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ABSTRACT Dihydroartemisinin-piperaquine (DP) is highly effective for malaria chemo-
prevention during pregnancy, but the standard dosing of DP that is used for nonpreg-
nant adults may not be optimal for pregnant women. We previously reported that the
pharmacokinetic exposure of total piperaquine (PQ; both bound and unbound to plasma
proteins) is reduced significantly in the context of pregnancy or efavirenz (EFV)-based anti-
retroviral therapy (ART). However, as PQ is >99% protein-bound, reduced protein binding
during pregnancy may lead to an increase in the pharmacologically active unbound drug
fraction (f,), relative to the total PQ. We investigated the impact of pregnancy and EFV
use on the f, of PQ to inform the interpretation of pharmacokinetics. Plasma samples
from 0 to 24 h after the third (final) DP dose were collected from pregnant women at
28 weeks gestation who were receiving or not receiving EFV-based ART as well as from
women 34 to 54 weeks postpartum who were not receiving EFV-based ART, who served
as controls. Unbound PQ was quantified via ultrafiltration and liquid chromatography-
tandem mass spectrometry, with f, being calculated as PQ,pouna/PQiota- The geometric
mean f, did not differ between pregnant and postpartum women (P = 0.66), but it was
23% (P < 0.01) greater in pregnant women receiving EFV-based ART, compared to that
in postpartum women who were not receiving EFV-based ART. The altered drug-protein
binding, potentially due to the displacement of PQ from plasma proteins by EFV, resulted
in only a 14% lower unbound PQ exposure (P = 0.13) in the presence of a 31% lower
total PQ exposure (P < 0.01), as estimated by the area under the concentration time
curve from 0 to 24 h post-last dose in pregnant women who were receiving EFV-based
ART. The results suggest that the impact of pregnancy and EFV-based ART on the expo-
sure and, in turn, the efficacy of PQ for malaria prevention may not be as significant as
was suggested by the changes in the total PQ exposure. Further study during the terminal
elimination phase (e.g., on day 28 post-dose) would help better characterize the unbound
PQ exposure during the full dosing interval and, thus, the overall efficacy of PQ for malaria
chemoprevention in this special population.

KEYWORDS unbound piperaquine, malaria, pregnancy, efavirenz, drug-drug
interaction, ultrafiltration

alaria remains one of the most challenging infectious diseases in the world. In 2020,
the World Health Organization (WHO) estimated that over 95% of the 241 million
global cases and 96% of the 627,000 malaria deaths were in Africa (1). In particular, pregnant
women are among the most at-risk groups, with nearly 34% of pregnant women in Africa
experiencing placental malaria, which has been linked to low birthweight and >100,000
infant deaths annually (2, 3). To decrease the burden of malaria during pregnancy, the WHO
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currently recommends intermittent preventive therapy during pregnancy (IPTp) (i.e., chemo-
prevention) with sulfadoxine-pyrimethamine (SP) in malaria regions of endemicity in Africa
(4). However, the resistance of malaria parasites to this regimen has arisen, leading to the
search for an effective alternative IPTp regimen (5).

Dihydroartemisinin-piperaquine (DP), which is an artemisinin-based combination
therapy, had efficacy superior to that of SP in preventing malaria infections when provided
as IPTp (6-8). Standard treatment doses of DP (120 mg dihydroartemisinin/960 mg pipera-
quine once daily for 3 days), which were developed for nonpregnant adults, have been
tested on a monthly basis for IPTp in clinical trials. Although these studies found that
monthly IPTp-DP was superior to monthly IPTp-SP for malaria prevention, breakthrough
malaria parasitemia was occasionally detected. In addition, pregnancy decreases the phar-
macokinetic (PK) exposure of PQ, which is the long-acting partner drug that is largely
responsible for the long-term protective efficacy of DP (9). To fully prevent parasitemia
in all pregnant women, PK/pharmacodynamic (PD) studies during pregnancy identified
protective total PQ concentrations. Based on this, revised IPT-DP dosing regimens were
proposed to maintain these protective PQ concentrations (8). Furthermore, for preg-
nant women with HIV who were receiving efavirenz (EFV)-based antiretroviral therapy
(ART), our PK studies showed that EFV, which enhances drug metabolism, reduced the total
PQ concentrations (9). As parasitemia outcomes during pregnancy are not available for preg-
nant women who require EFV, revised dosing regimens that are based on the total PQ con-
centration targets for pregnant women who are not receiving EFV have also been proposed
for this population (10). However, if protein binding during pregnancy and/or with concomi-
tant EFV differs from that which was observed in nonpregnant adults, this could impact the
interpretation of the changes in the total drug concentrations and the dosing recommenda-
tions for these groups.

