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ABSTRACT OF THE THESIS

Detection and Characterization of Cell Surface RNA Signals Using

Lipid Bead Pull-down

by

Xuerui Huang

Master of Science in Biology

University of California San Diego, 2020

Professor Sheng Zhong, Chair
Professor Nan Hao, Co-Chair

RNA has been proved to interact with lipid bilayers and various proteins near the
membrane, however; the existence of cell surface RNA was less explored. Using CLICK
reaction and fluorescence visualization, preliminary research in Zhong Lab had suggested
the existence of cell surface RNAs (csRNA) that attached firmly on the outer membrane

of mouse and human cells. For the first step in this study, functionality assay of



cytotoxicity, which measured by LDH release of human immune Natural Killer cell line
NK92, showed that the global csRNA perturbation could significantly impact NK92’s
cell killing activity. To further capture and characterize csRNAs using sequencing data,
we have developed a method to pull-down lipid-associated RNAs using lipid-coated
beads followed by RNA-sequencing. csRNAs were identified based on differential
analysis of RNAs bound to 8 types of membrane-associated lipid against the control
bead. Candidate RNAs discovered were validated using two sequencing techniques
developed by the Zhong Lab, i.e. SurfaceClick and SurfaceSeq, to further remove
background noise. Functional and structural analysis of validated csRNAs showed
significant enrichment on immune and cancer-related functions as miRNAs. Furthermore,
analysis result further indicated potential cellular functions such as cell-cell recognition,
structural support, and signaling regulation. In conclusion, this study indicated the
existence of RNA on cell’s outer membrane as functional and structural groups for

cellular functions such as anti-tumor cytotoxicity and immune response.

xi



Introduction

RNA molecules are known to interact with proteins, DNAs, and other RNA
molecules in every compartment of mammalian cell while the localization of RNAs was
essential for understanding their functions. However, the possibility of RNAs presenting
on the cell outer membrane is less explored, although several studies have proved RNAs
could interact with lipids and proteins near plasma membranes and regulate cellular
functions. A decade ago, Micheal Yarus Laboratory investigated RNA affinity for lipids
on reconstituted membrane surfaces. They first stated that the chemical and molecular
properties of RNAs and lipids enable affinity, complex stability, and even RNA
protection from degradation'. They showed that RNA aggregate can bind to “patch
regions” of reconstituted phospholipid bilayer through their secondary structure. They
further found that RNA affinity for lipid was dependent on the organization of lipid
structures by showing that RNAs have a high affinity for highly ordered lipid bilayer
such as lipid rafts and cholesterol-based vesicles? . More recently, a specific interaction
has been studied between the Link4 long noncoding RNA and PIP3 (Phosphatidylinositol
(3,4,5)-trisphosphate) at the inner leaflet of the plasma membrane®. Their research result
showed that the LinkA-PIP3 interaction was single-nucleotide specific and demonstrated
for the first time that an RNA-lipid interaction had important biological and cellular
consequences. These findings are extremely interesting and suggest a whole unexplored
class of cellular signaling function for both coding and non-coding RNA through their
interaction with lipids at the plasma membrane in mammalian cells. Therefore, an

extensive comprehension of RNA affinity for lipids and their functional implications



would be of great significance to cell signaling and other regulated activities at the cell
membrane.

In order to demonstrate the existence of endogenous RNA molecules located at
the plasma membrane, a functionality assay based on cell’s cytotoxicity and a lipid
beads-based sequencing technique, LipidSeq, have been developed by Zhong Lab to
discover csRNA signals. LipidSeq is an unbiased method that utilized lipid-coated beads
followed by RNA-sequencing to identify RNA that directly bind to lipids. RNA starting
material was isolated from the membrane fraction of EL4 cells, in order to enrich for
RNA species having affinity for lipids. Eight different types of lipid-coated beads were
selected based on chemical characteristics, presence in specific leaflets of the plasma
membrane, and their known role in the bilayer structure. After pulling-down of the lipid-
binding RNA species, cDNA libraries were generated and sequenced to identify the
affinity of RNA molecules for each type of lipid beads compared to their affinity for
control beads (non-coated with lipids). All affinities were virtually mapped onto the lipid
bilayer structures to help decipher the structural functions of csRNAs. Ultimately,
LipidSeq detected csRNA signals were compared to the csRNA candidates identified
using two other Zhong Lab developed techniques, SurfaceClick and SurfaceSeq for
further validation. SurfaceClick and SurfaceSeq were based on totally different
mechanisms and both showed positive csRNA signals on human and mouse cells. With
further validation using the two previously developed techniques, the legitimacy of

csRNA signals would be further solidified.



Result

2.1 Functionality Examination: csRNAs could act as functional groups to affect
natural Killer cell’s killing potential

Based on previous work in Zhong lab, two cancerous immune cell lines from
mouse and human, EL4 and NK92, were identified to have positive signals for csSRNAs
using imaging technique (Supplementary Table 1, Supplementary Figure 1). The next
essential step is to evaluate whether csRNAs display relevant functions for the cells.
Discovering any csRNA function will rule out the possibility that csRNA are present at
the membrane surface in a nonpurposive way (cell trash release) or that these RNAs are
captured-content of exosomes, or cell-free RNA sticking at the surface of cell-membrane.
Therefore, we decided to perform the functional evaluation of cytotoxicity for csRNA on
NK92 cell line. NK92 cell line is a cancerous natural killer cell line known to have
retained the natural killer cell features and cytotoxic properties®. Cytotoxicity was defined
as natural killer cell’s killing potential, which was measured by the amount of lactate
dehydrogenase (LDH) released into culture media. LDH is a stable cytosolic enzyme
released upon cell lysis, and the amount of LDH released into culture media is
proportional to the number of lysed cells. To assess the effect of csSRNA, we removed
csRNA of NK92 cells(effector cells) using RNase prior to the co-culture with target cells
and then compared NK92 cytotoxicity ability with and without RNase treatment. The
efficiency of RNase treatment has previously been evaluated using microscopy.

Functional assay of cytotoxicity showed that RNA perturbation using RNase on

cell surface had a significant effect on NK92’s cytotoxicity. Cytotoxicity was measured



by LDH release of the cells under two conditions, with RNase and without RNase, each
with two different ratios of NK92 cells versus MDA-MB-231 cells (E:T ratio, a.k.a. dose)
in the well. Variation of cytotoxicity was measured using two-way ANOVA to determine
whether the change in condition or the change in dose could significantly affect NK92’s
cytotoxicity. In this case, the interaction effect between condition and dose was ignored.
Based on the ANOVA result (Figure 14), we could conclude that applying RNase on the
cell surface of NK92 could significantly affect cytotoxicity while dose, different E:T
ratio, was not statistically significant. By plotting the average cytotoxicity with and
without RNase, a significant decrease of LDH release (cytotoxicity) was observed after
1:250 RNase treatment, both with the NK-92 stimulation by MDA-MB-231 target cells
using E:T ratio of 0.31:1 and 0.16:1 (Figure 1B). These results lead to the conclusion that
adding RNase to cell’s outer membrane for the removal of cell surface RNAs would
impact the cytotoxicity of NK92 cells significantly. Thus, by using the RNase treatment
and the measurement of cytotoxicity using LDH release, csRNA as functional groups on

cell membrane could be confirmed.



