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Abstract 
Previously, we showed that a minimally cognitive, visual 
agent demonstrated selective attention and reactive inhibition 
(Ward & Ward, in press).  Surprisingly, we discovered the 
existence of an opponent-process architecture in our agent’s 
evolved, neural-network controller. Here, we investigate how 
opponent processes affect response control in the agent. We 
scale up cognitive problem solving by evolving links between 
multiple copies of the visual agent to solve tasks that a single 
agent cannot work out alone. Opponent processing effects are 
demonstrated in the linked agent’s response control.  

Keywords: opponent process; inhibition; selection; attention; 
genetic algorithm; neural network; linked agents. 

Introduction 
Research suggests that opponent processes may be 
ubiquitous in cognition, and they are key inhibitory 
mechanisms for implementing response control (Bowman, 
Schlaghecken, and Eimer, 2006). As illustrated in Figure 1, 
implementation of opponent processes has activation of a 
response followed by inhibition of that response through 
excitatory linkage to an opponent process (Hurvich, L., & 
Jameson, D., 1974). 

Houghton and Tipper (1994) developed a representational 
model of inhibitory mechanisms used in cognitive response 
control that captured valuable insights concerning the 
operational dynamics of opponent processes in realizing 
reactive inhibition. Burgess and Hitch (1999) demonstrated 
a connectionist model of the articulatory loop, which 
employed opponent processes to deliver decaying inhibition 
to a model-selected, lexical response. Bowman, et al., 
(2006) subsequently developed a computational model 
explaining how response activation from subliminal priming 
can be inhibited and suppressed using an analogous 
opponent process for response retraction.  

Using an approach of artificial comparative psychology, 
Ward & Ward, (in press) reported opponent-process 
architecture in the evolved network structure of a non-
representational visual agent capable of selective attention 
and action. This discovery was exciting because our agent’s 
cognitive solution developed without supervised learning, or 
general-purpose representation as used in the connectionist 
models mentioned above. It emerged in a dynamical 
environment in the context of a genuine perception-action 
loop where senses guide action, and action generates new 
sensory inputs, and the action involves an extended 

sequence of motor commands in response to sensory inputs. 
This development exemplifies what Clark (1999) calls “the 
unexpected intimacy between the brain, body, and world”. 
Our agent was based on an environmentally situated and 
dynamical visual agent originally developed by Beer (1996, 
2003) and Slocum, Downey & Beer (2000). 

 
Figure 1. Opponent-process architecture (Bowman, et 
al., 2006). An activated response deactivates itself by 
exciting an opponent, which in turn inhibits the 
response. 

The existence of opponent-process architecture in our 
implementation of the visual agent potentially has important 
implications because we also found that people exhibit 
similar results in equivalent “catching experiments” (Ward 
& Ward, in press).  Hence, we show here in some detail the 
structure of our agent’s evolved, neural-network controller, 
and identify the response-control mechanisms developed by 
a genetic algorithm. We examine the regulatory nature of 
opponent processes in controlling the agent behavior in the 
context of conflicting stimuli.  

In addition, Beer (in press) raised the general question of 
how to “scale up” visual agents to solve more cognitively 
demanding problems. Our approach here is to link together 
multiple, fixed-agents through subsequent evolution in an 
extended environment and investigate what control 
mechanisms develop. As a preview, experimental results 
demonstrate the presence of opponent processes in the 
control network of such agents. We conclude with 
observations about opponent processing, and offer 
suggestions for further research concerning the neural 
organization required for successfully scaling cognitive 
power. 

The Visual Agent  
The visual agent is a tractable model that can perform 
interesting cognitive tasks. For example, Figure 2 shows the 
visual agent as presented in Ward & Ward (2006, in press). 
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A genetic algorithm evolved the agent to selectively attend 
and respond to targets in a 2D environment. The agent has 
an array of seven proximity sensors, a small hidden layer of 
eight units, and left and right motor units to effect its 
movement. Its control circuit is a continuous-time recurrent 
neural network (Beer, 1996), with reasonably generic 
connections (see Figure 2). 
  

