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Abstract
Methodological advances have made it possible to generate
fMRI predictions for cognitive architectures, such as ACT-
R, thus expanding the range of model predictions and mak-
ing it possible to distinguish between alternative models that
produce otherwise identical behavioral patterns. However, for
tasks associated with relatively brief response times, fMRI pre-
dictions are often not sufficient to compare alternative models.
In this paper, we outline a method based on effective connec-
tivity, which significantly augments the amount of information
that can be extracted from fMRI data to distinguish between
models. We show the application of this method in the case
of two competing ACT-R models of the Stroop task. Although
the models make, predictably, identical behavioral and BOLD
time-course predictions, patterns of functional connectivity fa-
vor one model over the other. Finally, we show that the same
data suggests directions in which both models should be re-
vised.
Keywords: ACT-R, Dynamic Causal Modeling, Cognitive
Science

Introduction
One of the traditional problems in the field of cognitive mod-
eling is deciding which of two alternative models provides
best explains a phenomenon. Traditionally, the most common
approach has been to compare models using null-hypothesis
testing procedures. In essence, conditions are identified in
which the two models make qualitatively different predic-
tions, and the hypothesized pattern is tested using classical
statistical testing techniques. While more sophisticated ap-
proaches have been proposed (Pitt, Kim, Navarro, & Myung,
2006), this approach remains the de facto standard of the
field.

The search for conditions in which two models differ is
sometimes strenuous, as the same external behavior can oc-
casionally be obtained through different possible internal pro-
cesses and model parameters. By shedding light on more di-
rect correlates of cognitive processes, neuroimaging data pro-
vides a potential way to distinguish between otherwise behav-
iorally identical results (Sohn et al., 2004). For this reason,
procedures have been devised to derive neuroimaging pre-
dictions from computational models, most commonly in the
domain of fMRI (Anderson, Fincham, Qin, & Stocco, 2008;
Borst, Nijboer, Taatgen, van Rijn, & Anderson, 2015).

While the use of fMRI has greatly expanded upon the pos-
sible predictions that can distinguish between the two models,
a number of limitations still exist. A main limitation arises
from poor temporal resolution of fMRI. The BOLD signal
that is recorded in MRI scanners is extremely sluggish, and
peaks approximately five seconds after an event. This poses a
problem for resolving cognitive processes that occur quickly
in time.

Other neuroimaging methods, such as EEG and MEG, of-
fer much greater temporal resolution, but they trade off this
advantage with much lower spatial resolution. Furthermore,
the oscillatory nature of EEG and MEG signals further com-
plicates the process of deriving predictions from models, as
changes in raw signals can occur at different frequency bands
(van Vugt, 2014).

Even if these technical issues could be solved, a deeper
problem is that the most common methods devised to com-
pare models against neuroimaging data focus on accounting
for the common time course of brain activity and model com-
putations. But models, by their very nature, usually make
richer predictions about the internal dynamics that lead to
either brain activity or behavioral responses. For example,
models often make specific assumptions about the direction-
ality of an effect, or about how different model components
interact with each other. These predictions cannot be tested
by simply correlating neuroimaging time series with the order
of computations.

In this paper, we describe and demonstrate an alternative
and novel method to test models using neuroimaging data.
This method is based on patterns of effective connectivity be-
tween brain regions. “Effective connectivity” is an umbrella
term to characterize the functional exchange of information
between two brain regions, based on the analysis of their re-
spective time series. Because effective connectivity provides
measures of directional communication between two regions,
it can be used to examine the internal dynamics of a compu-
tational model. Furthermore, because effective connectivity
can be estimated from either fMRI or EEG data, it expands
the dimensions across which models can be compared with-
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out requiring collecting additional data.
In the remainder of this paper, we will outline our method

and apply it to a specific, and exquisitely cognitive case,
namely, determining which of two prominent computational
explanations for the Stroop interference best explains the
data.

