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Abstract: Microfluidic devices are valuable for a variety of biotechnology applications, such as
synthesizing biochemical libraries, screening enzymes, and analyzing single cells. However, normally,
the devices are controlled using specialized pumps, which require expert knowledge to operate. Here,
we demonstrate operation of poly(dimethylsiloxane) devices without pumps. We build a scaffold
that holds the device and reagents to be infused in a format that can be inserted into a 50 mL falcon
tube and spun in a common lab centrifuge. By controlling the device design and centrifuge spin
speed, we infuse the reagents at controlled flow rates. We demonstrate the encapsulation and culture
of clonal colonies of red and green Escherichia coli in droplets seeded from single cells.

Keywords: microfluidics; droplets; poly(dimethylsiloxane); lab on chip

1. Introduction

Droplet microfluidic techniques [1–3] are valuable for a variety of applications in biology,
including for evolving enzymes with enhanced function [4,5] and analyzing huge numbers of single
cells at ultrahigh throughput [6–8]. The most common microfluidic devices are fabricated in the
elastomer poly(dimethylsiloxane) (PDMS) and operated using variable-control syringe pumps [9,10].
Syringe pumps allow precision control and variation of flow rates to optimize device operation;
however, they are expensive, imposing a barrier to the adoption of droplet microfluidics by non-experts.
Moreover, once a particular microfluidic design has been optimized, the same flow rates are generally
used to operate it, obviating the need for variable control pumps. In such instances, passive pumping
with pressure [11], suction [12,13], or gravity-driven flow [14] is preferable, since it demands less of
the user and makes adoption easier.

An especially effective method for pumping fluids through devices is with centrifugation,
a technique known as centrifugal microfluidics [15,16]. These devices are commonly fabricated
in a compact disc format with channels etched between two plastic plates. Reagents are loaded into
the device and infused by spinning the disc. This approach is simple and robust in the hands of
non-experts [17,18]. Nevertheless, the fabrication methods to construct the polycarbonate disc devices
are non-trivial, requiring expertise with injection molding or embossing [19–21]. Soft-lithography in
PDMS is far more common, and is a robust and well-understood process. It is easy to get started with
and can be used for rapid prototyping or mass production. An ideal system for operating microfluidic
devices would allow the use of common PDMS devices with a lab centrifuge.

In this paper, we demonstrate operation of PDMS devices using a common lab centrifuge.
We build a scaffold, which can hold a device and reagents to be infused, small enough to be inserted into
a 50 mL falcon tube, allowing the assembly to be spun with a common lab centrifuge. By controlling
device dimensions, reagent reservoir heights, and spin speed, we generate controlled pressure drops
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that inject multiple reagent streams at different, specified flow rates. We demonstrate how to control
flow rates in a cross-flow droplet generator and use the approach to encapsulate and culture different
fluorescent strains of Escherichia coli (E. coli) seeded from single cells. Our approach is compatible with
any assay that uses a droplet maker. With additional inlet ports, it can be extended to more complex
devices, such as co-flow droplet makers that allow the merger of distinct aqueous streams immediately
prior to droplet generation [22–25] or the synthesis of multiple emulsions [26–28]. It provides a simple
and general means by which to operate PDMS devices with a common lab centrifuge.

2. Materials and Methods

We fabricate the flow-focusing microfluidic droplet generators from PDMS using the techniques
of soft lithography [29]. PDMS replicates of SU8 molds are cut from the wafer and interfaced with
access ports via a 0.75 µm biopsy punch. The devices are plasma-bonded to a PDMS slab and treated
with Aquapel to render them hydrophobic [30]. The droplet generator’s cross-flow junction is 25 µm
by 25 µm, and the fluidic resistance channels for both inlets are 20.5 mm long, with cross-sectional
dimensions 25 µm wide by 50 µm tall. The centrifugation scaffold is designed in AutoCAD and
assembled from 3.175-mm-thick acrylic plastic sheets prepared with a ULS Laser Cutter (Figure 1a,b,
Universal Laser Systems, Scottsdale, AZ, USA). The parts are bonded with acrylic cement (Tap Plastics,
Oakland, CA, USA). Reservoirs for the sample and carrier fluids are prepared by sawing 3 mL plastic
syringes (BD) in half before attaching the needles (BD Precision Glide, Becton, Dickinson and Company,
Franklin, NJ, USA) and polyethylene tubing (Scientific Commodities, Lake Havasu City, AZ, USA)
(Figure 1b).

