. For the starting program library L , we assume
a uniform distribution over terms that share the same type
signature. We also assume a uniform distribution over routers
sharing the same number of variables to route. Following the
notation in Liang et al. (2010), for a collection of terms Ct of
type signature t, let Nt be the number of distinct elements in
Ct , and Mz the number of times z occurs in Czt :

λ1 =
α0 +Ntd
α0 + |Ct |

, λ2 =
Mz−d
|Ct |−Ntd

. (2)

Hyper-parameters α0 > 0 and 0 < d < 1 control the amount
of sharing and reuse. Since λ1 is proportional to α0 +Ntd, the
smaller α0 and d are, the less construction and more sharing
we have. Similarly, λ2 is proportional to Mz, hence the more
frequently a program is cached, the higher weight it gets,
regardless of its internal complexity.

Approximate Bayesian inference Given this probabilistic
model, we are faced with the challenge of efficiently approx-
imating a posterior distribution over latent programs given

1821

Figure 3: Experiment stimuli: The construct and combine conditions first present evidence indicative that Stripes(A) ×
Segments(R) in Batch I, and then introduce evidence indicative that one must also subtract Spots(A) in Batch II. The de-
construct condition reverses Batch I and II from the construct condition.

learning data, according to the prior distribution (Equations 2)
and likelihood function (Equation 1). Following previous work
suggesting that human learners make inferences by sampling
from an approximate posterior instead of tracking the entire
posterior space of possibilities (Bramley et al., 2017), we use
known methods for sampling from Pitman-Yor processes (Pit-
man & Yor, 1997), such that conditional on a program library
at any given moment, learners can make appropriate infer-
ences about the probabilities of different explanations for new
or salient events. Concretely, we use a Gibbs sampler for pro-
gram library L: for the i-th iteration, conditional on the library
from previous iteration Li−1, sample an updated library Li and
add it to the collection of samples. For the sampling step,
let library Li−1 generate programs with probabilities defined
above and calculate their likelihoods with respect to learning
data D. The caching mechanism of AG will add consistent
programs into library Li−1, or increase the counter for those
already present in Li−1, resulting in an updated library Li.

In practice, our learning data is very sparse, hence we adopt
both breadth-first search and beam search to facilitate search
for programs that can produce learning data. For the outer
loop, we use “frames” for intermediate programs built with
typed placeholders (Figure 2d). Fixing a generation depth, we
first enumerate a set of frames F . Next, sample a frame from
F according to generation probabilities. The sampled frame
can then be unfolded, replacing its placeholders with programs
of required types, yielding a set of fully-articulated programs
M (Figure 2d). If some programs M∗ ⊆M produce learning
data with likelihood 1, we stop the search; otherwise, we
sample another frame from F and repeat. If no programs are
consistent with data after depleting frame set F , we increase
depth by 1 and repeat until a maximal cap is met. Because
of this comprehensive search-check-sample procedure, we
expect our Gibbs sampler to approximate the true posterior
quickly and without the need for extensive burn-in.

Generalization predictions We can run the generative pro-
cedure of grammar G using the sampled libraries 10,000 times
to approximates a distribution DistM over latent causal pro-

grams, and make generalization predictions about new par-
tially observed data D∗ = ⟨X∗,?⟩, producing a predicted dis-
tribution DistP over generalizations.

Experiment
We evaluated our model in a two-phase causal learning task.
The experiment was preregistered in OSF registry.

Methods
Participants 165 participants (Mage = 31.8±9.9) were re-
cruited from Prolific Academic. Participants received a base
payment of £1.25 and performance-based bonuses (highest
paid £1.93). The task took 14.2±6.1 minutes. No participant
was excluded from analysis.

Design We used a task animation as illustrated in Figure 2a.
The agent object A was visualized as a circle that moved in
from the left of screen and collided with the recipient R. The
agent object A varied in its number of stripes and (randomly
positioned) spots. The recipient object R took the form of a
stick made up of a number of cube shaped segments. Dur-
ing learning, all feature values were between 0 and 3. For
generalization tasks, an arbitrary segment number (up to 16)
could be selected. The true rule determining the recipient’s
number of segments was Segments(R′) ← Stripes(A) ×
Segments(R) − Spots(A).