ACT-R
Although our method could be applied to any computa-
tional model, for convenience, it will be demonstrated with
two models developed in the Adaptive Control of Thought–
Rational (ACT-R) cognitive architecture (Anderson et al.,
2004). This choice was made for three reasons. First, ACT-R
is the most successful and widespread architecture, having
been used in hundreds of publications since its inception, and
by far the most popular in the field of cognitive research
(Kotseruba & Tsotsos, 2018); Thus, it provides an excel-
lent domain in which to demonstrate the procedure. Sec-
ond, ACT-R already provides well-tested mappings between
architectural components and brain regions with established
procedures to predict fMRI activity from model simulations.
Therefore, these assumptions can be adopted without the need
to provide additional justifications. Finally, the assumptions
of ACT-R provide a reasonable mechanism to translate model
activity into effective connectivity. As it will be shown, this is
based on the functional requirements of the procedural mod-
ule, which have been examined and discussed in the past.

ACT-R represents knowledge in two formats, declarative
and procedural. Declarative knowledge is made of record-
like structures, called chunks, which capture semantic mem-
ories, perceptual inputs, and motor commands. Procedural
knowledge consists of production rules (or simply “produc-
tions”), state-action pairs that encode the specific policy to
perform a task. In summary, chunks represent information,
and productions act upon them.

Chunks are processed by functionally specialized modules.
For instance, perceptual modules create new chunks to repre-
sent the contents of the outside world, and a memory module
maintains chunks in long-term memory. Each module con-
tains one or more buffers, limited-capacity stores that contain
at most one chunk. Buffers are the only mechanisms through
which chunks and productions interact: Chunks can be in-
spected, copied, and modified by productions when exposed
into buffers.

As noted above, much work has been dedicated to map
ACT-R modules to corresponding neural circuits. This work
has yielded a number of reliable functional mappings, includ-
ing the association between anterior cingulate cortex and the
goal buffer in the goal module, between the lateral prefrontal
cortex and the retrieval buffer of the long-term memory mod-
ule, between posterior parietal cortex and the imaginal buffer
of working memory, between the fusiform gyrus and the vi-
sual buffer in the visual module, and between the primary
motor cortex and the manual buffer in the motor module
(Fincham & Anderson, 2006; Sohn, Albert, Jung, Carter, &
Anderson, 2007; Danker, Gunn, & Anderson, 2008; Ander-

son et al., 2004, 2008). These five modules will be the focus
of this paper.

Dynamic Causal Modeling
To estimate effective connectivity, we adopted a framework
known as Dynamic Causal Modeling (DCM) (Friston, Harri-
son, & Penny, 2003). In essence, DCM is procedure to model
the time-course of in brain activity in a set of brain regions
through a dynamical system of other brain regions and event
vectors. Specifically, the time course of activity of a region i
is expressed as a bilinear state equation:

ẏyy = AAAyyy+∑
i

xiBBB(i)yyy+CCCxxx (1)

where yyy are the time series of neuronal activities and xxx
are the time series of the events. AAA defines intrinsic con-
nectivity between different regions (fixed connectivity), CCC de-
fines effects by task inputs, and BBB defines the modular effects
that task conditions have on the connectivity between regions
(modulation of connectivity).

ACT-R Predictions for Effective Connectivity
Because effective connectivity can be interpreted as direc-
tional effects between cortical regions, a direct link can be
made between this measure and the nature of ACT-R compu-
tations. As discussed above, ACT-R works by firing one pro-
duction at a time during its cognitive cycle; this production,
in turn, changes the state of the system by modifying or copy-
ing information from one buffer to the other. For example, in
what is perhaps the most common operation in ACT-R mod-
els, a production rule extracts values from the slots of chunks
placed in either the imaginal or the visual buffer (to extract
contextual task information) and places them in the retrieval
buffer, so that they function as cues for retrieving relevant in-
formation from long-term memory. In fact, production rules
are the only way information is exchanged between modules.

Given their role in coordinating module-to-module com-
munication, we made the assumption that patterns of effec-
tive connectivity can be derived by the analysis of informa-
tion transferred carried by out in the sequence of production
rules firing.