 
Figure 2. The visual agent (VA) catching two targets, 
which was originally presented in Slocum et al, (2000). 
Part A of the figure shows a schematic of the agent and 
environment. The agent was evolved to catch two 
targets (T1 and T2), falling from the top of the 
environment. VA has left and right motors, enabling it 
to move along the bottom of the environment to catch 
the targets as close as possible center-to-center. The 
rays emanating from VA represent proximity sensors. 
Part B illustrates the continuous-time recurrent neural 
network (CTRNN) that controls VA. A genetic 
algorithm evolved its parameters. The seven input units 
each pass on activation from an associated proximity 
sensor. The activation of the input units reflects where 
the proximity sensor intersects a target. Each input unit 
is connected to both motors and to each hidden unit 
(HU). Each of the eight HUs receives connections from 
every other unit in the network, and sends connections 
to all hidden and motor units. The two motor units (M1, 
M2) receive inputs from both sensor and hidden layers, 
and send connections back to the hidden layer. The 
motors are self-connected and connected to each other. 
A shaded box indicates fully recurrent connections 
between the designated nodes. 

Targets fall from the top of the 2D environment, and VA 
catches them by aligning its center under one and then the 
other as the targets impact at the bottom. In our 
experiments, the two targets fall straight down, and with 
constant velocity, the first target (T1) by definition has 
greater velocity than the second target (T2). This two-ball 
catching task requires many cognitive operations, including: 
(1) prioritizing T1 over T2; (2) selectively focusing 

responses on T1, while preventing T2 from interfering with 
the responses; (3) creating a memory for the unselected T2 
item, so that it can be efficiently processed later; and (4) 
reallocating processing towards a perhaps unseen T2 after 
catching T1. Our evolved agent demonstrated all these 
abilities. Note, these processes of selection, response 
control, and reconfiguration following a change of targets 
are all important themes in current selective attention 
research (for an overview, see Driver, 2001).  

Earlier, we analyzed our agent’s control circuit for 
explicit conflict-monitoring in periods of cognitive conflict 
defined by peak violations of its stable state equation and 
time course disagreements in its source inputs (Ward & 
Ward, 2006). Analytical and simulation results implied a 
distributed conflict management system rather than a top-
down monitoring mechanism as suggested by Botvinick 
Braver, Barch, Carter & Cohen, (2001, 2004).  

Response Control Mechanisms 
Figure 3 shows the evolved structure of the neural units in 
our agent. A genetic algorithm assembled neural units into 
left and right move groups, and weighted the intra- and 
inter-layer connections in the control circuit as shown.  

 

 
Figure 3. A genetic algorithm organized VA neural 
units into left/right move-bias groupings as illustrated. 
The summed weights from each group are labeled 
excitatory if positive, and inhibitory if negative. For 
simplicity, the middle input sensor (4) is grouped with 
both left/right sensor groups. As an example, activation 
of hidden units 1-4 (HU1-4) tends to move the agent 
right as they feed excitatory input to M1 and inhibitory 
input to HU5-8 and M2, which are biased to move the 
agent left. The activation of M1 excites HU5-8, which 
in turn inhibits M1. This structure, learned through 
evolutionary pressure, is an opponent architecture. For 
simplicity, not all connections are shown in the Figure. 

We omit detailed discussion of each neuron, and present 
the summed connection weights of the grouped units as an 
approximation of group activation effect. With only feed 
forward connections, the left/right groupings in the sensor 
layer appear to have a “reactionary” role. They excite the 
hidden units and motors based on their biased move 
direction. 
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As illustrated in Figure 3, lateral inhibition evolved 
between the two hidden layer groups and between the two 
motors. Mutually inhibitory links such as these implement a 
“winner take all” control mechanism for resolving response 
competition (Bowman et al., 2006). The ultimate decision to 
move left or right is an “either/or” choice that’s won or lost 
on two levels. First, a winning HU group excites or inhibits 
the motors based on its desired movement direction. Next, a 
winning motor activation excites the opposite-direction HU 
group, which in turn inhibits the activating motor. This 
inter-layer competition is an implementation of opponent 
processing as illustrated in Figures 1 and 2. Houghton & 
Tipper (1996) describe this architecture as a “gain control” 
circuit. They argue that such a dual mechanism of excitation 
and inhibition is essential for observing selective attention 
in a cognitive agent such as VA. 

