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Simulation of subsurface heterogeneity is important for modeling subsurface flow and 

transport processes. Previous studies have indicated that subsurface property variations 

can often be characterized by fractional Brownian motion (fBm) or (truncated) fractional 

Levy motion (fLm). Because Levy-stable distributions have many novel and often 

unfamiliar properties, studies on generating fLm distributions are rare in the literature. In 

this study, we generalize a relatively simple and computationally efficient successive 

random additions (SRA) algorithm, originally developed for generating Gaussian fractals, 

to simulate fLm distributions. We also propose an additional important step in response 

to continued observations that the traditional SRA algorithm often generates fractal 

distributions having poor scaling and correlation properties. Finally, the generalized and 

modified SRA algorithm is validated through numerical tests.  

 

KEY WORDS: Levy Fractal, Heterogeneity, Numerical simulation. 
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INTRODUCTION 

It is generally agreed that heterogeneity of hydraulic properties is a key factor controlling 

flow and transport processes in the subsurface. Consequently, quantification of 

subsurface heterogeneity is often needed for modeling subsurface contamination and 

remediation problems. Previous research has shown that spatial variations of K (hydraulic 

conductivity), or log(K) often display scaling that has been modeled using properties of 

truncated fractional Levy motion (fLm) (Painter and Paterson, 1994; Painter, 1996; Molz, 

Liu, and Szulga, 1997; Liu and Molz, 1997). The fLm model utilizes the Levy-stable 

family of probability distributions that have a canonical role in mathematical statistics 

similar to that of the Gaussian distribution, but have power law tails. These slowly 

decaying tails lead to diverging second and higher moments, but also make these 

distributions useful for modeling highly heterogeneous systems (Painter, 1996). 

However, for practical applications, truncation of Levy-stable distributions is generally 

needed such that simulated property values are bounded by the maximum and minimum 

values of measurements.  Although other improved models of probability distributions 

have been proposed recently, that have both slowly decaying tails and a defined variance 

(Painter, 2001; Nakao, 2000), the relatively simple truncated fLm remains an attractive 

model for practical applications.  

     To employ fLm to characterize and simulate subsurface heterogeneities, it is desirable 

to have an efficient generating algorithm that is easy to understand and use. An algorithm 

that was proposed some time ago for generating the related Gaussian stochastic fractal 

known as fractional Brownian motion (fBm) is called successive random additions (SRA) 

(Voss, 1988; Saupe, 1988).  This algorithm is easy and fast, has been subject to several 
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suggested improvements, but continuing problems have been noted with the resulting 

correlation structure, especially for the higher dimensional versions (Caccia and others, 

1997; McGaughey and Aithen, 2000). Because Levy-stable distributions do not have 

well-defined variances, the classical SRA algorithm, and other algorithms, for generating 

Gaussian fractals cannot be simply borrowed for generating fLm distributions. As a 

result, studies of algorithms for generating fLm are very limited in the literature. Painter 

(1996) published an algorithm based on generalized sequential simulation to simulate 

truncated fLm. This method was approximate and was not based on a random field model 

(Painter, 1998). A more rigorous method with conditional simulation was presented by 

Painter (1998) that again used sequential simulation. The sequential simulation method is 

inefficient because it requires solving a set of equations simultaneously for determining 

property values at each location. A more detailed discussion of issues related to using 

sequential simulation algorithm for generating fLm was recently presented by Gunning 

(2002). Owing to its computational efficiency and what should be a transparent 

derivation, it is logical to attempt to generalize SRA for fLm generation, but only if 

existing problems with the algorithm can be corrected.  Herein we describe and correct 

the logical flaw that has persisted in the SRA algorithm, and then generalize the 

algorithm for simulating truncated fLm accurately in one or two dimensions.  