On the surface, this idea runs against the established identi-
fication between production rules (and their associated proce-
dural module) and the activity of the basal ganglia (Anderson
et al., 2004; Anderson, 2007). The two interpretations, how-
ever, are not incompatible with each other. Anderson et
al. (2008) had previously suggested that common functional
connectivity patterns in the brain reflect the ubiquity of com-
mon operations that exchange information between different
buffers; the example production given above is one of those
put forward by the authors. It has also been noted before that
the function of the basal ganglia is to direct inputs to corti-
cal regions, a role that is both compatible with the procedural
module and with the proposed interpretation of effective con-
nectivity (Stocco, Lebiere, & Anderson, 2010). Finally, a re-
cent study that combined ACT-R modeling and Transcranial
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Magnetic Stimulation (Rice & Stocco, 2019) has provided
evidence that production rules do not only reflect the activ-
ity of the basal ganglia but also, more generally, the direct
exchange of information between cortical regions. Thus, we
believe that the hypothesis that production rules could be used
to estimate effective connective is a plausible one.

In this study, the relationship between production rules and
effective connectivity was operationalized in the following,
simple algorithm. First, an N×N squared matrix EEE, with N
being the number of buffers examined, is generated and ini-
tialized to zeros. Then, the target model is run and its trace
is segmented into epochs of interest (e.g., all the trials of the
same conditions). The structure of each production rule fir-
ing within that epoch is then examined. For each variable in
the production rule, the source buffer S at which the variable
is introduced (or, technically, bound to a value) in the left-
hand side and the target buffer T in which the bound value is
placed are recorded. The value of the matrix cell EEES,T is then
incremented by one. If a variable appears in multiple source
buffers S1,S2 . . .SN or target buffers T1,T2 . . .TN , then all the
cells EEE i∈N, j∈N are updated. When all the productions have
been examined, EEE is taken to represent the predicted effective
connectivity for that particular condition.

An Application of the Method:
ACT-R Models of the Stroop Task

This method was demonstrated using two competing models
of the Stroop task. In the Stroop task, participants are shown
a colored character string and asked to report the color of the
character string. The character string can either be congruent
with the color (”RED” printed in red), incongruent (”BLUE”
printed in green), or neutral (”CHAIR” printed in blue). The
typical finding is that reaction times in each condition are
significantly different from one another, with congruent tri-
als being the fastest, incongruent trials being the slowest, and
neutral trials in between (Bugg, McDaniel, Scullin, & Braver,
2011). This difference in reaction times between trial types is
referred to as Stroop interference.

The two models were adapted versions of two previously
proposed models of the Stroop task, authored by Lovett
(2005) and by Altmann and Davidson (2001), respectively.
Since both models were published before ACT-R was mod-
ified to account for neuroimaging data, they had to be re-
implemented in the most recent version of ACT-R (version
7.6). This processes also ensured that the two models in-
teracted with the task using the same sensorimotor mecha-
nisms, i.e. visual objects and responses were given in the
same way. From now on, we will refer to these two models
as the Altmann-like model and the Lovett-like model.

The re-implemented models maintained the underlying as-
sumptions of their original versions. Specifically, the two
models provide different explanations about the nature of
Stroop interference. In the Altmann model (Figure 1A),
Stroop interference is driven by interference at the lemma
layer. When a word is processed, it has direct access to its’

lemma, or conceptual representation. Access to the lemma
of a color is indirect, requiring an extra retrieval not seen
with words. The model assumes that the word dimension of
the Stroop stimulus is automatically processed first, therefore
activating the lemma attached to the word dimension of the
stimulus. As it tries to process the color dimension of the
stimulus, the word-lemma is active and can either facilitate
or inhibit retrieval of the correct color-lemma. In cases of
facilitation, activation from the word-lemma spreads to the
coinciding color-lemma, increasing the likelihood of correct
retrieval on congruent trials. Oppositely, on incongruent tri-
als, this activation spreads to the incorrect color-lemma, cre-
ating increased competition between color-lemmas and intro-
ducing ambiguity. For neutral trials, the word-lemma has no
corresponding color-lemma, resulting in neither facilitation
nor inhibition. The color-lemma is compared to visual cues
and re-selected if inconsistent or otherwise used in further
processing. A manual response is then retrieved using the
color-lemma, and used to press a key on the keyboard.

View stimulus

Process 

Word

Process 

Color

Retrieve 

Lemma

Check To 

Re-Select

Manual 

Output

Visual Buffer

Word: red

Color: blue

Retrieval Buffer

Kind: lemma

Color: <red>

Concept: red

Retrieval BufferVisual Buffer

Color: blue

Imaginal Buffer

Slot 2: blue

Imaginal Buffer

Slot 1: red

Slot 1: red

Slot 2: ??