Opponent Processes 
Opponent processes in VA regulate activation of the motors 
by release of inhibition. To illustrate, Figure 4 presents the 
effects of interfering (or not) with opponent processing in 
VA. The figure illustrates a test trial while VA is processing 
T1 in the presence of T2 (a conflicting stimuli). T1 starts at 
position 203, falling at speed 4.15, just right of VA at 
position 200, and T2 is left of VA at position 156, speed 2.2.  

The curve labeled “VA v T1” plots the horizontal, center-
to-center distance between a normal, unlesioned VA and T1. 
VA catches T1 at its impact (timeslice 540). The curve 
labeled “VA v T1 OPM Cuts” is a similar plot, but for a 
lesioned VA. In this case, periodic cuts are made in the left-
move opponent-processing circuit (when HU5-8 are acting 
on M2 to move the agent left, M2 excites its opponent 
group, HU1-4).  Whenever VA moved left for 25 timeslices, 
the connections between HU1-4 and M2 were cut in both 
directions for 10 timeslices.  After 10 successive left moves, 
the links were restored until the agent again moved left for 
25 slices. Essentially, the left-move opponent links were 
toggled off for 10 time slices and on for 25 time slices if the 
agent makes a long series of left moves such as those 
beginning around time 300.  

The regulatory effect of inhibition through an opponent 
process is reduced when the lesions are active. Under 
normal conditions (curve “VA v T1”), opponent processing 
suppresses the initial motor activations until sufficient target 
input is received through the sensor units to overcome 
opponent inhibition, which happens around timeslice 223 
(with normal processing). However, with the lesions active, 
left-move inhibition is reduced, and the agent moves further 
left than in the normal case at times 75, 325, and 475 
(contrast curves “VA v T1” and “VA v T1 OPM Cuts”). 
Hence, opponent processes avoid this type of over response. 

Response Retraction 
Once an agent starts moving in a selected direction, how is 
that response ever retracted? Bowman et al, (2006) argued 
that this function is one role of opponent processes. This 
function can be observed in VA in Figure 4, by comparing 

“M1 Inhibition” and “M2 Inhibition” plots, which are 
shown for the normal processing (unlesioned) case. An 
activated motor excites an opposing group of HU units, 
which feed inhibition back to the selected motor. It also 
receives inhibition from the losing motor. For example, M1 
activates at the point labeled A (time 225) to move the agent 
toward T1. This is followed by a steep magnitude increase 
in inhibition delivered to M2 through opponent processing 
(see the curve labeled “M2 Inhibition” drop below –10 
around time 230). Note the small increase in M1 inhibition 
through opponent links (see the curve labeled “M1 
Inhibition” around time 230). This inhibition lags M1’s 
activation, but at time 235 with reduced sensor input from 
T1 (the currently selected target), the agent eventually 
slows, and de-selects M1 around time 240. Afterwards, VA 
activates M2, reverses direction, and selectively attends T2. 
Opponent processing serves to turn the agent around based 
on changing sensory input from T1 and T2. 

 
Figure 4. VA target selection and opponent-circuit 
inhibition release. Curve “T1 v T2” approximates VA 
selectively attending T1 (low) versus T2 (high) during 
normal processing of T1. T1 is selected if in the 
previous time step, VA’s change in proximity toward 
T1 is greater than that toward T2. Otherwise, T2 is the 
selected target. Curve “VA v T1” plots the horizontal 
separation between VA and T1 during normal 
processing as the agent progresses to catch T1 on its 
right with T2 falling on its left. Curve “VA v T1 OPM 
Cuts” plots the altered separation when periodic lesions 
are performed in the left-move opponent-process 
circuit. “M1 Inhibition” and “M2 Inhibition” curves 
graph the inhibition to the motors released through their 
opponent connections (see Figure 3). For example, at 
time 286, the agent selects T2, causing T1 to become 
the distractor. As predicted by Houghton & Tipper 
(1996), selection of one target causes a rise in 
inhibition of the distractor, which is reflected in VA by 
an increase in M1 inhibition. Examples are discussed in 
the text at points A, B, C and D illustrating increases in 
distractor inhibition as well as distractor equilibrium 
and inhibitory rebound (Houghton & Tipper, 1996). 