We examined three between-subject learning conditions we
call construct, de-construct, and combine (Figure 3). Each
condition contains six learning trials—pairs of agent and re-
cipient objects. These six pairs are divided into two batches, I
and II. For the construct condition, in Batch I learners only see
examples that vary in terms of the stripe feature (with zero dots
in each case). Then, in Batch II, they see examples with varied
spot features on top of the stripe features. The de-construct
condition contains the same six trials but swaps batch I and
batch II such that the first three trials have both spots and
stripes varying across them, and the second batch only varies
stripes. For the combine condition, batch I is identical to batch
I in the construct condition. However, in combine batch II, the

1822

https://bit.ly/3uiHPLN

Figure 4: Experiment results per condition and per task phase. a. Generalization prediction accuracy. Bars are participants data,
colored shapes mark accuracy per model based on fitted model predictions. b. Labeled self-reports. Coding scheme and full
dataset is available at OSF. c. Generalization predictions per task (rows) by participants (bars) and the best fitting AG model
(densities). For each panel, x-axis is result object’s number of segments, ranging from 0 to 16.

spots are varied while the number of stripes is held constant at
1. In sum, conditions construct and de-construct present the
identical learning evidence but in a different order. Condition
combine presents evidence of comparable diagnosticity to the
other two conditions but leaves the combination of roles of the
stripes and the spots ambiguous to the learner.

According to our computational model, participants in the
combine and construct conditions should be able to learn a
multiplication relationship with information in batch I, and
then build upon this knowledge to conclude the compound
ground truth relationship with information in batch II. Par-
ticipants in the de-construct condition, however, should fail
to do so for the lack of facilitatory learning curriculum. We
measured generalization performance using both free-text self-
reports and eight forced-choice tasks on novel pairs of objects,
selected by maximally differentiating between salient alterna-
tive rules (according to our grammar) and covering edge cases
like a zero-spot & zero-stripe agent.

Procedure Each participant was randomly assigned to one
of the three learning conditions. After reading instructions and
passing a comprehension quiz, they went through experiment
phase I and then phase II. In each phase, a participant tested
three learning examples from the corresponding batch 1 by
clicking a “Test” button and observing the animated outcome,
and then were asked to write down their guesses about the
underlying causal relationships, and made generalization pre-
dictions for eight pairs of novel objects. Once tested, a visual
summary of the learning example including the initial and final
state of the recipient was added to the screen and remained

1We use “batch” for stimuli and “phase” for experimental stages.

visible until the end of the experiment. Generalization trials
appeared sequentially. Once a prediction was made the trial
was replaced by the next one. The pairs of generalization
objects in both phase I and phase II are the same, but their
presentation orders were randomized.

Results
Bootstrapping effects We found evidence for causal con-
cept bootstrapping from both participants’ generalization
accuracy (Figure 4a) and their self-reports on causal rela-
tionships (Figure 4b). For Phase II generalization predic-
tions, participants in the combine and construct conditions
achieved average accuracies of 49.1% and 46.9%, while
participants in the de-construct condition of only 33.0%
(chance is 5.9%). A repeated measures ANOVA predict-
ing each participant’s taskwise generalization accuracy (165
participants × 8 generalization trials) with condition as
between-subject factor and phase as within-subject repeated
measure confirmed main effects of condition (F(2,1317) =
15.26, p < .001) and phase (F(1,1317) = 239.91, p < .001),
and an interaction between condition and phase (F(2,1317) =
4.06, p = .018). Pairwise comparison of conditions re-
vealed a significant difference between construct and de-
construct, t(1317) =−4.98, p < .001,95%CI[−0.35,−0.12],
between combine and de-construct, t(1317) = −4.56, p <
.001,95%CI[−0.33,−0.10], but not between combine and
construct, t(1317) = −0.37, p = 1. Recall that at the end
of Phase II, participants in the construct and de-construct con-
ditions have observed identical learning information, only in
different orders. These results demonstrate the bootstrapping
effect—composing the right subprogram contributes to suc-

1823

https://osf.io/9awhj/?view_only=1878ad2731be4f86832584260d15524f

cessful generalization in subsequent, more complex scenarios.
From self-reports, we found that while 39.3% of partici-

pants in the construct condition and 29.6% in the combine
condition reported causal relationships as the intended ground
truth rule, no one in the de-construct condition did so (Fig-
ure 4b), F(2,) = 10.79, p < 0.001. A deeper dive into those
self-reports revealed that, for those participants who guessed
the Stripes(A) × Segments(R) subprogram in Phase I,
75.9% of them in the construct condition and 55.6% in the
combine condition landed on the correct ground truth rule
in Phase II. This directly supports our concept reuse model.
For participants in the de-construct condition, 81.8% came up
with complex rules in Phase I, that may draw upon position of
spots, relationships between the number of spots and stripes,
etc. In Phase II, only 41.8% of participants in the de-construct
condition reported the Stripes(A) × Segments(R) subpro-
gram, fewer than the 51.8% of construct and 50% of combine
condition in Phase I, indicating a garden-path effect (cf. Gelpi
et al., 2020) that people might get lost when wandering into a
forest of complicated ideas.