Manual Buffer

Finger: Ring

Retrieval Buffer

Kind: Answer

Finger: Ring

Check To 

Answer
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Process 
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Retrieve
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Check To 
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Visual Buffer
Word: red

Color: blue

Retrieval Buffer Retrieval Buffer

Retrieval Buffer

Manual Buffer

Kind: word
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Kind: Answer
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Check 

Task
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Form: <blue>

Retrieval Buffer

Kind: word Task: color

A B

Figure 1: Flow-chart representation of the strategies used by
the Altmann model (“A”, left) and the Lovett model (“B”,
right) when processing Stroop trials.

In the Lovett model (Figure 1B), Stroop interference
is driven by the competition between alternative word-
association chunks, linking a word to its’ conceptual repre-
sentation, and color-association chunks, linking a color to its’
conceptual representation. The idea is similar to lemmas from
the Altmann model, but in this case both types of dimension-
associated chunks need to be retrieved. The Lovett model ac-
counts for individual differences by supporting various strate-
gies to complete the task. In contrast to the Altmann model,
this model allows for processing of either stimulus dimension
first, but is highly biased towards the word dimension. From
either path, chunks associated with the processed dimension
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are retrieved. Processing can maintain with the retrieval of an
answer directly, or the task is checked. Answering directly
allows for incorrect answers on incongruent trials and fast re-
sponses on congruent trials. When the task is checked, the
model compares the dimension of the processed chunk to the
goal, which for our purpose is to always respond according
to the color of the stimulus. If there is a mismatch, process-
ing continues with the alternative stimulus dimension. Now
when retrieving the alternative dimension-associated chunk,
the previously retrieved chunk has the same effect as in the
Altmann model, facilitating retrieval on congruent trials, hav-
ing no effect on neutral trials, and inhibiting retrieval on in-
congruent trials. Notably, this does not necessarily happen on
every trial, as there are alternate pathways and strategies, and
the model will not retrieve the wrong answer at this point.
The base-level activations are set in such a way that incon-
gruent chunks slow retrieval of the correct chunk, and con-
gruent chunks facilitate retrieval of the correct chunk. Once
the correct dimension-associated chunk is retrieved, a man-
ual answer is retrieved using the matching chunk, and used to
press a key on the keyboard.

The two models offer an ideal comparison for several rea-
sons. First, they deal with an experimental paradigm that is
representative of research in cognitive neuroscience. Second,
although they embody different and opposing views about the
nature of Stroop interference, they are equally successful at
predicting the canonical response time effects in the Stroop
task (Lovett, 2005; Altmann & Davidson, 2001). Most im-
portantly, these two models exemplify the limits of model
identification using behavioral and fMRI data. The two mod-
els make use of the same five buffers (visual, motor, goal,
imaginal, retrieval). When considering the time needed for
perceptual and visual processes (identical in the two mod-
els), the difference between the two models is concentrated
in a 300 ms window in which different interactions between
imaginal, goal, and retrieval buffers are posited. Because the
BOLD responses recorded in fMRI are much more sluggish
and extend for multiple seconds after a point event, it is rea-
sonable to assume that the two models would make almost
identical neuroimaging predictions.

To confirm this suspicion, ACT-R’s canonical BOLD-
response prediction tools were used to simulate the neu-
roimaging responses for the the various experimental con-
ditions in the two models. Fig 2 illustrate the case for in-
congruent trials. For the sake of illustration, the amplitudes
of the BOLD curves were fit so that they would have the
same height1. It is immediately apparent that the different
inter-module dynamics of the two models are lost in the neu-
roimaging data; all the BOLD curves for all modules are
largely overlapping within and between models.

Crucially, although these different interactions produce in-
distinguishable BOLD traces, they do produce different ef-

1The amplitude of the BOLD response is a free parameter that
can be separately fit for every module; thus, our procedure does not
lose generality

Figure 2: Normalized BOLD-response predictions for incon-
gruent Stroop trials across five different modules in the Lovett
(top) and Altmann (bottom) models (See Fig. 1)

fective connectivity matrices. And, as the next sections will
show, these matrices do provide evidence in favor of one
model over the other.

Materials and Methods
Experimental Dataset
In this analysis, we used fMRI data publicly available from an
open repository2. The original data was collected at Carnegie
Mellon University and published by Verstynen (2014).