 

CORRECTION OF THE CLASSICAL SRA ALGORITHM FOR FBM 

    We will state briefly the corrected SRA algorithm and then move on to the 

generalization to fLm.  By doing this first for the Gaussian fractal, fBm, analogoies with 

fLm will be more clear.  One–dimensional fBm is defined as a random and single-valued 
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function, G(X), of the independent spatial or temporal variable, X, having stationary 

increments, G(X+h)-G(X), over the distance (lag), h, with the increments displaying a 

Gaussian distribution with mean zero  and variance, σ2, for any h (Molz, Liu, and Szulga, 

1997).  Well known properties of the Gaussian distribution are that the summation of N 

independent random variables having a zero mean and variances,  σ2
i,  are still Gaussian 

with a standard deviation given by: 
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This property, along with the fact that a constant, A, multiplied by a Gaussian random 

variable with zero mean and variance, σ1
2, is still Gaussian, but with σ2=A2σ1

2,  are the 

basic properties used in developing the traditional SRA algorithm given below. 

    The statistical self-affinity (scaling) of fBm may be expressed by relating the standard 

deviations of the increments, G(X+h)-G(X), to the lag, h (Molz, Liu, and Szulga, 1997): 

 

σ2(h) = σ2(1) h2H   ,                                                                                                   (2) 

 

where the scaling parameter, H (Hurst coefficient), is a constant.   

      To generate 1-D fBm having the above scaling, one begins with 2 points separated by 

a distance, L, having initial values of zero. Assume that one wants to generate an fBm 

with NN = 2n +1 data points.  Then the following steps are required, as illustrated in 

Figure 1 ( Voss, 1988; Saupe, 1988): 
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1. First add random numbers from N(0, σ0
2/2) to the 2 end points, denoted by number 1, 

where N(0, σ0
2/2) stands for a Gaussian random number generator with a mean of  0 

and a variance σ0
2/2.   

2. Linearly interpolate the midpoint (denoted by number 2) value based upon the two end 

point values resulting from step 1. 

3. Add random numbers from N(0, 2
1σ /2) with )

4
21(

)2(

2

2

2
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1

H

H −=
σ

σ  to the midpoint 

and all other points;  

4. Then, linearly interpolate between the 3 points obtained in step (3), denoted by number 

3; 

5. Add random numbers from N(0, 2
2σ /2) with )

4
21(

)2(2

2

22

2
0

2

2
12

2

H

HH −==
σσ

σ  to the two 

midpoints interpolated in step (4) and all other points. 

6.  Repeating the same process, keep performing linear interpolation and adding random 

numbers from N(0, 2
nσ /2) with )

4
21(

)2(2

2

2

2
0

2

2
12

H

nHH
n

n −== − σσ
σ  up to the nth  level, 

which results in a total of  2n+1 points. 

7.  Although no new points are added, keep adding random numbers to each existing 

point from N(0, σj
2/2) with )

4
21(

)2(2

2

2

2
0

2

2
12

H

jHH
j

j −== − σσ
σ      for      j = n+1, n+2, ….., 

NM, where NM is a sufficiently large number such that σNM/σ0 is negligible. Note that 

existing points refer to points added from Steps 1 to 6.  
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      This final step is what has been missing from previous algorithms, and is required to 

obtain the proper variance structure at the nth, and nominally final, step of the algorithm.  

The reason for this, as well as a more detailed explanation for the entire algorithm, will 

be presented in the more general context of the Levy-stable distribution in the next 

section. 

 

FRACTIONAL LEVY MOTION (FLM) 

    Again for convenience, we use initially one-dimensional (1D) fLm to demonstrate 

important fLm properties. Analogous to the Gaussian case, this stochastic function is 

defined as a random and single-valued function, V(X), of the independent spatial or 

temporal variable, X, having stationary increments, V(X+h)-V(X), over the distance (lag) 

h, with the increments displaying a (symmetric) Levy stable distribution of zero median 

for any h. A (symmetric) Levy-stable distribution is a generalization of a Gaussian 

distribution, and may be defined conveniently as the inverse Fourier transform of its 

characteristic function, since this inverse transform in general does not have an analytical 

expression (Samorodnitsky and Taqqu, 1994): 

 

,)cos()exp(1)(
0
∫
∞

−= dkkxCkxf α

π
                                                  (3) 

 

where C is the width parameter, corresponding to the standard deviation of Gaussian 

distributions, and α is the Levy index. Such a distribution does not have a defined 

variance for α < 2, nor a defined mean for α < 1. (For 1 ≤ α ≤ 2 the zero mean and 
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median are identical.) When α = 2, Equation (3) reduces to the well-known Gaussian 

distribution, so the Levy distribution contains the Gaussian distribution as a special case. 