Model fits We compare four models: a random selection
model as baseline, the adaptor grammar model as introduced
above, and two grammar-based models that, like “rational
rules” models (Goodman et al., 2008; Piantadosi et al., 2016),
omit the concept caching and re-use that distinguishes ours
and leads to the distinctive order effects we predict. We call
these grammar-based models search-only: they use standard
Bayesian updating and a prior distribution over an enumerated
set of causal programs generated with fixed depth d = 1 and
d = 2 using the same causal functional program setup laid out
in the modeling section, and the same likelihood function as
in Equation 1. Generalization predictions are computed via
marginalization over posterior distribution of causal programs
given each task. To account for noise in predictions, we fit
a softmax function with a temperature parameter τ on the
three computational models (Luce, 1959). Let P(r′|d) be
the posterior predictive distribution over candidate length of
segments in generalization tasks:

P(choice) =
eP(r′|d)·(1/τ)

∑x∈r′ eP(x|d)·(1/τ)
. (3)

Table 2 summarizes model fitting results. All three com-
putational models perform much better than random baseline,
demonstrating the power of causal programs in capturing hu-
man intuitive causal reasoning. Moreover, adaptor grammar
model outperforms the other two search-only models and fits
best overall.

Figure 4a illustrates generalization accuracy of each (fitted)
computational model. The adaptor grammar model is the only
one that can capture the increase in generalization accuracy for
the construct and combine conditions, along with low accuracy
in the de-construct condition. The search-only (d=1) model
cannot bootstrap in Phase II in the construct and combine
conditions because it has no mechanism of reuse. The search-
only (d=2) model shows a weak bootstrapping effect in the

Table 2: Model Fitting Results.

Model τ Log likelihood BIC

Baseline - -7319.63 14639
Search-only (d=1) 2.79 -6738.77 13485
Search-only (d=2) 2.84 -6285.46 12579
Adaptor Grammar 2.52 -6168.96 12348

combine condition because it assigns equal preference for
alternative compatible causal programs and does not favor
reuse. It also achieves an overly high accuracy in Phase II in
the de-construct condition due to its deeper search depth that
allows it to generate the ground truth rule directly. We spotted
that participants achieved higher accuracy in the de-construct
condition than the AG model, potentially due to people having
access to all six learning trials in Phase II and so being able to
process them back-and-forth.

Figure 4c plots participants’ generalizations with model
AG’s predictions, revealing the close alignment between the
two in addition to BIC and accuracy measures.

General Discussion

We proposed a computational model based on combinatory
logic and adaptor grammars as an account for human concep-
tual bootstrapping, and grounded it in an object-based causal
generalization task. Our formalization synthesizes aspects of
human intelligence that have long eluded fixed-form symbolic
and subsymbolic accounts (Valentin et al., 2021). In particular,
our use of adaptor grammars rather than PCFGs—common to
other recent treatments of constructivist inference (Bramley et
al., 2021; Goodman et al., 2008; Zhao et al., 2022)—allowed
us to capture flexible type-constrained reuse, and so reproduce
learning order effects exhibited by participants. That is, our
framework explains both how participants succeed in our con-
struct and combine conditions but also why they failed in the
de-construct condition.

These results also demonstrate the importance of curricu-
lum design. It was striking that a simple manipulation of the
order in which six examples were shown made the difference
between 39.3% of people identifying how a causal system
works and 0% doing so. Going beyond neural-network based
work on curriculum learning (Bengio et al., 2009; Khan et
al., 2011), our account sheds lights on how to design effec-
tive curricula to build up to complex concepts. We show it
is critical to teach concepts early that can later be reused to
aid in grasping more complex concepts (Dechter et al., 2013;
Krueger & Dayan, 2009).

In sum, our model provides a mechanistic account of chunk-
ing and reuse in higher level cognition (Carey, 2004; Gobet
et al., 2001; Klein, 2017), and highlights how these processes
produce the patterns of flexibility, efficiency, and composition-
ality that are hallmarks of human cognition.

1824

Acknowledgments
This research was supported by an EPSRC New Investigator
Grant (EP/T033967/1) to N.R. Bramley and C. G. Lucas.

References
Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009).

Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning (pp. 41–48).

Bramley, N. R., Dayan, P., Griffiths, T. L., & Lagnado, D. A.
(2017). Formalizing Neurath’s ship: Approximate algo-
rithms for online causal learning. Psychological Review,
124(3), 301.

Bramley, N. R., Heuser, G., & Xu, F. (2021). Computa-
tional constructivism: Developmental differences in active
inductive inference. Under review.

Bramley, N. R., Rothe, A., Tenenbaum, J., Xu, F., & Gureckis,
T. (2018). Grounding compositional hypothesis generation
in specific instances. In Proceedings of the 40th annual
meeting of the cognitive science society.

Carey, S. (2004). Bootstrapping & the origin of concepts.
Daedalus, 133(1), 59–68.