All previous PK/PD studies of PQ have used measurements of the total PQ (plasma
protein bound PQ + unbound PQ) (8-12). However, it is the unbound drug that traverses
biological membranes and exerts pharmacological effects against malaria parasites.
During pregnancy, the fraction of the drug that is unbound (f,) to plasma proteins may be
greater than that in nonpregnant adults due to the increased body fluid and the potential
displacement of drugs by steroid and/or placental hormones. This factor is especially rele-
vant for highly protein-bound drugs (13), such as PQ (>99% bound) (14). If the PQ f,
increases during pregnancy, this may offset, at least in part, the decrease in the total PQ
exposure during pregnancy that we previously reported, as lower total drug concentra-
tions may be sufficient to maintain the same level of unbound PQ in pregnant women as
in nonpregnant adults. Furthermore, concomitant EFV exposure may cause drug-drug
interactions by competitively displacing PQ from plasma proteins, as EFV is also >99%
protein-bound in plasma (15, 16). To further understand the optimal DP dose for IPTp, it is
essential to assess the unbound PQ after DP dosing during pregnancy. Leveraging data
and samples from our previous intensive PK study (ClinicalTrials registration number
NCT02163447) (9), we studied whether pregnancy and EFV impact the unbound PQ expo-
sure in pregnant women.

RESULTS

Profile of study participants. A total of 88 (31 HIV-negative pregnant women, 27
HIV-positive pregnant women, and 30 HIV-negative postpartum women) participants
were included for this sample analysis (Fig. 1). The demographic characteristics of these
participants were reported previously (9) and are summarized in Table 1. The HIV-posi-
tive pregnant women were older than were the HIV-negative pregnant women (median
age of 30 years versus 23 years, P < 0.01), but their weights were similar. So, an impact of
the age difference on the drug binding proteins is not expected. The HIV-negative postpar-
tum women served as the nonpregnant control group and underwent a PK assessment at
34 to 54 weeks postpartum. Their median weight was 8% lower than those of the two preg-
nant groups (P < 0.01), and their hemoglobin level was 20% higher than that observed in
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31 HIV-negative women 27 HIV-positive women

Antepartum 28wk gestation Antepartum 28wk gestation

DP: 120/960 mg QD DP: 120/960 mg QD
EFVITNF/3TC 600/300/300 mg QD

l Follow up

27 HIV-negative women | 30 HiV-negative women

Postpartum »| Postpartum at 34 - 54 wk
DP: 120/960 mg QD

3 HIV-negative women
Postpartum added

PK sampling was after the 34 DP dose (0, 0.5, 1,2,3,4,6,8,24hr)

FIG 1 Schematic overview of the intensive PK study. DP, dihydroartemisinin-piperaquine; EFV, efavirenz;
TNF, tenofovir; 3TC, lamivudine; QD, once daily; PK, pharmacokinetics.

the HIV-positive pregnant women who were receiving EFV-based ART and 16% higher than
that observed in the HIV-negative pregnant women (Table 1).

Measurement of unbound PQ concentrations. A total of 275 plasma samples
from 31 HIV-negative pregnant women, 237 plasma samples from 27 HIV-positive pregnant
women receiving EFV-based ART, and 268 plasma samples from 30 postpartum women
were analyzed (Table S1). The unbound PQ concentrations ranged from 0.040 to 11.1 ng/mL,
with all sample results exceeding the lower limit of quantification (0.02 ng/mL).