Shown in Figure 2 are three Levy-stable distributions with different α values.  

      Similar to random variables following Gaussian distributions, the probability density 

distribution for the summation of N independent random variables, characterized by 

Levy-stable distributions with index  α, is still a Levy-stable distribution  with the same 

index α, and the following width parameter (Samorodnitsky and Taqqu, 1994) 
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where Ci is the width parameter for the ith independent random variable.  However, it is 

the second relationship in terms of Cα that forms the direct analogy with the variance for 

the Gaussian case and becomes the Gaussian variance rule when α = 2.  As will be shown 

below, this is a fundamental property used for developing the SRA algorithm for fLm. 

Another fundamental property is that the random variable, AZ, where A is a constant and 

Z is a random variable having Levy index α and width parameter C, will also have a 

Levy index α but width parameter AC, which when raised to the α power becomes AαCα 

(Samorodnitsky and Taqqu, 1994). 

      The statistical self-affinity (scaling) of fLm may be expressed by relating the width 

parameters of the increments, V(X+h)-V(X), for different lags (h) (Painter, 1996): 

 

HH hChChChC ααα )1()()1()( =⇒=                                                                         (5)    
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where the scaling parameter H is a constant.  (Again, the second relationship is the most 

direct analogy with the Gaussian case.) For H = 1/α, the increments are independent 

(summing to a so-called Levy flight). For 1/α < H <1 and 0 < H < 1/α  (1< α ≤ 2), V(X) 

has long-range positive and negative dependencies in the increments, respectively 

(Painter, 1996). Multidimensional fLm can also be easily defined by replacing the 

independent variable X, used in the above discussion, with relevant location vectors.  

 

DEVELOPMENT OF AN SRA ALGORITHM FOR FLM 

     The existing SRA algorithm was originally developed for Gaussian fractals. To our 

knowledge, a rigorously developed SRA algorithm for generating fLm, which 

automatically includes the Gaussian case, is not available in the literature. In this section, 

we first present the developed SRA algorithm for generating 1-D fLm and then discuss 

the logic of the algorithm. Extension of the algorithm to multidimensional fLm then 

follows. 

      To generate a 1-D fLm, one begins with two points separated by a distance, L, having 

initial values of zero (Fig. 1). Assume that one wants to generate a fLm with NN = 2n + 1 

data points. Then the following steps are required: 
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1. First add random numbers from L(0, α, σ0
α/2) to the two end points, denoted by 

number 1 in Figure 2, where L(0, α, σ0
α/2) stands for a Levy random number 

generator with a mean of zero, Levy index  α and width parameter  σ0/21/α .  

2. Linearly interpolate the midpoint (denoted by number 2) value based on the two end 

point values resulting from step one. 

3. Add random numbers from L(0, α, ∆1
α/2) with 
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point and all other points. 

4. Linear interpolate between the “3” points obtained in the above step, denoted by 

number 3. 

5. Add random numbers from L(0, α, ∆2
α/2 ) with 
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two midpoints interpolated from the above step and all other points. 

6. Repeating the same process, keep performing linear interpolation and adding random 

numbers from L(0, α, ∆n
α/2) with 
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resulting in a total of 2n+1 points. 

7. Although no new points are added, continue adding random numbers from L(0, α, 

∆j
α/2) with 

( ) 
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NM, where NM is a sufficiently large number such that CNM/C0 is negligible.  
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    Note that when α = 2, steps 1-7 are identical to those in the SRA algorithm for 

Gaussian fractals described previously.  Also note that we added the new step (step 7) in 

the current algorithm, which is essential for generating properly correlated and scaling 

fLm (as well as fBm), as will be discussed later. To understand why the developed SRA 

algorithm can generate selected fLm distributions and to understand the error term in the 

construction procedure, one needs to know how the relevant formulations used in the 

algorithm were derived.    