A Value Sum Sq Df F_value Pr(>F) Sig_level
Condition | 0.3307 1 7.1 0.008868 **
Dose 0.0116 1 0.2481 | 0.619389
Residuals | 5.1242 110
B o030
0.25- - whisker
- 95% C10.31:1
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Figure 1: Result of LDH Release Cytotoxicity Assay and Two-way ANOVA: A. Result table of two-
way ANOVA. Here, the condition is +/- RNase treatment, and Dose was the different E:T ratio to wells
that applied. The F ratio is the ratio of two mean square values. If the null hypothesis is true, you

expect F to have a value close to 1.0 most of the time. A large F ratio means that the variation among group
means is more than you'd expect to see by chance. Pr(>F) is the p-value, which indicated the probability of
null hypothesis is true. Here, the Pr(>F) for “Condition” is smaller than 0.01, indicated high possibility of
the existence of cell surface RNAs. B. The effect of RNase treatment on cytotoxicity. Shapes in the
middle is the average of all the NK cell’s cytotoxicity value (4 data points in total) calculated under certain
condition of RNase treatment. Color indicated different E:T ratio. E:T ratio is the ratio between number of
effector cells, NK92, and number of target cells, MDA-MB-231, in the well. Larger the E, more K92 cells
were put into the well, Yellow is the E:T ratio of 0.31:1, and blue is the E:T ratio of 0.16:1



2.2 LipidSeq Detected csRNAs: LipidSeq has the ability of detecting and grabbing
¢SRNAs on cell outer membranes

RNA starting material was isolated from the EL4 membrane fractions. Nine
different lipid-coated beads, with one control bead and 8 different types of beads that
specifically bind to RNAs at outer leaflet, inner leaflet, and lipid rafts of the cell
separately were selected (Table 1, Supplementary Table 2). Potential csRNA signals
were defined as differential peaks with positive fold change between each type of bead
with the control bead, which indicated significant enrichment from the control sample.
Through pipeline, in total of 546,730 signals were detected with p-value threshold of
0.01, and 3,542 significant signals were selected with threshold of g-value smaller than
0.01 from all detected signals. Among 8 types of lipid beads, PC (Phosphati-dycholines)
and PE (Phosphati-dylethanolamines) had a relative low number of signals while other
beads all had around 90,000 signals detected. All beads had low percentage of significant
signals, with PE beads had the least number of significant signals and Chol (Cholesterol)
bead had the largest number of signals and significant signals detected (Table I).

To further check the pattern of distribution for these signals, read region
distribution plot from transcription start site to transcription end site (Figure 24) and
chromosomal distribution (7able 2, Figure2B) were examined. The read region
distribution plot presented that the reads pulled downed by beads PS (Phosphati-
dylethanolamines), SM (Sphingo-myelines), Cer (Ceramides), and SS (Sphingosines)
have strong enrichment on the transcription starting site and transcription ending site. The
SM, Cer, SS, but not PS beads had specific affinity to bind RNAs on the outer leaflet,

which could be the special property of reads displayed on the outer leaflet of cell



membrane. From the statistic and visualization of chromosomal distribution (7able 2,
Figure2B), we observed a trend of high consistency, with more signals discovered on
chromosome 2, chromosome 5, chromosome 11 and chromosome X. This could be an
indication for specific enrichment of certain functions. Moreover, the number of signals
discovered on each chromosome is on the same level except bead Chol (Cholesterol),
which has comparably higher number of peaks discovered on each chromosome. Lipid
bead Chol has affinity for both RNAs on lipid rafts and all the other types of RNAs.
Therefore, it is very reasonable to discover more signals and significant signals in
comparison to all other types of beads.

From the potential csRNA signals discovered by LipidSeq, as well as high
similarity of read region distribution and chromosomal distribution, we could confirm

that LipidSeq had the ability to capture cell surface specific RNA signals.

Table 1: Table of Peaks and Significant Peaks Detected. Peaks were detected using MACS2. Last
column presented the percentage of significant peaks among all peaks detected. Different background color
indicated specific binding position, which green background color indicated the bead is specific for outer
leaflet. Blue background color indicated the bead is specific for RNAs on the inner leaflet, the red color
indicated the bead is specific for RNAs on the lipid raft as well as all other types of RNAs, and the orange
color indicated the bead is specific for RNAs on the outer leaflet and lipid raft.

Beads | Peaks (Pvalue<0.01) | Sig.peaks (Qvlaue<0.05) | Sig.Percentage

SM 74,443 585 0.79%

Cer 84,621 412 0.49%

PC 2,308 302 13.08%

PE 5,800 19 0.33%

PS 87,344 332 0.38%
PiP3 96,251 541 0.56%
Chol 100,543 981 0.98%

SS 95,420 370 0.39%
Total 546,730 3,542 0.65%




Table 2. Chromosomal Distribution of Peaks. This table showed the number of peaks detection on each
chromosome for every type of beads. Different background color indicated specific binding position, which
green background color indicated the bead is specific for outer leaflet. Blue background color indicated the
bead is specific for RNAs on the inner leaflet, the red color indicated the bead is specific for RNAs on the
lipid raft, and the orange color indicated the bead is specific for RNAs on the outer leaflet and lipid raft.

Name|chrl|chr2|chr3|chrd|chr5| chr6 |chr7|chr8|chr9|chr10|chril|chr12|chr13|chrl4|chrl5|chr16|chrl7 |chr18|chr19|chrM|chrX|chrY
SM | 42 | 41|22 |34 |52] 27 |30]33]|20] 29 49 25 18 20 30 24 29 11 24 7 16 | 2
Cer | 30 |22 | 2028 |30 | 20 [ 18 |28 [ 19| 20 29 22 18 14 15 11 18 15 15 6 11 ] 3
PC |24 | 25|19 |15)|19 | 15 (22| 7 |16 | 14 22 15 12 8 11 11 8 12 11 0 5] 1
PE 0 0 2 2 0 0 0 2 1 3 0 1 1 0 1 0 2 2 0 0 2 0
PS |19 |27 |14 |14 |21 | 16 [ 18 | 22 | 21| 18 26 13 15 11 11 11 16 10 8 3 13 ] 4
PiP3| 32 |36 |24 |34 |42 | 30 |38]36|31] 22 36 23 25 24 19 9 25 15 22 6 1] 1
Chol | 67 | 88 | 47 | 67 | 63 | 35 |47 | 41 | 65| 54 77 55 43 36 44 31 26 27 29 4 32| 2
SS | 23|30 )16 |22 (31|15 |17 |19 |26 ]| 18 20 17 21 13 16 7 15 20 15 2 7 0

A B Bead Type
- SM

G Outer Leaflet | == Cer
] - PC
150 enes . 75 - Fe
Inner Leaflet PS

12.5 - PiP3

Lipid raftAll == Chol
Outer Leaflet/Lipid raft SS

e
c

10.0 sm g 50

7.5W = 8

5.0 PiP3

TSS TES

Figure 2: Peak Distribution: Different color indicated specific binding position, which green color
indicated the bead is specific for outer leaflet. Blue background color indicated the bead is specific for
RNAs on the inner leaflet, the red color indicated the bead is specific for RNAs on the lipid raft, and the
orange color indicated the bead is specific for RNAs on the outer leaflet and lipid raft.

A. Average Chromosomal Distribution of the Peaks. This figure showed the average trend of peak
distribution in the scale of 22 chromosomes of mouse genome from the transcription starting site to the
transcription ending site. In total of 8 different beads were presented here, differentiated by different color.
B. Visualization od Chromosomal Distribution of Peaks for Each Type of Beads. This figure showed
the trend for number of peaks detected on every chromosome of mouse genome for each type of bead. In
total of 8 different beads were presented here, differentiated by different color.



2.3 Cross Validation between SurfaceClick and SurfaceSeq: SurfaceClick and
SurfaceSeq are essential external source for LipidSeq signal validation

Since the accuracy of the detected signals using LipidSeq remained unknown,
further validation was essential for extracting true positive signals. Here, validation was
performed by signal overlapping with two other cell surface RNA sequencing techniques
developed by Zhong Lab, SurfaceClick and SurfaceSeq. SurfaceSeq is a technique that
based on drug delivery system that utilizes biodegradable polymeric nanoparticles (poly-
lactic-co-glycolic acid)’. Nanoparticles would fuse with the cell membrane to produce
membrane-coated nanoparticles for csRNA pull-down. SurfaceClick is a technique where
cell surface RNAs are labeled on intact cells via CLICK reaction. Total RNA is further
isolated, fragmented and purified streptavidin beads, where only the labeled csRNAs will
be pulled down. Previous work showed that both techniques detected positive csRNA
signals on EL4 cell line. Therefore, these two technologies could be essential source of
further validation.

Nonetheless, the assessment of these two orthogonal technologies for the
robustness was necessary before the validation. For that purpose, cross-validation was
performed to compare the csRNA candidates obtained for EL4 cell line by the
SurfaceClick technology and SurfaceSeq technology. The two techniques are technically
and biologically drastically different and thus have different noise and background signal
origin, which makes the comparison stronger to fulfill the overall goal.

