UC Berkeley
UC Berkeley Previously Published Works

Title

USP15 regulates dynamic protein-protein interactions of the spliceosome through
deubiquitination of PRP31

Permalink

https://escholarship.org/uc/item/8sj3b511

Journal
Nucleic Acids Research, 45(8)

ISSN
0305-1048

Authors

Das, Tanuza
Park, Joon Kyu
Park, Jinyoung

Publication Date
2017-05-05

DOI
10.1093/nar/gkw1365

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8sj3b511
https://escholarship.org/uc/item/8sj3b511#author
https://escholarship.org
http://www.cdlib.org/

4866—4880 Nucleic Acids Research, 2017, Vol. 45, No. 8
doi: 10.1093marlgkw1365

Published online 14 January 2017

USP15 regulates dynamic protein—protein interactions
of the spliceosome through deubiquitination of PRP31

Tanuza Das’', Joon Kyu Park?, Jinyoung Park', Eunji Kim?, Michael Rape3*,

Eunice EunKyeong Kim?" and Eun Joo Song'”

"Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5,
Seongbuk-gu, Seoul 02792, Korea, 2Biomedical Research Institute, Korea Institute of Science and Technology,
Hwarangno 14-gil 5, Seongbuk-gu 02792, Seoul, Korea, 3Department of Molecular and Cell Biology, University of
California, Berkeley, CA 94720, USA and “Howard Hughes Medical Institute, University of California, Berkeley,

Berkeley, CA 94720, USA

Received June 05, 2016; Revised December 26, 2016; Editorial Decision December 27, 2016; Accepted January 02, 2017

ABSTRACT

Post-translational modifications contribute to the
spliceosome dynamics by facilitating the physical re-
arrangements of the spliceosome. Here, we report
USP15, a deubiquitinating enzyme, as a regulator of
protein—protein interactions for the spliceosome dy-
namics. We show that PRP31, a component of U4
snRNP, is modified with K63-linked ubiquitin chains
by the PRP19 complex and deubiquitinated by USP15
and its substrate targeting factor SART3. USP15SART3
makes a complex with USP4 and this ternary com-
plex serves as a platform to deubiquitinate PRP31
and PRP3. The ubiquitination and deubiquitination
status of PRP31 regulates its interaction with the
U5 snRNP component PRP8, which is required for
the efficient splicing of chromosome segregation re-
lated genes, probably by stabilizing the U4/U6.U5 tri-
snRNP complex. Collectively, our data suggest that
USP15 plays a key role in the regulation of dynamic
protein—protein interactions of the spliceosome.

INTRODUCTION

Pre-mRNA splicing is catalyzed by one of the most complex
and dynamic macromolecular machines called the spliceo-
some which is assembled from five small nuclear RNAs
(snRNAs) and numerous proteins. This large ribonucleo-
protein (RNP) is assembled onto intron-containing mR-
NAs by the recognition of the 5 splice site by Ul snRNP
and the branch point by U2 snRNP (1,2). Upon formation
of the A complex, the U4/U6.U5 tri-snRNP complex is re-
cruited to generate the B complex. After rearrangements in
RNA-RNA and RNA-protein interactions, the Ul and U4
snRNAs and their associated proteins are released yield-

ing the catalytically activated spliceosome. The activated
spliceosome then catalyzes the excision of introns and the
ligation of exons. As such, the spliceosome undergoes rapid
but tightly regulated changes in its composition during its
catalytic cycle, with distinct proteins and RNAs associating
and dissociating at defined stages of the splicing reaction
(3,4). Proper pre-mRNA splicing is one of the most criti-
cal steps in gene expression, and defects in splicing are well
known as a common disease-causing mechanism in humans
(5). Although the detailed mechanism is not yet known, cell
cycle progression is closely related to RNA splicing. For ex-
ample, splicing regulators like SON and SR factor have been
shown to contribute to the precise splicing of cell cycle reg-
ulators (6-9). Moreover, recently, it has been reported that
many genes undergo cell cycle dependent alternative splic-
ing changes and that periodic alternative splicing is con-
trolled by CLK1 (10).

Post-translational modifications contribute to the
spliceosome dynamics by facilitating the physical rear-
rangements of the spliceosome (4,11-13), for example,
phosphorylation has an important role in the regulation of
the spliceosome (12,14). Ubiquitin modification is involved
in diverse cellular processes such as protein degradation,
regulation of cellular activity, localization and interaction
(15). Ubiquitin has seven lysine residues, K6, K11, K27,
K29, K33, K48 and K63 which result in the formation of
polyubiquitin chains. These chains are diverse in structure
and function depending on the lysine residue used. For
instance, K11- or K48-linked chains promote degradation
of ubiquitinated proteins by 26S proteasome (16). On
the other hand, K63-linked chains are not responsible
for proteolysis. Instead, they regulate protein localization
and assemble of DNA repair complexes as well as are
involved in signal transduction or kinase activation (17,18).
Recently, reversible ubiquitination has been shown to have
a critical role in regulating the spliceosome dynamics.
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For example, it has been shown in yeast extracts that
ubiquitination is required to assemble and disassemble the
U4/U6.U5S tri-snRNP complex through ubiquitin conju-
gation of PRP8 which is a component of the U5 snRNP
(11). Also we have reported that the modification of PRP3,
which is a component of the U4 snRNP, with K63-linked
ubiquitin chains by the PRP19 complex and USP4 with its
substrate targeting factor SART3 guides the rearrangement
of the complex resulting in an active spliceosome, and the
loss of USP4 impairs mitotic progression by interfering
with mRNA splicing, for example, of a-tubulin and Bubl
(19).

Because the spliceosome consists of >100 proteins and
needs tight regulation for its dynamics, we thought that
other proteins beside PRP3 might be reversibly modified
by ubiquitination and deubiquitination. Therefore, we have
been screening for other spliceosomal proteins that re-
quire ubiquitin-dependent regulation in mitotic progres-
sion. Here, we report that PRP31, which is a component
of the U4 snRNP, is another spliceosomal protein. It is
modified with K63-linked ubiquitin chains by the PRP19
complex and deubiquitinated by USP15 and its substrate
targeting factor SART3. SART3 mediates complex forma-
tion with USP15 and USP4, and this complex leads to si-
multaneous deubiquitination of the substrates PRP31 and
PRP3. In addition, the depletion of USP15 and USP4 in-
terferes with proper mRNA splicing of Bubl and a-tubulin
and chromosome segregation. We propose that PRP31 and
PRP3 serve as regulatory proteins in the rearrangements
of the spliceosome components by reversible ubiquitination
and deubiquitination.

MATERIALS AND METHODS
Cell culture and transfections

HeLa and HEK 293T cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
10% heat inactivated fetal bovine serum, penicillin (10
U/ml) and streptomycin (100 wg/ml). All cells were incu-
bated at 37°C in 5% CO,. Plasmids were transfected in
HEK 293T cells, using the calcium phosphate/DNA co-
precipitation method (20). Transfection in HeLa cells was
performed with the Effectene transfection reagent (Qiagen)
according to the manufacturer’s instructions.