       After step 1, based on Equation (4), the increments (differences of point values) of 

V(X) are characterized by a Levy-stable distribution with width parameter C(L/20) 

derived from 

 

αα σ 0
0 )2/( =LC                                                        (6) 

 

where L/20 is the lag for the increments of V(X) after step 1. After steps 2 and 3, the α 

power width parameter for  the V(X) increments with lag L/20 becomes 

 

ααα σ 10
0 )2/( ∆+=LC                                              (7) 

 

where ∆1
α results from adding random numbers from L(0, α, ∆1

α/2).  At the same time, 

the width parameter for the V(X) increments with lag L/21 becomes 
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where the term (σ0/2)α results from the linear interpolation (step 2) and the term ∆1
α 

again results from the addition of random numbers. For reasons to become clear later on 

(see Equation (14)), we need 
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α

α σσ 01
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Combination of Equations (8) and (9) results in 
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which is the equation used in step 3 of the fLm algorithm. As the algorithm proceeds, and 

we keep adding random numbers to all points, the Cα values at all levels (L, L/2, L/4, …, 

etc.) keep changing, and one must keep track of this in order for the final result to have 

the proper scaling. Following the same logic used to derive Equations (7) through (9), 

after step 7, one obtains 

∑ ∆+=
+=
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where i =0, 1, ……, n. Combining Equations (11) – (13), one may derive the α-power 

width parameter ratios: 
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     This general result, and its Gaussian counterpart, is what motivates Step 7 in the 

modified SRA algorithm. Only if the second term on the right hand side of Equation (14) 

can be ignored, will the SRA algorithm satisfy the desired scale relationship implied by 

Equation (5). However, in the traditional SRA algorithm without step 7 (NM = n), the 

second term may be sufficiently large such that the scaling relationship is not obtained. 

This is the reason why the traditional SRA algorithm has been found to provide stochastic 

fractal distributions of questionable scaling and correlation properties (Caccia and others, 

1997; McGaughey and Aitken, 2000). Our new step 7 in the current version of SRA can 

essentially eliminate the problem, which will be demonstrated later. From Equation (14), 

one may easily understand why Equations (9) and (12) are needed to produce the correct 

scale relationships. All random additions of the algorithm must be considered in 

superposition in order to motivate the correct steps.      

     McGaughey and Aitken  (2000) indicated that traditional SRA resulted in non-

stationary increments for 1-D fBm. They investigated correlation functions of time series 

generated by the SRA for two cases. These two cases correspond to correlation for a 
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single-sample time lag for the difference between two points and their interpolated 

midpoint and correlation for a single time lag involving two interpolated midpoints and 

one point between the two midpoints, respectively. Difference between two correlation-

function values is given (McGaughey and Aitken, 2000) 

∑=
−

=

−lNM

k

kNM
k1

2

44
3 σε                                                               (15) 

 

where l is the iteration the point between the two midpoints was initially added for the 

second case. The difference between correlation values for the same lag is an indication 

of non-stationary increments. Detailed derivation of Equation (15) can be found in 

McGaughey and Aitken  (2000). (Note that different notions are used here.) From Step 6 

in the corrected SRA procedure for generating fBm (Section 2), the variance in Equation 

(15) can be determined by  
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Combining Equations (15) and (16) yields: 
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     In the traditional SRA algorithm without step 7 (NM = n), the ε may be sufficiently 

large such that the increments are non-stationary. However, with the new step 7, we can 

use large NM  to make ε practically negligible. In other words, our new step 7 in the 

current version of SRA can essentially eliminate the problem regarding non-stationary 

increments at least for 1-D fBm. However, it is mathematically difficult to prove that the 

corrected SRA can also eliminate the problem for 1-D fLm (because the correlation 
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function cannot be defined for fLm), although we intuitively expect it to be the case 

based on similarities between fBm and fLm. Further research is needed to completely 

resolve this issue. On the other hand, in many practical applications (e.g., simulation of 

heterogeneous permeability distributions), one is more concerned with if the scaling 

relation (Equation (5)) is correctly simulated (Molz, Liu, and Szulga, 1997; Painter, 

1996). Slightly non-stationary increments are not expected to significantly affect 

simulated heterogeneous distributions. 