Participants
The dataset contained data from N = 30 participants (10 fe-
male), aged 21–45 (mean 31). The recruitment procedures
can be found in the original publication (Verstynen, 2014).

Experimental Task
Participants performed a manual-response version of the
Stroop task (Stroop, 1935), during which the subjects were
asked to indicate the color of a written word presented in
the center of the screen. Stimuli could be congruent (“RED”
printed in red), incongruent (“RED” printed in green), or neu-
tral (“CHAIR” printed in red). Participants responded by in-
dicating the colors red, green, and blue using the right index,
middle, and ring fingers, respectively. Each session consisted

2The data is available on OpenNeuro at the following URL:
https://openneuro.org/datasets/ds000164/versions/00001
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of 120 trials (42 congruent, 42 neutral, 36 incongruent) in
randomized order.

Image Acquisition and Preprocessing
As described in Verstynen (2014), the original raw data was
acquired using a Siemens Verio 3T system in the Scientific
Imaging and Brain Research (SIBR) Center at Carnegie Mel-
lon University with a 32-channel head coil. Functional im-
ages were collected using gradient echoplanar pulse sequence
with TR = 1,500 ms, TE = 20 ms, and a 90 flip angle. Each
volume acquisition consisted of 30 axial slices, each of which
was 4 mm thick with 0-mm gap and an in-plane resolution
of 3.2 × 3.2 mm. A T1-weighted structural image was also
acquired for each participant in the same space as the func-
tional images, but consisting of 176 1-mm slice with with an
in-plane resolution of 1 × 1 mm.

For the purpose of our analysis, the original raw data was
processed in SPM12 (Wellcome Department of Imaging Neu-
roscience, www.fil.ion.ucl.ac.uk/spm) following the ex-
actly same preprocessing pipeline as the one indicated in the
original publication. Images were corrected for differences in
slice acquisition time, spatially realigned to the first image in
the series, normalized to the Montreal Neurological Institute
(MNI) ICBM 152 template, resampled to 2× 2× 2 mm vox-
els, and finally smoothed with a 8 × 8 × 8-mm full-width-at-
half-maximum Gaussian kernel to decrease spatial noise and
to accommodate individual differences in anatomy.

Regions of Interest
DCM analysis is performed on fMRI time-series extracted
from specific ROIs. In our case, the ROIs correspond to the
specific brain regions that have been previously identified as
corresponding to ACT-R buffers. The Talairach coordinates
used for each module in the brain followed the convention
used by Anderson et al. (2008). The algorithms described in
Lacadie, Fulbright, Rajeevan, Constable, and Papademetris
(2008) were used to convert Talairach coordinates to Mon-
treal Neurological Imaging Institute (MNI) coordinates. The
ROI mask files were created through FSL (Woolrich et al.,
2009) of size 16 mm (125 voxels in total) then used to ex-
tract fMRI time series from each voxel in each ROI. Prin-
cipal Component Analysis was then applied on all the ex-
tracted time series to identify the time series that best charac-
terized each ROI. The largest principle component was used
to project the original data to the new space with more than
75% of the variance explained in each module.

Dynamic Causal Modeling Analysis
Because DCM is a model-based technique, estimates of con-
nectivity can only derived from parameters corresponding to
the specified connectivity between ROIs. To gather complete
estimates of connectivity, an unconstrained, fully connected
model was generated, in which any ROI was bidirectionally
connected to all the others. Furthermore, to identify different
patterns of connectivity between conditions, both matrices B
and C were used. Specifically, matrix C was used to specify

the onset and offset of stimuli, and drive the activity of the
“visual” ROI, thus initiating trial-specific activity in the net-
work. In addition, we used the modulatory matrix B to spec-
ify modulatory effects of condition-specific trials (congruent,
neutral, and incongruent) and the ROI connectivity parame-
ters AAA. Thus, the effective connectivity matrix Ek specific to
task condition k can be expressed as the element-wise product
of AAA and the modulatory effects of condition k BBBk, namely:

EEEk = AAA+AAA�BBBk (2)

As it is common in DCM, all the parameters were identified
using an Expectation-Maximization procedure.