Cloning and antibodies

USP15 and PRP31 genes were amplified by PCR and
cloned into the pCS2 expression plasmid, incorporating
HA, Myc or Flag tag on the N terminus. The catalyti-
cally inactive mutant of USP15%%A was made by mutat-
ing the Cysteine (TGT) at position 269 into an Alanine
(GCT) using a site directed mutagenesis kit (Stratagene).
For USP15Y4! and USP15Y412 linker 1 (amino acid 223
255) and linker 2 (amino acid 441-758) of USP15 were
swapped with linker 1 (amino acid 227-297) and linker 2
(amino acid 483-777) of USP4, respectively. Deletion mu-
tants of USP15, SART3 and PRP31 were generated by PCR
and cloned into the same vectors as described. Ubiquitin
and various mutants were cloned into pCS2 for expression
in human cells (11,16).
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The following antibodies were purchased and used for
immunostaining and western blotting: antibodies against
USP15 (Bethyl Laboratories Inc.), USP4 (Bethyl Labo-
ratories Inc.), SART3 (Bethyl Laboratories Inc.), B-actin
(Santa Cruz Biotechnology Inc.), Myc (Santa Cruz Biotech-
nology), HA (Santa Cruz Biotechnology), Flag (Sigma-
Aldrich), PRP31 (Sigma-Aldrich) and Alexa-488 or Alexa-
546 conjugated secondary antibodies (Invitrogen).

Protein purification and gel filtration chromatography

The human SART3 HAT domains (residues 1-691) and
DUSP-UBL domain of USPI15 (residues 1-226) were
cloned into pET-28a (Novagen) to generate N-terminal
histidine-tagged proteins. The N-domain (residues 1-333)
and C-domain (residues 85-499) of human PRP31 were
cloned into pET-32a (Novagen) as N-terminal histidine-
tagged thioredoxin fusion proteins. All proteins were ex-
pressed in Escherichia coli Rosetta (DE3) cells with induc-
tion by 0.5 mM isopropyl-B-D-thiogalactoside at 18°C for
18 h. Proteins in 50 mM Tris—HCI (pH 8.0) and 150 mM
NaCl buffer were purified with His-Trap affinity column
(GE Healthcare) eluted with 25-500 mM imidazole. Affin-
ity tags were removed with thrombin, and the resultant pro-
teins were then further purified with a Superdex 200 26/60
gel filtration column (GE Healthcare) which had been pre-
equilibrated with 50 mM Tris—HCl (pH 8.0) and 150 mM
NaCl.

For the separation of protein complexes, cell lysates over-
expressed with HA-SART3, Myc-USP4 and Flag-USP15
were co-fractionated by gel filtration with a Superdex 200
10/300 column (GE Healthcare) in a buffer containing 50
mM Tris—HCI (pH 7.4), 150 mM NaCl and 1 mM EDTA.
Molecular weight markers (Sigma-Aldrich) with a range of
66 000-443 000 Da were used for size calibration. Eluted
fractions (0.5 ml) were collected and aliquots were subject
to the SDS-PAGE and detected by western blotting.

GST pull down assay

GST-USP15'2%¢ and GST-USP4!"23° were coupled to glu-
tathione beads (Sigma) and incubated with SART3'-®! for
3 h at 4°C. Beads were washed with buffer containing 50
mM HEPES, pH 7.5, 150 mM NaCl, 1.5 mM MgCl,, 5mM
KCI and 0.1% Tween-20, and eluted with 2x SDS sample
buffer. Samples were separated by SDS-PAGE and detected
by Coomassie staining.

siRNA knockdown experiments

Three different siRNAs targeting three different regions of
the USP15 gene were used for the knockdown. USPI15-
1 (5-CUAUGGAAAUGAUGAAG-3) was designed to
target the 3’ UTR region of USP15, whereas USPI15-
2 (5-AGGAAUGAGAGGUGAAAUA-3) and USP15-3
(5-GCAGAUAAGAUGAUAGUUA-3') targeted the ORF
region.

The siRNA sequences used were 5-
CGAAGAAUGGAGAGGGAACA-3 for USP4,
and 5-GGAGACAGGAAAUGCCUUA-3 and 5-
GAUGUGGUGUCCUGAGAUA-¥ for SARTS3.



4868 Nucleic Acids Research, 2017, Vol. 45, No. 8

The siRNA sequence for the negative control was 5'-
CCUACGCCACCAAUUUCGU-3" which was used as a
mock transfection. All the siRNAs were transfected into
HeLa cells with Lipofectamine 2000 (Invitrogen) according
to the manufacturer’s instructions. Cells were harvested 48
h after the transfection.

His-ubiquitin pull-down assay

HeLa cells were transfected with pCS2-His-ubiquitin and
pCS2-tagged constructs as indicated. Nocodazole was
added to cells 24 h after transfection to a concentration of
100 ng/ml. Twenty-four hours after nocodazole treatment,
cells were resuspended in Buffer A (6 M guanidine-HCI,
0.1 M Na,HPO,/NaH,PO,4, 10 mM imidazole, pH 8.0) and
sonicated. Cell lysates were added to 50 wl of equilibrated
Ni-NTA agarose followed by incubation for 4 h at room
temperature. Beads were then washed twice with Buffer A,
followed by two washes with Buffer A/TI (1 vol of Buffer
A, 3 vol of Buffer TI (25 mM Tris—Cl, 20 mM imidazole
at pH 6.8)), and finally one wash with Buffer TI. The pro-
tein conjugates were eluted in 30 pl 2x laemmli/imidazole
(200 mM imidazole) and boiled at 95°C for 10 min. Elutes
were analyzed by western blotting. Even though Ni-pull
down was performed under denaturing condition, unmod-
ified proteins could also be purified in the pull down assay.
The unmodified proteins might be a result from short his-
tidine tracks in the proteins or property of proteins to bind
metals in IMAC (21).

Immunoprecipitation

Transfected HEK 293T or HeLa cells were harvested and
lysed in IP buffer (50 mM HEPES, pH 7.5, 150 mM NacCl,
1.5 mM MgCl,, 5 mM KCl, 0.1% Tween-20, 2 mM DTT
and protease inhibitor cocktail (Roche)). For single IP,
lysates were centrifuged at 12 000 rpm for 30 min at 4°C
and supernatants were incubated with anti-HA (Sigma) or
anti-Flag M2 agarose (Sigma) beads for 4 h at 4°C. For se-
quential IPs, cell lysates were immunoprecipiated with anti-
Flag M2 agarose beads (Sigma) and then incubated with
100 mg/ml 3x FLAG peptide (Sigma) in lysis buffer. After
elution with the FLAG peptide, eluted samples were used
for the second IP by anti-HA beads (Sigma). Beads were
washed with buffer containing 50 mM HEPES, pH 7.5, 150
mM NaCl, 1.5 mM MgCl,, 5 mM KClI, 0.1% Tween-20 and
2mM DTT and eluted with 2x SDS sample buffer. Samples
were analyzed and detected by western blotting.

Immunofluorescence analysis

HeLa cells were seeded on coverslips and transfected with
plasmids. After 48 h, cells were fixed with 4% formalde-
hyde, and incubated with anti-HA (Santa Cruz Biotechnol-
ogy) or anti-Myc (Santa Cruz Biotechnology) antibody, fol-
lowed by secondary goat anti-rabbit antibody coupled to
Alexa488 (Invitrogen) and goat anti-mouse antibody cou-
pled to Alexa546 (Invitrogen). The nucleus was stained with
DAPI (Invitrogen). Coverslips were mounted and fluores-
cence was visualized with 40 x magnification on a confocal

laser scanning microscope (Carl Zeiss, Inc.), and pictures
were analyzed with the ZEN 2009 software.

To count cells with mitotic defects, HeLa cells grown
on coverslips were transfected with the indicated siRNA
and plasmids for subsequent rescue. After fixation and
permeabilization, cells were stained with monoclonal anti-
B-tubulin-Cy3™ (Sigma) for 2 h, and the nucleus was
counterstained with DAPI. Cells with mitotic defects were
counted at 40x magnification with a fluorescence micro-
scope (Nikon eclipse TE 2000-U).