       The SRA algorithm for 1-D fLm presented above may be extended to 

multidimensional cases. As an example, we briefly demonstrate how the SRA algorithm 

can be used for generating isotropic two-dimensional (2-D) fLm distributions. We begin 

with four points (a, b, c, and d in Figure 3). They are separated by a distance L in the 

vertical and horizontal directions, respectively. They have initial values of zero. Similar 

to step 1 for generating 1-D fLm, we add random numbers from L(0, α, σ0
α/2 ) to the 

four points. As in step 2 for generating 1-D fLm, we linearly interpolate the midpoints 

(such as point D in Figure 3) in both vertical and horizontal directions. Then we calculate 

a value for the center point E by averaging the values of the four corner points. Similar to 

step 3 for 1-D fLm, we add random numbers from L(0, α, ∆1
α/2 ) with ∆1

α= (1 -

2αH/2α)σ0
α/2αH to the middle points, the center point and all other points. The following 

steps are similar to those used for generating 1-D fLm, except that for each step there are 

center points to be added in addition to middle points.  

       It may not be straightforward to understand why random numbers with the same 

statistical parameters are added to both center points and middle points when these points 

are added. To understand this issue, let us assume that random numbers with different 
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statistics need to be added to the center point E and the middle points in step 3 (see Fig. 

3). After that step, for the V increment between point a and the middle point D, we have  
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Obviously, the same relation holds for all other middle points and their adjacent points in 

the vertical or horizontal directions. Let us assume further that we add a random number 

from L(0, α, ∆1E
α/2 ) to the center point. As a result, the width parameter (CE) 

characterizing the increments of the random function, V, between the middle point D and 

the center point E becomes 

 

22
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2
()2/( 1101

αα
αα σ EE

E LC ∆
+

∆
+=                                                 (19) 

 

where σ0E is the width parameter characterizing the V increments between the middle 

points and the center point before the random numbers were added to the two points. 

Specifically, the V increment between points E and D is equal to 0.5[(Vd-Va)+(Vc-Vb)], 

where Vi (i = a, b, c and d) is a random function value at point i for the given step (Figure 

3). If we assume that  (Vd-Va) and (Vc-Vb) are independent, σ0E will be the same as σ0. 

This is the only additional assumption needed to extend the SRA algorithm from 1-D to 

2-D cases. As will be indicated in our numerical tests, use of this assumption gives 

satisfactory simulation results.  Considering the isotropy of the random field and to 
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satisfy the scale relationship for fLm, we need C(L/21) given in (18) to equal to CE(L/21) 

given in (19), which results in 

 

E11 ∆=∆                                                                                      (20) 

 

    Similar relations can also be obtained for other steps. It proves that random numbers 

with the same statistical parameters should be added to both middle points and the center 

points at relevant steps of the SRA algorithm.  

     A similar procedure may be used to extend SRA from 1-D to 3-D cases. Note that we 

only discuss the generation of isotropic fLm distributions in this paper. Methods for 

transforming isotropic fLm distributions to anisotropic ones can be found in Lu, Molz, 

and Liu (2003).  

 

NUMERICAL VALIDATION OF THE MODIFIED/GENERALIZED SRA 

ALGORITHM 

     To examine the validity of the developed SRA algorithm, we generated 20 1-D fLm 

distributions of length 257 by choosing H = 0.160, α = 1.25, NM = 62 and σ0  = 0.15. 

(Shown in Figure 4 is one of these fLm distributions.) Note that the length corresponds to 

2n+1 (n = 8 here). Then we analyzed fLm parameters for the 20 generated  distributions 

using the method of Fama and Roll (1972). Shown in Figure 5 is the width parameter, C, 

as a function of lag. The fitted H value of 0.159 is very close to the input value, 

indicating that the correct scale relation was simulated. We also analyzed 20 1-D 

distributions generated with the same input parameters but without using the new step 
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(step 7 in Section 4) that we added to the SRA algorithm. The resultant H value is 0.333 

(Fig. 6) that is considerably larger than the input value of 0.160. This confirms previous 

findings that the traditional SRA algorithm may generate fractal distributions non-

representative of the input parameters, often necessitating a trial and error procedure in 

order to get a pre-selected H value (Caccia and others, 1997; McGaughey and Aitken, 

2000). The fact that the resulting H values for distributions generated without using the 

new step are larger than input values may be easily explained based on Equation (14) 

(when the second term on the right hand side of the equation is not negligible). As 

indicated in Figure 5, our improved SRA algorithm does not have this problem. It is 

critical to correctly simulate the scale relations for modeling subsurface heterogeneity. 