Log2FoldChange (log2FC) for 46,191genes that measured by both technologies
were collected and plotted as dot plot with log2FC of the gene detected in SurfaceClick

on the X-axis and log2FC of the gene detected in SurfaceSeq on the Y-axis (Figure 4A4).



All of these genes were used to fit the linear regression model and check for Pearson
correlation. Result showed that genes detected by SurfaceClick is positively correlated
with genes detected by SurfaceSeq with goodness-of-fit score 0.24 and Pearson
correlation coefficient of 0.49 (P-value = 2.2e-16), which suggested high consistency
between these two techniques. In each technique, significantly enriched genes were
identified as genes with log2FC larger than 1 and adjusted p-value smaller than 0.05. In
order to understand whether a gene identified as significantly enriched by one technique
was also identified in the other technique, volcano plots with log2FC of the gene on the
X-axis and padj on the Y-axis, were made, and hypergeometric test was performed on the
intersection. To evaluate the distribution of detected genes, 680 significantly enriched
surface RNA genes obtained with SurfaceClick (Dark Orange dots, Figure 3B) were
marked in the same color in the volcano plot with values obtained by SurfaceSeq (Figure
3D). Vice versa, 1384 significantly enriched surface RNA genes obtained with
SurfaceSeq (Dark blue dots, Figure 3C) were marked in the same color in the volcano
plot with values obtained by SurfaceClick (Figure 3E). Hypergeometric test was
performed with 5 different cross-validation thresholds to test whether the probability of a
gene identified as significantly enriched by SurfaceClick is equal to the probability of the
same gene identified as significantly enriched by SurfaceSeq. A cross-validation
threshold was applied to genes significantly enriched in the other technique (Dark Orange
dots in Figure 3C or dark blue dots in Figure 3E). Table 3 showed the result with cross-
validation threshold of 1og2FC larger than 1 and padj < 0.05 and Supplementary Table 5
showed the result with other 4 different cross-validation thresholds. Interestingly, 89/680

(14%) of the SurfaceClick detected genes and 89/1384 (6.4%) of the SurfaceSeq detected

10



genes were commonly enriched in surface samples in the two techniques. Since both p-
values are smaller than 0.001 (ZTable 3B, Table 3C), the null hypothesis of the
probability of a gene identified as significantly enriched by SurfaceClick is equal to the
probability of the same gene identified as significantly enriched by SurfaceSeq could be
rejected. Moreover, we can further conclude that genes identified by one technique has
high probability to be identified as differentially expressed by the other technique.
These results indicated a large proportion of commonly enriched genes was
detected by both techniques, confirmed the ability of these two technologies for
identifying csRNAs, and legitimacy of using SurfaceClick and SurfaceSeq as outside

source for validating LipidSeq detected signals.

Table 3: Hypergeometric Test in Detail and Test Result. Hypergeometric test for testing whether
probability of a gene identified as significantly enriched by SurfaceClick is equal to the probability of the
same gene identified as significantly enriched by SurfaceSeq. A. Gene stats with cross validation threshold
of log2FC larger than 1 and padj < 0.05. B. The probability of selecting 89 significantly enriched genes
from a sample of 680 genes taken from a SurfaceSeq gene pool containing 1384 significant enriched genes
and 23037 non-significant enriched genes. C. The probability of selecting 89 significantly enriched genes
from a sample of 1384 genes taken a SurfaceClick gene pool containing 680 significant enriched genes and
23740 non-significant enriched genes

A SurfaceClick | SurfaceSeq
Significantly Enriched Genes 680 1,384
insignificantly Enriched Genes| 23 740 23,037
Cross-Validated Genes by the Other Tech 89 89
B Surfacef:lick DIicEiE Ganes All SurfaceSeq Genes C Surface_Seq Detect_ed aies All SurfaceClick Genes
in SurfaceSeq in SurfaceClick
Significant 89 1384 Significant 89 680
Insignificant 591 23,037 Insignificant 1,295 23,740
Total 680 24,421 Total 1,384 24,421
dhyper.pValue= 8.075173e-14 dhyper.pValue= 8.093368e-14

11
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Figure 3: Cross Validation between SurfaceClick and SurfaceSeq: A. Global 10g2FC Scatter plot.
Every dot represents a single gene, with x-value of log2FC in Surface-CLICK-seq and y-value of 1o0g2FC in
SurfaceSeq technique. Red dots are genes that are detected by both techniques that passed the filter of
log2FC larger than 1 and p value smaller 0.01. The linear regression is indicated in blue, showing a positive
correlation. The Pearson correlation between the two techniques is indicated together with the p value B.
Volcano plots for candidate genes detected in SurfaceSeq technique with log2FC and adjusted p-value from
DEseq Call. Dark blue dots indicated significantly enriched SurfaceSeq genes C. Volcano plots for
candidate genes detected in SurfaceSeq technique with log2FC and adjusted p-value from DEseq Call.
Dark orange dots indicated significantly enriched SurfaceClick genes D. Volcano plots for candidate genes
detected in SurfaceSeq technique with log2FC and adjusted p-value from DEseq Call. Dark blue dots
indicated significantly enriched SurfaceSeq genes
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2.4 LipidSeq Signal Validation using External Source: Legitimacy of LipidSeq
detected signals could be ensured.

The cross-validation in the previous section showed positive correlation of genes
detected by SurfaceClick and SurfaceSeq separately. Therefore, these two techniques
were used as essential external source for further validation of LipidSeq detected signals.
Significant technical signals from SurfaceClick and SurfaceSeq were detected and
selected using the same data processing pipeline as in LipidSeq for consistency. In total
of 20740 technical signals with 19,980 significant technical signals were detected using
SurfaceSeq, and 32398 technical signals with 24,838 significant technical signals were
detected using SurfaceClick (Table 44). Although SurfaceSeq had 5 times more reads
than SurfaceClick, more signals were detected from SurfaceClick technique
(Supplementary Table 3). The validation was performed by overlapping LipidSeq
detected signals with the two types of technical signals separately with two stringencies,
general overlap and significant overlap (7Table 44). From validation, we could observe
that the number of overlaps was round the same level, but signals had more general
overlaps with SurfaceClick while having more significant overlaps with SurfaceSeq. In
comparison to the number of signals that were validated by SurfaceClick or SurfaceSeq
individually, less signals were validated by both techniques (7able 4B). Also, PC
(Phosphati-dycholines) bead and PE (Phosphati-dylethanolamines) bead had relative low
number of overlapping signals, which was consistent with the trend of signals detected in
the previous section (section 2.2).

In order to make a clearer visualization for the relationship of inter and intra

overlapping between lipid bead signals and two orthogonal technical signals, upset plot
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was made, as a modified version of Venn diagram. In the upset plot, each column
corresponds to a set, and each row corresponds to different conditions. Cells are either
empty (light gray), indicating that this set is not part of that intersection, or filled by black
dots, showing that the set is participating in the intersection. Preliminary data analysis
showed that our data had an extensive amount of background; therefore, large number of
consistent signals between LipidSeq signals and technical signals were hard to detect.
Indeed, based on what we observed, most of the signals were unique to one type of bead
specifically on the gene level, and a comparably small portion of signals were shared
among four or more different beads or verified by both techniques, which would be
highly consistent signals (Figure 4). Highly consistent signals were further validated by
close-up genomic view (Figure 5). From the close-up signal visualization, we could
observe a high consistency on the location of peak signals, which further solidified the

legitimacy of detected signals.
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Table 4: Number of Peaks Detected by Techniques and Overlap Counts. A. Total peaks (p-value <
0.01) and total significant peaks (q-value < 0.05) detected using MACS2. B. Number of Overlapping peaks
with two different stringencies. Last column presented the number of common peaks that overlapped with
both techniques with the stringency of p-value < 0.01. General overlap was performed by overlapping
general LipidSeq signals (threshold of p-value < 0.01) and general technical signals (threshold of p-value <
0.01), while significant overlap (threshold of g-value < 0.05) was performed by overlapping significant
LipidSeq signals with significant technical signals(threshold of g-value < 0.05).