Moreover, at the point labeled B (time 275) we can see 
examples of opponent inhibition as described by Houghton 
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& Tipper (1996). M2 activates to respond to the selected 
target T2. T1 becomes the distractor, and M1 is deactivated 
as it receives a slow increase in inhibition from its 
opponents until time 330-338 when it briefly flattens in 
what appears to be “distractor equilibrium” (M1 activation 
levels off). At time 338 a large increase of “inhibitory 
rebound” is released to M1 through opponent circuits 
(between points labeled B and C) as the agent moves 
increasingly away from T1 (changing sensory input from T1 
and driving M1 activation to a low point). During this time, 
inhibition of M2 gradually decreases (smaller magnitude, 
negative values) until time 356. M2 is deselected when it 
receives a lengthy spike in opponent inhibition until point C 
(time 366). VA then activates M1 at time 376, changes 
direction to attend T1, and T2 becomes the distractor. 

After point D (time 441), another instance of distractor 
equilibrium can be observed through M1 inhibition. The 
agent activates a response to T2 and sharply increases M1 
inhibition until time 451 when it flattens until time 471. 
This suggests equilibrium in managing T1 distraction. Lack 
of space prevents showing the relationship between T2 
salience and its level of inhibition during T1 processing. 

Response control in combined agents 
These above analyses reveal the psychological mechanisms 
for control of action within VA. However, VA is 
(intentionally) a limited agent. Let us assume for 
exposition’s sake that the human brain has on the order of 
100 billion neurons (about 20 billion cortical neurons 
(Pakkenberg & Gundersen, 1997), and about 100 billion 
cerebellar neurons (Andersen, Korbo, & Pakkenberg, 1992), 
each one of which has far more sophisticated processing 
capabilities (Graham & van Ooyen, 2004) than the 17 
simple CTRNN units we used with VA. Further, there are 
an estimated 240 trillion synapses in the cortex alone (Koch, 
1999), compared to 170 synapses for VA. This is a big gap. 
So, how do we scale up from a minimally cognitive agent to 
a brain? Which direction do we go? With more VAs, or with 
bigger VAs? In other words, is the human brain's cognitive 
architecture best thought of as a relatively small number of 
large, multi- or general-purpose networks, or as a collection 
of billions of small special-purpose agents? Here we 
investigate the later possibility by evolving a new agent we 
called the linked visual agent (LVA), and investigate its 
response control mechanisms.  

Linked Visual Agents 
To form LVA, two copies of our VA network (Ward & 
Ward, 2006) were linked together by a single set of shared 
motor units plus a new set of recurrent links between the 
HUs of each VA (see Figure 5). These “component VAs” 
were identical to our original VA except their sensors detect 
different color targets, red or green. The sensors of the green 
VA can only detect green targets; red targets cannot activate 
its sensors. The sensors of the red VA can only detect red 
targets, and not green ones. The sensor arrays of the 

component VAs were physically aligned so as to always 
perceive the identical region of space.  

 

 
Figure 5. The Linked Visual Agent (LVA). LVA has 
two identical component agents each with the same 
network structure and parameters as VA (see Figure 2). 
The sensors in each component VA can only see targets 
in one color—red or green. The input and hidden layers 
of each component VA project to a shared motor layer, 
where they compete for control of motor activity. Note 
that the proximity sensors of the red and green 
component VAs are exactly aligned so that they receive 
input from the identical region of space. 
Communication between the VAs is added by a set of 
fully recurrent links (weights) between the hidden 
layers of the two component agents. 