Isothermal titration calorimetry (ITC)

ITC measurements were done with a MicroCal iTC200 (Mi-
croCal, Northampton, MA, USA) at 25°C, and the data
were analyzed with the program ORIGIN 7.0. Protein sam-
ples were prepared in 50 mM Tris—HCI (pH 8.0) and 150
mM NaCl buffer. For binding of USP15 and SARTS3, the
purified DUSP-UBL domain of USP15 was concentrated
to 0.4 mM while the SART3 HAT domain was concentrated
to 0.02 mM with a Vivaspin concentrator (Vivaspin, Sato-
rious). In the case of the SART3 and PRP31 binding exper-
iment, the purified SART3 HAT domain was concentrated
to 0.2 mM and the N- and C-domains of PRP31 were con-
centrated to 0.01 mM.

Quantitative real time PCR analysis

RNA was isolated from nocodazole treated mitotic arrested
HeLa cells followed by knockdown of the indicated genes by
siRNA transfection (oligofectamine). RNA isolation was
performed with the RNeasy® mini kit (Qiagen). One mi-
crogram of total RNA sample was reverse transcribed in a
final volume of 20 wl using the Thermo Scientific DyNAmo
cDNA Synthesis Kit with a random hexamer primer set.
cDNA samples were diluted 20-fold and qPCR reactions
were done with 2x SYBR Green/Rox Master Mix (Thermo
Scientific), 200 nM primers and 100 ng of RNA. The exper-
iments were done in triplicate for each data point, and the
relative quantification in gene expression was determined
with the 244C method.

When primers were designed for qPCR, amplification of
both spliced (matured) and nonspliced (immature) mRNA
was taken into consideration. To amplify the region of
spliced mRNA, primers were designed to anneal the exon
junction with the exception of H2AX, which does not
possess introns. Primers used to amplify the spliced gene
were as follows: Bubl-F (Ex), CCATCAAGCCCAAGAC
TGAA; Bubl-R (Ex), TTTAGCATCATTCAGATCTC
CCT; a-tubulin-F (Ex), CTTACCTCGACTCTTAGCTT
GTC; a-tubulin-R (Ex), GGATGGAGATGCACTCACG;
H2AX-F, TCCCTTCCAGCAAACTCAAC and H2AX-
R, TCCAGTTCAGAAGCCAACG. On the other hand
to amplify intron containing nonspliced mRNA, primers
were designed to anneal to an exon as well as its neigh-
boring intron. Primers used to amplify a nonspliced gene
were as follows: Bubl-F (Ex), GAGATGCTCAGCAACA
AAC; Bubl-R (In), GACCACCTCAAACTACCTAG:; a-
tubulin-F (Ex) ACTTGGAACCCACAGTCATT and «-
tubulin-R (In) TGGAGGAGGGAGAGA AGGAC.



RESULTS

USP15 functions in the regulation of chromosome segrega-
tion

Previously, we reported that USP4 is a deubiquitinating en-
zyme (DUB) that regulates the activity and the composi-
tion of the spliceosome (19). Among the 100 or so DUBs
identified in humans, USP15 and USP11 are the only two
that have the same domain architecture as USP4 (22,23) and
they share sequence identities of about 60 and 49% with
USP4. It is worth noting that the sequence homology of the
DUSP-UBL domains of USP4 and USP15 is higher than
that of the catalytic domain (Supplementary Figure S1).
Because proteins with high sequence homology often have
similarities in function, we investigated whether USP15 has
any role in the regulation of mitosis.

To identify the function of USPI15, siRNA for USP15
was transfected into HeLa cells, and a mitotic phenotype
was observed after immunostaining with Cy3 labeled anti-
B-tubulin. The depletion of USP15 using three different
siRNAs targeting three different regions of the USP15 led
to chromosome missegregation and defects in the spindle
structure (Figure 1A, Supplementary Figure S2). In rescue
experiments using siRNA-resistant USP15, the spindle de-
fect was rescued by expression of USP15 wild type but not
by the catalytically inactive USP15¢%%°A (Figure 1B and C).
These results show that DUB activity is required for the role
of USPI15 in the control of chromosome segregation. Be-
cause depletion of USP4 resulted in spindle checkpoint by-
pass in the presence of taxol (19), we calculated the mitotic
index after co-depletion of USP4 and USP15. Depletion of
USP4 or USP15 led to spindle checkpoint bypass, and co-
depletion of both exhibited a slightly stronger phenotype
(Figure 1D). These data suggest that USP15 and USP4 are
involved in the same cellular pathway.

USP15 interacts with SART3

SART?3, a U4/U6 recycling factor, has been shown to be
a substrate targeting factor of USP4 (19,24,25). SART3
shuttles USP4 into the nucleus by nuclear localization se-
quence (NLS) (26), and is associated with USP15 to reg-
ulate H2B deubiquitination (27). The interaction analysis
showed that USP4 and SART?3 form a complex with the ma-
jority of the U4/U6-snRNP components such as PRP31,
PRP3 and PRP4 (28). Based on these facts, we hypothesized
that SART3 may serve as a substrate targeting factor for
both USP15 and USP4, and we examined the mitotic phe-
notype by the depletion of SART3. Similar to USP15, the
depletion of SART3 led to chromosome missegregation and
spindle defects (Supplementary Figure S3). These results
suggest that SART3 is also associated with chromosome
segregation. In previous studies, the interactions between
the purified truncation proteins of USP15 and SART3 were
analyzed with isothermal titration calorimetry (ITC) and
it is confirmed that the DUSP-UBL domain of USP15 in-
teracts with the HAT-C domain of SART3 in vitro (26,29).
Therefore, the interaction between SART3 and USP15 in
the cells was examined. The result from the coimmuno-
precipitation of USP15 with SART3 (Supplementary Fig-
ure S4A) was consistent with a previous report (27). The
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GST-pull down assay with the indicated purified proteins
showed that the DUSP-UBL domain of USP15 directly
interacted with SART3 (Supplementary Figure S4B) sim-
ilar to what was shown earlier (26,29). Next, to confirm
that the residues 1-226 of USP15 are sufficient for SART3
binding, we constructed truncations of USP15, USP15!-2%
and USP15%3%952 and performed immunoprecipitation. As
shown in Supplementary Figure S4C, SART3 interacted
with USP15'%? but not with USP1523%932_ Taken together,
these data show that USP15 interacts with SART3 directly
through the DUSP-UBL domains. To identify the regions
of SARTS3 responsible for the interaction with USP15, HA
tagged SART3 mutants were transiently overexpressed and
immunoprecipitated (Supplementary Figure S4D). Similar
to the previous reports (26,29), the result shows that the
residues 286-440 of SART3 in HAT-C were required for the
interaction with USP15 (Supplementary Figure S4E).

PRP31 is a substrate of USP15

Earlier, Song et al. performed siRNA screening to see
whether the depletion of spliceosomal proteins results in
similar mitotic defects as does loss of USP4 (19). The re-
sult showed that the loss of PRP4, PRP4B kinase, PRP31,
USP39 and Lsm2 induce mitotic defects. Since the deple-
tion of USP15 shows similar mitotic defects, we thought
that those spliceosomal proteins might be the substrates of
USP15 and tested whether they are a potential substrate of
USP15. As shown in Figure 2A and Supplementary Fig-
ure S5, only PRP31 showed high-molecular-weight forms in
the presence of ubiquitin which were significantly decreased
by coexpression with USP15, while PRPS, PRP4, PRP4B
kinase and USP39 did not. We further confirmed that the
modified forms of PRP31 represented a covalent modifica-
tion of PRP31 with ubiquitin using the denaturing NiNTA-
pull down assay and found that USP15 WT but not inac-
tive USP15“?%A Jed to deubiquitination of PRP31 in the
cell (Figure 2B). We then confirmed the interaction between
PRP31 and USP15 with immunoprecipitation (Figure 2C).
To examine whether PRP31 interacts directly with USP15,
glutathione beads immobilized with a GST-tagged DUSP-
UBL domain of USP15 was incubated with PRP31, which
was synthesized with the in vitro transcription/translation
(IVT/T) in the absence or presence of the SART3 HAT do-
mains. As shown in Figure 2D, the DUSP-UBL domain of
USP15 did not interact with PRP31. However, the DUSP-
UBL domain of USP15 interacted with PRP31 in the pres-
ence of SART3 (Figure 2D) indicating that the interaction
between PRP31 and USP15 was indirect but mediated by
SARTS3.