A
Tech Type Total Peak Num  Total Significant Peak Num
SurfaceSeq 20,740 19,908
SurfaceClick 32,298 24,838
B
SurfaceSeq SurfaceClick
Beads| Seq.Overlap | Seq.Sig.Overlap| Click.Overlap | Click.Sig.Overlap | Overlap with Both Techs
SM 1806 92 2,655 59 107
Cer 1715 69 2,573 31 100
PC 151 37 162 33 6
PE 255 2 290 0 6
PS 1303 40 2,145 32 81
PiP3 1861 103 2,487 44 94
Chol 1525 111 2,208 124 74
SS 1671 61 2,292 26 84
Total 10,287 515 14,812 349 552
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Figure 5: 5 Examples of Genomic View from Upset Plot for all 8 different types of beads and two
types of cell surface sequencing technique, on the gene level. Same color scale as in Figure 5. Gene
name and gene regions were annotated on top of each example. Peak regions were marked by orange
rectangles. Example 5 had two errors pointed to matched motif secondary structures, which would be
explained in the motif discovery section (3.5)
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2.5 Motif and RNA Secondary Structure Analysis of csRNA Signals

Due to the fact the significant overlapped regions were generally short segments,
motif analysis would be naturally applied on the current dataset to dig more information.
By inputting significant signals with SurfaceClick background, SurfaceSeq background,
and Control beads background into the program, in total of 489 motifs were discovered,
and all of them were aligned to miRNAs/non-coding RNAs. Therefore, discovery of
conservative motifs was significant to find similarities among motifs from different types
of lipid bead. Similarity of motifs was measured in a pair-wise manner between all
combinations of any two lipid beads. From the measurement, low number of similar
motifs was observed for PC bead and PE bead, while other types of beads had roughly
same levels of similar motifs discovered (Figure 6B). This observation could be caused
by low amount of initial discovered signals of PC and PE, as we could observed in the
previous section (Section 2.4).

Within those similar motifs, we defined a motif as “conservative motif” if it
showed up in more than 4 types of beads as similar motifs. Based on this rule, 45
conservative motifs were labeled. Clustering result of these highly conservative motifs
showed they were closely clustered together with high similarity, which indicated high
possibility of similar structure and cellular functions. To determine the possible functions
of conservative motifs, top 10 conservative motifs were select based on the number of
occurrences. Top conservative motifs were further aligned to miRBase® for functionality
check (Table 5), and pre-identified functions related to cancer, inflammation, and
immune system could be observed, which match the cellular functions of experimental

cell line (EL4 — mouse cancerous immune cell line). This observation also matched the
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result of cytotoxicity assay in section 2.1, which proved that csRNAs could act as
functional groups to trigger cytotoxicity of natural killer cells as well as support cell
immune response. Interestingly, other than directly related to cellular functions, some
consensus motifs were annotated as promotor for known cancer related genes (Malatl) or
structural basis for RNA-recognition site.

To further identify potential conserved structures formed by csRNAs, we
performed secondary RNA structures prediction on motifs. Prediction was performed in a
clustering-based manner, where similar signals (read segments) were grouped together
for structural prediction. From the cluster evaluation, we could observe the pattern of
high homogeneity and low completeness i.e. homogeneity score equals 1 and
completeness score smaller than 1.17E-18 (Table 6). This pattern indicated the clustering
itself finished perfectly but the clustering result was not accurate enough, and it might
cause by short reads length and low number of input reads. To find the most
representative structure, the structure predicted from the largest cluster with most data
points of each type of lipid bead was selected. From the predicted secondary structure, we
observed high consistency of structures for beads coated with lipids located at inner cell
membrane, while the beads coated with lipids located at outer surface of cell membrane
had low consistency in general. The next step is to find the co-occurrence of predicted
motif secondary structures with previously LipidSeq detected significant signals.
Sequences in these representative RNA secondary structures were used on searching
RNA homologs in databases across mouse genome. Among the results, predicted
structure of PS motif was matched to the differential peak region in exon region of Casp8

(Figure 5, example 5) with E-value of 5.8e-05, and predicted structure of PiP3 motif was
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matched to the differential peak region at 3’ UTR of Casp8 with E-value of 3e-36. This
match between predicted secondary structure and lipid beads signals could lead to further

exploration on the mechanism of csRNAs’ modulation on cellular functions.
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1
Figure 7: Representative Motif Structure and Alignment from the Largest Cluster for Each Type of
Beads. Structures were on the top and alignments were at the bottom. The colored output was generated by
aligning tRNA-aln4 from the BRAliBase” benchmark using R-Coffee® slow/accurate mode. Colors indicate
the consistency of aligned residues with the primary library alignments and the predicted structures: blue to
green means low consistency; yellow to red means good consistency. The dot bracket notation below the
alignment indicates the consensus structure (predicted with RNAalifold®) and was added afterwards.
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Discussion

3.1 Existence of csRNA and Success LipidSeq ¢csRNA Pull-down

Previously, the existence of membrane-binding RNAs was proved in vitro on
hydrophobic mica surfaces using fluorescence microscopy'. Also, bacteria bglG mRNA
was shown to form pre-complex near membrane when co-transcribed with its membrane
sensor!'?, and mature human tRNAs were discovered to specifically retained in HeLa
membrane as binding to liposomes!!. More recently, interaction between the LinkA4 long
noncoding RNA and PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate) at the inner leaflet
of the plasma membrane was proved!~>. However, specific functions and structures of
those membrane-related RNAs were still remain unknown due to intrinsic and extrinsic
noise of cell dynamics!?2.

Preliminary work in Zhong Lab has successfully demonstrated the existence of
csRNAs on the surface of intact cells using imaging technique. To further examine the
potential csRNA signals, LipidSeq was developed based on pre-identified affinity
between RNAs and lipid structures' . Potential csRNA candidates were successfully
pulled down using LipidSeq with all 8 different types of lipid beads, followed by solid
signal amplifications. Signals detected by LipidSeq showed high consistency on the
distribution of signal amplifications, and signals were successfully validated using other
two techniques.

Nevertheless, LipidSeq did have some limitations in the aspect of technical
background noise. Due to the intrinsic sticky property of the beads, even control bead,
which were not coated with lipid, could pull down certain amount of RNAs. These

technical background noises were largely removed in the data processing steps by using
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quality control, applying stringent thresholds, and performing signal validation. Thus, the
legitimacy of detected signals could be ensured.

Although LipidSeq has some limitations, it could successfully detect and pull
down csRNAs on cell membranes using lipid beads affinity. With validation of the

detected signals, the existence of csRNA could be confirmed using LipidSeq.

3.2 ¢sRNAs Could Act as Recognition Motifs to Modulate Cell Functions

Based on the result of cytotoxicity functional assay, the global perturbation of
csRNA resulted in a huge decrease of NK92 cytotoxicity functions, which pointed to the
presence of csRNAs from another perspective and inferred their involvement in killer
cells’ major cellular function. Recently, RNAs have emerged as a target of pattern
recognition receptors that drive activation of innate immunity'3. Indeed, the preliminary
analysis on SurfaceClick pull down from NK92 and EL4 both showed that the immune
response appeared was one of the major pathways enriched in cell csRNA gene ontology
analysis'®. Different from the signals detected by SurfaceClick and SurfaceSeq, which
were mostly mRNA signals, those detected by LipidSeq were comparable short segments
with enrichment on 3” and 5° UTR regions. Based on this difference, motif-based
analysis, instead of normal gene-based analysis, was performed on LipidSeq detected
signals. Intermolecular RNA-RNA interactions are used by many RNAs, especially
noncoding RNAs to achieve or modulate diverse cellular functions!®. Interestingly, most
of the LipidSeq detected motifs aligned to microRNAs, which have been validated to
play vital roles in cancers development and self-immunity activation by targeting 3’UTC

regions of downstream gene mRNAs!®, Within those motifs, a highly conservative motif
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“GGCAGCTTATCC” was aligned to miR22, which is a micro RNA that have been
proved to fluctuate with cancer progression in body fluid to regulate cancer growth and
trigger apoptosis as an immune response. Additionally, miR22 was discovered to have
similar function with Malatl, which was one of the most famous IncRNA involved in the
regulation of cancer growth!”. The presence of Malatl was also detected by using
SurfaceClick, SurfaceSeq, and Surface-FISH on EL4 cell lines!*!8,

From those observations, we could conclude that csRNAs has conserved motifs
with critical functions in the innate immunity and cancer related functions. One step
further, we can make the assumption that csRNAs can act as pattern recognition receptors
that activates the cytotoxicity of natural killer cells, was well as can extend the possibility

of csRNAs’ vital role in regulating cellular functions for other types of cells.
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3.3 csRNAs Could Act as Structural Group to Modulate Cell Functions

To identify potential structural units formed by csRNAs, motif and secondary
RNA structure analysis were applied. Motif result showed that frequent poly-G
containing motifs, which previously reported as may directly interact with lipid
bilayers'®, were missing from current dataset. However, long G tracts are not essential for
RNA’s bilayer affinity, and might varied based on different cell types?’. Thus, motifs
discovered here could provide more possibilities of structures with affinity to cell
membrane.