If LVA processes two green targets, for example, they are 
invisible to the red VA. On the other hand, if a red and a 
green target are dropped, each of the component VAs will 
attempt to catch the target it can see. This puts the two VAs 
in a state of cognitive conflict, one pulling towards red and 
the other towards the green target. To resolve this conflict, 
recurrent links were added between the hidden units in one 
component agent to each of the hidden units in the other. 
These links consisted only of a weight matrix, which was 
evolved in an environment similar to that of VA except that 
the number of evolutionary trials increased by a factor of 
four (target combinations of 2 colors) over those used to 
develop VA (Ward & Ward, 2006).  The previously 
developed weights and network parameters of the 
component VAs were fixed during the evolution of the 
additional inter-agent links.  

LVA was able to process the mixed-color targets with 
high accuracy, a task neither of its component agents alone 
could accomplish. T1 and T2 catch accuracy were over 
99%. Analyzing the new inter-agent links, we found that a 
genetic algorithm established mutual inhibition between the 
agents’ HU groups. When LVA decides which color agent 
controls the motors, it “activates” that agent over the other 
one using a winner take all strategy. The winning agent re-
enforces its selection by feeding inhibition via the inter-
agent links to left/right HU groups in the losing agent. LVA 
then responds to the targets under control of the winning 
agent. 

Opponent Processes in Linked Agents 
Some results of this simulation are shown in Figure 6, 
which summarizes hesitation times for 500 novel same-
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color trials and 500 equivalent mixed-color trials. LVA 
showed an overall cost for reallocating resources from T1 to 
T2, a pattern very similar to VA. After catching T1, LVA 
hesitated for a significant period before moving again to 
catch T2. Figure 6 illustrates hesitation to respond to T2 as a 
function of same vs mixed-color targets, and whether T2 
was in-view or out-of-view (OOV) after T1 catch.  We have 
previously reported evidence of reactive inhibition with VA 
based on this comparison. After catching T1, VA was faster 
to respond to an OOV T2 than an in-view one. This result 
might initially seem counter-intuitive but follows naturally 
from the idea of reactive inhibition. The OOV T2 required 
less inhibition during T1 processing, and so subsequent 
release of inhibition was faster (Ward & Ward, in press). 

 
Figure 6. Hesitation in LVA. Hesitation after T1 catch 
is shown for Same-color (T1 and T2 are both red or 
both green), and Mixed-color (one red target, one green 
target) trials. For comparison, hesitation of our VA 
behavior is shown for OOV (dotted line) and in-view 
(dashed line) trials. 

LVA's performance on same-color targets was almost 
identical to the component VAs. In particular, hesitation 
was longer when T2 is in-view compared to OOV, 
F(1,498)=137.8, p<0.0005, suggesting that inhibition is 
proportional to target salience. This result is expected, and 
simply shows that the addition of the inter-agent links did 
not fundamentally change the operation of the component 
VAs. This is evidence that the component VAs still used 
reactive inhibition from opponent processes to selectively 
respond to T1, and so were slower to reallocate processing 
towards salient T2s. 

  A similar pattern can be observed for the mixed-color 
trials. Again, when reallocating from T1 to T2 there was a 
significant hesitation, and this hesitation was reduced for the 
less salient OOV targets, F(1,498)=78.5, p<0.0005. Here we 
also see evidence for increased inhibition through opponent 
processes for salient T2s. In this way, selective attention and 
action in the LVA is coordinated using mechanisms very 
similar to those in the component VAs. Note that while 
hesitation for LVA with same-color targets was very similar 
to those of the component VAs, hesitation was in fact 
slightly reduced for LVA, F(1,498)=7.52, p=0.006. 

Evidently LVA was able to reallocate more efficiently than 
a component VA. The better performance for LVA must 
then be due to the use of units in the “other” component 
VA, mediated by the inter-agent links. That is, on a trial 
with two green targets, LVA could reallocate more 
effectively than the component green VA could on its own. 
This suggests that LVA was using units in the red 
component VA to assist performance on trials with two 
green targets.  