The reservoirs are positioned such that the 0 mL mark of the syringe is about 50 mm above the
microfluidic device (Figure 1c). The device is primed with oil in all reservoirs, removing air bubbles
that may alter fluidic resistances. The tubing through which reagents are introduced are also filled
with HFE-7500 oil via a syringe and cut to the length needed for the appropriate reservoir height.
The cut-end is then inserted into the inlet of the device, and the other connected to the reagent reservoir
via its needle, being careful to not trap air in the tubing. The reservoir is mounted on the scaffold and
affixed with tape (Figure 1d). The generated droplets are collected into a polymerase chain reaction
(PCR) tube taped to the bottom of the scaffold (Figure 1a,b, lower). The assembly is loaded into a
50 mL falcon tube for centrifugation (Figure 1e,f). The centrifuge is set to a speed and time to obtain
droplets with the desired diameter and volume of total emulsion. After centrifugation, the collection
tube containing the droplets is recovered (Figure 1g).
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holder; (b) A photograph of the actual plastic holder with the PDMS droplet generator, syringe 
reservoirs, tubing, and collection tube fully installed; (c) The PDMS droplet generator (i) is installed 
on the plastic holder; (d) A pipette tip is used to load the aqueous (ii) and oil (iii) into the syringe 
reservoir; (e) To generate droplets, the device is loaded into a standard 50 mL tube and spun in a 
centrifuge; (f,g) During centrifugation, hydrostatic pressure generated by spinning pumps the fluids 
through the droplet generator and produces the emulsion (iv). 

Figure 1. Schematic and workflow of centrifuge droplet generation. (a) Illustration of microfluidic
cross-flow PDMS droplet generator with 25 µm by 25 µm nozzle dimensions on a plastic device holder;
(b) A photograph of the actual plastic holder with the PDMS droplet generator, syringe reservoirs,
tubing, and collection tube fully installed; (c) The PDMS droplet generator (i) is installed on the
plastic holder; (d) A pipette tip is used to load the aqueous (ii) and oil (iii) into the syringe reservoir;
(e) To generate droplets, the device is loaded into a standard 50 mL tube and spun in a centrifuge;
(f,g) During centrifugation, hydrostatic pressure generated by spinning pumps the fluids through the
droplet generator and produces the emulsion (iv).
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Even though we typically use <1 mL of reagent per run, we use 3 mL syringes for the fluid
reservoirs because they are wide; as fluid is drawn from the reservoirs, the height of the top of the
fluid with respect to the device changes negligibly, which maintains a constant flow rate. For example,
for 500 µL of aqueous sample with a density of 1 g/cm3 at a height of 50 mm, producing 100 µL of drops
yields a change in reservoir height of ~0.4 mm which, for 20 g and a representative hydrodynamic
resistance of 124 kPa·h/µL, results in a variation in flow rate of ~1%. This is a tighter tolerance than is
commonly achieved using syringe pumps, which can fluctuate in flow rate by over 10% due to the
stepper motor [31].

We use phosphate buffered saline as the aqueous fraction and 3M™ Novec™ 7500 Engineered
Fluid containing 2% ionic Krytox as the oil fraction in the test emulsions. Reagents are loaded into
the inlet reservoirs, and droplet makers spun at speeds ranging from 200 to 950 rpm, to identify ideal
flow rates for the making of monodisperse droplets. The emulsions are visualized using an inverted
microscope in bright field mode. The centrifuge-made droplets are generated at 500 rpm achieving
flow rates of 200 µL/h and 300 µL/h for oil and aqueous phases, respectively. The pump-made
emulsions are generated with the same flow rates.