Several predicted secondary structures were able to be detected in significant
differential peak regions. For example, most representative secondary structure from
RNAs pulled by PiP3 was aligned to 3’UTR of Casp8. Casp8 was a gene that promotes
cell migration, cell adhesion, and Rac activation by generating lipid products (PIP2 and
PIP3) in normal and tumor cell lines?!. Since the differential peaks of Casp8 were
captured using PiP3 beads, the possibilities of RNA-RNA interactions as well as csRNA
modulating cell functions as a structural group could be extended.

From the predicted secondary structures, the pattern of low consistency on the
outer leaflet of the membrane while high consistency on the inner leaflet and lipid raft
could be observed, though it was unclear what caused this pattern. One possibility was
the variety of RNAs on the cell surface enabled more interactions. One thing worth
noticing is that the topological consistency of predicted secondary structure is not
strongly correlated to the base-pairing consistency. Besides difference on consistency, the
potential functionality of many structures remained unknown. One possible function for

those RNAs was forming signal recognition particle (SRP) complex on membrane as
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binding site!? or interact with liposomes as RNA structures'!. Other possible functions for
those RNAs structures that already been discovered including changing the permeability

of cell membrane?’, stabilizing temporary pore formation??, or even changing the

physiological pH and the charge of cell membrane?.

To sum up, the results provided possibilities of RNA secondary structures and

provided a different point of view in future exploration of RNA as a structural functional

group.
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Conclusion

This study, using combination of fluorescence label, cytotoxicity functional assay,
and second-generation sequencing data, suggests the existence of csRNAs as a class of
functional and structural molecules on cell’s outer plasma membrane. Preliminary
analysis showed existence of cs RNA by using fluorescence dye on EL4 and NK92 cell
lines. Due to the innate property of natural killer cells, cytotoxicity functionality
examination was performed on NK92 by measuring LDH release. Result showed that the
removal of csRNAs could largely impact natural killer cell’s immune response, which
firmly connected csRNA with cellular functions. Using 8 different types of lipid beads,
which previously proved to have high affinity to RNA molecules, candidates csRNAs on
outer, inner, and lipid raft were pull downed from intact cell surface of EL4 and
successfully constructed sequenceable libraries. Besides self-selection for valid signals
between lipid beads and control, this study utilized two newly developed csRNA
sequencing techniques, SurfaceSeq and SurfaceClick, to perform inter and intra
validation for further csRNA signals validation. Function alignment on highly
conservative motifs showed enriched immune and cancer related functions. Combining
these results to the preliminary imaging of csRNAs and cytotoxicity assay, we proved the
existence of csRNAs on cell outer membrane as well as csRNAs’ potential to act as
regulatory factors for cellular functions. Furthermore, based on the result of secondary
RNA structures prediction and overlapping between predicted structures with LipidSeq
detected signals, we largely extended the possibility that csSRNAs could have extensive

functions such as acting as recognition site and providing structural support.
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To sum up, investigating csRNAs on outer cell membrane would provide insights
on regulation of cellular functions associated with RNA metabolism and structure, as
well as its correlation with the membrane structure complexity. More importantly, these
novel discoveries would help people to explore the field of RNA and understanding cell

metabolism from different angels.
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Material and Method

4.1 Cytotoxicity Assay: Functional examination of csRNAs

To test the effect of surface RNA to NK cells’ cytotoxicity, NK cells (a.k.a.
effector cells) were mixed with MDA-MB-231 cells (a.k.a. target cells), and NK cells’
cytotoxicity was quantified by LDH assay?. In this assay, cytotoxicity is quantified as
the ratio of the amount of NK-killed target cells to the amount of lysis-solution killed
target cells?*. Four independent experiments were carried as separated biological
replicates (indexed by k, k =1, 2, 3, 4). In each experiment, cytotoxicity of RNase treated
NK cells (treatment group) were compared with cytotoxicity of untreated NK cells
(control group). In the treatment group, NK cells were incubated with 4ul of RNase for
10 minutes, which partially removes surface RNA. In each experiment, and in both the
treatment and control group, NK cells and MDA-MB-231 cells were mixed in two
different E:T ratios (effector cell: target cell ratio), 0.16:1 and 0.31:1 (indexed by j, j =1
(0.16:1), 2 (0.31:1)). Higher the previous number, more NK92 cells were put into the
well. One individual 96-well-plate was prepared or each experiment. In each individual
experiment, 12 technical replicates of LDH releases were measured under each RNase
treatment and E:T ratios. Each technical replicate corresponds to one LDH scan, which
gives readings from 3 or 4 wells. These 3 or 4 readings were averaged into 1
measurement as the reading of this technical replicate. Taken together, 192 (12 x i x j x
k) measurements of treatment group were obtained, which include 12 technical replicates
for two conditions of RNase treatment with two different E:T ratios in 4 biological

replicates. See below for the Equation for calculating cytotoxicity:
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CytoToxicity

[Death in the mixture] — [Ef fector spontaneous deaths] — [Target spontaneous deaths]

[Target maximum deaths] — [Target spontaneous deaths]

- Deaths in mixture: LDH concentration from both effector and target cells when mixed

- Effector spontaneous deaths: LDH concentration from effector cells only

- Target spontaneous deaths: LDH concentration from target cells only

- Target maximum deaths: Maximum amount of LDH concentration from target cells. 10ul of the
Lysis Solution would be added to the well. This will result in complete lysis of target cells.

. : . Expiji—E_spiji—T-
After calculated the cytotoxicity by using equation of ¥;;, = Pk 2Pk Pk

T_maxy—T_spy
with pre-selection of qualified data from the 756 measurements, two-way ANOVA test
was used to measure either the change of RNase concentration (number of RNAs left on
cell membrane) or change of E:T ratio (the number of NK92 and MDA-MB-231 cells put
into wells) changed natural killer cell’s cytotoxicity. Check Schema 1 for specific

explanation of the statistical model of two-way ANOVA.
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4.2 LipidSeq Pull-down: Data processing and pre-selection of valid signals

To detected cell surface RNA signals, Zhong Lab developed an unbiased method
using lipid-coated beads followed by RNA-sequencing to identify RNA that directly bind
to lipids. Lipid-coated beads would be selected based on their chemical characteristics,
their presence in specific leaflets of the plasma membrane, and their known role in the
bilayer structure. In the experimental protocol, RNA starting material was isolated from
the membrane fraction of EL4 cells. Nine different lipid-coated beads, with one control
bead (not coated with any lipids) and 8 different types of beads that specifically bind to
RNAs at outer leaflet, inner leaflet, and lipid rafts of the cell separately were selected.
After pulling-down of the lipid-binding RNA species, cDNA libraries were generated and
sequenced to identify the affinity of RNA molecules for each type of lipid beads in
comparison with their affinity to control beads for the purpose of deciphering the
structure-functions of membrane RNA (Figure 8A). Three technical replicates of each
RNA type were generated simultaneously and sequenced, as well as water samples to
evaluate specificity of amplification, since the starting quantities are very little (Did not
showed up in the sample table). For every bead, in total of 6 libraries were generated
from three biological replicates, and each biological replicate has two technical replicates
(3*%2=06) (Supplementary Table 2). In these three batches of experiments, batch three
(biological replicate 3) were sequenced without equal-molar preparation. Thus, reads
number of two technical replicated in batch 3 varied more than other two batches.