Chater, N., & Oaksford, M. (2013). Programs as causal
models: Speculations on mental programs and mental rep-
resentation. Cognitive Science, 37(6), 1171–1191.

Dechter, E., Malmaud, J., Adams, R. P., & Tenenbaum, J. B.
(2013). Bootstrap learning via modular concept discovery.
In Twenty-third international joint conference on artificial
intelligence.

Duncan, O. D. (1975). Introduction to structural equation
models.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L.,
Hewitt, L., . . . Tenenbaum, J. B. (2021). Dreamcoder:
Bootstrapping inductive program synthesis with wake-sleep
library learning. In Proceedings of the 42nd acm sigplan
international conference on programming language design
and implementation (pp. 835–850).

Gelpi, R., Prystawski, B., Lucas, C. G., & Buchsbaum, D.
(2020). Incremental hypothesis revision in causal reasoning
across development. In Proceedings of the 42th annual
conference of the cognitive science society.

Gobet, F., Lane, P. C., Croker, S., Cheng, P. C., Jones, G.,
Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in
human learning. Trends in cognitive sciences, 5(6), 236–
243.

Goodman, N. D., Tenenbaum, J. B., Feldman, J., & Griffiths,
T. L. (2008). A rational analysis of rule-based concept
learning. Cognitive Science, 32(1), 108–154.

Gopnik, A., Schulz, L., & Schulz, L. E. (2007). Causal
learning: Psychology, philosophy, and computation. Oxford
University Press.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., &
Kavukcuoglu, K. (2017). Automated curriculum learning
for neural networks. In Proceedings of the 34th international
conference on machine learning (pp. 1311–1320).

Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenen-
baum, J. B. (2010). Probabilistic models of cognition:
Exploring representations and inductive biases. Trends in
cognitive sciences, 14(8), 357–364.

Johnson, M., Griffiths, T. L., Goldwater, S., et al. (2007).
Adaptor grammars: A framework for specifying composi-
tional nonparametric bayesian models. Advances in neural
information processing systems, 19, 641.

Kemp, C., Shafto, P., & Tenenbaum, J. B. (2012). An inte-
grated account of generalization across objects and features.
Cognitive Psychology, 64(1-2), 35–73.

Khan, F., Mutlu, B., & Zhu, J. (2011). How do humans
teach: On curriculum learning and teaching dimension. In
Advances in neural information processing systems (pp.
1449–1457).

Klein, G. A. (2017). Sources of power: How people make
decisions. MIT press.

Krueger, K. A., & Dayan, P. (2009). Flexible shaping: How
learning in small steps helps. Cognition, 110(3), 380–394.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman,
S. J. (2017). Building machines that learn and think like
people. Behavioral and Brain Sciences, 40.

Liang, P., Jordan, M. I., & Klein, D. (2010). Learning pro-
grams: A hierarchical Bayesian approach. In Proceedings
of the 27th international conference on machine learning
(icml-10) (pp. 639–646).

Luce, R. D. (1959). Individual choice behavior. Wiley.
Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019).

The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. Interna-
tional Conference on Learning Representations.

O’Donnell, T. J., Tenenbaum, J. B., & Goodman, N. D. (2009).
Fragment grammars: Exploring computation and reuse in
language.

Pearl, J. (2000). Causality: Model, reasoning, and inference.
Cambridge University Press.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2012).
Bootstrapping in a language of thought: A formal model of
numerical concept learning. Cognition, 123(2), 199–217.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2016).
The logical primitives of thought: Empirical foundations
for compositional cognitive models. Psychological Review,
123(4), 392.

Pitman, J., & Yor, M. (1997). The two-parameter poisson-
dirichlet distribution derived from a stable subordinator.
Annals of Probability, 25, 855–900.

Schönfinkel, M. (1924). Über die bausteine der mathematis-
chen logik. Mathematische Annalen(92), 305–316.

Sloman, S. A. (2005). Causal models: How people think
about the world and its alternatives. Oxford University
Press.

Valentin, S., Zhao, B., Jiang, C., Bramley, N. R., & Lucas, C.
(2021). Symbolic and sub-symbolic systems in people and

1825

machines. In Proceedings of the 43th annual meeting of the
cognitive science society.

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., &
Meder, B. (2018). Generalization guides human exploration
in vast decision spaces. Nature Human Behaviour, 2(12),
915–924.

Zhao, B., Lucas, C. G., & Bramley, N. R. (2022). How
do people generalize causal relations over objects? a non-
parametric bayesian account. Computational Brain & Be-
havior, 5, 22–44.

1826

	Introduction
	Modeling Conceptual Bootstrapping
	Causal relationships as functional programs
	Bootstrapping with adaptor grammars

	Experiment
	Methods
	Results

	General Discussion
	Acknowledgments