Because SARTS3 is involved in the regulation of pre-
mRNA splicing by recruiting the substrate PRP3 to USP4
(19), we considered the possibility of SART3 serving as a
substrate targeting factor of USP15 as well. Initially, we
examined the interaction between SART3 and PRP31. As
shown in Figure 2E, we found that SART3 interacted with
PRP31 by immunoprecipiation. To determine which re-
gion is required for the interaction between SART3 and
PRP31, truncated mutants of SART3 were overexpressed.
The interaction analysis with the truncated mutants of
SART3 revealed that amino acids 120-286 in the HAT-N
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Figure 1. USPI1S5 is required for proper chromosome segregation. (A) Mitotic spindle defects and chromosome missegregation in USP15 depleted cells.
HeLa cells were transfected with control siRNA or USP15 siRNA-1 and immunostained with anti-B-tubulin-Cy3™ (Sigma) monoclonal antibody. The
nucleus was counterstained with DAPI. The images were acquired with a confocal microscope. (B) The activity of USP15 is required for the control of
mitosis. HeLa cells were transfected with control siRNA or siRNA-1 against the 3’-untranslated region (UTR) of USP15 and stained as described in (A).
The number of mitotic cells with errors in chromosome segregation or spindle formation was counted at 40X magnification with a fluorescence microscope.
When indicated, cells were also transfected with vectors encoding siRNA-resistant USP15 or the catalytically inactive USP15€209A The data are shown as
the mean + S.D. from three independent experiments (n = 3; >500 cells per experiment; paired ¢-test *P < 0.05). (C) The depletion of USP15 by siRNA
was rescued by a vector encoding siRNA-resistant USP15. Cells were prepared as described in (B) and cell lysates were immunoblotted with anti-USP15
and anti-HA. (D) Co-depletion of USP15 and USP4 showed a synergistic effect in the mitotic defect. HeLa cells were transfected with USP15 siRNA,
USP4 siRNA, or both of them. Forty-eight hours after the transfection, cells were treated with 100 nM taxol, and 24 h later, the percentage of cells arrested
prior to mitosis (blue bar) and the number of cells unable to maintain a spindle checkpoint arrest (red bar) were determined. Data are shown as the mean

=+ S.D. from three independent experiments (n = 3; >500 cells per experiment; paired t-test *P < 0.05, **P < 0.01).

domain of SART3 were required for the interaction with
PRP31 (Figure 2F). To investigate whether this interaction
is direct, we generated PRP31-N domain (residues 1-333)
and PRP31-C domain (residues 85-499) proteins based on
the stabilities of the proteins for ITC measurements. The
SART3 HAT domains did not interact with the PRP31-
N domain whereas the PRP31-C domain had a significant
endothermic-binding curve (Supplementary Figure S6A).
The one-site binding analysis of the data yields an n of 1.07
and Kp of 5.16 wM. These data indicate that the SART3
HAT-N domain and PRP31-C domain are required for the
interaction (Supplementary Figure S6B).

Next, we questioned the cellular localization of SARTS3,
PRP31 and USP15. By performing immunofluorescence
of Hela cells transfected with these genes, we found that

SART3 localized only in the nucleus whereas USP15 lo-
calized in both the nucleus and cytoplasm (Supplemen-
tary Figure S7A). Consistent with our recent study (26) co-
expression of SART3 with USP15 led to the nuclear translo-
cation of USP15, which suggests that SART3 has a signifi-
cant effect on USPI15 localization. This is in line with the
report by Long et al. in which overexpression of SART3
enhanced localization of USP15 to the nucleus (27). Con-
versely, PRP31 and SART3 were colocalized in the nucleus
(Supplementary Figure S7B). We then examined the local-
ization of PRP31 and USP15 when cells were coexpressed
with PRP31 and USP15. PRP31 localized in the nucleus
and USP15 localized in the cytoplasm, shown in Figure
2G (upper panel), indicating that PRP31 itself did not have
any direct effect on USP15 localization. However, the over-
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Figure 2. USP15 deubiquitinates PRP31. (A) Expression of ubiquitin triggers the modification on PRP31 in HeLa cells. Myc-PRP31 was coexpressed with
ubiquitin and either USP15 or USP15C2%9A in HeLa cells and was analyzed for modifications by anti-Myc western blotting. (B) USP15 deubiquitinates
PRP31 in cells. Myc-PRP31 was coexpressed with His-ubiquitin together with USP15 or USP15¢2%°A | and covalently modified proteins were purified
on NiNTA-agarose under denaturing conditions. Ubiquitinated PRP31 was detected by anti-Myc antibodies. (C) USP15 binds to PRP31 in cells. HA-
USP15 and Myc-PRP31 were coexpressed in Hela cells and purified on HA-agarose. Coprecipitated Myc-PRP31 was immunoblotted with anti-Myc
antibodies. (D) PRP31 interacts with USP15 through SART3. Control GST or GST-USP15!226 was immobilized on glutathione beads and incubated
with in vitro transcribed and translated Myc-PRP31 in the presence or absence of purified SART3!"%!. Bound proteins were separated in SDS-PAGE
and detected by western blotting and Coomassie staining. (E) SART3 binds PRP31 in cells. HA-SART3 and Myc-PRP31 were coexpressed in HeLa
cells and purified on HA-agarose. Coprecipitated Myc-PRP31 was immunoblotted with anti-Myc antibodies. (F) SART3 interacts with PRP31 through
HAT-N domain. HeLa cells were transfected with Myc-PRP31 and HA-tagged truncations of SART3. HA-tagged truncations of SART3 were purified on
HA-agarose, and coprecipitating PRP31 was detected by anti-Myc antibodies. (G) SART3 triggers the colocalization of USP15 and PRP31. HeLa cells
were transfected with HA-USP15 and Myc-PRP31 in the absence or presence of YFP-SART3. The cells were immunostained with anti-HA and anti-Myc
antibodies followed by Alexa488-conjugated anti-rabbit antibodies and Alexa546-conjugated anti-mouse antibodies. The nucleus was stained with DAPI.
The intracellular localization of Myc-PRP31 (green), HA-USP15 (red) and YFP-SARTS3 (yellow) was analyzed by confocal microscopy. The percentage

of USPI15 expressing cells in the cytoplasm (blue bars) or nucleus (red bars) were quantitatively analyzed when cells were co-transfected with or without
SARTS3.

expression of SART3 induced the nuclear localization of
USP15, consequently leading to colocalization of USPI15
with PRP31 (Figure 2G, lower panel). Additionally, the
quantitative analysis clearly showed that the translocation
of USP1S5 into the nucleus is dependent on SART3 (Figure
2G, right graph). Together, these data indicate that SART3
serves as a substrate targeting factor which recruits USP15
to its substrate PRP31.