Pharmacokinetics for unbound PQ. The calculated PK parameters for the unbound
PQ are presented in Table 2. For comparison, the PK parameters for the total PQ are recal-
culated using the same plasma samples as were used for the unbound PQ, and these are
included in Table 2. Of note, compared to our prior report of the total drug PK (9), two
additional subjects were included (one HIV-negative pregnant woman and one HIV-positive
pregnant woman who was receiving EFV-based ART), as these participants had samples
available from 0 to 24 h but had insufficient samples to be a part of our prior study (9).

Impact of pregnancy. As we observed for the total PQ exposure, the unbound PQ
exposure was also lower during pregnancy than in the postpartum women, and this was to
a similar magnitude. Specifically, the unbound PQ peak concentration (Cmax) was 18.9%
(P = 0.20) lower, and the area under the concentration-time curve from time zero to 24 h
after the third dose (AUC, ,, ;) was 16.3% (P = 0.12) lower in the pregnant women. None of
these reductions reached statistical significance, as was true for the PK parameters for the
total drug (Table 2). To further evaluate the unbound PQ exposure, we calculated the frac-
tion of unbound PQ at each time point. The geometric mean f, was 0.533% in the antepar-
tum women and 0.520% in the postpartum women (P = 0.66).

Impact of EFV during pregnancy. To evaluate the impact of EFV on the PK expo-
sure of unbound PQ, the exposure in the HIV-positive pregnant women who were con-
comitantly receiving EFV-based ART was compared with that in the HIV-negative pregnant
women who were not receiving EFV-based ART (Table 2). The unbound PQ Cmax and
AUC,_,, , were similar in the two groups. The mean Cmax was 2.40 versus 2.41 ng/mL, and
the mean AUC,_,, ,, was 24.2 versus 23.6 h.ng/mL in the pregnant women with versus
without EFV-based ART. However, considering the reduction of the total PQ Cmax (—18%)
and AUC,_,, ,, (—18%) values, f, was 20% higher (P < 0.01), and the ratio of unbound

TABLE 1 Baseline characteristics of study participants®

Antimicrobial Agents and Chemotherapy

Antepartum at 28 weeks gestation

Postpartum 34 to 54 weeks

Characteristic HIV-positive (n = 27) HIV-negative (n = 31) HIV-negative (n = 30)
Concomitant drugs EFV-based ART No ART No ART (control)

Age (years) 30 (18, 43)° 23(18,31) 24(19,32)

wt (kg) 57.6 (43.7,72.8) 57.5(45.2,83.2) 52.9(38.5,72.9)°
Hemoglobin levels (g/dL) 11.6(8.1,19.2) 12.0(10.3,16.8) 13.9(11.8, 16.3)°

aThe data represent the median (range). EFV, Efavirenz; ART, antiretroviral therapy.

bDenotes a statistically significant difference (P < 0.017, Wilcoxon rank-sum test), compared to the same parameter for the other two groups.
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TABLE 2 Impact of pregnancy and EFV-based ART on the pharmacokinetics of piperaquine®

P alone P+EFV NP P/NP P+EFV/P P+EFV/NP

PK parameter GM; 95% Cl (n=31) GM; 95% ClI (n = 27) GM; 95% ClI (n =30) GMR (P value) GMR (P value) GMR (P value)
Total PQ

Cmax, ng/mL 404 (332,491) 333 (277, 400) 497 (392, 630) 0.813(0.13) 0.824 (0.067) 0.670 (<0.01)

Tonae DI 3.08 (3.00, 4.03) 4.00 (2.03,5.98) 3.06 (2.07,4.03) 1.01(0.71) 1.30(0.78) 1.31 (0.65)

AUC, 5, 1, hr-ng/mL 4,580 (3,850, 5,440) 3,770 (3,250, 4,380) 5,490 (4,420, 6,810) 0.834(0.11) 0.823 (0.019) 0.687 (<0.01)
Free PQ

Cmax, ng/mL 2.41(1.83,3.19) 2.40 (1.88,3.07) 2.97(2.29, 3.85) 0.811 (0.20) 1.00 (0.95) 0.808 (0.14)

T DY 3.98 (3.02,4.03) 4,00 (2.98, 4.07) 3.08 (3.00, 4.07) 1.29(0.71) 1.01(0.81) 1.30(0.72)