For experiments utilizing E. coli expressing green fluorescent protein (GFP) or red fluorescent
protein (GFP cloned into pET-28a in BL21(DE3) and mCherry cloned into pET-28a in BL21(DE3)
respectively), E. coli strains are grown overnight in magic media (Invitrogen) supplemented with
kanamycin. Cells are then diluted to 1.99 × 106 cells/mL to achieve approximately one cell per
10 droplets in a mixture of magic media supplemented with optiprep (20%) to prevent sedimentation
of the cells during infusion of the device. Droplets of the sample are generated in a centrifuge at
500 rpm for 10 min. After emulsification using HFE supplemented with 2% PEG-Krytox surfactant,
samples are allowed to grow overnight at 37 ◦C and visualized using a fluorescent microscope.

3. Results

To obtain a controlled flow rate through a channel, a pressure drop must be applied. This can
be achieved by pressurizing the inlets with syringe pumps or pressure regulators, or by applying
vacuum to the outlet [13]. Our strategy is to use a centrifuge. Since the reagent reservoirs are above
the channels, the hydrostatic pressure of the fluid at the inlet is higher than at the outlet. Moreover,
the centrifuge allows us to vary hydrostatic pressure by spinning at different angular rotation velocities,
in accordance with

P = ρ (ag) s (1)

where ρ is the fluid density, a is a constant that can be adjusted with the centrifuge, g is the Earth’s
gravitational constant of 9.81 m/s2, and s is the distance of the fluid in the syringe reservoir from the
microfluidic device. For a given pressure drop ∆P, the flow rate (Q) through the channel depends on
its hydrodynamic resistance (Rhyd),

Q =
∆P

Rhyd
(2)

where the resistance for a channel with a rectangular cross-section can be approximated as

Rhyd =
12(
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π5
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w

) (
tanh
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2 wh

))) (
M

L
wh3

)
(3)

where w is the width of the channel, h is the height, L is the length, and M is the viscosity of the fluid.
When aqueous and oil phases are injected into a hydrophobic droplet generator of fixed dimensions,
the resultant droplet volume depends on the ratio of the flow rates of the phases,

l
w

= 1 + α
Qaq

Qtotal
(4)
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where l is the length of the drop formed, w is the width of the channel, α is a constant that depends on
the channel geometry and is close to 1 [32–34]. Hence, by varying the centrifugation speed, reservoir
height, and inlet resistance, we can control the relative and absolute flow rates of the phases, thereby
generating droplets of controlled size.

As when using syringe pumps to drive fluids through a microfluidic device, our method allows
different fluids to be introduced at different, controlled flow rates. To illustrate this, we measure the
flow rates of aqueous and oil phases through a PDMS device outfitted with fluidic resistance channels
(switchbacks, Figure 2a). The fluidic resistance channels are designed to have ~50-fold higher resistance
than the rest of the device, ensuring that a majority of the pressure drop is through the resistance
channels and, hence, that flow rates depend primarily on their dimensions for a given applied pressure
drop. The droplets form in a flow focus junction by infusing water and oil from different channels
(Figure 2b). To measure flow rates through the different paths, we plug one inlet while flowing liquid
through the other, and vary the centrifugation speed. We collect the fluid exiting the device after a
controlled time and measure its mass, the results of which are plotted in Figure 2c for the oil and
aqueous phases, respectively. We find that the flow rates are, as expected, directly proportional to the
centrifugation speed. The experiment was reproduced three times, each time showing a definitive
linear relationship between the flow rate and centrifugation speed.
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Figure 2. Centrifugation allows controlled flow of aqueous and oil through a microfluidic droplet
generator. (a) CAD schematic of device and (b) magnified view of droplet generation region.
The droplet generator nozzle is 25 µm wide by 25 µm tall; (c) Measurement of oil and aqueous
flow rates as a function of centrifugation force.