Raw sequencing files were processed by a self-build data processing pipeline
(Figure 8B). Before alignment, adaptors were trimmed from raw reads using

Trimmomatic®, and quality control of reads was done by using FastQC?°. Pre-processed
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RNA sequencing data was aligned to mouse genome (mm10) using STAR?’, and two
post-alignment data processing steps were be performed on the aligned bam files:
selection of uniquely mapped reads and ribosomal RNA removal. To make sure the
quality of data for downstream analysis, unique mapped reads were selected by using
STAR flag of 255. Also, based on preliminary analysis, every sample had at least 20
percent of ribosomal RNAs (rRNA). Since experimental protocol was designed to capture
csRNA signals, rRNAs were treated as contamination of signals from inside of cells.
Thus, a step of rRNA removal was significant for getting clear signals for downstream
analysis. Here, rRNAs were depleted bioinformatically by removing the overlapped
regions between input reads and annotated repeat masker regions for ribosomal RNAs
that downloaded from UCSC genome browser®® using BEDTools*. Batch effect was the
subsequent issue that need to be solved since three replicates that collected under
different time stamps were involved in analysis, and we need to determine whether the
differential signals were truly caused by experimental conditions. Therefore, batch effect
was neutralized by merging all biological and technical replicates to one sample per bead.
Final sample set included in total of 9 samples, which included 8 libraries for 8 different

lipid beads and 1 library for control bead, each with around 1M reads (Table 7).
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Table 7. Sample Information after Data Processing and Pre-selection: Table of reads information after
processed by data pipeline and merging of batches. Table includes bead types, specific binding positions
for the bead, total reads after mapping, total amount of ribosomal RNA each sample, and percentage of
non-rRNA reads left after rRNA removal.

Binding Position Beads Total Reads rRNA removed reads % of non-rRNA reads

Lipid raft Chol 4,670,130 1,025,751 21.96%
Outer leaflet SS 3,991,879 768,822 19.26%
Outer leaflet SM 4,604,513 1,060,729 23.04%
Outer leaflet Cer 4,526,676 932,249 20.59%
Outer leaflet PC 5,093,154 1,294,594 25.42%
Inner leaflet PiP3 4,445,192 821,222 18.47%
Inner leaflet PS 4,347,357 912,399 20.99%
Inner leaflet PE 5,546,178 1,158,795 20.89%

Control CT 5,084,689 1,131,073 22.24%

4.3 Signal Detection: Finding and selection of differential peaks

MACS23° was used to detect the significant differential peaks between every type
of bead with control bead (CT) (Figure 8B). The peak searching process will be
determined by tag size, min-length, max-gap, and fragment size. In order to keep the tag
size flexible, the tag size was determined by the program using first 10 sequences from
the input bead signal file, which were all within the range of 60bps-70bps. To fine-tune
the peak calling behavior of MACS2, minimum length of a called peak and the maximum
allowed a gap between two nearby regions to be merged were specified by using the
program predicted fragment size d. In our cases, the fragment size for all samples were
all predicted to be around 300bps. Moreover, MACS2 will calculate p-value and g-value,
which is adjusted p-value by FDR method, for each peak based on the whole distribution
automatically. Based on the property of libraries that generated by using lipid beads
pulldown, even with all previous steps of data processing, samples still contained extend
amount of background noises. Thus, using the default cutoff of q-value smaller than 0.05

would be too stringent to get enough valid peaks from the program itself. To loosen the
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filtering condition, p-value threshold of 0.01 was specified to override the default setting
for valid peak selection. After got preliminary peaks from the program, an additional
condition of g-value threshold of 0.05 would be applied on the peak summit for further
narrowing down the range to eliminate false positive signal. To further check the pattern
of distribution for these peaks, average read region distribution plot was calculated and
plotted using computMatrix in package deepTools®! with parameters of afterRegionStart

length equals to 10, binSize equals to 10, and regionBodLength equals to 100.

4.4 Pre-validation step: Cross-validation of two Newly Developed Techniques,

SurfaceClick and SurfaceSeq

Since the lipid bead samples contained certain amount of background noise due to

its natural affinity to RNA molecules, it was hard to completely eliminate these noises
from experiment protocol or bioinformatically. Thus, further validation from outside
source was significant for getting true signals from the chaos. To detect and capture
csRNAs signals on the outer membrane of cells, two orthogonal technologies were
developed and applicated by Zhong lab: SurfaceSeq and SurfaceClick. SurfaceSeq is a
drug delivery system that utilizes biodegradable polymeric nanoparticles (poly-lactic-co-
glycolic acid)’ that are fused with the cell membrane producing a membrane-coated
nanoparticle to avoid the immune system. This technology is crucial because not only
1solate the cell membrane, but it also minimizes contamination of intracellular and
extracellular RNAs producing high yield cs RNAs knowing that RNAs are prone to

degradation. SurfaceClick is a technique that csRNAs are labeled on intact cells and a
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subset of cells are imaged to control for the CLICK reaction. Total RNA is further
isolated, fragmented and subjected to streptavidin beads, where only the biotinylated
csRNAs will be pulled down. Stringent urea and high salt-based washes were used to
remove non-specific binding of non-biotinylated RNA!®, These two lab-developed
technologies could be essential source of further validation. Nevertheless, before utilizing
information gathered from SurfaceSeq and SurfaceClick, an internal validation for
csRNA signals captured by these two new techniques is necessary.

csRNAs pull down by using these two techniques with correspond background control
were performed on the mouse EL4 cell line (Supplementary Table 3). In total of 5
SurfaceSeq libraries, includes 3 surface RNA samples and 2 total RNA samples, and 6
SurfaceClick libraries, include 3 surface RNA samples and 3 total RNA samples were
used in this cross-tech validation. Raw data were processed using the same pipeline in
pre-proccing and mapping step (Figure 8B). After that, featureCounts® was used to get
the count of RNA on gene level for each sample individually, and differential expression
analysis was performed using DESeq2* to compare gene counts between surface samples
and total samples. From the result of differential expression analysis, log2FC of the gene
expression level changed from total RNAs to csRNAs and its corresponding g-value,
which was an adjusted p-value by using FDR method, were collected for 46,191
annotated genes in mouse genome. Some of the genes were captured only in the surface
RNA sample but not in total RNA sample, therefore; it was not possible to calculate the
log2FC for those genes. After filtration of those genes, we got 24420 genes for
SurfaceClick and 24421 genes for SurfaceSeq with valid log2FC value. Top differentially

expressed gene, which were genes with positive log2FC and small g-value, were selected

36



as candidate cell surface signal for the method. To further valid the signal, cross-
validation between these two orthogonal methods was performed to test whether top
differentially expressed genes from one assay is differentially expressed in the other
assay. Top differentially expressed genes with threshold of adjusted p-value smaller than
0.05 and log2FC larger than 2 from both techniques would be select. Distribution as well
as the size of intersection with p-value from hyper-geometric distribution were used to

measure the level of similarity between two candidate gene set.
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4.5 Signal validation: Signal overlapping among LipidSeq, SurfaceClick, and
SurfaceSeq

After performed cross-validation to justify csRNA signals that detected by two
newly developed csRNA sequencing techniques by Zhong lab, SurfaceSeq and
SurfaceClick, these two techniques were used to validated potential surface RNAs that
pulled by using lipid beads. In order to make the comparison on the same row,
differential peaks between surface RNA samples and total RNA samples need to be
detected using the same method, MACS23, with the same parameters. For finding the
differential peak region between surface samples and total samples of SurfaceSeq and
SurfaceClick, technical replicates need to be merged into one. After merging, four
samples were used in downstream analysis: SurfaceSeq-surface sample, SurfaceSeq-
Total sample, SurfaceClick-surface sample, and SurfaceClick-total sample
(Supplementary Table 3).