Results
Figure 3 illustrates the results of the effective connectivity
analysis of the fMRI data and the corresponding model pre-
dictions. In the figure, columns correspond to the three ex-
perimental conditions of the Stroop task (congruent, incon-
gruent, and neutral trials), while the rows correspond to ei-
ther the predictions of the models (Lovett model, top row;
Altmann model, middle row) or the empirical data (bottom
row). The reported values of effective connectivity were gen-
erated by performing a Bayesian parameter averaging proce-
dure (Kasess et al., 2010) over the individual connectivity ma-
trices generated for each individual participant. Because, in
DCM, self-connectivity values need to be set to negative val-
ues to ensure the stability of the dynamic state equation (1),
the corresponding values were ignored in the analysis and set
to zero in Figure 3. Note that the reason we chose Frobenius
norm instead of correlation as the metric is that we are inter-
ested in the absolute measurement of the effective connectiv-
ity, not the relative scale between modules. For example, two
connectivity vectors of [1,1,1,2,1] and [−2,−2,−2,−1,−2]
would have perfect correlation (r = 1), yet they represent op-
posite connectivity effects (excitatory vs. inhibitory) in all
modules. The scale of the values between real fMRI data and
ACT-R models may be different, but since all ACT-R mod-
els are on the same scale, the differences are still comparable
across models.

In general, the connectivity patterns predicted by the two
models are much less rich and interconnected than what was
measured in the data (Figure 3). This is not unexpected,
given the high level of neural abstraction that characterizes
ACT-R models (Figure 1). Critically, and as expected, the
two models do make different predictions in terms of effec-
tive connectivity. To compare the degree of similarity be-
tween each model’s predictions and the data, we calculated
the Frobenius distance of the difference between the predicted
(PPP) and the empirical data matrix (DDD) for each condition k, i.e.
||PPPk−DDDk||F . This measure can be interpreted as a dissimilar-
ity metric; the smaller the difference between two matrices,
the smaller the norm. The results of these comparisons are
shown in Figure 4. As shown, the Lovett model yields con-
sistently smaller norm values, and is therefore more similar
to the data, across all three conditions.
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Figure 3: Effective connectivity analysis of the fMRI data and corresponding model predictions (rows), divided by experimental
condition (columns).

Discussion
This paper has provided a proof of concept of how analysis of
effective connectivity can be used to supplement traditional,
GLM-based analysis of neuroimaging data in distinguish-
ing between alternative models. While effective connectiv-
ity analysis has been used in cognitive neuroscience for more
than a decade, this is the first time, to the best of our knowl-
edge, that this method is used in conjunction with a cogni-
tive modeling approach, and with cognitive architectures in
particular. In outlining our method, we choose ACT-R as a
modeling paradigm and DCM as a technique to estimate ef-
fective connectivity. Neither of these choices, however, are
absolute requirements. Connectivity estimates can be gath-
ered from many types of models; the procedure described in
this paper certainly applies to other production system-based
architecture, like Soar and EPIC, as well. Similarly, although
connectivity was estimated with DCM, other methods could
be possibly used. For example, Granger Causality. Thus, al-
though we made specific implementation choices, our meth-

ods could be instatiated in multiple ways.
Despite encouraging results, a number of limitations need

to be acknowledged. First, our method for deriving effective
connectivity predictions from ACT-R models is still prelim-
inary. While we believe that it is reasonable, other proce-
dures could be envisioned. For example, operations such as
buffer status checks and buffer harvesting could be included
in generating our matrices. It is plausible that richer predic-
tion schemes could lead to more realistic connectivity matri-
ces that the ones in Figure 3. It is also plausible that better
similarity metrics than Frobenius distance could be used to
compare predictions.

These limitations notwithstanding, we see our method as
having potential for future modeling research. In particular,
we believe that the connectivity matrices obtained from the
data can be used to inform model development as well as for
model comparison. It is apparent that neither the Lovett nor
the Altmann model provide good fits to the data. Because the
differences correspond to variables in production rules, the
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Figure 4: Similarity (Frobenius distance) bewteen predicted
and empirical effective connectivity for the Altmann and the
Lovett models.

comparison suggests which other production rules or variable
bindings could be taking place in the model. In theory, and
provided reasonable task constraints, an analysis of the ef-
fective connectivity matrices might be used to automatically
generate production rules that would match the data. We see
this an exciting opportunity for future research.
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