For the device to be valuable for performing biological assays, it must form droplets of uniform
size. To investigate this, we create droplets with a PDMS flow-focusing droplet generator and image
samples of the resultant droplets, shown in Figure 3a. The centrifuge-made droplets are monodisperse,
as exemplified by their hexagonal packing and confirmed by their narrow size distribution, having a
coefficient of variation of ~4%, as shown in Figure 3a, left. To compare these results with standard
pump-made emulsions, we use the same device to generate an emulsion using syringe pumps,
as shown in Figure 3b. We again achieve high monodispersity and a coefficient of variation of ~4%,
as shown in the figure. This validates that the centrifugation-based operation of a droplet generator
provides uniformity of operation that is similar to pump-based operation. Furthermore, the achieved
monodispersity is comparable to other techniques, such as polyester toner devices [35].
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Figure 3. Centrifugal pumping generates droplets of equivalent monodispersity to syringe pumps.
(a) Droplets generated with a flow-focus device using a centrifuge are monodisperse, with an average
diameter of 71 µm and standard deviation of 2 µm; (b) Droplets made using a syringe pump are equally
monodisperse, with an average diameter of 72 µm and standard deviation of 2 µm.

To validate the efficacy of centrifuge-made emulsions for biological assays, we use them to
encapsulate and culture fluorescent cells. The sample fluid consists of a mixture of two E. coli strains
expressing green fluorescent protein (GFP) and red fluorescent protein (RFP), respectively. We partition
the sample such that most droplets are empty and a small fraction contains single cells, in accordance
with Poisson statistics

P (x; λ) =
e−λλx

x!
(5)

where x is the number of cells in a droplet and λ is the average number of cells per droplet [36–39].
Spinning the sample can cause the cells to sediment to the bottom of the inlet reservoirs. However,
we density-match the cells using optiprep, to slow sedimentation. Additionally, for bacteria of this
size, 5000 rpms for 10 min is commonly used for the concentration, while we spin our device only at
500 rpms for 10 min, such that sedimentation is negligible. The emulsion is collected and incubated,
allowing the cells to divide, and imaged with a fluorescence microscope. As expected, we find that
most droplets are empty with a small fraction containing fluorescent cells. Since the encapsulation of
the two cell types is random, droplets containing cells are most often GFP- or RFP-positive, with a small
fraction double positive, such as the droplet depicted on the upper-left of the images in the second
column of Figure 4b,c. Droplets containing cells tend to shrink relative to empty droplets, due to
cells consuming media and generating osmotic pressure differences that are equalized by droplet
shrinkage [37]. This demonstrates that our approach can be used to encapsulate and culture cells in
droplets without the use of pumps. Since this is a first step in most single-cell analysis applications,
such as the analysis of secreted compounds or the sequencing of single-cell transcriptomes via droplet
barcoding [40,41], this demonstrates that our approach can be used for these valuable applications.
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10× magnification; right column = 40× magnification). The emulsions are visualized after the cells have
had time to grow with bright field microscopy (a); and fluorescence microscopy with a GFP-filter (b);
and RFP-filter (c).
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4. Conclusions

We have developed an approach for pumping fluids through microfluidic devices using a standard
lab centrifuge. Our approach is applicable to common PDMS devices and allows multiple reagent
streams to be infused at controlled flow rates by properly setting the fluid reservoir height, inlet channel
resistance, and centrifuge speed. The method consists of a scaffold on which different microfluidic
chips can be mounted; the number of inlets can be increased by adding more fluid reservoirs to
infuse additional fluids and operate more complex devices. The ease of our approach, combined
with its reliance on a common lab centrifuge, makes it easier to adopt than methods that require
pumps or mastery of complex fabrication techniques. We have demonstrated the use of the approach
for performing cell encapsulation and culture assays and anticipate that it will be useful for other
“digital” assays, such as culture-based screens, digital PCR, and digital ELISA. By incorporating
wettability-patterning, it should also be useful for facile formation of monodisperse double emulsions
and lipid vesicles.
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