Numerical results (not shown here) also indicate that the developed SRA algorithm is 

able to correctly generate fBm distributions (including those for H > 0.5). This is 

expected because fBm is a special case of fLm.  

       Shown in Figure 7 is a simulated 2-D fLm distribution with a side length of 257. The 

input parameters are H = 0.200, α = 1.25, NM = 62 and σ0  = 0.15. Analysis of the 

distribution in the horizontal direction results in H = 0.203, that again is very close to the 

input H value (Fig. 8), indicating that our SRA algorithm can also generate satisfactory 

multidimensional fLm distributions.  

      When it is necessary to obtain a fLm distribution with a given C0 (Equation (5)) 

rather than σ0, there are two options. One may be to determine σ0 directly from the given 

C0 from Equations (5) and (11) to (13). The other option is to adjust input σ0 values 

through several trial runs until the correct C0 value is obtained (Due to the efficiency of 
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this algorithm, trial runs may be accomplished rapidly). A further discussion of this issue 

can be found in Lu, Molz, and Liu (2003). 

       Note that for the numerical test results presented in Figures 4-8, truncation of the 

simulated random function values was performed. If a simulated value at a location is 

larger (smaller) than 3.5 plus the mean of all simulated values ( -3.5 plus the mean), the 

value is changed to 3.5 plus the mean (-3.5 plus the mean). Different truncation schemes 

may be used for practical applications. Figure 9 shows the Levy index analyzed with the 

method of Fama and Roll (1971) for the 2-D fLm distribution. As a result of truncation, 

the index is not a constant, but scale (lag) dependent. This is consistent with previous 

simulation results of Painter (1998). More importantly, this behavior is consistent with 

the results of measured data analysis for log(K) (Liu and Molz, 1997). 

 

CONCLUSIONS 

      A modified and generalized successive random additions (SRA) algorithm has been 

developed for simulating subsurface heterogeneity and other spatial or temporal 

distributions characterized by fLm or fBm.  SRA, developed initially for generating 

Gaussian fractals associated with a well-defined variance, has been corrected and 

extended rigorously to generating fLm distributions in which variances are not defined. 

In doing this, use was made of the mathematical analogy that exists between the second 

order statistical moment of a Gaussian distribution and the highest order (α order) 

statistical moment that is defined for a Levy-stable distribution.  The generalized SRA 

algorithm is validated through numerical tests, wherein it is shown that a new step, 

derived from considering superposition of all random numbers added repeatedly to all 
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points, overcomes the problem observed previously that the traditional SRA algorithm 

often produces Gaussian fractals having poor scaling and correlation properties. Note that 

the SRA can only be used to generate nonconditional spatial distributions. How to 

approximately develop conditional fLm distributions based on the corresponding 

nonconditional distributions and field observations was presented by Lu, Molz, and Liu 

(2003). Also note that the developed SRA algorithm can be used only for a structured 

grid system. An extension of the algorithm to a general unstructured grid needs further 

investigations. 
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Figures  

Figure 1. Schematic diagram showing the steps for the 1-D SRA algorithm. 

Figure 2. Levy-stable distributions with the same C value (C=1) and different Levy index 

(α) values. Note that α = 2 corresponds to the Gaussian distribution. 

Figure 3. Schematic diagram illustrating the 2-D SRA algorithm. 

Figure 4. A 1-D fLm distribution. 

Figure 5.  Width parameter C values (as a function of lag) calculated from simulated1-D 

fLm distributions.   

Figure 6.  Width parameter C values (as a function of lag) calculated from simulated1-D 

fLm distributions generated using the SRA algorithm without the new step. 

Figure 7. A 2-D fLm distribution generated with the generalized SRA algorithm 

Figure 8.  Width parameter C values (as a function of lag along the horizontal direction) 

calculated from the simulated 2-D fLm distribution. 

Figure 9.  Estimated Levy index values as a function of lag along the horizontal direction 

for the simulated 2-D fLm distribution. 
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