PRP19 ubiquitinates PRP31

Subsequently, we searched for the E3 ligase which catalyzes
the ubiquitination of PRP31. One strong candidate is the
PRP19 complex (NTC), which consists of 30 proteins and
forms an integral part of the spliceosome (2), and Prpl9

has already been reported as an E3 ligase for PRP3 during
USP4 mediated deubiquitination (19). We tested whether
the PRP19 can ubiquitinates other spliceosomal proteins.
As shown in Supplementary Figure S5, the overexpression
of PRP19 strongly triggered the ubiquitination of PRP31
(Figure 3A) and PRP4 (Supplementary Figure S5). On the
other hand, ubiquitination of PRPS§ at the C-terminal by
PRP19 wasnot as significant and PRP4B kinase and USP39
were not ubiquitinated by PRP19. Ubiquitinated PRP31
by PRP19 was reversed by USP15 WT, while the inactive
mutant USP15%2%4 did not show any effect (Figure 3B).
The interaction between PRP31 and PRP19 was addition-
ally confirmed by immunoprecipitation (Figure 3C), how-
ever, the interaction between the two was not direct (data
not shown). These data suggest that PRP19 modifies sev-
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Figure 3. PRP19 ubiquitinates PRP31. (A) Expression of PRP19 triggers the ubiquitin modification on PRP31 in cells. Myc-PRP31 was expressed with
His-ubiquitin in the absence or presence of PRP19, and covalently modified proteins were purified on NiNTA-agarose under denaturing conditions.
Ubiquitinated PRP31 was detected by anti-Myc antibodies. Intensity of ubiquitinated PRP31 bands from western blotting was quantified and analyzed.
The data are shown as the mean £ S.D. from three independent experiments (n = 3; paired ¢-test *P < 0.05, **P < 0.01). (B) USP15 counteracts the
ubiquitination by PRP19. Myc-PRP31 was coexpressed with His-ubiquitin and PRP19 in the presence or absence of USP15. Covalently modified proteins
were purified on NiNTA-agarose under denaturing conditions, and ubiquitinated Myc-PRP31 was detected by anti-Myc antibodies. (C) PRP19 interacts
with PRP31 in cells. HeLa cells were transfected with HA-PRP19 and Myc-PRP31 as indicated. HA-tagged PRP19 was purified on HA-agarose, and
coprecipitated PRP31 was detected by anti-Myc antibodies. (D) PRP19 promotes the modification of PRP31 with K63-linked ubiquitin chains in cells.
Myc-PRP31 and PRP19 were coexpressed in HeLa cells, as indicated. The coexpression was performed in the presence of His-wt-ubiquitin, His-ubi-
K11R (which has Lys11 mutated to Argl1), His-ubi-K48R (which has Lys48 mutated to Arg48) or His-ubi-K63R (which has Lys63 mutated to Arg63).
Ubiquitin conjugates were purified on NiNTA-agarose under denaturing conditions, and ubiquitinated PRP31 was detected by anti-Myc antibodies. (E)
Ubiquitination of PRP31 does not promote proteasomal degradation of PRP31. Myc-PRP31 was co-expressed with ubiquitin and USP15 in HeLa cells.
The cells were treated with either DMSO (control) or MG132 (10 wM) for 4 h. Cell lysates were immunoblotted with anti-Myc antibodies, and B-actin
was used as a loading control.

eral components of the U4/U6.U5 tri-snRNP complex, and
PRP31 in particular is regulated by reversible ubiquitina-
tion by PRP19 and USP15.

To determine the functional role of the reversible ubiq-
uitination of PRP31, we analyzed the chain specificity of
PRP31 using ubiquitin mutants in which a Lys residue that
is used for ubiquitin chain formation was replaced by an
Arg residue. PRP19 failed to ubiquitinate PRP31 in the
presence of K63R ubiquitin mutants, even though there was
no changes in K11R or K48R mutants overexpressed cells
compared to control (Figure 3D). Since the K63-ubiquitin
chain usually does not associate with proteasomal degrada-
tion (15), we examined whether deubiquitination by USP15

has any effect on the cellular level of PRP31. Proteasome
inhibitor MG132 did not show any alteration in the abun-
dance of the PRP31 level (Figure 3E). This suggests that
ubiquitination and deubiquitination of PRP31 are modiied
by K63-linked chains in a nonproteolytic manner.

USP1S5 shows substrate preference for PRP31

Next, we examined by Ni-NTA pull-down assay whether
USP15 has any cross reactivity with USP4 and found that
ubiquitination of PRP31 was efficiently disassembled by
USP15 but not by USP4 (Figure 4A). PRP3 was deubiq-
uitinated by USP4 consistent with a previous report but
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Figure 4. USP15 shows substrate preference for PRP31. (A) PRP31 is not deubiquitinated by USP4. Myc-PRP31 was expressed with His-ubiquitin, and
either USP15 or USP4, and covalently modified proteins were purified on NiNTA-agarose under denaturing conditions. Ubiquitinated PRP31 was detected
by anti-Myc antibodies. Intensity of ubiquitinated PRP31 bands from western blotting was quantified and analyzed. The data are shown as the mean +
S.D. from three independent experiments (7 = 3; paired z-test *P < 0.05). (B) PRP3 is not deubiquitinated by USP15. Myc-PRP3 was expressed with
His-ubiquitin, and either USP15 or USP4, and covalently modified proteins were purified on NiNTA-agarose under denaturing conditions. Ubiquitinated
PRP3 was detected by anti-Myc antibodies. Intensity of ubiquitinated PRP3 bands from western blotting was quantified and analyzed. The data are shown
as the mean £ S.D. from three independent experiments (n = 3; paired z-test *P < 0.05). (C) USP15 shows substrate preference through the linker 1 region.
Myc-PRP31 was coexpressed with His-ubiquitin, and USP15, USP4, or swap mutants, USP15Y4!1 and USP15Y42, Covalently modified proteins were
purified on NiNTA-agarose under denaturing conditions and ubiquitinated Myc-PRP31 was detected by anti-Myc antibodies. (D) USP15Y4L! interacts
with PRP31. HeLa cells were transfected with HA-USP15 or USP15Y4L! and Myc-PRP31 as indicated. HA-tagged USP15 was purified on HA-agarose
and coprecipitated PRP31 was detected by anti-Myc antibodies. (E) USP15 and USP15Y4! show similar activity in the cleavage of ubiquitin chains.
Cells lysates overexpressed with pCS2 vector, HA-USP15 or HA-USP15Y4L! were purified on HA-agarose. Precipitated beads were incubated with K63-
linked ubiquitin chains (UB,.7, Boston Biochem) at 30°C for 90 min. The reactions were stopped and detected by anti-ubiquitin antibodies. (F) PRP31 is
deubiquitinated by USP4 in the presence of PRP19. Myc-PRP31 was expressed with His-ubiquitin, PRP19 and USP4, and covalently modified proteins
were purified on NiNTA-agarose under denaturing conditions. Ubiquitinated PRP31 was detected by anti-Myc antibodies. Intensity of ubiquitinated
PRP31 bands from western blotting was quantified and analyzed. The data are shown as the mean + S.D. from three independent experiments (7 = 3;
paired z-test *P < 0.05, **P < 0.01). (G) PRP3 is deubiquitinated by USP15 in the presence of PRP19. Myc-PRP3 was expressed with His-ubiquitin,
PRP19 and USP15, and covalently modified proteins were purified on NiNTA-agarose under denaturing conditions. Ubiquitinated PRP3 was detected by
anti-Myc antibodies. Intensity of ubiquitinated PRP3 bands from western blotting was quantified and analyzed. The data are shown as the mean + S.D.
from three independent experiments (n = 3; paired ¢-test *P < 0.05, **P < 0.01).
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not by USP15 (Figure 4B). To identify the region that
is responsible for the substrate recognition, we compared
the sequences. The comparison suggested that two linker
regions (Supplementary Figure S8) may have a role in
the substrate recognition because sequence similarity of
these regions is lower than others. The linkers 1 and 2 of
USP15, which are a variable region compared to USP4,
were replaced by those of USP4, respectively (referred to
as USP15Y4L1 and USP15Y4L2 hereafter) (Supplementary
Figure S8). USP15Y4L2 deubiquitinated PRP31 similar to
USP15, but USP15Y#! did not although USP15Y4-! had
no effect on the interaction with PRP31 (Figure 4C and
D). We examined further whether the enzymatic activity of
USP15Y4H js hampered. USP15 and USP15Y4H! were over-
expressed and then purified on HA agarose. Immunopre-
cipitated USP15 and USP15Y4:! were incubated with K63-
linked ubiquitin chains. The results show that USP15Y4!
was able to disassemble K63-linked ubiquitin chains, and
the activity was comparable to USP15 (Figure 4E). These
data suggest that the linker 1 region is important for the
substrate recognition of USP15.