Another interesting result evident in Figure 6, is that 
reallocation was more efficient in the mixed than same color 
case, F(1,98)=320, p<0.0005. That is, it appears that 
cognitive conflict produced by the two targets was greater 
when both targets were loading on the same component VA. 
This suggests that T2 attracted less inhibition in the mixed 
than the same color case. This is to be expected since targets 
in the mixed case weren’t competing for the resources of the 
same component VA. Less competition means less need for 
inhibition, and faster subsequent reallocation. 

If both targets are of the same color, the winning agent 
uses its own opponent processing to manage LVA 
movement. But in a mixed-color target environment, how is 
a selected agent ever de-activated? LVA appears to leverage 
opponent processing in VA to fulfill this purpose. Recall, 
the motors are shared. An activating motor feeds excitatory 
input not only back to the winning agent's opponent HU 
group, but also to the corresponding opponent HU group in 
the losing agent.  This acts to retract control from a selected 
agent as follows. From an LVA perspective, the losing 
agent HU group excited by the activated motor feeds 
inhibition back to both the winning agent HU group 
(through the inter-agent links) as well as the opposite motor 
(through its opponent links). Hence, the losing agent HU 
groups act as opponent units feeding inhibition to both sets 
of HUs in the winning agent in an effort to shut down their 
control. As the losing color agent's sensory perception of its 
color target activates its HUs, greater inhibition flows 
through the inter-agent links to the winning agent. LVA 
eventually retracts selection of the winning agent, and the 
other agent takes control over the motors. Since the motors 
are shared, excitatory input is feed back to opponent HU 
groups within both the winning and losing agents. An 
activating motor thus has two opponents--one in each agent. 
As it excites these opponents, both in turn inhibit it. So we 
observe opponent processes in LVA as well as VA. 

Conclusion 
The VA is particularly interesting as a research tool for 
investigating cognitive processes, such as response control 
mechanisms. In VA’s neural circuit, we unexpectedly 
observed an opponent-process architecture (Houghton & 
Tipper, 1994). Importantly, VA is not a representational 
model designed to follow existing empirical work, so we 
can expect such surprises. As determined by a genetic 
algorithm, VA’s neural circuit also embodies classical 
lateral inhibition (Bowman, et al., 2006) between the motors 
and also between competing hidden-unit groups.  
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Inhibition release through opponent processes was found 
to regulate agent movement, prevent over-response, and 
switch agent move direction in conjunction with changing 
stimuli. Such opponent processes affect selective attention 
and reactive inhibition, which VA has been shown to 
demonstrate (Ward & Ward, in press).  

Here, we also observed similar capabilities in linked 
agents solving a task that individual agents cannot 
successfully process alone. In mixed-color test trials, the 
LVA demonstrated efficiencies not seen in the individual 
component agents suggesting the feasibility of “scaling up” 
cognitive capabilities by combining existing agents. These 
simulation results are indicative of opponent processes in 
LVA. Inhibition does not flow from a top-down “central 
inhibitor”, but from an organized and distributed structure. 
A genetic algorithm evolved lateral inhibition between the 
hidden layers of the linked agents to prevent move paralysis 
resulting from the competitive activation of both agents. 

Because of its possible implications concerning the 
human brain's cognitive architecture, future research areas 
include greater scaling of linked-agent capability not only 
by increasing the number of fixed VAs, but by varying their 
kind and behavior possibilities. For example, we have 
successfully evolved visual agents that solve various 
cognitive problems using additional behaviors, such as 
shape recognition and target inference which employ 
avoidance behavior (Beer, 1996). A thorough investigation 
of the response control mechanisms, and the role of 
inhibition in such agents are warranted to determine which 
of perhaps several agents actually control linked-agent 
behavior. A cognitive architecture described by linking 
large numbers of fixed-function agents may be a reasonable 
means for scaling cognitive power (Minsky, 1986; Singh, 
2003). The pros and cons of this suggestion have been 
debated among  computer scientists, but it may also be 
worth serious consideration, as a neuroscientific hypothesis, 
the idea that human cognition emerges from the interaction 
of massive numbers of connected, small networks. 
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