AUC,_,, , hr-ng/mL 23.6 (18.8, 29.5) 24.2 (19.1, 30.5) 28.2(21.8,36.5) 0.837(0.12) 0.975 (0.87) 0.858 (0.13)

f, (%)° 0.533(0.510, 0.557) 0.641 (0.602, 0.682) 0.520 (0.501, 0.539) 1.03 (0.66) 1.20 (<0.01) 1.23 (<0.01)

9The data represent the geometric mean (GM) with a 95% confidence interval (Cl), except for T .., which is the median with the interquartile range (IQR). P, pregnancy;
P+EFV, pregnancy plus efavirenz-based antiretroviral therapy; NP, nonpregnant postpartum control group.
bf, was calculated as C,,,ouna/Crora With n = 268 for the NP group, 275 for the P alone group, and 237 for the P+EFV group.

AUC,_,, n/total AUC,_,, ,, was 24% higher (P < 0.01) in the pregnant women who were
receiving EFV-based ART, compared to those who were not receiving EFV-based ART.

Impact of pregnancy and EFV. To examine the combined impact of pregnancy
and EFV on the unbound PQ exposure, we compared the exposure in HIV-positive
pregnant women who were receiving EFV-based ART with that in HIV-negative post-
partum women. Although the total PQ Cmax was reduced by 33% (P < 0.01) and the
AUC,_,, , was reduced by 31% (P < 0.01), the reduction of unbound PQ exposure was
less and did not reach statistical significance: the unbound PQ Cmax was 19% lower
(P =0.14), and the AUC,_,, , was 14% lower (P = 0.13). Accordingly, the f, increased by
23%, and the ratio of unbound PQ AUC, ,, , to total PQ AUC, ., , increased by 25%,
partially compensating for the reduction in the total PQ exposure in the HIV-positive
pregnant women who were receiving EFV-based ART. The concentration-time profiles
of the unbound PQ and the total PQ are presented in Fig. 2.

DISCUSSION

Our team previously reported that both pregnancy and EFV independently reduced
PQ exposure (9). However, that study considered the total PQ exposure, and it is the free
drug that exerts pharmacological effects. Here, we evaluated the PK exposure of free PQ in
the same cohort that we studied previously for the total PQ (i.e,, 58 pregnant women and
30 postpartum women who were receiving DP for malaria prevention). Surprisingly, in
contrast to some other drugs, we did not detect a significant difference in PQ f, between
pregnant and postpartum women, as the total and unbound PQ exposures both decreased
to a similar magnitude. Considering the impact of EFV, the total PQ exposure was lower, but
the unbound PQ exposure did not change in pregnant women who were receiving EFV-
based ART, compared to pregnant women who were not receiving EFV-based ART, and this
resulted from a significant increase in f,. In summary, EFV, but not pregnancy, increased the
fraction of unbound PQ.

Pregnancy is expected to increase the fraction of the unbound drug due to the reduced
drug-protein binding during pregnancy, especially during the third trimester. Although we
did not find that pregnancy altered the fraction of unbound PQ, pregnancy increases the
f, of lopinavir (17-19), darunavir (20), and phenytoin (21). In the case of phenytoin,
dose adjustments based on the decrease of the total phenytoin concentration caused
toxicity (22).

A major finding in this study was the significantly greater fraction of unbound PQ in
pregnant women who were receiving concomitant EFV-based ART, compared to those
who were not receiving EFV-based ART. The f, was 20% greater than that observed in
the pregnant women who were not receiving EFV-based ART and 23% greater than
that observed in the postpartum women. Because of the increased f,, the unbound PQ
AUC,_,, , in the pregnant women who were receiving EFV-based ART was the same as
that observed in the pregnant women without EFV-based ART, despite an 18% lower
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FIG 2 The concentration-time curve of unbound PQ (A) and total PQ (B) in HIV-positive pregnant
women receiving concomitant EFV-based ART (red line), HIV-negative pregnant women (black line),
and postpartum women (green line). The data represent the geometric mean (95% Cl).

total PQ AUGC,_,, ,, and it decreased by only 14%, despite a 31% lower total PQ AUC, ., ,
compared to that observed in the postpartum women who were not receiving EFV-
based ART. These results suggest the competitive displacement of PQ from plasma proteins
by EFV. Like PQ, EFV is highly (@approximately 99%) bound to plasma proteins (15, 16) so that
competition for binding sites may release PQ into plasma, which thereby leads to an
increase in PQ f,. Displacement drug-drug interactions have been reported for other highly
protein-binding drugs (e.g., a recent study reported that the f, of dolutegravir in patients
who were receiving concomitant valproic acid increased by 145% on day 14 after drug
administration) (23).