Ultimately, the RNA-binding lipids candidates will be compared to the cell-
surface RNA candidates identified using SurfaceSeq and SurfaceClick in EL4 cells in
order to narrow down the localization and structure of csRNA molecules at the surface of
plasma membrane. Peak overlapping between surface lipid peaks (peak II) and two
orthogonal methods (Peak I for surface-CLICK-seq and Peak III for nanoparticle-seq)
was done by using BEDTools interest® for finding the complete intersect regions longer
than 50bps. Calculated overlapped regions would be further verify by genomic region
visualization. All the valid regions would be used in the motif analysis for providing

more specific information.
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4.6 Motif Analysis Process: Functional analysis and secondary structure prediction

Due to the fact the significant overlapped regions were generally short segments,
motif analysis would be naturally the next step. Motif analysis was performed by using
Homer “findMotifGenome ** with parameter of -rna and background of control beads to
find motif with length of 8bps, 10bps, and 12 bps for each type of lipid bead separately.
Each Homer motif finding returned top 50 motifs with highest confidence. Program itself
would mark the motifs with high possibility being false positive signal, and those motifs
were filtered to raise accuracy.

Next step was to find conservative motifs across different types of beads. By
using biopython-motif alignment®, distance and offset were measured for each pair of
motifs. Here, distance was measured by 1-Pearson correlation of count matrix, where
smaller the distance, and offset is the shift distance between two motifs in unit of base
pair, smaller the number, longer overlapping segments between two motifs. Conservative
motifs across different types of beads were selected by using the threshold of distance
smaller than 0.2 and offset smaller or equal to 2. To further discuss the properties of
discovered conservative motifs, candidates were aligned to RNABase*® for function
check. Besides function, secondary structure of motif could be interesting to discover too.
Pre-build data pipeline GraphClust?” was used to explore possible secondary structure of
motifs (Supplementary Figure 4). Since there number of signals that had been verified
by both techniques was limited, significant signals were used as input of the pipeline.
Input for Graphclust were differential peaks regions in fasta format and secondary
structures were predicted based on clusters, the largest cluster with most data points from

each bead was selected to represent the most possible secondary structure. The RNA
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secondary model was predicted and calibrated using CMfinder® and CMsearch®. Due to
the fact there were limited number of differential peaks that were validated by both
techniques, significant differential peaks between every type of bead and control bead

were used as input to avoid the inaccuracy that caused by small input.
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Supplementary Materials

Supplementary Table 1: Characteristics of cell-surface RNA positive cell lines

Cell line Tissue of Age of ZOC
Cell type/Disease  Organism . . Cell morphology s Gender with
Name Origin donor
csRNA
EL4 Lymphoma Mouse T lymphocyte lymphoblast Unknown Unknown 29%-38%
NK-gp ~ Non-Hodgkin's oy, o Nawralkiller o blast 50y Male  19%-26%
lymphoma cell

NK-92

A

Cy5 Iy

N‘N;N/:7)L Cell Surface

’ TCuAAC cy5
T Cytoplasm

Merge
Cy5 + DIC

@
O

. . EL4 cells NK-92 cells
¢ +EU+Cu 1.5+ * *%*
40' u 'EU +CU » ’ | —— | 7)) 159 |
- - *% — *
g I ...... 4 +EU-Cu ﬁ < — 8 —
s % 30+ 3 Em- e q %1.0- soe
i S [— A o @ N
= @ 204 “— Z° e
[Tl = o ,.'c_, o y— s
] ° -;o.s- % m O §0,5.
£Znol 3 : g -+
8 . P
S ke -0 0.0
0 EU + + - - EU + + - -
RNAse - + - + RNAse - + - +

EL4 NK-92

Supplementary Figure 1: Previous Result of Identification of mammalian cell lines displaying csRNA
using Surface-CLICK technology: A. Workflow of the cell-surface CLICK technology. B. Representative
images of the 2 cell lines showing cell-surface signal after CLICK reaction. Upper panels show signal form
cy5 channel, lower panels show a merge image of DIC channel and cy5 channel. Scale bars: 10um. C. Graph
representing the percentage of cells exhibiting cell-surface signal. Blue stars show significance difference
between (+EU +Cu) and (+EU —Cu) for each cell line. Green stars show significance difference between
(+EU +Cu) and (-EU +Cu) for each cell line. D. Graphs representing the percentage of cells presenting with
cell-surface signal after RNase treatment in EL4 and NK-92 cell lines, normalized on the (-EU +Cu)
condition. Error bars represent the standard deviation of three independent experiments. Statistic indicators:
*p<0.05, **p<0.01, ***p<0.001.
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Supplementary Table 2: Library and mapping information. This table showed the sequencing and
mapping information for each technical and biological replicate for every bead. There are in total of 9 types
of beads, includes one control bead (no lipid affinity) and 8 beads with different affinity. Different color
indicated specific binding position, which green background color indicated the bead is specific for outer
leaflet. Blue background color indicated the bead is specific for RNAs on the inner leaflet, the red color
indicated the bead is specific for RNAs on the lipid raft, and the orange color indicated the bead is specific
for RNAs on the outer leaflet and lipid raft.

Sample Name |Lipid Name|Lipid Localization |Biological Rep |Tech Rep |M Seqs |M Aligned |% Aligned
CT-1_1 1 1 2.2 1.1 52.40%
CT-1.2 1 2 1.7 0.9 53.80%
CT-2_1 Control NA 2 1 2 1.2 61.80%
CT-2 2 No lipid 2 2 2.1 1.3 61.30%
CT-3_1 3 1 1.4 0.8 55.40%
CT 3 2 3 2 2.9 1.6 54.50%
SM-1_1 1 1 1.8 0.9 53.40%
SM-1 2 1 2 1.8 1 53.30%
SM-2_1 Sphingo- Outer leaflet 2 1 2.2 1.4 60.90%
SM-2 2 myelins 2 2 2.1 1.3 61.20%
SM-3_1 3 1 1.3 0.7 51.30%
SM-3 2 3 2 1.2 0.6 49.60%
Cer-1_1 1 1 1.6 0.9 54.50%
Cer-1_2 1 2 1.9 1 54.90%
Cer-2_1 . 2 1 2.1 1.3 61.50%
Cer-2 2 Ceramides Outer leaflet 2 2 22 13 51.60%
Cer-3_1 3 1 1.3 0.7 52.80%
Cer-3 2 3 2 0.8 0.4 52.90%
PC-1_1 1 1 1.8 1 54.50%
PC-1_2 1 2 1.9 1 54.00%
PC-2 1 Phosphati- Outer leaflet 2 1 1.8 1.1 61.40%
PC-2 2 dylcholines 2 2 2.2 1.4 60.80%
PC-3_1 3 1 3.2 1.7 54.00%
PC-3 2 3 2 2.6 1.4 53.50%
PE-1_1 1 1 1.8 1 54.00%
PE-1_2 Phosphati- 1 2 1.5 0.8 53.40%
RE-221 dylethanolamin Inner leaflet 2 4 2 1 A
PE-2_2 os 2 2 2.1 1.2 59.50%
PE-3 1 3 1 3 1.6 52.70%
PE-3 2 3 2 6.4 3.5 54.40%
PS-1_1 1 1 1.6 0.9 53.70%
PS-1 2 Phosphati- 1 2 2.1 1.1 54.50%
PS-2 1 dylserines Inner leaflet 2 L 1y 12 G0z,
PS-2 2 2 2 1.8 1.1 61.20%
PS-3_1 3 1 0.7 0.4 50.20%
PS-3 2 3 2 0.8 0.4 56.50%
PiP3-1_1 1 1 1.9 1 54.20%
PiP3-1_2 Phosphatidylino 1 2 1.5 0.8 53.90%
RIES228] sitol (3,4,5)- Inner leaflet 2 L 2 1.2 00
PiP3-2 2 trisphoslpfqate 2 2 2.1 1.3 62.00%
PiP3-3_1 3 1 1.2 0.6 51.70%
PiP3-3 2 3 2 1.3 0.7 52.90%
Chol-1_1 1 1 1.8 1 55.50%
Chol-1_2 1 2 1.6 0.9 54.30%

- 0,
g:g:_g:; Cholesterol Lipid raft / all ; ; ;g 12 g?gg(ﬁ
Chol-3_1 3 1 1.1 0.6 52.70%
Chol-3 2 3 2 2.5 1.3 53.00%

SS-1_1 1 1 1.5 0.8 53.50%
SS-1_2 1 2 1.8 1 54.30%
gg:;:; Sphingosines | Outer leaflet/ lipid rafts ; ; ig 1.11 g?gg:
SS-3_1 3 1 0.3 0.2 53.50%
SS-3 2 3 2 1.9 1 52.00%
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Supplementary Table 3: Library information for SurfaceSeq and SurfaceClick