DUBs are known to be regulated by not only substrate
recruitment but also by multiple mechanisms such as DUB
recruitment factors, substrate-mediated regulation, activity
modulation by external factors, post translational modifi-
cations and so on (30). Therefore, we investigated whether
USPI5 retains its substrate preference in the presence of E3
ligase. When PRP31 was ubiquitinated by PRP19, PRP31
was deubiquitinated by USP4 (Figure 4F). PRP3 was deu-
biquitinated by USPI15 in the presence of PRP19 (Figure
4G). These findings suggest that USP15 deubiquitinates
PRP3 as well as PRP31 when they are ubiquitinated by
E3 ligase although USP15 may have more preference for
PRP31.

USP15 and USP4 form a complex with SART3

Since SART3 serves as a substrate targeting factor for both
USP15 and USP4 and the substrates for the two DUBs are
closely related, we tested whether these three proteins form
a complex. We found that USP15 interacts with both over-
expressed (Figure 5A) and endogenous USP4 (Figure 5B).
To examine whether USP15 interact with USP4 directly, we
first carried out an ITC experiment using the DUSP-UBL
domains of the two proteins. As shown in Supplementary
Figure S9A, there was no binding between the two. We fur-
ther investigated the possibility of USP15 interacting with
other parts of USP4 using a GST-pull down assay. However,
when full length USP4 synthesized with IVT/T was used,
there was no binding (Supplementary Figure S9B) suggest-
ing that the interaction between USP15 and USP4 is indi-
rect. Next we considered the possibility of SART3 function-
ing as a platform for the two proteins, since SART3 is a di-
rect interactor of both USP15 and USP4. Consistent with
our prediction, SART3 interacted with endogenous USP4
and USP15 (Figure 5C). To examine the effect of endoge-
nous SART3, the interaction between USP4 and USP15
was examined by immunoprecipitation after depletion of
SART?3 using siRNA. The depletion of SART3 hampered
the interaction between USP15 and USP4 (Figure 5D and
E). We next examined whether SART3 forms a complex

with USP15 and USP4 simultaneously using sequential im-
munoprecipitation. As shown in the first IP of Figure 6A,
SART?3 and USP4 were retained by USP15 immunoprecip-
itation. In the second IP using anti-HA beads after elution
with FLAG peptides, USP4 was still retained in the SART3
complex (Figure 6A, second IP). To present more direct ev-
idence of a USP15-SART3-USP4 ternary complex forma-
tion, we overexpressed three differently tagged interacting
partners (HA-SART3, Myc-USP4 and Flag-USP15) and
lysates were fractionated by gel filtration with a Superdex
200 10/300 column and compared to a molecular weight
marker. The molecular weight of SART3, USP4 and USP15
is about 110, 109 and 112 kDa, respectively, and SART?3 is
known to occur as a dimer in the cell (26,29). As shown in
Figure 6B, HA-SART?3 was present in many fractions with a
corresponding molecular weight higher than 200 kDa; how-
ever, Myc-USP4 and Flag-USP15 appeared mostly in the
fractions between 13 and 17. In the immunoprecipitation
by anti-HA agarose using these fractions, the three proteins
were co-precipitated in fraction 14, and the corresponding
molecular weight was ~440 kDa (Figure 6C). Taken to-
gether, the gel filtration analyses confirmed that USP15-
SART3-USP4 made a complex in the cell. Moreover, we
found that USP15 and USP4 deubiquitinated substrates
PRP31 and PRP3 simultancously (Figure 6D). These find-
ings suggest SART3 binds to both USP15 and USP4, and
this may lead to deubiquitination of PRP31 and PRP3 si-
multaneously.

We then examined whether complex formation has any
effect on the enzymatic activity. USP15 was purified on HA
agarose in the presence of SART3 WT or SART3705-93 and
then incubated with K63-linked ubiquitin chains. Figure 6E
shows that USP15 disassembled the K63-ubiquitin chains
well; however, there was no big difference with or with-
out SART3 (Figure 6E compare lanes 3 and 4). It is likely
that endogenous SARTS3 exists, and it already forms a com-
plex with USP15 in the cell. However, the activity decreased
when SART3 was mutated because it could not form a com-
plex with USP15 and USP4. These data suggest that com-
plex formation of USP15 and USP4 stimulates the enzy-
matic activity of USP15 and possibly USP4.

USP15-SART3-USP4 complex facilitate ubiquitin depen-
dent regulation of RNA splicing

Ubiquitination and deubiquitination of the spliceosomal
proteins are involved in the spliceosome activation through
the regulation of the interaction between the spliceosomal
proteins (11,19). It has been shown that the ubiquitin mod-
ification of PRP3 by USP4 and PRP19 regulates the inter-
action with U5 component PRP8 and is important for the
assembly and stability of the U4/U6.U5 tri-snRNP com-
plex (19). Being similar to USP4, the depletion of USP15
results in mitotic defects as seen in Figure 1, we investigated
whether USP15 has any effect on the pre-mRNA splicing.
The abundance of mature mRNA and pre-mRNA of Bubl
and a-tubulin, which are spindle checkpoint components,
in USP4 or USP15 depleted cells was determined by qRT-
PCR with primers spanning exon-junctions or primer pairs
annealing to an exon and its neighboring intron. Consis-
tent with our previous study (19), the loss of USP4 reduced
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Figure 5. SART3 binds USP4 and USPI15. (A) USP15 interacts with USP4 in cells. HeLa cells were transfected with Myc-USP4 and HA-USP15. HA-
USP15 was purified on anti HA-agarose, and coprecipitating Myc-USP4 was detected by anti-Myc antibodies. (B) Endogenous USP15 coprecipitates
with endogenous USP4 and SART3. Endogenous proteins in HeLa cells were precipitated with control IgG or anti-USP15 antibodies, and coprecipitated
proteins were detected by anti-USP15, anti-USP4 or anti-SART3 antibodies. (C) SART3 binds USP4 and USP1S5 in cells. HA-SART3 transfected into
HelLa cells was purified on HA-agarose, and coprecipitated proteins were detected by anti-USP4 or anti-USP15 antibodies. (D) The interaction between
overexpressed USP15 and USP4 decreases in the depletion of SART3. HeLa cells were transfected with control siRNA or SART3 siRNA, and then
transfected with HA-USP4 and Flag-USP15 after 24 h of siRNA transfection. HeLa cells were purified on Flag-agarose, and coprecipitated proteins were
detected by anti-HA or anti-Flag antibodies. (E) The interaction between endogenous USP15 and USP4 decreases in the depletion of SART3. HelLa
cells were transfected with control siRNA or SART3 siRNA and endogenous proteins in HeLa cells were precipitated with control IgG or anti-USP15
antibodies. Coprecipitated proteins were detected by anti-USP15, anti-USP4 or anti-SART3 antibodies.

the mRNA splicing of Bubl and a-tubulin. Only the spliced
mature mRNAs of Bubl and a-tubulin but not their pre-
mRNAs were downregulated by the depletion of USP15
(Figure 7A). In contrast, the mRNA level of H2AX, which
does not possess any introns, did not change by the deple-
tion of USP15. This result implies that USP15 is required to
ensure the efficiency of splicing, at least for a few mRNAs
in cells, which is required for the regulation of chromosome
segregation.