Our study had two important limitations. First, the unbound PQ concentrations
were only measured up to 24 h after the last dose of DP. Although the reduction of the
total PQ exposure, as estimated via the AUC,_,;, 4 was 40% in pregnancy, 38% under
EFV-based ART, and 62% in pregnant women under EFV-based ART (9), the total PQ ex-
posure was reduced by a lower magnitude (<20%) for the first 24 h and did not reach
statistical significance in the context of either pregnancy or EFV-based ART. Only the
combined impact of pregnancy and EFV caused a significant reduction of the total PQ
Cmax (—33%, P < 0.01) and AUC,_,, , (—31%, P < 0.01) values. A future study will explore a
new method by which to separate unbound PQ with only a 10 uL plasma sample volume,
which will allow us to quantify the unbound PQ in capillary plasma samples, thereby ena-
bling the study of unbound PQ across additional time points during the terminal phase of
drug elimination, when a significant reduction of PQ concentrations is observed due to
pregnancy and EFV, but the protective concentrations must be maintained. Another limita-
tion was the larger variation of the unbound PQ measurement, compared to that of the
total PQ measurement, which compromised statistical power in this study. Factors causing
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variation in unbound drug measurements using ultrafiltration include nonspecific binding
to filter devices, temperature, and pH (24). We used benzalkonium chloride (BAK)-treated fil-
ter devices to overcome nonspecific binding, and samples were incubated and centrifuged
at 37°C to mimic physiological conditions, but we did not control the pH during the analysis,
which might explain the larger variation that was observed in the spiked plasma analysis
than that which was observed in the working solution analysis. Of note, the inter-individual
coefficient of variation was 51 to 58% for the total PQ Cmax, 55 to 77% for the unbound PQ
Cmax, and 28 to 44% for the f, value (Tables S1-3).

In summary, this was the first study of unbound PQ PK exposure. The unbound PQ
fraction remained largely the same in pregnant and postpartum women, but it was signifi-
cantly greater in pregnant women who were receiving a concomitant administration of
EFV-based ART. Since the chemopreventive efficacy of PQ relies on the maintenance of
the minimum protective concentration, the clinical implications of the current findings
remain to be determined. Further study of the unbound PQ at the terminal phase of PQ
elimination is needed.

MATERIALS AND METHODS

Study population. This study was carried out between December of 2014 and March of 2016 in
Tororo, Uganda. Eligible participants included (i) HIV-negative pregnant women (prior to 28 weeks gestation),
(ii) HIV-negative postpartum women (at least 12 weeks postpartum), and (iii) HIV-positive pregnant women
who were receiving EFV-based ART (prior to 28 weeks gestation) and were enrolled in clinical trials. The proto-
col details and results for the parent trials have been previously reported (9, 25, 26). The trials were conducted
in accordance with the ethical standards of the responsible committee on human experimentation of
Makerere University, the Uganda National Council of Science and Technology, and the University of California,
San Francisco. The trials were registered at ClinicalTrials.gov (NCT02163447 and NCT02282293).

Study design. Consenting pregnant women underwent intensive PK procedures around their 28-
week visit. A standard three-dose DP regimen (120 mg DHA and 960 mg PQ, Duo-Cotecxin, Holley-
Cotec, once daily for 3 consecutive days with or without food) was administered in the clinic at the time
of 28-week gestational visits for both groups of pregnant women. HIV-negative women were approached
again for reenroliment, postpartum, and they were administered a single, standard three-dose DP regimen at
least 12 weeks postpartum to provide nonpregnant control samples. The HIV-positive pregnant women who
were enrolled in the intensive PK study were required to be receiving EFV-based ART that consisted of a stand-
ard single-tablet regimen of EFV (600 mg), tenofovir disoproxil fumarate (300 mg), and lamivudine (300 mg)
once daily (Fig. 1).