SurfaceSeq SurfaceClick
SamplelD RNA_type Mapping Non-rRNA Uniq Reads| SamplelD [RNA_type Mapping Non-rRNA Uniq Reads
EL4-Seg-1 Surface | 21,981,145 (28.4%) 3,406,436 | EL4-Click-1 Surface | 2,600,269 (64.7%) 2,220,649
EL4-Seq-2 Surface 96,871,019 (80.8%) 25,317,441 EL4-Click-2 Surface | 5,027,700 (81.8%) 4,162,170
EL4-Seq-3 Surface | 81,245,588 (76.8%) 4,796,347 ] EL4-Click-3 Surface | 3,108,187 (75.9.%) 3,745,353
EL4-Tot-Seqg-1 Total 49,807,704 (72.8%) 35,212,630 | EL4-Tot-Click-1 Total 4,418,618 (57.1%) 583,389
EL4-Tot-Seq-2 Total 57,035,602 (90.5%) 51,679,699 | ELA-Tot-Click-2|  Total 17,835,770 (74.7%) 6,966,723
EL4-Tot-Click-3 Total 5,158,649 (78.5%) 2,339,436
SurfaceSeq Surface Reads Num 33,520,224 SurfaceClick Surface Reads Num 10,128,172
SurfaceSeq Total Reads Num 86,892,329 SurfaceClick Total Reads Num 9,889,548

Supplementary Table 4: Total number of reads for combined SurfaceClick surface samples, combined
SurfaceClick total samples, SurfaceSeq surface samples, and SurfaceSeq total samples

Lib Type Total Reads
SurfaceClick Surface 10,128,172
SurfaceClick Total 11,889,548
SurfaceSeq Surface 53,520,224
SurfaceSeq Total 86,892,329

Supplementary Table 5: P-value of Hypergeometric Test using 4 Different Threshold. This table showed
the result of hypergeometric test using 4 different thresholds. The P-value indicated the probability of a
gene identified as significantly enriched by SurfaceClick is equal to the probability of the same gene
identified as significantly enriched by SurfaceSeq. Results lead to the conclusion of the probability of a
gene identified as significantly enriched by SurfaceClick is not equal to the probability of the same gene
identified as significantly enriched by SurfaceSeq. Therefore, the further conclusion of genes identified by
one technique were not evenly distributed in the other could be made.

padj < 0.1 and log2FoldChange > 1 padj < 0.2 and log2FoldChange > 1
Surface?lick Detected Genes' All SurfaceSeq Genes Surfaceqick Detected Genes Al acesegGenes
in SurfaceSeq in SurfaceSeq
Significant 110 1384 Significant 161 1384
Insignificant 570 23,037 Insignificant 519 23,037
Total 680 24,421 Total 680 24,421
dhyper.pValue = 7.578951e-24 dhyper.pValue = 5.213349e-57
Surfac?:zzz:z:giej(Genes All surfaceClick Genes Surfacei:esilr)f:zcct"ecdeenes All SurfaceClick Genes
Significant 158 680 Significant 296 680
Insignificant 1,226 23,740 Insignificant 1,096 23,740
Total 1,384 24,421 Total 1,384 24,421
dhyper.pValue = 9.427191e-55 dhyper.pValue = 8.677003e-191
Cross validation threshold of Cross validation threshold of
padj < 0.05 and log2FoldChange > 2 padj < 0.01 and log2FoldChange > 2
SurfacelCIick Detected Genes All SurfaceSeq Genes Surfacef:lick Detected Genes All SurfaceSeq Genes
in SurfaceSeq in SurfaceSeq
Significant 88 1384 Significant 59 1384
Insignificant 592 23,037 Insignificant 621 23,037
Total 680 24,421 Total 680 24,421
dhyper.pValue = 2.102588e-13 dhyper.pValue = 0.0003177944
SurfaceSeq Detected Genes " SurfaceSeq Detected Genes .
in SurfaceClick All SurfaceClick Genes in SurfaceClick All SurfaceClick Genes
Significant 85 680 Significant 35 680
Insignificant 1,299 23,740 Insignificant 1,349 23,740
Total 1,384 24,421 Total 1,384 24,421
dhyper.pValue = 3.421948e-12 dhyper.pValue = 0.05830507
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Supplementary Figure 2: Additional 5 Examples of Upset plot for all 8 different types of beads and two
types of cell surface sequencing technique, on the gene level. Green background color indicated the bead is
specific for outer leaflet. Blue background color indicated the bead is specific for RNAs on the inner
leaflet, the red color indicated the bead is specific for RNAs on the lipid raft, and the orange color indicated
the bead is specific for RNAs on the outer leaflet and lipid raft. The upset plot showing the intersection
relationships of significant peaks, which filtered by applying the threshold of g-value smaller than 0.05,
from 8 different types of beads and two orthogonal cell surface sequencing techniques on the gene level.
On the plot, ten types of overlapping relationships were marked by blue arrow with tag number.

47



1 2 Cul3_check: chr1:80,318,752-80,321,942
Oxr1_check: chr15:41,832,327-41,834,000 “

m EL4 S0q.1

LR o0 1

3 -
I £t seq
E“’s’l?j* _— £t 500 T B o
£ 5eq s e —
[ e I awsad
e i ]
wad S - —
e oy = =——— ook — -
o m?; :::L::‘:;
D e o
D o L memady
. mnf
hrl
chr15 chr m SgMb
3 Stim2_check: chr5:54,087,069-54,089,363 Ptma_check: chr1:86,526,726-86,530,712
o S‘ﬁ, s . zu,srﬁ /\,, A~
. 14 500 9 e N masead A A aAS_ e
16 To 50q P e A
H o
e o e ol
- £ ik ]
e ciek § - - - e cick -
e Tocrik 1] E o eaecia
e Torciiek 7 ¢ Eaeciaq
i i
eLa o i g S eemciag
Pime
chrs chr1

86.53Mb

5 Casp8_check: chr1:58,795,374-58,847,503

aes]

L4 500 9

145009

EL4 Tot Seq T —
EL4_Tot Seq7]

e ciek g
e oiek 3

P acmodd]
§ oy

P memciay

e o el
EL4_Tot_Clck 7
o il

B e e | L

chrt

58.8Mb 58.81Mb 8.82Mb 8.83Mb 58.84M5.

chrs e

J' 8 \\\ Aff1_check: chr5:103,709,311-103,711,253
y

\Z/ Ddx24_check: chr12:103,418,800-103,419,800

2. -
s | ELA,SM;:;‘
Lt 500 4 e sen 3 T
o EL4 Seq
eLe sea .
FRE &7 j o ey
I mmmsiag P sy
3 e i o]
e — s L — R
eLa ook 3 e ok
s ToL 0] 14 ot Gk |
L ToL i § memond
e otk L mumady
chr12 chrs
103.71Mb
| CMss1&Filip1l_check: chr16:75,391,000-57392500 { ) Gphn_check: chr12:78,350,600-78,351,400
wesa] I eLa soq ]
Lt seq ] EL4 00 —
e serd mase]
[T oo ok
EL4 Tot Seq 7] el Tot 5o g
; o] acad]
ae e - acie ] -
e oy e 0y

ELs Tot_ciiek 1]
ELa Tot_Click 7]

EL4 Tot_Ciick 3

ELs Tot_ciick 1]
ELa Tot_ciick 7
EL4 Tot ciick 3|

chr16 chri2

Supplementary Figure 3. Situation of detected peaks shown in genomic view 1-10 figures shared
among different experimental replicates within SurfaceClick or SurfaceSeq: Blue trials on top were
replicated from SurfaceSeq and Green trials at the bottom were replicated from SurfaceClick. Lighter color
repressed the surface samples and darker color represented the total samples. Number on top of each figure
is correspond to 10 examples on Upset plot in Figure 4 and Supplementary Figure 2
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Supplementary Figure 4: GraphClust Pipeline on Galaxy. The pipeline for clustering RNA sequences
and structured motif discovery is a multi-step pipeline. Overall it consists of three major phases: a)
sequence-based pre-clustering b) encoding predicted RNA structures as graph features c) iterative fast

candidate clustering then refinement
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