To investigate whether the role of USP15 in mRNA splic-
ing is related with ubiquitination and deubiquitination of
PRP31, we examined the interaction between PRP31 and
PRPS8 in the presence or absence of ubiquitin because PRPS,
which is a component of the U5 snRNP, is the acceptor of
the ubiquitin chain regulating the assembly and disassembly
of the U4/U6.US5 tri-snRNP complex (11,19). PRP31 inter-
acted with the JAMM domain of PRP8 which was slightly
increased in the presence of ubiquitin (Figure 7B). More-
over, addition of PRP19 increased the interaction between
PRP31 and JAMM domain of PRP8 (Figure 7B). And then
we examined whether deubiquitination by USP15 have an
effect on the interaction. The addition of USP15 eliminated

the interaction between PRP31 and the PRP8 JAMM do-
main, and co-overexpression of USP15 and USP4 accel-
erated this dissociation (Figure 7C). These results suggest
that the interaction between PRP31 and PRPS is dependent
on the ubiquitination status of PRP31, and this interaction
could possibly regulate the stabilization of the U4/U6.US
tri-snRNP complex.

DISCUSSION

It is well known that the formation of the U4/U6.US tri-
snRNP complex of spliceosome requires massive remodel-
ing and the post-translational modifications as well as their
reversibility of core components have been recognized as
driving forces for the spliceosome dynamics (1,3,31). How-
ever, the detailed molecular mechanisms of how these mod-
ifications of spliceosomal proteins contribute to the assem-
bly and disassembly of the U4/U6.US tri-snRNP complex
are not fully understood. Therefore, the discovery of new
post-translational modifications of the spliceosome would
provide new regulatory mechanisms for spliceosome acti-
vation.
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Figure 6. USP4 and USP15 form a complex with SART3. (A) USP15, USP4 and SART3 form a complex in the cell. For sequential IP, cell lysates
overexpressed with HA-SARTS3, Flag-USP15 and Myc-USP4 were first purified on Flag-agarose. After elution with FLAG peptides, eluted samples were
immunoprecipitated with anti-HA agarose. Coprecipitated proteins were detected by western blotting. (B) Cell lysates overexpressed with HA-SARTS3,
Flag-USP15, and Myc-USP4 were fractionated by gel filtration with a Superdex 200 16/60 column (GE Healthcare Life Sciences). Molecular weight
markers with a range of 66 000-443 000 daltons for size calibration were indicated. All fractions were analyzed by western blotting. (C) Fractions 8, 12, 14,
16 and 20 were immunoprecipitated with anti-HA agarose. Coprecipitated proteins were detected by western blotting. (D) USP15 and USP4 simultaneously
deubiquitinate PRP3 and PRP31 modified by PRP19. HA-PRP3 and Myc-PRP31 were coexpressed with His ubiquitin, PRP19, and either USP15, USP4,
or both of them. Covalently modified proteins were purified on NiNTA-agarose under denaturing conditions. Ubiquitinated PRP31 and PRP3 were
detected by anti-Myc or anti-HA antibodies, respectively. (E) DUB complex is more active in cleavage of ubiquitin chains. Cells lysates overexpressed
with Flag-USP15, and either HA-SART3 or HA-SART3795-93 were first purified on Flag-agarose. After elution with FLAG peptides, eluted samples
were incubated with K63-linked ubiquitin chains (UB;.7, Boston Biochem) at 30°C for 90 min. The reactions were stopped and detected by anti-ubiquitin
antibodies. Left lane indicates Ub2-7 input. Intensity of monoubiquitin versus ubiquitin 2-5 chains from western blotting was quantified and analyzed.
The data are shown as the mean + S.D. from three independent experiments (n = 3; paired ¢-test **P < 0.01).

The PRP19 complex has been known to be required for
the stable association of U5 and U6 snRNP after the dis-
sociation of U4 snRNP for quite some time (61). But, it
is only recent that it has an E3 ligase activity, and PRP3
is identified as the first substrate (19). The PRP19 complex
may well ubiquitinate other spliceosomal proteins, and here
we identify PRP31 and PRP4 as additional substrates. Our
data show that ubiquitination of PRP31 increases its affin-
ity towards the JAMM domain of U5 component PRPS,
and conversely the addition of USPI5 attenuates the in-
teraction between PRP31 and PRP8 through deubiquitina-
tion of PRP31. Since another post-modification of PRP31,
namely phosphorylation by PRP4 kinase, is shown to be re-
quired for the assembly of the tri-snRNP complex (14), and
the depletion of PRP31 results in the accumulation of the
U4/U6 di-snRNP complex (62), post-translational modifi-

cations of PRP31 seem to be important in modulating the
interactions in snRNP complexes during the catalytic cy-
cle of the spliceosome. Similar to PRP3, the ubiquitinated
PRP31 is expected to interact with the PRP8 JAMM do-
main (19). This domain lacks deubiquitinating activity (32),
but is known to interact with ubiquitin conjugates, and its
interaction is important for the assembly and disassembly
of U4/U6.U5 tri-snRNP (11). PRP8 is known to regulate
the Brr2 activity through the insertion of the C-terminal tail
at the Jabl domain into the Brr2’s RNA binding tunnel to
prevent premature U4/U6 unwinding (33). These all sup-
port the idea that PRPS regulates the assembly and disas-
sembly of the U4/U6.US tri-snRNP complex by the inter-
action with ubiquitinated proteins. Together with observa-
tions from other reports, our data suggest that modification
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Figure 7. USP15 and USP4 facilitate ubiquitin dependent regulation of RNA splicing. (A) USP15 is required for the splicing of Bubl, a spindle checkpoint
component. HeLa cells were transfected with siRNAs against USP15, USP4 or both of them. Forty-eight hours after transfection, cells were arrested in
mitosis with nocodazole. The abundance of spliced mRNA and nonspliced pre-mRNA for the chromosome segregation regulated genes Bubl and a-
tubulin was determined by quantitative real time PCR. Primers spanning exon-junctions or annealing to an exon and its neighboring intron were used
for qRT-PCR to detect the spliced mRNA and nonspliced pre-mRNA, respectively. H2AX, which does not possess any intron, was used as a control for
proficient splicing Three independent qRT-PCR experiments were performed for each genes. (B) Ubiquitinated PRP31 is recognized by the JAMM domain
of PRPS, which is a U5 spliceosome component. HA-tagged JAMM domain of PRP8 and Myc-PRP31 were overexpressed in HeLa cells with or without
ubiquitin and PRP19. Proteins were purified on HA-agarose bead and coprecipitating PRP31 was detected by anti-Myc antibodies. (C) USP15 and USP4
induce the dissociation of PRP31 from the PRP§ JAMM domain. Myc-PRP31 and HA-PRP8 JAMM domain were overexpressed in HeLa cells in the
presence of Flag-USP15 or Myc-USP4 or both of them. Coimmunoprecipitated PRP31 was detected by anti-Myc antibodies followed by purification on
HA-agarose. (D) Working model of Uspl5 and Usp4 mediated regulation of the spliceosome. Both Prp31 and Prp3, the U4/U6 snRNP components,
are ubiquitinated by Prp19 with K63-linked ubiquitin chain. Ubiquitinated Prp31 and Prp3 in turn are recognized by U5 snRNP component Prp8 via
its JAMM domain, and this may help the formation of the stabilized U4/U6.US tri-snRNP complex. Followed by successful docking of the U4/U6.US
tri-snRNP complex at the spliceosome, Prp31 and Prp3 are deubiquitinated by the Uspl5-Sart3-Usp4 complex, thereby decreasing the affinity towards
Prp8 possibly resulting in the dissociation of the U4 snRNA from the tri-snRNP complex. Release of U4 snRNP facilitates pre-mRNA splicing of cell
cycle regulatory genes, especially Bubl and a-tubulin, by the active spliceosome complex.