Pharmacokinetic sample collection and analysis. Venous plasma samples were taken before (pre-
dose) and after the patients’ last doses at 0.5, 1, 2, 3, 4, 6, 8, and 24 h. Finger stick capillary samples were
collected at days 4, 7, 14, and 21 post-dose for total PQ measurement, but the unbound PQ concentra-
tions were not determined for the capillary plasma samples due to their limited sample volumes.

Unbound PQ concentrations were determined using a previously reported method, with some modi-
fications (27). We observed a decrease of concentration overnight if the PQ solutions were below 10 ng/mL.
Therefore, the calibrators (0.02 to 5 ng/mL PQ) and the quality controls that were spiked in blank plasma fil-
trate, and the corresponding working solutions that were spiked in 10% acetonitrile 0.5% formic acid were all
prepared freshly before the analysis of the samples. Samples above 5 ng/mL were repeated with the dilution
of the sample filtrate by 4 to 10-fold. We found that the sample temperature and the delayed addition of sam-
ples in the BAK-treated filter devices caused variation in the PQ measurements. Therefore, plasma samples
were added into the filter devices immediately after BAK-treatment, centrifuged at 37°C, and processed along
with both spiked plasma and working PQ solutions as controls in batches of 12 to 24 devices. During the sam-
ple analysis, the precision (CV%) values of the quality controls that were spiked directly in blank plasma filtrate
at 0.06, 0.6, and 4 ng/mL PQ were 13% (n = 46), 11% (n = 44), and 10% (n = 42), respectively. The precision val-
ues of the spiked solutions at 0.1 and 0.6 ng/mL PQ undergoing ultrafiltration were 12.8% (n = 25) and 10.7%
(n = 56), respectively. The mean recovery values of the ultrafiltration of the spiked solutions at 0.1 and 0.6 ng/
mL PQ were 94.5% (n = 25) and 89.5% (n = 56), respectively. These data demonstrated acceptable precision
(<15%) and good recovery of ultrafiltration during the analysis of the samples. The CV% values from the
spiked plasma samples at 80 and 800 ng/mL total PQ undergoing ultrafiltration were higher, being measured
as 29.7% (n = 48) and 37.5% (n = 48), respectively.

Pharmacokinetic and statistical analyses. A noncompartmental analysis was carried out using
Phoenix WinNonlin version 8.3.1 (Certara, Princeton, NJ, USA) via the linear up-log down trapezoidal rule. The
PK parameters for the unbound PQ included the area-under-the-plasma concentration versus time curve to
24 h (AUC,_,, ), maximal concentration (Cmax), time to Cmax (T,,,,), and fractions of the unbound PQ concen-
trations (f,). As the prior PK parameters for the total drug were based on the PQ concentrations from 0 to
21 days, a recalculation of the total drug exposure was made to allow for the comparison to the unbound PQ
exposure, using the same PK time range (0 to 24 h after the third dose) (9). In addition, to pair samples fully
with all free PQ sample measurements, the total PQ concentrations were treated as missing data if the
unbound PQ concentrations were not available due to insufficient or missing samples. The f, value was calcu-
lated using the unbound PQ concentration divided by the corresponding total PQ concentration at each time
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point: f, = C,pound/Ciorar The concentration-time curve was plotted using GraphPad Prism 6 (GraphPad soft-
ware, San Diego, CA, USA).
Stata version SE14.1 was used for the statistical analyses. The sample size was determined in the
total PQ PK study in the parent trials (9). At least 24 subjects on DP for each study group were required
to detect a difference in the mean AUC between groups of 29.5% with 80% power and a significance
level (a) of 0.05, using a two-sided, two-sample t test, based on an observed coefficient of variation for
the total PQ AUC from our own studies (approximately 35%). For the PK parameters, the Wilcoxon rank-
sum test (or signed-rank test for the paired analysis) was used. The data are presented as geometric
means (GM) or medians, as appropriate.
Data availability. The data that were used in this study, including the individual concentrations and
the PK parameters, are provided in the supplemental material.
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