of PRP31 by reversible ubiquitination possibly contributes
to the remodeling of the U4/U6.US tri-snRNP complex.
Recent studies have shown that splicing regulators con-
tribute to the precise splicing of cell cycle regulators. SON,
a large Ser/Arg (SR)-related protein, acts as a coactivator
for efficient RNA processing of cell cycle related genes with
weak splice sites and controls cell cycle progression by coor-
dinated regulation of RNA splicing (6). Other SR proteins

such as SRSF2 and SRSF3 have a key role in cell cycle reg-
ulation and apoptosis in cancer cells (7,8). A single muta-
tion of TgRRM1 arrests in the G1 phase by interaction with
U4/U6.U5 tri-snRNP (9). Moreover, many genes undergo
cell cycle dependent alternative splicing changes, and peri-
odic alternative splicing is controlled by CLK 1 (10). Several
observations have shown more close connections between
the spliceosome and mitosis. Depletion of spliceosome com-



4878 Nucleic Acids Research, 2017, Vol. 45, No. 8

ponents induces prometaphase delay and chromosome mis-
alignment (34). Sister chromatid cohesion, which is an es-
sential process for segregation of the chromosome, has been
reported to be highly affected by the splicing machinery. De-
pletion of PRP19 (35) and PRPS (36), which are required
for the stabilization of the U4/U6.US tri-snRNP complex
by PRP31 ubiquitination in our study result in premature
loss of sister chromatid cohesion. Moreover, the direct func-
tion of the PRP19 complex in the mitotic spindle assembly
has been reported (37). Although we showed a defect in the
mRNA splicing of cell cycle related genes such as Bubl and
a-tubulin by the depletion of USP15, further studies on the
link between ubiquitination and mRNA splicing will con-
tribute to a better understanding of the regulation of mito-
sis by the spliceosome.

Among the one hundred or so DUBs identified in hu-
mans, some share similarities in their sequence and some in
their function. For example, USP33 and USP20 (38), USP5
and USP13 (39), and USP12 and USP46 (40-42) share se-
quence homology with each other. USP33 and USP20 serve
as regulators for the recycling and resensitization of the
B2 adrenergic receptor (38), while USP12 and USP46 reg-
ulate histone deubiquitination (40). In the case of USP15
and USP4, in addition to being involved in many inde-
pendent signaling pathways such as Parkin-mediated mi-
tophagy (43), T-cell activation (44), Nrf2 (45), NF-kB (46),
COP9 signalsome (47,48), histone H2B (27) and p53 (49),
the two DUBs share functional similarities. For example,
they are involved in the TGF-f signaling pathway; USP15
deubiquitinates and stabilizes TGF-B receptor I (50) or
receptor-activated SMADs (51), while USP4 regulates the
signaling pathway of TGF-B receptor I and is associated
with a poor prognosis in breast cancer (52). They also are
associated with RIG-I mediated antiviral signaling through
the deubiquitination of E3 ligase Trim25 (53) or RIG-I
(54,55), respectively. Our results here show yet another func-
tional similarity of the two DUBs. However, this time the
two appear to perform their functions as one complex. The
knockdown of the two DUBs exhibited a slightly stronger
phenotype for mitotic checkpoint bypass than the knock-
down of each DUB alone (Figure 1D), and co-expression
of the two increased the dissociation of PRP31 from PRPS§
(Figure 7C) suggesting that the complex of USP15 and
USP4 may be more active and efficient than each DUBs
alone. It is worth noting that SART3 is crucial in form-
ing the complex (Figure 5D), and the binding stoichiometry
and affinity for the two DUBs are similar (26,29). Because
SART3 forms a dimer (26), it could bind the two DUBs
simultaneously, and may well serve as a platform for both
USP15 and USP4 at the same time.

SART?3 has been stated mostly as a U4/U6 recycling fac-
tor (24), but our data show that SART3 serves as a substrate
targeting factor as well as acts as a platform for USP15 and
USP4 binding. The relationship between these two roles is
not clear yet, but it is quite possible that they are connected
to each other. At the moment it is not clear yet when and
how SART3 is recruited to the spliceosome, Makarov et al.
reported the presence of SART3 in the spliceosomal inter-
mediate complex, which is the complex prior to spliceo-
some activation, using proteomics analysis (56). This sug-
gests that SART3 not only regulates U4/U6 recycling after

splicing but also has a role before spliceosome activation.
For the dual function of SART3, USP15 and USP4 might
be able to dissociate from SART3 by some kind of modifi-
cation on USP15 or USP4 themselves. Interestingly, mostly
recently USP4 is reported to be auto-deubiquitinated to
recruit CtIP and promote DNA repair (57,58), thus such
modification of USP15 or USP4 could possibly regulate
the interaction with SART3. An alternative model might
be that the complex between USP15 and SART3 is consti-
tutive, but USP15 or USP4 catalytic activity can be regu-
lated post-translationally in a manner that is coupled to the
status of spliceosome assembly/disassembly. This could be
through a modification or adjusting the binding partner like
other DUB’s regulation (59,60).

In this study, we showed that USP15 has a substrate pref-
erence for PRP31. However, USP15 deubiquitinated PRP3
in the presence of E3 ligase. These data indicate that the sub-
strate preference of USP15 decreases when the substrate is
ubiquitinated by E3 ligase. Although we are not able to ex-
plain this phenomenon fully in this study, it is possible that
the ubiquitinated substrate may have an effect on the cat-
alytic activity of USP15. It has been reported that the cat-
alytic activity of the USP4 catalytic domain alone is strongly
inhibited by the slow dissociation of ubiquitin, while the
presence of DUSP-UBL domains enhances ubiquitin dis-
sociation hence promoting efficient turnover (22). USP15
shows a similar catalytic behavior as USP4 (22). Thus, sub-
strate recruitment may well be the first regulating factor of
USP15, and the ubiquitination status of the substrate can
function as a next layer of regulation. We think that further
studies are necessary to address the regulatory mechanism
of USP15 in the future.

Here we found that a component of the U4 snRNP,
namely PRP31, is modified with K63-linked ubiquitin
chains by the PRP19 complex. Ubiquitinated PRP31 and
PRP3, in turn, are recognized by the JAMM domain of
U5 component PRPS, and this may help the formation of
the stabilized U4/U6.US tri-snRNP complex. Deubiquiti-
nation of PRP31 and PRP3 by the USP15-SART3-USP4
complex decreases the affinity towards PRPS and this reg-
ulation is important for the proper splicing of chromo-
some segregation related genes such as Bubl and a-tubulin
(Figure 7D). Based on our findings, we propose that both
PRP31 and PRP3 are regulatory proteins in the dynamic
protein—protein interactions of the spliceosome component
through ubiquitination and deubiquitination. We hope our
current findings advance the understanding of core post-
translational modifications in the rearrangements of the
spliceosome components.
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